ACCIDENT ON CRITICAL ASSEMBLY STAND AT RFNC - VNIIEF

V. T. Punin, I. G. Smirnov and S. A. Zykov, RFNC - VNIIEF

Atomnaya energiya, Vol 83, No 2, August 1997
An accident occurred on critical assembly stand FKBN-2M at 10:50 AM on 17 June 1997.
In this paper, we do not presume to discuss the subjective causes of the accident, the nature of violations made in organizing the work (and such violations did occur) or the actions of those directly involved in the incident. Our task will be to reproduce events from the technical standpoint, to explain the nature of the experiment carried out on the facility, and also to clarify certain technical problems that were solved in the course of cleaning up the aftermath of the accident.

Critical assembly stand FKBN-2M is designed for studying structures that contain fissile materials in a configuration and quantity sufficient for realization of a nuclear fission chain reaction. Such experiments are necessary for checking the correctness of calculations of power and research reactors, fast reactors (including pulsed reactors) and nuclear weapon components.

In general, an experiment on such a facility is carried out as follows. First, a clearly subcritical section of the structure to be studied is assembled on the lower movable part of the stand, the lower platform being moved to the extreme upper position. The subcriticality of this section is assured by careful preliminary computations (with a considerable safety factor) and by the experience of previous work. Special measures are also taken to protect against possible errors in assembling this part of the structure. These measures include the presence of an inspector during assembly, and also continual observation of the neutron flux from the source put into the center of the assembly. Long before criticality is attained, the assembly begins to "feel" it coming on; it acquires the property of intensifying the neutron flux from the internal source. This flux is continually measured and displayed at the work site, and, in addition, it is relayed through a speaker system as a series of loud clicks (see diagram).

Diagram of stand: 1 -stationary part of stand with upper fragment of assembly; 2-fissile material; 3--reflector; 4—movable part of stand

The assembly procedure itself is a sequence of putting hemispherical layers of different materials one into another, like Russian dolls. To have the capability of simulating a variety of configurations, the experimenter is provided with a set of hemispheres of different materials (uranium, steel, copper, and so on) in standardized sizes.

Following assembly of the lower part of the structure, it is put into the extreme lower position, and the rest of the system that is required for bringing it to the critical state is assembled on the upper stationary part of the stand. After this, the experimenter leaves the room, and further manipulation with the assembly (bringing the upper and lower parts together, diagnostic measurements, and so on) is done remotely from a console that is separated from the room by several meters of concrete shielding.

After the assembly has been put into the critical state, it is essentially a very low-power fast reactor. Such a system has the property of self-regulation: if reactor power increases, this results in heating of the material, thermal expansion, and consequently a reduction of criticality, i.e. a drop in power. Thus, if the criticality of the assembly is sharply increased, there is a burst of neutron radiation, then it drops sharply to below the initial level, and after that again begins to rise and after a few oscillations settles down to a constant emission power. When designing buildings for conducting operations of this kind, meters of shielding are provided against a worst-case scenario. Such a scenario is the abrupt movement of the assembly past criticality when rapid heating may result in melting of assembly materials. In such an event, meltdown of the core automatically interrupts the chain reaction, but the inside of the room is contaminated. Attainment of the melting point is accompanied by intense neutron radiation, and it is for shielding from this radiation that the walls of the room are designed in accordance with stringent standards of radiation protection.

Just what did happen on stand FKBN-2N on 17 June 1997? The experimenter was doing a control assembly of a previously thoroughly studied system incorporating high-enriched uranium and a copper reflector. Being an experienced operator who had previously done several hundred critical experiments, he was quite sure that in this case he was working with a well-known system and was not anticipating any surprises. After starting the experiment, at a certain stage he apparently began to have doubts, and he disassembled part of the structure and began assembly once more without putting a control ("seed") source of neutrons inside. The shielding system in this case did not lose operability, as the source was near the assembly; however, sensitivity dropped appreciably. It should also be noted that, among previously studied systems, there are several similar critical assemblies that are equivalent in their final state, but their criticality is reached by different means; hypothetically speaking, one assembly contains "a lot of uranium and not much copper," while another contains "a littlc uranium and a lot of copper." We remind you that all hemispheres used in the experiments have standardized dimensions, i.e. the descriptions of assemblies use the same numerical values of the radii of their component parts. In a system with a large amount of copper, less uranium should accordingly have been put into the assembly; however, the one that was finally assembled turned out to be a structure in which there was "a lot of uranium and a lot of copper."

At the instant when the experimenter was putting in the copper hemisphere, the system was already near critical. If there had been a "seed" source inside the assembly, then undoubtedly, information about the nearness of the system to the critical state would have shown up in time, but the source was on the outside. At this instant, the hemisphere slipped out of his rubber-gloved hands and fell onto the uranium sphere previously assembled on the lower part of the stand in the copper reflector half. At this point, the lower part of the assembly, overloaded with uranium, went prompt critical. This was accompanied by a bright flash and a heat wave and triggered operation of the emergency drop of the lower part of the assembly (this measure is provided for use during the remote operation of the assembly platform from the console room). When he was aware that a nuclear accident had occurred, the experimenter quickly left the room and closed the shielded doors, thereby isolating the room from those adjacent to it. He notified his superiors about the incident and was immediately hospitalized.

Specialists arriving at the scene were faced primarily with the task of determining the final state of the assembly and the likely side effects of the accident in addition to the initial intense neutron burst that had been the direct cause of overexposure of the experimenter.

At approximately 1:00 PM, it had been firmly established first of all that there were no aerosolic or dust contaminants in the room, and secondly that the assembly was in a radiating state, i.e. in the critical mode. Standard operating procedure involves continual monitoring of the neutron flux in the room by a multiband system of neutron sensors. After the accident, readings were off the scale on all bands except the last. By using the channel that remained operable, it was possible, within certain limits, to monitor the relative change in neutron flux from the assembly. The absence of aerosolic contaminants was an indication that the core had not been destroyed in the accident, and stability of the neutron flux was evidence of attainment of an equilibrium (self-regulating) of the chain reaction in the system that had been formed on the stand.

Visual inspection of the room was possible through a periscope, and in addition some photographs could be taken through the opening of the door of the room. The system that had been formed was a uranium sphere in a copper shell 8 mm thick put into a hemispherical copper reflector about 260 mm in outside diameter. The entire system was in the lower part of the stand, and it was not possible to change its configuration by the standard means of controlling the assembly.

From the technical standpoint, the problem was to find some way of remotely removing part of the material of the assembly, or of changing its configuration to one that was less "dense." The only thing available to the specialists for doing this was a traveling crane that was remotely controlled from the console room. Nor was attaching any tools to the hook of this crane a trivial task, as access of personnel to the room was ruled out due to heavy dose loads. In accordance with the physical particulars of critical systems, bringing any material near the wrecked assembly immediately increased its reactivity, i.e. it raised the neutron flux and total release of energy. Thus, proposed methods of emergency disassembly had to take into account that any mass brought near the system in the process of bringing it out of the critical state had to be minimized.

The technical committee worked out and discussed several dozens of options for solving the problem. These options included various methods of remote action on the assembly (mechanical, chemical, the use of precision explosive technology, gas and plasma cutting, and so on). The most promising of these were chosen, and they were immediately developed under laboratory conditions and in the adjoining experimental room which had an analogous configuration. Specially fabricated mockups of the critical assembly were used in this work. In parallel with this, extensive work was being done in theoretical departments on calculations simulating the influence of various actions on the criticality of the system. Neutron and thermal characteristics were also predicted for the various solution scenarios.

The first action taken to resolve the emergency situation was to evacuate from the room the containers of the remaining nuclear materials that had not been used in the assembly. This operation was done by a robot developed at N. E. Bauman Higher Technical Academy in Moscow and delivered to VNIIEF by a subdivision of the RF Ministry of Emergency Situations. After the room had been completely cleared of these materials, specialists proceeded to the main part of the work: to remotely change the configuration of the damaged assembly.

Results were achieved by using the first method that was tried and that had been the most thoroughly worked out by the time the operation began. Using the same robot, a thin-walled tapered vacuum suction device was hung on a hose from the hook of the traveling crane. By moving the crane, the suction device was put onto the upper part of the copper hemisphere covering the uranium ball. The concomitant perturbation of reactivity roughly quadrupled the neutron flux and thermal power of the reaction. After turning on the vacuum pump and starting to lift, the assembly was split along one of the hemispheric contact surfaces, immediately stopping the chain reaction. After the neutron flux had dropped to the background level, the assembly was moved by the crane to a reserve metal support and left in that position for subsequent final disassembly. Thus, the operation of resolving the emergency situation on the FKBN2M stand was completed at about 1:20 AM on 24 June 1997.

Of course, our description has left out many technical details, in particular, the organization of a system of television surveillance of the room, details of the operation to remove the containers, the procedure of hanging tools on the crane hook, and so on. From the results of the work, detailed technical reports have been prepared with a description of all details of the operation; [such reports have] also been prepared on the alternative approaches to putting an end to the accident, which were experimentally worked out to a significant extent in the course of getting ready for the main operation.

АВАРИЯ НА СТЕНДЕ КРИТИЧЕСКИХ СБОРОК В РФЯЦ - ВНИИЭФ

17 нюня 1997 г. в 10 ч 50 мин утра на стсиде хритичесхнх сборок ФКБII-2м пронаошла авария. В настояццй статье мы не предполагасм обсуждать суоъектниние приниы апарнн, характер допущениых нарушсний при органнацин работ (а тахне нарушенья имстн мссто), а тахжс дсйствия лиц,
 точки зрения, обьясиение характера зкспсримента, пюоподивиегося на установке, а также разъясиение некоторьх технниеских проблем, решавнихся в ходе лихвндацни последствий аварин.

Стенд критических сборок $\emptyset К Б Н-2 М ~ п р е д и а з н а ч е и ~ д л я ~ н с с л е д о в а н и я ~ к о и с т р у к ц и и ̆, ~ с о д е р ж а ц и х ~ д е-~$ ляиисея материаль, в конфнгуриини холичеств, достатоиом для осуцествленияцепной реакцин деления
 телиских ядеринх реактороп, бистрых рсакторов (в том числе импульсных), злементов ядериого оружия.

В общсм виде эксперименты на такой устаноике осуцествляорся слсдуюици образом. Сначала на ннжнсй подвижной частн стенда собирается засдомо подкритишая часть исслсдусмой конструкцим, прия этом нижняя платформа перемещена в крайисе верхнсе положснис. Подкритичиость Јтои мастн обсспечивается прсдварительными тидательньми расисталн (со зиачнтельньм запасом) и оиьтом предидуцнх работ. Приннмаются также спецнальнье меры зацить от возможиьх оиибок при сборке этой иасти конструкцни. Эти меры включают присутствне коитролера ирн сборке, а также постояиное наблодснне за нейтронным потоком от источиика, помеиениого в цеитр сборки. Задолго до достижения хритичесхого состояиня сборка начинаст кчунствовать* приближение к нему, ириобретая свойство усиления неитроиного потока от внутрениего истоннка. Этот поток постоянно нзмеряется, отображается иа рабочем месте, н кроме того, транслируется через громкоговоритель в виде послсдователиности громких щсликов (см. рнсуиок).

Сама процедура сборки представляет собой последовательное вложенне однн в друтой полусферичесхих слоев раллниних материалоп, как в хуклс-матрсшке. Для того чтобы нмсть возможиость моделнрования разнообразных конструкцнй, в распоряжении экспернмеитатора есть набор полусфер нз различяых матерналов (урани, стали, меди и др.) стандартизованных размеров.

После гою как нижння пасть конструкцни собрана, она отводится в крайнсе ннжисе положеняе, и на верхней иеподинжной части стенда собирастся оставшаяся часть систсмь, исобходимая для доведения
 ее до крнтического состояиня. После этого экспериментатор покидает здл, и дальнейшне манипуляции со сборкой (сближенне всрхней н иижней частей, диагностниескне намерсиия и др.) осуществляются дистанинонио из пультовой, отделсниой от зала миогометролой бетонной защитой.

После тот как сборка принедена в крнтинеское состояние, она представляет собой по существу бистрий реактор очень малой моциости. Такая снстема обладаст свойстьом саморегуляции -

Схема стенда: 1 - неподвижная часть стенда с верхиим фрагментом сборкн; 2 - делящнйся материал; 3 -отражатель; 4 - подвижная часть стеида если моцность реактора повниается, это приподит к нагреву матсриала, его тепловому расширсино н как слсдствие х уменьшенио критниности, т.е. к сниженню мощности. Таким образом, если резко повисить критичность сборки, в ней пронзойдет всплеск нейтронного налучения, затем оно резко спадет до уровня ниже неходного, потом снова начнет расти н после несхольких колебаний установится режим постоянной мощности изтучсния. При проектировании зданий дія проведсния подоб́ноіо рода работ пре"дусматриваются меры защитьі от максимапьно неб.агопрнятного сцснария аварийното развития собитий. Таким яденарием является резкое переведение сборки черсз критичсское состояние, хол да быстрый нагрев может привести к плавлению ее материалов. При этом расплавление активной зоны автоматинсски прерывает цеппую реакцию, но виутрсинее помемение за.7а оказывается загрязненным. Достиженне темпсратуры плав.кния сопродождается
 стены зала проектируются по жестким нормам ра.днацноиной защиты.

ИИЭФ

:ла авария. «арактер допудеम̆ствия лиц. с техннческой е разъясиение

дсржацих деакцин деления x н исследованого оружня. 4. Сначала на струкцни, прн асти обеспечиндуцих работ. (конструкцни. за нейтронным тояння сборка отока от внутие того, транс).
усферичесхих чоделнроваиня зличных мате-

положение, и дтя доведения имсятатор по) н (сближение іня н др.) осу. й от зала мно-
<ое состовине, , рочень малой ррегуляции k нагреву maле к уменьиеוким образом, зойдет вспиеск - уровня ниже тьких колебатучення. При ода работ претагоприятнопо знарием являостояняе, когс материалов. гхи прерывает <азывается запровождаетея aдиты or nero вационной за-

Что же пронзонло на стенде фК
 отражатель. Будучи опитньм работинком, проведиим ранее несхолько сот критииескях зксиериментов, он в длнном случае бил твсрдо увсюсн, "то работает с хороно нзвестной системой н не ждал ннкакнх *сорпризовs. Начан сборку, он на каком-то тапе, виднмо, в чем-то засомиедался, разобуал часть конст-
 система зиить прн этом не потерхна свою работоспособность, так как нсточник оставался волизн сборки, однако значнтельно синзнла чувствителиность. Следует также отметнть, что среди рансе изуисиинх систем есть иесколько похожнх критниеских сборок - они эквнвалентиы по итоговму состоянию, но критниность
 другая - тмало урана и много мелия. Наломннм, что все полусферы, нспользуемье в экспериментах, нмеют стандартизоваинне размерь, т.е. в опнсаинях сборок фигурируют одии н те же числопье зичения раднусов их составных частей. З снстсме с больини количсством меди следовлло соотвстствснио установнть в сборку меньшее колинество ураиа, однако в итоге собранной охалалась коиструкиия, в которой бьио *много урана и много меди».

В момент, когда эксперимситатор устанввлнвл медную полусферу, система была уже близка к критичссхой. Если бы *атравочинम̈* нсточник Оил бы внутри сборки, то несомиснио информация о близости снстеми к критнческому состоянню проявилась бы вовремя, но нстоиик находился снаружи. В этот момсит
 стенда урановую сферу в половиис мсднопо отражателя. При этом перегржжсния ураном инжияя часть сборки перенла через крнтическое состоянне, что сопровождалось спетовой вспиикой, тепловой волиой н срабатнианием авлрийного сброса иижисй части стенда (эта мсра предусмотрена для работы в режиме днстанионноб переменения платформы стенда из пультовоД). Поияв, ито пронаиила ялериая апарня, экспернментатор бистр покниул зал н захрыл защитинс дверн зила, нзалировав епо тем сзмим ог смежньх помеццеий. О пронсиедием он нзвсстил руководство н бил сроино тоспнтализироваи.

Перед ириюининмн на место пронсилствия спецналистами прежде псего встала задани определения нтогового состояния сборкн н всроятних поботиых последстьнй апарин, помимо ничальнои иитенсивной иейтроной вспинияи, стависй непосредственной приииой персоблучсиня зкснериментатора.

Приблизителино к $13: 00$ било твсрдо установлено, что, во-псрвих, в злле отсутствуюот аэрозольные и пьллеве загрязнення, во-вторьх, сборка находится в излучаюцсм состоянин, т.е. крнтиеском режнме. При штатном режнме работи осуцсстдиетси постояний контроль нейтрониого иотока а зале с помощию мноподиапазоной снстемь нейтронных датчиков. После аварии на всех днапазонах, кроме последнего, иронзошло зашкалнвиние покавиий, с помоцью канала, сохранивисго рабогоспособность, можно било в ограничених пределах хоитролировать относительиье изменсния в нейтроииом потоке из сборки. Отсутствие азрозолыньх загрязисний указывало на то, что прн аварии не пронзошло разрушения активной зоны, стабильность неитрониоо потока свндетельствовала о достнженин равновесного (саморегулируюцепося) режима цепной реакцни в ооразовавицйся на стенде системе.

Визуальный коитроль злла был возможен через перископ, кроме того, удалось получить несколько фотографий, сделаниьх нз ироема лвсрн зала. Образовавнаяся система представляла собой урановую сферу в медной сболочке толииной 8 мм, помененную в нолусфернисский мсдиий отражатсль внсииим диаметром
 установкой изменить се коифигураиик нс представлялось qозможиьм.

С гехничесхой точхн зрения злача состояла в том, "тоби тем или иинм способом дистанционио удалить
 для этого имелся только дистаниионо управтясмьй из пультовой мостовой кран, ири этом иодиеска ка-ких-либо приспособлений на крюк этого храиа тахже яалялась нстрноиальной здачей, тах как доступ персонала в зал бил нсклнчен нз-за выспких дожоинх нагрудок. В соотнетствни с фнзинесхини особснностями критичсскнх снстем прибтижения лкбопо матернил к анарийнй борке немедтенио повниало ее реак-
 методы аварийной разборки должиы были учитьвать требование минимиздиии лююой массы, приближасмой к снстеме в ироцессе ее внвода нз критичесхоо состодиня.

 нанболее перспективнье, по хоторим началась немедлиная отраклта в устоннях даборачорий н соселием
 накеты аварийной сборки. Параллелнно у теоретических подразделсннях в массоиом поридке провднии расчеты, моделируюшне влиянне тех или иных действий на критниность снстемь. Пропнозировли такхе нйттонные н тепловые характеристнки для разных сиенарнев ликвидации.

Геервым активньм действнем по ликвидацции нештатной ситуации стала операция по эвакуацни из

 литы приступитн к выполненио оснивой уасти работи - дистанинонному измененио конфнграини лаарийного узла.

Результат бнл получен с помощью перпого же опробованното метола, иаиболес отработпиного к момент начала операцин. С помоцью того же робота на крюк мостового храиа была нодвсиена на шланге тонко стенная коинческая вакуумная прнсоска. Перемсюцением крана ирисоска была надста иа перхною част медиой полусферн, закрьвающей урановый шар. Возмущение реактивности при этом иривсло приблизи тельнок метыреххратному возрастанию нейтронното потока и тепловой мощности реакцни. После включсни вакуумного насоса н начала подиема сборка разделилась по одиой из полусферическнх повсрхностей кон гакта, что нсмедленно привело x остановке цепной рсакцни. После тою хак нсйтроииый поток снизилсдо фононог, сборка была перемещена с помощью храна на резервню металлическую подставку н оставленв таком положении мля последующсй окончательной разборки. Тсм самым около 1:20 ночн 24 нюня 1997 , операция по лихвидации нситтатной снтуации на стенде ФКБН-2М была завсриена.

Естественно, в нашем описанин опущени многие техническис подрооностн, в частности, организаци: системы теленаблюдения за залом, детали операцин по эвакуации коитсйисроп, происдура подвески при способлеиий на хрюк и др. По результатам работы подоотовлены подробиые техиичсскис отиеты с описание, исех деталей работы, а также-альтериативных подходоп к ликвидацни аварии, хоторые били в значительно: степени экспериментально отработаны в процессе подготовки основнои операцнн.

ПУНИН В.Т., СМИРНОВ И.Г., ЗЫКОВ С.А (РФЯЦ - ВНИИЭФ

ПРАВИЛА ОФОРМЛЕНИЯ СТАТЕЙ

Содержание статей должно быть изложено с предельной ясностью и краткостью. Следует избегать повторсния данных таблиц и графиков, а также представления числовых результатов в виде таблиц и графиков одновременно. Объем статьи - 12 c . машинописного текста (включая рисунки с подписями, таблицы и библиографию).

При подготовке рукописей авторы должны руководствоваться следующими правилами:

1. Тексты и илліюстрации представляются в окончательно отработанном для печати виде в двух экземплярах (один из них - обязательно первый экземпляр). Текст должен быть отпечатан через два интервала по $28-29$ строк на одной стороне листа.
2. Оформляются тексты (формулы, греческие и латинские, строчные и прописные буквы, сокращение слое и т.д.) в соответствии с общими правилами, принятыми в научно-технических журналах. Трудноразличимые рукописные буквы и знаки должны быть пояснены на полях.
3. Физические величины должны быть даны в единицах СИ.
4. Таблицы печатаются на отдельных листах и нумерустса по порядду, каждая таблица должна иметь заголовок; рисунки выполняются на комньютере; фотографии должны быть контрастными. Подписи к рисункам прилагаются на отдельном листе. В тексте должны быть ссылки на рисунки.
:". 5. Список использованной титературы приводится в конце работы. Для журнальных статей указываются: фамилии и инициалы всех авторов, если их не более четырех, ести более, то трех первых, а затем «и др.», название статьи, журнала, год, номер тома и выпуска, страннцы (от - до), для книг - фамилии и инициалы авторов так же, как для журналов, полное названис, место издания, издательство, год; для статей в сборниках - фамииии и инициалы авторов статьи, название статьи, название сборника, номер части, выпуска, место издания, издатетьство, год, страницы (от - до).
5. К статье должна быть приложена аннотация (объемом $1 / 3$ машинописной страниць) с изложснием цели и результатов работы, а также перевод на английский язык фамилий авторов и названия статьи.
