NUCLEAR CRITICALITY SAFETY

٩

Theory and Practice

As new reference materials on nuclear criticality safety are identified by the author, an updated list is prepared. Distribution is announced in the newsletter of the ANS Nuclear Criticality Safety Division and on the computer bulletin board of Lawrence Livermore National Laboratory's Nuclear Criticality Information System (NCIS).

NUCLEAR CRITICALITY SAFETY

Theory and Practice

Ronald Allen Knief

Prepared under the direction of the American Nuclear Society with support from the U.S. Nuclear Regulatory Commission

AMERICAN NUCLEAR SOCIETY La Grange Park, Illinois USA

Dedicated to

Hugh Paxton and Dixon Callihan, pioneers in the field of nuclear criticality safety.

Library of Congress Cataloging in Publication Data

Knief, Ronald Allen, 1944– Nuclear criticality safety.

Includes bibliographical references and index. 1. Criticality (Nuclear engineering) 2. Nuclear fuels—Safety measures. I. American Nuclear Society. II. U.S. Nuclear Regulatory Commission. III. Title. TK9153.K56 1985 621.48'35 85-1303 ISBN 0-89448-028-6

This document was prepared with the support of the U.S. Nuclear Regulatory Commission under Grant No. NRC-G-04-85-001. The opinions, findings, conclusions, and recommendations expressed herein are those of the author and do not necessarily reflect the views of the NRC.

This monograph has been authored by a grantee of the U.S. government under Grant No. NRC-G-04-85-001. Accordingly, the U.S. government has a nonexclusive royalty-free license to publish or reproduce the published form of this contribution, or to allow others to do so, for U.S. government purposes.

ISBN: 0-89448-028-6 Library of Congress Catalog Card Number: 85-1303 ANS Order No. 300020

Copyright © 1985, 1986, 1991, 1993, 1996, 1998 by the American Nuclear Society, Inc. 555 North Kensington Avenue La Grange Park, Illinois 60525

> Second Printing 1986 Third Printing 1991 Fourth Printing 1993 Fifth Printing 1996 Sixth Printing 1998

All rights reserved. No part of this book may be reproduced in any form without the written permission of the publisher.

Printed in the United States of America

CONTENTS

Chapter 1: INTRODUCTION General Features History and Organization	30 30 31
Goals and Objectives 1 International Standards	32
	33
Overview 1 Nuclear Criticality Safety Standard	
General References 2 The General Criticality Safety Standa	u 54 34
Exercises 2 Basic Philosophy	34 35
Administrative Practices	
Chapter 2: FUNDAMENTALS Double-Contingency Principle	35
Geometry Control	35
Overview 3 Control by Neutron Absorbers	35
Definitions 3 Subcritical Limits	36
Scope 4 Safety Margins	36
History 5 Additional Guidance	36
Principles of Safety 5 Specialized Standards	37
Review of Reactor Theory 7 Standards Needs	38
Criticality Indices and Correlations 7 Guides and Manuals	40
Neutron Balance Controls 8 Exercises	40
Criticality Example 10	
Reactor Kinetics 11	
Nuclear Fuel Cycle Concerns 12 Chapter 5: EXPERIMENTS	
Exercises 13	
Methods	43
Chapter 3: CRITICALITY ACCIDENTS Critical Facilities	43
Critical Experiments	44
Accident Experience 17 Subcritical Experiments	. 47
Process Criticality Accidents 18 Accident Simulations	49
Y-12 Plant 18 Recent Directions	49
Los Alamos Scientific Laboratory 19 Criticality Data	50
Idaho Chemical Processing Plant— Exercises	51
First Excursion 21	
Idaho Chemical Processing Plant	
Second Excursion 21	
Recuplex Plant 22 Chapter 6: COMPUTER METHODS	
Wood River Junction Plant 22	
Windscale Works 23 Transport Theory	53
Idaho Chemical Processing Plant— Discrete Ordinates	54
Third Excursion 24 Monte Carlo	55
Summary of Consequences 25 Cross Sections	57
General Observations 25 Validation	57
Criticality Accident Risk 27 Quality Assurance	58
Exercises 27 Exercises	60

Chapter 7: SUBCRITICAL LIMITS

General Limits	65
Single-Parameter Limits	65
Aqueous Solutions	66
Metal Units	66
Multiple-Parameter Limits	67
Concentration-Dependent Limits	67
Slightly Enriched Uranium	68
Other Considerations	69
Operating Limits	69
Fissile Units	70
Arrays	70
Summary	73
Exercises	73

Chapter 8: HAND CALCULATION METHODS

Buckling/Shape Conversion	75
Surface Density Method	77
Density Analog Method	78
Solid Angle Method	79
Exercises	81

Chapter 9: REGULATION AND RELATED IMPACTS

U.S. Regulatory Bases
Nuclear Regulatory Commission
Code of Federal Regulations
Guides and Standards
Organization
Fuel Facilities Licenses
Post-TMI-2 Evolution
Department of Energy
Organization
Orders
Field Office Implementation
Safety and Safeguards Interfaces
Radiation Safety
Fire Protection
Nuclear Material Safeguards
Exercises

Chapter 10: PRACTICES

Administrative Practice	109
Administrative Standards	109
Organizational Implementation	109
Quantitative Evaluation Methods	114
Design and Operation	115
Geometry Control	116
Poisons	117
Mass and Volume Limits	118
Moderation and Concentration	
Control	119
Storage and Transport	119
Control Specifications	120
Exercises	122

Enrichment	127
Process	128
Packaging and Shipping	128
Uranium-Oxide Fuel Fabrication	128
Fluoride-to-Oxide Conversion	129
Powder Processes	129
Fuel Assemblies	131
Reactor Handling and Storage	131
Fresh Fuel	131
Spent Fuel Storage	132
Spent Fuel Shipping	133
Reprocessing	135
Head-End Processes	135
Separations	136
Storage	136
Recycle	137
Plutonium Shipping	137
Mixed-Oxide Fabrication	137
Waste Management	138
Other Fuel Cycles	138
Heavy Water Reactors	139
Graphite-Moderated Reactors	139
Fast Breeder Reactors	140
Non-Power Reactor and	
Other Applications	141
Epilogue	141
Exercises	142

Appendix A: MONTE CARLO APPLICATIONS

KENO Features	145
Weighting/Biasing	145
Neutron Generations and Fission	
Source	145
Cross Sections	145
Reflectors	145
Geometry	145
Searches	145
Computer Input and Output	147
Material Compositions	147
Number Densities	147
Constituent Percentages	148
KENO/MONK Comparison	148

Appendix B: SURFACE DENSITY CALCULATION

Storage Array Spacing Example	154
Storage Array Content Example	155
Cautions	155

Appendix C: SOLID ANGLE CALCULATION

Array of Cylinders Example	159
Process Equipment Example	161
Cautions	162

Appendix D: LIMITING SURFACE DENSITY CALCULATION

Method	163
Array Example	165
Storage Vault Example	169

Appendix E: CRITICALITY ACCIDENT ALARMS

Standard	173
Design Criteria	174
Experimental Program	174
Additional Studies	175

Appendix F: REGULATORY DOCUMENTS

NRC License Forms	178
NRC Safety Evaluation Report	180
Licensee Safety Analysis Reports	187
NRC Inspection Checklist	214
Internal Inspection Checklist	215

Internal Appraisal Checklist216DOE Audit/Appraisal Outline217

Appendix G: TMI-2 RECOVERY OPERATIONS

Accident Overview	219
Operational Considerations	220
Accident Changes	220
Recovery Activities	220
Operator Training	222
Analysis Approach	222
Methods and Codes	222
Core Region	223
Fuel Outside of the Core	223
Results	224
Defueling Update	224
Reactor Coolant System Evaluation	224
Defueling System	225
Fuel Transport and Storage	226

229

Index

Publisher's Foreword

The American Nuclear Society is pleased to publish this book on nuclear criticality safety. While there are a variety of existing proceedings, reports, and manuals on the subject, this is the first book. It deals with not only the theoretical bases for criticality safety, but also details practical applications in use today at facilities across the United States.

In addition to those individuals and organizations mentioned in the author's Preface, special thanks go to the U.S. Nuclear Regulatory Commission for its financial support.

> W. Michael Diekman Manager, ANS Publications