The World's Reactors

No. 13 EBWR

KEY

- 1. Containment shell
- 2. Reactor
- 3. Turbo-generator
- 4. Turbo-governor control
- 5. Fuel replacement assembly
- 6. Dryer, and emergency cooler
- 7. Air-lock doors
- 8. Control room
- Main condenser, cooling (booster) pumps and filters
- Ground level
- 11. Steel supporting columns and reactor vessel
- 12. Rotating crane (20-ton)
- 13. Concrete haunch (supporting crane rail)
- 14. Concrete haunch supporting reservoir
- 15. Air conditioning exhaust stack
- 16. Automatic damper for 15
- 17. Boric acid l.p. injector ring18. Boric acid h.p. injector ring
- 19. Mortuary (storage for irradiated elements)
- 20. Start-up heater
- 21. Water purification plant
- 22. 15,000-gal water tank (sprinkler system)
- 23. Overhead water reservoir
- 24. Control rods (reactor vessel)
- 25. Control rods (motors)
- 26. Steam ring
- 27. Shield plug
- 28. Integral shielding
- 29. Feedwater ring
- 30. Main entrance

NUCLEAR ENGINEERING

JULY, 1957

The World's Reactors

No. 13 EBWR

TYPE:

Thermal heterogeneous.

PURPOSE:

Experimental power reactor using live steam.

LOCATION:

Argonne National Laboratory, Lemont, U.S.A.

OPERATION:

Diverged: Dec. 1, 1956. Opened: Feb. 9, 1957.

RATING:

20MW (heat), 5 MW (electrical).

FUEL:

Enriched and natural uranium.

Average U235 content: 1.4%.

U235 content of enriched elements: 1.44%.

Total investment: 6.1 tons.

Assembly composition: 6 plates of U-Zr-Nb alloy. Cladding: Zircaloy-2, 0.020 in. thickness.

Plate dimensions: 54 in. \times 3 $\frac{5}{8}$ in. \times 0.214 in. and 54 in. \times 3 $\frac{5}{8}$ in. \times 0.279 in.

CORE:

Volume: 4 ft dia. × 4 ft 6 in. high.

Fuel element assemblies: 106 enriched, 8 natural.

MODERATOR:

Light water.

PRESSURE VESSEL:

Material: Al killed steel, SA-212 Grade B. Cladding: 0.109 in. stainless steel type 304.

Dimensions: 7 ft i.d. \times 23 ft high.

Wall thickness: 23 in.

COOLANT:

Light water.

Inlet temp.: 110°F. Outlet temp.: 488°F. Top pressure: 600 p.s.i.g.

Flow: 60,600 lb/h.

CIRCULATION:

Pumps: two vertical shaft, 8-stage centrifugal.

Rating: 90,000 lb/h, 730 p.s.i.g., 190°F, 150 h.p. 3,550 r.p.m.

CONTROL:

Number of rods: 9, 5 hafnium, 4 boron.

Hafnium rods: Hafnium-Zircaloy-2 alloy, cruciform shape. Dimensions: 10 in. \times 10 in. \times 1 in. thick, 46 in. long. Weight with end pieces: 97 lb.

Boron rods: 2% in stainless steel.

Dimensions: similar to hafnium but $\frac{1}{4}$ in. thick.

Weight: 141 lb.

STEAM DRYER:

Material: Stainless steel type 304. Dimensions: 3 ft i.d×6 ft long. Wall thickness: 15/16 in.

SHIELDING:

Thermal shield in p.v.: 1 in. borated stainless steel. 3 in. stainless steel wool and concrete.

Overall radial thickness: 8 ft 3½ in.

EMERGENCY SHUT-DOWN:

160 gal sat. boric acid soln. at 1,600 p.s.i.g., injected into

bottom of vessel. Boric acid spray at top.

Pressure at T.S.V.: 560 p.s.i.g.

TURBINE:

Temp.: 482°F.

Flow: 62,700 lb/h.

ALTERNATOR:

Rating: 5,000 kW, 60 c/s, 3,600 r.p.m.,

4,160 V, 6,250 kVA at 0.8 p.f.

CONTAINMENT:

Steel shell ellipsoidal in shape. Dimensions: 80 ft dia. ×119 ft high. Design pressure (internal): 15 p.s.i.g.

Leakage: <100 ft³/day.

GLAND SEAL STEAM 3p.s.i.g.

Diagram showing gland sealing arrangements for h.p. end of turbine shaft.

AIR / STEAM - 6 in.H2O

DRY AIR + 6 in.H2O

