The World's Reactors no. 79

3394 MWt

104 mm

CANDU 950: Technical Data

The data listed below refers to one reactor-turbine unit of a typical two-unit

REACTOR TYPE

POWER AND EFFICIENCY Fission power: Net power output: Typical thermal efficiency:

REACTOR CORE Effective radius: Length: Cell arrangement: Lattice pitch: Reflector thickness: Fuel channels: Min. inside dia.: Shield and closure plugs:

CALANDRIA Tubes: SHIELD TANK Construction: Material: Shielding:

Axial length: Overall height: FUEL ASSEMBLIES Fuel material: Fuel pellet diameter: No. in element: Elements: Nominal bundle size: No. in core: Nominal mass of U in reactor: Average burnup (design centre value):

REACTOR CONTROL Adjuster rods: Mechanical control absorbers: Liquid zone controllers: REACTOR SHUTDOWN Shut-off rods: Drive mechanism: Liquid injection: MODERATOR SYSTEM Moderator:

Moderator volume: Design temperature: PRIMARY COOLANT SYSTEM Number of loops: Primary coolant: Fuel channel flow (maximum) Inlet header: Outlet header: STEAM GENERATOR Total steam output (8 steam generators): Feedwater inlet: Steam pressure:

PRIMARY COOLANT PUMPS TURBINE GENERATOR Steam conditions at t.s.v.:

Steam temperature:

Generator: Rating: REACTOR BUILDING Containment structure: Internal structure: Inside diameter: Height (top of base slab to underside of upper dome): Design pressure: Containment free volume:

Heavy water cooled and moderated horizontal pressure tube reactor. On-load

950 MWe 30.4 per cent 3953 mm 5944 mm square array of 600 700 mm, average at mid-point

stainless steel 7800 mm overall all-welded stainless steel annealed zircaloy-2

zirconium (2.5% wt) niobium

rectangular, double-wall carbon steel demineralized water, deoxygenated carbon steel plate, and carbon steel balls 14 000 mm 19 750 mm

natural UO2 zircaloy 4, graphite-coated i.d. 12.16 mm (nominal) 30 (nominal) 37 per bundle length 495.3 mm; dia. 102.4 mm

135 Mg 180 MWh/kg

27 stainless steel 4 cadmium/stainless steel 8 vertical, compartmented, (H₂O)

36 cadmium/stainless steel electro-magnetic, clutch-coupled 8 horizontal nozzle tubes gadolinium nitrate

D₂O 380.10³ litre two, independent

26.5 kg/s 266°C, 11.5 MPa (abs) 310°C, 10 MFa (abs)

8 (4 per loop) 1610 kg/s 5.0 MPa (abs)

99.75% (min) 4 (two per loop) single-stage centrifugal 11 800 kW 3400 kg/s

1 double-flow h.p., 3 double-flow l.p. cylinders 4.9 MPa (abs); 263°C 1800 min-1 direct-coupled, H/H2O-cooled 1320 MVA; p. . 0.85; 22 kV; 60 Hz

cylindrical; pre-stressed concrete reinforced concrete 52 m

62.5 m 138 kPa(g)

100 000 m³

Nuclear Engineering International, June 1981. PC Business Press Ltd. 1981. Quadrant House, The Quadrant, Sutton, Surrey SM2 5AS England

Site Plan and Station Layout

1. Reactor building

2. Service building 3. Turbine building 4. Administration building 5 Standby power generators Emergency power generators 7. Intake structure Pump house 9. Circulating water supply Circulating water return 11. Circulating water discharge 12. Switch yard 13. Water treatment plant 14. Deaerator bay

CANDU 950 power station

cutaway key 1. Reactor building no. 1

2. Reactor building no. 2

3. Administration building 4. Dousing water

5. Dousing water spray headers 6. Steam lines

7. Reactor building crane 8. Steam generators

9. Primary heat transport pumps

10. Reactivity mechanisms main deck 11. Degasser

Pressurizer 13. Reactor inlet header 14. Reactor outlet header

15. Fuelling machine 16. Reactor calandria

17. Auxiliary air lock 18. Horizontal reactivity mechanisms

Fuel transfer ports 20. Primary heat transport system heavy water

storage tank

21. Steam lines to turbine

22. High pressure emergency core cooling tanks 23. Chillers

24. Sampling cabinets 25. Emergency power generators

26. Power switchgear and control 27. Secondary control room 28. Secondary control cable room

29. Emergency water supply tanks 30. Irradiated fuel storage bay

31. Receiving bay 32. Irradiated fuel storage trays 33. Manbridge and hoist

34. Canal lock 35. Canal trolley 36. Irradiated fuel transfer canal 37. Irradiated fuel bay crane

38. Equipment removal area 39. Fuelling machine pit 40. Main air lock

41. Decontamination centre 42. Irradiated fuel bay heat exchangers 43. Liquid waste tanks

44. Spent resin tanks 45. Heavy water storage tanks

46. Ventilation and exhaust equipment 47. New fuel storage room 48. Control room air conditioning equipment

49. Main control room 50. Control equipment room 51. Cable room 52. Turbine building no. 1

53. Turbine building crane 54. High pressure turbine 55. Low pressure turbines

56. Generator 57. Isolated phase busbar 58. Deaerator 59. Deaerator storage tank

60. Reserve feedwater tank 61. Moisture separator reheaters 62. Heating and ventilation plant room

63. Condensers 64. Motor control centres 65. Clarifier 66. Turbine oil storage tanks

67. Heavy water upgrading tower 68. Standby power generators

69. Reactor and service buildings common foundation mat

Calandria and Shield Tank Assembly

1. Vertical reactivity control units 2. Vertical reactivity mechanisms deck

3. Fuel channels 4. End shield

5. Horizontal reactivity control units6. Side reactivity mechanisms deck

7. Calandria 8. Shield tank 9. Calandria pressure relief pipes 10. Shield tank extension