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Analysis of Prompt Excursiqns in Simple Systems and 
Idealized Fast Reactors 

By W. R. Stratton, T. H. Colvin and R. B. Lazarus* 

Fast reactor accidents which are severe enough to 
result in a prompt neutron escursion may be divided, 
conveniently, into two broad classes. These are: (I) 
the case where the core structure is intact at the 
inception of the burst ; and (3) the case where the core 
structure has lost its rigidity and is collapsing because 
of high temperatures and/or external forces. This 
paper presents a parametric study of prompt neutron 
bursts in solid metal assemblies and the beginning of 
such a study in rather idealized fast reactors. An 
attempt is made to present a uniiied picture, con- 
necting known experiments in simple systems with 
large fast reactors in which experimental information 
is nearly nonexistent. Two methods are used to esti- 
mate the fission yields of the various prompt excur- 
sions. The first of these is coded for a fast digital 
computer. The generation of fission energy, the equa- 
tions of motion, etc., are integrated stepwise in space 
and in time during the history of the burst or accident. 
The second is a modified Bethe-Taitl method and is 
suitable for estimating the “maximum credible” 
accidents covered under case (2) above. Comparison is 
made between the two methods for appropriate cases. 

The paper is divided into two major sections. The 
first portion contains a brief description of the code, 
the calculation of Godiva? and similar solid metal 
assemblies, and the calculation of prompt bursts in 
idealized fast reactors, making use of two basically 
different assumptions. The second section contains an 
analysis of bursts in fast reactors making use of a 
modified Bethe-Tait theory. Comparison between the 
two methods is made where applicable. 

The calculation (first method above), as coded for 
a fast digital computer, can be thought of as two very 
nearly independent parts. The first concerns the 
calculation of a prompt neutron v. and a neutron flus 
distribution. This has been done by either the Serbcr- 
\Vilson3 or the Carlso+ Sn method. Of the two formu- 
lations of the problem, the Scrbcr-Wilson scheme has 
been used for the entirc parametric study. The .Y, 
formulation has been used at judicious check points 
for comparison purposes. The two schemes usually 
agree, but for certain special cases the results arc 
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divergent. Differences will he noted and discussed at 
the appropriate point below. These formulations of the 
fast neutron diffusion problem have been described 
elsewhere and will not be discussed further in this 
paper. 

The second portion of the code is concerned with 
the generation of fission energy and the description of 
the dynamics of the problem in space and time. The 
code applies onIy to spherical geometry. If a problem 
is encountered that has been performed in, for 
example, cylindrical geometry, a suitable spherical 
analogue must be found. Some justification for this 
procedure can be found in “shape factor” esperiments 
described by H. C. Paxton” where the critical volumes 
of cylinders are compared to those of spheres. 

For calculational purposes the spherical assembly is 
divided into a number of hypothetical spherical shells 
or mass points. Each mass point may be characterized 
by various constants, nuclear and otherwise, such as 
transport and fission cross sections, neutrons per 
fission, mass, volume, etc. The neutron flus is then a 
step function in radius, since the various quantities 
characterizing a mass point are considered constant 
throughout the region represented by the mass point. 
The number of mass points used in a problem is 
usually between ten and twenty and is a function of 
the complexity of the problem. 

The bookkeeping system used to identify variables 
in space and in time is most easily esplaincd bv the 
following examples: Ii,(t) refers to the radius i 
(i = 1, 2, . . .) I) at tlic time t (jcscc) in the problem. 
Ii, (cm) is the outer boundar)? of the assembly and 
Ii, is thr interface bounding the innermost mass 
point. Oi-*(t + A/) is tlic tcmprraturc (I.olts) of tllc 
mass JIi_., (grams) located betlvecn radii li,_l and 12; 
at tile problem time f + Af. AI is the time interval 
used in the stepn’isc time integrations. 

The calculation is nccessnrily pcrformctl on a 
cyclical basis. To dcscribc the ccluations u~tl, ant1 tllc 
mctliotl of advancing the problem cJ4icnll!., assume 
that the following varinblc>s arc kno\\n : intcrfacc 
radii, Iii(f) ; velocities, I;‘,([ - At/!!) ; accckmtions, 
E,(t) ; neutron flus, ~i-?(t - ht/2) ; ant1 material tCIll- 

pcraturos, /I_ a(/). Tlic dot notation (i?, ii, etc.) implies 
the t ime dcrivntivcs of the vnrinblc. Tllc problem is 
advanced one cycle in time in the following mam1cr, 
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fundamentally quite simple. The interface velocities 
are advanced first : 

ii(t + At/“) = i$(t - At/“) + k&(t)A~ (1) 
These velocities are used to advance the radii : 

I<# + At) = R;(t) + ii,(t f At/“)Ai. (2) 
The total neutron flus can be advanced in time by 

45i-l(l + A1/~) = ~;-?(1 - A1/2)pZ”‘~~ (3) 
since CI at the cycle t is a function only of the geometry 
and material. It is obtained from the S, or Serber- 
~\‘ilson calculation, along with a new spatial distribu- 
tion. Given a new flus density (and distribution), the 
fission energy rate (per gram) is obtained easily: 

~i-l(t + Ar/x) 
= ES&*(/ i At/“)& i (f + A//!?) 

x I-i-*(t + .v/‘) (4 
where 6 is the energy release per fission (= 178 Mev), 
x;r (cm-l) is the material macroscopic fission cross 
section, and T* is the specific volume (cm”/gm). Given 
the fission energy rate, one may simply sum in space 
and time to obtain the total energy release. 

It has been found useful (although not necessary) to 
make use of a temperature dependent equation of 
state. If wc assume that the fission energy generated 
in mass point i - 3 in the cycle interval 4t is depo- 
sited as internal energy, except for the thermodynamic 
work this mass point performs on its neighbors, \ve 
atl\yance the temperatures (energy units) by 

where 

Bi-*(t + &/2) = -.-!- 
Cc-k(t + At/“) 

~i-?(t t A(/~) 

In Eq. (C;), an error has appeared in that C (heat 
capacity), 0 (temperature), and FP/EO (I’ = pressure) 
should be at the time t -I- a//!? rather than at time f. 
The error is small and may be rcmetlietl if so desired. 
Given new temperatures, the pressures are given by 
some suitably delined equation of state: 

Pi-*(t i- 4t) = I-):oi_,(r -t A/), l*i-*(t + A~):, (7) 
and new accelerations are simply obtained : 

x [Pi-# i- 4t) - P,,.,(/ t A/)‘. (8) 
In Eq. (8), Xi is a suitably tlefmed mass associated 
with the radius I<,. The problem has been advanced 
one cycle and the calculation is returned to Eq. (1) to 
start a new cycle. 

Typical problems may have between 500 and 1500 
such cycles. The number of cycles depends in part 
upon the complexity of the probkm. Generally, the 
neutron calculation is performed only one cycle in 
five. Prompt alphas and flux distributions are extra- 
polated by means of a quadratic function on cycle 
number t. In general, one can watch the rise and fall 

Figure 1. Godiva in the disassembled state 

pneumatic cylinders 

of variables such as fission rate, tempcraturcs, lx-es- 
sures, velocities, densities, etc., in space and in time. 

The first problem to which this code was directed 
was the series of controlled and instrumented prompt 
bursts in the Godiva assembly.“, (; Godi1.a consisted of 
three pieces of enriched (93.70/b CZ3”) uranium which 
were assembled by remote control in tile form of a 
sphere wllose total mass was about X5 kg. Thclt-e was 
no reflector. Prompt neutron bursts were initiatctl 
esperimentally by rapid insertion (<5 Y. 10F’ to 
30;~ 1O-3 seconds) of an enriched uranium rod into 
the center of Godiva. Godiva, in an unnsscmblcd state, 
is illustrated in Fig. 1. 

The measurements associated with the \xious 
bursts were total fissions occurring in tile “spike” or 
prompt escursion, the maximum fission rate, the 
width of the spilt, in time, at one-half the maximum 
value, and the period (= l/x) or r-folding time of tlic 
neutrons in the assembly. The first three of thrsc 
quantities arc illustrated in Figs. 2, 3, ant1 4, rcspN- 
tivcly. T11c vncrgy release in the most sulx~rxitical 
burst (about 8.5 cents over prompt critical) was 
0.13 lb high explosive cquivnlcnt (1 lb -= 7.4 s 10’” 
fissions). Two accidclltnl bursts ha\.c occurrctl of 
yield magnitude 6 x 10’” fissions and 1 .I! \: 10” 
fissions. 

The calculation was normalized to tile Godiva 
assembly by adjusting the nuclear constants until a 
prompt alpha of zero was calculatctl for the prompt 
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critical mass, and a prompt alpha of -1.03~ 10a/sec 
was calculated for the delayed critical mass.’ Given 
such a normaljzation, there remained only determin- 
ation of an equation of state. The function which 
enabled us to calculate the Godiva results is: 

P = a + bO + cp, (9) 

where P is in megabars, 0 in volts, and p in grams/cm3. 
a, b, and c are given by -0.545649, 0.27846, and 
0.02873, respectively. This function is undoubtedly 
not unique, but to date we have found no satisfactory 
substitute. The uranium heat capacity (used in Eq. 
(6)) is well known.8 

Given the above conditions, a number of problems 
were run representing bursts of various reactivities in 
Godiva. The starting reactivity was varied by ad- 
justing the mass of the outermost mass point. The 
results in terms of total fissions, maximum fission rate 
and pulse width are illustrated in Figs. 2, 3, and 4, 
respectively, superimposed on the experimental 
results. 

It can be seen (Fig. 2) that the experimental burst 
yields for various excess reactivities are matched 
satisfactorily except for the lowest reactivities where 
the calculated results are low by a small amount. The 
significant point to note is that the yield is linear with 
excess reactivity for low reactivities, but that at about 
four cents over prompt critical, a “break” occurs and 
the fission yield commences to rise much faster. The 
calculated results match this “break” quite accurately. 
The “break” occurs at that excess reactivity where 
the system is no longer in mechanical equilibrium. 
That is, for high reactivities, energy is being generated 
faster than the system can expand to return to 
equilibrium. 

The calculated maximum fission rates miss the 
experimental values (Fig. 3) by small amounts at both 
extremes of reactivity; and the burst widths (Fig. 4) 
are low by about 15% at the higher reactivities. None 
of these small differences is considered significant. 
Figure 5 shows the individual bursts. 

Given the satisfactory agreement with the Godiva 
experiments, a series of calculations was made on 
other Los Alamos Scientific Laboratory critical as- 
semblies. In particular, Rossi alpha measurements’ 
exist for bare uranium assemblies of 29% and 54% 
enrichment and for Topsy, a reflected uranium assem- 
bly whose core was enriched to 93.7% U235. Burst 
calculations were made for these assemblies in the 
same manner as was done for Godiva. The same 
equation of state was used, but different nuclear 
constants were, of course, required to force agreement 
with critical masses and Rossi alphas. Some of the 
results of these calculations are illustrated in Fig. 6. 
In this figure, we have plotted total fissions divided 
by core mass as a function of the initial reactivity 
above prompt critical. The unreflected assemblies 
reduce to a common linear relationship below about 
four cents excess reactivity ; the “break” from a 
linear relationship with excess reactivity occurs at 

very slightly higher reactivities for the assemblies of 
lower U23” content. The fission density is higher in 
Topsy at low reactivities. 

A number of calculations have been made for 
hypothetical reflected assemblies of varying core P5 
enrichment and reflector thickness. In general, for 
fixed excess reactivity and a core of 940/, Uz3”, one can 
construct a smooth sequence of fission densities varl-- 
ing somewhat less rapidly than the first power of the 
reflector thickness between the limits defined by 
Godiva and Topsy. Bursts calculated for reflected 
assemblies whose cores have lower Uz3j enrichment 
follow this same general pattern. These data and the 
data on Fig. 6 may be thought of as representing a 
scaling law connecting prompt burst energies of 
various spherical “solid” assemblies whose construc- 
tion is similar to that of Godiva. 

An additional result that can be obtained from 
these calculations is the kinetic energy contained in 
the moving metal as the assembly expands to relieve 
internal pressures. Clearly this quantity is zero after 
a controlled excursion. However, if the metal should 
rupture or if parting planes exist, the energy converted 
to this form should be readily recognized. It is, in fact, 
the energy available to do damage in an accident. In 
general, the calculation shows this quantity rising to 
a masimum, and (usually) dropping after the fission 
rate goes to a low value. For illustrative purposes we 
have chosen the maximum kinetic energy generated 
as a number with which to work. In terms of accidents, 
this is obviously the most pessimistic case. The ratio 
of this energy to the total energy release is illustrated 
in Fig. 7 for Godiva and for the bare assembly of 
29% P5. Two other assemblies are illustrated which 
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Figure 2. Godiva burst yield versus initial excess reactivity 
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Figure 3. Peak tission rates during Godiva prompt bursts for 
various initial excess reactivities 

are discussed below. The fraction of the fission energy 
that is converted to kinetic energy in the solid metal 
assemblies is evidently quite small for bursts of less 
than about 20 cents. The absolute values of these 
ratios are not as accurate as the data presented in 
Figs. 2, 3, 4, 5, and 6. The ratios may be low by a 
factor somewhat less than two. 

The only experimental check one has on this 
quantity for fast neutron systemst is the Godiva 
accidental prompt burst of February 12, 1957. This 
burst of 1.2 x 10’7 fissions was equivalent to about 
1.7 lb H.E. However, as illustrated in Fig. 8, the 
damage done to Godiva was very slight, not at all 
equivalent to that which would have been caused by 
I.7 lb H.E. Some warping of the pieces occurred, the 
central rod was stretched and finally ruptured, and 
considerable oxidation is evident. From these photo- 
graphs it is apparent that the central temperatures 
were very close to the melting temperature. To calcu- 
late a burst which agrees with the measured yield of 
1.2 x 10” fissions, an excess reactivity of about 20 
cents or a period of 5 ,usec must be assumed. From 
Fig. 7, it is seen that at its maximum, the kinetic 
energy was only about 1.4% of the total energy 
release. This relatively small amount (0.024 lb H.E.) 
of damage energy is much more consistent with the 
observed damage than is 1.7 lb H.E. The calculated 
central temperatures are about 50°C short of the 
uranium melting point. Most of the fission energy was 
deposited as heat content. 

The assemblies discussed above have been relatively 
simple. The calculated results are thought to be 
accurate and are simple to interpret. The question 
exists as to how accurately such a calculation can be 
made to represent a prompt excursion in a complicated 

t The final excursion of ‘the Borax I water moderated 
reactor0 gives some information on this question. The total 
fission energy created during this eltcursion was about 65 lb 
H.E. equivalent. It has been estimated that between 6 and 
17 lb of TNT would have produced comparable damage. 

0.01 01 
PROMPT ALPHA fc ICC-‘) 

Figure 4. Width of the prompt burst in t ime at one-half 
maximum times the prompt alpha versus the initial prompt 

alpha 
The high experimental point at CL = 0.0031 !Lsec-l may have 
been caused by neutrons reflected from the ground and 

supporting structure 

assembly such as a fast reactor. We wish to calculate, 
for example, a system consisting of pins of enriched 
uranium, perhaps canned with a nonfissile substance. 
This critical system of pins may or may not be im- 
mersed in a cooling fluid such as sodium or SaK. A 
reflector of some similar design will also exist. \Ye 
wish to calculate the fission energy released when this 
assembly, for some reason, goes above prompt critical. 

To attempt to calculate the dynamics of such a 
system, we must first construct a spherical analogue 
of a reactor, as our computational scheme is set for 
this geometry. There are two ways we can do this, 
neither one of which is entirely satisfactory. 

We can (1) distribute the mass uniformly at an 
average low density and assign the material a non- 
linear equation of state which simulates heterogeneity, 
or (2) imagine the mass to be distributed in a series of 
spherical shells of normal density and normal equation 
of state. These normal density shells are to be separ- 
ated by spherical shells that are essentially voids, or 
filled with very low density material. 

The first case is similar to the model considered by 
Bethe and Tait.’ According to this model, an accident 
or prompt burst has the characteristic that is generally 
referred to as threshold. One essentially assumes that 
the core structure is destroyed and that the change of 
reactivity with temperature (Ak/“C) is zero until 
temperatures are high enough to create positive 
pressures and initiate disassembly. 

The second case is somewhat more realistic in that 
the active material is initially at normal density. In 
this case there is no threshold; a quenching mechan- 
ism is initiated as soon as temperatures begin to rise 
appreciably. The temperature coefficient of reactivity 
is defined by the equation of state and by the neutron 
calculation used. Inertial effects may be important 
early in the problem. 

The creation of this model was prompted by the 
existence and flexibility of the code, of course, but 
also by noting how little Godiva actually expanded 
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Figure 5. Godiva measured fission rate for several controlled, 
prompt excursions 

The period (P-folding time) is shown ior each excursion 

during the quenching of a prompt burst. For a suffici- 
ently large number of mass points, it is expected that 
the two models should ,predict yields of about the 
same magnitude since it is known from perturbation 
theory that the reactivity difference between a homo- 
geneous and a granulated core tends toward zero as 
the grain size is diminished. Some computations 
related to this assertion are in progress, but have not 
been completed. For a manageable number of regions 
(10-20) the two models give divergent results, as will 
be seen below. 

The problems described below are based on the 
calculation of the Godiva prompt bursts and the 
several critical experiments that have been done at 
the Los Alamos Scientific Laboratory. The calcula- 
tional scheme has not been changed except for an 
extension of the equation of state. Provision has been 
made for densities greater than normal, the metal to 
liquid phase change, and finally a phase at low densi- 
ties by use of a Van der Waals’ function. Following 
Brout,*O we assume a critical temperature of 14,OOO”I<, 
and a critical volume of 40 cm3/mole. We accept a 
critical pressure of 1.0899x 1OrO dynes/cmz. 

The first model to be set up for calculation was a 
bare assembly of about 66 kg of highly enriched 
(94% Uz3j) uranium. This particular case was chosen 
to study an assembly only moderately different from 
Godiva in mass, with no reflector, but with a radically 
different geometry. The desire, of course, was to set 
what fission yields would result from calculated bursts 
making use of the two models (layered and threshold). 
The threshold case was set up by assuming the entire 
core to be at a uniform density of 0.9 that of normal 
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Figure 6. Calculated fission densities versus initial excess reactivity 
for several solid metal assemblies 

Topsy was a reflected uranium assembly whose core was 
enriched to 93.7qbUz3”. The other three assemblies \vere bare 

uranium. Various excess reactivities were obtained by 
small changes in the mass. Bursts were then calculated 
as for Godiva. The burst behavior, however, was 
different in that a temperature rise of 11OO’C was 
necessary before internal core pressures became 
greater than zero. The calculated yields \vere con- 
siderably greater than those calculated for Godiva. 
The layered case was set up by imagining the 6G kg 
to be in a series of mass points (spherical shells) at 
normal density and equal thickness. These mass 
points were separated by regions of low density 
material (normal uranium at a density of I! grams/cm3). 
Dynamically, the dense regions were separated by 
voids. Prompt bursts were ei‘fected bJ- adjustments in 
the mass of the outer shell. 

The prompt bursts for this core, as calculated by 
use of the threshold and layered assumptions, are dis- 
played in Fig. 9 along with those of Godiva for 
comparison. The data are presented in terms of fission 
energy density versus initial reactivity above prompt 
critical. 

The third assembly in this figure is discussed below. 
It can be seen that the fission cncrg!~ density for the 
layered case is about three times that of Godiva for 
low excess reactivitics (linear region). -However, the 
threshold case is higher by a factor of at least 50 and 
as much as 400, depending on the reactivity. For very 
high reactivities (~$1) the difierence is more like a 
factor of 10, and in a limit of very high reactivities, 
the two models probably agree. 

Additional layered cores have been set up of 95 kg 
and 210 kg of 94% Uz3” and 246 kg and 510 kg of 
51% u 235. The average densities of these cores were 
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Figure 7. Calculated kinetic energies ,divided by total energy 
release versus initial excess reactivity for three assemblies 
Godiva and the 29y0 assembly are assumed to be solid spheres. 
Bursts have been calculated for the 66 kg (940/b Uz3&) bare 
assembly by making the threshold assumption (upper curve) 

and the layered assumption (lower curve) 

nominally 75% and 50% of normal density for the 
smaller and larger masses, respectively. Bursts were 
calculated for these assemblies in an entirely analogous 
manner. The fis s ion energy densities of these bursts, 
as a function of reactivity, fall fairly c lose to, but 
s lightly  higher than, the 66 kg case descr ibed above. 
The most estreme case, that of 540 kg of 54% W ’j, 
was greater than the 66 kg case (above) by a factor of 
two. Apparently the sca ling laws illustrated in F ig. 6 
hold, at least within the accuracy of the calculation. 

The third assembly illustrated in F ig. 9 has a core 
of 147 kg of highly enriched (94% W 5) uranium and 
a reflector of normal uranium. The core was 4 normal 
density for the threshold case and s lightly  less-than 4 
on the average for the layered case. The reflector was 
layered for both cases. Prompt bursts were effected 
by small adjustments in the mass of the outermost 
core mass point. The temperature rise for positive 
pressures to become s ignificant in the threshold cast 
was about 4000°C. Again the two assumptions give 
divergent results at low reactivities. 

Further information of interest can be gleaned from 
the calculational results representing these bursts. 
The fraction of the total fis s ion energy that is  con- 
verted to energy of motion is  illustrated in Pig. 7 for 
the bare 66 kg assembly discussed above along with 
Godiva results for comparison. The layered case is  
lower because of the lower y ields, but also because 
internal pressures are invariably lower for the same 
energy density. Evidently, each individual shell can 
expand and consequently relieve its  internal pressures 
much more easily than can a solid assembly acting 

more as a unit. This point is  further illustrated by 
reference to F ig. 9. It can be seen that the linear 
region of y ield (for the layered cases), as a function of 
reactivity, extends to much higher reactivities than 
does the curve representing Godiva. The layered 
assemblies are able to maintain mechanical equili- 
brium for more v iolent bursts than can Godiva. As 
was mentioned previously, the calculated k inetic 
energies are thought to be low by as much as a factor 
of two. However, relative values should be good. 

A s ignificant difference between the Serber-\\‘ilson 
and S,, methods first appears in the above discussed 
layered problems. The S, and Scrbcr-\\‘ilson methods 
predict very c losely the same var iation in alpha during 
a burst calculation of a solid assembly, but the S,, 
predicts a s ignificantly smaller AX during the burst 
calculation of a layered problem than does the 
Serber-LI’ilson method. Selected check points suggest 
that the change in c (  for a given change in confgura- 
tion is  smaller in the S, calculation by a factor of 
between 2 and 4, depending on the problem. This 
interesting result can be interpreted as say ing that 
the two methods give different temperature coeffici- 
ents of reactivity for layered mod&, but the same 
coefticient for homogeneous models. Since the calcu- 
lated y ield is  inversely proportional to this coefficient, 
it is  expected that the y ields of the layered problems 
in F ig. 9 would be raised by factors of between 2 and 
4, if the S, code were incorporated in our calculation. 
Although this indicates the importance of the neutron 
calculations for quantitative y ield predictions of a 
given reactor model, the qualitati1.e difference in 
y ields between the homogeneous and layered models 
remains unaffected. 

A second perturbation in the results can be created 
by examination of the equation of state (Eq. (9)). 
This equation of state predicts a compressibility  of 
uranium, for example, that is  lower than published 
values by a factor of about two. This inconsistency 
can be removed by raising the coefficient of p (with a 
corresponding change in the constant term so as to 

&& *,’ 

Figure 8. View of several pieces of the Godiva assembly after the 
accidental burst of February 12, 1957 

The energy release during this excursion was equal to 1.7 lb 
H.E. equivalent 
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retain zero pressure for room temperatures and 
normal density). The net result is that, approximately, 
the calculated yields are raised by the same factor we 
used to raise the coefficient of p. We have now aban- 
doned the normalization to Godiva, of course. If we 
should now raise the coefficient of 0 by about the 
same factor (so as to preserve, for example, the 
coefficient of volume expansion), the yields are re- 
turned, again approximately, to their original values. 
However, the Godiva results are not restored with the 
accuracy indicated in Figs. 2, 3 and 4, by this second 
change, and apparently cannot be with any such 
simple change in the equation of state. 

One can go a step further and construct an equation 
of state, which, with a given neutron code, directly 
reflects the temperature coefficient of reactivity of 
the reactor of interest. Here one must consider only 
those core materials of direct interest. For example, 
the time scale of a prompt burst in a fast system is 
generally so short that very little heat would flow from 
uranium rods to a coolant. The most pertinent co- 
efficient in, for example, the EBK-11” may be the 
linear coefficient of expansion of the core pins. The 
value for this part of the core is about l/3 that calcu- 
lated for the layered, reflected core of 147 kg discussed 
above. If we should take an equation of state to 
reflect this coefficient, the calculated yields would 
again be about three times those illustrated in Fig. 9. 
This last step has about the same effect as changing 
to the S, method. Both changes could not be applied 
at the same time. 

0.01 0.1 1.0 
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Figure 9. Fission energy densities versus initial excess reactivity 
for a 66 kg bare core, a 147 kg reflected core, and Godiva (for 

comparison) 
The 66 kg and the 147 kg cores arc assumed to be made of 
uranium enriched to 94% IF5. The upper two curves rcprc- 
sent bursts obtained by assuming a threshold model, while 
the lower two represent bursts obtained by assuming a layered 

model 

The uncertainties discussed above may be sum- 
marized by stating that we can find reasons for 
suspecting that our burst calculations for the layered 
cases may be low by a factor probably no greater than 
three or four. In all cases, however, the qualitative 
difference between the layered and threshold models 
remains. 

The addition of reactivity to an assembly can be 
effectively instantaneous only in very special cases. A 
more likely possibility is the situation where reactivity 
is being added at a given rate and the neutron flus is 
multiplying as determined by the prompt alpha. The 
insertion rate is continued until an energy density is 
achieved which initiates some quenching mechanism. 
The burst then proceeds from the point of maximum 
reactivity in a manner analogous to those assemblies 
which suffered a step-function increase in reactivity. 
The procedure used to insert reactivity in this study 
is to give all radii negative velocities at the problem 
start time. The initial prompt alpha is zero, and the 
power level is set at some arbitrary level, usually 
about one megawatt. The rate of change of reactivity 
caused by the material collapsing inward is determined 
by the initial velocities. 

The same threshold and layered cases studied above 
were examined. Bursts were initiated by collapsing 
the core at various initial velocities. Typical initial 
velocities were 0.32, 3.2, 10 and 32 ft/sec. The resulting 
burst yields are displayed in Fig. 10 as a function of 
the initial reactivity insertion rate. The same pattern 
is evident in this figure as was seen in Fig. 9. In fact, 
if the results of these calculations arc plotted in Fig. 9 
against the maximum reactivity attained during the 
problem, the points are nearly identical to those 
obtained from a step-function increase of reactivity. 
To our knowledge this fact was first discovered by 
Dyer et a1.,12 during analysis of the 1936 SPEKT 
experiments. 

An additional calculation has been made on the 
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Figure 10. Fission energy densities versus initial reactivity inser- 
tion rate for a 66 kg bare core and a 147 kg reflected core 

Thr upper two curves rcprcsent bursts obtainctl by assuming 
a threshold model, while the lower two rcprescnt bursts 
obtained by assuming a !ayercd model. The initial prompt 
alpha was zero and the mltial power level was about one 

megawatt 



PROMPT EXCURSIONS IN FAST REACTORS 203 

66 kg assembly. The insertion rate was identical to a 
previous problem, but the initial power level was 
lowered by a factor of 106. This variation essentially 
allowed the core to collapse further and to a higher a 
before disassembling pressures were developed. The 
yield was increased by a factor of 2.7. Evidently, the 
calculated yield is relatively insensitive to the initial 
power level. This point has been noted previously.‘* 13* I4 

A special problem was set up to examine, if possible, 
the case of a core meltdown within the limitations of 
the calculational method as described above. The 
situation imagined is that described by L. J. Koch et 
al. in their excellent description of the EBR-II.” 
Their statements describing the situation are repeated 
verbatim. 

1. The sodium has boiled away from the center 
of the reactor. 

2. The uranium from the middle part of the core 
has trickled down into the lower part of the 
core and is retained there, producing an ab- 
normal concentration of enriched uranium at 
the core bottom, with a large gap at the core 
center. 

3. At the worst possible moment, the upper por- 
tion of the core falls as a single unit, producing 
a prompt critical configuration at the highest 
possible insertion rate. 

In their discussion of this situation, a reactivity 
insertion rate of 600 $/set is deduced from statement 
3. Their assumption that the threshold model is 
applicable leads to a burst yield of 825 lb H.E. 
equivalent, of which SO%, or 660 lb, is expected to be 
available as explosive energy. (This result is stated as 
a “maximum credible accident.” Koch et al. did not 
necessarily give credence to such an accident.) 

There is some reason to suspect that the situation 
described above has a distinctly nonthreshold char- 
acter. That is, it can be assumed that the region in the 
lower part of the core is a homogeneous mass, in 
which all empty space between pins is filled with 
uranium or a mixture of cladding metal and uranium. 
The burst behavior of this portion of the core could 
be much like that of Godiva. We have attempted to 
match the situation described above with the following 
set of assumptions, leading to a calculated yield. 

1. ‘CVe assume a core of 198 kg of uranium en- 
riched to about 60% V3”. 

2. 122 kg of the core material have condensed 
into a sphere at a density of 18.02 gm/cm3. 

3. The remaining 76 kg are placed in two spher- 
ical shells about 3.5 cm and 5 cm, respectively, 
from the central mass of 122 kg. 

4. The radii bounding these shells are initially 
set into motion inward at a velocity of 10 
ft/sec. All other radii are initially at zero 
velocity. The insertion rate is 630 $/set. 

5. These outer two shells are separated from each 
other, from the central sphere and from the 
reflector by material most like normal uranium 
at a density of 2 grams/cm3. 

6. The initial power level was about one mega- 
watt, and the initial prompt alpha was zero. 

7. Equation (8) was modified by the addition of 
a constant term which was set equal to the 
acceleration of gravity, directed inward. 

The calculated burst yield was 9.8 lb H.E. equiva- 
lent. The maximum reactivity attained during the 
collapse was 24.6 cents over prompt critical. This 
energy release is an amount expected of Godiva and 
in fact the fission energy density is exactly that 
espected of a Godiva burst 25 cents over prompt 
critical. It appears that the quenching was governed 
in large part by expansion of the central sphere. The 
generation of fission energy was completed in about 
450 psec from problem start time, At this time the 
mass points in the central sphere were moving out- 
ward with a velocity of about 80 ft/sec. If gravity 
alone were operating (which is not the case) a second 
burst could develop in about five seconds. The calcu- 
lation was not followed this far, however. To compare 
this result with those described above for the ERR-II, 
a factor of 312 is needed to adjust for the core mass. 
(The EBR-II core will have about 300 kg enriched 
uranium.) An additional factor of, say, 2.7 might be 
obtained if it is assumed that the initial power level 
were 1 watt rather than 10s watts. The yield could 
now be 40 lb, a factor of about 20 below that resulting 
from the threshold assumption. 

The only fast reactor core meltdown on which we 
have information is that of the EBR-I accident of 
November 29, 1953.151 l6 The EBR-I core consisted of 

/ 

7 
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Figure 11. Fission energy release versus initial excess reactivity for 
two cores as obtained by two methods of estimating burst 

energies 
The solid line represents results obtained from the calculation 
coded for a digital computer while the dashed line represents 
results obtained from a Hethe-Tait model. The threshold 

assumption is made in both cases 
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about 50 kg of uranium enriched to 94% U2D5 in the 
form of rods canned in stainless steel. The coolant 
(NaK) was present, but not flowing. Diagnostic 
experiments were in progress to deduce the basic cause 
of previously observed reactivity oscillations. A series 
of human errors occurred which resulted in an excur- 
sion which went beyond the original planned power 
level, and before the system could be physically 
scrammed, considerable damage was done to the core. 
The central part had melted and had, in general, sunk 
to the lower part of the core. Some of the materia1 
originally in the core had been forced into the upper 
and lower blankets. Apparently, the fast scram 
stopped the excursion before the reactivity exceeded 
prompt critical. The outer parts of the core, and, in 
particular, the can surrounding the core suffered no 
damage whatsoever. 

By accepting the assumptions leading to the 
threshold model, discussed above, the total energy 
releases of systems discussed in this paper can be 
estimated without the need for a digital computer. In 
particular, the method applies to a sphere having, at 
time t = 0, an outer radius 15, a uniform density p, and 
a parabolic energy production distribution with an 
exp (at) time dependence. 

We must make the assumption (believed to be a 
good one) that neglecting the decrease of tc during 
disassembly is compensated for by discarding the 
energy produced after the system has returned to 
critical. 

Defining Y = R(t = 0), we write the energy per 
unit mass as: 

E(r,t) = &,(I - qy’/b*) exp (at). (‘0) 

E0 is determined by the power level at t = 0 ; q is 
chosen to fit the flus distribution. \I’e are looking for 
the total energy : 

Y = ME& 1 - 3q/5) exp (cc&), 

where M  = core mass and fc = critical time. 
If we take the pressure to be: 

(1’) 

P(.Y$) = max [0, p(y - l).[E(r,t) - Q*)j, (12) 

then the Lagrangian equation of motion : 

Lw/at = - (?P/im)/p (13) 

can be integrated immediately, giving R(r,) --r as a 
function of E, exp (sic) and Q*. 

Following Uethe and Tait,’ we can relate a function 
of known nuclear constants to an integral involving 
Ii - Y and thus to E, exp (a&) and Q*. If Q* can 
be determined by thermodynamic information or by 
experiment, this leads to the evaluation of 1’. 

WTe must distinguish the following two cases: (1) 
E(r,t,) < Q* for some r < b (positive pressure has 
not reached the outside) ; (2) E(r,t,) > Q* for all 
Y < b. 

For case (I), we find that 

Y = MQ*(l - 3q/5)/(1 - q.2$ (14) 

where qxz is the solution of the transcendental equa- 
tion qx?G(q.x*) = H21D. Here 

H =; 63(I +f) a3b2 ___- 
32/fcv my?) ’ (15) 

fis the excess number of prompt neutrons per average 
collision, C is the macroscopic transport cross section 
for density p, and z’ is the average neutron velocity. 
bx is the radius at which E = Q*. G(y) is a smooth 
function with slope 46/99 at the origin and infinite at 
y = 1 (see the tabulation below). 

Y G(Y) 
0 1.0000 

0.2 1.1075 
0.4 1.2576 
0.6 1.4912 
0.7 1.6728 
0.13 1.9509 

The equation can be solved readily by graph and slide 
rule. 

For case (2), 
Y = MQ*(l - 3q/,S)i, (16) 

where L satisfies the somewhat more complicated 
equation 

iz - W(q) In [(l - q)lj 
= 4q-5’2(H - [qG(q)j”‘*}/63 + l/(1 - q), (17) 

where 
B(q) = q-3/y& In (1 + q”2) 

- & ln (I _ qW) - qll2 _ iq3/2;. w 
Although formidable in appearance, the equation is 
of the form 1 - aln (bi.) = c and can be solved on a 
log slide rule, quickly except near 1. = l/(1 - q). 

Specifically, this scheme has been used to estimate 
burst yields as a function of excess reactivity over 
prompt critical for the bare 66 kg core and the 
reflected 147 kg core discussed above and illustrated 
in Fig. 9. The assumed Q*‘s were 2.2 x 10” erg/gm 
and 5 x lo9 erg/gm, respectively, chosen to coincide 
with the thresholds in the digital computation. To 
facilitate comparison, the results of thr t\vo methods 
for these cores are displayed again in Fig. 1 I where 
we plot total burst yield against excess reactivity. 
The agreement is satisfnctor3: 

APPENDIX 
The equation of state depends on the magnitude of 

the specific volume l* (cm3/gm) and, in some cases, 
the temperature 0 (volts). 

For the region in a P-1. diagram where l-/l-,, > 1.33 
(T’, = l/15.75) and for all 0, a lYan clcr \\.nals 
function is used. I;ollowing Broutro we accept the 
critical values 7‘, = 14,OOO”Ii, TV, = 40 cm3/molc. 
Lire have used P, = 1.0899 x 10’0 d~nes/cmz. The 
\‘an dcr i!‘aals’ function is then : 

SO 



PROMPT EXCURSIONS IN FAST REACTORS 205 

This function is not sufficient in that special provision 
must be made for points within the liquid-vapor 
saturation curves. The liquid saturation curve is taken 
to be 

P2 = -2.008343 x 10-2 + 1.895703 x IO-2(1:/V,) 
- 2.89978x 10-3(I’/I~o)~, w 

and the vapor saturation curve is 

P, = 1.0933493 x 10-Z - 1 A671762 x 10-y lV/Vo). 
(21) 

The pressures obtained from Eq. 20 and Eq. 21 are 
in megabars. Pressures within the P-T’ arcn defined 
by Eqs, 20, 21 and P = 0 are given by: 

P, = 16.3Pc esp 
( 

-3.8376 ; . 
1 

(22) 

Implicit in Eq. 22 is the Clapeyron-Clausius equation 
and a latent heat of vaporization of 1.067~ 10” 
Cal/mole. The choice of which function to use is made 
by the computing machine. The necessary information 
for a logical decision is incorporated in the code. 

The equation of state for the region in a P-V dia- 
gram where 1 .O < I./I, < 1.33 is divided into three 
sub-regions defined b>. the magnitude of the pressure. 
These functions are : 

P, = -5.45649 f- 0.278160 + 2.873x IO-?p, (23) 
P, = -2.99115 $ 24.70870, (23) 

and 

P, = O.XWO93,5 + 0.278360 
- 0.5386S75(1’/1/,). (25) 

These three functions rather crudely represent regions 
of a solid (Eq. 23), a liquid (Eq. 25) and a transition 
region (Eq. 24). The form of Eq. 23 and Eq. 25 was 
chosen to match the apparent form as seen for various 
metals that were studied by l\\‘alsh el a1.l’ Equation 
24 was constructed by assuming (a) a latent heat of 
fusion (4.7X IO3 Cal/mole), (b) a volume change of 
Al’ = 0.00266 cm3/gm, and (c) that P = const. x E 
throughout the phase change. The logical decisions 

necessary for a choice between Eqs. 23, 24 and 25 
were incorporated into the code. 

For the region where V/V, < 1.0, Eqs. 23, 24 and 
25 were used again after multiplication by (V0/V)2. 
This modification is necessary to allow for the rapid 
rise in pressure with decreasing volume as seen by 
\Valsh et al.” 

A final restriction on the equation of state is re- 
quired to limit tensions that may develop through 
application of Eq. 23. An upper Iimit to the dynamic 
tensile strength of uranium has been estimated to be 
between 0.3 and 0.5 megabars.‘” 1Ye have arbitrarily 
taken 0.3 megabars at room temperature (17°C). \Ve 
have assumed further that this quantity decreases 
linearly with increasing temperature to zero at 
4096°K. This function is defined by 

P, = -0.3228538 $ 0.91360. (36) 

The calculation is coded such that if a pressure in a 
given region is found to be numerically more negative 
than Eq. 26 for the same temperature, the pressure is 
arbitrarily set to zero. Furthermore, the code forbids 
the particular region to support any negative pres- 
sures at any future time, aIthough positive pressures 
are allowed. 

The heat capacitv is assumed to be a function of 
temperature oily. E’or 6 < 8.1 X 1O-2 Volt,B 

C, = 1.234619x IO-? -. 1.02855~ 1O-2o 
-/- 1 BO952W. 

For 0 > 8.1 X lo-*, with one exception noted 
(Eq. 29), we use 

c, = 1.81 x 10-Z. 

(27) 

below 

(28) 

The one exception is found when the code makes USC 
of Eq. 23 for pressure. \Yhen a given region is found 
to require Eq. 23, the heat capacity is given by 

C, = 1.6273. (29) 

The units associated with these heat capacities are 
lOI? ergs/gm voIt. 
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