I. PHYSICAL DATA			
Radiation:	Beta (100% abundance)		
Energy:	Max.: 18.6 keV;	Max.: 18.6 keV; Average: 5.7 keV	
Half-Life [T1/2] :	Physical T _{1/2} :	12.3 years	
	Biological T ¹ / ₂ :	10 - 12 days	
	Effective T ¹ / ₂ :		
* Large liquid intake (3-4 liters/day) reduces effective $T_{\frac{1}{2}}$ by a factor of 2+; ³ H is easily flushed from the body			
Specific Activity:	9650 Ci/g [357	TBq/g] max.	
Beta Range:	Air:	6 mm [0.6 cm; 0.25 inches]	
	Water:	0.006 mm [0.0006 cm; 3/10,000 inches]	
	Solids/Tissue:	Insignificant [No ³ H betas pass through the dead layer of skin]	
II. RADIOLOGICAL DATA			
Radiotoxicity:	Least radiotoxic of all nuclides; CEDE, ingestion or inhalation:		
		d water: 1.73E-11 Sv/Bq (0.064 mrem/uCi) of ³ H intake	
	0	ic Compounds: 4.2E-11 Sv/Bq (0.16 mrem/uCi) of ³ H intake	
Critical Organ:	Body water or	tissue	

Exposure Routes: Ingestion, inhalation, puncture, wound, skin contamination absorption Radiological Hazard: External Exposure - None from weak ³H beta

Internal Exposure & Contamination - Primary concern

III. SHIELDING

None required - not an external radiation hazard

IV. DOSIMETRY MONITORING

Urine bioassay is the only readily available method to assess intake [for tritium, no intake = no dose] Be sure to provide a urine sample to Radiation Safety for confirmatory bioassay whenever your annual ³H use exceeds 8 mCi. If negative, no further bioassay is required unless use exceeds 100 mCi at one time or 1000 mCi in one year, or after any accident/incident in which an intake is suspected

V. DETECTION & MEASUREMENT

Liquid Scintillation Counting is the only readily available method for detecting ³H NOTE: PORTABLE SURVEY METERS WILL NOT DETECT LABORATORY QUANTITIES OF ³H

VI. SPECIAL PRECAUTIONS

- Avoid skin contamination [absorption], ingestion, inhalation, & injection [all routes of intake]
- Many tritium compounds readily penetrate gloves and skin; handle such compounds remotely and wear double gloves, changing the outer pair at least every 20 minutes.
- While tritiated DNA precursors are considered more toxic that ³H₂O, they are generally less volatile and hence do not normally present a greater hazard
- The inability of direct-reading instruments to detect tritium and the slight permeability of most material to [tritiated] water & hydrogen [tritium] facilitates undetected spread of contamination. Use extreme care in handling and storage [e.g. sealed double or multiple containment] to avoid contamination, especially with high specific activity compounds.

1	4	7
		~

I. PHYSICAL DATA

Radiation:	Beta (100% abundance)	
Energy:	Max.: 156 keV; Average: 49 keV	
Half-Life [T½] :	Physical T _{1/2} : 5730 years	
	Biological T ¹ / ₂ :	12 days
	Effective T ¹ / ₂ :	Bound - 12 days; unbound - 40 days
Specific Activity:	4.46 Ci/g [0.165 TBq/g] max.	
Beta Range:	Air:	24 cm [10 inches]
	Water/Tissue:	0.28 mm [0.012 inches]
	[~1% of ¹⁴ C betas transmitted through dead skin layer, i.e. 0.007 cm depth]	
	Plastic:	0.25 mm [0.010 inches]

II. RADIOLOGICAL DATA

Radiotoxicity:	0.023 mrem/uCi of ¹⁴ CO ₂ inhaled;	
·	2.09 mrem/uCi organic compounds inhaled/ingested	
Critical Organ:	Fat tissue [most labeled compounds]; bone [some labeled carbonates]	
Exposure Routes:	Ingestion, inhalation, puncture, wound, skin contamination absorption	
Radiological Hazard:	External Exposure – None from weak ¹⁴ C beta	
-	Internal Exposure & Contamination - Primary concern	

III. SHIELDING

None required - mCi quantities not an external radiation hazard

IV. DOSIMETRY MONITORING

Urine bioassay is the most readily available method to assess intake [for ¹⁴C, no intake = no dose] Provide a urine sample to Radiation Safety after any accident/incident in which an intake is suspected

V. DETECTION & MEASUREMENT

Portable Survey Meters: Geiger-Mueller [~10% efficiency];

Beta Scintillator [~5% efficiency]

Wipe Test: Liquid Scintillation Counting is the best readily available method for counting ¹⁴C wipe tests

VI. SPECIAL PRECAUTIONS

- Avoid skin contamination [absorption], ingestion, inhalation, & injection [all routes of intake]

- Many ¹⁴C compounds readily penetrate gloves and skin; handle such compounds remotely and wear double gloves, changing the outer pair at least every 20 minutes.

Nuclide Safety Data Sheet Phosphorous-32

I. PHYSICAL DATA

Radiation:	Beta (100% abundance)	
Energy:	Maximum: 1,710 keV; Average: 695 keV	
Half-Life [T _{1/2}] :	Physical T ¹ / ₂ : 14.29 days	
	Biological T _{1/2} : Bone ~ 1155 days; Whole Body ~ 257 days ¹	
	Effective T ^{1/2} : 14.29 days	
Specific Activity:	286,500 Ci/g [10,600 TBq/g] max.	
Beta Range:	Air: 610 cm [240 inches; 20 feet]	
	Water/Tissue: 0.76 cm [0.33 inches]	
	Plastic: 0.61 mm [3/8 inches]	

II. RADIOLOGICAL DATA

Radiotoxicity ² :	94.7 mrem/uCi [Lung] & 15.5 mrem/uCi [CEDE] of ³² P inhaled
,	29.9 mrem/uCi [Bone Marrow] & 8.77 mrem/uCi [CEDE] of ³² P ingested
Critical Organ:	Bone [soluble ³² P]; Lung [Inhalation]; GI Tract [Ingestion - insoluble compounds]
Exposure Routes:	Ingestion, inhalation, puncture, wound, skin contamination absorption
Radiological Hazard:	External Exposure [unshielded dose rate at 1 mCi ³² P vial mouth ³ : approx. 26
-	rem/hr], Internal Exposure & Contamination

III. SHIELDING

Shield ³²P with 3/8 inch Plexiglas and monitor for Bremstrahlung; If Bremstrahlung X-rays detected outside Plexiglas, apply 1/8 to 1/4 inch lead [Pb] shielding outside Plexiglas The accessible dose rate should be background but must be < 2 mR/hr

IV. DOSIMETRY MONITORING

Wear radiation dosimetry monitoring badges [body & ring] if regularly handling mCi quantities of ³²P

V. DETECTION & MEASUREMENT

Portable Survey Meters: Geiger-Mueller Wipe Test: Liquid Scintillation Counting is an acceptable method for counting ³²P wipe tests

VI. SPECIAL PRECAUTIONS

- Avoid skin contamination [absorption], ingestion, inhalation, & injection [all routes of intake].

- Store ³²P (including waste) behind Plexiglas shielding [3/8 inch thick]; survey (with GM meter) to check adequacy of shielding (accessible dose rate < 2 mR/hr; should be background); apply lead [Pb] shielding outside Plexiglas if needed.
- Use 3/8 inch Plexiglas shielding to minimize exposure while handling ³²P.
- Use tools [e.g. Beta Blocks] to handle ³²P sources and contaminated objects; avoid direct hand contact.
 - Always have a portable survey meter present and turned on when handling ³²P.
- ³²P is not volatile, even when heated, and can be ignored as an airborne contaminant⁴ unless aerosolized.

¹ NCRP Report No. 65, p.88

² Federal Guidance Report No. 11 [Oak Ridge, TN; Oak Ridge National Laboratory, 1988], p. 122, 156

³ Dupont/NEN, <u>Phosphorous-32 Handling Precautions</u> [Boston, MA; NEN Products, 1985]

⁴ Bevelacqua, J. Contemporary Health Physics [New York; John Wiley & Sons, 1995], p. 282

I. PHYSICAL DATA

Radiation:	Beta (100% abundance)	
Energy:	Maximum: 248.5 keV; Average: 76.4 keV	
Half-Life [T1/2] :	Physical T½: 25.3 days	
	Biological T ¹ / ₂ : Bone ~ 1155 days; Whole Body ~ 257 days ¹	
	Effective T ¹ / ₂ : 25.3 days	
Specific Activity:	156,000 Ci/g [5,780 TBq/g] max.	
Beta Range:	Air: 50 cm [~ 20 inches]	
	Water/Tissue: 0.06 cm [0.024 inches]	
	Plastic: 0.05 cm [0.02 inches]	

II. RADIOLOGICAL DATA

15.6 mrem/uCi [Lung] & 2.32 mrem/uCi [CEDE] of ³³ P inhaled
1.85 mrem/uCi [Bone Marrow] & 0.92 mrem/uCi [CEDE] of ³³ P ingested
Bone [soluble ³³ P]; Lung [Inhalation]; GI Tract [Ingestion - insoluble compounds]
Ingestion, inhalation, puncture, wound, skin contamination absorption
External Exposure – mCi quantities not considered an external hazard
Internal Exposure & Contamination - Primary concern

III. SHIELDING

None required - mCi quantities not an external radiation hazard

IV. DOSIMETRY MONITORING

Urine bioassay is the most readily available method to assess intake [for 33 P, no intake = no dose]. Provide a urine sample to Radiation Safety after any accident/incident in which an intake is suspected. No dosimetry badges needed when working with 33 P [beta energy too low to be detected]

V. DETECTION & MEASUREMENT

Portable Survey Meters: Geiger-Mueller Wipe Test: Liquid Scintillation Counting works well for counting ³³P wipe tests

VI. SPECIAL PRECAUTIONS

- Avoid skin contamination [absorption], ingestion, inhalation, & injection [all routes of intake]

- ³³P is not volatile, even when heated, and can be ignored as an airborne contaminant³ unless aerosolized.

¹ NCRP Report No. 65, p.88

² Federal Guidance Report No. 11 [Oak Ridge, TN; Oak Ridge National Laboratory, 1988], p. 122, 156

³ Bevelacqua, J. <u>Contemporary Health Physics</u> [New York; John Wiley & Sons, 1995], p. 282

I. PHYSICAL DATA			
Radiation:	Beta (100% abundance)		
Energy:	Maximum: 167.47 keV; Average: 48.8 keV		
Half-Life [T½] :	Physical T ¹ / ₂ :	87.44 days	
	Biological T ¹ / ₂ :	623 days [unbound ³⁵ S]; 90 days [bound ³⁵ S]	
	Effective T ¹ / ₂ :	44 - 76 days [unbound ³⁵ S]	
Specific Activity:	42,707 Ci/g [1,	580 TBq/g] max.	
Beta Range:	Air:	26 cm [10.2 inches]	
	Water/Tissue:	0.32 mm [0.015 inches]	
	Plastic:	0.25 mm [0.010 inches]	

II. RADIOLOGICAL DATA

Radiotoxicity ¹ :	2.48 mrem/uCi [CEDE] of ³⁵ S inhaled
	0.733 mrem/uCi of ³⁵ S ingested
Critical Organ:	Testis
Exposure Routes:	Ingestion, inhalation, puncture, wound, skin contamination absorption
Radiological Hazard:	External Exposure – None from weak ³⁵ S beta
C C	Internal Exposure & Contamination - Primary concern
	•

III. SHIELDING

Portable Survey Meters:

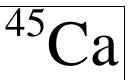
None required - mCi quantities not an external radiation hazard

IV. DOSIMETRY MONITORING

Urine bioassay is the most readily available method to assess intake [for ³⁵S, no intake = no dose] Provide a urine sample to Radiation Safety after any accident/incident in which an intake is suspected

V. DETECTION & MEASUREMENT

Geiger-Mueller [~10% efficiency]


Beta Scintillator [~5% efficiency]

Wipe Test: Liquid Scintillation Counting is the best readily available method for counting ³⁵S wipe tests

VI. SPECIAL PRECAUTIONS

- Avoid skin contamination [absorption], ingestion, inhalation, & injection [all routes of intake]

Many ³⁵S compounds and metabolites are slightly volatile and may create contamination problems if not sealed or otherwise controlled. This occurs particularly when ³⁵S amino acids are thawed, and when they are added to cell culture media and incubated. Therefore vent thawing ³⁵S vials in a hood. Incubators used with ³⁵S will have an activated charcoal trap placed in the incubator. Possibility of volatilization must be taken into account when surveying after use.

I. PHYSICAL DATA

Radiation:	Beta (100% ab	undance)
Energy:	Maximum: 257	keV; Average: 77 keV
Half-Life [T _{1/2}] :	Physical T ¹ / ₂ :	162.61 days
	Biological T ¹ / ₂ :	Bone ~ 18,000 days ¹
	Effective T ¹ / ₂ :	163 Days
Specific Activity:	17,800 Ci/g [6	59 TBq/g] max.
Beta Range:	Air:	52 cm [20 inches]
	Water/Tissue:	0.062 cm [0.024 inches]
	Plastic	0.053 cm [0.021 inches]
	<i></i>	

II. RADIOLOGICAL DATA

Radiotoxicity ² :	35.8 mrem/uCi [Lung] & 16.2 mrem/uCi [Bone] of ⁴⁵ Ca inhaled		
	19.4 mrem/uCi [Bone] & 3.2 mrem/uCi [CEDE] of ⁴⁵ Ca ingested		
Critical Organ:	Bone; Lung [Inhalation]		
Exposure Routes:	posure Routes: Ingestion, inhalation, puncture, wound, skin contamination absorption		
Radiological Hazard	d: External Exposure - mCi quantities not considered an external hazard		
-	Internal Exposure & Contamination - Primary concern		

III. SHIELDING

None required - mCi quantities not an external radiation hazard

IV. DOSIMETRY MONITORING

Urine bioassay is the most readily available method to assess intake. Provide a urine sample to Radiation Safety after any accident/incident in which an intake is suspected. No dosimetry badges needed to work with mCi quantities of ⁴⁵Ca.

V. DETECTION & MEASUREMENT

Portable Survey Meters: Geiger-Mueller Wipe Test: Liquid Scintillation Counting works well for counting ⁴⁵Ca wipe tests

VI. SPECIAL PRECAUTIONS

- Avoid skin contamination [absorption], ingestion, inhalation, & injection [all routes of intake]

¹ "Calcium-45 Handling Precautions", E.I. DuPont de Numours & Co., NEN Products [Boston, MA; 1985]

² Federal Guidance Report No. 11 [Oak Ridge, TN; Oak Ridge National Laboratory, 1988], p. 122, 156

I. PHYSICAL DATA		
Radiation:	Gamma - 320 keV (9.8% abundance)	
	X-ray - 5 keV (22% abundance)	
Gamma Constant:	0.018 mR/hr per mCi @ 1.0 meter [6.32E-6 mSv/hr per MBq @ 1.0 meter] ¹	
Half-Life [T1/2]:	Physical T½: 27.7 days	
	Biological 616 days	
	Effective $T_{\frac{1}{2}}$: 26.6 days (whole body)	
Specific Activity:	9.24E4 Ci/g [3.42E3 TBq/g] max.	

II. RADIOLOGICAL DATA

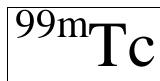
Radiotoxicity:	0.145 mrem/uCi of ⁵¹ Cr ingested [CEDE] 0.334 mrem/uCi of ⁵¹ Cr inhaled [CEDE]
Critical Organ: Intake Routes:	Lower Large Intestine [LLI] Ingestion, inhalation, puncture, wound, skin contamination (absorption);
Radiological Hazard:	External & Internal Exposure; Contamination

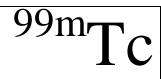
III. SHIELDING

	Half Value Layer [HVL]	Tenth Value Layer [TVL]
Lead [Pb]	2 mm (0.07 inches)	6.6 mm (0.23 inches)
Concrete	2.8 cm (1.1 inches)	9.3 cm (3.7 inches)
Plexiglas	4.8 cm (1.9 inches)	16 cm (6.3 inches)

The accessible dose rate should be background but must be < 2 mR/hr

IV. DOSIMETRY MONITORING


Wear radiation dosimetry monitoring badges [body & ring] when handling ⁵¹Cr


V. DETECTION & MEASUREMENT

Portable Survey MetersGeiger-MuellerWipe Test:Liquid Scintillation Counter

VI. SPECIAL PRECAUTIONS

- Store ⁵¹Cr (including waste) behind lead shielding [¼ ½ inch thick]; survey (with GM meter) to check adequacy of shielding (accessible dose rate < 2 mR/hr; should be background)
- Avoid skin contamination [absorption], ingestion, inhalation, & injection [all routes of intake]
- Use shielding to minimize exposure while handling ⁵¹Cr
- Use tools to handle ⁵¹Cr sources and contaminated objects; avoid direct hand contact

I. PHYSICAL DATA		
Gamma: 141 keV (89% abundance)		
X-rays: 18 keV (6% abundance), 21 keV (1.2% abundance)		
0.77 R/hr at 1 cm from an unshielded 1 mCi point source ¹		
Physical T _{1/2} : 6.0 hours		
Biological $T_{1/2}$: ~ 1 day ²		
Effective $T_{\frac{1}{2}}$: ~ 4.8 hours		
5.27E6 Ci/g [1.95E17 Bq/g]		
II. RADIOLOGICAL DATA		
63 mrem/mCi [1.7E-8 mSv/Bq] of ^{99m} Tc ingested [CEDE] ³		
27 mrem/mCi [7.21E-9 mSv/Bq] of ^{99m} Tc inhaled [CEDE]		
Thyroid Gland ³ ; Upper GI tract ¹		
Ingestion, inhalation, puncture, wound, skin contamination absorption		
: External & Internal Exposure; Contamination		

III. SHIELDING

	Half Value Layer (HVL)	Tenth Value Layer (TVL)	
Lead [Pb]	<1 mm (<0.035 inches)	1 mm (0.035 inches)	

- The accessible dose rate should be background but must be < 2 mR/hr

IV. DOSIMETRY MONITORING

- Always wear radiation dosimetry monitoring badges [body & ring] whenever handling ^{99m}Tc

- Submit a urine sample to Radiation Safety two to 24 hours [i.e. As Soon As Possible] after any suspected intake of ^{99m}Tc; alert Radiation Safety of the short half-lived nuclide involved.

V. DETECTION & MEASUREMENT

Portable Survey Meters Geiger-Mueller

Wipe Test: Liquid Scintillation Counter or Gamma Counter

VI. SPECIAL PRECAUTIONS

- Store ^{99m}Tc behind ¼-inch [~ 0.6 cm] thick lead (Pb) shielding

- Use tools to indirectly handle unshielded sources and potentially contaminated vessels; avoid direct hand contact
- Ensure that an appropriate, operational survey meter is present in the work area and turned on whenever ^{99m}Tc is handled, so that any external exposure issues will be immediately apparent and hence quickly addressed

- Shield waste containers as needed to maintain accessible dose rate ALARA and < 2 mR/hr

¹ Dupont/NEN, <u>Technetium-99-m Handling Precautions</u> (Boston, MA: NEN, 1985)

² Delacroix et al, <u>Radiation Protection Dosimetry – Radionuclide and Radiation Protection Data Handbook (Kent, England:</u> Nuclear Technology Publishing, 1998), p. 71

³ Federal Guidance Report No. 11 (Oak Ridge TN; Oak Ridge National Laboratory, 1988) P. 130, 162

111 In

I. PHYSICAL DATA

Primary Radiation:

Gamma – 245 keV (94% abundance), 171 keV (90% abundance), 23 keV (69% abundance)

Gamma Constant:8.9E-6 mrem/hr at 30 cm from 1 mCi [9.9E-4 mSv/hr at 30 cm from1MBq]1Physical Half-Life $[T_{\frac{1}{2}}]$:2.80 daysSpecific Activity:4.19E5 Ci/g [1.55E16 Bq/g]1

II. RADIOLOGICAL DATA

Radiotoxicity:	1,330 mrem/mCi [3.59E-7 mSv/Bq] of ¹¹¹ In ingested [CEDE] ² 840 mrem/mCi [2.27E-7 mSv/Bq] of ¹¹¹ In inhaled [CEDE] ²
Critical Organ:	Lower Large Intestine ¹
Intake Routes:	Ingestion, inhalation, puncture, wound, skin contamination (absorption);
Radiological Hazard:	Internal and External Exposure, Contamination

III. SHIELDING

	Half Value Layer [HVL]	Tenth Value Layer [TVL]
Lead [Pb]	<1 mm (<0.035 inches)	3 mm (0.035 inches)
ightarrow The accessible de	ose rate should be background	d but must be < 2 mR/hr

IV. DOSIMETRY MONITORING

Always wear radiation dosimetry monitoring badges [body & ring] whenever handling ¹¹¹In

V. DETECTION & MEASUREMENT

Portable Survey Meters:

Geiger-Mueller

Wipe Test: Gamma counter

VI. SPECIAL PRECAUTIONS

- Store ¹¹¹In behind ¼-inch [~ 0.6 cm] thick lead (Pb) shielding
- Use tools to indirectly handle unshielded sources and potentially contaminated vessels; avoid direct hand contact
- Ensure that an appropriate, operational survey meter is present in the work area and turned on whenever ¹¹¹In is handled, so that any external exposure issues will be immediately apparent and hence quickly addressed
- Shield waste containers as needed to maintain accessible dose rate ALARA and < 2 mR/hr

¹ Delacroix et al, <u>Radiation Protection Dosimetry – Radionuclide and Radiation Protection Data Handbook (Kent, England:</u> Nuclear Technology Publishing, 1998), p. 78

² <u>Federal Guidance Report No. 11</u> (Oak Ridge TN; Oak Ridge National Laboratory, 1988) P. 130, 162

Nuclide Safety Data Sheet Iodine-125

I. PHYSICAL DATA

Gamma - 35.5 keV (7% abundance)	
X-ray - 27 keV (113% abundance)	
0.27 mR/hr per mCi @ 1.0 meter [7.432E-5 mSv/hr per MBq @ 1.0 meter] ¹	
Physical T _{1/2} : 60.14 days	
Biological T ¹ / ₂ : 120-138 days (unbound iodine)	
Effective T _{1/2} : 42 days (unbound iodine)	
1.73E4 Ci/g [642 TBq/g] max.	

II. RADIOLOGICAL DATA

Radiotoxicity ² :	3.44E-7 Sv/Bq (1273 mrem/uCi) of ¹²⁵ I ingested [Thyroid]
	2.16 E-7 Sv/Bq (799 mrem/uCi) of ¹²⁵ I inhaled [Thyroid]
Critical Organ:	Thyroid Gland
Intake Routes:	Ingestion, inhalation, puncture, wound, skin contamination (absorption);
Radiological Hazard:	External & Internal Exposure; Contamination

III. SHIELDING

	Half Value Layer [HVL]	Tenth Value Layer [TVL]
Lead [Pb]	0.02 mm (0.0008 inches)	0.07 mm (0.003 inches)
- The accessible dose rate should be background but must be < 2 mR/hr		

IV. DOSIMETRY MONITORING

- Always wear radiation dosimetry monitoring badges [body & ring] whenever handling > 10 μCi of ¹²⁵I

- Conduct a baseline thyroid scan prior to first use of 1 mCi or more of radioactive iodine
- Conduct thyroid scan no earlier than 6 hours but within 72 hours of handling 1 mCi or more of ¹²⁵I or after any suspected intake

V. DETECTION & MEASUREMENT

Portable Survey Meters:

Geiger-Mueller

Low Energy Gamma Detector [~19% eff. for ¹²⁵I] for contamination surveys

Wipe Test: Liquid Scintillation Counter or Gamma Counter

VI. SPECIAL PRECAUTIONS

- Avoid skin contamination [absorption], ingestion, inhalation, & injection [all routes of intake]

- Use shielding [lead or leaded Plexiglas] to minimize exposure while handling mCi quantities of ¹²⁵I
- Avoid making low pH [acidic] solutions containing ¹²⁵I to avoid volatilization
- For Iodinations:
 - Use a cannula adapter needle to vent stock vials of ¹²⁵I used; this prevents puff releases
 - Cover test tubes used to count or separate fractions from iodinations with parafilm or other tight caps to prevent release while counting or moving outside the fume hood.

¹ Health Physics & Radiological Health Handbook, 3rd Ed. [Baltimore, MD; Williams & Wilkins, 1998] p. 6-11

² Federal Guidance Report No. 11 (Oak Ridge TN; Oak Ridge National Laboratory, 1988) P. 136, 166

I. PHYSICAL DA		
Radiation:	Gammas & X-rays: primary 364 keV (81% abundance); others 4 – 723 keV	
	Betas: primary 606 keV (89% abundance); others 248 – 807 keV	
Gamma Constant:	0.28 mR/hr per mCi @ 1.0 meter [7.647E-5 mSv/hr per MBq @ 1.0 meter] ¹	
Half-Life [T _{1/2}] :	Physical T _{1/2} : 8.04 days	
	Biological T _{1/2} : 120-138 days (unbound iodine)	
	Effective T ¹ / ₂ : 7.6 days (unbound iodine)	
Specific Activity:	1.24E5 Ci/g [4,600 TBq/g] max.	
II. RADIOLOGIC	AL DATA	
Radiotoxicity ² :	4.76 E-7 Sv/Bq (1.76 rem/uCi) of ¹³¹ I ingested [Thyroid]	
	2.92 E-7 Sv/Bq (1.08 rem/uCi) of ¹³¹ I inhaled [Thyroid]	
Critical Organ: Intake Routes:	Thyroid Gland	
	Ingestion, inhalation, puncture, wound, skin contamination (absorption); I: External & Internal Exposure; Contamination	
III. SHIELDING		
	Half Value Layer [HVL] Tenth Value Layer [TVL]	
Lead [Pb] ³	3 mm (0.12 inches) 11 mm (0.43 inches)	
\rightarrow The accessible do	se rate should be background but must be $< 2 \text{ mR/hr}$	
IV. DOSIMETRY	MONITORING	
Always wear radi	ation dosimetry monitoring badges [body & ring] whenever handling ¹³¹ I	
	ne thyroid scan prior to first use of radioactive iodine	
 Conduct thyroid s or after any suspec 	can no earlier than 6 hours but within 72 hours of handling 1 mCi or more of ¹³¹ I ted intake	
	& MEASUREMENT	
Portable Survey Mete		
Geiger-Muelle	er to assess shielding effectiveness & contamination	
Wipe Test:	Liquid Scintillation Counter or Gamma Counter	
VI. SPECIAL PRI	ECAUTIONS	
Avoid skin contar	nination [absorption], ingestion, inhalation, & injection [all routes of intake]	
Use shielding [lea	ad or leaded Plexiglas] to minimize exposure while handling mCi quantities of ¹³¹ I	
 Avoid making low 	pH [acidic] solutions containing ¹³¹ I to avoid volatilization	
 For Iodinations: 	404	
	nnula adapter needle to vent stock vials of ¹³¹ I used; this prevents puff releases	
	st tubes used to count or separate fractions from iodinations with parafilm or other	
tight cape	s to prevent release while counting or moving outside the fume hood.	

¹ Health Physics & Radiological Health Handbook, 3rd Ed. [Baltimore, MD; Williams & Wilkins, 1998] p. 6-11 ² Federal Guidance Report No. 11 (Oak Ridge TN; Oak Ridge National Laboratory, 1988) P. 136, 166

³ HVL & TVL values from: Delacroix, D. et al. Radionuclide and Radiation Protection Handbook [*Radiation Protection*] Dosimetry, vol. 76, nos 1-2, 1998, Nuclear Technology Publishing, Ashford, Kent, England, 1998] p. 90