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Родина 
 
Че си нещо повече дълбоко в мене сещам, 
отколкото земя в граници обгърната, 
по тръпнещата болка, която честo чувствам, 
с косурите ти спорейки и с вярата невърната. 
 
Намирам те в изгарящия порив 
да те видя ковяща мощни технологии 
и новото под синия ти покрив, 
да помита фразеологии и демагогии. 
 
Намирам те в пулсиращата мисъл 
от своя интелект нещо да ти дам, 
че мускули и лакти животът е отписал 
от средсвата градящи прогреса тъй желан. 
 
В онези хора те намирам,  
които с възрожденски дух горят 
и с пламъка си бъдното трасират, 
едничка полза те за теб да извлекат. 
 
Те често си остават неразбрани, 
понякога ги смазва простотия, 
но макар и след години, лекувайки тез рани, 
превръщаш делото им в светиня. 
 
1983 Sofia 
 



Su m m a r y

Volume 3 is devoted to selected subjects in the multiphase fluid dynamics that are 
very important for practical applications but could not find place in the first two 
volumes of this work. 

The state of the art of the turbulence modeling in multiphase flows is presented. 
As introduction, some basics of the single-phase boundary layer theory including 
some important scales and flow oscillation characteristics in pipes and rod bundles 
are presented. Then the scales characterizing the dispersed flow systems are pre-
sented. The description of the turbulence is provided at different levels of com-
plexity: simple algebraic models for eddy viscosity, algebraic models based on the 
Boussinesq hypothesis, modification of the boundary layer share due to 
modification of the bulk turbulence, modification of the boundary layer share due 
to nucleate boiling. Then the role of the following forces on the matematical 
description of turbulent flows is discussed: the lift force, the lubrication force in 
the wall boundary layer, and the dispersion force. A pragmatic generalization of 
the k-eps models for continuous velocity field is proposed containing flows in 
large volumes and flows in porous structures. Its large eddy simulation variant is 
also presented. Method of how to derive source and sinks terms for multiphase k-
eps models is presented. A set of 13 single- and two-phase benchmarks for 
verification of k-eps models in system computer codes are provided and 
reproduced with the IVA computer code as an example of the application of the 
theory. This methodology is intended to help other engineers and scientists to 
introduce this technology step-by-step to their own engineering practice. 

In many practical applications gases are dissolved in liquids under given condi-
tions, released under other conditions and therefore affecting technical processes 
for good or for bad. There is almost no systematic description of this subject in the 
literature. That is why I decided to collect in Volume 3 useful information on the 
solubility of oxygen, nitrogen, hydrogen and carbon dioxide in water valid within 
large interval of pressures and temperatures, provide appropriate mathematical ap-
proximation functions and validate them. In addition methods for computation of 
the diffusion coefficients are described. With this information solution and disso-
lution dynamics in multiphase fluid flows can be analyzed. For this purpose the 
non-equilibrium absorption and release on bubble-, droplet- and film-surfaces un-
der different conditions is mathematically described.  



VIII      Summary

In order to allow the application of the theory from all the three volumes also to 
processes in combustion engines a systematic set of internally consistent state 
equations for diesel fuel gas and liquid valid in broad range of changing pressure 
and temperature are provided also in Volume 3. 
 
 
Erlangen, October 2006                                                      Nikolay Ivanov Kolev 
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1 Some basics of the single-phase boundary 
layer theory 

Hundreds of very useful constitutive relations describing interactions in multi-
phase flows are based on the achievements of the single-phase boundary layer 
theory. That is why it is important to recall at least some of them, before stepping 
to more complex interactions in the multi-phase flow theory. My favorite book to 
begin with learning the main ideas of the single-phase boundary layer theory is the 
famous monograph by Schlichting (1982). This chapter gives only the basics 
which helps in understanding the following chapters of this book. 

1.1 Flow over plates, velocity profiles, share forces,  
heat transfer 

Consider continuum flow parallel to a plate along the x-axis having velocity far 
from the surface equal to u∞ . The share force acting on the surface per unit flow 
volume is then 
 

 w w
w

flow

F
f

V
τ

= ,       (1.1) 

 
where the wall share stress is usually expressed as 

 

( ) 21
2w wc x uτ ρ ∞= .      (1.2) 

 
Here the friction coefficient wc  is obtained from the solution of the mass and mo-
mentum conservation at the surface.  

1.1.1 Laminar flow over one site of a plane 

For laminar flow over one site of a plane, the solution of the momentum equation 
delivers the local share stress as a function of the main flow velocity and of the 
distance from the beginning of the plate as follows 
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( ) ( )
1/ 2

2

0.332
1
2

w
w

x
c x

u xu

τ

ρ
ν
∞∞

= =
⎛ ⎞
⎜ ⎟
⎝ ⎠

,      (1.3) 

 
Schlichting (1982) Eq. (7.32) p.140. The averaged drag coefficient over xΔ  is 
then 

 
( )

, 1/ 2
2

1.328
1
2

w
w x

F y x
c

u xuρ
ν

Δ

∞∞

Δ Δ
= =

Δ⎛ ⎞
⎜ ⎟
⎝ ⎠

, 5Re 5 10xΔ < × ,   (1.4) 

 
Eq. (7.34) Schlichting (1982) p. 141. The corresponding heat transfer coefficients 
h are reported to be 

 
1/ 2

1/ 21 Prx
u xhxNu

λ νπ
∞⎛ ⎞= = ⎜ ⎟

⎝ ⎠
 for Pr 0→  for liquid metals,  (1.5) 

 
1/ 2

1/ 30.332 Prx
u xhxNu

λ ν
∞⎛ ⎞= = ⎜ ⎟

⎝ ⎠
 for 0.6 Pr 10< < ,   (1.6) 

 
1/ 2

1/ 30.339 Prx
u xhxNu

λ ν
∞⎛ ⎞= = ⎜ ⎟

⎝ ⎠
 for Pr →∞ ,   (1.7) 

 
Schlichting (1982) p. 303. Averaging over xΔ  results in  
 

2x xNu NuΔ Δ= .      (1.8) 

1.1.2 Turbulent flow parallel to plane 

For turbulent flow over one site of a plane the solution of the momentum equation 
gives the local share stress as a function of the main flow velocity and of the dis-
tance from the beginning of the plate as follows 

 

( ) ( )
1/ 5

2

0.0296
1
2

w
w

x
c x

u xu

τ

ρ
ν
∞∞

= =
⎛ ⎞
⎜ ⎟
⎝ ⎠

,      (1.9) 

 
Eq. (21.12) Schlichting (1982) p. 653. This equation is obtained assuming the va-
lidity of the so-called 1/7-th velocity profile,  
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( )
( )

1/ 7

max

,u x y y
u xδ

⎛ ⎞
= ⎜ ⎟⎜ ⎟
⎝ ⎠

       (1.10) 

 
with boundary layer thickness varying with the distance from the beginning of the 
plate in accordance with 

 

( )
1/ 5

0.37
u x

x xδ
ν
∞⎛ ⎞= ⎜ ⎟

⎝ ⎠
.     (1.11) 

  
At the distance from the wall 
 

99% 5
u x

y δ
ν
∞= ≈        (1.12) 

 
the velocity reaches 99% of the flow mean velocity. 99%δ  is called displacement 
thickness. The averaged steady state drag coefficient over xΔ  is then 

 
( )

, 1/ 5
2

0.074
1 Re
2

w
w x

x

F y x
c

uρ
Δ

Δ
∞

Δ Δ
= = , 5 75 10 Re 10xΔ× < <  ,  (1.13) 

 
Eq. (21.11) Schlichting (1982) p. 652. Here Re x u x νΔ ∞= Δ . The corresponding 
steady state local and averaged heat transfer coefficient h are reported to be 

 
0.8

1/ 30.0296 Prx
u xhxNu

λ ν
∞⎛ ⎞= = ⎜ ⎟

⎝ ⎠
,    (1.14) 

 
0.8

1/ 30.037 Prx
u xh xNu

λ ν
∞

Δ

ΔΔ ⎛ ⎞= = ⎜ ⎟
⎝ ⎠

,    (1.15) 

 
respectively. The influence of the wall properties in the last equation is proposed 
by Knudsen and Katz (1958) to be taken into account by computing the properties 
at the following effective temperature 
 

( )0.1Pr 40
Pr 72eff wT T T T+

= + −
+

. 

 
The only information known to me for the influence of the unsteadiness of the 

far field velocity is those by Sidorov (1959) 
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, 1/ 71

1/14 2

0.0263

0.78 1Re 1 1
Re

w x

x
x

c
du
du τ

Δ
−

∞
Δ

Δ ∞

=
⎧ ⎫⎡ ⎤⎛ ⎞⎪ ⎪⎢ ⎥− −⎨ ⎬⎜ ⎟

⎢ ⎥⎝ ⎠⎪ ⎪⎣ ⎦⎩ ⎭

.   (1.16) 

1.2 Steady state flow in pipes with circular cross sections 

Consider continuum flow along the x-axis of a circular pipe having velocity cross 
section averaged velocity equal to w . The share force acting on the surface per 
unit flow volume is then 
 

 w w
w

flow

F
f

V
τ

= ,       (1.17) 

 
where the wall share stress is usually expressed as 

 
21

2w wc wτ ρ= .      (1.18) 

 
Here the friction coefficient wc , called Fanning factor in Anglo-Saxon literature, 
is obtained from the solution of the developed steady state mass and momentum 
conservation in the pipe. Replacing the wall surface to pipe volume ratio with 
4 hD  we have for wall friction force per unit volume of the flow 

 
2 2 21 4 1 1

2 2 2
frw

w w w
flow h h

F
f c w c w w

V D D
λ

ρ ρ ρ= = = .   (1.19) 

 
Here  

 
4fr wcλ =         (1.20) 

 
called friction coefficient is usually used in Europe. Note the factor 4 between the 
Fanning factor and the friction coefficient and 

 
2

8
fr

w w
λ

τ ρ= .       (1.21) 
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Note that for a steady developed single flow the momentum equation reads 

( )1 0d dpr
r dr dx

τ − = . With wdpdp
dx dx

=  and therefore ( )1 0wdpd r
r dr dx

τ − =  we have 

( ) wdp
d r rdr

dx
τ =  or after integrating 

 

( )
2

wdp rr
dx

τ = ,       (1.22) 

 
which gives at the wall the relation between the wall share stress and the pressure 
gradient due to friction 
 

2
w

w
dp R
dx

τ = .       (1.23) 

 
Usually for describing turbulent flows in pipe the following dimensionless vari-
ables are used: The friction velocity  

 

*
8

frww w
λτ

ρ
= = ,      (1.24) 

 
the dimensionless cross section averaged velocity 

 
*w w w+ = ,       (1.25) 

 
and the dimensionless distance from the wall 

 
*y y w ν+ = ,       (1.26) 

 
where y is the distance from the wall. Note that *y w ν  is in fact the definition of 
a boundary layer Reynolds number. With this transformation the measured mean 
velocity distribution near the wall is not strongly dependent on the Reynolds num-
ber as shown in Fig. 1.1. Hammond (1985) approximated this dependency by a 
continuous function of the type ( )+ + +=y y u  which have to be inverted iteratively 

if one needs ( )+ + +=u u y . 
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Fig. 1.1. Mean velocity distribution near the wall, Laufer (1953) 

The penetration of the wall roughness k into the boundary layer dictates different 
solutions of practical interests. Usually the dimensionless roughness of the surface 

*k kw ν+ =  is compared to the characteristic dimensionless sizes of the boundary 
layer to define the validity region of specific solution of the momentum equation. 

1.2.1 Hydraulic smooth wall surface 

Hydraulic smooth surfaces are defined if  
 
 0 5k +≤ ≤ .       (1.27) 

1.2.1.1 The Blasius solution 

Historically Blasius obtained in 1911 the following equation,   

1/ 40.3164 Refrλ = ,      (1.28) 

where Re hwD ν= , validated with his data and the data of other authors for 
5Re 10< . Later it was found that the velocity profile that can be assumed to obtain 

this friction coefficient has the form  
 

( ) ( )( ) 1/ 1/

max2

2 1 1
2

n nn n y yw y w w
R Rn

+ + ⎛ ⎞ ⎛ ⎞= =⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

.    (1.29) 
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It is known from the Nikuradze measurements that the exponent is a function of 
Reynolds number: for 5Re 1.1 10≤ × , 7n =  
 

( )
1/ 7 1/ 7

max
60
49

y yw y w w
R R

⎛ ⎞ ⎛ ⎞= =⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

    (1.30) 

 
or 
 

( ) ( )1/ 7
8.74w y y+ +=  .      (1.31) 

 
and for 6Re 3.2 10≤ × , 10n = . 

1.2.1.2 The Collins et al. solution 

More sophisticated than the Blasius profile which depends on the Reynolds num-
ber is proposed by Collins et al. (1978) and Bendiksen (1985): 

 
( ) ( )2 2

max

1 1 nw r
r r

w
γ γ= − − − ,     (1.32) 

 
( )7.5 4.12 4.95 log Re 0.743γ = + −⎡ ⎤⎣ ⎦ ,    (1.33) 

 

( )
1log Re 0.743 11 1 1

log Re 0.31 2
n γ γ

−− ⎛ ⎞= − − − −⎜ ⎟+ ⎝ ⎠
.   (1.34) 

 
The resulting friction coefficient is then 

 
1 3.5log Re 2.6

frλ
= − .     (1.35) 

1.2.1.3 The von Karman universal velocity profiles 

Friction coefficient: Schlichting found that the data of Nikuradse for 
6Re 3.4 10< ×  are well reproduced by the velocity profile defined by 

( ) ( )max *2.5lnw w y w R y− = , where *
max 4.07w w w= − , resulting in the expres-

sion defining the friction factor 
 

( )1 2log Re 0.8fr
fr

λ
λ

= − ,      (1.36) 
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Schlichting (1982) p. 624.  
 
Velocity profiles: The more accurate mathematical representation of the velocity 
profiles on Fig. 1.1 is generalized by von Karman. The Prandtl mixing length the-
ory is used. The effective turbulent cinematic viscosity is assumed to be propor-

tional to the velocity gradient 2t dw
dy

ν = l  outside the laminar boundary layer. 

The proportionality factor, the so-called mixing length, is proposed to be propor-
tional to the wall distance,  
 

yκ=l ,        (1.37) 
 
a lucky abstract assumption which turns useful. The constant 0.4κ =  is called the 
von Karman constant. The share stress in the boundary layer is then 
 

2 dw dw
dy dy

τ ρ= l .      (1.38) 

This equation can be made dimensionless, 1 lndw d y
k

+ += , with the friction ve-

locity * dww ky
dy

=  and then integrated analytically resulting in  

1 lnw y const
k

+ += + .      (1.39) 

 
Von Karman introduced a buffer zone between the viscous and the fully turbulent 
layer already introduced by Prandtl. In the first zone close to the wall the flow is 
laminar. In the second and in the third the constants are so computed in order to 
have smooth profiles. Schlichting summarizes the velocity profiles in Table 1.1.  

Table 1.1. Velocity profiles in the boundary layer 

Sub layer Defined by Velocity Profile 
Viscous 5y+ ≤  w y+ +=  
Buffer 5 30y+≤ ≤  5ln 3.08w y+ += −  
fully tur-
bulent 

30 y+<  2.5ln 5.5w y+ += +  

 
Table 1.2 contains some important integrals of the universal profile widely used 
for several purposes. +Γ  is the volumetric flow rate per unit width of the wall. 
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Table 1.2. Dimensionless volumetric flow per unit width of the surface 

Sub layer 

0

w dy
δ +

+ + +Γ = ∫  
2

0

dw
dy

dy

δ + +
+

+

⎛ ⎞
⎜ ⎟
⎝ ⎠
∫  

Viscous ( )2
0.5 12.5δ + ≤  δ +  

Buffer 5 ln 8.08 12.664
280.44
δ δ δ+ + +− +
≤

 1 15 25
5 δ +

⎛ ⎞+ −⎜ ⎟
⎝ ⎠

 

fully tur-
bulent 

2.5 ln 3.5 64.65δ δ δ+ + ++ −  1 19.1667 6.25
30 δ +

⎛ ⎞+ −⎜ ⎟
⎝ ⎠

 

,  9.735for δ + → ∞  
 
Note that a boundary layer Reynolds number defined as 

 
2

2
4 *

Re 4 4
*

www
wδ

δ
δ ν

ν
+= = = Γ  

 
is used for many application of the film flow theory. For film flow analysis it is in-
teresting to find the inversed dependences from Table 1.2, namely ( )δ δ+ + += Γ . 
Approximations for such dependences using profiles with constant 3.05 instead 
3.08 with an error less then 4% was reported by Traviss et al. (1973): 

 
0.50.707 Reδδ + =  for 0 Re 50δ< ≤ , 

 0.5850.482Reδδ + =  for 50 Re 1125δ< ≤ , 
0.8120.095Reδδ + =  for 1125 Reδ< . 

 
After Prandtl more complicated expressions for the mixing length are proposed: 
Van Driest (1955) introduced the so-called damping function to give 
 

( )1 exp / 26y yκ +⎡ ⎤= − −⎣ ⎦l .     (1.40) 

 
It is known that the constant depends actually on the Reynolds number and takes 
values between 20 and 30. For pipe flow Nikuradse (1932) proposed an expres-
sion which combined with the Van Driest damping factor to give 
 

( )
2 4

0.14 0.08 1 0.06 1 1 exp / 26y y y
R R R

+
⎡ ⎤⎛ ⎞ ⎛ ⎞ ⎡ ⎤= − − − − − −⎢ ⎥⎜ ⎟ ⎜ ⎟ ⎣ ⎦⎝ ⎠ ⎝ ⎠⎢ ⎥⎣ ⎦

l . (1.41) 

 
Turbulence in the boundary layer: It was experimentally observed by Laufer 
(1952, 1953) that the fluctuations of the velocity are equilateral in the central part 
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of the pipe but heterogeneous close to the wall (Fig. 1.2). Laufer’s data indicate 
that the fluctuations of the axial velocities in pipe in the wall region are about three 
times larger than the fluctuations in the other directions–heterogeneous turbulence. 
The radial fluctuation velocity can be approximated by a Boltzmann function  
 

( )0

1 2
2

1 y y dy

a a
u a

e
+ + +

+

−

−′ = +
+

, 

 
where 1a =-30.33365, 2a =0.89475, 0y+ =-43.51454, dy+ =12.72364. 
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0,0
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  50000
 500000

Radial
  50000
 500000
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  50000
 500000

V'
+

y+

 
Fig. 1.2. Velocity fluctuations as a function of the distance from the wall measured by 
Laufer (1953) 

Observe that the dimensionless radial fluctuation velocity is almost independent 
on the Reynolds number and that for 30y+ >  it is around 0.9 to 1. Vames and 
Hanratty (1988) reviewed turbulent measurements in a pipe and reported that 
close to the wall r R→  the fluctuation velocity is  

0.9 *v w′ ≈         (1.42) 

the characteristic time scale of turbulent pulsation 0.046 *e hD wτΔ =  and the 
eddy diffusivity is 0.037 *t w Dν =  (note that 2 0.0414 *t

ev w Dν τ′= Δ = ). Know-
ing the fluctuation of the normal to the wall velocity in a pipe flow is important for 
analyzing deposition processes in particle loaded flows. This is also essential for 
post critical heat transfer description in annular flow with droplets in the gas core 
for pipes and rod bundles. The data obtained for the pipes can be used for bundles 
due to the systematical experimental observations reported by Rehme (1992)  
p. 572: “…The experimental eddy viscosities normal to the wall are nearly inde-
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pendent on the relative gap width and are comparable to the data of circular tubes 
by Reichardt close to the walls…” 
 
There are attempts to approximate the information presented in Fig. 1.2. Matida 
(1998) proposed the following approximations for the pulsation of the velocity 
components close to the wall neglecting the dependence on the Reynolds number: 
 

1.444

0.5241
* 1 0.0407

u y
w y

+

+

′
=

+
,     (1.43) 

 
2

2.253

0.00313
* 1 0.00101

v y
w y

+

+

′
=

+
,     (1.44) 

 

1.361

0.160
* 1 0.0208

w y
w y

+

+

′
=

+
.      (1.45) 

 
In this region the fluctuation of the radial velocity measured for large Reynolds 
number by Laufer (1953) was approximated by Lee and Durst (1980) as follows 
 

0.4
' * 2.9v w R

R y
⎛ ⎞

= ⎜ ⎟
⎝ ⎠l

.      (1.46) 

 
Johansen (1991) reported the following approximation for pipe and channels 
flows with radius or half with R valid not only in the boundary layer but in the en-
tire cross section. 
 
a) The eddy viscosity 
 

3

11.15

t yν
ν

+⎛ ⎞
= ⎜ ⎟
⎝ ⎠

, 3y+ < ,     (1.47) 

 
2

0.049774
11.4

t yν
ν

+⎛ ⎞
= −⎜ ⎟
⎝ ⎠

, 3 52.108y+≤ < ,   (1.48) 

 

0.4
t

yν
ν

+= , 52.108 y+≤ ,     (1.49) 

 
is in agreement with the profiles computed with direct numerical simulation re-
ported by Kim et al. (1987).  
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b) The profile of the time averaged axial velocity in accordance with the above 
expressions is 
 

( ) 111.4 tan
* 11.4

w y y
w

+
− ⎛ ⎞

= ⎜ ⎟
⎝ ⎠

, 0y y+ +≤     (1.50) 

 
( )

0

1 0.415.491 2.5ln
* 1 0.4

w y y
w y

+

+

⎛ ⎞+
= + ⎜ ⎟+⎝ ⎠

, 0y y+ +> ,   (1.51) 

 
0 52.984y+ = .       (1.52) 

 
c) The fluctuation of the velocity normal to the wall  
 

*
vv
u

+ ′
′ =        (1.53) 

 
approximated with 
 

0.033 1 exp
3.837

yv y
+

+ + ⎡ ⎤⎛ ⎞
′ = − −⎢ ⎥⎜ ⎟

⎝ ⎠⎣ ⎦
,    (1.54) 

 
7.82

exp 7.82
30
yv
+

+
⎡ ⎤⎛ ⎞′ = −⎢ ⎥⎜ ⎟
⎢ ⎥⎝ ⎠⎣ ⎦

, 30y+ ≤ ,    (1.55) 

 

( ) ( ) 3030 30 0.65
30

yv v v
R

+
+ + +

+

−′ ′ ′⎡ ⎤= − −⎣ ⎦ −
, 30 y R+ +≤ ≤ ,  (1.56) 

 
agree with the Kutateladze et al. (1979) measurements. The characteristic time 
scale of the fluctuation is then given by 2t

e vτ ν ′Δ = . 
 
Wall boundary conditions for 3D-modeling: Using k ε−  models in computer 
codes with large scale discretization is very popular nowadays. In these codes the 
boundary layer can not be resolved. For computing the bulk characteristics bound-
ary conditions at the wall are required. Usually a point close to the wall e.g. 

30py+ = , is defined where the profile 2.5ln 5.5w y+ += +  starts to be valid. At 
this point the values of the turbulent kinetic energy per unit mass and its dissipa-
tion are 
 

32.5 *p pk w y+= ,      (1.57) 
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2*p w cνε =        (1.58) 

 
with 0.09cν = coming from the definition equation of the turbulent cinematic vis-
cosity 2t c kνν ε= , see for instance Lee et al. (1986). Bradshaw (1967) found 
experimentally a useful relationship  wk const τ ρ≈  that can be used for this pur-
pose as approximation. Harsha and Lee (1970) provided extensive measurements 
showing the correctness of the relation 3.3 wk τ ρ≈  for wakes and jets. Comput-
ing the Fanning factor in 2 2w wc wτ ρ=  by using appropriate correlation we can 
approximately estimate the specific turbulent energy at the wall region. Note that 
Alshamani (1978) reported that there is no linearity in the boundary layer 5y+ >  

but ( )2.24 1.13 wk w τ ρ+′≈ − , where w +′  is the dimensionless fluctuation of the 
axial velocity.  

1.2.1.4 The Reichardt solution 

In looking for appropriate turbulence description in pipe flow valid not only up to 
the boundary layer but up to the axis of the pipe Reichardt (1951) reproduced the 
available data for high Reynolds numbers in the form of turbulent cinematic vis-
cosity as a function of the distance from the wall: 
 

2 21 1 1 1
* 3 2

t y y
w R R R
ν κ ⎡ ⎤ ⎡ ⎤⎛ ⎞ ⎛ ⎞= + − − −⎢ ⎥ ⎢ ⎥⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦
    (1.59) 

 
in 

 

( )t dw
dy

τ ρ ν ν= + , 1w y Rτ τ = − .    (1.60) 

 
Making reasonable approximation Reichardt succeeded to obtain a single equation 
for the velocity profile that covers all the regions from the wall to the axis: 
 

( ) ( ) 2

1.5 2
2.5ln 1 0.4

*
1 2 1

y
w y Ry
w y

R

+

⎡ ⎤⎛ ⎞−⎢ ⎥⎜ ⎟
⎝ ⎠⎢ ⎥= +

⎢ ⎥⎛ ⎞+ −⎢ ⎥⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦

 

 

( ) ( )7.8 1 exp 11 exp 0.33
11
yy y
+

+ +⎡ ⎤
+ − − − −⎢ ⎥

⎣ ⎦
.   (1.61) 
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For y << R the expression simplifies to  
 

( ) ( )2.5ln 1 0.4
*

w y
y

w
+= + ( ) ( )7.8 1 exp 11 exp 0.33

11
yy y
+

+ +⎡ ⎤
+ − − − −⎢ ⎥

⎣ ⎦
. 

 
The derivative  
 

( ) ( ) ( )
2* 1 7.8 exp 11 0.33 1 exp 0.33

111 0.4
dw w y y y
dy yν

+ + +
+

⎧ ⎫⎡ ⎤= + − + − −⎨ ⎬⎣ ⎦+⎩ ⎭
, 

is very useful for computation of the lift force acting on small particles in the 
boundary layer at y R= . For upward bubbly flow it is directed from the wall into 
the bulk flow and for droplets from the boundary layer toward the wall. 

Note that Lee et al. (1986) reported alternative form of the cinematic viscosity 
as a function of the distance from the wall: 
 

22 311 4 10.4 1 1 exp
6 3 3 16

t y y y yy
R R R

ν
ν

+
+
⎡ ⎤ ⎡ ⎤⎛ ⎞⎛ ⎞ ⎛ ⎞ ⎛ ⎞= − + − − −⎢ ⎥ ⎢ ⎥⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎢ ⎥ ⎝ ⎠⎣ ⎦⎣ ⎦
. (1.62) 

1.2.2 Transition region 

The transition from the hydraulic smooth to complete rough region is defined by 
 
5 70k +≤ ≤ .       (1.63) 
 

In this case the velocity profile is ( ) ( )max *2.5lnw w y w R y− = , 

max 3.75 *w w w= − . The friction coefficient correlation proposed by Colebrook 
and White (1939) 

 1 18.71.74 2log
Refr fr

k
Rλ λ

⎛ ⎞
⎜ ⎟= − +
⎜ ⎟
⎝ ⎠

,     (1.64) 

is valid for all roughness regimes. Avdeev (1982) proposed to use an explicit ap-
proximation of this equation which is more convenient, 
 

0.91

1 491.74 2log
Refr

k
Rλ

⎛ ⎞= − +⎜ ⎟
⎝ ⎠

.    (1.65) 
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1.2.3 Complete rough region 

The complete rough region is defined by 
 

70 k +≤ .       (1.66) 

The velocity profile is defined by  
( )

5.75log 8.5
*

w y y
w k

⎛ ⎞= +⎜ ⎟
⎝ ⎠

 resulting in 

( )* ln 4.75w w R k= + , ( )max 3.75 *w w y w− = . The fiction coefficient found by 
von Karman is  

1 2log 1.60
fr

R
kλ

⎛ ⎞= +⎜ ⎟
⎝ ⎠

.     (1.67) 

 
A slight change made by Schlichting  
 

1 2log 1.74
fr

R
kλ

⎛ ⎞= +⎜ ⎟
⎝ ⎠

,      (1.68) 

 
gives the best fit to the Nikuradse data. 

White (2006) proposed the following approximation of the velocity profile with 
an offset depending on the type of the roughness 
 

( ) 1 *ln
*

w y yw B B
w κ ν

⎛ ⎞= + − Δ⎜ ⎟
⎝ ⎠

, 

 

where 1 *ln 1 B
kwB c

κ ν
⎛ ⎞Δ = +⎜ ⎟
⎝ ⎠

, B = 5, 0.41κ = , 0.3Bc ≈  for sand roughness, 

0.8Bc ≈  for stationary wavy wall data. The advantage of this approach is that it 
can also be used for description of the drag coefficient between liquid and gas 
wavy interface. Comparing with data Hulburt et al. (2006) proposed to use 

,2 , 0.8B F basec ≈  for gas interaction with the base waves  and ,2 , 4.7B F travc ≈  for gas in-
teraction with the traveling waves. 

1.2.4 Heat transfer to fluid in a pipe 

Comparing the momentum and the energy conservation equation for steady devel-
oped flow in a pipe 

 

( )1 tw y dw
R dy

τ
ν ν

ρ
⎛ ⎞− = +⎜ ⎟
⎝ ⎠

,     (1.69) 
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( )1 tw

p

q y dTa a
c R dyρ
′′ ⎛ ⎞− = − +⎜ ⎟
⎝ ⎠

&
,     (1.70) 

 
we realize immediately the similarity. Note that in this case 
 

t
w p

t
w

q c a a dT
duτ ν ν

′′ +
= −

+

&
.      (1.71) 

For negligible molecular viscosity and conductivity compared to their turbulent 

counterpart valid for gases and Pr 1
t

t
t

pc
ν

λ ρ
= ≈  Reynolds come to the remark-

able relation ( ) 8′′ Δ =&w p frq wc Tρ λ , saying the heat transfer between wall and 
bulk flow is proportional to the friction coefficient. Reynolds proposal to consider 
the turbulent conductivity proportional to the eddy viscosity 
 

Pr
t

pt
t

c
const

ρ ν
λ

= ≈ ,      (1.72) 

 
was very fruitful in obtaining practical correlations for describing the heat transfer 
in pipes.  

So knowing the dependence of the eddy diffusivity on the distance from the 
wall 
 

( ) 1t w yy
dw dy R
τ

ν ν
ρ

⎛ ⎞= − −⎜ ⎟
⎝ ⎠

, 

 
the turbulent thermal conductivity is also known and Eq. (1.70) can be integrated. 
The result is the temperature distribution as a function of the wall distance. As an 
example we give below the Martinelli solution. The heat flux at the wall is then 
easily computed because the temperature gradient at the wall is known. This is the 
method leading many authors to derivation of correlation for the heat transfer at 
the wall – an important method for the technology achievement of the turbulence 
theory. The analogy is called Reynolds analogy. Expressions for heat transfer co-
efficient are generated by Prandtl and one more accurate by von Karman valid up to 
Pr = 25. Useful correlation set reviewed by Kirillov (1985) will be given below. 

1.2.4.1 The Martinelli solution for temperature profile 

The temperature profiles for heated walls corresponding to the above mentioned 
three-layers theory are found by Matrinelli (1974) who assumed  validity of the 
Reynolds analogy. Martinelli integrated the energy conservation equation for each 
of the three regions and obtained the dimensionless temperature  
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( ) ( )* p w wT y u c T T y qρ+ ′′= −⎡ ⎤⎣ ⎦ & ,    (1.73) 
 
as a function of the dimensionless distance from the wall. The solutions are given 
below: For the viscous sub layer 5y+ ≤  

 
Pr PrtT y+ += .      (1.74) 

For the buffer layer, 5 30y+≤ ≤ , the solution is 
 

5 Pr Pr ln 1 Pr Pr 1
5

t t yT
+

+
⎧ ⎫⎡ ⎤⎛ ⎞⎪ ⎪= + + −⎨ ⎬⎢ ⎥⎜ ⎟

⎝ ⎠⎪ ⎪⎣ ⎦⎩ ⎭
.    (1.75) 

 
For the turbulent core 30 y+<  the solution is 

 

( ) 15 Pr Pr ln 1 5Pr Pr ln
2 30

t t yT
+

+ ⎧ ⎫⎛ ⎞⎪ ⎪= + + +⎨ ⎬⎜ ⎟
⎪ ⎪⎝ ⎠⎩ ⎭

   (1.76) 

 
These are the equations 24, 25 and 26, respectively, obtained by Martinelli (1974). 
The best comparison with the experimental data was found for turbulent Prandtl 
number set to one, ( )Pr 1t t t

pcλ ρ ν= ≈ . Note that the experimental results ob-

tained by Ludwig (1956) indicate Pr 1.5t
hr D≈ − . More complex relation is pro-

posed by Azer and Chao (1960) for 0.6 < Pr < 15, 
 

( )

( )

1.40.46 0.58

1.40.45

1 57 Re Pr exp
Pr

1 135Re exp
t

y R

y R

− −

−

⎡ ⎤+ −⎣ ⎦=
⎡ ⎤+ −⎣ ⎦

.   (1.77) 

 
The Martinelli solution is important for analyzing nucleate boiling heat transfer at 
heated walls because it gives the temperature profile in the boundary layer where 
the babble generation happens. Stable bubble growth is obtained if the temperature 
at 1 2dy D=  is larger than the saturation temperature at the local pressure, Levy 
(1967). 

Kays (1994) summarized experimental data by several authors leading to 
Pr 0.7 to 0.85t ≈  for molecular Prandtl numbers being between 0.7 and 64 which 
are well represented by an approximate form of the analytical solution by Yakhot 
et al. (1987) ( )Pr 0.85 0.7 Prt tν ν= + . More accurate also for lower Prandtl 

numbers is the correlation ( )Pr 0.85 2 Prt tν ν= + , Kays (1994) p. 288, with still 
remaining degree of uncertainty for liquid metals. For air Kays and Crawford 
(1993) proposed Pr 1.07t =  for 5y+ <  and 
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( ) ( ) ( ){ }{ } 12
Pr 0.5882 0.228 0.0441 1 exp 5.165t t t tν ν ν ν ν ν

−
⎡ ⎤= + − − −⎣ ⎦  

 
for 5y+ >  corresponding to 2.075 3.9T y+ += +  for 30y+ > . For water 
Hollingsworth et al. (1989) proposed Pr 1.07t =  for 5y+ <  and 

( )Pr 1 0.855 tanh 0.2 7.5t y+⎡ ⎤= + − −⎣ ⎦ for 5y+ >  which is useful also for Prandtl 

numbers up to 64, Kays (1994). 

1.2.4.2 Practical results from the analogy between momentum  
and heat transfer 

Exhaustive review in this subject is given by Kirillov (1985). The data collection by 
Kirillov consists of measurements made by different authors and shows a spread of 
± 20%. The main reason for the spread is the surface structures, which may differ due 
to different physico-chemical influences that are difficult to control. The so called 
Reynolds analogy provided the useful framework for correlating the data. The pioneer 
analytical solutions in this field are given in Table 1.3. Useful empirical correlations 
are summarized in Table 1.4. From the 41 discussed correlations Kirillov (1985) rec-
ommend the simplest expressions valid in a narrow Pr-region. 

Table 1.3. Heat transfer to fluid in a pipe described by the Reynolds analogy 

Result Valid, method, reference 

Re Pr 8
frNu λ

=  
Pr 1= , Reynolds analogy, 
Reynolds (1900) 

( )0.125

8
Re Pr 1 1.74 Re Pr 1

frNu λ
−=

+ −
 

Pr 10< , two-layer model, 
Prandtl (1910) 

( )

8
Re Pr 51 5 Pr 1 ln 1 Pr 1

8 6

fr

fr

Nu λ

λ
=

⎧ ⎫⎡ ⎤+ − + + −⎨ ⎬⎢ ⎥⎣ ⎦⎩ ⎭

 
Pr 30< , semi-emp. three-
layers model, Taylor (1916), 
von Karman (1939) 
 

( ) ( ) ( )2 / 3
1 2

8
Re Pr 8 Pr 1

fr

fr fr fr

Nu
f f

λ

λ λ λ
=

+ −
 

( )1 1 3.4fr frf λ λ= + ,  

( ) 1/ 3
2 11.7 1.8 Prfrf λ = + , 

( ) 21.82 log Re 1.64frλ −= −  

0.5 Pr 2000< < , 
4 610 Re 5 10< < × , two-layer 

model, Petukhov, (1970) , 
mean error 1%, except 
200 Pr 2000< < , 

5 65 10 Re 5 10× < < × , 1-2%. 

( )
0.75

0.125 1/ 6

0.0396 Re Pr
1 1.5Re Pr Pr 1

Nu − −=
+ −

 
Bühne (1938),  Hoffman 
(1937) 
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Table 1.4. Heat transfer to fluid in a pipe described by empirical correlations 

Correlation Pr, Re –regions, ref.  
0.8 0.40.023Re PrNu =  0.25 Pr 25< < , Dittus 

-Boelter (1930), see 
Fig. 1.3 

0.8 0.430.021Re PrNu =  0.6 Pr 2500< < , 
4 610 Re 5 10< < × , Mi-

heev (1952) 
5 0.015Re Pra bNu = + ,  

( )0.88 0.24 4 Pra = − + ,

( )0.333 0.5exp 0.6 Prb = − −  

Sleicher and Rouse 
(1975) 7 Pr 1000< <  

( )
0.250.8

0.1 2 / 3

0.023Re Pr Pr
Pr1 2.14Re Pr 1 w

Nu
−

⎛ ⎞
= ⎜ ⎟

+ − ⎝ ⎠
 

0.5 Pr 200< < , Ku-
tateladze (1979b) 

( )
1

2 / 38 1.07 12.7 Pr 1
Re Pr 8

fr

fr

Nu λ
λ

−
⎡ ⎤

= + −⎢ ⎥
⎢ ⎥⎣ ⎦

, 

( ) 2
101.82 log Re 8frλ

−
= ⎡ ⎤⎣ ⎦  

Petukhov and Kirillov 
(1958) 

( )
1

2 / 38 1 Pr 1 2.5ln Pr
Re Pr 8

fr
lam

fr

Nu y
λ

λ

−

+
⎡ ⎤

= + − +⎢ ⎥
⎢ ⎥⎣ ⎦

, 

lamy+ , dimensionless laminar sub-layer ( ≈ 11.5) 

Borstevskij and Rudin 
(1978) p. 294, 
0.5 Pr 10000< <  

( )
1

2 / 38 9001 12.7 Pr 1
Re Pr Re 8

fr

fr

Nu λ
λ

−
⎡ ⎤

= + + −⎢ ⎥
⎢ ⎥⎣ ⎦

 

50.5 Pr 5 10< < × , 
3 64 10 Re 5 10× < < × , 

Petukhov et al. (1974) 
 

( ) 2 / 3

Re Pr
8

2.12 ln Re 2.12 ln Pr 12.5Pr 10.1

fr

fr

Nu

λ

λ
=

+ + −
 

61 Pr 10< < , 
3 65 10 Re 5 10× < < × , 

Kader - Yaglom (1972) 

0.87

10

5.317.83 0.01Re Pr
log Re

nNu = − +  

0.470.34
1 2 Pr

n = +
+

 

Pr 100< , Bobkov - 
Gribanov (1988) 
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( )

Re Pr
8

Re0.833 5Pr 5ln 5Pr 1 2.5ln
60 8

fr

fr

Nu

λ

λ
=

⎡ ⎤
+ + +⎢ ⎥

⎢ ⎥⎣ ⎦

 

0.5 Pr 30< < , Kays 
(1972) 

10
1 Re2.5 1.3log 1 3.9 Pr
Pr 1000

m
nNu ⎛ ⎞ ⎛ ⎞= + + +⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
 

10
100.918 0.051 log 1
Pr

m ⎛ ⎞= − × +⎜ ⎟
⎝ ⎠

 

( )100.65 0.107 log 1 10 Prn = − × +  

0.01 Pr 100< < ,  
3 63 10 Re 3 10× < < × , 

Buleev (1965) 

( ) 12
1 2 3ln ln

Re Pr
Nu k Y k Y k

−
= + +  

1 5.75k =  
0.55

2 61.25Pr 14.75ln Pr 5.21k = − −  
0.55

3 42.875Pr 10.325ln Pr 32.1k = − −  

0.7 Pr 64< < , Kirillov 
et al. (1985) 

1.75Re Pr 1
8 9 Pr

1.325 1

fr n

fr

Nu

λ

λ

⎛ ⎞+⎜ ⎟+⎝ ⎠=
+

 

0.057
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Fig. 1.3. Illustration of the accuracy of the oldest correlation for heat transfer in pipe: data 
by Sani (1960), correlation by Dittus -Boelter (1930) 
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Table 1.5. Water flowing parallel to rods in a bundle 

( ) 0.8 1/ 3Re PrrodNu f P D= , 

( ) ( )0.026 0.006rod rodf P D P D= −  , triangular – 
pitch array 
( ) ( )0.042 0.024rod rodf P D P D= − , square – pitch 

array 

Weisman (1959) 
 

 
Weisman (1959) found that the heat transfer to water flowing parallel to rod bun-
dles is similar to those in pipes with a linear dependence on the pitch to rod ratio, 

rodP D , see Table 1.5. 

1.3 Transient flow in pipes with circular cross sections 

It is interesting to have a method that answers the question: How acceleration or decel-
eration of the averaged flow in a pipe influences the wall friction force? Kawamura 
(1975) solved numerically the following system of equations to answer this question. 

 

( )1 1 tw p wr
x r r r

ν ν
τ ρ
∂ ∂ ∂ ∂⎡ ⎤= + +⎢ ⎥∂ ∂ ∂ ∂⎣ ⎦

,    (1.78) 

 

( )1 tT T Tu a a r
x r r rτ

⎡ ⎤∂ ∂ ∂ ∂
+ = +⎢ ⎥∂ ∂ ∂ ∂⎣ ⎦

,    (1.79) 

 

with boundary conditions r R= , ( ), 0w R τ = , 0r = , 0w
r

∂
=

∂
, ( ), , wT x R Tτ = , 

w

R

dTq
dr

λ′′ = −& ; 0dT
dr

= ;  ( )0, , inT r Tτ = ; ( )p f
x

τ∂
=

∂
 are prescribed. The consti-

tutive relations used are 2t dw
dy

ν = l , 2 2 2

1 1 1

c w

= +
l l l

, ( )1 exp / 26w y yκ +⎡ ⎤= − −⎣ ⎦l , 

0.045c D=l , ( )1.5 1 exp 1/t ta ν φ φ= −⎡ ⎤⎣ ⎦ , and 
( )1/ 2 1/ 3

Pr

4.13 0.743 Pr

t

t

ν νφ
ν ν

=
+

 (for 

liquid metals this value has to be multiplied by 2 to obtain heat transfer coeffi-
cients experimentally observed). To avoid the defect of the model at the axis the 

following assumption is made valid for the axis: 0.01dw w
dy

=l  in case if 
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0.01dw w
dy

<l .  Kawamura found the following time scales: The order of magni-

tude for the momentum exchange between the eddies is 2 t
eτ νΔ ≈ l , the order of 

magnitude for establishing of the steady state flow is  21
Reflow

fr

Dτ ν
λ

Δ ≈ , and 

therefore 
2

Ree flow fr tD
ντ τ λ
ν

⎛ ⎞Δ Δ ≈ ⎜ ⎟
⎝ ⎠

l . So for instance at 5Re 10= , 0.045frλ ≈ , 

0.01tν ν =  and 0.045D ≈l , 0.09e flowτ τΔ Δ ≈ . The method of Kawamura 
demonstrates that deceleration has no strong effect on the friction coefficient but 
fast acceleration increases the friction coefficient. 
 

Kalinin and Dreitser (1970) reported very approximate correlation of data with 
very large scatter by taking into account the influence of the unsteadiness of the 
flow in the friction coefficient 
 

,
21fr transient h

fr fr

D dwconst
dw

λ
λ τλ

= + ,     (1.80) 

 
which is not recommended. However, the introduction of the dimensionless meas-
ure of the acceleration is important. Marek, Mensinger and Rehme (1979) per-
formed careful experiments by accelerating water in pipes. The authors found that 
only the direct share stress measurement gives useful results. The pressure differ-
ence measurement contains acceleration component that is two orders of magni-
tude larger than the friction component, which makes estimation of the share 
stress by pressure difference measurements impossible. The authors reported a 
log-log data plot that is approximated here by 

 
2

, -8
2 2max 1, 1.98671 0.01394 9.58394 10fr transient h h

fr fr fr

D Ddw dw
d dw w

λ
λ τ τλ λ

⎡ ⎤⎛ ⎞
⎢ ⎥= − + + × ⎜ ⎟⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦

,

        (1.81) 

valid for 5
21 10h

fr

D dw
dw τλ

< < . Note the considerable increase of the transient fric-

tion coefficient ,1 2500fr transient frλ λ≤ <  with the increase of the acceleration in 
this region. As far as I know there is no second like this experiment. Bergant et al. 
(1999) reported good comparison with data for pressure wave propagation with 
small initial velocities 0.1, 0.2, 0.3 m/s using the expression proposed by Brunone 
et al. (1991) 
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( ) ( ),
21 Re  fr transient h

fr fr

D w wf a sign w
zw

λ
λ τλ

⎡∂ ∂ ⎤
= + +⎢ ⎥∂ ∂⎣ ⎦

,  (1.82) 

 
in which the function of time averaged Reynolds number proposed by Vardy and 
Brown (1996) 
 

( ) ( )0.05

1/ 2

log 14.3 / Re

7.41Re
Re

f
⎡ ⎤

= ⎢ ⎥
⎢ ⎥⎣ ⎦

,     (1.83) 

 
was used. Note that “a” is the velocity of sound. For Reynolds numbers 1875, 
3750 and 5600 the ( )Ref  takes values 0.069, 0.049 and 0.0418, respectively. 
 

Nomenclature 

Latin 
a  ( ): pcλ ρ= , thermal diffusivity, m²/s 
a  in transient friction correlations, velocity of sound, m/s 

ta  turbulent thermal diffusivity, m²/s 
pc  specific capacity at constant pressure, J/(kgK) 

wc  ( )2: 2w wτ ρ= , friction coefficient, Fanning factor, dimensionless 

,w xc Δ  friction coefficient averaged over the length xΔ , dimensionless 
D  diameter, m 

hD  hydraulic diameter, m 

wF  share force acting on the surface, N 
f , 1f , 2f  functions 

wf  share force acting on the surface per unit flow volume, N/m³ 
h  heat transfer coefficient, W/(m²K) 
k  specific turbulent kinetic energy, m²/s² 

pk  specific turbulent kinetic energy at specified distance from the wall at 
which boundary condition for large scale discretization are prescribed, 
m²/s² 

k  as pipe surface property, roughness, m 
k +  : *kw ν= , roughness, dimensionless 

1k , 2k , 3k  functions 
l  mixing length, m 
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cl  mixing length in the central region, m 

wl  mixing length in the wall region, m 
Nu  Nusselt number, dimensionless 

xNu  local Nusselt number along the x-axis, dimensionless 

xNuΔ  local Nusselt number along the xΔ , dimensionless 

xNuΔ  averaged Nusselt number over xΔ , dimensionless 
Pr  molecular Prandtl number, dimensionless 
Prt  turbulence Prandtl number, dimensionless 
Prw  molecular Prandtl number at wall temperature, dimensionless 
p  pressure, Pa 

wp  static pressure at the wall, Pa 

wq′′&  heat flux from the wall into the continuum, W/m² 
R  radius, m 
R+  : *R w ν= , radius, dimensionless 
Re  Reynolds number, dimensionless 
Re xΔ  Reynolds number xΔ , dimensionless 
r  radius, m 
T  temperature, K 

wT  wall temperature, K 

T  averaged temperature, K 
T +  temperature, dimensionless 
u  velocity along the x-axis, m/s 
u′  fluctuation velocity component along the x-axis, m/s 

maxu  maximum velocity along the x-axis, m/s 
u∞  velocity far from the surface, m/s 
u  cross section averaged velocity, m/s 

*u  friction velocity, m/s 
u+  velocity, dimensionless 

flowV  control volume, m³ 
v velocity component in y-direction, m/s 
v′  fluctuation of the velocity component in y-direction, m/s 
v +′  fluctuation of the velocity component in y-direction, dimensionless 
w velocity component in z-direction, axial velocity, m/s 
w′  fluctuation of the velocity component in z-direction, m/s 
w +′  fluctuation of the velocity component in z-direction, dimensionless 
w  cross section averaged axial velocity, m/s 
x  x-coordinate, coordinate parallel to a plate m 

xΔ  increment of the x-coordinate, m 
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Y  function 
y  y-coordinate, coordinate perpendicular to the wall, m 

yΔ  increment of the y-coordinate, m 
y+  : *y w ν= , y-coordinate, dimensionless 

0y+  distance from the wall, dimensionless 

py+  distance from the wall at which boundary condition for large scale discre-
tization are prescribed, dimensionless 

 
Greek 
 

+Γ  volumetric flow rate per unit width of the wall, dimensionless 
γ  function 
δ  boundary layer thickness, m 

99%δ  displacement thickness, m 
δ +  boundary layer thickness, dimensionless 
ε  power dissipated irreversibly due to turbulent pulsations in the viscous 

fluid per unit mass of the fluid (dissipation of the specific turbulent ki-
netic energy), m²/s³ 

pε  continuum dissipation of the specific turbulent kinetic energy at the tran-
sition between laminar and turbulent boundary layer, m²/s³ 

κ  von Karman constant, dimensionless 
λ  molecular thermal conductivity, W/(mK) 

tλ  turbulent thermal conductivity, W/(mK) 

frλ  2: 4
8

w
wc

w
τ

ρ
= = , wall friction factor for steady state flow, dimensionless 

,fr transientλ  wall friction factor for transient flow, dimensionless 
ν  molecular cinematic viscosity, m²/s 

tν  turbulent cinematic viscosity, eddy diffusivity, m²/s 
ρ  density, kg/m³ 
τ  time, s 

eτΔ   2: tν≈ l , time scale for momentum exchange between the eddies, s 

flowτΔ   21:
Refr

D ν
λ

≈ , time scale for establishing the steady state flow in a 

pipe, s 
wτ  wall share stress, N/m² 
φ  function 
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2 Introduction to turbulence of multi-phase flows 

Single phase turbulence is complex and still considered as a not resolved issue in 
science. Multiphase flow turbulence is much more complex and of course still far 
from its final accurate mathematical description. Systematic experimental results 
for steady states are gained and some theories are developed mainly for low con-
centration particle- and bubble-flows in simple geometry but not for all flow pat-
tern in transient multi-phase flows in general. However, the need of optimum de-
sign of industrial facility operating with multiphase flows dictates intensive 
activities of many scientists in this field. For such a scientific discipline, that is be-
ing in “flow”, a summary of the state of the art will help engineers to use what is 
already achieved and help scientists to understand better where is the lack of 

2.1 Basic ideas 

Let us recall the momentum equations derived in Kolev (2007a) Ch. 2 of the dis-
persed velocity field d surrounded by continuum c 
 

( ) ( ) ( )e e
d d d v d d d d d d d d

∂ α ρ γ α ρ γ α ρ γ
∂τ
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physical understanding that has to be filled. This is the reason to write this 
Section, well knowing the limited range of knowledge accumulated so far. In this 
work I will review the existing approaches and try to lead them to one that is 
promising for practical analysis. I will deliberately concentrate my attention to a 
pragmatic modeling that is far from “decorative mathematics”. 
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( )
3,

1

w

v kd k dk d
k
k d

γ μ μ
=
≠

= −∑ V V ,     (2.1) 

 
and of the continuous phase velocity field c 
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≠

= −∑ V V .     (2.2) 

 
The dispersed momentum equation is valid inside the dispersed phase including 
the interface. It includes the interface jump condition. The continuum momentum 
equation is valid only inside the continuum without the interface.  

Remember the notations applied to each field l: lα is the local volume fraction, 
e
lα is the local volume fraction at the interfaces of the control volume (identical to 

lα  for infinitesimal control volume). The counter part defining the presence of 
non-flow materials is described by vγ , the volumetric porosity, the part of the 
control volume not available for the flow, and γ  the volumetric porosity at the in-
terfaces of the control volume called surface permeability (identical to vγ  for in-
finitesimal control volume).  

*d
cp σΔ is the surface averaged difference between the pressure at the surface 

dσ  and the bulk pressure of c. I call this pressure difference effective stagnation 
pressure difference. Analogously, *w

cp σΔ  is defined for the wall. The interfacial in-
teraction coefficients are as follows: vmc is the virtual mass force coefficient, dc  is 
the drag force coefficient, and Lc is the lift force coefficient. For the estimation of 



2.1 Basic ideas      31 

this coefficients for different configurations and flow pattern see Kolev (2007b). g 
is the acceleration due to gravity. cdΔV = c d−V V , local velocity difference be-
tween the continuous phase c and the disperse phase d. 

The intrinsic averaged density is lρ . Here p is the thermodynamic pressure. lV  
is the velocity vector of field l and l′V  is its pulsating component. Note that the 
molecular fluctuation are much faster than any other processes; so locally external 
macroscopic forces does not influence the local micro-equilibrium (an hypothesis 
first stated by Stokes in 1845).  

How to derive these equations, how to estimate every single term in them, how 
to integrate them in conjunction with the other conservation laws are the subject of 
Volume 1 and 2 of this work and will not be repeated here. Our target is to under-
stand how to model the tensor of the turbulent stresses and its influence, of course, 
on the energy conservation and all other flow processes. 

First remember the Stokes hypothesis from 1845, Stokes Eqs. (8), expressed 
mathematically 
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∇V is the dyadic product of the Nabla operator and the velocity vector (a second 
order tensor), T  designates the transposed tensor. Note that the Nabla operator of 
the velocity vector,  
 

∇ = +V D W        (2.4) 
 
consists of a symmetric part  
 

( )1
2

T⎡ ⎤= ∇ + ∇⎣ ⎦D V V ,      (2.5) 

called deformation rate and a skew part  
 

( )1
2

T⎡ ⎤= ∇ − ∇⎣ ⎦W V V ,      (2.6) 

 



called spin or vortices tensor. ∇ ⋅V is the divergence of the velocity vector. The 
term containing the divergence of the velocity vector 
 

u v w
x y z
∂ ∂ ∂

∇ ⋅ = + +
∂ ∂ ∂

V  ,      (2.7) 

 
is called by Stokes rate of cubic dilatation. The hypothesis says that the relation 
between viscous stresses and deformation rate on a control volume is linear and 
that the proportionality factor is the dynamic viscosityη , that the solid body trans-
lations and rotations do not contribute to the viscous forces, that the share stresses 
are symmetric, and that the relation between volumetric and share viscosity is so 
that the pressure always equals one-third of the sum of the normal stresses. Each 
of this point has its ingenious argumentation in the Stokes paper. In the multiphase 
continuous fields, as long as they are fine resolved this stress tensor exists. I rec-
ommend to any one having serious intention to understand flows to study the 
Stokes paper. 

The term l l lρ ′ ′V V , called tensor of the turbulent stresses,  is obtained for single 
phase flow after time averaging the momentum equations by Reynolds (1894). 
Boussinesq (1877) introduced the idea of turbulent eddy viscosity inside the veloc-
ity field so 
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that it has the same structure as the Stokes hypothesis. The corresponding Rey-
nolds stresses are  
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The newly introduced variable, the dynamic turbulent viscosity, t

lη , is a flow 
property. It remains to be modeled. Note that at a given point this is a single value 
for all directions. Strictly speaking this approach is valid for isotropic turbulence 
because there is a single eddy viscosity assumed to be valid for all directions. 

For isotropic turbulence for which  
 

2
3l l l l l lu u v v w w k′ ′ ′ ′ ′ ′= = =      (2.15) 

 
an alternative notation of the term is given here 
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where 
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Here the diagonal symmetric term ( )2
3

e
l l lkγα ρ∇  is considered as “dispersion 

force” and is directly computed from the turbulent kinetic energy delivered by the 
turbulence model. Note that in this case the use of Eq. (2.8) together with this 
term, as done by several authors in the literature, is wrong.  
 

More convenient are notations using the kinematics viscosity  
 

ν η ρ=         (2.17) 
 
and eddy diffusivity  
 

t tν η ρ= .       (2.18) 
 
This type of turbulence is called Reynolds turbulence. If you observe the river wa-
ter after the bridge pillows you will immediately recognize that deformation of the 
velocity field is one of its reasons. Such turbulence type is available in the contin-
uum velocity field also in multiphase flow, Brauer (1980). One of the most popu-
lar and up to now most fruitful approaches to describe it is to search for the de-
pendence of the eddy diffusivity on the local parameters of the flow as it will be 
shown later. Before doing this I will mention at this place that the eddy viscosity 
can be computed with different degrees of complexity: 
 

• By using the mixing length approaches as consisting of 2t dw dyν = l  
and expressions defining the mixing length as function of the distance 
from the wall ( )y=l l . An example is the combination of Nikuradse 
and van Driest expression as discussed in the previous chapter which 
means that apriority knowledge of the turbulence structure is needed 
which makes this approach not really predictive. Then, algebraic models 
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for the particle induced turbulence presented in Chapter 9 have to be used 
as additives. 

• By using k-eps transport equation. The contribution of the dispersed 
phase is then taken into account by introducing addition sources in the 
differential equations as it will be shown in the next chapter. Note that in 
this case the effect of the dispersed phase is taken into account and an 
additive to the eddy viscosity is not necessary. 

• By using large eddy simulation algebraic models as shown in Chapter 9. 
• By using large eddy simulation k-eps models as shown in Chapter 9. 

 
Further understanding of the turbulence can not be reached without attracting 

the energy conservation in entropy form from Volume 1, Kolev (2007a): 
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Here the new variables are the thermodynamic temperature T and the specific field 
entropy s. The diffusion of heat and specie i have their turbulent components so 
that the effective thermal conductivity 
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and the effective component diffusivity 
 

*
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l l l

D D
Sc Sc Sc
ν ν νδ δ= + = +      (2.21) 

 
are considered to be functions of the eddy viscosity by introducing two new flow 
parameters: the turbulent Prandtl number Prt

l  and the turbulent Schmidt number 
t
lSc  that have to modeled also.  

 
/ Pr l

l l pl l lcλ ρ ν=       (2.22) 
 
is called turbulent coefficient of thermal conductivity or eddy conductivity and  
 

t t t
il l lD Scν=        (2.23) 



 
is called turbulent coefficient of material diffusivity or eddy material diffusivity. 
The term  
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requires special attention. lq′′′&  is the thermal energy introduced into the velocity 
field l per unit volume of the flow including thermal energy released or absorbed 
during chemical reactions. *

lE  is the irreversible power dissipation caused by the 
time averaged mass transfer between two regions with different velocities and 
pressure difference between bulk and interface – usually neglected. *

lE′  is the ir-
reversible power dissipation caused by the time averaged fluctuation of the inter-
face mass transfer between two regions with different velocities and fluctuation of 
the pressure difference between bulk and interface – usually neglected. 

Now we will discuss three important terms reflecting the irreversible part of the 
dissipation of the mechanical energy. The irreversibly dissipated power in the vis-
cous fluid due to turbulent pulsations and due to change of the mean velocity in 
space is 
 

( ) ( ) ( ), ,: :e
v l l l v l l l l l l l l lη ηγ α ρ ε γ α ρ ε ε α γ ⎡ ⎤′ ′ ′= + = ∇ ⋅ + ∇ ⋅⎣ ⎦T V T V . (2.25) 

 
These components can not be returned back as a mechanical energy of the flow. 
They express quantitatively the transfer of mechanical energy into thermal energy 
in the field l. In a notation common for Cartesian and cylindrical coordinates the 
irreversibly dissipated power in the viscous fluid due to turbulent pulsations is ex-
pressed as follows 
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        (2.26) 
 
Similarly, the irreversibly dissipated power in the viscous fluid due to deformation 
of the mean velocity field in space is expressed as follows 
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Here the Stokes hypothesis is used. For single-phase flow, 1lα = , in free three- 
dimensional space, 1γ = , the above equation then reducing to the form obtained 
for the first time by Rayleigh. Note that in a turbulent pipe flow in the viscous 
boundary layer 0lε ′ =  and , 0lηε > . Outside the boundary layer for relatively flat 
velocity profiles 0lε ′ >  and , 0lηε →  The specific irreversibly dissipated power 
per unit viscous fluid mass due to turbulent pulsations ,l l lηε ε ε ′= +  is used as im-
portant dependent variable characterizing the turbulence in the field. It is a subject 
of model description. This power is considered to be constantly removed from the 
specific turbulent kinetic energy per unit mass of the flow field defined as follows 
 

( )2 2 21
2l l l lk u v w′ ′ ′= + + .      (2.31) 

 
In fact, Eq. (2.25) is the definition equation for the viscous dissipation rate, lε  

of the turbulent kinetic energy lk . Here it is evident that lε  is  
 

(a) a non-negative quadratic form, 0lε ≥ , 
(b) its mathematical description does not depend on the rotation of the coor-

dinate system, and 
(c) it contains no derivatives of the viscosity, 

 
compare with Zierep (1983) for single phase flow. 

This is the second dependent variable for the velocity field which is also a sub-
ject of modeling. The term 
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is considered to be a generation of turbulent kinetic energy, a turbulence source 
term. It is removed from the energy conservation and introduced as a source term 
in the balance equation for the turbulent kinetic energy. Inserting the Reynolds 
stresses by using the Boussinesq (1877) hypothesis results in common notation for 
Cartesian and cylindrical coordinates 
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Compare this expression with Eqs. (2.26) and (2.27) and recognize the difference. 

An alternative notation of the Eq. (2.33) is given for isotropic turbulence 
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Nothing that the pressure pulsation caused the eddies is  
 

2 2
3l l l lp V kρ ρ′ ′= =  

 
 the term  
 

2 .
3l l l lkα ρ γ∇ ≡V   pdVol-work  

 
is immediately recognized as the mechanical expansion or compression pdVol-
work. 
 If the entropy equation is applied to a single velocity field in a closed system 
without interaction with external mass, momentum or energy sources, the change 
in the specific entropy of the system will be non-negative, as the sum of the dissi-
pation terms, ,l lηε ε ′+ , is non-negative. This expresses the second law of thermo-
dynamics. The second law tells us in what direction a process will develop in na-
ture for closed and isolated systems.  
 

The process will proceed in a direction such that the entropy of the system 
always increases, or at best stays the same, , 0l lηε ε ′+ = , – entropy principle.  

 
This information is not contained in the first law of thermodynamics. It results 
only after combining the three conservation principles (mass, momentum and en-
ergy) and introducing a Legendre transformation in the form of a Gibbs equation. 
In a way, it is a general expression of these conservation principles. 



2.2 Isotropy 

If the mean pulsation components in all directions are equal, we have 
 

2 2 2 2 2 3u v w V k′ ′ ′ ′= = = = ,     (2.35) 
 
or 
 

( )3 2l lk V ′= .       (2.36) 
 
Such type of turbulence is called isotropic turbulence. Eq. (2.26) reduces for iso-
tropic turbulence to 
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Taylor (1935), which is a very important scale which helps to provide the link be-
tween the turbulent kinetic energy, its dissipation, and the turbulent cinematic vis-
cosity as given below.  

Note that for isotropic turbulence the fluctuating velocity component V ′  is a 
random deviate of a Gaussian probability distribution  
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with zero mean and variance  
 

2 2 3V V kσ ′ ′= = .      (2.39) 
 
For large number of sample of N experimental observations x the square of the 
mean variance is 
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a remarkable property of the Gauss function. In some applications for description 
of processes at the heated wall evaporation induces a velocity component 

( )1, 1blow wcu q hρ′′= Δ&  normal to the wall acting against the pulsation V ′  and pre-
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venting small size velocity fluctuation from reaching the wall,  Scriven (1969). In 
this case the statistical average of the difference 1,' blowv u−  
 

( ) ( )
1,

1,' ' '
blow

blow V
u

v u f v dv σ ψ
∞

′− =∫ ,    (2.41) 

 
where 
 

2
1, 1, 1,1 1 1exp

2 22 2
blow blow blow

V V V

u u u
erfcψ

σ σπ σ′ ′ ′

⎡ ⎤ ⎛ ⎞⎛ ⎞ ⎛ ⎞⎢ ⎥= − − ⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎢ ⎥⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎣ ⎦

,  (2.42) 

 
Pei (1981), is of practical importance for describing boiling critical heat flux in 
bubbly and in dispersed film flows. 

2.3 Scales, eddy viscosity 

Some important length and time scales characterizing turbulence are given below. 
As we will see later these scales are widely used. 

2.3.1 Small scale turbulent motion 

Assuming that the characteristic velocity pulsation is µe e
V

μ
τ′ = Δl  and it 

changes over the distance µel , a characteristic time scale 
 

, 12 l
e l

l
μ

ν
τ

ε
Δ ≈       (2.43) 

 
can be computed from Eq. (2.37). Here the subscript µe  stays for micro-eddy. 
This time scale is called in the literature Taylor time micro-scale of turbulence. 
For laminar flow the cinematic viscosity is a product of the characteristic velocity 
of the molecule V ′  multiplied by the mean free path length l ,  
 

Vν ′= l ,        (2.44) 
 
resulting in 
 

, ,Re 1l
e l l e l lV μ ν′= =l .      (2.45) 



 
The length scale resulting from this equation  
 

,
2
3µe l l lkν=l ,      (2.46) 

 
called inner scale or small scale, gives the lowest scale for existence of eddies. 
This length scale is also called in the literature as Taylor micro-scale of turbu-
lence. Below this scale eddies dissipate their mechanical energy into heat. 

2.3.2 Large scale turbulent motion, Kolmogorov-Pandtl expression 

Although remote from the reality, the analogy to the laminar flow is frequently 
transferred to turbulent eddies postulating simply  
 

,
t
l l e lVν ′≈ l ,       (2.47) 

 
where lV ′  is the mean characteristic velocity of pulsation of a large eddy with size 

,e ll . If the specific kinetic energy of the turbulent fluctuations is known, a good 
scale for lV ′  is derived for the case in which pulsation in all directions are equal,  
 

2
3l lV k′≈ ,       (2.48) 

 
and therefore  

 

, ,
2
3

t
l l e l l e lk c kην ′≈ ≈l l ,     (2.49)  

 
where cη′  is an empirical constant. This formula is called Kolmogorov–Pandtl ex-
pression, Kolmogorov (1942), Prandtl (1945). In analogy to the definition expres-
sion for the dissipation of the turbulent kinetic energy in isotropic turbulence 
given by Eq. (2.37), one can write 

 
22

, ,

  lt tl
l l l

e l e l

kV
const constε ν ν

⎛ ⎞⎛ ⎞′
≈ = ⎜ ⎟⎜ ⎟⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠l l

,   (2.50) 
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where the constant is in the order of 1. Excluding ,e ll from (2.49) and (2.50) the 
link between the turbulent cinematic viscosity and the turbulent characteristics is 
obtained: 

2
t l
l

l

k
cην
ε

≈        (2.51) 

This is a widely used expression. The empirical constant  

0.09cη =        (2.52) 

is derived from experiments with single phase flow. Inserting Eq. (2.51) in (2.50) 
results in  
 

3/ 2 3/ 2 3
, , ,0.3 0.55l l e l l e l l e lc k k Vηε ′= = =l l l .    (2.53) 

 
Kolmogorov (1941, 1949) found for isotropic turbulence from dimensional analy-
sis the same equation 
 

3/ 2
3

1 , 1 ,
2/ /
3l l e l l e lc V c kε ⎛ ⎞′≅ = ⎜ ⎟

⎝ ⎠
l l .    (2.54) 

 
The order of magnitude of the constant 1 0.55c ≈  is conformed by Batchelor 
(1967), 1 0.35c ≅ , and Hinze (1955), 1 1c ≅ . Using Eqs. (2.51) and (2.53) we ob-
tain interesting expression in terms of the turbulent Reynolds number 

 
, 12Re : 5

3
l e lt

l t
l

V c
cην

′
= ≈ ≈

l
.     (2.55) 

 
It is considered that eddies smaller than those defined by the above expression  
 

3/ 2
,e l l lc kη ε=l       (2.56) 

 
start to dissipate. The time scale of the fluctuation of large eddy with size ,e ll  is 
therefore 

, , 3 2 0.37e l e l l l l lV c k kητ ε ε′Δ = = =l .   (2.57) 

The order of magnitude of the constant is experimentally confirmed by Snyder and 
Lumley (1971). The authors reported 0.2. Note that Corrsin already used in 1963 
this value. Close to this result is the result obtained from direct numerical simulation

.



of isotropic flow by Sawford (1991).  Sawford reported 0.19. Some authors 
used instead: 0.41 Gosman et al. (1992); 0.35 Antal et al. (1998); 0.27 Loth 
(2001). 

 Thus, if for isotropic turbulence the turbulent kinetic energy and its dissipation 
are known in a point, the size of the large eddy and its pulsation period are also 
known. Next we will discuss the so-called k-eps equation describing these quanti-
ties as transport properties. 

2.4 k-eps framework 

Although having several weaknesses the most popular method for describing sin-
gle phase turbulence is the so-called k ε−  turbulence model. My favorite intro-
duction to this formalism is the book by Rodi (1984). The popularity of this model 
is the main reason for many attempts to extend it to multi-phase flows. In what 
follows we will mention some of the works. Akai (1981) describes separated two 
phase flow using for each of the both phases a k ε−  model. Carver (1983) takes 
into account approximately the geometry effect on the turbulence by using for 
each velocity field a k ε−  model, assuming that the velocity field occupies the 
entire channel. This method remembers the Martinelli–Nelson method for model-
ing of two-phase friction pressure drop in channels. The author pointed out the 
limitations of their approach.  

The k ε−  model is used in a number of papers concerning the modeling of 
mixtures of gas and solid particles, Wolkov, Zeichik and Pershukov (1994), Reeks 
(1991, 1992), Simonin (1991), Sommerfeld (1992).  

Lahey (1987) successfully extend the single phase k ε−  model to a bubble 
flow.  

The common feature of these works is the concept assuming convection and 
diffusion of the specific turbulent kinetic energy and its dissipation in the continu-
ous phase. For considering the influence of the discrete phase predominantly two 
approaches are used:  

 
(a) No feedback of the dispersed phase on the continuum turbulence com-

monly named one-way coupling;  
(b) The feedback of the dispersed phase on the continuum turbulence is taken 

into account. This approach is named two-way coupling. 
 

The conservation equation for the specific turbulence kinetic energy is derived 
as follows: Multiply each of the scalar instantaneous momentum equations with the 
other two instantaneous velocity components, respectively. Add the so obtained 
equations and rearrange the time derivatives and convective terms in order to 
bring each velocity under the differential sign. Replace the non-averaged veloci-
ties with the sum of its averaged values and the pulsation components. Perform 
time averaging. Thus, the one equation which is the first intermediate result of the 
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derivation is obtained. Next, multiply the averaged scalar momentum equations 
with the averaged velocity components in the other two directions, respectively, 
add the so obtained 6 equations, and rearrange similarly as previously described. 
Thus, obtain the second equation. Subtract the second equation from the first one, 
assume equality of the pulsation components in each direction, isotropy, multiply 
by 1/2 and rearrange to obtain the equation for the specific turbulent kinetic 
energy, 
 

( ) ( ). k
c c c v c c c c c ck k k∂ α ρ γ α ρ ν γ

∂τ
⎡ ⎤+∇ − ∇⎣ ⎦V  

 

( ), , , , ,
t

c c v c k c c k c k c kw c kw cP G P P Pζ
μα ρ γ ν ε= − + + + + ,   (2.58) 

 
The diffusion coefficient of the turbulent kinetic energy is 
 

,Prk t t
l l l k lν ν ν= + .      (2.59) 

 
Prt

k  is the turbulent Prandtl number describing diffusion of the turbulent kinetic 

energy. The generation of the turbulent kinetic energy ,
t
l k lPν  is proportional to the 

velocity deformation ,k lP . The proportionality factor is the turbulent eddy diffu-

sivity t
lν . For uniform velocity field in space there is no turbulence generation for 

this particular reason. Note that the part ,l k lPν  is directly dissipated in heat and is 
found as a irreversible source term in the continuum energy conservation. With 

t
l lν ν>> , the generation is much higher than the direct viscous dissipation. 

,kw cP and ,kw cPζ  are the generation of turbulent kinetic energy per unit mass of the 
continuum due to wall friction and due to local flow obstacles. The dissipation rate 

lε directly reduces the turbulent kinetic energy, see the RHS of Eq. (2.58), 

,... ...t
l k l lPν ε= − .  

Unlike the derivation of the k-equation, the derivation of the ε -equation leads 
to an equation having large number of terms, see Besnard and Harlow (1985, 
1988), for which it is not known how they all have to be modeled. That is why we 
write the equation for the rate of dissipation of the kinetic energy of isotropic tur-
bulence in analogy with the derivation for single phase flows intuitive, without 
strong proof 

 

( ) ( ).c c c v c c c c c c
ε∂ α ρ ε γ α ρ ε ν ε γ

∂τ
⎡ ⎤+∇ − ∇⎣ ⎦V  

 
( )1 , , , 2 3 ,

tc
c c v c k c kw c kw c c k c

c

c P P P c c Gζ
ε ε ε

εα ρ γ ν ε
κ
⎧ ⎫⎡ ⎤= + + − +⎨ ⎬⎣ ⎦⎩ ⎭

.  (2.60) 



 
The diffusion coefficient of the dissipation rate of the turbulent kinetic energy is 
 

,Prt t
l l l l
ε

εν ν ν= + .      (2.61) 
 
Prt

ε  is the turbulent Prandtl number describing diffusion of the dissipation of the 
turbulent kinetic energy. Useful approximation for estimation the source of the 
dissipation is  

 

( ), 1 , ,
c

w c kw c kw c
c

P c P Pζ
ε ε

ε
κ

≈ + . 

 
This single form of the k-eps model can be applied either 
 

(a) for fine resolution of the bulk flow with spatial treatment of the wall bound-
ary layers ( ,l k lPν > 0, ,kw cP = 0, ,w cPε = 0) or 

(b) for porous body with special treatment of the sources ( ,l k lPν = 0, ,kw cP > 0, 

,w cPε > 0). 
 
For multiphase flow analysis with fine resolution of the bulk flow the velocity 

deformation term ,k lP  is computed from the mean velocity field and used to con-
stitute the sources. In this case the porous body sources are set to zero, , 0kw lP = , 

, 0w lPε = . 
For multiphase flow analysis in porous body the usually used gross resolution 

does not allow computing accurately ,k lP . Fortunately for many geometrical ar-
rangements of practical interests we have appropriate empirical information to 
compute the fictional wall share stress and all other terms required. Therefore the 
deformation term is set to zero, , 0k lP = , and the modeling is performed designing 
appropriately the terms , 0kw lP > , , 0w lPε > , besides the remaining terms.  

For single phase flow this equation reduces to the one obtained first by Han-
jalic and Launder (1972). The modeling constants for single phase flow are given 
in Table 2.1. Special adjustment of the coefficients for pipe flow is given in
Table 2.2. 
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Here ck ε  is characteristic time scale of the dissipation. Note that Lopez de 
Bertodano (1992) proposed especially for the dissipation of the turbulence 
generated by the particles, 3 ,k cc Gε , to use different characteristic time scale, 
namely  

2
3

vm d
d

cdcd

c D
Vc Δ

. 
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Pr 1.0t
k =    

 
Pr 1.0t

ε =    
 

3 0.432cε =  for stratified flow, Maekawa (1990) 
 

Table 2.2. Coefficients for single phase k ε−  model in pipe flow  

Myong-Kasagi (1988a, b) 
 

2
t l
l

l

k
c fη ην

ε
≈ , 0.09cη = , 3.451 1 exp

70Ret

yfη
+⎡ ⎤⎛ ⎞⎛ ⎞= + − −⎢ ⎥⎜ ⎟⎜ ⎟

⎝ ⎠ ⎝ ⎠⎣ ⎦
, ( )2Ret k νε=  

 

0.9tσ =  1 1.4cε =  
22

2
2 Re1.8 1 exp 1 exp
3 6 5

t ycε
+⎧ ⎫⎡ ⎤ ⎡ ⎤⎛ ⎞ ⎛ ⎞⎪ ⎪⎢ ⎥= − − − −⎨ ⎬⎢ ⎥⎜ ⎟ ⎜ ⎟

⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦⎪ ⎪⎣ ⎦⎩ ⎭
  

Pr 1.4t
k =   

 
Pr 1.3t

ε =    
 
Zhu and Songling (1991), low Reynolds number and transition flow: 
 

2
t l
l

l

k
c fη ην

ε
≈ , 0.09cη = , ( )19.51 1 exp 0.016 Re

Re ytfη
⎛ ⎞ ⎡ ⎤= + − −⎜ ⎟ ⎣ ⎦⎝ ⎠

, 

 

( )2Ret k νε= , 1/ 2Re y k y ν=  for y δ< , 1/ 2Re y k δ ν=  for y δ> ,  
 
δ  boundary layer thickness, 
 

0.9tσ =  ( )2

1 1.44 1 0.06c fε η
⎡ ⎤= +⎢ ⎥⎣ ⎦

, ( ){ }2

2 1.92 1 exp Retcε ⎡ ⎤= − −⎢ ⎥⎣ ⎦
  

Pr 1t
k =   

 
Pr 1.3t

ε =    
 

Table 2.1. Coefficients for single phase k ε−  model, see Rodi (1984)  

0.9tσ =  1 1.44cε =  2 1.92cε =  3 1.44cε =  0.09cη =  



Table 2.3. Coefficients for bubbly flow k ε−  model for 30000 Re 72000l< < , see 
 (1987, 1989)  

0.9tσ =  1 1.44cε =  2 1.92cε =  3 1.92cε =   
 

( ) ( )0.8 0.09 0.8 exp 100 lcη α= + − −  
2

5
,

Re 65000Pr 0.037 0.21 10 Re 0.2 1 exp
5000

t l
k l l

−
⎧ ⎫⎡ ⎤−⎪ ⎪⎛ ⎞= + × + + ⎢ ⎥⎨ ⎬⎜ ⎟

⎝ ⎠⎢ ⎥⎪ ⎪⎣ ⎦⎩ ⎭
  

Pr 1.3t
ε =  

 
For bubbles rising freely in still tank Lahey obtains the value for the constant 

3 1.92cη = , which is different to the constant for single-phase flow. He also changed 
the effective Prandtl number for the turbulent kinetic energy diffusion as 
shown in Table 2.3. Lee  et al. (1989) show that the coefficient cη  must be consid-
erably higher for a two phase flow in order to predict flatter velocity profile in the 
central region of a bubble flow in a vertical flow pipe – see Table 2.3. 

We will provide more information of the source terms in the next chapters. 

Nomenclature 

Latin 
 

ilC   is the mass concentration of the inert component i in the velocity field l, 
dimensionless 

vmc  virtual mass force coefficient, dimensionless 
dc  drag force coefficient, dimensionless 
Lc  lift force coefficient, dimensionless 

pc  specific heat at constant pressure, ( )/J kgK  
cη   viscosity coefficient, dimensionless 

1 2 3,  ,  c c cε ε ε   are the modeling constants for the conservation equation of the 
energy dissipation, dimensionless 

cη   model coefficients in k-eps model 

D diffusivity, 2 /m s  
Dl particle size in field l, m 

hyD  hydraulic diameter (4 times cross-sectional area / perimeter), m 

ilD  : l ilScν= , coefficient of molecular diffusion for species i into the field l, 
2 /m s  

For two phase bubbly flow in a vertical pipe the modeling coefficients are given in 
Table 2.3.  

Lahey
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t
ilD  : /t t

l ilScν= coefficient of turbulent diffusion, 2 /m s  
*
ilD  : t

il ilD D= + , effective diffusion coefficient, 2 /m s  

ilDC  right-hand side of the non-conservative conservation equation for the in-

ert component, ( )3/kg sm  
d total differential 
e specific internal energy, J/kg 

,k lG  production of turbulent kinetic energy due to bubble relocation in chang-
ing pressure field per unit mass of the filed l, W/kg (m²/s³) 

g acceleration due to gravity, 2/m s  
h specific enthalpy, J/kg 

hΔ  latent heat of evaporation, J/kg 
I unit matrix, dimensionless 
k kinetic energy of turbulent pulsation, 2 2/m s  
P irreversibly dissipated power from the viscous forces due to deformation 

of the local volume and time average velocities in the space, W/kg 
lip  l = 1: partial pressure inside the velocity field l 

 l = 2,3: pressure of the velocity field l 
p pressure, Pa 

d
cp σΔ   surface averaged difference between the pressure at the surface dσ  and 

the bulk pressure of c, effective interfacial stagnation pressure difference 
in the continuum,  Pa 

*w
cp σΔ  surface averaged difference between the pressure at the surface wσ  and 

the bulk pressure of c, effective wall-continuum stagnation pressure dif-
ference in the continuum,  Pa 

kP  production of the turbulent kinetic energy per unit mass, W/kg 

,k lP  in , ,
t
l ss k lPν  which is the production of the turbulent kinetic energy per unit 

mass of the velocity field l due to deformation of the velocity field l, 
W/kg 

,kw lP  production of turbulent kinetic energy per unit mass of the field l due to 
friction with the wall, W/kg 

,k lP μ  production of turbulent kinetic energy per unit mass of the field l due to 
friction evaporation or condensation, W/kg 

Pε  production of the dissipation of the turbulent kinetic energy per unit 
mass, W/kg 

,w lPε  production of the dissipation of the turbulent kinetic energy per unit mass 
of the field l due to friction with the wall, W/kg 

,kw cP   generation of turbulent kinetic energy per unit mass of the continuum, 
W/kg  



,w cPε   “production” of dissipation of the turbulent kinetic energy per unit mass 
of the continuum, W/kg 

Prl
l  : /l l

l pl l lcρ ν λ= , molecular Prandtl number, dimensionless 

,Pr t
T l  : /t t

l pl l lcρ ν λ= , turbulent Prandtl number, dimensionless 

Prt
k  turbulent Prandtl number describing diffusion of the turbulent kinetic en-

ergy, dimensionless 
Prt

ε  turbulent Prandtl number describing diffusion of the dissipation of the 
turbulent kinetic energy, dimensionless 

lq′′′&   thermal energy introduced into the velocity field l per unit volume of the 
flow, W/m³ 

lqσ′′′&  l = 1,2,3. Thermal power per unit flow volume introduced from the inter-
face into the velocity field l, 3/W m  

w lq σ′′′&  thermal power per unit flow volume introduced from the structure inter-
face into the velocity field l, 3/W m  

wcq′′&  heat flux from the wall to the continuum, W/m² 
s specific entropy, J/(kgK) 

tSc  turbulent Schmidt number, dimensionless 
T temperature, K 

lT  temperature of the velocity field l, K 
T shear stress tensor, 2/N m  

1,blowu  : wcq h′′= Δ& , surface averaged evaporation velocity, m/s 
V time and surface averages of the instantaneous fluid velocity with com-

ponents, u, v, w in , ,r θ  and z direction, m/s 
′V   pulsating component of V, m/s 

lmΔV  l m−V V , velocity difference, disperse phase l, continuous phase m carry-
ing l, /m s  

v specific volume, 3 /m kg  
x, y, z coordinates, m 
 
Greek 
 

lα  part of vVolγ  available to the velocity field l, local instantaneous volume 
 fraction of  the velocity field l, dimensionless 

ilα  the same as lα  in the case of gas mixtures; in the case of mixtures con-
sisting of liquid and macroscopic solid particles, the part of vVolγ  avail-
able to the inert component i of the velocity field l, local instantaneous 
volume fraction of the inert component i of the velocity field l, dimen-
sionless 
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vγ  the part of dVol available for the flow, volumetric porosity, dimensionless 
γ  surface permeability, dimensionless 
Δ  finite difference 
δ  small deviation with respect to a given value 

lδ  = 1 for continuous field; 
 = 0 for disperse field, dimensionless 
∂  partial differential 
ε  dissipation rate for kinetic energy from turbulent fluctuation, power irre-

versibly dissipated by the viscous forces due to turbulent fluctuations, 
/W kg  

η  dynamic viscosity, kg/(ms) 

visη  part of the friction energy directly dissipated into heat, dimensionless 
θ  θ -coordinate in the cylindrical or spherical coordinate systems, rad 
κ  = 0 for Cartesian coordinates, 
 = 1 for cylindrical coordinates 
κ  isentropic exponent 
λ  thermal conductivity, W/(mK)  

tλ  : / Prt t
pcρ ν= , turbulent thermal conductivity, W/(mK) 

*
lλ  := λ + tλ , effective thermal conductivity, W/(mK) 

lμ  time average of local volume-averaged mass transferred into the velocity 
field l per unit time and unit mixture flow volume, local volume-averaged 
instantaneous mass source density of the velocity field l, ( )3/kg m s  

wlμ  mass transport from exterior source into the velocity field l, ( )3/kg m s  

ilμ  time average of local volume-averaged inert mass from species i trans-
ferred into the velocity field l  per unit time and unit mixture flow vol-
ume, local volume-averaged instantaneous mass source density of the in-
ert component i of the velocity field  l, ( )3/kg m s  

imlμ  time average of local volume-averaged instantaneous mass source density 
of the inert component i of the velocity field l due to mass transfer from 
field m, ( )3/kg m s  

ilmμ  time average of local volume-averaged instantaneous mass source density 
of the inert component i of the velocity field l due to mass transfer from 
field l  into velocity field m, ( )3/kg m s  

ν  cinematic viscosity, 2 /m s  
ν l

t  coefficient of turbulent cinematic viscosity, 2 /m s  
k
cν  ,: Prt t

c c k cν ν= + , diffusion coefficient of the turbulent kinetic energy, m²/s 



c
εν  ,: Prt t

c c cεν ν= + , diffusion coefficient of the dissipation rate of the turbu-
lent kinetic energy, m²/s 

lρ  intrinsic local volume-averaged field density, kg/m3 

ilρ  instantaneous inert component density of the velocity field l, kg/m3 

tσ  model coefficient in the k-eps models, dimensionless  
τ  time, s 

,fr coζ  irreversible friction coefficient computed for the total mixture mass flow 
with the properties of the continuum only, dimensionless 

 
Subscripts 
 
c continuous 
d disperse 
lm from l to m or l acting on m 
w region outside of the flow  
e entrances and exits for control volume Vol 
l velocity field l, intrinsic field average 
i inert components inside the field l, non-condensable gases in the gas field 

l = 1, or  microscopic particles in water in field 2 or 3 
i corresponding to the eigenvalue iλ  in Chapter 4 
ml from m into l 
iml from im into il 
n inert component 
0 at the beginning of the time step 
σ  interface 
τ  old time level 
τ τ+ Δ  new time level 
0 reference conditions 
p,v,s at constant p,v,s, respectively 
 
Superscripts 
 
‘  time fluctuation 
d drag 
e heterogeneous 
i component (either gas or solid particles) of the velocity field 
iml from im into il 

maxi  maximum for the number of the components inside the velocity field 
L lift 
l intrinsic field average 
le intrinsic surface average 
lσ  averaged over the surface of the sphere 
M non-inert component 

“ ”
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ml from m into l 
n inert component 
m component 
t turbulent 
vm virtual mass 
τ  temporal, instantaneous 

 averaging sign 
 
Operators 
 
∇⋅  divergence 
∇  gradient 
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3 Sources for fine resolution outside 

If the resolution of the computational analyses is fine enough to compute accu-
rately the deformation of the velocity field but not fine enough to resolve the 
boundary layer, the k- ε  model is used accomplished with special treatment of the 
boundary conditions. In such case in general the deformation term is non negative, 

, 0k lP ≥  and the porous body source terms are set to zero , 0kw lP = , , 0w lPε = . 

3.1 Bulk sources 

The bulk source term of turbulent kinetic energy consists of the following. 

3.1.1 Deformation of the velocity field 

As already mentioned in the previous chapter, inside the velocity field the defor-
mation of a flowing control volume causes not only generation of viscous forces 
but it also generates turbulence. In the frame of the k-eps equation this contribu-
tion is manifested in a term proportional to ,k lP  as already defined by Eq. (2.33). 

3.1.2 Blowing and suction 

Evaporation, condensation, mass injection or removal from a velocity field 
through the environmental structure influence for sure the generation of turbu-
lence. In each particular cases this contribution have to be investigated – a large 
field for scientific activities that is not covered up to now. The term reflecting this 
class of phenomena is generally written as 
 

( )
max

*
,

1

l

k l wl wl lw l ml ml lm l
m

P k k k kμ μ μ μ μ
=

= − + −∑ ,   (3.1) 

 

the boundary layer 
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where wlk  is the kinetic energy of turbulent pulsation introduced with the mass 
source wlμ , *

mlk  is the kinetic energy of turbulent pulsation introduced with the 
mass source mlμ . 

3.1.3 Buoyancy driven turbulence generation 

For single phase atmospheric flow the buoyancy driven turbulence generation is 
defined by the term taking into account the change of the density of the continuous 
velocity field 
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For two-phase flow ,k lG  should be replaced by a term taking into account the 
much stronger effect of turbulence generation in the wakes behind the bubbles. 
There are two approaches proposed in the literature that describe this phenome-
non. 

Lahey (1987) and Lee et al. (1989) proposed a quantitative relation between the 
power needed for bubble translation in a liquid with spatially changing local pres-
sure and the part of it generating turbulence. The main idea is summarized below. 
If single bubble with volume bV  moves along zΔ  in a liquid across a pressure dif-
ference pΔ  with velocity 12VΔ , a technical work bV pΔ  is performed. Therefore 
within the time 12z VτΔ = Δ Δ  the power driving this process is  
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b b

b
V p V p z pV V

z zτ τ
Δ Δ Δ Δ

= = Δ
Δ Δ Δ Δ

.     (3.3) 

 
For 1n  bubbles per cubic meter of the flow the power density is  
 

2 ,2 1 12 1 12k b
pG n V V V p
z

α αΔ
= Δ = Δ ∇

Δ
.     (3.4) 

 
This idea is extendible for the three dimensional case 
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Lee et al. (1989) found that only a 1 visη− -part of this power, < 17%, is generating 
large scale turbulence, and that it is a function of the pipe liquid Reynolds number 

 
( )1 Re 0.17vis cfη− = < , 2 2 2Re hw D ν= ,   (3.6) 

 

( ) ( ){ }5
2 21 0.03 0.344 10 Re 0.243 1 exp Re 60000 / 2000visη −− = + − × + + −⎡ ⎤⎣ ⎦ . 

        (3.7) 
 
The last relation is based on data for 230000 Re 72000< < , see Fig. 7 in Lee et al. 
(1989). The remaining part generates small scale eddies that dissipate quickly. The 
problem with this approach for computing 1 visη−  is that is not local but depends 
on integral variables like 2Re . 

3.1.4 Turbulence generated in particle traces 

Bataille and Lance (1988) assumed again that 1 visη−  part of the power, lost by the 
continuum to resist the bubble movements with a relative velocity cdVΔ , is trans-
formed into kinetic energy for the generation of wakes behind the bubble (or par-
ticle). Part of the turbulent energy is dissipated back into the continuum. If the 
drag force per unit volume of the mixture is d

cdf , the power lost to resist the bub-
ble is d

cd cdf VΔ . Thus, the 1 visη−  part of this power generates the turbulent wakes 
behind the bubbles 
 

( ) 3

,
31
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d
cd

v c c k c v d c vis cd
d

c
G V

D
γ α ρ γ α ρ η≈ − Δ ,   (3.8) 

 
and the visη  part is dissipated back into the continuum as a heat. Lopez de Berto-
dano (1992) proposed for ( )1 0.75 d

vis cdcη−  to use 0.25. Troshko and Hassan 
(2001) obtained by comparison with the Wang’s (1987) data 1 visη− = 0.45.  
Kataoka and Serizawa (1995) derived from his analysis visη =0.925. Here dD  is 
the characteristic size of the particles and cdVΔ  is the magnitude of the relative ve-
locity. Now let us turn the attention to the computation of 1 visη− . Intuitively for 
pool flow with negligible effect of the wall on the turbulence it is expected that 
1 visη−  is a function of the particle Reynolds number 
 

Recd cd d cV D ν= Δ .      (3.9) 
 

Reichard (1942) derived theoretically limiting Reynolds numbers 
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that can be used to construct this function. For laminar liquid and undistorted bub-
bly flow, 1 10 Re Re Sph≤ ≤ , 

 
1 0visη− ≈ .       (3.12) 
 

For transition regime of periodic deformation of bubbles, 1 1 1Re Re ReSph St< ≤ , 
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Finally, for high Reynolds number (stochastic deformation of bubbles, turbulent 
wake flow), 1 1Re Re St> .  

 
,minvis visη η≈ .       (3.14) 

 
Some authors prefer to use instead ( )( )1 3 4 d

vis cdcη−  a single constant e.g. 0.95 in 
Terekhov and Pakhomov (2005). Note the restrain of the constant. It has to be  
 

const ( )( )1 3 4 d
vis cdcη≤ − .     (3.15) 

 
For computation of the drag coefficient d

cdc  for different regimes of the bubble 
flow see Ch. 4 of Kolev (2007a and b). 

If there is no other source of turbulence like wall effects, velocity gradients etc., 
the generation equals the dissipation  

 
, ,c k cGε ∞ = .       (3.16) 

 
Using the Kolmogorov relation 3/ 2

, , ,0.3c c e ckε ∞ ∞= l  and the above equation  
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we obtain the steady state level of turbulence caused by bubble transport only 
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Slightly different approach to compute the steady developed level of the turbulent 
kinetic energy generated by bubbles is proposed by Bataille and Lance (1988). 
The authors noted that if the length scale associated with the dissipation rate in the 
bubble wakes   
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for family of bubbles is wakel  then the fluctuation velocity obeys  
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Therefore the steady state level of turbulence caused by bubble transport is only  
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which differs slightly in the constant compared to the previous result. Note that 
only for small bubble concentrations d c dα α α≈ . 

Therefore the turbulent kinetic energy generated by the bubbles is propor-
tional to 2 / 3

dα  and 2
cdVΔ . 

Interesting expression can be derived for the turbulent cinematic viscosity due to 
the bubbles assuming t

cd c wakeVν ′= l  and using Eqs. (3.18) and (3.22). The result is 
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respectively. Comparing with intuitively proposed equations by several authors, 
 

0.5t
cd d d cdD Vν α= Δ , Sato and Sekoguchi (1975),   (3.25) 

 
( ) ( )0.6t t

cd d d cd dampD y V f yν α += Δ , Sekogushi et al. (1979), Sato et al. (1981), 
        (3.26) 
 

( )1/ 340.4t
cd d cd dgD Vν α= Δ , Lilienbaum (1983) ,   (3.27) 

 
( )t

cd d d cdH D Vν α= Δ , Batchelor (1988),   (3.28) 
 

7 / 9 2 / 30.58t
cd d cd dD Vν α≈ Δ , derived from mixing length hypotheses, (3.29) 

 

Different approach for computing the bubble induced turbulence source term in 
the continuum is proposed by Lopez de Bertodano et al. (1994). These authors 
write additional k-equation for balancing of the turbulence kinetic energy portion 

,c dk  due to bubble relative motion. The source in this extra k-equation is written as 
relaxation term  
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 where  
 

2
,

1
2

vm
c d c cdk c∞ = ΔV        (3.31) 

 
is the turbulence kinetic energy association with the fluctuation of the so-called 
added mass of the continuum. For the relaxation time constant the following
expression is used 
 

cd d cdDτΔ = ΔV .      (3.32) 
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I recommend Eq. (3.23) for any regime except the origination of the bubble which 
is based on sound physical scaling. Note that the derivation of the Lilienbaum 
(1983) equation is based on the following ideas 

cd d cd d cdV p z V gε α α= Δ Δ Δ = Δ , ,0.55 0.55cd c e c c dV V Dε ′ ′= ≈l  and 

,
t
cd c e c c dV V Dν ′ ′= ≈l resulting in ( )1/ 341.22t

cd d cd dgD Vν α≈ Δ . The constant corre-
sponding to the Serizawa’s data was reported to be 1.13. His own data dictated the 
value of the constant 0.4. 

and 
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To my view the decay time constant should be a better relaxation time constant. 
The argument that steady bubble motion generates turbulence but do not experi-
ence virtual mass force speaks against this approach. In any case, the idea that in a 
transient motion there is more energy dissipated due to virtual and lift forces is 
important and can be used to revise Eq. (3.23) for transients. 

3.2 Turbulence generation due to nucleate boiling 

Boiling at hot surfaces can substantially modify the turbulence in the boundary 
layer depending on the bubble departure diameter. Because the bubble departure  
diameter 1dD is inversely proportional to the square of the velocity, with increas-
ing velocity the diameter decreases. As long as 1 * 5dD w ν << , this influence is 
negligible. For bubble departure diameters comparable or larger than the viscous 
sub-layer the influence is important. We identify two mechanisms producing tur-
bulence in this case: a) The expansion work of single bubble in W/m³ is  
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,    (3.33) 

 
Kolev (2007b), being introduced into the surrounding liquid; b) The work for dis-
placement of the surrounding liquid after the bubble departure in W/m³ is 
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d
dD Vπ ,      (3.34) 

 
Kolev (2007b), with a virtual mass coefficient equal to ½. Given the heat perime-
ter Π  of the channel over the section zΔ  the total amount of turbulence produc-
tion per unit volume within a boundary layer with thickness δ is 
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        (3.35) 
 
Here 1wf  is the bubble departure frequency and 1wn′′  is the number of the active 
size per unit surface. 

Avdeev (1982, 1983) proposed to consider bubbly boundary layer as a surface 
with equivalent roughness being part of the local bubble size 10.257k D=  for use 
in the modified Colebrook and White (1939) relation 
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( ), .c p c yp c ypw = −V n V n .    
 
The velocity as a function of the wall distance within  
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obeys the von Karman logarithmic low 
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Here * w
c c cw τ ρ=  is the friction velocity, κ =0.41 is the von Karman constant 

and 9.5E ≈ . We have here the inversed task: we know the velocity ,c pw  far from 

the wall at the distance py . From Eq. (3.37) the friction velocity *
cw  can be com-

puted and consequently the wall share stress, see Launder and Spalding (1974). Of 
course one can compute the friction coefficient and the wall share stress for any 
specific geometry and wall roughness using appropriate specific correlation. The 
dissipation of the turbulent kinetic energy at py  can be computed using the defini-
tion equation  
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and the derivative  
 

*
c c
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It is a common practice to treat the boundary layer as a plate or pipe flow 
boundary layer based on zero pressure gradient and constant properties of the 
fluid near the wall. Using the existing knowledge for the distribution of the pa-
rameters inside it, one can compute the parameters at the prescribed distance py  

from the wall. For computer codes it is advisable to write a pre-processor that 
computes: (a) ( ), , ,min , ,p p x p y p zy y y y=  with components being the smallest dis-

tances between the point of interest and the neighboring walls in the three co-
ordinate directions; (b) the vector ( ), , ,: , ,yp p x p y p zn n n=n  storing the orientation 

of the wall; and (c) ,c pw  being the velocity parallel to the wall 
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*3

,
c

c p
p

w
y

ε
κ

= .       (3.40) 

The corresponding value for the turbulent kinetic energy can then be approxi-
mated using 3/ 2

,c c e cc kηε = l  with Prandtl mixing length ,e c pyκ=l . The result 
is 

*2 1/ 3
,c p ck w cη= .      (3.41) 

Eliminating the friction velocity from the both equations results in the relation 
 

( )2 / 31/ 3
,c p c pk c yη κ ε= ,      (3.42) 

 
which is also used in the literature. Launder and Spalding (1974) proposed to use 
instead the volume averaged dissipation of the turbulent kinetic energy inside the 
layer with thickness py   
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Here hΠ  is the wetted perimeter and Vol is the control volume. For two phase 
bubble flow Lee et al. (1989) used Eq. (3.42) and modified Eq. (3.40) by introduc-
ing additional dissipation equal to the generation due to the relative motion of 
bubbles 
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where 

 
2

2 2
1, 1

Re Re
5.3 5.9 0.99

100000 100000pα α
⎡ ⎤⎛ ⎞ ⎛ ⎞= − +⎢ ⎥⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠⎢ ⎥⎣ ⎦
   (3.45) 

 
For computing the generation term due to the relative motion of bubbles in the 
liquid, 2kG , see Eq. (3.5) through (3.7). Remember that this approach is not local 
because it depends on the global quantity 2Re . 

This approach is used by many authors e.g. Rody (1984) p. 45, Lahey (1987). 
Troshko and Hassan (2001) proposed to use similar formalism for two-phase bub-
bly flow replacing κ  with the effective κ  for two phase flow and 30py = , see 
the model of these authors in Ch. 9. 

from the boundary layer momentum equation with the Prandtl mixing length hy-
pothesis. The result is 



In case of single phase flow at a heated wall Launder and Spalding (1974) com-
puted the heat flux w

cq′′&  using again appropriate for the specific geometry empiri-
cal correlation. Knowing the heat flux the temperature at py  is then defined by 
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Here van Driestc  is the van Driest’s constant, equal to 26 for smooth wall. Prc  and 
Prt

c  are the molecular and the turbulent Prandtl numbers, respectively. The last 
term is the so-called resistance of the molecular sub layer. There are not enough 
experimental data for the estimation of the turbulent Prandtl number in complex 
situations in general. If one has no better choice for the flow near the wall, 
Pr 0.9t

l ≈  is appropriate. For jets and vortices the approximation Pr 0.5t
l ≈  is ap-

propriate. 
That such approach can be used in much more complicated geometries is a con-

sequence of the small boundary layer thickness compared to the other geometrical 
dimensions. In the thin boundary layer the pressure gradient effect, the change of 
the properties of the fluid and the mass transfer in the field have secondary influ-
ence. For the same reason the influence of the wall curvature can be neglected in 
the immediate neighborhood of the wall. Thus, the wall function for a plane wall 
can be used for walls with arbitrary geometries without changes. 

For more detailed analyses allowing for heterogeneous turbulence at the wall 
the Reynolds stress boundary condition given by Launder et al. (1975) is useful 
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For adiabatic flow Borodulja et al. (1980) proposed to approximate the profile 
between y = 0 and y = yp as follows 
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3.4 Initial conditions 

Usually engineers cut part of the system for their analyses and replace the remain-
ing part by boundary conditions. The boundary conditions contain some degree of 
arbitrariness because exact knowledge of the remaining part is seldom available. 
Some sound engineering intuitions is needed here. Then, the initial conditions in 
the flow region can be computed so as to satisfy the steady state distribution. This 
can be done analytically for ,lk ∞  and ,lε ∞ . If it is done numerically, meaningful 
initial conditions are necessary. Appropriate assumptions are used in the literature 
of which some are listed below.  
 
Kinetic energy: The specific turbulent kinetic energy can take 0.1 to 10% of the 
averaged kinetic energy of the field in given points of the integration domain.  

 
Dissipation: The estimation of the initial values of the dissipation of the specific 
turbulent kinetic energy is associated with much bigger uncertainty. If for the par-
ticular case it is possible to estimate the mixing length ,e ll , the corresponding 
values of lε  can be estimated by using the Kolmogorov relation 

 
3 / 2 3

, ,0.3 0.21l l e l l e lk Vε ′= =l l .    (3.49) 
 
For instance postulating 5% turbulence:  
 

1 2 0.05V V V′ ′= = ,      (3.50) 
 

2
2 1

3
2

k k V ′= =  3 23.75 10 V−= × .     (3.51) 

 
Then  
 

2 1ε ε= 52.625 10−= ×  3 / hV D .      (3.52) 
 
Alternatively lε  can be computed by assuming cinematic turbulent viscosity t

lν  
satisfying  

 
1/ 2

,Re : / 500t t
e l l lk ν= =l ,      (3.53) 

 
and then using the Prandtl–Kolmogorov hypothesis 2 /t

l l l lc kην ε= . 

 

*24.2ck w= ,       (3.48) 
 
and its dissipation is given by Eq. (3.40). 

The kinetic energy of turbulence is the trace of this expression,  



Nomenclature 

Latin 
 

1c  constant in the Kolmogorov equation, dimensionless 
vm
cdc  coefficient for the virtual mass force or added mass force acting on a dis-

persed particle, dimensionless 
d
cdc  coefficient for the drag force or added mass force acting on a dispersed 

particle, dimensionless 
1cε , 2cε , 3cε  empirical coefficients in the source term of the ε -equation  

cη  empirical constant or function connecting the eddy cinematic diffusivity 
with the specific turbulent kinetic energy and its dissipation 

D  diameter, m 
1D  bubble diameter, m 

1dD  bubble departure diameter, m 

dD  diameter of dispersed particle, m 

hD  hydraulic diameter, m 

,h lD  hydraulic diameter of the “tunnel” of field l only, m 

1wf  bubble departure frequency, 1/s 
d

cdf  drag force experienced by the dispersed phase from the surrounding con-
tinuum, N/m³ 

2,k pG  production of turbulent kinetic energy due to bubble relocation in chang-
ing pressure field per unit mass of the liquid at the transition to the vis-
cous boundary layer, W/kg 

,k lG  production of turbulent kinetic energy due to bubble relocation in chang-
ing pressure field per unit mass of the filed l, W/kg (m²/s³) 

g  gravitational acceleration, m/s² 
k  specific turbulent kinetic energy, m²/s² 

0k  initial specific turbulent kinetic energy, m²/s² 

,c dk  specific turbulence kinetic energy due to bubble-liquid relative motion 
only, m²/s² 

,c dk ∞  specific turbulence kinetic energy of the continuum due the fluctuation of 
the dispersed particles associated with the so-called added mass of the 
continuum, m²/s² 

,c pk  specific continuum turbulent kinetic energy at boundary to the viscous 
boundary layer used as boundary condition for large scale simulations, 
m²/s² 
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lk  ( )2 2 21:
2 l l lu v w′ ′ ′= + + , specific turbulent kinetic energy of field l, m²/s² 

,lk ∞  specific steady state developed turbulent kinetic energy of field l, m²/s² 
*
mlk  kinetic energy of turbulent pulsation introduced with the mass source 

mlμ , m²/s² 

pk  specific turbulent kinetic energy at the transition between laminar and 
turbulent boundary layer used as a boundary condition for large scale 
simulations outside the boundary layer, m²/s² 

wlk  kinetic energy of turbulent pulsation introduced with the mass source 

wlμ , m²/s²  
k∞  specific steady state developed turbulent kinetic energy, m²/s² 

mixl  mixing length, m 

el  size of the large eddy, m 

,e lμl  lowest spatial scale for existence of eddies in field l called inner scale or 
small scale or Taylor micro-scale (µ) of turbulence, m   

1n  number of bubbles in unit mixture volume, 1/m³ 

1wn′′  number of the activated seeds at a heated wall producing bubbles, 1/m² 
,

2
w boilingP production of turbulent kinetic energy per unit mass of the flow due to 

bubble generation and departure from the wall, W/kg 
kP  production of the turbulent kinetic energy per unit mass, W/kg 

,k lP  production of the turbulent kinetic energy per unit mass of the velocity 
field l due to deformation of the velocity field l, W/kg 

kwP  irreversibly dissipated power per unit flow mass outside the viscous fluid 
due to turbulent pulsations equal to production of turbulent kinetic energy 
per unit mass of the flow, W/kg (m²/s³) 

,1kwPζ  production of turbulent kinetic energy per unit mass of the gas due to ir-
reversible singularity, W/kg 

kwPζ  production of turbulent kinetic energy per unit mass due to irreversible 
singularity, W/kg 

,kw lP  production of turbulent kinetic energy per unit mass of the field l due to 
friction with the wall, W/kg 

,k lP μ  production of turbulent kinetic energy per unit mass of the field l due to 
friction evaporation or condensation, W/kg 

Pε  production of the dissipation of the turbulent kinetic energy per unit 
mass, W/kg 

wPε  production of the dissipation of the turbulent kinetic energy per unit mass 
due to friction with the wall, W/kg 



,w lPε  production of the dissipation of the turbulent kinetic energy per unit mass 
of the field l due to friction with the wall, W/kg 

Prt  turbulence Prandtl number, dimensionless 
Prt

k  turbulent Prandtl number describing diffusion of the turbulent kinetic en-
ergy, dimensionless 

Prt
ε  turbulent Prandtl number describing diffusion of the dissipation of the 

turbulent kinetic energy, dimensionless 
p  pressure, Pa 

ap  atmospheric pressure, Pa 

cp  pressure inside the continuum, Pa 

dp  pressure inside the dispersed phase, Pa 
pΔ  pressure difference, Pa 

R  radius, m 
dR  radius of the dispersed particle, m 

Re  Reynolds number, dimensionless 
Recd  Reynolds number based on relative velocity, continuum properties and 

size of the dispersed phase, dimensionless 
1Re Sph , 

1Re St

 Reynolds number defining transition regime of periodic deformation of
bubbles, dimensionless 

Ret
c  turbulence continuum Reynolds number, - 

Reco  ( ): h cD wρ η= Reynolds number computed so that all the two phase mass 
flow possesses the properties of the continuum, dimensionless 

r  radius, m 
*r  radius, dimensionless 

T  temperature, K 
,c pT  continuum temperature at the boundary of the viscous layer used as a 

boundary condition for large scale simulations outside the boundary 
layer, K 

wT  wall temperature, K 

T  averaged temperature, K 
u  radial velocity component, m/s 
u′  fluctuation of the radial velocity, m/s 
u+  radial velocity, dimensionless 

*u  radial friction velocity, m/s 
u  cross section averaged radial velocity, m/s 

1u  bubble radial velocity, m/s 

1u′  fluctuation of the bubble radial velocity, m/s 

2u  liquid radial velocity, m/s 
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lu  radial velocity of field l, m/s 

lu′  fluctuation of the radial velocity of field l, m/s 
V ′  fluctuation of the velocity, m/s 
V  velocity vector, m/s 

21
dV  difference between liquid and gas velocity, m/s  

bV  bubble departure volume, m³ 

12VΔ   difference between gas and liquid velocity, m/s 

mlΔV  difference between m- and l-velocity vectors, m/s 
Vol  control volume, m³ 
ν  velocity component in angular direction, m/s 
v′  fluctuation of the velocity component in angular direction, m/s 

v′  time average of the angular velocity fluctuation, m/s 
w  axial velocity, m/s 

*w  friction velocity, dimensionless 
w  cross section averaged friction velocity, m/s 
w+  axial velocity, dimensionless 

1w  bubble axial velocity, m/s 

2w  liquid axial velocity, m/s 

2, farw  liquid velocity far from the wall, m/s 

2w+  liquid axial velocity, dimensionless 

1w′  fluctuation of the axial bubble velocity, m/s 

2w′  fluctuation of the axial liquid velocity not taking into account the influ-
ence of the bubble, m/s 

12wΔ  local axial velocity difference between bubbles and liquid, m/s 

12wΔ  cross section averaged axial velocity difference between bubbles and liq-
uid, m/s 

12w ∞Δ  steady state axial bubble rise velocity in liquid, m/s 

cw  continuum axial velocity, m/s 

cw   averaged axial continuum velocity, m/s 
*
cw  continuum axial friction velocity, m/s 

,c pw  continuum axial velocity at the boundary of the viscous layer used as a 
boundary condition for large scale simulations outside the boundary 
layer, m/s 

2w′′  fluctuation of the axial liquid velocity caused only by the presence of 
bubble, m/s 



*
,c pw  continuum axial friction velocity at the boundary of the viscous layer 

used as a boundary condition for large scale simulations outside the 
boundary layer, dimensionless 

lw  axial velocity of field l, m/s 

lw′  fluctuation of the axial velocity of field l, m/s 

lw  cross section axial velocity of field l, m/s 

cdwΔ  axial velocity difference between dispersed and continuous phase, m/s 
x  x-coordinate, m 
y  y-coordinate, distance from the wall, m 

0y  distance between the bubble and the wall, m 

limy  virtual distance from the wall in which almost all the viscous dissipation 
is lumped, m 

lty+  viscous boundary layer limit, dimensionless 

py  distance from the wall marking the end of the boundary layer, m 

py+  distance from the wall marking the end of the boundary layer, dimen-
sionless 

,p xy  distance from the closest wall in x-direction marking the end of the 
boundary layer (for use in porous body concepts), m 

,p yy  distance from the closest wall in y-direction marking the end of the 
boundary layer (for use in porous body concepts), m 

,p zy  distance from the closest wall in z-direction marking the end of the 
boundary layer (for use in porous body concepts), m 

. sym linesy  distance from the wall to the symmetry line in the bundles, m 

y+  distance from the wall, dimensionless 
z  axial coordinate, m  

zΔ  finite of the axial distance, m 
 
Greek 
 
α  volumetric fraction, dimensionless 
β  in Lance and Bataille equation: part of the power lost by the continuum to 

resist the bubble generating kinetic energy in the wakes behind the bub-
ble, dimensionless 

γ  surface permeability defined as flow cross section divided by the cross 
section of the control volume (usually the three main directional compo-
nents are used), dimensionless 

vγ  volumetric porosity defined as the flow volume divided by the considered 
control volume, dimensionless 

δ  boundary layer with thickness, m  
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lδ  = 1 in case of continuous field l; = 0 in case of disperse field l  
ε  power dissipated irreversibly due to turbulent pulsations in the viscous 

fluid per unit mass of the fluid (dissipation of the specific turbulent ki-
netic energy), m²/s³ 

0ε  initial value of the dissipation of the specific turbulent kinetic energy, 
m²/s³ 

,c pε  continuum dissipation of the specific turbulent kinetic energy at the tran-
sition between laminar and turbulent boundary layer, m²/s³ 

,lε ∞  specific steady state developed dissipation of the turbulent kinetic energy 
of field l, m²/s² 

pε  in sense of two group theory: dissipation of the large scale motion group, 
m²/s² 

Tε   in sense of two group theory: irreversible friction dissipation of the transi-
tion eddies, m²/s² 

η  dynamic viscosity, kg/(ms) 
tη  turbulent or eddy dynamic viscosity, kg/(ms) 
lη  molecular dynamic viscosity, kg/(ms) 

visη  part of the mechanical energy directly dissipated into heat after a local 
singularity and not effectively generating turbulence, dimensionless 

θ  angular coordinate, rad 
κ  = 0, Cartesian coordinates; = 1, cylindrical coordinates, - 

 or von Karman constant, - 
λ  thermal conductivity, W/(mK) 

frλ  friction coefficient, dimensionless 

,12frλ  friction coefficient for the liquid–gas interface, dimensionless 

,fr coλ  friction coefficient computed for the total mixture mass flow with the 
properties of the continuum only, dimensionless 

,fr effλ  effective friction coefficient, dimensionless 

lmμ  mass transferred from field l into field m per unit time and unit mixture 
volume, kg/(sm³) 

mlμ  mass transferred from field m into field l per unit time and unit mixture 
volume, kg/(sm³) 

lwμ  mass exhausted from field l through the wall w per unit time and unit 
mixture volume, kg/(sm³) 

wlμ  mass injected into the field l through the wall w per unit time and unit 
mixture volume, kg/(sm³) 

1v  cinematic viscosity, m²/s 
t
lν  turbulent or eddy cinematic viscosity of field l, m²/s 



,l effν  effective cinematic viscosity of field l, m²/s 

12
tν  turbulent or eddy cinematic viscosity of the liquid caused by the bubbles 

only, m²/s 
,

t
c yν  turbulent or eddy cinematic viscosity of field l in direction y, m²/s 

,
t
c zν  turbulent or eddy cinematic viscosity of field l in direction z, m²/s 
k
lν  total cinematic diffusivity of the turbulent kinetic energy, m²/s 

l
εν  total cinematic diffusivity of the dissipation of the turbulent kinetic en-

ergy, m²/s 
*
lν  : t

l l lν δ ν= + , effective cinematic viscosity, m²/s 
ξ  function in the Wang expression for the lift coefficient, dimensionless 
ρ  density, kg/m³ 

21ρΔ  liquid–gas density difference, kg/m³ 
σ  surface tension, N/m 
τ  time, s 

lτ  share stress in field l, N/m² 

wτ  wall share stress, N/m² 
τΔ  time interval, s 

kτΔ  time constant for the decay of the turbulent kinetic energy, s 

eτΔ  time scale of fluctuation of large eddy, s 

,e lμτΔ  time scale corresponding to the spatially lowest scale for existence of ed-
dies in field l called inner time scale or small time scale or Taylor micro-
scale of turbulence, s 

 
Subscripts 
 
1 gas 
2 liquid 
3 droplet 
c continuum 
d disperse 
l field l 
m field m 
e eddy 
μ  associated to mass transfer or micro-scale 
r radial direction 
θ  angular direction 
z axial direction 
w wall 
k axial discretization index 
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4 Source terms for k-eps models 

Internal structures of heat exchangers, nuclear reactors, chemical reactors filled 
with dispersed materials etc. can be considered as a porous structure. Resolving 
each detail of such structures is technically not feasible. Normally a detailed 
analysis of the boundary layers is performed and the results are used to compute 
integral turbulence sources for a large scale analysis. Note the necessary condition 
that such approach works: The computational volume contains a structure with all 
its representative parameters but not part of it.  

4.1 Single phase flow 

Laufer (1953) experimentally investigated the structure of turbulence in fully de-
veloped pipe flow. From his Fig. 17 it was clearly visible that about 70% of the 
viscous dissipation happens in the boundary sub-layer defined by 11.5y+ < . The 
production of the turbulence starts at about 5y+ >  and has its maximum again at 

11.5y+ ≈ . At this point the production equals the dissipation.  

4.1.1 Steady developed generation due to wall friction 

Let us consider single phase flow with a predominant direction. The friction force 
per unit flow volume can be computed in this case using the microscopic correla-
tions for the friction coefficient 
 

21
2

fr
w

h

f w
D
λ

ρ= .      (4.1) 

 
The power per unit flow volume needed to overcome this force is wf w . Part of 
this power is dissipated in the laminar boundary sub-layer, 5y+ ≤ , and by the tur-
bulent eddies outside of this layer. In the laminar sub-layer the velocity is linear 
function of the wall distance  
 

in porous structures 
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and consequently 
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The irreversible dissipated power per unit flow volume caused by the viscous 
forces due to deformation of the mean values of the velocities in the space is then 
approximately 
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The difference 
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        (4.5) 
 
is the irreversibly dissipated power per unit flow volume outside the viscous fluid 
due to turbulent pulsations. Therefore 
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Here lim 8
fr

vis y
λ

η +=  is the part of the mechanical energy required to overcome 

the friction that is dispersed in heat. Chandesris et al. (2005) proposed to consider 
kwP  as a net generation of turbulent kinetic energy per unit time and unit mass. 

Note that the dimensions of the production is in W/kg i.e. m²/s³. Chandesris et al. 
considered 
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as a characteristic macroscopic length scale of turbulence production in channels. 
The “production” source of the turbulent energy dissipation is modeled by Chan-
desris et al. (2005) as 
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, 2 , 2 , ,w l kw l l l kwP c P k c k Pε ε ε ε∞ ∞ ∞= = .    (4.8) 

 
For the case without convection and diffusion the dissipation equation results in  
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which is a relaxation form leading with the time to 
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valid for isotropic turbulence. The constant was considered as a geometry depend-
ent modeling constant. Assuming ,l kwPε ∞ =  in the above equation results in  
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or using the Blasius law  
 

1/ 40.3164 Refrλ = ,      (4.14)  

For the computation of the equilibrium kinetic energy of turbulence Chandesris 
et al. used the Kolmogorov’s Eq. (2.53) in the form  
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so that  
 

1.50.1582 kconst c= .      (4.16) 
 
The resulting turbulence decay time constant is then 
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Table 4.1. Modeling constants for k-eps source terms in porous structures Chandesris et al. 
(2005) 

Geometry 
limy+  kc  1.50.1582 kconst c=  ( )2 / 31/ 2const  

channels 8 0.0306 29.55 0.066 
pipes 7 0.0367 22.50 0.079 
rod bundles 16 0.0368 22.41 0.079 

 
The constants are selected after comparison with direct numerical simulation re-
sults and given in Table 4.1. Note that if we take the von Karman’s universal three 
layers representation of the velocity profile an exact expression is obtained for the 
generation of the turbulence 
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Therefore the order of magnitude for limy+  estimated by Chandesris et al. (2005) is 
correct. 

We learn from this analysis that if a technical facility has to be designed to 
promote turbulence then it has to have as less friction surface as possible. 
This reduces the irreversible viscous dissipation in the viscous boundary 
layer. 

The cross section averaged time scale of the fluctuation of large eddies can 
then be computed:  
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4.1.2 Heat transfer at the wall for steady developed flow 

The cross section averaged time scale of the fluctuation of small eddies in devel-
oped pipe flow is therefore 
 

, ,e l l lbμτ ν ε ∞Δ ≈ .      (4.20) 
 

Before jumping apart from the wall, the turbulent eddies stay at the wall during 
the time ,e lμτΔ , and receive heat from the wall by heat conduction. Therefore, the 
average heat flux at the wall follows the analytical solution of the Fourier equa-
tion averaged over the period ,e lμτΔ  
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This is the general form in which  
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Fig. 4.1. Predicted Nusselt number as a function of the computed: a) Dittus-Boelter (1930) 
correlation; b) Small eddy wall renewal hypothesis using the Blasius equation for the fric-
tion pressure loss. Data by Sani (1960) 
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Comparison of the Dittus-Boelter correlation with the Sani’s (1960) data gives a 
mean error of 3% – see Fig. 4.1a. A special form for flow in pipe with smooth 
wall is obtained by using the Blasius correlation for friction. Comparison with the 
same data with b = 98.32 results in mean error of 6.4% and increasing divergence 
for lower Prandtl numbers. Therefore it seems more accurate to compute , ,e lμτ ∞Δ  
from 
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resulting in 
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4.1.3 Heat transfer at the wall for non developed or transient flow 

Now let us answer the question: How does transient turbulence influence the heat 
transfer at the wall? Knowing that the instant heat transfer obeys 
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we obtain the ratio 
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Therefore, increasing the frequency of the turbulence with respect to the 
steady developed flow increases the heat transfer by following a square 
root function. 
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Note the similarity of the Dittus-Boelter correlation 
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4.1.4 Singularities 

In case of local structures with complex geometry that can not be resolved by the 
selected discretization, the irreversible energy dissipation has to be added as addi-
tional source of turbulence kinetic energy, 
 

( )31 1
2v kw w fr visP f w wζ ζργ ζ ρ η= = − ,    (4.27) 

 
in the particular control volume in which the singularity is located. Here visη  is the 
part of the energy directly dissipated into heat and not effectively generating tur-
bulence. The corresponding dissipation source is then 
 

( )1 kw l lc P kζ
ε ε .      (4.28) 

 
This approach is already used by Windecker and Anglart (1999) with 0visη = . 
Serre and Bestion (2005) proposed to use for the dissipation 
 

1 kw ec Pζ
ε τΔ        (4.29) 

 
instead of the turbulence decay time constant l lkε , the time scale of the fluctua-
tion of large eddy 0.37e l lkτ εΔ = , and Eq. (2.57). 

4.2 Multi-phase flow 

4.2.1 Steady developed generation due to wall friction 

In analogous way to those used for the single phase flow we will derive an expres-
sion for generation of turbulent kinetic energy due to friction. The pressure loss 
due to friction is usually expressed in terms of the pressure loss of fictive flow 
consisting of the same mass flow rate 
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1

l
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l

w wρ α ρ
=

= ∑       (4.30) 

 
but having the properties of the continuum. The so computed pressure loss is then 
modified by the so-called two-phase friction multiplier 2

coΦ  or Martinelli-Nelson 
multiplier, 
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Here  
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is the wall share stress. co stays for “continuum only.” The effective friction coef-
ficient is  
 

2
, ,fr eff fr co coλ λ= Φ .      (4.33) 

 
The multi-phase friction velocity is then  
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The effective boundary layer dimensionless velocity and wall distance are  
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w
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+ =        (4.35) 

 
and 
 

*wy y
ν

+ = ,       (4.36) 

 
respectively. The presence of vapor in the liquid for instance increases considera-
bly the friction pressure loss. Recovering the profiles from averaged parameters is 
difficult. In any case the boundary layer thickness in which the irreversible vis-
cous dissipation happens should be smaller. Therefore we introduce intuitively  
 

lim lim,c coy yα+ +=        (4.37) 
 
in 

 

( )32 2
, ,

lim,3

1 1
2 8

fr co co fr co co
kwc c co

c hyd c

w
P y

D
λ λρ

α
α ρ

+
⎛ ⎞Φ Φ
⎜ ⎟= −
⎜ ⎟
⎝ ⎠

.   (4.38) 

 

82      4 Source terms for k-eps models in porous structures 



4.2 Multi-phase flow      83 

In the limiting case of continuum only we have lim lim,coy y+ += . The validity of this 
formalism remains to be checked with data for the averaged level of turbulence 
which are still not available. Here the division with the continuous volume frac-
tion reflects the assumption that all of the dissipation is put into the continuum. 

4.2.2 Heat transfer at the wall for forced convection without boiling 

Now let us try to compute the heat transfer coefficient at the wall for two phase 
flow by using the idea that the renewal period for the eddies at the wall is dictated 
by turbulence   
 

, ,e c c cbμτ ν ε ∞Δ ≈ ,       (4.39) 
 
where all the increased turbulence generation is imposed into the continuum 
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Inserting into the averaged solution of the Fourier equation 
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results in 
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        (4.42) 
 
where the effective Reynolds number is computed so that all the two phase mass 
flow possesses the properties of the continuum 
 

( )Reco h cD wρ η= .      (4.43) 
 
The friction coefficient  
 

( ), , Re , .fr co fr co co etcλ λ=      (4.44) 
 



is also a function of this Reynolds number. Now let us build the ratio of the two-
phase Nusselt number to the Nusselt number computed so that all the two phase 
mass flow consists of continuum only. The result is 
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We immediately recognize that the increase of the turbulence leading to in-
crease of the friction pressure drop is responsible for the increased heat 
transfer from or to the wall in the two phase flow region.  

 
Note the difference to the Chen result obtained in 1963,  
 

0.89
c cNu Nu≈ Φ .      (4.47) 

 
The Nusselt number cNu  was computed assuming that the continuum part of the 
flow occupies the total cross section i.e.  
 

( )Rec c h cX D wρ η= ,      (4.48)  
 

Prc c caν= .       (4.49) 
 
Observe that instead of the Martinelli-Nelson multiplier 2

coΦ  used here, the Lock-
hart and Martinelly multiplier 2

cΦ  were used by Chen. 

4.2.3 Continuum–continuum interaction 

Consider film flow in a pipe. The mechanical gas–film interaction creates interfa-
cial force. For turbulent gas bulk the maximum on turbulent energy generation is    
 

( )3,12
12

,1

1 1
2

fr
kw vis

h

P w
D
λ

η= Δ − ,     (4.50) 
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Note also the difference to the Collier (1972) result 
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is the hydraulic diameter of the gas flow. The part of this power directly dissipated 
in the gas, visη , has to be derived from experiments delivering the turbulence struc-
ture of film flow. There is a good reason to consider as a good approximation 

0visη ≈  because the ripples and the roll waves at the film surface do not allow 
laminar boundary layer and therefore viscous dissipation in a classical sense. It is 
still not clear how much of this power goes to generate turbulence in the denser 
fluid. 

4.2.4 Singularities 

The two phase friction multiplier can be used as a first approximation for compu-
tation of the local pressure losses due to flow obstacles different than wall friction.  
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The effective friction coefficient is then  
 

2
, ,fr eff fr co coζ ζ= Φ .      (4.53) 
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This approach is appropriate. Neykov et al. (2005) defined a benchmark consisting 
of boiling flow in a rod bundle with 7-spacer grids as shown in Fig. 4.2a and b 
typical for the so-called nuclear boiling water reactors. Using the measured fric-
tion coefficient for single phase flow (fitted with 1% mean error), and Eq. (4.52) 
with the Friedel (1979) correlation for computing of the two phase multiplier, re-
sults in an agreement for the pressure drop as shown in Fig. 4.2c. 

Fig. 4.2.

 
where 
 

,1 11h hD D α= −       (4.51) 
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Fig. 4.3. a) AREVA PWR bundle with FOCUS grid; b) Measured, Vogel et al. (1991), versus 
computed total pressure drop in a 5x5 bundle with FOCUS grid. Pressure level about  
160 bar 

Similarly, applying the same method to a bundle typical of the so-called nuclear 
pressurized water reactors results in the agreement given in Fig. 4.3. 

The source generating turbulent kinetic energy in the mixture is then 
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Note that this source is computed per unit mixture volume. In case of bubbly or 
churn turbulent flow the term goes for producing turbulence in the continuum only 
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In case of two continua we have for sure some redistribution between the two con-
tinua. How local singularities redistribute this generation into parts going into the 
liquid and into the gas is a very complex three-dimensional problem. In the 
framework of the large scale averaging we may use a volume fraction weighting 
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        (4.56) 
 

86      4 Source terms for k-eps models in porous structures 



4.2 Multi-phase flow      87 
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       (4.57) 
 
as an ad hoc approach that has to be improved in the future. 

4.2.5 Droplets deposition at walls for steady developed flow 

In vertical pipe flow the deposition of droplets due to turbulent fluctuations is a 
very important process.  A general expression defining the mass flow rate of the 
deposed droplets is given in Kolev (2007b) 
 

( ) ( )13
1 332

1 2 1
1 cw e uτ τχρ ρ

χ π
−Δ Δ− ′= −

+
.    (4.58) 

 
Here χ  is the reflection coefficient, 13τΔ  is the particle relaxation time. The time 
interval τΔ is the minimum of the life time of the large eddy inside the gas flow  
 

1 1 10.37e kτ εΔ =       (4.59) 
 
and the time between two particle collisions  
 

( )33, 3 33 3col D Vτ αΔ ≈ Δ .      (4.60) 
 

1u′  is the gas pulsation velocity and 3cρ is the droplet density.  

4.2.6 Droplets deposition at walls for transient flow 

It is the obvious that  
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w u k
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ρ
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′
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Therefore, increasing the turbulent kinetic energy of the continuum with 
respect to the steady developed flow increases the droplet deposition by 
following a square root function. 

Note that interesting 2D-experiments for increased fine droplet deposition ( 3D = 
25µm, u = 14.5m/s, 3

3 3 0.2 10 / ³kg mα ρ −= × ) due to a obstacle at a surface is re-
ported by Ryjkov and Hmara (1976). 



Nomenclature 

Latin 
 

t
dcC   response coefficient, dimensionless 
*t

dcC  response coefficient for single particle, dimensionless 

hD  hydraulic diameter, m 

wf  21:
2

fr

h

w
D
λ

ρ= , friction force per unit flow volume, N/m³ 

wf
ζ  resistance force caused by local flow obstacles per unit volume of the 

flow mixture, N/m³ 
,e ll   characteristic macroscopic length scale of turbulence production in chan-

nels, m 
kwP  irreversibly dissipated power per unit flow mass outside the viscous fluid 

due to turbulent pulsations equal to production of turbulent kinetic energy 
per unit mass of the flow, W/kg (m²/s³) 

,1kwPζ  production of turbulent kinetic energy per unit mass of the gas due to ir-
reversible singularity, W/kg 

kwPζ  production of turbulent kinetic energy per unit mass due to irreversible 
singularity, W/kg 

,kw lP  production of turbulent kinetic energy per unit mass of the field l due to 
friction with the wall, W/kg 

Pr  Prandtl number, dimensionless 
Pε  production of the dissipation of the turbulent kinetic energy per unit 

mass, W/kg 
wPε  production of the dissipation of the turbulent kinetic energy per unit mass 

due to friction with the wall, W/kg 
,w lPε  production of the dissipation of the turbulent kinetic energy per unit mass 

of the field l due to friction with the wall, W/kg 
q′′&  heat flux, W/m² 

w
cq′′&  heat flux from the wall into the continuum, W/m² 

2wq′′&  heat flux from the wall into the liquid, W/m² 
Re  : hD w ν= , Reynolds number, dimensionless 
Reco  ( ): h cD wρ η= Reynolds number computed so that all the two phase mass 

flow possesses the properties of the continuum, dimensionless 
T  temperature, K 
u′  rms of the radial velocity fluctuation, m/s 
V ′  fluctuation of the velocity, m/s 
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V  velocity vector, m/s 
w  axial velocity, m/s 

*w  friction velocity, dimensionless 
w  cross section averaged friction velocity, m/s 
w+  axial velocity, dimensionless 

cw  continuum axial velocity, m/s 

cw   averaged axial continuum velocity, m/s 
*
cw  continuum axial friction velocity, m/s 

1X  gas mass concentration, m/s 

ttX  Lockhart–Martinelli parameter, dimensionless  
x  x-coordinate, m 
y  y-coordinate, distance from the wall, m 

limy  virtual distance from the wall in which almost all the viscous dissipation 
is lumped, m 

limy+  virtual distance from the wall in which almost all the viscous dissipation 
is lumped, dimensionless 

lim,coy+  virtual distance from the wall in which almost all the viscous dissipation 

y+  distance from the wall, dimensionless 
z  axial coordinate, m  

zΔ  finite of the axial distance, m 
 
Greek 
 
α  volumetric fraction, dimensionless 
γ  surface permeability defined as flow cross section divided by the cross 

section of the control volume (usually the three main directional compo-
nents are used), dimensionless 

vγ  volumetric porosity defined as the flow volume divided by the considered 
control volume, dimensionless 

ε  power dissipated irreversibly due to turbulent pulsations in the viscous 
fluid per unit mass of the fluid (dissipation of the specific turbulent ki-
netic energy), m²/s³ 

0ε  initial value of the dissipation of the specific turbulent kinetic energy, 
m²/s³ 

frζ  irreversible friction coefficient, dimensionless 

,fr coζ  irreversible friction coefficient computed for the total mixture mass flow 
with the properties of the Continuum Only, dimensionless 

is lumped for the total mass flow considered as consisting of Continuum 
Only, dimensionless 



,fr effζ  2
,: fr co coζ= Φ , effective irreversible friction coefficient, dimensionless 

η  dynamic viscosity, kg/(ms) 

visη   part of the energy directly dissipated into heat and not effectively generat-
ing turbulence, dimensionless 

χ  reflection coefficient, dimensionless 
λ  thermal conductivity, W/(mK) 

frλ  friction coefficient, dimensionless 

,fr coλ  friction coefficient computed for the total mixture mass flow with the 
properties of the continuum only, dimensionless 

,fr effλ  effective friction coefficient, dimensionless 
v  cinematic viscosity, m²/s 

hΠ  wetted perimeter, m 
ρ  density, kg/m³ 

( )32
wρ  mass flow rate of the deposed droplets, kg/(m²s) 

wρ  
max

1

:
l

l l l
l

wα ρ
=

= ∑ , mixture mass flow rate, kg/(m²s) 

21ρΔ  liquid–gas density difference, kg/m³ 
σ  surface tension, N/m 
τ  time, s 

wτ  wall share stress, N/m² 
τΔ  time interval, s 
τΔ  time interval, minimum of the life time of the large eddy inside the gas 

flow and the time between two particle collisions, s 
1eτΔ  1 1: 0.37 k ε=  life time of the large eddy inside the gas flow, s 

33,colτΔ  ( )3 33 3: D V α≈ Δ , time between two particle collisions, s 

12τΔ  droplet relaxation time, s 

13τΔ  particle relaxation time, s 

cdτΔ  : d cdD= ΔV  particle relaxation time, s 

,e lμτΔ  time scale corresponding to the spatially lowest scale for existence of ed-
dies in field l called inner time scale or small time scale or Taylor micro-
scale of turbulence, s 

 
Subscripts 
 
∞  steady, developed flow 
1 gas 
2 liquid 
3 droplet 
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c continuum 
d disperse 
l field l 
m field m 
e eddy 
μ  associated to mass transfer or microscale 
r radial direction 
θ  angular direction 
z axial direction 
w wall 
k axial discretization index 
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5 Influence of the interfacial forces 

The interfacial forces are in interaction with all other forces in the momentum 
equations. Experiments for investigation of the turbulence are concentrated always 
on some collective action of the forces. Therefore they have to be described cor-
rectly. Of course, performing simple analytical experiments by isolating only one 
force is what is always needed but very difficult. We discuss in this chapter the 
role of some of the forces which are still under investigation world wide. 

5.1 Drag forces 

In Kolev (2007b) constitutive relation for computation of the interfacial drag 
forces for variety of flow pattern and regimes are available. In the previous chap-
ter we saw clearly that the drag forces contribute to the generation of turbulence in 
the trace of the bubbles. So using these two references the effect of the drag forces 
can be calculated. 

5.2 The role of the lift force in turbulent flows 

Note on particle rotation: A rotating sphere obeys the law  
 

5 1
2 2

d d
d d d d d

d D
I C

d
ωω

ρ ω ω
τ

⎛ ⎞= − ⎜ ⎟
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. 

 
Here the particle rotation velocity is dω and dI  is the particle’s moment of inertia.  
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is a coefficient depending on the rotation Reynolds number  

 

on the turbulence structure 
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Re
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d
cd d c

Dω ω ν⎛ ⎞= ⎜ ⎟
⎝ ⎠

. 

 
The c-coefficients are given by Yamamotto et al. (2001) in the following table:  

 
Recd

ω  0 to 1 1 to 10 10 to 20 20 to 50 >50 

c1 0 0 5.32 6.44 6.45 
c2 50.27 50.27 37.2 32.2 32.1 
c3 0 0.0418 5.32 6.44 6.45 

 
We learn from this dependence that both small and light particles can be easier to 
rotation compared to heavy and large particles. The following three main idealiza-
tions gives an idea for origination of the so-called lift force:  
 

a) Rotating symmetric particle in symmetric flow of continuum experiences 
a lift force called Magnus force (a Berlin physicist Gustav Magnus 1802-
1870). The curiosity of Lord Rayleigh to explain the trajectory of the ten-
nis ball lead him in 1877 to the corresponding explanation. The force was 
analytically estimated by Jukowski and independently by Kutta, see in 
Albring (1970) p. 75. 

b) Non-rotating symmetric particle in non-symmetric continuum flow ex-
periences lift force, Jukowski 

c) Non rotating asymmetric particle in symmetric continuum flow experi-
ences lift force, Jukowski. 

 
A combination of the radial liquid and gas momentum equations results to 
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u v
p r p R u dr

r

α ρ
α ρ

′ ′− −
′= − − − ∫  .  (5.1) 

 
The above equation reduces to the Eq. 4a in Laufer (1953) for zero-void. Later it 
was found that this is valid for bubbles with small sizes. If fluctuation velocities in 
the radial and in the azimuthally directions, respectively, are obtained from ex-
periment and the void profile, the pressure variation along the pipe radius can be 
computed. If it fits to the measured, there is no need for other forces to explain the 
physics. But if there are differences, they may come from the so-called lift, lubri-
cation and dispersion forces. The steady state momentum equations for bubbles 
and liquid are 
 

( )1 1 1, 1 1, ,21
1 1 0L

rr r
dp d r f
dr r dr r θθα α τ α τ− + − = ,   (5.2) 
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( ) ( ) ( )1 1 2, 1 2, ,21
1 11 1 1 0L

rr r
dp d r f
dr r dr r θθα α τ α τ⎡ ⎤− − − + − + =⎣ ⎦ . (5.3) 

 

As already mentioned, objects with negligible rotation in share flow exert a lift 
force. The lift force acting on a bubble if it does not rotate is defined as follows 

 

( ) ( ) 2
21 21 1 2 2 1 2 21 1 2 2 1
L L L dw

c c w w
dr

α ρ α ρ= − ×∇× = −f V V V .  (5.4) 

 
Staffman (1965, 1968) derived for negligible particle rotation, negligible particle 
Reynolds number and small gradients of the continuum velocity the analytical ex-
pression for the shear lift force 
 

1/ 2
1/ 2 2

21 2 13.084L dwc D
dr

ν
⎛ ⎞

= ⎜ ⎟⎜ ⎟
⎝ ⎠

.     (5.5) 

 
Inside the boundary layer of bubbly flow having 1 2w w>  and 2 0dw dr <  the lift 
force is the ascertaining force for the bubbles toward the wall. Note that the spatial 
resolution in discrete analyses has to be fine enough in order to accurately com-
pute the rotation of the continuous velocity field. Bad resolution like those used in 
the so-called sub-channel analyses produces only useless noise that makes the use 
of this force meaningless. 

Mei (1992) proposed an expression that can be used for larger particle Reynolds 
numbers 

 
1/ 2

1/ 2 2
21 2 1 3.084L dwc Mei D

dr
ν

⎛ ⎞
= ⎜ ⎟⎜ ⎟

⎝ ⎠
,    (5.6) 

where 
 

( ) ( )1/ 2 1/ 2
121 0.3314 exp 0.1Re 0.3314Mei ω ω= − − + , 12Re 40≤ , (5.7) 

 
( )1/ 2

120.0524 ReMei ω= , 12Re 40> ,    (5.8) 
 

The lift force can be computed from the above equation if the pressure profile 
along the radius is known and the share terms are estimated as follows 

1, 0rrτ ≈ 1, 0θθτ ≈ , 2
2, 2 2rr uτ ρ ′= − , 2

2, 2 2vθθτ ρ ′= − . Using this approach Wang et al. 
(1987) observed that close to the wall a) the velocity gradient has a maximum,

Therefore small bubbles tend to occupy regions with higher turbulence unless 
other forces drive them away. 

Some authors use for 21
Lc  a constant: Troshko and Hassan (2001) 0.06, Lopez de 

Bertodano (1992) 0.1, Morel (1997) ½. 

b) the velocity fluctuations have maximum and c) the static pressure has a minimum. 



and  
 

12 12 1 2Re w D ν= Δ ,      (5.9) 
 

1 2

2 1

2D dw
w w dr

ω =
−

.      (5.10) 

 
In a later work Klausner et al. (1993) found that the lift force on a bubble attached 
to a wall can be computed using 
 

( )1/ 43 / 2 2 2
21 12

16 3.877 0.014 Re
3

Lc ω ω −= + ,    (5.11) 

 
which is valid for larger Reynolds numbers than previous relation. In a later work 
Mei and Klausner (1995) proposed to use interpolation between the Stafman’s re-
sults for small Reynolds numbers and Auton’s results, (1987), for large Reynolds 
numbers: 
 

1/ 22

12
21 1/ 2 1/ 2

12

1.72 2 Re3 16
98 Re

L J
c

ω
ω

ω

⎧ ⎫⎡ ⎤⎪ ⎪= + ⎢ ⎥⎨ ⎬
⎢ ⎥⎪ ⎪⎣ ⎦⎩ ⎭

,   (5.12) 

 

( ){ }10 120.6765 1 tanh 2.5 log 2 Re 0.191J ω⎡ ⎤≈ + +⎣ ⎦  

 

( ){ }10 120.667 tanh 6 log 2 Re 0.32ω⎡ ⎤× + −⎣ ⎦ .   (5.13) 

 

There are other expressions for the lift force on a single bubble. Tomiyama  
et al. (2002) measured trajectories of single bubbles in simple share flows of  
glycerol–water solution. They obtained the following empirical correlation 
 

( ) ( )21 12 1min 0.288 tanh 0.121Re ,  L
mc f Eö= ⎡ ⎤⎣ ⎦    for   1 4mEö < , (5.14) 
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Moraga et al. (1999) proposed 
 

12 2, 12 2,
21 4 7

Re Re Re Re
0.12 0.2exp exp

36 10 3 10
rot rotLc

⎡ ⎤⎛ ⎞ ⎛ ⎞
= −⎢ ⎥⎜ ⎟ ⎜ ⎟× ×⎝ ⎠ ⎝ ⎠⎣ ⎦

 

 
where 2

2, 1Re rot c crot D ν= V , and crotV  is the local vorticity e.g. 2dw dr  in axi-
ally symmetric flow. This equation possesses a sign inversion at large Reynolds 
numbers. For bubbly flow at atmospheric conditions the order of magnitude of 21

Lc  
is around 0.1. 
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based on experiments within the region of parameters defined by 
11.39 5.74mEö≤ ≤ , 10 125.5 log 2.8Mo− ≤ ≤ − , and 1

20 8.3s−< ∇× ≤V . The lift 
coefficient varied in this region between about 0.3 and -0.3. Here modified Eötvös 
and Morton numbers are used built with the horizontal bubble size 
 

( ) 2
1 2 1 1,max 12mEö g Dρ ρ σ= − ,     (5.17) 

 
( ) ( )4 2

12 2 1 2 2 12Mo g ρ ρ η ρ σ= − .     (5.18) 
 
The aspect ratio of the bubble is computed by using the Wellek et al. (1966) corre-
lation 
 

0.757
1,max 1,min 11 0.163 mD D Eö= + .     (5.19) 

 

It should be emphasized that the above reviewed considerations are for single 
object in the share flow. The presence of multiple objects in the share flow is 
found to influence this force too. 

The importance of the findings by Tomiyama et al. (2002) is in the observation 
that for large bubbles the lift force changes the sign. Krepper, Lucas and Prasser 
(2005) observed experimentally that in vertical bubbly flow the void profile de-
pends on the bubble size spectrum. For spectrum with predominant small size 
bubbles a wall void peaking is observed. For spectrums having predominant large 
bubbles the central void packing is observed. This effect was reproduced by Krep-
per et al. (2005) by using lift force applied on multiple groups with 21 0.05Lc =  for 

1 0.006D m<  and 21 0.05Lc = −  for 1 0.006D m≥ . The improvement was consider-
able going from 1 to 2 groups. No substantial change was reported if more than 
8 size groups are used. 

Wang et al. (1987) introduced the influence of the local volume fraction into 
the lift coefficient 
 

( ) 1
21

0.49 log 9.31680.01 cot
0.1963

Lc ξξ
π

− +
= + ,   (5.20) 

 

 
( ) 3 2

21 1 1 1 10.00105 0.0159 0.0204 0.474L
m m m mc f Eö Eö Eö Eö= = − − +   

 
for   14 10.7mEö≤ ≤ ,      (5.15) 

 
21 0.29Lc = −  for 110.7 mEö< ,     (5.16) 

 

The lift coefficient for a bubble with diameter 3mm in an air–water system in ac-
cordance with the Tomiyama et al. correlation equals to 0.288. Zun (1980) per-
formed measurements and estimated a value for small bubbles of about 0.3 very 
similar to Sato et al. (1977). Naciri et al. (1992) experimentally measured the lift 
coefficient of a bubble in a vortex and reported the value 0.25.  



( )
2 2

1 1
1

12 12

1exp 2
Reh

D w
D w

ξ α ω
∞

⎛ ⎞ ⎛ ⎞
= − ⎜ ⎟ ⎜ ⎟Δ⎝ ⎠⎝ ⎠

,     (5.21) 

 
where  
 

( )1/ 4
12 21.18w gσ ρ∞Δ = .     (5.22) 

 
This coefficient varies between 0.01 and 0.1 in accordance with the Wang’s et al. 
data. The disadvantage of this approach is that due to the dependence ( )hDξ ξ=  
the correlation depends on global geometry characteristics and can not be applied 
locally. 
 
Conclusions: (a) The spatial resolution in finite volume analyses has to be fine 
enough in order to accurately compute the rotation of the continuous velocity 
field. Bad resolution like those used in the so-called sub-channel analyses pro-
duces only useless noise that makes the use of this force meaningless. (b) There is 
no method known to me that is based on local conditions and that allows taking 
into account the effect of multiple objects on the lift force. (c) The other problem 
is that small bubbles will probably rotate and the application of lift force derived 
for non-rotating objects in share flows is questionable. (d) Heavy solid particles 
carried by gas are rather subject to lift force because they hardly will “see” the ro-
tation of the surrounding continuum.  

There is at least one other force acting toward the equalizing of the void pro-
files – the so-called dispersion force which will be discussed in a moment. 

5.3 Lubrication force in the wall boundary layer 

For adiabatic flows no bubbles are observed at the wall. This led Antal et al. 
(1991) to the conclusion that there is a special force at the wall similar to the lu-
brication force pushing the bubbles away from the surface, 
 

 
where 0y  is the distance between the bubble and the wall and wn  is the unit out-
ward normal vector on the surface of the wall and 
 

( )ˆ .d c w d c w= − − −⎡ ⎤⎣ ⎦V V V n V V n     (5.24) 
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as a function of  

2

0

ˆ
0.104 0.06 0.147 0

d cLw d
cd cd w

d

R
V

R y

α ρ ⎛ ⎞
= − − Δ + ≥⎜ ⎟

⎝ ⎠

V
f n ,  (5.23) 
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2

0

0.0064 0.016ˆ max ,  0Lw
cd d c w

dD y
α ρ

⎛ ⎞
= − +⎜ ⎟

⎝ ⎠
f V n     (5.25) 

 
instead. 

Tomiyama (1998) reported the following empirical correlation for the wall 
force 

 

( )
2

2 2
0 0

1 1ˆLw Lw
cd cd d c d w

h

c R
y D y

α ρ
⎛ ⎞
⎜ ⎟= −
⎜ ⎟−⎝ ⎠

f V n ,   (5.26) 

 
where 
 

( )exp 0.933 179Lw
cdc Eö= − +    for   1 5Eö≤ ≤ ,   (5.27) 

 
0.007 0.04Lw

cdc Eö= +    for   5 33Eö≤ ≤ .   (5.28) 

5.4 The role of the dispersion force in turbulent flows 

5.4.1 Dispersed phase in laminar continuum 

It is known that even low-velocity potential flow over a family of spheres is asso-
ciated with natural fluctuations of the continuum. The produced oscillations of the 
laminar continuum are called pseudo-turbulence by some authors. The averaged 
pressure over the dispersed particles surface is smaller than the volume averaged 
pressure. Therefore in flows with spatially changing concentration of the disperse 
phase an additional force acts toward the concentrations gradients. For bubbly 
flow Nigmatulin (1979) obtained the analytical expression 
 

is the velocity difference component parallel to the wall. Lopez de Bertodano 
(1992) add to the above expressions 0.0075 d c c d dRα ρ− V V  in case of dy R≤ . 
Instead of the two constants in the above expression Lopez de Bertodano (1992) 
used 0.2 and 0.12, and Troshko and Hassan (2001) 0.02 to 0.03 and 0.04 to 0.06, 
respectively. Krepper, Lucas and Prasser (2005) used  

2
 ,

4 0 0
20

30 0
20

30 0
20

e e
c pseudo turbulence c d c cdα α ρ− = ΔT V ,     (5.29) 

 
see also Van Wijngaarden (1982). 



5.4.2 Dispersed phase in turbulent continuum 

For dispersed phase in turbulent continuum it is observed that the turbulence tends 
to smooth the volumetric concentrations of the dispersed phase. In other words 
pulsations of the continuum produce force that drives particles to move from 
places with higher concentration to places with smaller one. To illuminate this 
force let us recall once again the terms in the local volume and time averaged 
momentum equations (2.1) and (2.2) for the disperse and the continuous field. We 
will use as a framework for the discussion the k-eps model. Remember that for 
isotropic turbulence we have  
 

( ) ( )2
3

e e
l l l l l l l lkα ρ γ γα ρ⎡ ⎤′ ′∇ ⋅ = − + ∇⎣ ⎦V V S% .    (5.30) 

and rearranging we obtain 
 

( ) ( )e
d d d v d d d d d

∂ α ρ γ α ρ γ
∂τ

+∇ ⋅ −V V V S% ( )e
d d dp pα γ ′+ ∇ + d v dα γ ρ+ g  

 
( ) ( )*d e

d c d dc d c d dp p p pσδ σ κ α γ′+ − + − Δ + ∇ …=…,  (5.32) 
 

( ) ( ) ( ) ( ),
e e e

c c c v c c c c c c c c c cp pη
∂ α ρ γ α ρ γ α γ α γ
∂τ

′+∇ ⋅ − −∇ ⋅ + ∇ +V V V S T%
 

 

c v cα γ ρ+ g ( ) ( )*d e
c c cp pσ α γ′+ Δ + ∇ *w

cp σ γ−Δ ∇ …=…  (5.33) 
 
respectively. Remember that the dispersed momentum equation is valid inside the 
dispersed phase including the interface. It includes the interface jump condition. 
The continuum momentum equation is valid only inside the continuum that is out-
side the interface.  

5.4.2.1 Bulk-interface pressure difference 

 
In accordance with Stuhmiller (1977) the interface averaged pressure at the site of 
the continuum is smaller with 
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Introducing the above equation into the momentum equations after differentiating 
the last term, interpreting the normal Reynolds stresses as turbulent pressure fluc-
tuation  
 

2
3l l lp kρ′ =  ,       (5.31) 
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2* 0.37l d
c cd c cdp cσ ρΔ = − ΔV ,     (5.34) 

 
than the continuum bulk averaged pressure. 

Therefore the force  

( )2... ... 0.37 d e
cd c cd dc ρ α γ= − Δ ∇V     (5.35) 

in the momentum equation of the dispersed phase leads to positive accel-
eration of the bubbles toward the negative void gradient. 

This facilitates dispersion of the particles. Note that the numerical constant takes 
values of ½ for potential flow around sphere, Lamb (1932). Lance and Bataille 
(1991) reported values between 0.5 and 0.7 for 5mm oblate spheroid bubbles in 
water.  

Hwang and Schen [22] (1992) reported a method for computing the pressure 
distribution around a sphere from measured data for Reynolds numbers larger than 
3000. Using this distribution the authors computed the surface averaged pressure 
over the sphere in the three directions 
 

( ) 2* 1
4

l d
m cd m mlp f cσ ρΔ = − ΔV      (5.36) 

 
and found that it is non isotropic, i.e. ( )d

cdf c  takes different values in the lateral 
directions compared to the direction of the relative velocity. For high Reynolds 
numbers the authors reported 

 

2*

1 0 0
20

20 0
5

20 0
5

l
m m mlp σ ρΔ = Δ −

−

V .    (5.37) 

 
 In the limiting case for vanishing Reynolds number the authors reported 

 



2*

81 0 0
160

270 0
160

270 0
160

l
m m mlp σ ρΔ = ΔV .    (5.38) 

 

5.4.2.2 Turbulence dispersion force 

Other reason causing redistribution of the bubbles is the turbulence in the contin-
uum. The higher the local turbulence is the lower the local pressure. Therefore 
small bubbles tend to occupy regions with higher turbulence unless other forces 
drive them away. Let us see how turbulence in the continuum influence disper-
sion. Considering two velocity fields  
 

1c dα α= − ,        (5.39) 
 
and bubbly flow for which  
 

d ck k≈  ,       (5.40) 
 
will result in  
 

2
3c c cp kρ′ = ,        (5.41) 

 
2
3

d
d c c

c

p k
ρ

ρ
ρ

′ = ,       (5.42) 

 
and therefore in asymmetric dispersion force components into the both momentum 
equations for constant permeability 
 

( )2... ...
3

ed
c c d

c

k
ρ

ρ α γ
ρ

+ ∇ = …,     (5.43) 

    
 

( )2... ...
3

e
c c dkρ α γ− ∇ = ….     (5.44) 

 
Whether it is allowed to lump the pulsation pressure component into the overall 
bulk pressure as proposed by some authors is not proven. Therefore I prefer to 
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stay with this notation. Now let us see what is available in the literature in this 
field. Lopez de Bertodano (1992) proposed for bubbly flow different form of 
this force naming it dispersion force as a symmetric force in the both momentum 
equations 

 
gas: ... ... ...t

cd c c dc kρ α+ ∇ = ,     (5.45) 
 
liquid: ... ... ...t

cd c c dc kρ α− ∇ = ,     (5.46) 
 

 
t c c
cd

cd c cd

c
τ τ
τ τ τ
Δ Δ

=
Δ Δ + Δ

      (5.47) 

 
where  
 

1 1 1

c ce crτ τ τ
= +

Δ Δ Δ
 ,      (5.48) 

 
and  
 

0.35ce c ckτ εΔ = ,      (5.49) 
 

4
3

vm
cd d

cd d
cdcd

c D
Vc

τΔ =
Δ

,      (5.50) 

 

( )3 / 21 0.35
2cr c c cdk Vτ εΔ = Δ .     (5.51) 

 
Shi et al. (2005) performed time averaging of the already volume averaged drag 

force term  
 

( )
3
4 1

d
cd

c cd d c
d

c
Vρ α

α
′ ′Δ

−
V .     (5.52) 

 

with 0.1t
cdc =  proposed by Lahey et al. (1993). The same approach was used later 

other authors e.g. Windecker and Anglart (1999), Krepper and Egorov (2005). 
Krepper, Lucas and Prasser (2005) used 0.5t

cdc = , Morel (1997) 0.01 to 0.1, 
 (1992) 0.1, Troshko and Hasan (2001) 0.01 to 0.03. Antal et al. 

(1998) used instead  
Lopez de Bertodano



,Pr

t
c

d cd dt
c

V
α

ν
α α′ ′ ≈ − ∇ ,      (5.53) 

 
the authors obtained additional force component acting as a dispersion force: 

 

gas: 
( ) ,

3... ... ...
4 1 Pr

d t
cd c c

cd dt
d c

c

α

ρ ν
α

α
+ Δ ∇ =

−
V ,   (5.54) 

 

liquid: 
( ) ,

3... ... ...
4 1 Pr

d t
cd c c

cd dt
d c

c

α

ρ ν
α

α
− Δ ∇ =

−
V .   (5.55) 

 
Conclusions: Small bubbles tend to occupy regions with higher turbulence in 
which the averaged static pressure is lower unless “dispersion forces” drive them 
away. The name “dispersion force” is used in the literature with no unique mean-
ing. Three phenomena are identified as source for this force: (a) The difference be-
tween the surface and volume averaged pressure combined with concentration 
gradient is a real force driving bubbles toward low volume concentrations; (b) The 
spatial variation of the turbulence energy in the dispersed field  
 

( )2
3

e
l l lkγα ρ∇        (5.56) 

 
acts as a dispersion force. This form of the force is a consequence of the isotropy 
assumption; c) The fluctuation of the superficial velocity,  
 

d cVα′ ′         (5.57) 
 
is considered to give additional drug compared to the steady state drug force. 

Nomenclature 

Latin 
 

21
Lc  lift force coefficient, dimensionless 

1,maxD  maximum bubble diameter, m 
Dh hydraulic diameter, m 

1mEö  ( ) 2
2 1 1,max 12: g Dρ ρ σ= − , Eötvös number build with the horizontal bubble 

size, dimensionless 
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Postulating  
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21
Lf  lift force vector caused by the liquid 2 acting on the bubble, field 1, per 

unit flow volume, N/m³ 
Lw
cdf  lubrication force vector pushing the bubbles away from the surface, 

,21
L

rf  lift force caused by the liquid 2 acting on the bubble, field 1, into

g gravitational acceleration m/s² 
k  specific turbulent kinetic energy, m²/s² 
Mey corrector for the lift force coefficient, dimensionless 

12Mo  ( ) ( )4 2
2 1 2 2 12: g ρ ρ η ρ σ= − , Morton number, dimensionless 

wn   unit outward normal vector on the surface of the wall, dimensionless 
I  unity matrix, - 
p pressure, Pa 

*l
cp σΔ  continuum bulk averaged pressure minus interface averaged pressure at 

the site of the continuum, Pa 
Prt  turbulence Prandtl number, dimensionless 
R pipe radius, m 
r radius, m 
r* radius, m 

12Re  12 1 2: w D ν= Δ , Reynolds number based on the bubble liquid relative ve-
locity, dimensionless 

2u′ , 2v′  normal turbulent stress components in r and θ  direction 
V velocity vector, m/s 

cdVΔ  relative velocity of the dispersed phase with respect to the continuum, 
m/s 

V̂  ( ): .d c w d c w= − − −⎡ ⎤⎣ ⎦V V n V V n , velocity difference component parallel to 
the wall, m/s 

′V  fluctuations of the velocity vector, m/s 
V  velocity vector, m/s 
w axial velocity, m/s 

12w ∞Δ  ( )1/ 4
2: 1.18 gσ ρ= , bubble free rising velocity, m/s 

0y    distance between the bubble and the wall, m 
 
Greek 
 
γ  surface permeability, dimensionless 

vγ  volumetric porosity, dimensionless 

cdτΔ  particle relaxation time, s 

ceτΔ  time scale of fluctuation of large eddy of the continuum, s 

r-direction per unit flow volume, N/m³ 



θ  angular coordinate, rad 
ε  power dissipated irreversibly due to turbulent pulsations in the viscous 

fluid per unit mass of the fluid (dissipation of the specific turbulent ki-
netic energy), m²/s³ 

α  volumetric fraction, dimensionless 
ν  cinematic viscosity, m²/s 
ρ  density, kg/m³ 

,l xyτ  force per unit surface normal to x directed into y-direction, N/m² 

ω  1 2

2 1

2
:

D dw
w w dr

=
−

, liquid field rotation, dimensionless 

12σ  surface tension between gas and liquid, N/m 
η  dynamic viscosity, kg/(ms) 
σ  surface tension, N/m 
κ  curvature 
 
Superscript 
 
´ fluctuation component 
 
Subscripts 
 
1  gas 
2  liquid 
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6 Particle–eddy interactions 

k ε−  models for analysis of transport of solid particles in gas flows are reported 
in a number of papers. Reeks (1991, 1992), Simonin (1991), Sommerfeld (1992), 
Wolkov, Zeichik and Pershukov (1994), and the references given there are good 
sources to start with this issue. The common feature of these works is the concept 
assuming convection and diffusion of the specific turbulent kinetic energy and its 
dissipation in the continuous phase. For considering the influence of the discrete 
phase predominantly two approaches are used: 

 
(a) No feedback of the dispersed phase on the continuum turbulence commonly 

named one-way coupling;  
(b) The feedback of the dispersed phase on the continuum turbulence is taken 

into account. This approach is named two-way coupling. 

6.1 Three popular modeling techniques 

Several mathematical techniques are developed to describe dispersed particles and 
continua. In one of them the continuum is described in Euler coordinates and  
each particle is traced in Lagrangian manner. This class of methods is called  
Euler–Lagrange method. Its best advantage is that collisions are computed in a 
natural way. The description of turbulence in such methods can again be done in 
different way. One of them is called Random Dispersion Model (RDM). In this 
approach the k-eps equation for the continuum are solved. Usually assumption of 
isotropic turbulence is used. Then the fluctuating velocity component V ′  is as-
sumed to be random deviates of a Gaussian probability distribution with zero 
mean and variance. So, using the random generator in each cell a magnitude and 
direction of the fluctuation component are generated and overlaid to the mean ve-
locity field. The tracing of the particle trajectory is then done in the next time step 
using this continuum velocity. The method is successfully used in many small 
scale applications. The need to solve as many particle conservation equations as 
particles are present in the integration domain is the main limitation of this 
method.  

Therefore Euler-Euler description of continuum and disperse phase is 
much more effective. This is the reason why I recommend such type of 
methods for solving daily engineering problems. 
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The time scales for interaction of the particles with eddies are discussed below. 
This information is used in many model elements and variety of applications. 

6.2 Particle–eddy interaction without collisions 

It is interesting to consider the behavior of a particle entrapped by large eddy with 
size ,e cl . If the particle has a large mass, it can not follow the pulsation of the con-
tinuum. Only small particles can follow the eddy oscillations. The ratio  
 

* :t
dc d cC V V′ ′=         (6.1) 

 
reached after the time τΔ  counted from the beginning of the interaction is called 
response coefficient for single particle. It characterizes the ability of the particles 
to response on a pulsation of the continuum. Therefore for isotropic turbulence we 
have 
 

*2t
d c dck k C≈ .       (6.2) 

6.2.1 Response coefficient for single particle 

Integrating the momentum equation written for the interaction between the contin-
uum eddy and the particle over the time τΔ   results in 
 

* :t
dc d cC V V′ ′= 1 cde τ τ−Δ Δ= − .     (6.3) 

 
For cdτ τΔ << Δ ,  
 

( ) 1* 1t
dc cdC τ τ −= + Δ Δ .       (6.4) 

 
which well compares with the Reeks (1977) expression 

 
( ) 1* 1 0.7t

dc cdC τ τ −= + Δ Δ      (6.5) 
 
obtained for droplets carried by gas in vertical pipes. Equation (6.5) was experi-
mentally confirmed by Lee et al. (1989b). 

The characteristic time for the response of a single particle used above is  
 

4:
3

vm
d c cd d

cd d
c cd cd

c D
c

ρ ρ
τ

ρ
+

Δ =
ΔV

     (6.6) 
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 For particles in gas we have 
 

( )
( )

2

18 Re

vm
d c cd d

cd
c cd

c Dρ ρ
τ

η ψ

+
Δ = ,     (6.7) 

 
where for the Stokes regime  
 

( )Re 1.cdψ =         (6.8) 
 
For larger velocity differences 
 

( ) 0.687Re 1 0.15Recd cdψ = +  for 3Re 10cd ≤ ,   (6.9) 
 

( )Re 0.11Re 6cd cdψ =  for 3Re 10cd > ,     (6.10) 
 
Zaichik et al. (1998). Zaichik and Alipchenkov (1999) obtained the following gen-
eral formalism for estimation of the response coefficient for dispersed flow in 
pipes: 
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1
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cd L cdt
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cd L cd
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τ τ
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+ Δ Δ
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+ Δ Δ
, 

( )1

1
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cd c d
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cd c d

c
A

c

ρ ρ

ρ ρ

+
=

+
.   (6.11) 

 
The Lagrangian time scale of turbulence averaged over the cross section is 

 
*

, 0.04L c h cD wτΔ = .      (6.12) 
 

The Lagrangian eddy–droplet interaction time  
 

( ) ( ) ( ) ( ), , , ,0 0L cd L cd L cd L cdSt St St f Stτ τ τ τ⎡ ⎤Δ = Δ = + Δ →∞ −Δ =⎣ ⎦  (6.13) 
 

is expressed as a function of the interaction time for very small  
 

( )
( )

( )

2

, , 2

4 3 3 2 1 2
0

5 1
L cd L c

a a
St

a a
τ τ

+ +
Δ = = Δ

+
,    (6.14) 

 
and very large particles 

( ) ( )
( ), , 2

6 2

5 1
L cd L c

b
St

b
τ τ

+
Δ → ∞ = Δ

+
.     (6.15) 



 
Here ,cd L cSt τ τ= Δ Δ is the Stokes number, *

c d cb w w w= −  is the dimensionless 
drift parameter, 

 
1/ 2

2 21
3

a b b⎛ ⎞
= + +⎜ ⎟
⎝ ⎠

,      (6.16) 

 
and the interpolation function is 

 

( )
( ) ( )

2

2

5
1 4 1 2

St Stf St
St St St

= −
+ + +

.    (6.17) 

6.2.2 Responds coefficient for clouds of particles 

The response coefficient for particles with large concentrations t
dcC  may differ 

from the response coefficient for single particle. It is therefore a function of the 
local volume fraction of the dispersed phase. Proposal for the estimation of t

dcC  is 
given by Rusche (2000) 
 

( )2 4 3
*

1
exp 180 4710 4.26 10

1

t
dc

d d dt
dc

C
C

α α α
− ⎡ ⎤= − − + ×⎣ ⎦−

,  (6.18) 

 
where according to Wang (1994) the response coefficient for single particle is 
 

,* 3
2 Re

d
cd cd e ct

dc t
c d c

c V
C

Dν
Δ

=
l

,      (6.19) 

 

with 3 / 2
,e c c cc kη ε=l , 2

3c cV k′ ≈  and 
22Re :

3
t c ec c
c

c c c

V k
cην ε ν

′
= ≈

l
. This method 

is used by Lo (2005).  

6.2.3 Particle–eddy interaction time without collisions 

For the case of no particle–particle collisions some authors considered the exis-
tence time of the eddy ,e cτΔ  as the duration of the interaction with the eddy 
 

,e cτ τΔ = Δ .       (6.20) 
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This is valid for flows with small concentrations of the dispersed phase for which 
the particle–particle collision time is larger than the existence time of the eddy of 
the continuum.  

Other authors set the duration of the interaction with the eddy equal to the time 
required to cross an eddy. If the size of the eddy is ,e cl  and the macroscopic parti-

cle velocity with respect to the continuum velocity is cdΔV , the interaction time 
is set to 

 

,
,int ln 1 e c

ed cd
cd cd

τ τ
τ

⎛ ⎞
Δ = −Δ −⎜ ⎟⎜ ⎟Δ Δ⎝ ⎠V

l
.    (6.21) 

For , 1e c

cd cdτ
>

Δ ΔV
l

 the particle is captured by the eddy and the assumption 

,inted cdτ τΔ = Δ  can be used, Gosman and Ioannides (1981). 

6.3 Particle–eddy interaction with collisions 

For larger particle volume concentrations collisions break the particle dragging 
process. After each particular collision the dragging process starts again. There-
fore the time elapsed between two collisions should be used as the eddy–particle 
interaction time. We own this conclusion to Hanratty and Dykhno (1977). In 
what follows we discuss how to compute the time elapsed between two succes-
sive collisions. 

Smoluchowski obtained in 1918 for the number of collisions per unit volume 
 

2
1 2

, 1 2 1 24 2
d d

d col d d d d
D D

n n n Vπ +⎛ ⎞= Δ⎜ ⎟
⎝ ⎠

& ,    (6.22) 

 
for collision of two groups of particles with sizes 1dD  and 2dD . Here 1dn  and 2dn  
are particle number densities (number of particles per cubic meter) and 1 2d dVΔ  is 
the relative velocity between two groups in the same control volume. For only one 
group of particles  
 

2
, ,4d col d d d dd d col dn n n D V f nπ

= Δ =&     (6.23) 

 
with collision frequency of a single particle 
 

2
,

3
4 2

dd
d col d d dd d

d

V
f n D V

D
π α

Δ
= Δ = .    (6.24) 



 
The time elapsed between two collisions is approximately 
 

( )1
, ,

2
3d col d col d dd df D Vτ α−Δ = = Δ .    (6.25) 

 
For Maxwellian distribution of the fluctuation velocities the averaged fluctuation 
velocity of the continuum is  
 

1/ 216
3c cV k
π

⎛ ⎞′ = ⎜ ⎟
⎝ ⎠

,      (6.26) 

 
Zeichik (1998). Using the relaxation coefficient, the fluctuation component of the 
particles can be computed and used as ddVΔ . For very small particles that com-
pletely follow the pulsation of the carrier phase Staffman and Turner (1956) found 
 

8 2
3

c
dd d

c

V D
ε

π ν
Δ = .      (6.27) 

 
For particles that can not follow the turbulent pulsation of the carrier phase Somer-
feld and Zivkovic (1992) reported 
 

16 2
3dd dV k

π
Δ = .      (6.28) 

 
Zeichik proposed in 1998 general solution to this problem which is valid for all 
sizes of the particles. 

Nomenclature 

Latin 
 

b *: c d cw w w= −  drift parameter, dimensionless 
*t

dcC  : d cV V′ ′= , response coefficient for single particle, dimensionless 
vm
cdc  coefficient for the virtual mass force or added mass force acting on a dis-

persed particle, dimensionless 
dD  diameter of dispersed particle, m 

1dD  size of the dispersed particles belonging to group 1, m 

2dD  size of the dispersed particles belonging to group 2, m 
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,d colf  collision frequency of single particle, 1/s 
k  specific turbulent kinetic energy, m²/s² 

el  size of the large eddy, m 

,e lμl  lowest spatial scale for existence of eddies in field l called inner scale or 
small scale or Taylor micro-scale (µ) of turbulence, m   

Δl  characteristic size of the geometry, m 
dn  number of dispersed particles per unit mixture volume, 1/m³ 

1dn  number of dispersed particles per unit mixture volume belonging to group 1 
with common averaged size, 1/m³ 

2dn  number of dispersed particles per unit mixture volume belonging to group 2 
with common averaged size, 1/m³ 

,d coln&  number of collisions per unit time of dispersed particles, 1/s 
Recd  Reynolds number based on relative velocity, continuum properties and 

size of the dispersed phase, dimensionless 
St  ,: cd L cτ τ= Δ Δ is the Stokes number, dimensionless 

12VΔ   difference between gas and liquid velocity, m/s 

ddVΔ  difference between the velocity of two neighboring droplets, m/s 

1 2d dVΔ  difference between the velocity of two neighboring droplets with sizes 
belonging to two different groups, m/s 

mlΔV  difference between m- and l-velocity vectors, m/s 
V ′  fluctuation velocity component, m/s 
Vol  control volume, m³ 
ν  velocity component in angular direction, m/s 
w  axial velocity, m/s 

*w  friction velocity, dimensionless 
w  cross section averaged friction velocity, m/s 
w+  axial velocity, dimensionless 

cw  continuum axial velocity, m/s 

cw   averaged axial continuum velocity, m/s 
*
cw  continuum axial friction velocity, m/s 

 
 
 
Greek 
 
α  volumetric fraction, dimensionless 
ε  power dissipated irreversibly due to turbulent pulsations in the viscous 

fluid per unit mass of the fluid (dissipation of the specific turbulent ki-
netic energy), m²/s³ 



τΔ  time interval, s 
12τΔ  droplet relaxation time, s 

13τΔ  particle relaxation time, s 

cdτΔ  The characteristic time for the response of a single particle, particle re-
laxation time, s 

,d colτΔ  time elapsed between two subsequent collisions, s 

kτΔ  time constant for the decay of the turbulent kinetic energy, s 

eτΔ  time scale of fluctuation of large eddy, s 

,intedτΔ  time required by a particle with relative to the continuum velocity cdΔV  
to cross an eddy with size ,e ll , s 

,e lμτΔ  time scale corresponding to the spatially lowest scale for existence of ed-
dies in field l called inner time scale or small time scale or Taylor micro-
scale of turbulence, s 

,L cτΔ  *: 0.04 h cD w= , time Lagrangian scale of turbulence averaged over the 
cross section, s 

,L cdτΔ  Lagrangian eddy–droplet interaction time, s 

( ), 0L cd StτΔ =  interaction time for very small particles, s 

( ),L cd StτΔ → ∞  interaction time for very large particles, s 
 
Subscripts 
 
c  continuous 
d  dispersed 
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7 Two group k-eps models 

7.1 Single phase flow 

Hanjalic, Launder and Schiestel (1976) proposed to divide the turbulence struc-
tures conditionally into two groups. The first one describing the large scale motion 
and the second describing the transition scale motion leading to dissipation. Using 
the hypothesis of equilibrium between the transition scale motion and the small 
scale motion being dissipated the authors derived the following formalism. 

 

( ) ( ) ( ). k t
p p p p k pk k k P∂ ρ ρ ν ρ ν ε

∂τ
⎡ ⎤+∇ − ∇ = −⎣ ⎦V ,  (7.1) 

 

( ) ( ) ( ). k
T T T T p Tk k k∂ ρ ρ ν ρ ε ε

∂τ
+∇ − ∇ = −V ,   (7.2) 

 

( ) ( ) ( )1 2. p t
p p p p p k p pc P cε

ε ε

ε∂ ρε ρ ε ν ε ρ ν ε
∂τ κ

⎡ ⎤⎡ ⎤+∇ − ∇ = −⎢ ⎥⎣ ⎦ ⎣ ⎦
V , (7.3) 

 

( ) ( ) ( )1 2. T
T T T T T p T Tc cε

ε ε
ε∂ ρε ρ ε ν ε ρ ε ε

∂τ κ
⎡ ⎤⎡ ⎤+∇ − ∇ = −⎢ ⎥⎣ ⎦ ⎣ ⎦

V , (7.4) 

 
With the empirical constants  

 
1 2.2pcε = ,        (7.5) 

 

2 1.8 0.3 1 1p p
p

T T

k k
c

k kε

⎛ ⎞ ⎛ ⎞
= − − +⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
,     (7.6) 

 
1 1.08T p Tcε ε ε= ,       (7.7) 

 
2 1.15Tcε = .       (7.8) 
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In this formalism the deformation of the mean velocity field t
kPρν  is the only 

source for large scale fluctuations. The dissipation of the large scale motion pε  is 
simultaneously a source for the transition scale motion. Tε  is the irreversible fric-
tion dissipation of the transition eddies, which has to appear in the energy conser-
vation equation. 

7.2 Two-phase flow 

Following the idea of Hanjalic et al. (1976), Lopez de Bertodano et al. (1994) 
proposed a two group model for bubbly flow in which the source, the extra 
k- equation for small scale eddies, was written as relaxation term 

 

( ), , ,
1

v c c k c v d c c d c d
cd

G k kγ α ρ γ α ρ
τ ∞≈ −

Δ
,    (7.9) 

 
where  
 

2
,

1
2

vm
c d c cdk c∞ = ΔV        (7.10) 

 
is the turbulence kinetic energy association with the fluctuation of the so-called 
added mass of the continuum. For the relaxation time constant the expression 
 

cd d cdDτΔ = ΔV .      (7.11) 
 
was used. Haynes et al. (2006) continued working on such formalism for two-
phase bubbly flow. Following these ideas and extending them to porous body the 
two group equation for each field describing the turbulence will be 
 

( ) ( ). k
l l pl v l l l pl pl plk k k∂ α ρ γ α ρ ν γ

∂τ
⎡ ⎤+∇ − ∇⎣ ⎦V  

 

( ), , , ,
t

l l v l k l pl k l k l kw lP G P Pμα ρ γ ν ε= − + + + ,   (7.14) 

 

( ) ( ). k
l l Tl v l l l Tl Tl Tlk k k∂ α ρ γ α ρ ν γ

∂τ
⎡ ⎤+∇ − ∇⎣ ⎦V ( ),l l v pl Tl k lG ωα ρ γ ε ε= − + , 

        (7.15) 
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( ) ( ).l l pl v l l l pl pl pl
ε∂ α ρ ε γ α ρ ε ν ε γ

∂τ
⎡ ⎤+∇ − ∇⎣ ⎦V  

 

( )1 , 2 3 , ,
pl t

l l v p l k l p pl p k l w l
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c P c c G Pε ε ε ε

ε
α ρ γ ν ε

κ
⎡ ⎤
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,   (7.16) 

 

( ) ( ).l l Tl v l l l Tl Tl Tl
ε∂ α ρ ε γ α ρ ε ν ε γ

∂τ
⎡ ⎤+∇ − ∇⎣ ⎦V   

 

( )1 2 3 ,
Tl

l l v T pl T Tl T k l
Tl

c c c Gε ε ε ω
ε

α ρ γ ε ε
κ

= − + .    (7.17) 

 
A new source term ,k lG ω  is introduced here to model the fine eddy generation in 
the bubble wake. It is set by Haynes et al. (2006) to be function of the type 
 

 ( ), ,  inter bubble mean distancek l TlG f kω = ,   (7.18) 

 
but not explicitly provided by the authors. The modeling constants 3pcε  and 3Tcε  
are also not reported. Using  
 

( )pl pl Tlt
l

pl

k k k
cην

ε

+
≈ ,       (7.19) 

 
Haynes et al. (2006), the demonstrated improvement regarding void profiles in 
bubbly flow is considered to come from this type of splitting. In fact other authors 
also obtained appropriate void profiles in simulation of similar experiments with-
out splitting. Note that such models are at the very beginning of their development 
for bubbly flows. 

Nomenclature 

Latin 
 

vm
cdc  coefficient for the virtual mass force or added mass force acting on a dis-

persed particle, dimensionless 
1pcε , 2pcε , 1Tcε , 2Tcε  modeling constants for single phase flow k-eps model, 

dimensionless 



pk  in sense of two group theory: specific turbulent kinetic energy of the 
large scale motion group, m²/s²  

Tk  in sense of two group theory: specific turbulent kinetic energy of the tran-
sition scale motion group leading to dissipation, m²/s² 

,c dk ∞  turbulence kinetic energy association with the fluctuation of the so-called 
added mass of the continuum, m²/s² 

kP  production of the turbulent kinetic energy per unit mass, W/kg 

,k lP  production of the turbulent kinetic energy per unit mass of the velocity 
field l due to deformation of the velocity field l, W/kg 

kwP  irreversibly dissipated power per unit flow mass outside the viscous fluid 
due to turbulent pulsations equal to production of turbulent kinetic energy 
per unit mass of the flow, W/kg (m²/s³) 

,kw lP  production of turbulent kinetic energy per unit mass of the field l due to 
friction with the wall, W/kg 

,k lP μ  production of turbulent kinetic energy per unit mass of the field l due to 
friction evaporation or condensation, W/kg 

Pε  production of the dissipation of the turbulent kinetic energy per unit 
mass, W/kg 

wPε  production of the dissipation of the turbulent kinetic energy per unit mass 
due to friction with the wall, W/kg 

,w lPε  production of the dissipation of the turbulent kinetic energy per unit mass 
of the field l due to friction with the wall, W/kg 

V  velocity vector, m/s 
 
Greek 
 
α  volumetric fraction, dimensionless 
γ  surface permeability defined as flow cross section divided by the cross 

section of the control volume (usually the three main directional compo-
nents are used), dimensionless 

vγ  volumetric porosity defined as the flow volume divided by the considered 
control volume, dimensionless 

pε  in sense of two group theory: dissipation of the large scale motion group, 
m²/s² 

Tε   in sense of two group theory: irreversible friction dissipation of the transi-
tion eddies, m²/s² 

k
lν  total cinematic diffusivity of the turbulent kinetic energy, m²/s 

l
εν  total cinematic diffusivity of the dissipation of the turbulent kinetic en-

ergy, m²/s 
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η  dynamic viscosity, kg/(ms) 
ρ  density, kg/m³ 
τ  time, s 

cdτΔ  relaxation time constant, s 

References 

Hanjalic K, Launder BE and Schiestel R (1976) Multiple time scale concepts in turbulent 
transport modelling, Second symposium on turbulence shear flows, pp 36-49 

Haynes P-A, Péturaud P, Montout M and Hervieu E (July 17-20, 2006) Strategy for the  
development of a DNB local predictive approach based on NEPTUNE CFD software, 
Proceedings of ICONE14, International Conference on Nuclear Engineering, Miami, 
Florida, USA , ICONE14-89678 

Lopez de Bertodano M, Lahey RT Jr. and Jones OC (1994) Phase distribution of bubbly 
two-phase flow in vertical ducts, Int. J. Multiphase Flow, vol 20 no 5 pp 805-818 

 



8 Set of benchmarks for verification 
of k-eps models in system computer codes 

The emphasis in this chapter is on averaged turbulence modeling in rod-bundles 
on an intermediate scale that is finer than the sub channel scale but much larger 
than the scale required for direct numerical simulation. Thirteen benchmarks 
based on analytical solutions and experimental data are presented and compared 
with the prediction of the IVA computer code. For the first time distribution of the 
averaged turbulence structure in boiling bundles is presented. It is demonstrated 
that k-eps models with two-way coupling possess substantial potential for increas-
ing the accuracy of the description of multi-phase flow problems in bundles espe-
cially the effect of the space grids.  

8.1 Introduction 

We have already concluded that Euler-methods with k ε−  models for the con-
tinuums and two-way coupling give the most promising framework and have in-
troduced in the IVA three-fluid multi-component model, a set of k ε−  equations 
for each velocity field, Kolev 2000. Later the model was extended to multi-block 
model in boundary fitted coordinates, Kolev 2003-2005. So the following equa-
tions are solved as a part of IVA-solution algorithm: 
 

( ) ( ). k
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where  
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ε

ε

ν
ν ν= + . By computing the source terms we distin-

guish between sources for pool flow or sources for flow in porous structures. Ei-
ther one or the other set is implied for each computational cell. We are going to 
check the performance of the model starting from simple cases and increasing the 
complexity. 

Before verifying k-eps models for multi-phase flow, benchmarks for single 
phase flows have to be reproduced. In what follows we give eleven examples. 

8.2 Single phase cases 

Problem 1: 2D-steady state developed single phase incompressible flow in a cir-
cular pipe. 
 
In this case having in mind that the production of the turbulent kinetic energy is 

simply 
24

3
t

k
wP
r

∂ν
∂
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 the system of non linear ordinary differential equations 

simplifies to 
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with 2t c kην ε= . We keep the time derivatives because solving the transient 
problem at constant boundary conditions results naturally in a stable relaxation 
method. Knowing the wall share stress from macroscopic correlation the structure 
of k and ε  can be reconstructed by solving the above equations.  
 
Practical relevance:  This case is useful to check the performance of codes de-
scribing more complex geometry or to compute the length scale of the turbulent 
eddies. In dispersed flow with fine droplets or in bubble flow this length scale is 
an indication of the maximum possible size of the dispersed particles. This ap-
proach is useful for estimating the moisture droplet size in industrial steam flows 
(if the prehistory is not delivering small sizes) in order to prescribe the require-
ments for separators. 



Problem 2: The decay constant for single phase flow. 
 

Bertodano et al. (1994) considered a single phase homogeneous turbulence for in-
compressible flow and found some useful relations given below. In this case the 

k ε−  equations reduces to Dk
D

ε
τ
= − , 2

D c
D kε
ε ε ε
τ
= −  with analytical solution 
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which illustrate that the turbulence decays with a time constant  
 

0 0k kτ εΔ = .       (8.7) 

 
Conclusion: Comparing with  
 

, , 3 2 0.37e l e l l l l lV c k kητ ε ε′Δ = = =l   
 
we realize that the time scale of the fluctuations of a large eddies is about 1/3 of 
the turbulence decay time constant. Eq. (8.6) is valid along the characteristic line 
defined by the continuum velocity.  
 
Practical relevance: The Bertodano’s et al. Eq. (8.6) is of fundamental impor-
tance. It removes the arbitrariness applied by some authors for describing the de-
cay after singularities by purely empirical constants. Is simply says that one has to 
know  0k  and 0ε  behind the singularity and the decay constant is then uniquely 
defined. Some examples of works with avoidable empiricism are given here: 
Knabe and Wehle (1995) postulated empirical decay coefficients that are gener-
ated by comparison with dry out data. Therefore their model incorporating this 
element is always associated with a specific experimental geometry and boundary 
conditions. Nagayoshi and Nishida (1998) performed measurements on a typical 
sub-channel for BWR-rod-bundles without and with ferrule spacers with 0.5, 1 
and 1.5mm. They reported increase of the lateral velocity fluctuation depending 
on the blockage ratio 1 zγ− , with subsequent decay 
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for Reynolds numbers 0.5 to 1.2x105. The data indicated that the turbulence is 
reaching the state after 10 hydraulic diameters. The above empirical relation can 
be replaced by analytical one. 
 
Problem 3: 1D-Decay of turbulence in a pipe flow 
 
Consider 1D-single phase homogeneous turbulence for incompressible flow with 
constant velocity. In this case the k ε−  equations reduces to  
 

k
dkw P
dz

ε= − ,       (8.9) 

 
2

2
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dz kε ε
ε ε
= − .       (8.10) 

 
Using the first order donor-cell discretization for the convective terms we obtain  
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which is a system of nonlinear algebraic equations with respect to the unknowns. 
Excluding the kinetic energy the quadratic equation  
 

2 0a b cε ε+ + = ,       (8.13) 
 
where  
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is solved with respect to the dissipation. Then the kinetic energy is computed from 
the k-equation. Using the following characteristics of the flow 0.1hD m= ,  
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Fig. 8.1. Test problem 3: Decay of turbulence in a pipe liquid flow. Comparison between 
the 1D-semi analytical solution with a DNS simulation reported by Chandesris et al. 
(2005). a) Turbulent kinetic energy as a function of the axial coordinate; b) Dissipation of 
the turbulent kinetic energy as a function of the axial coordinate  

0 1 2 3 4 5
0

2

4

6

8

10

12

 

 

 Chanderis and Serre (C-S)
 IVA with C-S sources
 IVA with C-S sources, ksi = 0.1

k/
k in

f

z/Dhyd

0 1 2 3 4 5
0
2
4
6
8

10
12
14
16

 

 

 Chanderis and Serre (C-S)
 IVA with C-S sources
 IVA with C-S sources, ksi = 0.1

ep
s/

ep
s in

f

z/Dhyd

 
Fig. 8.2. Test problem 4, 5: Decay of turbulence in a pipe liquid flow. Comparison of the 
IVA computer code solution, Kolev (2007a, b), with a DNS simulation reported by Chan-
desris et al. (2005). a) Turbulent kinetic energy as a function of the axial coordinate;  
b) Dissipation of the turbulent kinetic energy as a function of the axial coordinate. The 
curves with the jump are obtained by introducing a hydraulic resistance at the middle of the 
channel 

1 /w m s= , 5Re 10= , lim 8y+ = , 3.06kc = , 2 1.92cε = , -21.78 10frλ = × , 0.1606e m=l , 
-34.4945 10k∞ = × 2 2/m s , -25.5455 10kwP = × 2 3/m s , -25.5455 10kwPε∞ = = ×  2 3/m s ,  

1.3137wPε = 2 4/m s , 0 8k k∞=  -23.5956 10= × 2 2/m s , 0 15 = 0.8318ε ε∞= 2 3/m s , the
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integration of the system over 5 diameters (100 computational cells) gives the re-
sults presented in Fig. 8.1. Figure 8.1 contains direct numerical simulation results 
reported by Chandesris et al. (2005) for these conditions. Obviously, in this case 
convection is predominant and the diffusion is not important.  
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Problem 4: Introduce the sources as derived by Chandesris et al. (2005) in IVA 
computer code and repeat the computation to problem 1. 
 
Now we repeat the same computation using the computer code IVA having com-
plete k-eps models. The boundary conditions are the same. 
 
Practical relevance: From the comparison with the previous computation we 
learn that the resolution of the non-linearities of the source terms in a single time 
step in the numerical solution method increases the accuracy. This is not done in 
the IVA computation. 
 
Problem 5: Introduce the sources for distributed hydraulic resistance coefficients 
in IVA computer code and repeat the computation to problem 4 with and without 
singularity. 

 
After introducing the sources for the k-eps equation for each particular computa-
tional cell we compute the test case with and without ( )2.5 0.1fr hydDζ =  assuming 

zero viscous dissipation, 0visη = . The results are presented in Fig. 8.2. We see 
that the turbulent kinetic energy jumps after the singularity. Then the decay fol-
lows the local maximum. Similar is the behavior of the dissipation. 
 
Problem 6: Repeat with IVA the computation to problem 2 without singularity us-
ing instead of water gas flow at the same Reynolds number with 25.56 /w m s= . 
Compare the solution with the analytical solution for convection only. 
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Fig. 8.3. Test problem 4: Decay of turbulence in a pipe gas flow. Comparison of the IVA 
computer code solution, Kolev (2007a, b), with a analytical solution. a) Turbulent kinetic 
energy as a function of the axial coordinate; b) Dissipation of the turbulent kinetic energy 
as a function of the axial coordinate

The result of the computation is presented in Fig. 8.3. We see very good compari-
son for the dissipation of the turbulent kinetic energy. The turbulent kinetic energy 
is predicted slightly slower. One should keep in mind that the analytical example 
is solved for incompressible flow. The real compressibility taken into account in 

130      8 Set of benchmarks for verification of k-eps models in system computer codes 



IVA computer code predicts increasing velocity with decreasing pressure. This is 
the reason for the differences of the kinetic energies. 
 
Problem 7. Given the bundles in Fig. 8.4 with a grid with irreversible pressure 
loss coefficient frζ = 0.96, compute the axial distribution of the averaged turbu-
lent kinetic energy of the liquid and compare it with the measurements reported in 
Serre and Bestion (2005). 
 

  
Fig. 8.4. Description of the Agate experiment, taken from Serre and Bestion (2005)  
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Fig. 8.5. Turbulent kinetic energy as a function of the axial coordinate: a) lim 8y+ = , 
0.0306kc = ; b) lim 16y+ = , 0.0368kc =
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Figure 8.5 contains the obtained computational results for two different sets of the 
modeling constants as proposed by Chandesris et al. (2005) for channels and rod 
bundles. We vary the percentage of the turbulent energy that is directly dissipated 
after its generation at the singularity, visη . We realize that (a) using the modeling 
constants for rod bundles predicts the experimentally observed decay better, and 
(b), probably only about 15% of the loosed mechanical energy in the grid region 
goes for generation of the turbulence. 
 
Practical relevance: Heat transfer in rod bundles in variety of engineering facili-
ties is dependent also on the local singularities that produce turbulence. Therefore 
understanding these processes allows optimization of technical facilities in this 
field. 
 
Problem 8. Given a channel with cross section, as given in Fig. 8.6, 2.175m from 
the entrance a 75mm-high grid with thickness 0.5, 1 and 1.5mm and form given in 
Fig. 8.6 is mounted. Compute the axial distribution of the averaged turbulent ki-
netic energy of the liquid considering the generation due to increased hydraulic 
diameter and compare it with the measurements reported in Nagayoshi and Ni-
shida (1998). 

  
Fig. 8.6. Experimental sub-channel, grid design 
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Fig. 8.7. The cross section averaged fluctuation velocity divided by the background veloc-
ity fluctuation as a function of the axial coordinate: lim 16y+ = , 0.0368kc =

We perform the computation taking into account only the change of the hydraulic 
diameter in the region of the grid without any additional irreversible friction coef-
ficient. The results are presented in Fig. 8.7. Obviously for small blockage ratios < 
0.009 the additional turbulence generation is due to the increase of the friction sur-
faces. For blockage ratios larger than 0.04 the additional weak formation after the 
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blockage have to be taken into account. The decay characteristics are properly 
predicted. 
 
Problem 9. Given a channel with cross section as given in Fig. 8.8, 0.6m from the 
entrance, a 40mm-high grid with unknown thickness having mixing vanes and 
form given in Fig. 8.8 is mounted. The bundle is characterized by 68mm square 
housing, D=9.5mm rod diameters, W/D=1.4263, P/D=1.326, resulting in hydrau-
lic diameter of 11.21mm. Water at atmospheric pressure and 25°C is pumped into 
the entrance with 5m/s corresponding to a Reynolds number based on the hydrau-
lic diameter of 62500. At this Reynolds number the measured irreversible resis-
tance coefficient was around 1. Compute the axial distribution of the averaged 
turbulent kinetic energy of the liquid considering the generation due to increased 
hydraulic diameter and compare it with the measurements reported in Yang and 
Chung  (1998). 
 

   
Fig. 8.8. 5x5 rod bundle with vane spacer grids experimental geometry by Yang and Chung 
(1998) 
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Fig. 8.9. Relative axial fluctuation velocity as a function of the axial coordinate: a) meas-
ured at different points; b) computed by IVA – cross section averaged, homogeneous turbu-
lence. Constitutive constants: Chandesris et al. (2005) for rod bundles lim 16y+ = , 

0.0368kc =  and 0.85visη =  

We use a discretization size of 1mm for this computation and impose the irre-
versible resistance coefficient at the exit of the spacer grid. From the computed 
turbulent kinetic energy the fluctuation velocity is computed assuming homogene-
ous turbulence. Figure 8.9 a) gives the measured relative axial component of the 
turbulent pulsations along a path 1 from Fig. 8.8. Figure 8.9 b) gives the computed 
relative component of the turbulent pulsations. Having in mind that the real turbu-
lent structure is probably heterogeneous and not evenly distributed across the bun-
dle we conclude that the computed averaged structure along the axial coordinate 
represents well the reality. Figure 8.10 gives the magnitude of the kinetic energy 
of the turbulence and its dissipation. 
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Conclusion: Knowing the irreversible resistance coefficient and imposing it as a 
singularity at the exit of the grid within a k-eps framework provide the appropriate 
description of the cross section averaged axial structure of turbulence in bundles. 
Comparing both experiments those by Serre and Bestion (2005) and those by Yang 
and Chung (1998) we realize that only about 15% of the loosed mechanical energy 
in the grid region goes for generation of the turbulence and that the modeling con-
stants lim 16y+ = , 0.0368kc = work properly. 
 
Problem 10: Given a 5x5 rod PWR bundle with length of 3m and 5 FOCUS spacer 
grids with 40mm high, consider a flow of 601.45K-water at 165.5bar with inlet ve-
locity of 4.573m/s. Compute the steady state turbulent kinetic energy and its dissi-
pation. Use them as initial conditions and compute the axial distribution of the 
turbulent characteristics through and after the spacer grid. 
 
First we compute the distribution along the bundle without grid and find out that 
the steady state turbulent kinetic energy and its dissipation are 
k∞ =0.074716 2 2/m s , ε∞ =20.985 2 3/m s , respectively. Then we use them as ini-
tial conditions and compute the flow over a spacer grid and behind by using two 
geometrical models: (a) with changes of the cross section and of the hydraulic di-
ameter over the spacer only, without irreversible friction coefficient; (b) no 
changes of the cross section and of the hydraulic diameter over the spacer with ir-
reversible friction coefficient posed in the cell after the grid exit. The results are 
presented in Figs. 8.11a, b and c.  
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Fig. 8.10. Cross section averaged turbulent properties as a function of the axial distance: 
a) specific turbulent kinetic energy; b) specific dissipation of the turbulent kinetic energy 
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Fig. 8.11. Axial distribution of the turbulent characteristics over a FOCUS grid: a) Turbu-
lent kinetic energy; b) Dissipation of the turbulent kinetic energy; c) Pressure drop 

First, we realize that the contribution of the friction inside the grid to the genera-
tion of the turbulence is small compared to the blockage and swirling effects. 
Therefore from the point of view of turbulence generation the second approach 
can be used in large scale simulations. But one should not forget that the reduction 
of the cross section leads to increase in the velocity resulting in additional droplet 
fragmentation which has some influence on the deposition. 

Second, in non boiling flows there is no accumulative effect because the next 
grid is far enough. Only in case of boiling flow the effect can be accumulative as 
those demonstrated in Fig. 8.14. The stronger the mixture expansion is, the 
stronger this effect. 

Third, the microscopic swirling effect is not allowed to be lumped as a source 
with the turbulence generation because it will decay within 20-30 diameters be-
hind the grid. Therefore even in a single cell, the swirling effect has to be modeled 
by macroscopic momentum redistribution. The multi-block approach of IVA in 
boundary fitted coordinates is of course the better choice for this application but 
the resources for this study are very limited. 

 
Problem 11: Given a 8x8 rod BWR bundle with length of 3.708m and 7 ferrule 
spacer grids with 31mm high, consider a flow of 557.95K-water at 71.5bar with 
inlet velocity of 2.709m/s. Compute the steady state turbulent kinetic energy and 
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its dissipation. Use them as initial conditions and compute the axial distribution of 
the turbulent characteristics through and after the spacer grid. 
 
First we compute the distribution along the bundle without grid and find out that 
the steady state turbulent kinetic energy and its dissipation are k∞ = 
0.026756 2 2/m s , ε∞ = 3.3525 2 3/m s , respectively. Then we use them as initial 
conditions and compute the flow over a spacer grid and behind by using two geo-
metrical models: (a) with changes of the cross section and of the hydraulic diame-
ter over the spacer only, without irreversible friction coefficient; (b) no changes of 
the cross section and of the hydraulic diameter over the spacer with irreversible 
friction coefficient posed in the cell after the grid exit. The results are presented in 
Figs. 8.12a, b and c. 
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Fig. 8.12. Axial distribution of the turbulent characteristics over a FOCUS grid: a) Turbu-
lent kinetic energy; b) Dissipation of the turbulent kinetic energy; c) Pressure drop 

Comparing the turbulence structure generation for the BWR and the PWR cases 
we see a considerably larger turbulent kinetic energy and its dissipation in the 
PWR case.  
 
What was concluded for test problem 12 is valid here also. 
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8.3 Two-phase cases 

Problem 12: Given rod bundle for nuclear power plant with the geometry and 
spatial heat release in the fuel rods specified in OECD/NRC Benchmark (2004). 
The horizontal cross section of the bundles is illustrated in Fig. 8.11. Under these 
conditions the flow is boiling and the flow regimes are either liquid only or bubbly 
flow. Compute the parameters in the bundles including the turbulent kinetic en-
ergy and its dissipation in the continuous liquid.   
 
The lateral discretization (18x18x24 cells) used here presented also in Fig. 8.13. 
The geometry data input for IVA computer code is generated using the software 
developed by Roloff-Bock (2005). 
 

 
Fig. 8.13. Bundle 1-1, 1 OECD/NRC Benchmark (2004) 
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The results for a vertical plane crossing the bundle at the middle are presented in 
Fig. 8.14. The family of curves belongs to each vertical column of cells from one 
site to the other. We see several interesting elements of the large scale averaged 
turbulence of the flow: 
 

a) The distance between the spacer grids influences turbulence level. 
Smaller distance increases the turbulence level. Distance larger than the 
compete decay distance do not increase the averaged level of turbulence. 

b) The boiling in the upper half of the bundle increases also the liquid ve-
locities and therefore the production of turbulence in the wall. In addi-
tion, the bubbles increase the production of turbulence due to their rela-
tive velocity to the liquid; 

c) Comparing figures 8.14 with 8.1 we realize that in order to obtain smooth 
profiles as those in Fig. 8.1 the resolution in this case in the axial direc-
tion have to be substantially increased. 
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Fig. 8.14. Test problem 5: Turbulence of boiling liquid in rod bundle computed with IVA 
computer code, Kolev (2007a, b). a) Turbulent kinetic energy as a function of the axial co-
ordinate; b) Dissipation of the turbulent kinetic energy as a function of the axial coordinate 

 
Practical relevance: As I obtained this result in 2005 and reported it in Kolev 
(2006) I did not know any other boiling flow simulation in rod-bundles delivering 
the large scale averaged level of turbulence. Improving the capabilities in this field 
opens the door to better prediction of two important safety relevant phenomena in 
the nuclear power plant: (a) the particles (bubble or droplets) dispersion can be 
better predicted; (b) the deposition of droplet influencing the dry out can be better 
predicted; (c) if such methods for prediction of the departure from the nucleate 
boiling (DNB) could be available that take into account the level of the local liq-
uid turbulence the accuracy of the DNB prediction will increase. 
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Problem 13: Consider the Bennet et al. (1967) test nr. 5253. Given a vertical pipe 
with 0.01262m inner diameter and 5.5626m length, the pipe is uniformly heated 
with 199kW. The inlet water flow happens from the bottom at 68.93bar and 
538.90K. Compute the flow parameters inside the pipe. Show the distribution of 
the turbulent kinetic energy in the continuous gas. In a second computation insert 
a irreversible friction loss coefficient 0.1 and compare the predictions with the 
non disturbed flow. 
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Fig. 8.15. Test problem 6: Turbulence of boiling liquid in pipe computed with IVA computer 
code, Kolev (2007a, b). a) Volumetric fraction of the steam (1) liquid (2) and droplet; b) Tur-
bulent kinetic energy as a function of the axial coordinate with and without singularity 

We use again IVA computer code, Kolev (2007a, b). Axially 100 equidistant cells 
are used. The computed local volume fractions of the three fluids are given in Fig. 
8.15a. Fig. 8.15b gives the turbulent kinetic energy of the vapor in the film region 
where the film and the gas are continuous without and with irreversible friction 
coefficient 0.1 placed in cell 75 with 0.9visη = . We see that the singularity creates 
a jump in the turbulent kinetic energy in the vapor which then dissipates and  
approaches the undisturbed state. The continuous evaporation feeds turbulent  
kinetic energy into the vapor which explains the increasing character of the curves. 

Conclusions 

The emphasis in this section is on averaged turbulence modeling on an intermedi-
ate scale that is finer than the sub channel scale but much larger than the scale re-
quired for direct numerical simulation.  
 
1. It is identified that the introducing of turbulence modeling of the boiling flow 
possesses substantial potential for improving our understanding of the CHF phe-
nomena. The recent capabilities of IVA computer code are extensively checked 
on analytical experiments and benchmarks demonstrating adequate performance 
in single phase flow. Also the effect of the grids is naturally taken into account 



in the prediction of the turbulence characteristics in average. For the first time 
application to rod bundles demonstrate the effect of the grids on the boiling flow 
turbulence. 
 
2. More effort is necessary to increase the accuracy of the involved correlation, to 
derive complete set of source terms for generation of turbulence in all multi-phase 
flow pattern, to accomplish the right coupling between deposition and local degree 
of turbulence, and finally to derive appropriate mechanistic criterion for identifica-
tion of dry out. This is important for the BWR fuel technology. I strongly recom-

 
3. Use of the modeling of the gross turbulence structure for PWR bundles can be 
made by developing DNB model having as a model element the bulk turbulence 
of the flow. Such model remains to be developed. 
 
4. In both considered cases (BWR and PWR bundles) the more sophisticated de-
scription of the local two-phase turbulence opens the door for better prediction of 
bubble and droplet dispersion in bundles. 
 
5. The microscopic swirling effect is not allowed to be lumped as a source with 
the turbulence generation because it will decay within 20-30 hydraulic diameters 
behind the grid. Therefore even in a single cell, the swirling effect has to be mod-
eled by macroscopic momentum redistribution. The multi-block approach of IVA 
in boundary fitted coordinates is of course the better choice for this application but 
the resources for performing this study are very limited. 

Nomenclature 

Latin 
 

1cε , 2cε , 3cε  constants in the source term for the dissipation turbulent kinetic 
energy 

hD  hydraulic diameter, m 

,k lG  production of the turbulent kinetic energy due to the buoyancy force de-
posed into field l, m²/s³ 

0k  initial turbulent kinetic energy, m²/s² 

lk  turbulent kinetic energy of field l, m²/s² 
k∞  turbulent kinetic energy for steady developed flow, m²/s² 

el  effective maximum of the turbulent length scale, m 

klP  production of the turbulent kinetic energy deposed into field l, m²/s³ 
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mend continuation of this line of research (e.g. to go farther than in Ch. 4.2)  
theoretically and experimentally. 
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kwP  production of the turbulent kinetic energy due to the wall friction, m²/s³ 

,kw lP  production of the turbulent kinetic energy due to the wall friction deposed 
into field l, m²/s³ 

,k lP μ  production of the turbulent kinetic energy due to evaporation or conden-
sation deposed into field l, m²/s³ 

wPε  production of the dissipation of the turbulent kinetic energy due to the 
wall friction, 2 4/m s  

,w lPε   production of the dissipation of the turbulent kinetic energy due to the 

wall friction deposed in the field l, 2 4/m s  
Prt

kl  turbulent Prandtl number describing the diffusion of the turbulent kinetic 
energy of field l, - 

Prt
lε  turbulent Prandtl number describing the diffusion of the dissipation of the 

turbulent kinetic energy, - 
wq′′&  heat flux at the wall, W/m² 

2wq′′&  heat flux from the wall into field 2, W/m² 
u′  velocity fluctuation, m/s 

0u′  initial velocity fluctuation, m/s 

1V ′  gas velocity fluctuation, m/s 

lV  velocity of field l, m/s 

lν  cinematic viscosity of field l, m²/s 
k
lν  eddy diffusivity for the turbulent kinetic energy, m²/s 

l
εν  eddy diffusivity for the dissipation of the turbulent kinetic energy, m²/s 
t
lν  turbulent cinematic viscosity of field l, m²/s 

w  cross section averaged velocity, m/s 
2w  velocity of liquid, m/s 

limy+  effective thickness of the layer in which part of the turbulence kinetic en-
ergy is irreversibly dissipated, dimensionless 

z  axial coordinate, m 
_grid end

z  axial coordinate counted from the end of the grid, m 
 
Greek 
 

2α  liquid volumetric fraction, - 

lα  volumetric fraction of field l, - 
γ  surface permeability (flow cross section divided by the total cross sec-

tion), - 
zγ  surface permeability in z direction, - 



,z spacerγ  surface permeability in z direction in the region of the spacer, - 

vγ  volumetric porosity (flow volume divided by total volume), - 

0ε  initial dissipation of the turbulent kinetic energy, m²/s³ 

lε  dissipation of the turbulent kinetic energy of field l, m²/s³ 
ε∞  dissipation of the turbulent kinetic energy for steady developed flow, 

m²/s³ 
spacerζ  irreversible friction coefficient of the spacer, - 

visη  part of the generated turbulent energy that is directly irreversibly dissi-
pated, - 

frλ  friction coefficient, - 

lρ  density of field l, kg/m³ 
τ  time, s 

2wτ  share stress at the film-wall interface, N/m² 

frζ  irreversible friction coefficient, - 

References 

Bennett AW et al. (1967) Studies of burnout in boiling heat transfer, Trans. Instit. Chem. 
Eng., vol 45 no 8  T319  

Bertodano ML, Lahey RT Jr and Jones OC (March 1994) Development of a k-eps model 
for bubbly two-phase flow, Transaction of the ASME, Journal of Fluids Engineering, 
vol 116 pp 128-134 

Chandesris M, Serre G and Sagaut (2005) A macroscopic turbulence model for flow in porous 
media suited for channel, pipe and rod bundle flows, 4th Int. Conf. On Computational 
Heat and Mass Transfer, Paris 

Knabe P and Wehle F (Dec. 1995) Prediction of dry out performance for boiling water re-
actor fuel assemblies based on subchannel analysis with the RINGS code, Nuclear 
Technology, vol 112 pp 315323 

Kolev NI (April 2000) Applied multi-phase flow analysis and its relation to constitutive 
physics, 8th International Symposium on Computational Fluid Dynamics, ISCFD '99  
5 - 10 September 1999 Bremen, Germany, Invited Lecture. Japan Journal for Compu-
tational Fluid Dynamics, vol 9 no 1 pp 549-561 

Kolev NI (2003, 2005) IVA_5M numerical method for analysis of three-fluid multi-
component flows in boundary-fitted multi-blocks, Presented in Second M.I.T. Con-
ference on Computational Fluid and Solid Mechanics, (17-20 June 2003) Boston. 
Computers & Structures, vol 83 (2005) pp 499-523, USA 

Kolev NI (2007a) Multiphase Flow Dynamics, Vol. 1 Fundamentals, 3d ed., Springer, Berlin, 
New York, Tokyo 

Kolev NI (2007b) Multiphase Flow Dynamics, Vol. 2 Thermal and mechanical interactions, 
3d ed., Springer, Berlin, New York, Tokyo 

Kolev NI (26-27 April 2006) IVA Simulations to the OECD/NRC Benchmarks based on 
NUPEC BWR Full-size Fine-mesh Bundle Tests, 3th Workshop on OECD/NRC 

142      8 Set of benchmarks for verification of k-eps models in system computer codes 



References      143 

Benchmark based on NUPEC BWR full-size fine-mesh bundle tests (BFBT)-(BFBT- 3),
Pisa, Italy 

Nagayoshi T and Nishida K (1998) Spacer effect model for subchannel analysis - turbulence 
intensity enhancement due to spacer, J. of Nucl. Science and Technology vol 35 no 6 
pp 399-405 

OECD/NRC Benchmark based on NUPEC BWR Full-size Fine-mesh Bundle Tests (BFBT), 
Assembly Specifications and Benchmark Database, October 4, 2004, Incorporated  
Administrative Agency, Japan Nuclear Energy Safety Organization, JNES-04N-0015 

Roloff-Bock I (2005) 2D-grid generator for heterogeneous porous structures in structured 
Cartesian coordinates, Framatome ANP, proprietary 

Yang SK and Chung MK (1998) Turbulent flow through spacer grids in rod bundles, 
Transaction of the ASME, J. of Fluid Engineering, vol 120 pp 786-791 



9 Simple algebraic models for eddy viscosity 
in bubbly flow 

Simple algebraic models for eddy viscosity still play an important role in the 
analysis of boiling flows especially in nuclear reactor rod bundles. For this reason 
I will review this subject in this chapter. I will start with models for single phase 
flows in bundles in order later to follow the already established methods also for 
two phase flow. In any case these methods are not as powerful as already de-
scribed k-eps methods but can be used to improve predictions with existing older 
computer codes.  

Bubbles moving with relative velocity to the liquid create vortices behind them. 
Eddies with small sizes dissipate quickly. So that part of the generated turbulence 
energy dissipates into heat. The remaining eddies contribute to shifting the turbu-
lence spectrum of the undisturbed liquid to higher frequencies.  

Generally measurements of many authors for bubbly flow e.g. Serizawa et al. 
(1975) indicated that  
 

1 1 2 2w u w u′ ′ ′ ′≈ .       (9.1) 
 

This will result in 1
1 1 1 2 2 2

2

w u w u
ρ

ρ ρ
ρ

′ ′ ′ ′≈  and therefore in 1
1 2

2

ρ
ρ

′ ′≈T T . 

In upward flows bubbles with small sizes migrate toward the wall, while bub-
bles with large size tend to collect at the central part. 

Keeping bubbles in oscillations with amplitude drδ  and frequency dω  requires 
kinetic energy  

 

( )2 2 4d d drα δ ω ,      (9.2) 
 
Bataille and Lance (1988). Obviously the basic level of turbulence contains this 
amount of energy. 

9.1 Single phase flow in rod bundles 

As an example for use of the effective eddy viscosity in single phase flow we con-
sider flow in rod bundles.  



146      9 Simple algebraic models for eddy viscosity in bubbly flow 

9.1.1 Pulsations normal to the wall 

The data obtained for single phase fluctuation velocity normal to the wall in pipes 
can also be used for flow parallel to a rod bundle based on the systematical ex-
perimental observations reported by Rehme (1992) p. 572: “…The experimental 
eddy viscosities normal to the wall are nearly independent on the relative gap 
width and are comparable to the data of circular tubes by Reichardt close to the 
walls…” For the turbulent viscosity normal to the wall Rehme reported that the 
magnitude of the lateral fluctuation velocity is 3.3% of the friction velocity,  
 

, , 0.033
* *

t
c y c y

h

V
w w D

ν′
= = .      (9.3) 

 
Using as characteristic length of the lateral turbulence pulsation the hydraulic di-
ameter, defining the eddy viscosity as a product of the fluctuation velocity and the 
characteristic length (Prandtl), , ,

t
c y c y hV Dν ′= , replacing the friction velocity and 

rearranging Rehme obtained 
 

, 0.033 0.033 Re
8 8

fr frt c h
c y c c c

c

w D λ λ
ν ν ν

ν
= = .   (9.4) 

 
The coefficient measured by Rehme is very close to those measured by other au-
thors: ≈ 0.035, Hinze (1955), ≈  0.04 Edler (1959).  

Wnek et al. (1975) proposed without any prove to apply the equation  
 

,
,  Re

8
fr lt

c y l lconst
λ

ν ν=       (9.5) 

 
to each of the phases based on  the gas or liquid Reynolds number,  
 

,Re / l
l h l l l lD wρ η= .       (9.6) 

 
( )ReRl Rl lλ λ=       (9.7) 

 
is the friction factor corresponding to the gas or liquid Reynolds number consider-
ing each of the phases l = 1, 2 flowing in its separated channel with hydraulic di-
ameter ,h lD  and velocity lw .  
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9.1.2 Pulsation through the gap 

The Rehme’s result is very important for computing the cross intermixing between 
two parallel channels in rod bundle causing specific spectrum of pulsations for 
each geometry. The net mass exchange in single phase flow is zero but the effec-
tive heat exchange is not zero. Rehme generalized the measurements by many au-
thors including his own large data base by the following relation 
 

, , ,
, , Pr

t
c y c i c j

c ij c p c t
ijc

T T
q c

S
ν

ρ
−

′′ =
Δ

& ,     (9.8) 

 
where the temperatures are the channel averaged fluid temperatures at given ele-
vation and ijSΔ  is the distance between the channel axis. The turbulent Prandtl 
number was found to be  
 

( )Pr 0.7t
c gap rod

S D= ,      (9.9) 

 
where the gap-to-rod diameter ratio is based either on rod-to-rod or rod-to-wall 
distance. Three different notations of the above relation are used in the literature. 
We present also the other two briefly below to make easy for the reader to com-
pare results of different authors to each others. 

Introducing the effective mixing velocity as follows 
 

( ), , ,
, , , , , ,Pr

t
c y c i c j

c ij c p c c c ij p c c i c jt
ijc

T T
q c u c T T

S
ν

ρ ρ
−

′′ ′= = −
Δ

&    (9.10) 

 
results in 
 

( )
, ,

,
, , ,

1:
Pr

t
c ij c y

c ij t
ij cc p c c i c j

q
u

Sc T T

ν

ρ

′′
′ = =

Δ−

&
.    (9.11) 

 
In many publications the gap fluctuation Reynolds number defined as follows  

,c ij gap cu S ν′  is used to correlate data. So the Rehme’s correlation rewritten in terms 
of this group is 
 

, 0.0231 Re
8

c ij gap fr rod
c

c ij

u S D
S

λ
ν

′
=

Δ
.    (9.12) 
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Petrunik reported in 1973 
 

, 0.8270.009Rec ij gap
c

c

u S
ν

′
=  .     (9.13) 

 
Rogers and Tahir reported in 1975 
 

0.46

, 0.90.0058 Rec ij gap rod
c

c ij

u S D
Sν

′ ⎛ ⎞
= ⎜ ⎟⎜ ⎟Δ⎝ ⎠

  for bundle geometry,  (9.14) 

 
0.4

, 0.90.0018 Rec ij gap rod
c

c ij

u S D
Sν

′ ⎛ ⎞
= ⎜ ⎟⎜ ⎟Δ⎝ ⎠

 for simple geometry.  (9.15) 

 
The ratio  
 

,gap c ij cSt u w′=       (9.16) 
 
is called gap Stanton number. Here cw  is the averaged axial velocity. Several au-
thors correlated the gap Stanton number with their measurements on bundles. So 
the Rehme’s correlation rewritten in terms of the gap Stanton number is 
 

( )
, , ,

, , ,

1: 0.0231
8Pr

t
c ij c ij c y frh rod

gap t
c ij c ij gapcc p c c c i c j

u q D D
St

w S w S Sc w T T

ν λ

ρ

′ ′′
= = = =

Δ Δ−

&
. (9.17) 

 
Several correlations from this type are reported in the literature: Rogers and 
Rosenhart, see Seale (1981) for rectangular rod array arrangement: 
 

0.10.004 Reh
gap c

ij

D
St

S
−=

Δ
;     (9.18) 

Wong and Cao (1999) derived from experiments with water at 147bar with 3x3 
square array rods of 10mm diameter, 13.3mm rod pitch and 1m heated 
length 0.10.0056Regap c h gapSt D S−= . The subcooled boiling changed the constant 

to 0.10.015Regap c h gapSt D S−= . 
 
Zhukov et al. (1994): 
 

0.10.01 1.0744 9.1864 Reh
gap c

ij

D
St

S
−

⎛ ⎞
= +⎜ ⎟⎜ ⎟Δ⎝ ⎠

    (9.19) 
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for rectangular arrayed rod bundles; 
 

2

3/ 2

2 3 1
0.39
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rod
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c
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D

St
PPe

D

π
⎛ ⎞
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⎝ ⎠

,      (9.20) 

 
for triangular arrayed rod bundles,1.1 1.35rodP D< < , 70 1600Pe< < and 
Pr 1c << . Here P is the closest distance between the rod axes and Pec is the Peclet 
number. Theoretical expression for bundle is reported also by Zhukov in Bo-
goslovskaya et al. (1996): 
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( ){ }1 exp 80 1rodP D× − − −⎡ ⎤⎣ ⎦      (9.21) 

 
for 1 1.32rodP D< < , 40 1500Pe< < and 0.005 Pr 0.03c< < . 

 
Measurements reported by Baratto, Bailey and Tavoularis (2006) in rod bun-

dles indicate some differences between the gap oscillations characteristics for rod-
to-rod gaps and rod-to-wall gaps. The power spectra are similar but the low fre-
quency-oscillations in the rod to wall gap contain more energy. It results in non 
equal circumferential heat transfer of the rod, Chang and Tavoularis (2006). The 
effective velocity of the coherent structure oscillations in the rod to wall gap is re-
ported by Guellouz and Tavoularis (2000) to become smaller with gap to rod

1.05 1.25gap rodS D< < , cw = 10.1m/s, Rec = 145 000 the authors reported the ap-
proximation of their data with 

 

( ), 1.04 1 exp 10.6 10.9c ij
gap rod

c

u
S D

w
′

⎡ ⎤= − −⎣ ⎦ , 1.25gap rodS D < . 

 

diameter ratio, which is intuitively expected. For air flow at atmospheric conditions, 
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Therefore ( )1 exp 10.6 10.9 gap rodS D− −  can be used as a dumping factor also for 
other data as an approximation. This observation has an effect on the local heat 
transfer on between the rod and the wall, which in accordance with Guellouz and 
Tavoularis (1992) also reduces with decreasing gap rodS D  ratio, see their Fig. 15. 
These authors reported also that in rod bundles for CANDU type reactors the 
circumferential variation of the local heat transfer for peripheral rods varies with 
± 5% which is a result of variation of the pulsation velocity components around 
the peripheral rod as demonstrated in Ouma and Tavoularis (1991). 

9.1.3 Pulsation parallel to the wall 

For the turbulent viscosity parallel to the wall Rehme reported 
 

( )
,

2.42
. 

0.0177
*

t
c z

sym lines gap rod
w y S D

ν
= .     (9.22) 

 
. sym linesy  is the distance from the wall to the symmetry line in the bundles. Replac-

ing the friction velocity and rearranging results in 
 

( )
. 

, 2.42

20.00885
8

c sym lines frt
c z c

cgap rod

w y

S D

λ
ν ν

ν
= .   (9.23) 

9.2 Two phase flow 

There are some attempts in the literature to describe turbulent structure of bubble 
flows by using simple algebraic turbulence models expressing the turbulent cine-
matic viscosity of the continuous phase as a function of the local parameters of the 
flow. 

9.2.1 Simple algebraic models 

For flow around obstacle Cook and Harlow (1984) used Eq. (2.47) in the form 
 

0.02 2t
cd ckν = Δl ,      (9.24) 
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assuming 2 0.3c ck V= , where ck  is the turbulent kinetic energy of the continu-
ous field and Δl  is the characteristic geometry size. Batchelor (1988) used Eq. 
(2.47) in the form 

 
( )2t

cd c d d d cdk D H D Vν α= = Δ ,    (9.25) 
 

where 
 

( ) 22 c d cdk H Vα= Δ ,      (9.26) 
 

2 2 2
cd cd cd cdV u v wΔ = Δ + Δ + Δ ,       (9.27) 

 

( ) 1d d
d

dm dm

H
α α

α
α α

⎛ ⎞
≈ −⎜ ⎟

⎝ ⎠
,     (9.28) 

 
and  
 

0.62dmα ≈        (9.30) 
 
is the limit of the closest packing of bubbles. Zaruba et al. (2005) confirmed this 
equation used with the bubble radius instead with the bubble diameter for bubbly 
flow at atmospheric conditions and 1 10.002 0.004 /w m sα< < .  The eddy viscosity 
takes values in this region between 53.8 10−×  and 5 25 10 /m s−× . 

Other algebraic model for dispersed flows can be derived using the Prandtl 
mixing length hypothesis  

 
( ) ,/t d

cd cd c e cdI dMν = l ,       (9.31) 
 
where ,e cl  is the turbulence length scale of large eddies. For a single particle the 
momentum  
 

d d
cd cddI f τ= Δ         (9.32) 

 
is dissipated into the continuum mass forming idealized trace behind the bubble 
 

21
4c c cd ddM V Dρ τ π= Δ Δ       (9.33) 

 
during the time τΔ . The drag force exerted by the particle is  
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2 21 1
4 2

d d
cd cd d c cdf c D Vπ ρ= Δ .      (9.34) 

 
Therefore the impulse of the friction force per unit continuum mass is  
 

1/
2

d d
cd c cd cddI dM c V≈ Δ .      (9.35) 

 
In accordance with Peebles and Garber (1953)  
 

,0.967 /d
cd d e cc D≈ l        (9.36) 

 
and consequently 

 

( ) , ,
1/ 0.48
2

t d d
cd cd c e c cd cd e c d cddI dM c V D Vν = = Δ ≈ Δl l   (9.37) 

 
valid for single particle or small particle concentrations. For large particle con-
centrations the friction energy is dissipated into the continuum mass belonging to 
a single particle  
 

2 / 3/c c cd ddM V d nρ τ≈ Δ .      (9.38) 
 
Therefore the turbulent viscosity is 
 

7 / 9 2 / 30.58t
cd d cd dD Vν α≈ Δ .     (9.39) 

For bubbly flow Lilienbaum (1983) proposed intuitively the following relationship 
based on dimensional analysis 
 

( )1/ 340.4t
cd d cd dgD Vν α= Δ .     (9.40) 

 
All these expressions are compared in Chapter 3 with Eq. (3.23) and the recom-
mendation was made to use Eq. (3.23) based on sound physical scaling. 

An ad hoc idea of how to use the algebraic models is the superposition of the 
Reynolds turbulence and a component coming from the bubble–liquid interaction. 
An example is given below for the lateral effective eddy diffusivity 
 

( )
1/ 3 1/ 3
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30.033 Re 1.22 1
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fr e ct d d
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d c

c V
D
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ν ν η
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        (9.41) 
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The lateral mass flow rate of bubbles is then 
 

( ) ,,d

t d
d yy

d
v D

dyαα

α
ρ ρ= − ,     (9.42) 

 
with the diffusion coefficient being of order of the eddy diffusivity , ,

t t
y c yDα ν≈ . 

Not enough validation work is available in the literature for this approach. Note 
that the effective volumetric flow in each cross section due to turbulent volume 
fraction diffusion is zero,  
 

, ,d c

t td c
y y

d d
D D

dy dyα α
α α

− =       (9.43) 

 
and therefore  
 

, ,d c

t t
y yD Dα α= .       (9.44) 

 
Note also that with such approach we replace force interaction on smaller scale 
with diffusion transport of volumetric fractions in large scale.  

Therefore one either has to consider the corresponding force components 
for small scales in the momentum equations and not to allow microscopic 
volumetric diffusion in the mass conservation equation or has to replace the 
action of these forces with volumetric diffusion in the mass conservation 
equation. The simultaneous use of both the formalisms is wrong.  

One important remark regarding computing void diffusion in bundles with sub-
channel resolution: In the sense of the sub-channel analysis the void diffusion can 
be expressed as  

 
( ) ( ), , ,,d

t
d y d i d j ijy

v D Sαα
ρ ρ α α= − − Δ .    (9.45) 

 
Note that ( ) ( ), ,c dc dy yv v

α α
ρ ρ ρ ρ= − . Because ijSΔ  is much larger then the dif-

fusion length scale, the turbulent diffusion coefficient has to be additionally sub-
ject to sub-grid modeling 
 

( ), Re , , ,...t
c y c ij gapf S Sν = Δ .     (9.46) 

 
There is no well founded systematical work in this direction. Instead, the proposal  
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( ) ( ),
, , , ,, mech. eq.d

eff
y

d d i d j d i d jy
gap

D
v

S
α

α
ρ ρ α α α α⎡ ⎤= − − −⎢ ⎥⎣ ⎦

  (9.47) 

 
by Lahey et al. in 1972, see also in Lahey and Moody (1993), is widely used with 
empirical modeling of the effective diffusion coefficient ,

eff
yDα  and of the so-called 

equilibrium void difference 
 

( ), , mech. eq.
1.4 i j

d i d j d

G G
G

α α α
−

− ≈ −      (9.48) 

 
with ( ) 2i jG G G= −  and ( ), , 2d d i d jα α α= − . 

The mass source due to turbulent diffusion in the mass conservation equation of 
the dispersed phase is then 
 

( )t t
d d dDαμ ρ γ α= ∇ ⋅ ∇ .      (9.49) 

 
The specific power sources due to turbulent diffusion in the energy conservation 
for the continuum and disperse phase are then 
 

( ) ( ) ( ),
t t t t

c c c c c c c p c c cq e D p D c T Dα α αρ γ α γ α ρ γ α′′′ = ∇ ⋅ ∇ − ∇ ⋅ ∇ ≈ ∇ ⋅ ∇& , (9.50) 
 

( ) ( ) ( ),
t t t t

d d d d d d d p d d dq e D p D c T Dα α αρ γ α γ α ρ γ α′′′ = ∇ ⋅ ∇ − ∇ ⋅ ∇ ≈ ∇ ⋅ ∇& . (9.51) 
 
Simple steady state algebraic models for developed flows have strong limitation in 
its validity for special geometry and flow topology. So, for instance, if turbulence is 
generated in a singular obstacles and then decaying flow-downward the considerable 
mixing around the singularity can not be taken properly into account by the above 
method. 

9.2.2 Local algebraic models in the framework 
of the Boussinesq’s hypothesis 

In the framework of the Boussinesq hypothesis several authors proposed different 
expressions for the effective viscosity based on the local distribution of the undis-
turbed Reynolds turbulence and additives coming from the presence of bubbles. 
Unlike the models discussed in the previous sections based on cross section aver-
aged properties these models are based on local properties. Now we summarize 
briefly the formalism how to check the validity of such expressions. 
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Consider upward directed bubbly flow in a vertical pipe. The zero share line for 
this flow is the axis. In this case the steady state momentum equation for vertical 
pipe section zΔ  is 
 

( )2
1 1 1 2

0

1 2
R

w
pR g rdr R
z

π α ρ α ρ π τΔ
− + − =⎡ ⎤⎣ ⎦Δ ∫ ,   (9.52) 

 
and for the cylinder with radius r 

 

( )2
1 1 1 2 2

0

1 2
rpr g rdr r

z
π α ρ α ρ π τΔ

− + − =⎡ ⎤⎣ ⎦Δ ∫ .   (9.53) 

 
Eliminating the pressure gradient results in   
 

( )2 2,1 w grav
y r
R

τ τ τ⎛ ⎞= − +⎜ ⎟
⎝ ⎠

,     (9.54) 

 
where the gravity component of the share stress is 
 

( ) ( ) ( )2, 1 1 1 2 1 1 1 22
0 0

11 1
2

R r

grav
g rr rdr rdr

rR
τ α ρ α ρ α ρ α ρ

π
⎧ ⎫⎪ ⎪= + − − + −⎡ ⎤ ⎡ ⎤⎨ ⎬⎣ ⎦ ⎣ ⎦⎪ ⎪⎩ ⎭

∫ ∫ . 

        (9.55) 
 

If using the Boussinesq’s hypothesis in analogy to the single phase flow the effec-
tive cinematic viscosity is postulated to be a function of the distance from the 
wall, the local share stress at the same distance is 
 

( ) ( ) ( )2
1 2,

2

1 eff

y dwy
dy

τ
α ν

ρ
= − .     (9.56) 

 
Introducing the expression for the share stress results in the momentum equation 
describing the liquid velocity 

( ) ( ) ( )1 2 2, 2,1 1eff w grav
dw yy r
dy R

α ρ ν τ τ⎛ ⎞− = − +⎜ ⎟
⎝ ⎠

.   (9.57) 

Therefore, if the local averaged liquid velocity is known postulated expressions 
for the effective viscosity can be tested by integrating the above equation and 
comparing with the measured profiles.  

Sato and Sekoguchi (1975) proposed to consider the turbulence in the liquid as 
consisting of the turbulence caused by the undisturbed single phase fluid and additive
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caused by the motion of the bubbles relative to the liquid. For developed 
steady state pipe flow the share stress will then take the form  
 

( ) ( )( )2
1 2 2 12

2

1 t ty dw
dy

τ
α ν ν ν

ρ
= − + + ,    (9.58) 

 
1

12 1 122
t D

wν α= Δ .      (9.59) 

 
Compare the contribution of the bubbles with Eq. (3.23) and realize the difference. 
For computation of the eddy viscosity of the undistorted liquid a conventional sin-
gle phase model is used. Only two experimental cases are used to check the the-
ory. Tomiyama et al. (2000) used 12

tν  in their multi-group bubble approach by 
summing the contribution of each bubble group weighted with its volume fraction. 
In a later work by Sekogushi et al. (1979) and Sato et al. (1981) the undisturbed 
liquid eddy viscosity is modeled using the Reichardt (1951) expression 
 

( )
2 3

2

2

11 4 10.4 1
6 3 3

t
t

damp
y y yy f y
R R R

ν
ν

+ +
⎡ ⎤⎛ ⎞ ⎛ ⎞ ⎛ ⎞= − + −⎢ ⎥⎜ ⎟ ⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎢ ⎥⎣ ⎦
  (9.60) 

 
multiplied by the van Driest (1955) damping factor 
 

( )
2

1 exp
16

t
damp

yf y
+

+ ⎡ ⎤⎛ ⎞
= − −⎢ ⎥⎜ ⎟

⎝ ⎠⎣ ⎦
.     (9.61) 

 
In the same work the eddy viscosity component caused by the bubbles locally was 
modified to 

 
( ) ( )12 1 120.6t t

dampD y w f yν α += Δ ,     (9.62) 
 

in order to include damping of the bubble influence in close proximity to the wall. 
The constant was found by comparing with two void-profile sets: At given void 
profile the liquid velocity profile is compared with the measured one. After some 
trials the coefficient 0.6 was found. Liu and Bankoff (1993a and b) performed ex-
periments on a vertical 2.8m long pipe with 38mm inner diameter. Air was in-
jected in water at atmospheric conditions. The averaged void fraction varied up to 
0.5. The authors measured all important characteristics of the flow. Using the Sato 
et al. method, the authors reported favorable comparison with the liquid velocity 
profiles for high mass flows and bad comparison for low mass flows, see p.1059, 
Liu and Bankoff  (1993a). Note that it is not clear why bubbly induced turbulence 
has to be dumped in the same way in the proximity of the wall as the liquid bulk 
turbulence. 
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Sato et al. (1981) made an intuitive assumption based on their Fig. 4 without 
proof that at boiling wall, for instance, the local averaged bubble sizes varies with 
the distance from the wall  
 

( ) 0D y =  for 620 10y m−< × ,     (9.63) 
 

( )
1

4 1 yD y y
D

⎛ ⎞
= −⎜ ⎟

⎝ ⎠
 for 6

120 10 2m y D−× < < ,   (9.64) 

 
( ) 1D y D=    for 1 2y D≥ .     (9.65) 

 
The authors considered the region 620 10y m−< ×  as a viscous layer with no in-
fluence on the bubbles, the region 1y D<  as boundary layer, and the remaining 
region as a core region. Although used without proof this idea is interesting. It can 
be improved by taking into account the bubble generation dynamics at the heated 
wall as reported by Kolev (2007b) and using the ideas from Section 3.2. 

Different attempt to take the effect of the wall boiling on the eddy viscosity was 
reported by Pu et al. (2006). The authors proposed to compute the eddy viscosity 
as follows 
 

2

2

0.001
t

y
ν
ν

+=  for 5y+ < , Kays (1994),    (9.66) 

 
and 

0.121.5 0.3
12

2 2 1

1
0.41 1 1 exp

25

t
eq

F eq

Xy y qy
G h X

ν
ν δ

+
+

⎛ ⎞−⎡ ⎤⎛ ⎞ ′′⎛ ⎞ ⎛ ⎞= − − − ⎜ ⎟⎢ ⎥⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟Δ⎝ ⎠⎝ ⎠⎝ ⎠ ⎣ ⎦ ⎝ ⎠

&
 for 5y+ ≥ . 

        (9.67) 
 
Here 1eqX  is the cross section averaged equilibrium vapor mass flow ratio. Note 
that the asymptotic of this proposal is unphysical: for zero heat flux the eddy vis-
cosity is zero and for no vapor the eddy viscosity is not defined. 
 In addition Sato et al. (1981) postulated that the components of the eddy con-
ductivity in the flow are equal to the components of the eddy viscosities, 

 

( )( )2
1 2 2 12

2 2

1 1 t tw

p

q y dTa a a
c R dy

α
ρ
′′ ⎛ ⎞− = − − + +⎜ ⎟

⎝ ⎠

&
.   (9.68) 
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Serizawa et al. (1975a) based on the data collected in  Serizawa et al. (1975a and b)
modified the Sato and Sekogushi et al. (1975) approach based on mixing length, 
rather on eddy diffusivity, 
 

( )( )2
1 2 2 12

2

1 1 t tw y dw
R dy

τ
α ν ν ν

ρ
⎛ ⎞− = − + +⎜ ⎟
⎝ ⎠

,    (9.69) 

 

( )( )2
1 2 2 12

2 2

1 1 t tw

p

q y dTa a a
c R dy

α
ρ
′′ ⎛ ⎞− = − − + +⎜ ⎟

⎝ ⎠

&
.   (9.70) 

 
The Reynolds and the bubble induced turbulence are modeled as follows 

 
12 0tν =  for 620 10y m−< × ,     (9.71) 

 

( )12 1 1 120.6t t
dumpD w f yν α += Δ  for 6

120 10 m y D−× < < ,  (9.72) 

 

( )12 1 120.06t t
mix dumpl w f yν α += Δ  for 1y D≥ ,   (9.73) 

 

, 0

m

mix mix r
y
R=

⎛ ⎞= ⎜ ⎟
⎝ ⎠

l l , 0.9m =  for 10.02 0.15α< < .   (9.74) 

 
Serizawa and Kataoka (1980) suggested that   
 

( ), 0 1, ,mix r hm f Dα= =l .      (9.75) 
 
In a later work Kataoka and Serizawa (1995) proposed to use the mixing length 
hypothesis in the following form 
 

2 2, 2
t

eff Vν ′= l ,       (9.75) 
 

2, 2, 12,eff mix mix= +l l l ,      (9.76) 
 

2 2
2
3

V k′ = ,       (9.77) 

 
where mixing length for the continuum turbulence is 
 

2, 0.4 t
mix dumpyf=l ,      (9.78) 
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with 
 

( )1 exp 26t
dumpf y+= − − ,     (9.79) 

 
and the contribution due to presence of bubbles is 
 

12, 1 1
1 1

1 4 42
3 36mix

y yD
D D

α
⎡ ⎤⎛ ⎞ ⎛ ⎞

= + − −⎢ ⎥⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠⎣ ⎦

l  for 10 y D≤ ≤ , (9.80) 

 
1

12, 1 1
1
6 2mix

D
D yα
⎡ ⎤⎛ ⎞= + −⎢ ⎥⎜ ⎟

⎝ ⎠⎣ ⎦
l  for 1 1

3
2

D y D≤ ≤ ,   (9.81) 

 

12, 1 1
1
3mix Dα=l  for 1

3
2 2

hD
D y≤ ≤ .    (9.82) 

 
Then the continuum turbulent kinetic energy is computed using the transport equa-
tion of the turbulent kinetic energy of the continuum 
 

( )2
2 2 2 2 2 ,2 ,2 2

1 1
2

t t
k k

k
r P G

r r r
α ν ν α ν ε

∂∂ ⎡ ⎤⎛ ⎞− + = + −⎜ ⎟⎢ ⎥∂ ∂⎝ ⎠⎣ ⎦
,  (9.83) 

 
with  
 

2hr D y= − .       (9.84) 
 
The generation of the turbulence due to deformation of the velocity field is  

2
2

2 2 ,2 2 2
t t

k
w

P
r

α ν α ν
∂⎛ ⎞= ⎜ ⎟∂⎝ ⎠

.     (9.85) 

 
The contribution of the bubbly induced turbulence generation is considered to be 
only 7.5% of the power required for the relative motion between the bubble and 
the liquid, 
 

3
2 ,2 1 21 12

1

30.075
4

d t
k dumpG c w f

D
α α= Δ ,    (9.86) 

 
with dumping function reducing this contribution in the vicinity of the wall. The 
dissipation of the kinetic energy is considered consisting of three components as 
follows 
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( )
2

3 / 2 2
2 2 2 2 2, 1 1 20.18 eff

V
k D

r
∂

α ε α α ν
∂

′⎛ ⎞= + + ⎜ ⎟
⎝ ⎠

l .   (9.87) 

 
The first two are understandable – dissipation due to small scale eddies; the last 
component resembles the definition of 2ε  itself and is introduced “…to have com-
pensating effect of the numerical error in the proximity of the wall.” 

Serizawa and Kataoka (1980) reported that the ratio of the eddy diffusivity of 
heat for two-phase flow to that for single-phase flow varying between 7 and 2 is 
grossly correlated to the Lockhart-Martinelli parameter 

 
1,2712

2 2

1 462
t

ttt

a
X

a a
−= +

+
      (9.88) 
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1 2 1

1
tt

XX
X

ρ η
ρ η

⎛ ⎞ ⎛ ⎞ ⎛ ⎞−
= ⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠

,    (9.89) 

 
in the limited region 50 250ttX< < . Therefore, there is improvement of the pipe 
wall heat transfer in bubbly flow compared to single phase flow.  

Chu and Jones (1980) derived from their own measurements and measurements 
from other authors the following correlations for heat transfer in vertical non-
boiling flow (bubble and slug): 
 

0.140.55 0.17
1/ 32 2 2 2
2

2 2 2

0.43 Pr 15%w h h a

w

h D w D p
p

ρ η
λ η η

⎛ ⎞⎛ ⎞ ⎛ ⎞
= ±⎜ ⎟⎜ ⎟ ⎜ ⎟
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,  (9.90) 

upflow, 4 52 2

2

3 10 8 10hw Dρ
η

× < < × , 

 
0.140.55 0.17

1/ 32 2 2 2
2

2 2 2

0.47 Pr 15%w h h a

w

h D w D p
p

ρ η
λ η η

⎛ ⎞⎛ ⎞ ⎛ ⎞
= ±⎜ ⎟⎜ ⎟ ⎜ ⎟

⎝ ⎠⎝ ⎠ ⎝ ⎠
,   (9.91) 

 

downflow, 4 52 2

2

4 10 2 10hw Dρ
η

× < < × . Here p is the pressure and pa is the atmos-

pheric pressure. Here the improvement of the heat transfer due to presence of bub-
bles is not directly taken into account. I have already provided sound physical es-
timate of the improvement of the heat transfer due to presence of gas in Chapter 4. 

Idealizing the transversal bubble movement as a diffusion process, 
 

( ) 1
,121

t
X

dX
v D

dr
ρ ρ= − ,       (9.92)  
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 Serizawa et al. deduced from experimental data within gas qualities varying in the 
region of 10 0.04X< <  

 
( ) 4

,12 1 2.5 10 ²t
XD m s−≈ ÷ × .     (9.93) 

 
Here ρ  is the two-phase mixture density. There are authors describing lateral dif-
fusion of bubbles driven by void gradients  
 

( ) 1
1 ,121

t d
v D

drα
α

ρ ρ= − ,      (9.94) 

 
where ,12 2 2,

t
mixD vα ′≈ l . Note that for constant pressure ,12 ,12

t t
XD Dα = . Expressed in 

the form of turbulent Peclet number 
 

2
,12

,12

2hydt
C t

X

u D
Pe

D
′

= ≈ ,      (9.95) 

 
the authors found that the intensity of diffusion is closely connected to the turbu-
lence intensity but not with the local void fraction directly. For comparison see the 
result obtained by Zun (1980): 4

,12 0.35 10 ²tD m sα
−≈ ×  obtained for 

2 2 0.748 /w m sα = . Lilienbaum (1983) derived from experiments in inclined 
channels at atmospheric conditions ,12 21.5tD vα ′≈ . Mikiyoshi and Serizawa (1986) 
reported for the bubble induced component 

0.5
2 12 10.01u w α′′ = Δ  for 1 0.013α <  and  

0.5
2 10.85u α′′ =  for 10.013 α≤  for 12 0.23 /w m sΔ = .  

 
Conclusions: The weaknesses of the Boussinesq’s hypothesis applied in the form 
discussed in this chapter is that  
 

a) the superposition of the single phase and bubble induced turbulence is 
valid for very small concentrations, 1 0.005α < , as measured by Lance 
and Bataille (1991); 

b) the fluctuations are not equal in magnitude in all direction as measured 
by Wang et al. (1987) i.e. the isotropy assumption is not valid; 

c) the specific contribution of variety of forces acting on the bubbles is 
smeared. 

 
Nevertheless important order of magnitude limits are collected by the activities 
reviewed here. 
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9.2.3 Modification of the boundary layer share due to modification

In analogy to single phase turbulence Marié (1987) expressed the idea that the 
bubbles outside the boundary layer modify the share stress at the wall. In a later 
work Moursalli et al. (1995) performed measurement of the turbulent characteris-
tics in a vertical bubble flow along a vertical plate. They found that the parameter 
of the logarithmic low  
 

( )2 12lnw y cκ+ += + ,      (9.96) 
 

12 12

1 5.45ltc y κ κ
κ κ

+ ⎛ ⎞
= − +⎜ ⎟

⎝ ⎠
, 11.23lty+ = , 0.41κ = ,  (9.97) 

 
are functions on the void fraction far from the wall and on the peaking void as 
given in Table 9.1. 

 Table 9.1 .  Coefficients defining the velocity distribution in the boundary layer as a func-
tion of the void fraction 

2, , /farw m s  1, farα  1, peackα  κ  c 

1 0 0 0.41 4.9 
1 0.002 0.016 0.48 5.8 
1 0.005 0.038 0.56 6 
1 0.015 0.068 0.61 6.5 

Troshko and Hassan (2001) simplified the axial momentum equation to  
 

( )( )2 2 1 2 121 t t
w dw dyτ ρ α ν ν= − +      (9.98) 

 
and assumed  
 

1 1, peackα α= ,        (9.99) 
 

*
2
t ywν κ= ,        (9.100) 

 
12 1 1,max 12
t w yν κ α= Δ .       (9.101) 

 
After integration for lty y+ +>  the authors obtained 
 

1 1,max 12
12 *1

w
w

κ α
κ κ

κ
Δ⎛ ⎞

= +⎜ ⎟
⎝ ⎠

.     (9.102) 

of the bulk turbulence 
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The coefficient  
 

40.7 *
1 4.95 wk e−=        (9.103) 

 
was derived from experimental data. Koncar et al. (2005) modified this model by 
setting empirically  
 

( )3
111.23 1lty α+ = − ,       (9.104) 

 
10 *

1 4.95 wk e−= .      (9.105) 
 
No resulting expressions have been derived for the wall share stress and for the 
heat transfer at sub-cooled boiling and no comparisons are reported with such 
data. The expression of such type is proposed to be used in computational fluid 
dynamics as a boundary layer treatment without resolving the boundary layer. 

Nakoryakov et al. (1981) reported data for the share stress in upward bubbly 
flow in vertical pipes. The share stress is found to be a non monotonic function of 
the void fraction. None of the existing models represents this behavior. 

Nomenclature 

Latin 
 
a  ( ): pcλ ρ= , thermal diffusivity, m²/s 

12
ta  turbulent liquid thermal diffusivity caused by liquid bubble interaction 

only, m²/s 
2a  molecular liquid thermal diffusivity, m²/s 

2
ta  turbulent liquid thermal diffusivity without liquid bubble interaction, m²/s 
vm
cdc  coefficient for the virtual mass force or added mass force acting on a dis-

persed particle, dimensionless 
d
cdc  coefficient for the drag force or added mass force acting on a dispersed 

particle, dimensionless 
t
cdc  coefficient in the term describing bubble turbulent diffusion, dimen-

sionless 
kc  geometry dependent constant for computation of the viscous dissipation 

in the boundary layer, dimensionless 
pc  specific capacity at constant pressure, J/(kgK) 

van Driestc  constant 
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1cε , 2cε , 3cε  empirical coefficients in the source term of the ε -equation, - 
cη  empirical constant or function connecting the eddy cinematic diffusivity 

with the specific turbulent kinetic energy and its dissipation, - 
cη′  constant 
D  diameter, m 

1D  bubble diameter, m 

1dD  bubble departure diameter, m 

1,maxD  maximum bubble diameter, m 

1,minD  minimum bubble diameter, m 

dD  diameter of dispersed particle, m 

hD  hydraulic diameter, m 

,h lD  hydraulic diameter of the “tunnel” of field l only, m 

rodD  diameter of the rods in a rod bundle, m 

,12
t
XD  bubble turbulent diffusion coefficient based on mass concentrations, m²/s 

,12
tDα  bubble turbulent diffusion coefficient based on volumetric fractions, m²/s 
d

cdf  drag force experienced by the dispersed phase from the surrounding con-
tinuum, N/m³ 

t
dumpf  damping factor for the bulk turbulence, dimensionless 

wf  friction force per unit flow volume, N/m³ 

,k lG  production of turbulent kinetic energy due to bubble relocation in chang-
ing pressure field per unit mass of the filed l, W/kg (m²/s³) 

g  gravitational acceleration, m/s² 

2wh  heat transfer coefficient between liquid and wall, J/(m²K) 
d
cdI  momentum of the dispersed phase dissipated into the continuum, Ns 

k  without subscript: wall roughness, m 
k  specific turbulent kinetic energy, m²/s² 
l  length, m 

maxl  maximum length scale, m 

mixl  mixing length, m 

, 0mix r=l  mixing length at the proximity of the wall, m 

el  size of the large eddy, m 

,e lμl  lowest spatial scale for existence of eddies in field l called inner scale or 
small scale or Taylor micro-scale (µ) of turbulence, m   

Δl  characteristic size of the geometry, m 
cM  continuum mass belonging to a single particle, kg 

m  constant in Sato et al. model, - 
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kP  production of the turbulent kinetic energy per unit mass, W/kg 

,k lP  production of the turbulent kinetic energy per unit mass of the velocity 
field l due to deformation of the velocity field l, W/kg 

,12
t
cPe  2

,12

: hyd
t
X

u D
D
′

= , turbulent Peclet number for lateral bubble diffusion due to 

turbulence, dimensionless 
Pec  Peclet number for continuum, dimensionless 
Prt  turbulence Prandtl number, dimensionless 
Prl  molecular Prandtl number, dimensionless 
P  closest distance between the rod axes, m 
p  pressure, Pa 
p′  fluctuation of the pressure, Pa 

cp  pressure inside the continuum, Pa 

dp  pressure inside the dispersed phase, Pa 
pΔ  pressure difference, Pa 

q′′&  heat flux, W/m² 
w

cq′′&  heat flux from the wall into the continuum, W/m² 

2wq′′&  heat flux from the wall into the liquid, W/m² 
t

lq′′′&  energy inserted in the field l being in the control volume per unit time and 
unit mixture volume due to turbulent exchange with the neighboring con-
trol volumes, W/m³ 

R  radius, m 
dR  radius of the dispersed particle, m 

Re  Reynolds number, dimensionless 
Recd  Reynolds number based on relative velocity, continuum properties and 

size of the dispersed phase, dimensionless 
r  radius, m 

drδ  bubbles oscillations amplitude, m 
*r  radius, dimensionless 
gapS  gap size, the smallest distance between two adjacent rods, m 

ijSΔ   distance between vertical channel axis, m 
St  ,: cd L cτ τ= Δ Δ Stokes number, dimensionless 

gapSt  ,: c ij cu w′= , gap Stanton number, dimensionless 
T  temperature, K 

iT  temperature of the vertical sub-channel i, K 

jT  temperature of the vertical sub-channel j, K 

wT  wall temperature, K 
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T  averaged temperature, K 
u  radial velocity component, m/s 
u′  fluctuation of the radial velocity, m/s 
u+  radial velocity, dimensionless 

*u  radial friction velocity, m/s 
1u  bubble radial velocity, m/s 

1u′  fluctuation of the bubble radial velocity, m/s 

2u  liquid radial velocity, m/s 

lu  radial velocity of field l, m/s 

lu′  fluctuation of the radial velocity of field l, m/s 

,c iju′  
( )

,

, , ,

: c ij

c p c c i c j

q

c T Tρ

′′
=

−

&
, effective mixing velocity, m/s 

12uΔ  radial velocity difference between gas and liquid, m/s 

cduΔ  radial velocity difference between the dispersed and continuous phase, 
m/s 

u′  rms of the radial velocity fluctuation, m/s 
V ′  fluctuation of the velocity, m/s 
V  velocity vector, m/s 

21
dV  difference between liquid and gas velocity, m/s  

bV  bubble departure volume, m³ 

12VΔ   difference between gas and liquid velocity, m/s 

ddVΔ  difference between the velocity of two neighboring droplets, m/s 

1 2d dVΔ  difference between the velocity of two neighboring droplets with sizes 
belonging to two different groups, m/s 

mlΔV  difference between m- and l-velocity vectors, m/s 
Vol  control volume, m³ 
ν  velocity component in angular direction, m/s 
v′  fluctuation of the velocity component in angular direction, m/s 

cdvΔ  angular velocity difference between the continuum and dispersed phase, 
m/s 

v′  time average of the angular velocity fluctuation, m/s 
w  axial velocity, m/s 

*w  friction velocity, dimensionless 
w  cross section averaged friction velocity, m/s 
w+  axial velocity, dimensionless 

1w  bubble axial velocity, m/s 

2w  liquid axial velocity, m/s 
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2, farw  liquid velocity far from the wall, m/s 

2w+  liquid axial velocity, dimensionless 

1w′  fluctuation of the axial bubble velocity, m/s 

2w′  fluctuation of the axial liquid velocity not taking into account the influ-
ence of the bubble, m/s 

2w′′  fluctuation of the axial liquid velocity not taking caused only by the pres-
ence of bubble, m/s 

12wΔ  local axial velocity difference between bubbles and liquid, m/s 

12wΔ  cross section averaged axial velocity difference between bubbles and liq-
uid, m/s 

12w ∞Δ  steady state axial bubble rise velocity in liquid, m/s 

cw  continuum axial velocity, m/s 

cw   averaged axial continuum velocity, m/s 
*
cw  continuum axial friction velocity, m/s 

lw  axial velocity of field l, m/s 

lw′  fluctuation of the axial velocity of field l, m/s 

lw  cross section axial velocity of field l, m/s 

cdwΔ  axial velocity difference between dispersed and continuous phase, m/s 

1X  gas mass concentration, m/s 

ttX  Lockhart-Martinelli parameter, dimensionless  
x  x-coordinate, m 
y  y-coordinate, distance from the wall, m 

0y  distance between the bubble and the wall, m 

limy  virtual distance from the wall in which almost all the viscous dissipation 
is lumped, m 

limy+  virtual distance from the wall in which almost all the viscous dissipation 
is lumped, dimensionless 

lim,coy+  virtual distance from the wall in which almost all the viscous dissipation 
is lumped for the total mass flow considered as consisting of continuum 
only, dimensionless 

lty+  viscous boundary layer limit, dimensionless 

. sym linesy  distance from the wall to the symmetry line in the bundles, m 

y+  distance from the wall, dimensionless 
z  axial coordinate, m  

zΔ  finite of the axial distance, m 
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 α  volumetric fraction, dimensionless 
dmα  volume fraction of the dispersed phase corresponding to the maximum 

packing of the particles, dimensionless 
α′  fluctuation of the volume fraction, dimensionless 

eα  surface averaged volume fraction, dimensionless 

1, farα  bubble void fraction far from the wall, dimensionless 

1,maxα  maximum bubble void fraction far from the wall, dimensionless 

1, pα  bubble void fraction at the wall, dimensionless 

1, peackα  maximum peak of bubble void fraction near to the wall, dimensionless 
δ  boundary layer with thickness, m  

lδ  = 1 in case of continuous field l; = 0 in case of disperse field l  
ε  power dissipated irreversibly due to turbulent pulsations in the viscous 

fluid per unit mass of the fluid (dissipation of the specific turbulent ki-
netic energy), m²/s³ 

η  dynamic viscosity, kg/(ms) 
tη  turbulent or eddy dynamic viscosity, kg/(ms) 
lη  molecular dynamic viscosity, kg/(ms) 

visη  part of the mechanical energy directly dissipated into heat after a local 
singularity and not effectively generating turbulence, dimensionless 

θ  angular coordinate, rad 
κ  = 0, Cartesian coordinates; = 1, cylindrical coordinates, - 

 or von Karman constant, - 
1κ  constant in the turbulent model of Troshko  and Hassan, - 

12κ  constant in the turbulent model of Troshko  and Hassan, - 

dκ  curvature of the dispersed phase, 1/m 

dω  bubbles oscillations frequency, 1/s 
λ  thermal conductivity, W/(mK) 

frλ  friction coefficient, dimensionless 
v  cinematic viscosity, m²/s 

t
lν  turbulent or eddy cinematic viscosity of field l, m²/s 

,l effν  effective cinematic viscosity of field l, m²/s 

12
tν  turbulent or eddy cinematic viscosity of the liquid caused by the bubbles 

only, m²/s 
,

t
c yν  turbulent or eddy cinematic viscosity of field l in direction y, m²/s 

,
t
c zν  turbulent or eddy cinematic viscosity of field l in direction z, m²/s 
*
lν  : t

l l lν δ ν= + , effective cinematic viscosity, m²/s 

Greek 
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ρ  density, kg/m³ 

21ρΔ  liquid–gas density difference, kg/m³ 
σ  surface tension, N/m 
τ  time, s 

lτ  share stress in field l, N/m² 

,l gravτ  share stress in field l due to gravity, N/m² 

,l rrτ  stress in field l in r direction in r-plane, N/m² 

2wτ  share stress at the wall liquid interface, N/m² 

,l θθτ  stress in field l in the θ -direction in θ -plane, N/m² 
w
cτ  wall share stress caused by the continuum, N/m² 

wτ  wall share stress, N/m² 
 
Subscripts 
 
1 gas 
2 liquid 
3 droplet 
c continuum 
d disperse 
l field l 
m field m 
e eddy 
μ  associated to mass transfer or microscale 
r radial direction 
θ  angular direction 
z axial direction 
w wall 
∞  steady, developed flow 
 
Superscripts 
 
'  fluctuation component 
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10 Large eddy simulations 

10.1 Phenomenology 

If we observe turbulence in flows, we distinguish large scale structures that can 
well be resolved by overlying the picture with computational grid that is economi-
cally feasible and small scale eddies smaller than the used grid size that can not be 
resolved. The large eddies are directly born from what is subjectively called mean 
flow. Their size is in a way limited by the geometry of the flow boundaries and in 
a way how they are generated. They are responsible for effective turbulent trans-
port of mass and energy. Due to their interactions with the mean flow and with the 
other eddies they collide and coalesce to larger eddies or split to smaller eddies: an 
endless game that fascinate children and make scientist desperate to describe them 
mathematically because of the enormous complexity of the process. For the same 
reason a chain of the smaller eddies with all possible sizes is generated. Those ed-
dies which size is smaller than what is called Kolmogoroff small scales dissipate 
their rotation- and fluctuation energy into heat. While the large eddies hardly have 
the same structure in all directions, the small scale eddies tend to similarity inde-
pendent on the flow direction – a property named isotropy. Exactly this observa-
tion lead Smagorinski in 1963 to the idea to look for such conservation equations 
that describe physics that can really be resolved on the used computational grid 
and separate the remaining physics that have to be resolved by additional model-
ing. The non resolved part or the so-called filtered part is modeled in such a way 
that the energy for the unresolved eddies is taken from the resolved mechanical 
energy. This approach is called Large Scale Simulation and is getting since that 
time very popular in the single phase fluid mechanics.  

Applying this method to multiphase flow dynamics is very new branch of the 
science and up to now limited to bubbly and droplet flows only. Nevertheless, be-
cause it is very promising, we will describe briefly the main ideas behind this 
modeling technique. 

10.2 Filtering – brief introduction 

The reader my start with the book by Sagaut (1988) to learn methods for single 
phase incompressible flow.  
 Consider the point x in the space. Around this point at a distance x-x´ some 
flow property f (x´) is normally distributed obeying the Gauss distribution 
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Δ  is the resolution scale at which the property is observed. Now consider a con-
trol volume Vol > 3Δ  in which at each point x´ the probability of the property to 

This operation is called filtering because the averaged property is obviously a 
function of our ability to observe the property f with spatial resolution of Δ . We 
loose information associated with lower scales. The filtering operation is called 
appropriate if (a) the control volume is selected so that it satisfies the so-called 
normalization condition 
 

( ), ´ ´ 1
Vol

G d =∫ x x x ,      (10.3) 

 
and (b) it has to be symmetric and with constant filter with Δ  in order to commute 
with differentiation, Leonard (1974). 
 

Now consider a field indicator  
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which is nothing else than the volume faction of filed l resolved in the space per-
fectly. Knowing that the derivative of the volume faction is equal to the unit vec-
tor pointing outward of the filed interface, and considering that this interface is 
defined only at σx  we have  

receive the value f (x´) is defined by the Gauss function. Other functions are also 
used in the literature: 
 

( ) 1, ´G = −
Δ

x x , box filter function, Lilly (1967) 
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, Fourier-space sharp cut off filter function, 

 
truncated Fourier expansion with k π< Δ , Leonard (1967). If we are interested 
in smoothing the function f (x´) over Vol we have to perform the averaging  
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where the Dirac delta function ( )σδ −x x  has value of unity only at the sharp in-

terface σ=x x  and zero elsewhere, 
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The averaged volumetric fraction of the field l within Vol is defined by 
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Obviously  
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l

α
=

=∑ .       (10.8) 

 
The filtered volume fraction of the field l within Vol is 
 

( ) ( ) ( )1, ´ , ´ ´l l
Vol

G d
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Again this average over Vol depends on our ability to identify field l with spatial 
resolution of Δ . Note that  
 

( ), 0l lα αΔ → →x .      (10.10) 
 
Otherwise,  
 

( ), 0 0l l lα α α′ = − Δ → ≠x ,     (10.11) 
 
is the error due to non-perfect resolution. If the selection of the size of the control 
volume is appropriate in the sense discussed above, the condition  
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l
l

α
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=∑        (10.12) 

 
is fulfilled. Attention, for non appropriate selection of the control volume the 
above condition is not fulfilled. The resulting system describing the multiphase 
flow is then not acceptable. 
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The local volume averaged product of the property of phase l and the volume 
fraction is defined by 
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The local volume average of the property f over Vol is then  
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The intrinsic filtered product of the property of phase l and the volume fraction 

is defined by 
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Again this average over Vol depends on our ability to observe it with resolution of 
Δ . The  
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is the definition of the filtered property f of phase l. Again 
 

( ), 0l lf fΔ → =x ,      (10.17) 
 
otherwise 
 

( ),l l lf f f′= − Δx       (10.18) 
 
is the error due to non-perfect resolution. 

Thus, using these ideas and performing local volume averaging of the conserva-
tion equation and splitting the flow variables on filtered and remaining part  
result in a system of PDE’s that looks similar to what we know in this work, but the 
terms possess the physical context as dictated by the way of obtaining large grid 
scale equations for multiphase flows. It is beyond the scope of this section to present 
rigorous derivation. We will confine our attention to some practical models. 
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Before continuing let me note for completeness, that unlike the time averaging of 
dual products the filtering operation on dual products produces non-zero terms for 
the non resolved large grid turbulence l l l l−V V V V  which requires additional mod-
elling. The reader will find interesting discussion to this subject in Leonard (1974). 
In most of the applications reported in the literature these terms are neglected. 
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10.3 The extension of the Amsden et al. LES model

Each numerical discretization of the space is characterized locally by a specific 
grid size e.g. 
 

( )1/ 31/ 3
grid cellVol x y z≈ = Δ Δ Δl .     (10.19) 

 
Structures of the flow having scale larger than this are already resolved. To extract 
the loosed information for structures with lower scales additional modeling is nec-
essary. Such modeling has to generate such an effective turbulent viscosity that is 
diminishing with the scales converging to the internal micro-scales of turbulence 
e.g. using the Kolmogorov (1942) – Prandtl  (1945) expression Eq. (2.49) in the 
following form 
 

, , ,
2
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t
c ss c ss ss c ss ssk c kην ′≈ ≈l l ,     (10.20) 

 
where cη′ ≈ 0.05 (instead 0.09) is an empirical constant and 2ss grid≈l l . The tur-
bulence and viscous term in the momentum equation is then 
 

 

 

 

 

to porous structures 

The success of the large eddy simulation method is based on the differences of 
the properties of the large and small eddies as summarized in Table 1, and on the 
possibility to model simpler the small scale eddies. 

Table 10   1. Differences between large scale- and small scale eddies, facilitating creation of 
simple sub-grid scale models, Troshko and Hassan (2001) 

Large eddies Small scale eddies 
Produced by mean flow Produced by large eddies 
Depends on boundaries Universal 
Ordered Random 
Requires deterministic description Can be modelled 
Inhomogeneous Homogeneous 
Anisotropic Isotropic 
Long-lived Short-lived 
Diffusive Dissipative 
Difficult to model Easier to model 

.
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e
c c c sskγα ρ+ ∇       (10.23) 

 
This method will be then applicable for variety of grid sizes. Methods with such 
characteristics belong to the large eddy simulation methods. Smagorinski (1963) 
was the first to propose such approach for single phase atmospheric flow which as 
already mentioned is now very popular in the single phase fluid mechanics. The 
small scale specific kinetic energy of turbulent pulsation per unit mass in the 
above relation, ,c ssk , is associated with fluctuations with sizes smaller than ssl .  

Interesting generalization of this idea is proposed by Amsden et al. (1985) for 
fuel injection in combustion chambers which we extend here to porous structure 
and multiphase flow. The turbulent kinetic energy associated with scales smaller 
than ssl  is controlled by the conservation equation 
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( ), , ,
e
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in which the viscous stresses are computed in accordance with the Stokes hypothe-
sis 
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and the non resolved small grid component is 
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we obtain 
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Here  
 

2
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Amsden

 
and the term  
 

,
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The term , ,

t
c c v c ss k cPα ρ γ ν  represents the production of turbulence by the share of 

the resolved velocity field. Considering the non resolved turbulence as isotropic 
and splitting the production term as shown in Chapter 2 on diagonal and of-
diagonal part  
 

( ) 2
, , , ,

2: .
3

t e e e t
c c v c ss k c c c ss c c c c c c c c k cP k Sα ρ γ ν α γ α ρ γ α ρ ν′= ∇ = − ∇ +T V V % , (10.25) 

 
where 
 

1. c c c
c r c z

u v w
u

r zrθ κ
∂ ∂ ∂

γ γ γ κ γ
∂ ∂θ ∂

⎛ ⎞
∇ = + + +⎜ ⎟

⎝ ⎠
V ,   (10.26) 

and 
 

2
,

1 1c c c c
k l c r c

v u v u
S v v

r rr rθκ κ
∂ ∂ ∂ ∂

κ γ γ κ
∂ ∂θ ∂ ∂θ

⎡ ⎤ ⎡ ⎤⎛ ⎞ ⎛ ⎞= + − + −⎢ ⎥ ⎢ ⎥⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠⎣ ⎦ ⎣ ⎦

%  

 
c c c c

r z
w u w u
r z r z

∂ ∂ ∂ ∂
γ γ

∂ ∂ ∂ ∂
⎡ ⎤ ⎡ ⎤+ + +⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦

 

 



t
c c ssc kην ′≈ l         (10.34) 

 
the above relation can be rewritten as  
 

( )2

, ,
t
c ss ss k cSm Pν = l .      (10.35) 

 
The constant  
 

3/ 4Sm cη′=        (10.36) 
 
is called Smagorinsky constant (originally 0.28). Note that for  
 

. 0cγ∇ ≈V         (10.37) 
 
we have 
 

( )2 2
, ,

t
c ss ss k c vSm Sν γ≈ %l      (10.38) 
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is the compressibility term that represents the turbulent analog to mechanical 
pdVol-work.  

The dissipation of the sub-grid kinetic energy into heat is computed by using 
the Kolmogoroff (1941, 1949) equation for isotropic turbulence in the form 
 

3/ 2
, 1 ,l ss l ss ssc kε ≈ l ,      (10.31) 

 
where the constant is of order of unity. This is the term that has to appear as a 
source in the energy conservation equation. Note that for steady developed flow 
the production equals the dissipation,  
 

, , ,
t
l ss k l l ssPν ε= ,       (10.32) 

 
resulting in the original algebraic sub-grid scale model 
 

3/ 2
, , ,

t
c ss k c c ss ssP kν = l .      (10.33) 

 
Using  
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2

1 exp
16ss grid
y+⎡ ⎤⎛ ⎞

≈ − −⎢ ⎥⎜ ⎟
⎝ ⎠⎣ ⎦

l l .     (10.40) 

 
Dean et al. (2001) used for the constant cη′ ≈ 0.046 and ss grid≈l l  for bubbly 

flow and added the contribution of the bubbles to the effective turbulent velocity 
 

0.6td
l d d cdD Vν α= Δ .      (10.41) 

 
The authors used also t t

d cν ν=  as proposed by Jakobsen et al. (1997). Lakehal et al. 
(2002) used for the constant cη′ ≈ 0.059 and ss grid≈l l  for bubbly flow and add- 
ed the contribution of the bubbles to the effective turbulent velocity 
 

0.12td
l grid d cdVν α= Δl .     (10.42) 

 

Amsden

 

 

( )2 2t
ss ss kSm Sν = %l .      (10.39) 

 
With this expression the turbulent viscosity is simply a function of the discretiza-
tion size and of the spatial deformation of the resolved velocity field. Theoretical 

Prandtl number for heat transfer was in the order of 0.3 to 0.9. Yamamotto et al. 
(2001) used Sm = 0.1 which corresponds to 0.05cη′ ≈ . 

Equation (10.19) was proposed by Reynold (1990) and Scotti et al. (1993). Such 
measure was found to be useful up to aspect ratio 20:1 by Reynold (1990). In the 
proximity of the wall introduction of turbulence suppression is also possible e.g. 
by using the van Driest (1955) damping factor 
 

For free single phase incompressible flow this model is identical to the Smagorin-
ski (1963) and Deardorff (1971) proposal 

support for the Smagorinski approach was provided by Lily (1967) 
3/ 4

1 2 0.17
3

Sm
π β
⎛ ⎞

= ≈⎜ ⎟
⎝ ⎠

, for 1.5β = . Milelli  (2002) analysed bubbly flow with 

only the algebraic part of this model using Sm = 0.1 to 0.33. The sub-grid scale 



 

3. k-eps transport equations and 2
, , ,

t
c ss c ss c ssc kην ε≈ . In this case the contribution 

of the dispersed phase is introduced as a source into the k-eps conservation 
equations. 

Nomenclature 

Latin 
 
cη′  empirical constant in Kolmogoroff–Prandtl relation, dimensionless 

1c  modeling constant in the Kolmogoroff equation for dissipation of the sub-
grid kinetic energy into heat for isotropic turbulence, dimensionless 

D  diameter, m 
dVol infinitesimal volume, m³ 

,k lG  production of turbulent kinetic energy due to bubble relocation in chang-
ing pressure field per unit mass of the filed l, W/kg (m²/s³) 
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as suggested by Tran (1977) or  
 

0.12td
l d cdSm Vν α= Δ .       (10.44) 

 
Valuable experimental data for testing such type of simulation for vertical 2D-
bubble columns are presented by Milelli  (2002) and Vanga (2005). 
 
In summary, three LES methods are available: 
 
1. Algebraic method, using the Smagorinski relation for small grid scale eddy vis-

cosity, ( )2

, ,
t
c ss ss k cSm Pν = l  , and the not yet well established additive for the 

contribution of the dispersed phase from the type 0.12td
l grid d cdVν α= Δl . 

 
2. k-transport equation providing the kinetic energy of the not resolved turbulence 

and then computing ,
t
c ss c ssc kην ′≈ l . In this case the contribution of the dis-

persed phase is introduced as a source into the k-conservation equation. The ir-
reversible dissipation in this case is modeled by the Kolmogoroff equation for 
isotropic turbulence 3/ 2

, 1 ,l ss l ss ssc kε ≈ l . This dissipation appears into the energy 
conservation equation as turbulence energy that is finally dissipated in heat. 

Observe that now the characteristic small grid mixing length is not associated with 
the bubble size as by Dean et al. (2001) but depends on the grid scale. Milelli  
(2002) used 
 

0.126td d
l d c

D
ν π α ν=

Δ
      (10.43) 



 

α  local volume fraction, dimensionless 
γ  surface permeability defined as flow cross section divided by the cross 

section of the control volume (usually the three main directional compo-
nents are used), dimensionless 

vγ  volumetric porosity defined as the flow volume divided by the considered 
control volume, dimensionless 

.∇  divergence 
∂  partial differential 

,l ssε  power dissipated irreversibly due to the unresolved turbulent pulsations 
in the viscous fluid per unit mass of the fluid (dissipation of the specific 
turbulent kinetic energy), m²/s³ 

,
t
l ssν  effective viscosity characterizing the unresolved turbulence scales, m²/s 

,
k
l ssν  effective diffusivity of the unresolved turbulent kinetic energy, m²/s 
td
lν  bubble induced effective viscosity component, m²/s 
ρ  density, kg/m³ 
τ  time, s 
 

 
Greek 
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gridl  characteristic size of the computational grid, m 

ssl  scales of unresolved turbulent kinetic energy, m  
p pressure, Pa 
p′  pressure pulsation, Pa 

,k lP μ  production of turbulent kinetic energy per unit mass of the field l due to 
friction evaporation or condensation, W/kg 

,kw lP  irreversibly dissipated power per unit flow mass outside the viscous fluid 
due to turbulent pulsations equal to production of turbulent kinetic energy 
per unit mass of the flow, W/kg (m²/s³) 

,k lP  in , ,
t
l ss k lPν  which is the production of the turbulent kinetic energy per unit 

mass of the velocity field l due to deformation of the velocity field l, 
W/kg 

2
,k lS%  of-diagonal part of ,k lP  

xΔ , yΔ , zΔ  coordinate increments, m 
V  velocity vector, m/s 

,l ssV ′  velocity fluctuation component of the unresolved turbulence, m/s 
Volcell  cell volume, m³ 
x, y, z coordinates, m 
 

,l ssk   specific turbulent kinetic energy of the unresolved turbulence in velocity 
field l, m²/s² 
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Subscripts 
 
l field l 
c continuous 
d discrete 
ss small grid scale 
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11 Solubility of O2, N2, H2  and CO2 in water 

11.1 Introduction 

Opening of champagne or soda bottle at atmospheric pressure is a simple example 
of release of gases dissolved previously into liquid at higher pressure. Liquids 
absorb gases so that the molecules of the gases move among the molecules of the 
liquid. Optically no visible bubbles are seen in perfect gas–liquid solutions. If the 
liquid stays for sufficient long time in contact with gas, the gas concentration 
inside the liquid reaches a maximum. The experience shows this maximum is a 
function of the temperature of the liquid and of the partial pressure of the gas 
component in the gas mixture,  
 

( )2 , 2 , 1 2,i i iC C p T∞ ∞= .       (11.1) 
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Fig. 11.1. Saturation O2, N2 and H2 concentrations in water being in contact with pure gas 
as a function of the water temperature measured by Grischuk (1957). The gas pressure is 
105Pa 

This maximum concentration is called saturation concentration. Table 11.1 and 
Figure 11.1 give an example of measurements for the saturation concentrations of 
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O2, N2 and H2 in water as a function of the water temperature. The pressure of the 
pure gas is 1bar. 

Table 11.1. Grischuk (1957) data in mg/kg 

T in K O2 N2 H2 
273.15 69.93 29.14 1.92 
283.15 54.34 23.06 1.75 
293.15 44.33 19.22 1.62 
303.15 37.32 16.62 1.52 
313.15 33.03 14.63 1.46 
323.15 29.89 13.52 1.44 
333.15 27.89 12.65 1.43 
343.15 26.17 12.15 1.43 
353.15 25.17 11.90 1.43 
363.15 24.60 11.78 1.43 
373.15 24.60 11.78 1.43 

 
If the non condensable gas concentration inside the liquid is larger than the 
saturation concentration, a gas release starts and continues until the new state of 
equilibrium is reached. The degassing is visible. Bubbles are generated inside the 
liquid. The mass of the generated non condensable gas per unit time and unit 
volume of the multi-phase mixture is designated with 
 

( )21, 2 2 , 1 2, 0i i i if C C p Tμ ∞⎡ ⎤= − ≥⎣ ⎦  for ( )2 2 , 1 2,i i iC C p T∞> .  (11.2) 
 
The mass of the solved non condensable gas per unit time and unit volume of the 
multi-phase mixture is designated with  

 
( )12, 2 2 , 1 2, 0i i i if C C p Tμ ∞⎡ ⎤= − ≥⎣ ⎦  for ( )2 2 , 1 2,i i iC C p T∞< .  (11.3) 

 
For the purpose of correlating experimental data an idealization proposed by 
Henry is used in the literature called Henry’s law. The Henry’s law says 

“The mass of non condensable gas dissolved in a liquid is proportional to 
the partial pressure of the gas around the liquid with which the latter is in 
equilibrium” 

Frequently in the chemical thermodynamic literature the solubility data are 
approximated by the Henry’s law in the following form 

( )1 ,2 2 2 ,i H i ip k T Y ∞= .      (11.4) 

Here 1ip  is the partial pressure of specie i in the gas phase, and 2 ,iY ∞  is the satura-

tion molar concentration of the same specie in the liquid. ( ),2 2H ik T  is called the 
Henry’s coefficient. Later on, we will see that this idealization does not hold for 



many cases and that there is a pressure dependence on the Henry’s coefficient too. 
Knowing the Henry’s coefficient the molar concentration of the saturated solution 
is then 

 
( )2 , 1 ,2 2i i H iY p k T∞ = ,      (11.5) 

 
and the corresponding mass concentration is 

 

( )
2

2 , 2
2 ,

2 , 2 2 ,1
i i

i
i i i H O

Y M
C

Y M Y M
∞

∞
∞ ∞

=
+ −

.    (11.6) 

 
If the mass concentration of the saturated solution is known the molar 
concentration is easily computed by 

 

( )
2

2 2
2 ,

2 , 2 2 ,1
i i

i
i i i H O

C M
Y

C M C M∞
∞ ∞

=
+ −

.    (11.7) 

 
The mass of the dissolved gas in a saturated liquid is then 

 
2 , 2 2 2 ,i im C Volα ρ∞ ∞= ,      (11.8) 

 
where Vol is the flow volume, 2α  is the liquid volume fraction and 2ρ  is the 
liquid density.  

 
The Grischuk data from Table 11.1 can be approximated by 
 

( )( ) ( )5 2 2 3 3 4 4 5
,2 2 1 2 0 1 2 2 2 3 2 4 210 , 10H i ik T p Pa T a a T a T a T a T Pa= = + + + + , (11.9) 

 
within 0 and 100°C. The polynomial coefficients and the mean error are given in 
Table 11.2. 

Table 11.2. Coefficients for the approximation of the equilibrium solution of oxygen, ni-
trogen and hydrogen

 
0a  1a  2a  3a  4a  error % 

O2 1.2191d6 -16595.37213 78.10548 - 0.14912 9.8951d-5 0.30 
N2 9.769d6 -126479.73104 600.04585 - 1.23258 9.3109d-4 0.26 
H2 -15.43218d5 0.13585d5 - 3.78843d1 3.51564d-2 0 0.46 

Note that dn or en means 10n. 
 

In many literature sources the amount of the dissolved gases in liquids is pre-
sented in gas cubic centimeter at standard pressure 5=1.0133 10normp Pa×  and 
temperature  normT  per gram of the water (Cc. at S. T. P. per g of water). For the 
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standard temperature different sources use different temperatures e.g.  
273.15normT K=  for the so-called Bunsen absorption coefficient. In order to ob-

tain the saturation mass concentration one has to multiply such quantities by  
 

3 5
3 3 10 1.0133 1010 10

8314 273.15norm
p M M

RT
ρ

−
− − × ×

= =
×

54.462 10 M−≈ × . (11.10) 

 
Here the universal gas constant is R = 8314 J/(kg-mol K) and M is the mol mass in 
kg-mole. Having in mind that 28M kg= for nitrogen, 32M kg= for oxygen, 

2M kg= for hydrogen and 42M kg=  for carbon dioxide we obtain for the 
multipliers 31.2494 10−× , 31.4279 10−× , 30.08924 10−×  and 31.874 10−×   respec-
tively. 
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Fig. 11.2. Saturation O2 and N2 concentrations in water being in contact with saturated 
steam–gas mixture as a function of the water temperature. The gas pressure is 105Pa, 
Himmelblau and Arends (1959) 

Other sources present the data in mg-mole/l. In order to obtain the mass 
concentration one has to multiply such quantities by 

 

( )
3

2 2

10
,

M
p Tρ

−

.       (11.11) 

 
For the case of mixture of a pure gas and steam being in equilibrium with the 

water the partial pressure of the gas is reduced by the steam component, 
 

( )
( )

2
2 ,

,2 2

'
i

H i

p p T
Y

k T∞

−
= .       (11.12) 
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Figure 11.2 shows the solubility of O2 and N2 in such case.  



 
Problems:  

 
Problem 1: Given a water pool with air above it at atmospheric pressure. The 
temperature of the water is 20°C. The air is dry. The water stays long enough in 
contact with the air so that the surface is saturated with dissolved air. Compute the 
amount of the dissolved gases into a kg of water. 

 
Solution: The air consists of 78.12 vol% nitrogen, 20.96 vol% oxygen and 
0.92vol% argon. For practical analysis it is appropriate to assume that the air 
consists of 0.7812 mole fraction of nitrogen and 0.2188 mole fraction of oxygen. 
It means that the partial pressure of the nitrogen is 0.7812bar and that of the 
oxygen 0.2188bar. Using Eq. (11.9) we obtain 14.8mg nitrogen and 9.63g oxygen 
dissolved in 1kg of water. 

 
Problem 2: A pump is transporting water from this layer upward. The suction 
creates pressure lower than one bar. The question is how much of the dissolved 
gases can be released. 

 
Solution: Evaporation into the bubbles up to the saturation pressure 

( )2' 20p T C= °  = 0.0234bar is possible. Then the partial pressures are 

( )5
2 0.7812 0.0234 10Np p= − × , ( )5

2 0.2188 0.0234 10Op p= − × . Table 11.3 
and Fig. 11.3a give the results. We see the linear dependence due to the validity of 
the Henry’s law at low pressure. 

Table 11.3. Released air in water at p < 1bar initially saturated at 1bar 

p in Pa mgN2/kg mgO2/kg 
1,homα  

100000.  0.346 0.225 0.00119 
 95000.  1.086 0.707 0.00394 
 90000.  1.825 1.188 0.00698 
 85000.  2.565 1.670 0.01037 
 80000.  3.305 2.151 0.01416 
 75000.  4.044 2.633 0.01844 
 70000.  4.784 3.115 0.02331 
 65000.  5.524 3.596 0.02889 
 60000.  6.263 4.078 0.03537 
 55000.  7.003 4.559 0.04296 
 50000.  7.743 5.041 0.05198 
 45000.  8.482 5.522 0.06288 
 40000.  9.222 6.004 0.07633 
 35000.  9.962 6.485 0.09332 
 30000. 10.701 6.967 0.11548 
 25000. 11.441 7.449 0.14557 
 20000. 12.181 7.930 0.18879 
 15000. 12.920 8.412 0.25614 
 10000. 13.660 8.893 0.37564 
  5000. 14.400 9.375 0.64614 
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Fig. 11.3. a) Released air from water at p < 1bar initially saturated at 1bar and 20°C. b) gas 
volume fraction assuming homogeneous two-phase mixture  

Problem 3: Compute the volume fraction of Problem 2 assuming that the water 
and the gas flow with the same velocity and the gases behave as perfect gases. 
Assume also that the gases have the same temperature as the water. 
 
Solution: The solution is given below:  
 

( )
2 21, 2 20N Np Y p p T C′= − = °⎡ ⎤⎣ ⎦ , 

 
( ) ( )

2 21, 21 20O Np Y p p T C′= − − = °⎡ ⎤⎣ ⎦ , 
 

2 2

2
2

N N
N

p M
RT

ρ = , 

 
2 2

2
2

O O
O

p M
RT

ρ = , 

 

( ) ( )2 2 2 22 2 2 2

2 2 2

1

, ,, , 1 N N O ON N O O

N O H O

C C C CC C C C
ρ

ρ ρ ρ

−

∞ ∞∞ ∞
⎡ ⎤− − − −− −
⎢ ⎥= + +
⎢ ⎥⎣ ⎦

, 

 
2

2 2 2

1
H O

H O N O

ρ ρ
α

ρ ρ ρ
−

=
− −

. 
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The result is numerically evaluated and presented in Fig. 11.3b. From Fig. 11.3b it 
is obvious that at very low pressure the gas can occupy considerable amount of the 
cross section and change totally the flow processes with several consequences. 

 
Problem 4: Given a nuclear reactor core cooled by water at 2.2bar and averaged 
temperature of 50°C. Due to radiolysis very small part of the water is dissociated 
into a mixture of [2/3 vol% H2 i.e. to 

21, 2 / 3HY = and 1/3 vol% O2 resulting in 1/9 
mas% H2 und 8/9 mas% O2, respectively]. Find the maximum amount of this gas 
mixture that can be dissolved by the coolant.  

 
Solution: We assume that in a disappearing gas bubble there is a water vapor 
under partial pressure ( )

2 2 50H Op p T C′= = ° = 0.1235bar. The remaining pressure 
is built by 

 
( )

2 21, 2 50H Hp Y p p T C′= − = °⎡ ⎤⎣ ⎦ , 
 

( ) ( )
2 21, 21 50O Hp Y p p T C′= − − = °⎡ ⎤⎣ ⎦ . 

 
Under these conditions the maximum of the dissolved gases in accordance with 
Fig. 11.1 is 2mg H2 and 20.7mg O2 in a 1kg of water.  Reduction of the pressure 
under constant temperature leads to mass release as shown in Fig. 11.4a). 
Computing the volume fraction of the released gases in the same way as in 
Problem 3 we obtain the result in Fig. 11.4b). 
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Fig. 11.4. a) Released H2+O2 stoichiometric mixture from water at p < 2.2bar initially satu-
rated at 2.2bar and 50°C. b) gas volume fraction assuming homogeneous two-phase mixture  

Useful experimental information about the real net production of hydrogen for 
research water cooled reactors is available in Dolle and Rozenberg  (1977). 
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Problem 5: Given a volume 1V  filled with water having known amount of dis-
solved gases 

21,HC , 
21,OC , 

21,NC  and volume 2V  filled with water having unknown 

amount of dissolved gases 
22,HC , 

22,OC , 
22,NC  which has to be estimated. Both 

volumes have initial pressure 0p  and initial temperature 0T . A third volume 3V  
evacuated to a pressure of vacp  is connected with the first two volumes. The water 
enters the evacuated volume violently creating vertices and allowing for 
generation of so much active nucleation centers that the degassing process starts 
violently amplifying the turbulence. After some finite time τΔ  an equilibrium 
pressure is established equal to finalp  and temperature gasT . In the third volume a 
gas volume gasV  at its top is measured consisting of 

2,gas HY , 
2,gas OY , 

2,gas NY . 

Compute  
22,HC , 

22,OC , 
22,NC . 

 
Solution: The mass concentrations are easily estimated from the molar 

concentrations by 
max

, , ,
1

k

gas i gas i i gas k k
k

C Y M Y M
=

= ∑ , then the mixture gas constant 

max

,
1

k

gas gas k k
k

R C R
=

= ∑ and then the mass of the gas ( )gas final gas gas gasm p V R T= . The 

mass of the specific components in the gas is then , ,gas i gas i gasm C m= . The effective 
pressure of degassing is 

 
( ), , , .eff eff vac finalp p p p etcτ= Δ . 

 
The final concentration of hydrogen for instance in the first volume is then 

 

( )2 2 2 21, , 1, , 0 ,min , ,H final H H sat gas H effC C C T Y p⎡ ⎤= ⎣ ⎦ , 

 
and in the second volume 

 
( )2 2 22, , , 0 ,,H final H sat gas H effC C T Y p= . 

 
Applying the mass conservation to the hydrogen content we obtain 

 

( )2

2 2 2 2

, 1
2, , 1, 1, ,

2 2

gas H
H H sat H H final

wasser

m V
C C C C

V Vρ
= + − − . 

 
Similar is the procedure for computing the other concentrations. It is well 
known that the degassing and absorption is associated with a hysteresis due to 
the differences in the initial bubble radius at which the corresponding process 
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starts. The nucleation and the diffusion controlled bubble growth are also associ-
ated with characteristic time depending on the level of turbulence and on the bub-
ble-liquid relative velocities. Therefore the process has to be dynamically ana-
lyzed by taking into account the separated physical processes which is 
complicated. Simplification can be done as follows: The gas release starts at vacp  
reaches the maximum at  

 
( )eff vac final vacp p const p p= + −   

 
and is negligible after that. Two limiting cases are of interest: Assuming (a) that 
the vacuum wave passes the liquid with the velocity of sound for a time much less 
than τΔ  and (b) that the degassing process is instant  we obtain eff vacp p= . If 
the gas release is delayed, as it actually is, so that it still continues after the 
pressure reaches values close to the final pressure, the final concentrations 
correspond to the saturation concentrations at  

 
eff finalp p= . 

 
This is the more realistic assumption. Setting the first volume to zero results in the 
method usually used to analyze the dissolved gas content in liquids. In the past the 
gas temperature was usually reduced to 0°C in order to eliminate the water vapor 
in the mixture. Modern spectrographs also provide the vapor content in the gas at 
any temperature and pressure. 

11.2 Oxygen in water 

Here we collect experimental data reported in the literature and correlate them 
with analytical expression to facilitate their use in computational analyses. 
Recommendation for practical use will be given at the end of the chapter together 
with the error estimate of the correlations. 

As already mentioned, oxygen absorption data for atmospheric conditions and 
water temperatures up to 100°C are reported by Grischuk (1957) and given here in 
Table 11.1. The data are approximated by Eq. (11.9) with mean error of 0.34%. 
Table 11.4 gives data from earlier measurements at atmospheric pressure for com-
parison. We see that the Grischuk data compare well with the older data. Eq. 
(11.9) reproduces the data in Table 11.4 with 1.1% mean error. The Eq. (11.9) can 
be used up to 50bar and up to 160°C with a mean error of 1.7%. 
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Table 11.4. Oxygen absorption in water in mg per kg of water as measured by Morrison 
and Billet in 1952, Bohr and Bock in 1891 and Winkler in 1891, see Linke (1965)  p. 1228, 
compared with Grischuk (1957)

°C W M&B B&B Grischuk 
(1957) 

0 69.82  70.82 69.93 
5 61.26  62.69  
10 54.25  55.69 54.34 
15 48.83 48.70 49.97  
20 44.26 43.97 45.26 44.33 
25 40.41 40.55 41.40  
30 37.26 37.83 38.27 37.32 
40 32.99 33.13 33.27 33.03 
50 29.84 29.70 29.56 29.89 
60 27.84 27.99 26.98 27.89 
70 26.13 26.56 25.41 26.17 
80 25.13 25.27 24.56 25.17 
90 24.56  24.13 24.60 
100 24.28  23.99 24.60 

 
Pray et al. (1952) reported measurements at temperatures 298°C to 616.48°C 

and pressures 9.6 to 21.3bar given in Tables 11.4 and 11.5 and Fig. 11.5.  

Table 11.5. Oxygen absorption in water in cm³ at (0°C, 1atm) per g of water and in mg per 
kg of water as measured by Pray (1952) 

psi cm³/g bar mg/kg 
298.15K (25°C) 
140 0.28 9.65 399 
295 0.56 20.34 800 
370 0.7  25.51 999 
435.93K (162.78°C) 
100 0.15 6.89 214 
200 0.31 13.79 443 
300 0.46 20.68 657 
477.59K (204.44°C) 
100 0.18 6.89 257 
150 0.28 10.34 400 
533.15K (260°C) 
100 0.64 6.89 914 
200 0.91 13.79 1299 
300 1.35 20.68 1928 
400 1.71 27.58 2442 

588.70K (315.55°C) 
100 0.63 6.89 900 
200 1.42 13.79 2028 
300 2.19 20.68 3127 
616.48K (343.33°C) 
104 1,22 7.17 1742 
175 1,85 12.07 2641 
205 2.29 14.13 3270 
280 2.96 19.30 4226 
289 2.56 19.93 3655 
309 2.99 21.30 4269 
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Table 11.6. The Henry coefficient for oxygen in accordance with Pray (1952) 

T in K ( )
2,2, 2H Ok T , Pa 

298.15 0.452e10 
435.93 0.552e10 
477.59 0.458e10 
533.15 0.191e10 
588.71 0.120e10 
616.48 0.084e10 
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Fig. 11.5. The Henry coefficient for oxygen in accordance with Pray (1952) 

We approximated the Henry coefficient with  
 

( ) ( )2 3 4 10
,2 2 1 2 2 3 2 4 51.09 10H ik T a a T a T a T a T= + + + + ,  (11.12) 

 
where 1:5a =  -23.92186d0, 0.20317d0,-6.06628d-4,7.78284d-7, -3.67327d-10 as 
shown in Fig. 11.5. The saturation mole- and mass-concentration is then computed 
by Eqs. (11.5) and (11.6). The mean error comparing with the Pray’s data is only 
12.4%. The mean error comparing with all the data given in this section is 11.6%. 
The mean error comparing with the smoothed data given in Table 11.7 is 15%. 

p in bar 6.895 13.39 20.68 27.58 34.47 
T in K      
310.9 228.5 471.2 756.8 1028 1271 
366.5 142.8 328.4 614.0 842.4 1057 
422.0 142.8 371.2 628.2 871.0 1085 
477.6 285.6 642.5 885.2 1199 1442 
533.15 585.4 1170.8 1585 1999 2856 
588.7 1113.7 2113.2 3241 4326 5440 
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Table 11.7. Values read from smoothed curves drown by Pray et al. (1952) and Frolich  
et al. 1933 see Linke (1965) p. 1228. 



Benson et al. (1979) reported approximations with 
 

( ) ( )5 2
,2 2 2 210 exp 3.71814 5596.17 / 1049668 /H ik T T T= + −   

 
for 20 273.15 100T C≤ − ≤ ° ,     (11.13) 
 

and 

( )

4
2

5
,2 2

6 2 8 3
2 2

4.1741 1.3104 10 /
10 exp

3.4170 10 / 2.4749 10 /
H i

T
k T

T T

⎛ ⎞− + ×
⎜ ⎟

= ⎜ ⎟
⎜ ⎟− × + ×⎝ ⎠

  

 
for 2100 273.15 288T C< − ≤ ° .     (11.14) 
 

The mean error comparing with the data given in this section is 5.7%.  
Ji and Yan (2003) reported the following approximation valid also for higher 

temperature up to 560.93K and pressures up to 200bar 
 

( ) ( )5 2 2
,2 2 1 2 3 4 5 6 210 expH ik T a a p a p a a p a p T⎡= + + + + +⎣  

 
( ) ( ) ]2 2 2

7 8 9 2 10 11 12 2lna a p a p T a a p a p T+ + + + + + ,  (11.15) 

2.61610e-3 and 510p p= . The mean error comparing with all the data in this 
section is 7.1%.  

Broden et al. (1978) reported measurements at temperature ≤  150°C and 
pressure ≤ 5MPa given in Table 11.8. I approximate them here with the 
correlation  

( ) ( )2

2

2

3 2 2
1 2 2 3 4 2 5 6 710O

O
H O

M
C a a T a a T a T p a a T p

ρ
− ⎡ ⎤= + + + + + +⎣ ⎦ ,  (11.16) 

comparing with his own data is 3.4% and comparing with all data 19.26% 
 
 

 
where 1:7a =  -2.545d0, 0.807d-2, -8.414d-5, 2.096d-10, 2.322d-2, 1.027d-12,

uted by Eq. (11.8). The mean error com--3.911d-10. The mol fraction is then comp

 
where 1:12a = -2.10973e2,   2.32745e0, -1.19186e-2, -2.02733e-1,  2.45925e-3,  
-1.21107e-5,   9.77301e-5, -1.43857e-6,  6.84983e-9,   4.79875e1, -5.14296e-1, 
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Table 11.8. Oxygen absorption in water in mg-mole per l of water and in kg per kg of water 
as measured by Broden et al. (1978) 

T in K p in Pa mg-mole/l mg/kg 
325.15 1.e6 9.47  307 
350.03 1.e6 8.12  267 
374.60 1.e6 7.75  259 
398.88 1.e6 7.75  264 
424.05 1.e6 8.72  305 
325.75 2.e6 18.3  594 
350.32 2.e6 15.5  508 
374.60 2.e6 14.4  479 
398.88 2.e6 15.6  530 
424.35 2.e6 17.1  598 
326.05 3.e6 27.1  878 
350.62 3.e6 22.8  745 
374.90 3.e6 21.9  732 
399.47 3.e6 23.1  786 
424.35 3.e6 26.7  930 
326.05 4.e6 35.5 1150 
350.62 4.e6 30.3  996 
374.60 4.e6 29.1  972 
399.17 4.e6 30.6 1043 
424.35 4.e6 35.1 1225 
326.65 5.e6 43.6 1412 
351.22 5.e6 37.6 1234 
374.60 5.e6 36.3 1209 
400.37 5.e6 38.2 1302 
424.95 5.e6 44.4 1550 

 
 
 
Tromans (1998) proposed in 1998 an expression derived from the thermodynamic 
condition of chemical equilibrium valid for temperatures between 273 and 616K 
and pressures up to 60bar. Multiplying his expression with the constant 0.55 result 
in the following correlation 
 

2

3

,
22.39 1.4279 100.55

101325OY p
−

∞

× ×
=  

 

( )( )2 2
2 2

2

0.046 203.35 ln - 299.378 0.092 - 298 - 20591
298exp

8.3144

TT T T T

T

+ +
× , 

 
that reproduces all the data we collected here with an accuracy of  5.2% as shown 
in Fig. 11.6. 
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Fig. 11.6. Saturation oxygen concentrations in water: approximated versus measured with 
the modified Tromans equation

Conclusions 

Table 11.9. Summary of the approximation correlations, their region of applicability and 
their error 

Author Approximation T  p  err. %,  
own data 

err. %,  
all data 

Grischuk (1957) Eq. (11.9) 0 to 100°C 1e5Pa 0.34  
Pray et al. (1952) Eq. (11.12) 298°C to 

616.48°C 
9.6 to 
21.3bar 

12.4 14.05 

Benson et al. (1979) Eqs. (11.13,11.14) 0 to 288°C   5.7 
Ji and Yan (2003) Eq. (11.15) up to 

560.93K 
up to 
200bar 

 7.1 

Broden et al. (1978) Eq. (11.16) ≤  150°C ≤ 5MPa 3.56 19.26 

 
Table 11.9 gives a summary of the results of this section. For practical use we 
recommend for pressures around 1bar Eq. (11.9). Equations (11.14) or (11.15) are 
recommended for general applications. The performance of the proposed 
correlation set is demonstrated in Fig. 11.7. 
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Fig. 11.7. Saturation oxygen concentrations in water: approximated versus measured with 
the recommended procedure  
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11.3 Nitrogen water 

Here we collect experimental data reported in the literature and correlate them 
with analytical expression to facilitate their use in computational analyses. 
Recommendation for practical use will be given at the end of the chapter together 
with the error estimate of the correlations. 

As already mentioned, nitrogen absorption data for atmospheric conditions and 
water temperatures up to 100°C are reported by Grischuk (1957) and given in Ta-
ble 11.1. The data are approximated by Eq. (11.9) with mean error of 0.26%. 
Comparison with other data for atmospheric pressure is given in Table 11.10. The 
agreement between different measurements is within 3% deviation. Equation 
(11.9) reproduces Table 11.10 within a mean error of 2.4%. 

Table 11.10. Nitrogen absorption in water in mg per kg of water as measured by Morrison 
and Billet in 1952, Bohr and Bock in 1891 and Winkler in 1891, see Himmelblau and 
Arends (1959), compared with Grischuk (1957)  

°C M&B B&B W Grischuk (1957) 
0  29.86 29.36 29.14 
5  26.86 25.99  
10  24.49 23.24 23.06 
15 21.80 22.36 20.99  
20 19.98 20.49 19.24 19.22 
25 18.55 18.74 17.87  
30 17.20 17.24 16.74 16.62 
35 16.03 15.87 15.62  
40 15.18 14.74 14.74 14.63 
50 14.06 13.24 14.74 13.52 
60 13.56 12.49 12.74 12.65 
70 13.22   12.15 
80   11.99 11.90 
90    11.78 
100  12.49 11.87 11.78 

 
Nitrogen absorption in water is measured by Wiebe et al. (1933). The results are 

given in Table 11.11. 

Table 11.11. Nitrogen absorption in water in Cc. at (0°C and 1atm)  per g of water and in g 
per kg of water as measured by Wiebe et al. (1933) 

T°C 25 50 75 100 
P atm cm³/g g/kg cm³/g g/kg cm³/g g/kg cm³/g g/kg 
25 0.383 0.435 0.273 0.341 0.254 0.317 0.266 0.332 
50 0.674 0.842 0.533 0.666 0.494 0.617 0.516 0.645 
100 1.264 1.579 1.011 1.263 0.946 1.182 0.986 1.232 
200 2.257 2.820 1.830 2.286 1.732 2.164 1.822 2.276 
300 3.061 3.824 2.534 3.166 2.413 3.015 2.546 3.181 
500 4.441 5.548 3.720 4.648 3.583 4.476 3.799 4.746 
800 6.134 7.663 5.221 6.523 5.062 6.324 5.365 6.703 
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1000 7.150 8.933 6.123 7.650 5.934 7.414 6.256 7.816 



 
Within an mean error of 0.3% the Wiebe et al. data are approximated here by the 
following correlation 

 
( ) ( ) ( )2 6 2

,2 2 1 2 2 3 2 4 5 2 6 2, 10 10H ik T p a a T a T a a T a T p= + + + + +  
 
( )2 2 4

7 8 2 9 2 10a a T a T p −+ + +  ,     (11.17) 
 

where 1:9a = − 133424.80726, 826.81456, − 1.17389, − 66.79008, 0.49946, 
− 7.78632d-4, 0.02728, − 2.03146d-4, 3.28d-7. Note the temperature limits of the 
data. 

Other set of data are collected by Goodman and Krase (1931) and shown in 
Table 11.12. 

Table 11.12. Nitrogen absorption in water in cm³ at (0°C and 1atm) per g of water and in g 
per kg of water as measured by Goodman and Krase (1931)  

P 
atm 

0°C  25°C  50°C  80°C  

100 1.46 1.82 1.07 1.34 1.003 1.253 0.934 1.167 
125 1.76 2.20 1.44 1.80 1.24 1.55 1.15 1.44 
200 3.19 3.99 2.76 3.45 2.49 3.11 2.27 2.84 
300 3.60 4.50 3.25 4.06 2.99 3.74 2.86 3.57 
 
P 
atm 

100°C  144°C  169°C  

100 0.954 1.192 1.025 1.281 1.08 1.35 
125 1.17 1.46 1.30 1.62 1.52 1.90 
200 2.25 2.81 2.68 3.35 3.29 4.11 
300 2.91 3.63 3.46 4.32 3.83 4.78 

 
With a mean error of 4.8% the Goodman and Krase (1931) data are reproduced 
here by 
 

3 4
1 1

2 ,
1 1

1.092 j i
i ij

i j
C a T p− −

∞
= =

⎛ ⎞
= ⎜ ⎟

⎝ ⎠
∑ ∑ ,    (11.18) 

 
where the coefficients are given in Table 11.13. These high temperature data are 
limited for pressures within 100 and 300atm. 

Table 11.13. Coefficient of Eq. (11.18)

ija  j = 1 j = 2 j = 3 j = 4 

i = 1 0.10242d+00 - 9.60262d-04 2.90215d-06 - 2.87507d-09 
i = 2 -9.61364d-09 + 9.64078d-11 - 3.03074d-13 3.09699d-16 
i = 3 2.31521d-16 - 2.27411d-18 7.08796d-21 - 7.18264d-24 
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 Other set of data is collected by Saddington and Krase (1934) and shown in 
Table 11.14. 

Table 11.14. Nitrogen absorption in water in cm³ at (0°C and 1atm) per g of water and in g 
per kg of water as measured by Saddington and Krase (1934)

p in atm t in °C  g/kg 
100 65 0.981 1.226 

 80 0.977 1.221 
 125 1.198 1.497 
 180 1.644 2.054 
 210 1.817 2.270 
 240 2.027 2.532 

200 50 1.806 2.256 
 80 1.748 2.184 
 100 1.825 2.280 
 150 2.172 2.714 
 200 3.287 4.107 
 240 4.378 5.470 

300 50 2.572 3.213 
 70 2.425 3.030 
 105 2.598 3.246 
 135 3.126 3.905 
 165 3.905 4.879 
 230 6.062 7.574 

 
With a mean error of 1.3% the Saddington and Krase (1934) data are reproduced 
here by the following correlation 

 

( )
4 3

1 1
,2 2

1 1
, 0.92948 j i

H i ij
i j

k T p a p T− −

= =

⎛ ⎞
= ⎜ ⎟

⎝ ⎠
∑ ∑ ,   (11.19) 

 
with the coefficients given in Table 11.15. These high temperature data are limited 
for pressures within 100 and 300atm. With this approximation the data by 
Goodman and Krase (1931) are reproduced with 5.2% mean error. 

Table 11.15. Coefficients to Eq. (11.19)

ija  j = 1 j = 2 j = 3 

i = 1 -1.16471d11 5610.3d0 - 4.7097d-4 
i = 2 1.26395d9 - 71.50575d0 4.21697d-06 
i = 3 -3.81683d6 0.254800d0 - 1.21537d-08 
i = 4 3565.95174d0 - 2.68626d-4 + 1.12097d-11 
 
Pray et al. (1952) reported measurements at temperature 298.15K to 588.70K and 

pressure 10.34 to 40.54bar given in Table 11.16.  
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Table 11.16. Nitrogen absorption in water in cm³ at (0°C and 1atm) per g of water and in g 
per kg of water as measured by Pray (1952)

Psi  bar g/kg 
298.15K (25°C) 
294 0.28 20.27 0.35 
367 0.35 25.30 0.44 
588 0.55 40.54 0.69 
323.15K (50°C) 
367 0.27 25.30 0.34 
384.15K (25°C) 
367 0.25 25.30 0.31 
373.15K (111°C) 
367 0.26 25.30 0.32 
533.15K (260°C) 
150 0.44 10.34 0.55 
400 1.24 27.58 1.55 
588.70K (315.55°C) 
150 0.55 10.34 0.69 
400 2.32 27.58 2.90 

 
Within 7.7% mean error we approximated them with 

 
( ) ( )5 2 3 4

,2 2 1 2 2 3 2 4 510H ik T a a T a T a T a T= + + + + ,   (11.20) 
 

where 1:5a =  -4.96679d6, 43617.22615, -135.42537, 0.18072, -8.84973e-5. If the 
temperature is less than 298.15K then it is set in Eq. (11.20) to 298.15. The mass 
concentration is then computed by Eqs. (11.5) and (11.6). 

Data up to 311°C are collected in Wiebe et al. (1933) and given in Table 11.17. 

Table 11.17. Nitrogen absorption in water in g per kg 

T°C 0 18 25 50 75 100 169 200 260 311 
Atm           
10   0.175g      1.243f 2.204f 
25   0.435 0.771 0.718 0.752   3.193f 5.511f 
50   0.842 1.506 1.396 1.458     
100 1.81a  1.577 2.857 2.673 2.786 3.052a  5.728c,d  
200 3.99a  6.378 5.172 4.895 5.149 9.298a 9.289c 12.37c,d  
300 4.52a  8.650 7.161 6.819 7.195 10.82a  17.13c,d  
500  5.37b 12.55 10.51 10.12 10.74     
800   17.33 14.75 14.30 15.16     
1000  7.72b 20.21 17.30 16.77 17.66     
2000  8.62b         
3000  8.75b         
4000  7.80b         
4500  7.50b         

a Goodman and Krase 1931;  b Basset and Dode 1936; c Saddington and Krase 1934; d at 
240°C; e at 230°C; f Pray, Schweikert and Minnich 1952; g Cassuto 1904, 1913. 
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Conclusions: 

Table 11.18. Summary of the approximation correlations, their region of applicability and 
their error 

Author Appr. T  p  err. %,  
own data 

err. %,  
all data 

Grischuk 
(1957) 

Eq. (11.9) 0 to 100°C 1e5Pa 0.26 24 

Pray et al. 
(1952) 

Eq. (11.20) 298.15 to 
588.70K 

10.34 to 
40.54bar 

7.7 19.5 

Wiebe et al. 
(1933) 

Eq. (11.17) 50 to 100° 
C 

25 to 
1000atm 

0.3 5.46 for 
T<100°C 

Goodman 
and Krase 
(1931) 

Eq. (11.18) 0 to 169° C 100 to 
300atm 

4.84  

Saddington 
and Krase 
(1934)  

Eq. (11.19) 65 to 240° 
C 

100 to 
300atm 

1.3  

 
For up to the atmospheric pressure Eq. (11.9) is the best choice. Eq. (11.9) can 
also be used up to 100bar and temperature < 100°C with an accuracy of about 
9.6%. For the region between 100 and 300bar Eq. (11.19) is recommended. For 
pressures larger than 300bar and temperatures less than 100°C Eq. (11.17) is recom-
mended. For pressure less than 100bar and temperatures higher than 100°C Eq. 
(11.19) is the best choice due to lack of alternatives. The performance of the recom-
mended procedure is given in Fig. 11.8. 
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Fig. 11.8. Saturation nitrogen concentrations in water: approximated versus measured with 
the recommended procedure  

11.3 Hydrogen water 

Here we collect experimental data reported in the literature and correlate them 
with analytical expression to facilitate their use in computational analyses. 
Recommendation for practical use will be given at the end of the chapter together 
with the error estimate of the correlations. 
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As already mentioned, hydrogen absorption data for atmospheric conditions 
and water temperatures up to 100°C are reported by Grischuk (1957) and given in 
Table 11.1. The data are approximated by Eq. (11.9) with mean error of 0.46%. 

Pray et al. (1952) reported measurements at temperature 279.04K to 616.48K 
and pressure 6.895 to 34.47bar given in Table 11.19.  

Table 11.19. Hydrogen absorption in water in cm³ at (°C and 1atm)  per g of water and in 
mg per kg of water as measured by Pray (1952) 

psi  Bar mg/kg 
279.04K (5.89°C) 
300 0.32 20.68 28.56 
367 0.44 25.30 39.26 
324.82K (51.67°C) 
200 0.33 13.79 29.45 
300 0.41 20.68 36.59 
350 0.45 24.13 40.16 
422.04K (148.89°C) 
100 0.13 6.895 11.60 
200 0.28 13.79 24.99 
300 0.40 20.68 35.70 
375 0.52 25.86 46.40 
500 0.70 34.47 62.47 
447.04K (173.89°C) 
100 0.15 6.895 13.39 
200 0.30 13.79 26.77 
300 0.43 20.68 38.37 
375 0.56 25.86 49.97 
500 0.75 34.47 66.93 
472.04K (198.89°C) 
100 0.18 6.895 16.06 
200 0.34 13.79 30.34 
300 0.52 20.68 46.40 
375 0.68 25.86 60.68 
497.04K (223.89°C) 
100 0.22 6.895 19.63 
200 0.49 13.79 43.73 
300 0.75 20.68 66.93 
375 0.94 25.86 83.88 
500 1.26 34.47 112.4 
533.15K (260.00°C) 
100 0.39 6.895 34.80 
200 0.91 13.79 81.21 
300 1.25 20.68 111.5 
588.70K (315.55°C) 
100 0.65 6.895 58.00 
200 1.32 13.79 117.8 
300 2.01 20.68 179.4 
616.48K (343.33°C) 
100 1.40 6.895 124.9 
115 1.63 7.929 145.5 
120 1.68 8.274 149.9 
125 1.74 8.618 155.3 
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I approximated them within 7.5% error with 

 
( ) ( )2 3 4 5 5

,2 2 1 2 2 3 2 4 5 6 10H ik T a a T a T a T a T a T= + + + + + ,  (11.21) 
 

where 1:6a =  7.84421d6, − 89721.74192, 403.66971, − 0.88502, 9.4584d-4, 
− 3.95322d-7. All data are predicted with almost the same accuracy, 14% mean 
error.  

Table 11.20. Hydrogen absorption in water in kg per kg of water as measured by Kaltofen 
et al. (1986) p. 169 

T in K p in Pa kg/kg 
273.15   25.3e5   48.1e-6 
273.15   50.6e5   95.8e-6 
273.15  101.3e5  190.6e-6 
273.15  303.9e5  543.8e-6 
273.15  607.8e5 1015.9e-6 
273.15 1013.1e5 1547.9e-6 

   
323.15   25.3e5   37.4e-6 
323.15   50.6e5   74.3e-6 
323.15  101.3e5  147.7e-6 
323.15  303.9e5  426.7e-6 
323.15  607.8e5  809.8e-6 
323.15 1013.1e5 1275.2e-6 

   
373.15   25.3e5   45.5e-6 
373.15   50.6e5  890.0e-6 
373.15  101.3e5  175.8e-6 
373.15  303.9e5  503.6e-6 
373.15  607.8e5  951.8e-6 
373.15 1013.1e5 1480.4e-6 

 
Within a mean error of 0.22% the Kaltofen et al. data are approximated here by 
the following correlation 
 

( ) ( ) ( ) ( )2 10 5 7 2
,2 2 1 2 2 3 2 4 5 2 6 7 2 7 2, 10 10H ik T p a a T a T a a T p a a T a T p= + + + + + + + , 

        (11.22) 
 
where 1:7a = -5.56952, 0.0387, - 5.9258d-5,  2.08046d-5, 4.3011d-7, 4.84968d-7, -
2.60766d-9, 3.26096d-12. Note the temperature limits of the data. 

 
Conclusions: 
 
Table 11.21 summarizes the results of this section. 
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Table 11.21. Summary of the approximation correlations, their region of applicability and 
their error 

Author Appr. T  p  err. %,  
own 
data 

err. %,  
all data 

Grischuk 
(1957) 

Eq. (11.9) 0 to 100°C 1e5Pa 0.46 35.4, 
7.8 
T<100°C 

Pray et al. 
(1952) 

Eq. (11.21) 279.04 to 
616.48K 

6.895 to 
34.47bar 

7.5 14 

Kaltofen et 
al. (1986) 

Eq. (11.22) 50 to 100° 
C 

25.3 to 
1013atm 

0.22 5.26 
T<100°C 

 
For temperatures below 100°C Eq. (11.22) is recommended. At pressure around 1 
bar and temperatures below 100°C Eq. (11.9) is accurate enough. For temperatures 
higher than 100°C Eq. (11.21) is recommended. The performance of the 
recommended procedure is demonstrated in Fig. 11.9. 
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Fig. 11.9. Saturation hydrogen concentrations in water: approximated versus measured with 
the recommended procedure 

11.4 Carbon dioxide–water 

Our natural environment contains water and carbon dioxide. Therefore any proc-
ess associated with the atmospheric and biological phenomena is influenced to 
some extend by the solubility of the carbon dioxide in the water. Sparking cham-
pagne for celebration of important achievements in our life or gas release from a 
lake in Africa causing thousands of casualties are some of the many examples. 
Our ecological system is strongly influenced by the dynamics of the appearance 
and disappearance of CO2 in the atmosphere. Many industrial processes also 
require detailed knowledge on solubility. This is the reason why large number of 
publications is available to this subject. Carroll, Slupsky and Mather reviewed the 
state of the art up to 1991 (about 100 papers) and recommended the following cor-
relation valid for p < 1MPa and 273< T < 433K: 
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( )

4
2

,2 2
6 2 8 3

2 2

6.8346 1.2817 10
, exp

3.7668 10 2.997 10
H i

T
k T p

T T

⎛ ⎞− + ×
⎜ ⎟

= ⎜ ⎟
⎜ ⎟− × + ×⎝ ⎠

 in MPa. (11.23) 

 
For the enthalpy of solution the authors reported 
 

( ) ( )
2  in Water ,2 2

2

1 ln ,
1CO H ih k T p

R T
∂

⎡ ⎤Δ = ⎣ ⎦∂
  

 
4 6 2

2 2106.56 6.2634 10 7.475 10T T= − × + ×  in kJ/g-mol of CO2. (11.24) 
 
The specific capacity of the gas dissolved in water is higher than the capacity of 
the not dissolved gas by 
 

7 2 10 3
2 26.2634 10 1.495 10pc T TΔ = × − ×  in J/g-mol.  (11.25) 

 
Dodds, Stutzman and Sollami collected the available data up to 1956 for 
pressures up to 700atm in the Table 11.22. We learn from this data that up to 
pressure of about 200bar the solubility decreases with increasing temperature 
but for higher pressures at about 70°C the solubility starts to increase with 
increasing temperature. 

Table 11.22. Solubility of carbon dioxide in water up to 700atm pressure, Dodds, Stutzman 
and Sollami (1956).  

P in 
atm 

0°C 5 10 12.4 15 18 20 25 31.04 

1 3.36 2.8 2.34 2.18 2  1.72 1.49 1.31 
 3.36   2.13 2.01  1.57 1.48  
 3.53   2.14 1.96  1.52 1.49  
 3.53       1.48  
        1.49  
5 16.98   10.11 9.01     
 17.1   10.11      
10 31.47   18.94 16.47     
 31.19   18.94      
15 42.83   26.72 23.26     
20 52.31   33.59 29.86     
 52.08   33.59      
25 59.97   39.87 34.63 38.3 31.5  27.84 
 59.79   39.93      
 59.89         
30 62.3   45.64 39.87  35.16   
 66.05   45.64      
35 72.1    44.21  38.26   
38 74.34         
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40     47.98     
45     50.23     
50    69.77 53.12 62.87 49.81 53.45 47.41 
          
          
52    54.32   52.75   
58.1          
          
67.7          
          
75    71.32  66.45  61.19 57.57 
          
          
87.1          
100    72.18  66.7  62.33 59.22 
125          
150    75.36  70.18   62.01 
200    78.07  72.96   64.35 
300    80.62  77.17    
400        75.81 72.20 
500        78.01 75.91 
600          
700          

 
         
P in 
atm 

35 40 50 60 75 100 120 

1  1.05 0.87 0.72    
        
        
        
        
5        
        
10        
        
15        
20        
        
25 25.42 22.81 19.06  13.39 10.54 9.82 
        
        
30 19.94       
 22.29       
35        
38 33.88   17.24    
 25.11   15.52    
40        
45        
50 43.6 39.95 33.86 19.39 24.71 19.98 18.65 
 32.12   21.73    
 41.73       
52        
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58.1 38.79   22.91  13.01  
 38.12   24.21    
67.7 46.04   26.61  14.67  
 46.79   27.66  9.29  
75 54.65 50.67 44.23 35.91 33.45 28.05 26.7 
 55.65   31.27  16.03  
      13.91  
87.1 55.65   36.01  16.11  
100 57.18 54.59 50.31 42.83 40.46 34.69 33.76 
125  56.36 52.55 50.7  39.46 39.46 
150 59.91 57.69 54.26  48.25 44.62 43.38 
200 62.48 60.34 57.2  52.33 50.43 52.61 
300   61.52  57.93 57.97 58.89 
400 70.14 68.45 65.35  62.58 63.58 64.39 
500 74.57 72.1    67.53 68.94 
600   72.1   71.45 73.61 
700   75.26  73.79 75.57 78.32 

11.5 Diffusion coefficients 

The diffusion mass flow rate in kg/(m²s) is proportional to the mass concentration 
as proposed by Fick 
 

( ) * 2
2 22

i
ii

dC
w D

dz
ρ ρ= .      (11.26) 

 
Here the *

2iD  is the diffusion coefficient for specie i in the liquid 2 in m²/s. The 
order of magnitude of the diffusion coefficients for different couples of solute and 
solvents are given in Table 11.23. 

Table 11.23. Order of magnitude of diffusion coefficients 

Solute in solvent Order of magnitude of diffusion 
coefficients in m²/s 

Gas in gases 1 510−×  
Gas in liquids 1 910−×  
Gas in polymers and glasses 1 1210−×  
Gas in solids 1 1410−×  

 
Sometimes for gases the pressure dependence is taken into account by the  

 approximation ( ) ( ) ( ) ( )* *
2 2 2 2, , 1 , 1 ,i ip T D p T p bar T D p bar Tρ ρ= = = .  

For the gases considered here in water the order of magnitude is 10-9 m²/s. 
While higher liquid temperatures 2T  improve the diffusion of gases, higher liquid 
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dynamic viscosity 2η  reduces it. Wilke and Chang (1955) proposed the following 
semi-empirical approximation of the diffusion coefficient:  
 

[ ]( ) [ ]1/ 2
2

2 2* 15
2 0.63

2 ,2

7.4 10 a
i

mole i

c M g mole T KmD
s kg cmv

ms g mole
η

−
−⎡ ⎤

= ×⎢ ⎥
⎛ ⎞⎣ ⎦ ⎡ ⎤⎡ ⎤
⎜ ⎟⎢ ⎥⎢ ⎥ −⎣ ⎦ ⎣ ⎦⎝ ⎠

.  (11.27) 

 
2ac  is the so-called association parameter. It is given in Table 11.24 for view 

different liquid. 2M  is the mole mass of the liquid in g per mole. The molecular 
volumes in cm³/g-mole at the boiling point of some substances are given in Table 
11.25. 

Table 11.24. Association parameter for different solvents 

Solvent Association parameter 2ac  
Water 2.6 
Methyl alcohol 1.9 
Ethyl alcohol 1.5 
Benzene 1 
Ether 1 
Heptane 1 

Table 11.25. Molecular volumes in cm³/g-mole at boiling point 

  const         
H2 14.3 1.026e-14 CO 30.7 D2O 20 H2S 32.9 I2 71.5 
O2 25.6 7.234e-15 CO2 34 N2O 36.4 COS 51.5   
N2 31.2 6.425e-15 SO2 44.8 NH3 25.8 Cl2 48.4   
Air 29.9 6.591e-15 NO 23.6 H2O 18.9 Br2 53.2   

 
For water Eq. (11.27) simplifies to 
 

*
2 2 2iD const T η= × .      (11.28) 

 
with constants given in Table 11.24 too. 

All data are available for atmospheric pressure only. For high pressure in 
analogy to gas diffusion one may use the relation proposed by Reid, Sherwood and 
Prausnitz (1977) 

 
( ) ( ) ( ) ( )* *

0 0 0 0 0 0, , , ,i ip T D p T p T D p Tρ ρ= ,   (11.29) 
 
as far as ( )0T T p′< . 
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Problem: Compute the diffusion coefficients for hydrogen, oxygen and nitrogen 
in water at atmospheric pressure and 25° temperature. Compare the solutions to 
each other. Compare the computed oxygen diffusion coefficient with the measured 
1.8e-9m²/s Clussler (1983). 
 
Solution: The water dynamic viscosity is ( )2 1 , 25atm Cη °  = 890e-6kg/(ms).  

Using Eq. (11.28) we obtain 
2

*
2,HD =3.44e-09 m²/s, 

2

*
2,ND = 2.15e-09 m²/s and 

2

*
2,OD = 2.42e-09 m²/s. We see that the lighter hydrogen has the largest diffusion 

coefficient which is expected. The order of magnitude is the same. The computed 
value for oxygen is 34% higher as reported in Clussler (1983). 

11.6 Equilibrium solution and dissolution 

The solution and dissolution real processes are diffusion controlled processes that 
take finite time. The instant equilibrium solution and dissolution is an idealization 
assuming a instant adjustment of the solution gases into the liquid up to the 
saturation state. This simplification allows computing the mass source term of the 
gas component inside the liquid field 2 as a function of the change of the partial 
gas pressure of the component and of the liquid temperature. The total differential 
of the equilibrium mass concentration is then  

 

( )
1 ,2

2 , 2 ,
2 , 1 2 1 2

21

,
i norm

i i
i i i

i pT

C C
dC p T dp dT

Tp
∞ ∞

∞

∂ ∂⎛ ⎞ ⎛ ⎞
= +⎜ ⎟ ⎜ ⎟∂∂ ⎝ ⎠⎝ ⎠

  (11.30) 

 
If in the region of interests the linear approximation 

 

( )* *1 1
2 , 2 , 1 , 2 2 ,

1 , 1 ,

, i i
i i i norm i

i norm i norm

p p
C C p T C

p p∞ ∞ ∞≈ = , 

 
is allowed, then 
 

( )
1 ,

*
2 ,*

2 , 1 2 2 , 1 1 2
21 ,

1,
i norm

i
i i i i i

i norm p

C
dC p T C dp p dT

Tp
∞

∞ ∞

⎡ ⎤⎛ ⎞∂⎢ ⎥= + ⎜ ⎟⎜ ⎟⎢ ⎥∂⎝ ⎠⎣ ⎦
  (11.31) 

 
Differentiating 2 , 2 2 2 ,i im C Volα ρ∞ ∞=  and assuming constant 2α  and 2ρ  we obtain 
an expression for the equilibrium mass generation per unit volume of the mixture 
and unit time  
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2 , 2 , 2 ,1 2
21, 2 2 2

21

1 i i ii
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i

dm C Cdp dT
Vol d d T dp

μ α ρ ρ
τ τ τ

∞ ∞ ∞∂ ∂⎛ ⎞ ⎛ ⎞
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*
2 ,* 12 2 2

2 , 1
21 ,

i norm

ii
i i

i norm p

Cdp dT
C p

d T dp
α ρ

τ τ
∞

∞

⎡ ⎤⎛ ⎞∂⎢ ⎥≈ + ⎜ ⎟⎜ ⎟⎢ ⎥∂⎝ ⎠⎣ ⎦
,   (11.32) 

 
as long as 2 2 , 0i iC C ∞> >  and  
 

1 ,

*
2 ,* 12 2 2

12, 2 , 1
21 ,

i norm

ii
i i i

i norm p

Cdp dT
C p

d T dp
α ρ

μ
τ τ

∞
∞

⎡ ⎤⎛ ⎞∂⎢ ⎥≈ − + ⎜ ⎟⎜ ⎟⎢ ⎥∂⎝ ⎠⎣ ⎦
,  (11.33) 

 
for 2 2 ,i iC C ∞<  and 1 , 0iC ∞ > . 

 
The next step of sophistication of the mathematical description of this process is to 
consider the bubble growth as a function of time. 

Nomenclature 

Latin 
 

ia , ija  approximation coefficients 
C mass concentration, dimensionless 

*
2 ,iC ∞  ( )*

2 , 1 , 2: ,i i normC p T∞=  

2ac  association parameter 
*
2,iD  diffusion constant for specie i in liquid 2, m²/s 
*
iD  diffusion constant for specie i, m²/s 

f  function 

,2H ik  Henry’s coefficient for solubility of specie i in the liquid,  
M  mol mass, kg-mole 

2 ,im ∞  mass of the dissolved gas in a saturated liquid, kg 

gasm  mass of the gas or gas mixture, kg 

,gas im  mass of the specie i in the gas mixture, kg 
p  pressure, Pa 

'p  saturation pressure, Pa 
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1ip  partial pressure of specie i in the gas phase, Pa 

effp  effective pressure, Pa 

ip  partial pressure of specie i, Pa 

vacp  evacuation pressure, Pa 
R  = 8314, universal gas constant, J/(kg-mol K) 

gasR  gas constant of the mixture, J/(kgK) 

kR  gas constant for the specie k, J/(kgK) 
T  temperature, K 
T ′  saturation temperature, K 

1V , 2V , 3V , gasV  volumes, m³ 
Vol  control volume, m³ 

,2mole iv  molar volume of specie i in the liquid,  

2 ,iY ∞  saturation molar concentration of specie i in the liquid, dimensionless 

1,iY , ,gas iY  molar concentration of specie i in the gas, dimensionless 

2,iY  molar concentration of specie i in the liquid, dimensionless 
z  coordinate, m 
 
Greek 
 
α  volume fraction, m³/m³ 
η  dynamic viscosity, kg/(ms) 

12,iμ  mass of the solved non condensable gas per unit time and unit volume of 
the multi-phase mixture, kg/(sm³) 

21,iμ  mass of the generated non condensable gas per unit time and unit volume 
of the multi-phase mixture, kg/(sm³) 

ρ  density, kg/m³ 

( )2i
wρ  diffusion mass flow rate, kg/(m²s) 

τ  time, s 
τΔ  time interval, s 

 
Subscripts 
 
1 field 1, gas 
2 field 2, liquid 
H2 hydrogen 
O2 oxygen 
N2 nitrogen 
air air 
gas gas, gas mixture 
H2O water 



i specie i 
∞  saturation concentration 
0   initial 
final final state 
norm norm value 
hom  for equal velocity of gas and liquid 
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12 Transient solution and dissolution

Soft drinks and champagne are examples of liquids containing sizable quantities 
of gases dissolved under pressure. In liquids usually used in technology there are 
dissolved inert gases and also micro-bubbles. It is known that at p = 105Pa, T2o = 
298.15K the amount of dissolved gases and micro-bubbles in the coolant is 

1 0.005oα ≅ , for boiling water nuclear reactors, and 1 0.001oα ≅ , for pressurized 
water reactor, see Malnes and Solberg (1973). Brennen (1995), p. 20, reported that 
it takes weeks of deaeration to reduce the concentration of air in the water tunnel 
below 3ppm (saturation at atmospheric pressure is about 15ppm). Wolf (1982-
1984) reported that it took him about 18 hours per single large scale test to in-
crease the pressure to ~11MPa, to warm and mix the water inside the pressure 
vessel including 5 hours degassing of the water from 8mg O2/l to a value of 2mg 
O2/l before each test. 

The mass transfer inside the multi-phase flows caused by solution or dissolu-
tion of gases is considered as a boundary layer problem. One analyzes the diffu-
sion processes close to the interface leading to the concentration gradient at the 
surface and then computes the mass flow rate at the interface. As already men-
tioned the diffusion mass flow rate in kg/s is proportional to the mass concentra-
tion gradient as proposed by Fick in analogy to the heat transfer  
 

( ) ,*
,,

c i
c c ic i

dC
w D

dz
ρ ρ= .      (12.1) 

 
Here the *

,c iD is the diffusion coefficient for specie i in the continuous liquid c in 
m²/s. The order of magnitude of the diffusion coefficients for different couples 
of solute and solvents are given in Table 11.23. Comparing the diffusion con-
stants in a gas and in a liquid we see a difference of four orders of magnitudes. 
Therefore if considered together usually the thickness of the gas site boundary 
layer is neglected and only the limiting process, that is the diffusion in the liq-
uid, is considered. 

of gasses in liquid flows 
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12.1 Bubbles 

Consider a family of mono-disperse bubbles designated with d, moving in a con-
tinuum, designated with c, with relative velocity cdVΔ . We are interested in how 
much mass of the solvent is transferred between the surface of a bubble and the 
surrounding continuum. We will consider first the steady state mass diffusion 
problem in a continuum boundary layer, thereafter the transient mass diffusion 
problem in the bubble and finally we will give some approximate solutions for the 
average mass transferred per unit time. 

The mass transported between the bubble velocity field and the continuum liq-
uid per unit time and unit mixture volume is equal to the product of the interfacial 
area density cda  and the mass flow rate ( ) ,

d

c i
w σρ  of specie i 

 
( ), ,

dd
c i cd c i

a w σσμ ρ= .      (12.2) 

 
Read the superscripts and the subscripts in the following way: from the interface 
dσ  into the continuum c for specie i. The interfacial area density for bubbly flow 
is 

6 /cd d da Dα= .      (12.3) 
 
The mass flow rate is defined as 
 

( ) ( ) ( )
*
,

, , , , ,,

d c i cd d
dc i c c i c i c c i c ic i

d

D Sh
w C C C C

D
σ σ σρ β ρ ρ= − = − .  (12.4) 

 
Here the interface concentration is ,

d
c iC σ  and the bulk concentration far from the 

interface in the continuum is ,c iC . ,dc iβ is the mass transfer coefficient in dimen-
sion of velocity. Usually the dimensionless Sherwood number defined as 
 

( )
( )

, ,
* *
, ,, ,

d

cd i d c i d
c d

c i c ic c i c i

wD D
Sh

D DC C

σ

σ

ρβ

ρ
= =

−
    (12.5) 

 
is used to express theoretical or experimental results describing the diffusion mass 
transfer at specific surfaces. With these definition the mass source inside the con-
tinuum is then 
 

( ) ( ) ( )* 2
, , , , , , ,,

6 /dd d d
c i cd cd dc i c c i c i d c i c c c i c i dc i

a w a C C D Sh C C Dσσ σ σμ ρ β ρ α ρ= = − = − . 

(12.6) 



In excess of component i inside the continuous or inside the disperse phase the 
surface concentration rapidly reaches the saturation concentration at the corre-
sponding partial pressure and liquid temperature. The pressure in a micro-bubble 

max

,
1

i

d i
i

p
=
∑  is greater than the system pressure p due to the surface tension effect by 

2 cd dRσ , 
 

max

,
1

2i
cd

d i
i d

p p
R
σ

=

= +∑ .      (12.7) 

 
The partial pressure of the component i is then  
 

, ,
2 cd

d i d i
d

p Y p
R
σ⎛ ⎞

= +⎜ ⎟
⎝ ⎠

,      (12.8)  

 
and the surface concentration equals the saturation concentration 
 

( ),
, , , ,d d sat

c i c i d i cC C p Tσ = .      (12.9) 
 
The inception of the gas release from the liquid happens when  
 

( ),
, , , ,d d sat

c i c i d i cC C p T> .      (12.10) 
 
Diffusion controlled bubble growth and successive collapse happen with different 
velocity because of the difference in the initial radius. This is known a refractory 
gas release. The phenomenon is observed by sending acoustic waves through a 
mixture with micro-bubbles oscillating around a pressure which usually do not 
lead to gas release. Similar effect can be produced by the turbulent oscillations. 
Taylor (1936) found that the rms-values of pressure fluctuation is 
 

( )2 2 2 21
2c c c c c cp const u v w const kρ ρ′ ′ ′ ′= + + = ,    (12.11) 

 
where 1 2const< < . Batchelor (1953) reported for isotropic turbulence  
 

2 20.583 c cp uρ′ ′= .      (12.12) 
 
In pipe flows we have in the boundary layer ( )2 0.01 to 0.06c cu w′ ≈ , see Fig. 7 in 
Daily and Johnson (1956). Assuming that the liquid fluctuation velocity is equal 
to the friction velocity 
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* 1
2

d
c c cw c c cwu w w cτ ρ′ = = =      (12.13) 

 
and that the drag coefficient obeys the Blasius formula 
 

1/ 40.057 Red
cw cwc = ,      (12.14) 

 
we obtain 
 

2 2 1/ 40.0166 Rec c cwp wρ′ = .     (12.15) 
 
Therefore the effective value of the boundary saturation concentration is  
 

, 2 1/ 4
, , ,

2 1 0.0166 Re ,
2

d d sat cd
c i c i d i c c cw c

d

C C Y p w T
R

σ σ
ρ

⎡ ⎤⎛ ⎞
= + −⎢ ⎥⎜ ⎟

⎢ ⎥⎝ ⎠⎣ ⎦
.  (12.16) 

 
The dynamic pressure pulsation correction 2 1/ 40.0166 Rec c cwVρ±  starts to be impor-
tant for flow at low system pressure but high velocities. Bubble being at static 
equilibrium has a pressure 

 

2

2 1/ 42 1 0.0166 Re
2

cd
gas H O c c cw

d

p p p w
R
σ

ρ+ = + −    (12.17) 

 
associated with the bubble radius dR . Rearranging we have a nonlinear equation 
with respect to the radius, 

 

2

2 1/ 4
3

3 2 1 0.0166 Re
24

gas gas c cd
H O c c cw

dd

m R T
p p V

RR
σ

ρ
π

− = − − .  (12.18) 

 
Here gasm  is the inert gas mass inside the bubble. The function 

( ) 3

3 2
4
gas gas c cd

d
dd

m R T
f R

RR
σ

π
= −  possess a minimum radius ,d crR . This minimum ra-

dius satisfying the above equation is then 
 

2

,
2 1/ 4

4
0

13 0.0166 Re
2

cd
d cr

H O c c cw

R
p V p

σ

ρ
= >

⎛ ⎞+ −⎜ ⎟
⎝ ⎠

,   (12.19) 

 
which for zero liquid velocity results in the well known expression 
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( )2

,
4

3
cd

d cr
H O

R
p p
σ

=
−

.      (12.20) 

 
Bubbles having larger sizes are considered unstable and subject to change in their 
size.  

12.1.1 Existence of micro-bubbles in water 

Theoretically small gas concentrations in water have to be completely absorbed by 
molecular diffusion in such a long time so that it is outside of the life of technical 
facilities and processes. That is the reason why micro-bubbles in treated and un-
treated waters are very sustainable. A typical example is given in Fig. 12.1. 
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Fig. 12.1. Micro-bubbles in water per unit volume as a function of the single bubble vol-
ume for tap water at 1.09bar and 277.6K for air volume fraction of 1.53% in accordance 
with Hammitt (1980) p. 76 

For untreated tap water about 91.13 10× nucleus per m³ exists. For degassed water 
they are reduced to 90.911 10× with most probable size about 6µm. The initial 
bubble diameter is in any case less than the bubble diameter computed after equat-
ing the buoyancy force and the surface force  
 

1 6o RTD λ< .       (12.21) 
 

Hammitt reported for untreated tap water about 91.13 10× nucleus per m³ exists 
with most probable size about 6µm. For degassed water they are reduced to 

90.911 10× with most probable size again about 6µm. Brennen (1995) reported that 
the free stream nuclei number density is subject to distribution depending on the 
nucleation size, e.g. 

10

4
10nP const R−≈ × , 6

10 5 10R −> × . 
 

 12.1 Bubbles      219 



10 100 1000
1E8

1E9

1E10

1E11

1E12

 

  Gates and Bacon 1978 (σ=0.44)
 Katz 1978 (σ=0.51)
 O'Hern et al 1985 (Pacific ocean)
 Peterson et al 1975 (σ=0.49)

N
um

be
r d

en
si

ty
 d

is
tri

bu
tio

n 
fu

nc
tio

n 
in

 m
-4

Radius in µm

 
Fig. 12.2. Cavitation nuclei probability number density distribution measured by hologra-
phy in three different water tunnels. Withσ the cavitation number for the particular data is 
given in Gates and Bacon (1978), Katz (1978),  O’Hern et al. (1988), Peterson et al. (1975) 

Figure 12.2 presents the measured cavitation nuclei number density distribution as 
a function of the nuclei radius reported by different authors. Again the most bub-
bles are in the region of 7 to 11 µm sizes. Brennen (1995) p. 27 reported histo-
grams of nuclei population in treated and untreated tap water and the correspond-
ing cavitation inception number as a function of the Reynolds number. For 
untreated tap water the 923 10×  nucleation at sizes of about 3µm are observed. 
For degassed tap water this number reduces to about 917 10×  and for filtered wa-
ter to about 92 10× . 
 
Conclusions:  
 
1) Tap water has a volumetrically distributed nucleation sites in order of 1010  per m³.

 Even specially treated water possesses volumetrically distributed nucleation 
sites of order of 910  per cubic meter. The size of the micro-bubbles is in order of 
2-15µm with the largest amount of bubbles having 2 to 10µm size. The resulting 

volume fraction 3
1 1 1

_

( / 6)o o o
all sizes

n Dα π= ∑   is so small that it is usually neglected in 

computational analyses. 
 
2) Micro-bubbles are so small that they follow the liquid motion and fluctuation 
without slip. By distortion of the solution equilibrium they probably do not con-
tribute much for the gas release. 
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12.1.2 Heterogeneous nucleation at walls 

Simoneau (1981) performed set of experiments with decompression of water con-
taining dissolved nitrogen. He reported that the nucleation happens mainly at the 
walls of the vessel. That surface roughness plays a role as nucleation seeds are 
proven experimentally by Billet and Holl (1979), Huang (1984) and Kuiper 
(1979). The question of practical interest is how to describe quantitatively this 
process. Unfortunately quantitative data for heterogeneous nucleation during gas 
release from liquids are not available. Let us summarize the data that have to be 
collected in the future to resolve this problem: 

12.1.2.1 Activation of surface crevices 

1. Active nucleation site density: 
 

( )
max

1 2, 2, ,
1

i
i

m

i i i
i

n b C C ∞
=

′′ = −∑ .     (12.22) 

 
The exponent may vary between 2 and 6 in analogy to superheated liquid nuclea-
tion at wall. It is not clear whether superposition of the activated nuclei by differ-
ent dissolved gasses take place or not. Probably all gasses will prefer already ac-
tive nucleation seeds. It is possible that the coefficient b is a function of the 
wetting angle between the liquid and the wall material in analogy to the well 

( )*
, ,c c i c i c cD dC dz h dT dzρ λ= Δ . The answer is ( )*

, ,c c c i c c iT D h Cρ λΔ = Δ Δ . The 
only data to this subject are reported by Eddington and Kenning (1978) for water 
at 25°C saturated with nitrogen at atmospheric pressure plus overpressure pΔ . The 
authors relaxed the overpressure and counted the nucleation sites. It was noted that 
the contact time of the saturated water with the surface before the relaxation re-
duced the number of activated seeds (10min to about 75%, longer contact time did 
not change this number). The results for 20min contact time are given below. 
 

pΔ  in bar 1n′′  in 1/m² 
0.55 52 410×  
0.45 40 410×  
0.34 33 410×  
0.27 27 410×  
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known dependence from the theory of boiling. The analogy can be placed by  
asking at which temperature difference across the boundary layer of satur- 
ated bulk liquid the evaporation causes the same steam mass flow rate as  
the gas release at the wall by given driving concentration difference: 



Therefore for saturated liquid newly wetting the surface, these numbers have to be 
about 25% higher. Another interesting observation was that over pressurization of 
the already saturated liquid shortly before the relaxation reduced the number of the 
activated seeds – an indication that during the contact time surface tensions caused 
already some minimal gas release to predominant places that are absorbed again. 
 
2. Bubble departure diameter as a function of the buoyancy force and liquid velocity 
 

( )1 1 21 2, , .d dD D w etcρ= Δ .     (12.23) 
 
So for instance for forced bubble share from the wall the departure diameter is  
expected to be 
 

21 , 1
1

2

d w
d

D
D

w
=≈ .      (12.24) 

 
3. Bubble departure frequency 
 

( )1 2, 2, , 1
1

1 , , .w i i d
d

f C C D etc
τ ∞= = −

Δ
,    (12.25) 

 
where 1dτΔ  is the time elapsed for a single bubble until departure. Usually if the 
mechanism of the diffusion controlled bubble growth is known e.g.  
 

1/ 2
1 2D Bτ=        (12.26) 

 
the bubble departure time is easily computed  
 

( )2

1 1
1
4d dD BτΔ = .      (12.27) 

 
Different bubble growth mechanisms leading to different expression for B will be 
discussed in the next sections. The number of the generated bubbles at the wall per 
unit time and unit flow volume is then 
 

1 1 1
4

w
h

n n f
D

′′′ ′′=& .       (12.28) 

 
The generated gas mass due to the production of bubbles with departure diameter 
per unit time and unit mixture volume is then 

3
1

1, 1 1 1
4

6
d

nucl w
h

D
n f

D
π

μ ρ′′= .     (12.29) 
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12.1.2.2 Deposition of the micro-bubbles into the turbulent 

Another mechanism of transferring micro-bubbles to nuclei capable to grow is the 
deposition of the micro-bubbles into the boundary layer. What is the difference 
between bubbles in the turbulent boundary layer and bubbles in the bulk? Micro-
bubbles in the boundary layer can be entrapped in vertices close to their center 
where due to rotation the pressure is extremely low. Bodies in cyclones heavier 
than the surrounding fluid move outward from the center of the rotation. In con-
trast, bodies in cyclones lighter than the surrounding fluid move toward the center 
of the rotation. This mechanism was photographically proven by Keller (1979).  

Rouse (1953) reported 10 to 13 times larger pressure drop due to vortices in a 

 

 2 1/ 4
, , , , ,

2 1 0.166 Re ,
2

d sat cd
c i c i c i c i d i c c cw c

d

C C C C Y p V T
R

σ σ
ρ

⎡ ⎤⎛ ⎞
− = − + −⎢ ⎥⎜ ⎟

⎢ ⎥⎝ ⎠⎣ ⎦
. (12.30) 

 
The number of the micro-bubbles striking the wall per unit time and unit surface is 
 

1
4d d cn n u′′ ′=& .       (12.31) 

 
Here dn  is the number of the micro-bubbles per unit volume and cu′  is the liquid 
fluctuation velocity that can be considered equal to the micro-bubble fluctuation 
velocity. The number of micro-bubbles transferred in the turbulent boundary layer 
per unit flow volume and unit time is then 
 

4 d
d d c

h h

n
n n u

D D
′′′ ′′ ′= =& & .      (12.32) 

 
There are good reasons that will be discussed in a moment to assume that under 
given conditions these bubbles are then capable to grow. Assuming that the liquid 
fluctuation velocity is equal to the friction velocity 
 

* 1
2

d
c c cw c c cwu const w const const w cτ ρ′ = × = = ×   (12.33) 

and that the drag coefficient obeys the Blasius formula 
 

1/ 40.057 Red
cw cwc = ,      (12.34) 
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boundary layer 

mixing zone than the rms-pressure fluctuation. Therefore in the boundary layer we 
can expect order of magnitude stronger gas release as outside the boundary layer 
due to larger driving concentration differences 



we obtain 
 

1/ 8Re
0.17d cw

d c h

n
const

n w D
′′′

=
&

.     (12.35) 

 
From the total micro-bubble flow c dw n  only the part 1/ 80.17 Rec hconst D  is under 
the boundary layer conditions. 

12.1.3 Steady diffusion mass transfer of the solvent across

Because of the similarity of the heat conduction and mass diffusion it is possible 
to use the results obtained for heat transfer coefficients by simply replacing the 
Nusselt number with the Sherwood number, the Peclet number with the diffusion 
Peclet number and Prandtl number with the Schmidt number. Table 12.1 contains 
analytically and experimentally obtained steady state solutions for the Sherwood 
number as a function of the relative velocity and the continuum properties. 

Table 12.1. Mass transfer coefficient on the surface of moving solid sphere and liq-
uid droplets 

,
*
,

cd i d
c

c i

D
Sh

D
β

=  Sherwood number,  *
,

d cd
cd d c

c i

D V
Pe Re Sc

D
Δ

= =  Diffusion Peclet 

number, d c cd
d

c

D V
Re

ρ
η
Δ

=  Reynolds number, *
,

c
c

c c i

Sc
D
η

ρ
=  Schmidt number 

For bubble growth with initial size zero: 1/ 22dD Bτ= , ( )*
, , ,

d
c i c c i c iB D Sh C C σ= −  

1dRe < , potential flow, 1
cd

R
V

∂
∂τ

⎛ ⎞<< Δ⎜ ⎟
⎝ ⎠

 no shearing effect in Navier-Stikes equa-

tion 
1/ 30.99c cdSh Pe=   Immobile surface, Fried-

lander (1961), verified for 
dissolution of small bubbles 
Calderbank et al. (1962) e.g. 

( )d c dcD gσ ρ< Δ , liquid 
drops Ward et al. (1962), and 
solid spheres Aksel’Rud 
(1953).  

bubble interface 
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9.4 1 3 1c c
cd

d d

Pe
η η
η η
⎛ ⎞⎛ ⎞

>> + +⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠

 

 
1/ 2

1/ 20.65 c
c cd

c d

Sh Pe
η

η η
⎛ ⎞

= ⎜ ⎟+⎝ ⎠
   Mobile surface, Hadamard 

(1911). Freadlander (1957) 
come to similar result with a 
constant 0.61 and verified its 
equation up to Re 10≤ , Nig-
matulin (1978) 

Pecd << 1 
 

29 92 ...
16 64d cd cdSh Pe Pe= + + +     Soo (1969)  

 
Pecd >> 1 
 

1/ 2
1/ 2

2 ( )c cdSh cPe
π

= ,  c = 1   Hunt (1970) for a single- 

   component system 
 

1/ 2
1/ 2

2 ( )d cdSh cPe
π

= ,  c = 0.25 1/ 3
cSc−   Isenberg and Sideman (1970) 

for a two-component 
system 

 
1/ 2 1/ 2

1/ 2

2 (1 )d cd dSh Pe α
π

−= −   Kendouch (1976) for bubbles 

in a swarm 
1/ 3 3/ 52 0.37d cd dSh Sc Re= + .    analog to Wilson (1965) 

 
Red < 1 or Pecd < 103 (e.g. for Dd in H2O < 0.1 mm) 
 

1.7

1.3

0.65
2

1
cd

c
cd

Pe
Sh

Pe
= +

+
, / 0c dη η ≅ .   analog to Nigmatulin (1978) 

 
1.7

1/ 31.6 3 1.2

0.65
2

1 (0.84 ) (1 )
cd

d

cd cd

Pe
Sh

Pe Pe
= +

⎡ ⎤+ +⎣ ⎦
. analog to Brauer et al. (1976) 

for bubbles without internal 
circulation 
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Re 1d >  
1/ 3 1/ 2

c c dSh cSc Re=      c = 0.62, Calderbank (1967) 
c = 0.56 Froessling (1938), 
flow separation at 108°  

( )
( )

21/ 2

1/ 2 1/ 2

4 1.45
Re1

d c d d c c
cd

dd d c c

Pe
η η ρ η ρ η

π
ρ η ρ η

⎛ ⎞− ⎡ ⎤⎣ ⎦⎜ ⎟>>
⎜ ⎟+ ⎡ ⎤⎣ ⎦⎝ ⎠

( )1/ 2 1/ 2

2 34.351
Re 1

d c

d d d c c

η η

ρ η ρ η

⎛ ⎞+⎜ ⎟× +
⎜ ⎟+ ⎡ ⎤⎣ ⎦⎝ ⎠

 

 

( )

1/ 2

1/ 2
1/ 2 1/ 2

2 3 1.451.13 1
Re1

d c
c cd

dd d c c

Sh Pe
η η

ρ η ρ η

⎛ ⎞+⎜ ⎟= −
⎜ ⎟+ ⎡ ⎤⎣ ⎦⎝ ⎠

 Mobile surface, Lochiel  
      (1963). 
 
100 Re 400d≤ ≤  for bubbles 1d cη η <<  
 

1/ 2
1/ 2

1/ 2

2.961.13 1
Rec cd

d

Sh Pe
⎛ ⎞

= −⎜ ⎟
⎝ ⎠

   Mobile surface, Lochiel  
      (1963). 
 
Re 1d >> , large bubbles 1d cη η <<  
 

1/ 21.13c cdSh Pe= .     Mobile surface, Lochiel  
(1963). 

 
1 < Re1 < 7× 104, 0.6 < Sc2 < 400: 
 

1/ 3 1/ 22 (0.55 to 0.7)c c dSh Sc Re= + .   analog to Soo (1969)  
 

Spherical caps 
For spherical caps (e.g. 1.8cm in diameter with a mushroom like form) with 

/ce width height=  Lochiel (1963) found 

( )2
1/ 2

2

3 4
1.79

4
c

c cd
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e
Sh Pe

e

+
=

+
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Rosenberg (1950) and Takadi and Maeda (1961) proposed to use for all cap bub-
bles 3.5ce =  resulting in  
 

1/ 21.28c cdSh Pe= . 
_________________________________________________________________ 



 
Problem: Given a nitrogen bubble with initial diameter of dD in infinite stagnant 
water at 1bar and 25°C. The initial concentration of nitrogen in the water is zero. 
Compute the time required for complete collapse of the bubble for prescribed ve-
locity. 
 
Solution: The change of the bubble size assuming constant bubble density is 

 
( ) ,

d

c id

c

wdR
d

σρ

τ ρ
= −       (12.36) 

 
Using Eq. (12.4) and rearranging we obtain 

 

( )
2

*
, , ,

dd
c i c c i c i

dR
D Sh C C

d
σ

τ
= − − .     (12.37) 

 
Assuming that the interface concentration is equal to the saturation concentration 
of the water at the given pressure and temperature, ( ), , ,d sat

c i c i c cC C p Tσ = , and that 
the concentration of the water remains zero we obtain 
 

( )

2
,0

*
, ,
d

sat
ci c c i c c

R
D Sh C p T

τ = .     (12.38) 

Bubbles with sizes less than ( ) 30.08 2.85 10
9.91 997d cd dcD gσ ρ −< Δ ≈ = ×

×
m are 

considered as stable bubbles with rigid surface. In this case 1/ 30.99c cdSh Pe=  for 
1dRe <  which corresponds to very small velocities < 43.1 10 /m s−× . In the reality 

for instance for free rising bubbles in water we have to do with Re 1d >>  and 
0.01 1d cη η ≈ << . For this case the appropriate choice from Table 12.1 will be 

1/ 21.13c cdSh Pe= . For bubble diameter of 5mm and relative velocity of 0.1m/s it takes 
84.7h to solve completely the bubble. For 1m/s the corresponding time is 26.7h. For 
comparison note that Simoneau (1981) reported that 30l-42bar-22°C- water 
tank aerated with nitrogen bubbles requires 12 days  to absorb 0.57cm³ in 1g water 
and 28 days to absorb 0.61cm³ in 1g water which is very close to the complete 
saturation. 
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12.1.4 Initial bubble growth in wall boundary layer 

Kremeen et al. (1955), Parkin and Kermeen (1963) reported interesting experi-
ments in which water with 10m/s degases and produces air bubbles attached to a 
wall with sizes of about 10µm. The observed growing times are between 1 and 
10ms. This is much shorter than a pure steady-state molecular diffusion solution 
could predict. Van Vingaarden (1967) reproduced their experiments by modifying 
a model developed first by Levich (1962), 
 

( ) ,

dd
c i

dm
F w

d
σρ

τ
= − ,      (12.39) 

 
where  
 

( ) ( )
*
,

, ,0 ,,

d c id
dif c c i c ic i

D
w c C Cσ σρ ρ

τ
= − −

Δ
    (12.40) 

 
with  
 

2 1.13difc
π

= =        (12.41) 

 
for plane and  
 

2 d cR VτΔ =         (12.42) 
 
used frequently in the form 

 

( ) ( )
*
,2

, ,0 ,,

4
4d c idd

d c c i c ic i

Ddm
F w R C C

d
σ σρ π ρ

τ π τ
= − = − −

Δ
 

( ) * 3/ 2
, ,0 , ,32d

c c i c i c i c dC C D V Rσρ π= − −     (12.43) 
 

by changing the constant  
 

1/ 2

3 / 4

2 0.6difc
π

= = .      (12.44) 

Equation (12.43) can be rewritten in the form 
 

( )
( ) ( )1/ 2, 1/ 2

*
, , , ,0

Re
d

dc i
c dif c c dif cd

c c i c i c i

w D
Sh c Sc c Pe

D C C
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ρ

ρ
≡ = − = −

−
.  (12.45) 
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which is identical with the Lochiel (1963) solution from Table 12.1. Note that the 
diffusion Peclet number here is built with the continuum velocity in the pipe. 

12.1.3 Transient diffusion mass transfer of the solvent across

12.1.4.1 Molecular diffusion 

Consider stagnant bubble with surface concentration d
ciC σ  in continuum with con-

centration at the beginning of the time τΔ , , ,0c iC . Compute the change of the bub-
ble radius with the time.  

The mass transfer is described by the mass conservation equation for specie i in 
the continuum, similar to the Fourier equation, see Fourier (1822), 
 

, ,* 2
, 2

1c i c i
c i

C C
D r

r rr
∂ ∂∂
∂τ ∂ ∂

⎛ ⎞
= ⎜ ⎟

⎝ ⎠
,     (12.46) 

 
with the following initial and boundary conditions 
 

, ,0,  ,  d
d c i c ir R C C στ = = = ,     (12.47) 

 
, , ,00,  ,  d c i c ir R C Cτ = > = ,     (12.48) 

 
, ,0,  ,  d

d c i c ir R C C στ > = = ,     (12.49) 
 

, , ,00,  ,  c i c ir C Cτ > = ∞ = .     (12.50) 
 
The textbook solution for thin concentration boundary layer, Glasgow and Jager 
(1959), is used to compute the concentration gradient at the bubble surface and to 
compute the resulting mass flux as a function of time 
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*
, ,*
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, ,
, ,0 ,

, ,0 ,

3
1
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c i c isat ci

c c i c i sat
c i c i

C CD
C C

C C

σ

ρ
πτ

⎛ ⎞−
= − − −⎜ ⎟⎜ ⎟−⎝ ⎠

.   (12.51) 

 

 12.1 Bubbles      229 

the bubble interface 



For comparison the solution obtained by Epstein and Plesset (1950) is 
 

( ) ( )
* *
, ,

, ,0 ,,

d c i c id
c c i c ic i

d

D D
w C C

R
σ σρ ρ

πτ

⎛ ⎞
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.   (12.52) 

 
Having minded that 

 

( ) , 3
dd dd

cc i
d

dR dRw
d d

σ ρ
ρ ρ

ρτ τ
= − − ,    (12.53) 

 
we obtain for the change of the bubble radius the following differential equation 
 

( )
*
, , ,

, ,0 ,
, ,0 ,

3
1

3

d sat
c i c i c isatd d c

c i c i sat
cc i c i

D C CdR R d
C C

d dC C

σ ρ
τ πτ ρ τ

⎛ ⎞−
= − − −⎜ ⎟⎜ ⎟−⎝ ⎠

,  (12.54) 

or 

, ,

, ,0 ,

1
32

d sat
c i c id d c

sat
cc i c i

C CdR R dB
d dC C

σ ρ
τ ρ ττ

⎛ ⎞−
= − −⎜ ⎟⎜ ⎟−⎝ ⎠

,    (12.55) 

where 

( )
*
,

,0 ,

12 c isat
ci c i

D
B C C

π
= − .     (12.56) 

 
It is interesting to note that comparing this with the expression obtained for the 
spontaneous evaporation of bubble the dimensionless number corresponding to the 
Jakob number is simply the concentration difference , ,0 ,

sat
c i c iC C− . For the limiting 

case of spontaneous flashing of gas for which the surface concentration can be as-
sumed to be the saturation concentration we obtain 
 

32
d d c

c

dR R dB
d d

ρ
τ ρ ττ

= − .     (12.57) 

 
In case of pressure change the concentration at the surface also changes. In this 
case the solution is 
 

( ) ( ), ,0 ,, ,0 , ,0*
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,  (12.58) 
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see Churchill (1958), where 
 

* 2
,

,

, * 2
,0

1 c i d

d
c iD R

c i
c i dd

dC
dJ d

D RR

σ

τ
τ τ

τ τπ
′ ′=

′−∫ .    (12.59) 

 
Cha and Henry (1981) verified this equation on data for carbon dioxide. A bubble 
had grown from 0.0508mm to about 1.5mm for about 40s. 
 
Problem: Given a nitrogen bubble with initial diameter of dD in infinite stagnant 
water at 1bar and 25°C. The initial concentration of nitrogen in the water is zero. 
Compute the time required for complete collapse of the bubble for prescribed ve-
locity. 
 
Solution: For constant density we have  
 

2
ddR B

dτ τ
= ,  or  ,0d dR R B τ= +  .    (12.60) 

 
The time for complete disappearance of a bubble is then  
 

( )

2

,0
*
, ,12 ,

d
sat

c i c i c c

R
D C p T
πτ

⎛ ⎞
= ⎜ ⎟⎜ ⎟

⎝ ⎠
.     (12.61) 

 
To completely absorb a 5mm nitrogen bubble under 1bar and 25°C in water will 
take about 78 000 years. 

12.1.4.2 Turbulent diffusion 

In a bubble flow or in a churn-turbulent flow with considerable turbulence, the 
bubbles are moving practically with the same velocity as the liquid. The mecha-
nism governing the condensation is quite different compared to the mechanism 
described in the previous sections. In turbulent flows the diffusion is caused 
mainly by exchange of turbulent eddies between the boundary layer and the bulk 
liquid. 
High turbulent Reynolds numbers: At the viscous limit the characteristic time of a 
turbulent pulsation is 1/ 2( / )c cτ ν εΔ = , see Kolev (2004) p. 235 or Ch. 2. Taking 
this time as scale for small turbulent pulsations (high frequent) that dissipate tur-
bulent kinetic energy we have 
 

1/ 2( / )t c ccτ ν εΔ = ,      (12.62) 
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where tc  is a constant. The constant may be around 15 / 2 2.7= , see Taylor 
(1935). If it is possible to compute the friction pressure loss between the flow and 
the structure then it will also be possible to estimate the irreversible dissipation of 
the turbulent kinetic energy. This can be accomplished either by using e.g. the 
k-eps models in distributed parameters as described in the previous chapter or by 
using quasi-steady state models. I give an example for the later case. The dissi-
pated specific kinetic energy of the turbulent pulsations is defined by 
 

c c cα ρ ε
2

3 21
2

fr
co

c h eff

V
D x
λρ ζ

ρ

⎛ ⎞
= Φ +⎜ ⎟⎜ ⎟Δ⎝ ⎠

     (12.63) 

 
Neglecting the viscous dissipation in the boundary layer and assuming that the 
quasi-steady state dissipation is equal to the generation of the turbulent kinetic en-
ergy, and after replacing cε  from Eq. (12.63) into Eq. (12.62) we obtain  

 
1/ 2

3 22 frc
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c V
D x
λρ ζτ α ν

ρ

⎛ ⎞⎡ ⎤⎛ ⎞
⎜ ⎟Δ = Φ +⎢ ⎥⎜ ⎟⎜ ⎟⎜ ⎟Δ⎢ ⎥⎝ ⎠⎣ ⎦⎝ ⎠

   (12.64) 

 
The mass flow rate of specie i on the bubble surface can be determined to the ac-
curacy of a constant as 

 

( ) ( )
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,

, ,0 ,,

d c id
dif c c i c ic i

D
w c C Cσ σρ ρ

τ
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Δ
,    (12.65) 

 

( 3
difc

π
=  for sphere, 2

difc
π

=  for plane), where τΔ  is the time interval in 

which the high frequency eddy is in contact with the bubble surface. During this 
time, the mass is transported from the surface to the eddy by molecular diffusion. 
Thereafter the eddy is transported into the bulk flow again, and its place on the 
surface is occupied by another one. In this way the mass absorbed from the surface 
by diffusion is transported from the bubble surface to the turbulent bulk liquid. We 
substitute τΔ  from Eq. (12.64) into Eq. (12.65) and obtain 
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 For one dimensional flow this equation reduces to 
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( )

1/ 42
, 1/ 2 3 / 4 1/ 4
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d
h difc i co

cw c cw frd
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, (12.67) 

 
where 

 
h c

cw
c

D w
Re

ν
= .       (12.68) 

 
The constant can be determined by comparison with a result obtained by Avdeev 
(1986) for one-dimensional flow without local resistance (ξ = 0). Avdeev used the 
known relationship for the friction coefficient of turbulent flow 

 
0.20.184fr cwReλ −= ,       (12.69) 

 
compared the so obtained equation with experimental data for bubble condensa-
tion, and estimated the constant in 
 

1/ 4 1/ 2 0.7 2 1/ 4
1/ 4

0.184 Re ( / )
2

dif
cw c cw co c

ct

c
Sh Sc

c
ρ α
ρ

= Φ    (12.70) 

 
as 

1/ 4
1/ 4

0.184
2

dif

t

c

c
 = 0.228.     (12.71) 

 
Thus, the so estimated constant can be successfully applied also to three-
dimensional flows in porous structures. The final relationship recommended by 
Avdeev for bubble condensation in one-dimensional flow is used as analog to the 
mass transfer equation 
 

1/ 2 0.7 2 1/ 4
20.228 ( / )cw c cw coSh Sc Re α= Φ     (12.72) 

 
that describes his own data within ±  30% error band for 0.7

2/ 80 /d hwD D Re> . 
Note that in the Avdeev equation cρ ρ  is set to one.  

 
For comparison let us write the relationships obtained by Hancox and Nikol,  

 
2 / 30.4cw c cwSh Sc Re=       (12.73) 
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 see in Hughes et al. (1981), and Labunsov (1974), 
 

0.8
0.1

/ 8 0.023
1 1.82

1 12
8

fr d d
cw c cw c cw

hw hcwfr

D D
Sh Sc Re Sc Re

D DRe
λ

λ −= ≅
−

−

. (12.74) 

 
We see that in the three equations obtained independently from each other the de-
pendence on Recw  is 0.7 to 0.8

cwRe , and the dependence on Scc is 0.5 to 1
cSc . In case of 

0cwRe ≈  the mechanical energy dissipated behind the bubbles should be taken 
into account. 
 
Problem: Given a nitrogen bubble with initial diameter of dD  in water at 1bar 
and 25°C flowing with 3m/s in a pipe with diameter of 0.08m. The initial concen-
tration of nitrogen in the water is zero. Compute the time required for complete 
collapse of the bubble. Assume that the bubble move with the liquid without rela-
tive velocity. 
 
Solution: For constant gas density we have 
 

( ) ( )
*

, ,
, , ,0

d

c i cw c i dd
c i c i

c h

w Sh DdR
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d D

σ
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( )
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*
, , ,

d h
sat

c i cw c i c c

R D
D Sh C p T

τ = .     (12.76) 

 
Using the three above introduced correlations we obtain 
 
Avdeev     50min 
Hancox and Nikol     2min 
Labunsov  187min 
 
We realize how unreliable the models are today. The results vary within two or-
ders of magnitude. In any case the absorption in turbulent flows is strongly accel-
erated compared to the pure molecular diffusion and compared to the steady state 
diffusion in laminar flows. 
 
Low turbulent Reynolds numbers: The characteristic time of one cycle for large 
eddies, estimated by dimensional analysis of the turbulent characteristics of the 
continuous velocity field, is of the order of 
 

t ec cl Vτ ′Δ =        (12.77) 
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 for low frequency pulsations. Replacing the characteristic size of the large eddies 
in the liquid with 
 

0.03ec hl D=        (12.78) 
 
and with the characteristic fluctuation velocity equal to the friction velocity for 
which the Blasius equation  
 

1/ 40.316Rw cwReλ −=       (12.79) 
 
is valid, 
 

1/ 4
2 7 / 80.316

0.2 Re
8 8

cw Rw cw c
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τ λ ν
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′ = = = =   (12.80) 

 
Theofanous et al. (1975) obtain for the time constant 

 
2

7 / 8
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Re

h
t
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D
τ

ν
Δ = .      (12.81) 

 
Replacing in Eq. (12.65) results in 
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D
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or in dimensionless form 

 
1/ 2 7 /16 1/ 2 7 /16Re 2.52 Re

0.15
dif

c c cw c cw

c
Sh Sc Sc= = .   (12.83) 

 
We see that the exponent of the Reynolds number 0.44 is somewhat less than that 
in the case of strong turbulence, 0.7. Note that Lamont and Scott (1970) found in 
their experiments with CO2 in water 0.52, 6 0.52

, 3.83 10 Redc i cwβ −= ×  in m/s. Theo-
fanous et. (1975) proposed to introduce a correction to Eq. (12.82) 
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2  df f
τ
τ

Δ⎛ ⎞= ⎜ ⎟Δ⎝ ⎠
 ,      (12.84) 

 
given in graphical form. The form of the mass transfer coefficient is then 
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or in dimensionless form 

 
1/ 2 7 /161.63 Recw c cwSh f Sc= ,     (12.86) 

 
where  
 

d
d

cd

D
w

τΔ =
Δ

        (12.87) 

 
is some characteristic time associated with the bubble size and the relative veloc-
ity. The correction function takes into account the improving of the mass transfer 
due to the relative motion of the bubble with respect to surrounding liquid. The 
correction can be approximated by 
 

- 2 /0.04136 - 2 /0.26668
1.37497 + 6.93268e  + 2.93661e

d d

f
τ τ
τ τ

Δ Δ
Δ Δ= .  (12.88) 

 
The correlation is verified by comparison with data in the region of Recw =1810 to 
22400 giving  ,dc iβ = 61 10−×  to 67.4 10−× . 
 
Problem: Given a nitrogen bubble with initial diameter of dD in water at 1bar 
and 25°C flowing with 3m/s in a pipe with diameter of 0.08m. The initial concen-
tration of nitrogen in the water is zero. Compute the time required for complete 
absorption of the bubble. Assume that the bubble is moving with the liquid with-
out relative velocity. 

 
Solution: For constant gas density we have again 
 

( )
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d h
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ci cw c i c c

R D
D Sh C p T

τ = .     (12.89) 

 
Using the above introduced correlations we obtain 136min, a result that is very 
similar to the prediction using the Labuntzov’s correlation in the previous section. 
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 Problem: Given a nitrogen bubble with initial diameter of dD in water and 25°C 
flowing with 1.38m/s in a pipe with diameter of 0.08m. The length of the pipe is 
48.5m. The bubble is assumed to drift with the liquid without relative velocity. 
Therefore the bubble travels at 35.92s along the pipe. The entrance pressure is 
equal to 0.9bar and the exit pressure is 2.2bar. The initial concentration of nitro-
gen in the water corresponds to the saturation concentration at the entrance pres-
sure. Compute the size of the bubble at the exit of the pipe.  
 
Solution: The bubble mass change with the time is 
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        (12.89) 

This is a non linear differential equation which has to be integrated numerically. 
With some approximation analytical solution can be obtained as follows. Ap-
proximating the saturation concentrations as a linear function of pressure starting 
with the values at 1bar which is very good for such a small concentrations results 
in 
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        (12.90) 
Replacing the pressure change with the linear function of time  
 

0 0
dpp p w p p
dz ττ τ= + = + , 

 
and rearranging we obtain 
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where 
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 can be considered as a constant. The analytical solution is then 
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Obviously, at the end of the pipe the mass ratio is a function also on the initial size 
of the bubble. This dependence is presented in Fig. 12.3. 
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Fig. 12.3. Mass ratio at the end of the 48.5m long pipe with 0.08m-diameter and 1.38m/s 
water velocity as a function of the initial bubble size 

The 5mm bubbles change their mass very little. At the exit of the pipe they still 
have 97.58% of their mass, which means only 2.4% mass reduction. Only bubbles 
smaller than 0.2mm will disappear over the considered distance. 
 
Problem: Consider the same situation as in the previous problem. The only dif-
ference is that the initial bubble size is 1.18µm. Find the time required for the final 
dissolution of this bubble. The time required for complete dissociation can be it-
eratively found by 
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0 1/ 3
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Here n and n+1 designates successive iteration values of the time. In this particular 
case it is 0.608s. 
 
Problem: Given are nitrogen micro bubbles with initial diameter of 0 1dD mμ= in 
water and 25°C flowing with 0.25m/s in a pipe with diameter of 0.025m and 11m 
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length. The bubble number density is about 610dn = per m³. The concentration of 
nitrogen is the saturation concentration at 1bar. The pressure at the end of the pipe 
is 0.8bar. Compute the release of the gas at the exit of the pipe. 
 
Solution: Using the Theofanous et al. correlation we compute the mass transfer 
coefficient for 1µm bubble and assume it constant. Then from above we obtain a 

mass growth of 18%. The volume fraction is then 0

0

0.044d d
d d

d d

m m
n

m
α

ρ
= = . 

 
Conclusions: The speed of solution or dissolution of gases depends strongly on 
the flow pattern. To completely dissolve bubbles of nitrogen for instants needs 
thousands of years due to molecular diffusion, tens of hours due to relative motion 
without turbulence and tens of minutes due to turbulence. Abrupt change of the 
pressure can cause much stronger mass transfer due to two reasons: a) The driving 
difference of the concentration in the transient is larger and b) flow induced turbu-
lence in such cases is much stronger. 

12.2 Droplets 

Consider a family of mono-disperse particles designated with d, moving in a con-
tinuum, designated with c, with relative velocity cdVΔ . We are interested in how 
much mass of the solvent is transferred between the surface of a particle and the 
surrounding continuum. We will consider first the steady state mass diffusion 
problem in a continuum boundary layer, thereafter the transient mass diffusion 
problem in a particle and finally we will give some approximate solutions for the 
average mass transferred. 

12.2.1 Steady state gas site diffusion 

The mass transported between the particle velocity field and the continuum per 
unit time and unit mixture volume for a steady state case is frequently approxi-
mated by 

 
( ) ( ) ( )* 2

, , , , , , ,,
6 /d d d

c i cd cd dc i c c i c i d c i c c c i c i dc i
a w a C C D Sh C C Dσ σ σμ ρ β ρ α ρ= = − = − . (12.95) 

 
Here 6 /cd d da Dα=  is the interfacial area density, *

, , /cd i d i d dD Sh Dβ =  is the mass 
transfer coefficient and dSh  is the Sherwood number defined as given in Table 12.2.
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Table 12.2. Mass transfer coefficient on the surface of moving solid sphere and liq-
uid droplets 

,
, *

,

cd i d
d i

c i

D
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D
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=  Sherwood number, *
d cd

cd d c
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D V
Pe Re Sc
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Δ

= =  Diffusion Peclet 

number, d c cd
d

c

D V
Re

ρ
η
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=  Reynolds number, *
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c
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c c i

Sc
D
η

ρ
=  Schmidt number 

 
1dRe <<     Potential flow 

 
1cdPe <<  

 
21 12 ...

2 6d cd cdSh Pe Pe= + + +   Soo (1965) 

 
1cdPe >>  

 
1/ 30.98d cdSh Pe=  /d cη η = ∞   Nigmatulin (1978) 

 
1/ 3
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2
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π
=   Boussinesq (1905), isothermal sphere 

 
1/ 2

3 1
4 1d cd
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Sh Pe
π η η

⎛ ⎞
= ⎜ ⎟
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  Levich (1962) 

 
1/ 30.922 0.991d cdSh Pe= +    Acrivos-Goddard (1965) 

 
1/ 24.73 1.156d cdSh Pe= +    Watt (1972) isothermal sphere 
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1cdPe <  
 

1/ 312
2d cdSh Pe= +   Acrivos and Taylor (1965) only the 

resistance in the continuum is taken 
into account 

 
41 Re 7 10d< < × , 0.6 400cSc< <  

 
( ) 1/ 2 1/ 32 0.55 to 0.7d d cSh Re Sc= +   Soo (1965) 

 
Droplets and bubbles   Michaelides (2003) 
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Sh Sh Sh
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−
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where 
 

( )1/ 2
,0 0.651 1.032 1.6d cdSh Pe A A= + + −  for 0d cη η = , 

 

( )1/ 3 0.287 0.355
, 0.852 1 0.233Re 1.3 0.182 Red cd d dSh Pe∞ = + + −  for d cη η = ∞ , 

 

( )0.43 0.287 0.287
,2 0.64 1 0.233Re 1.41 0.15Red cd d dSh Pe= + + −  for 2d cη η = . 

 
 
100 Re 400d≤ ≤  for bubbles 1d cη η <<  
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 Lochiel (1963) , mobile sur-

face. 
 
Re 1d >> , large bubbles 1d cη η <<  
 

1/ 21.13d cdSh Pe= . Lochiel (1963) , mobile sur-
face. 

 
Solid sphere undergoing a step temperature change, Feng and Michaelides (1986) 
 

( ) ( ) ( )2
2

exp 4 *12 1 2 ln 2 2 *
2 4 *

cd
d cd cd cd cd

c

Pe
Sh Pe Pe Pe erf Pe

Pe

τ
τ

πτ

⎧ ⎫⎡ ⎤−⎪ ⎪⎢ ⎥= + + +⎨ ⎬
⎢ ⎥⎪ ⎪⎣ ⎦⎩ ⎭

 

 
1/ 2 1/ 32 0.6d d cSh Re Sc= +     Ranz and Marshal (1952), 

verified for heat transfer on 
water droplets 

 
64 Re 250d< < , 0.00023 0.00113dD m< < , 5 51.03 10 2.03 10p Pa× < < × ,  
2.8 36c dT T K< − < , 2.7 11.7 /cdV m s< Δ <  
 

1/ 2 1/ 32 0.738d d cSh Re Sc= + .    Lee and Ryley (1968) 
__________________________________________________________________ 
 
For much stronger turbulence in the carrier phase probably the assumption 

ciC const=  over the considered time interval has to be abandoned. If we neglect 
the convection and the diffusion from the neighboring elementary cells, which is 
valid for a mass transfer time constant considerably smaller than the flow time 
constant, the continuum mass conservation can be approximated by 
 

( ), * 2
, , , ,: 6 /c i d

c c c i d c i c c c i c i d

dC
D Sh C C D

d
σα ρ μ α ρ

τ
= = −    (12.96) 

 
or 

 
, , ,

*

d
c i c i c i

c

dC C C
d

σ

τ τ
−

=
Δ

,      (12.97) 
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where 
 

2
*

*
,6
d

c
c i c

D
D Sh

τΔ =       (12.98) 

 
approximates the characterizing continuum time constant of the gas absorption or 
release. 

Thus for some effective and not priory known ,
c
d iC σ  the difference between the 

interface concentration and the continuum concentration decreases exponentially 
 

( ) , , ,0
, , *

, , ,0

expc i c i
m c i d

c i c i c

C C
C

C Cσ

ττ
τ

− ⎛ ⎞Δ
Δ = = −⎜ ⎟− Δ⎝ ⎠

    (12.99) 

 
during the time interval τΔ . Therefore, the time-averaged mass, transferred from 
the surface into the continuum per unit mixture volume and unit time is 
 

( ) ( )2
, , , , , ,6 /d d d

c i d c i c i c i c c d c c i c iSh C C f D C Cσ σ σμ α β ω= − = −   (12.100) 
 
where 

 
*

*1 exp c
c

c

f τ τ
τ τ

⎡ ⎤⎛ ⎞Δ Δ
= − −⎢ ⎥⎜ ⎟Δ Δ⎢ ⎥⎝ ⎠⎣ ⎦

.     (12.101) 

 
Note that for 0τΔ → , 1cf → . 

12.2.2 Transient diffusion inside the droplet 

In the nature the concentration of both media changes with the time. As already 
mentioned the diffusion inside liquids is much slower than inside the gases and 
therefore process limiting. We consider next the transient diffusion mass transport 
inside the droplet associated with the mass transfer at the surface. 

Consider droplet with surface mass concentration of specie i, ,
c
d iC σ  cared by the 

continuum with the same velocity. The mass concentration of the droplet at the 
beginning of the time τΔ  is , ,0d iC . Compute the mass release or absorption per 
unit time and unit mixture volume. The transport of specie i inside the droplet is 
controlled by the mass conservation equation for specie i  
 

2
, , ,*

, 2

2d i d i d i
d i

C C C
D

r rr
∂ ∂ ∂
∂τ ∂∂

⎛ ⎞
= +⎜ ⎟⎜ ⎟

⎝ ⎠
,    (12.102) 
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which is in fact the Fourier equation in terms of concentration. Usually the equa-
tion is written in terms of the dimensionless concentration 
 

( ), , ,0
,

, , ,0

,d i d i
d i c

d i d i

C r C
C

C Cσ

τ −
=

−
     (12.103) 

 
for 0r = , dR , ,τ τ τ τ= + Δ  in the following form 
 

2
, , ,*

, 2

2d i d i d i
d i

C C C
D

r rr
∂ ∂ ∂
∂τ ∂∂

⎛ ⎞
= +⎜ ⎟⎜ ⎟

⎝ ⎠
,    (12.104) 

 
where *

,d iD  is the diffusion constant of specie i inside the droplet. Text book ana-
lytical solution of the Fourier equation is available for the following boundary 
conditions: 
 
(a) Droplet initially at uniform concentration: ( ), , 0 0d iC r = ; 

(b) Droplet surface at dr R=  immediately reaches the surface concentration ,
c
d iC σ , 

( ), , 1d i dC R τ = ; 

(c) Symmetry of the concentration profile: ,

0

0d i

r

C
r

∂
∂

=

= . 

 
The solution is represented by the converging Fourier series 
 

( ) ( ) ( )2
,

1

12, 1 sin exp /
n

d
d i d

n d

R rC r n n
r n R

τ π τ τ
π

∞

=

− ⎛ ⎞
= − − Δ⎜ ⎟

⎝ ⎠
∑  (12.105) 

 
where ( )2 2 *

,4d d d iD Dτ πΔ =  is the characteristic time constant of the mass diffu-
sion process. The intrinsic volume-averaged non-dimensional concentration is 
 

( ) ( ), , , ,0 2
, , 2 2

1, , ,0

6 1: 1 exp /m d i d i
m d i dc

nd i d i

C C
C n

C C nσ

τ
τ τ

π

∞

=

−
= = − − Δ

− ∑ .  (12.106) 

 
Convection inside the droplet caused by the interfacial shear due to relative veloc-
ity can improve the turbulent diffusion coefficient of the droplet *

,d iD by a factor 
1f ≥ . Therefore 
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( )2
, , 2 2

1

6 11 exp /m d i d
n

C fn
n

τ τ
π

∞

=

= − − Δ∑ .    (12.107) 

 
Celata et al. (1991) correlated their experimental data for effective thermal con-
ductivity for condensation with the following expression for f, 
 

* 0.4540.53 df Pe= ,      (12.108) 

where a special definition of the Peclet number is used *
*

d cd c
d

c ddi

D V
Pe

D
η

η η
Δ

=
+

.  

For values of , ,m d iC  greater than 0.95 (long contact times) only the first term of 
Eq. (12.105) is significant 
 

( )2
, , 2

61 exp /m d i dC fn τ τ
π

≈ − − Δ .    (12.109) 

 
One alternative solution of Eq. (12.104) can be obtained by the method of Laplace 
transformations which takes the form of a diverging infinite series. For values of 

, ,m d iC  less than 0.4 (short contact times) the first term of this series, 
 

, , *
,

3
m d i

d d i

C
D D

π

τ
= ,      (12.110) 

 
is the only significant term. This equation applies for short contact times when the 
concentration gradient of the surface surroundings has not penetrated to the center 
of the sphere which consequently behaves as a semi-infinite body. 

From the mass balance of the specie i inside the droplet velocity field we obtain 
the time-averaged mass transfer from the surface to the droplets per unit time and 
unit mixture volume 

 

( ) ( ), ,
, , , , ,

0

1 1 0m d ic
d i d d d d m d i m d i

dC
d C C

d

τ
σμ α ρ τ α ρ τ

τ τ τ

Δ

⎡ ⎤= = Δ −⎣ ⎦Δ Δ∫  

 
( ) ( ) ( ), ,

, , ,0 , , ,0
m d i c c

d d d i d i d d i d i

C
C C C Cσ στ

α ρ ω
τ
Δ

= − = −
Δ

.  (12.111) 

Note that the mass conservation at the interface dictates 
 

, ,
c d
d i c i
σ σμ μ= − ,       (12.112) 

 
which is valid not only for the instantaneous but also for the time averaged values 
and therefore 
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, ,0 ,

,
d d i c c id

c i
d c

C C
C σ ω ω

ω ω
+

=
+

.     (12.113) 

 
If the gas site diffusion is ignored as a much faster than the liquid site diffusion 
then  , ,

d sat
c i c iC Cσ =  is the best assumption. 

12.3 Films 

There are different flow pattern leading to a film–gas interface in multi-phase 
flows. Stratified and annular flows in channels with different geometry, walls of 
large pools with different orientations and part of the stratified liquid gas configu-
ration in large pools are the flow patterns of practical interest. The problem of the 
mathematical modeling of interface mass transfer consists of (a) macroscopic pre-
dictions of the geometrical sizes and local averaged concentrations, velocities, and 
pressure and (b) microscopic modeling of the interface mass transfer. The purpose 
of this section is to review the state of the art for modeling of the interface mass 
transfer for known geometry.  

12.3.1 Geometrical film-gas characteristics 

Next we summarize some important geometrical characteristics needed further. 
 

The cross section occupied by gas and liquid in a channel flow is  
 

1 1F Fα=        (12.114) 
 
and  

2 2F Fα=        (12.115) 
 

respectively, where F is the channel cross section. Depending on the gas velocity 
the film structure can be 

 
(a) symmetric, or 
(b) asymmetric. 
 

The symmetric film structure is characterized by uniformly distributed film on the 
wet perimeter in the plane perpendicular to the main flow direction. For this case 
the film thickness is  

 

( )2 21 1 / 2F hDδ α= − − ,     (12.116) 
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 where hD  is the hydraulic diameter of the channel in a plane perpendicular to the 
main flow direction. The liquid gas interface per unit flow volume that is called 
the interfacial area density is  

  

12 2
4 1

h

a
D

α= − .      (12.117) 

  
The hydraulic diameter of the gas is  

 

1 21h hD D α= − .      (12.118)  
 

Asymmetric film structure results in the case of dominance of the gravitation 
force. The flow can be characterized by three perimeters, the gas–wall contact, 
Per1w, the gas–liquid contact, Per12, and the liquid–wall contact, Per2w. To these 
three perimeters correspond three surface averaged shear stresses, one between the 
gas and the wall, 1wτ , one between gas and liquid, 12τ , and one between the liquid 
and the wall, 2wτ . The hydraulic diameters for computation of the friction pres-
sure loss of the both fluids can be defined as  

 
( )1 1 1 124 /h wD F Per Perα= + ,     (12.119)  

 
( )1 2 2 124 /h wD F Per Perα= + .     (12.120)  

 
Two characteristic Reynolds numbers can be defined by using these length scales  

  
1 1 1 1 1 1

1
1 1 1 12

4h

w

V D V FRe
Per Per

ρ α ρ
η η

= =
+

,    (12.121)  

2 2 2 2 2 2
2

2 2 2 12

4h

w

V D V FRe
Per Per

ρ α ρ
η η

= =
+

.    (12.122)  

  
In the three-dimensional space it is possible that the liquid in a computational cell 
is identified to occupy the lower part of the cell. In this case the gas–liquid interfa-
cial area density is  

  
12 1/a z= Δ .       (12.123)  

  
The film thickness in this case is  

 
2 2F zδ α= Δ ,       (12.124) 
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where the 2α  is the local liquid volume fraction in the computational cell. In the 
case of film attached at the vertical wall of radius r of a control volume in cylin-
drical coordinates  
 

( )2
2 2 11 1 1 /F ir r rδ α −

⎛ ⎞⎡ ⎤= − − −⎜ ⎟⎣ ⎦⎝ ⎠
.    (12.125)  

 
For the limiting case of ri-1 = 0 Eq. (12.125) reduces to Eq. (12.116). The interfa-
cial area density in this case is  

( )

( )

( )

2
2 1

2
12 2 2

1 1

1 1 /1 /2 2
1 / 1 /

i
F

i i

r rra
r r r r r r

αδ −

− −

⎡ ⎤− −− ⎣ ⎦= =
⎡ ⎤ ⎡ ⎤− −⎣ ⎦ ⎣ ⎦

.  (12.126)  

For the case of ri-1 = 0 Eq. (12.126) reduces to Eq. (12.117). For such flow pattern 
the following film Reynolds number is used  

 
2 2 2 2 2F FRe Vρ δ η= .      (12.127) 

12.3.2 Liquid side mass transfer due to molecular diffusion 

Next we consider the heat transfer from the interface to the bulk liquid. The liquid 
can be laminar or turbulent. For laminar liquid the heat is transferred from the in-
terface to the liquid due to heat conduction described by the Fourier equation, 
(1822), 
 

2
2, 2,*

2, 2
i i

i
C C

D
y

∂ ∂
∂τ ∂

= − ,      (12.128) 

  
where the positive y-direction is defined from the interface to the bulk liquid. The 
textbook solution for the following boundary conditions 

τ ≥  0, y = 0, 2,iC  = 1
2,iC σ   (interface),    (12.129) 

 
τ = 0, y > 0, 2,iC  = 2, ,0iC  (bulk liquid),    (12.130) 

 
τ  > 0, y→ 1 , 2,iC  = 2, ,0iC  (bulk liquid),   (12.131) 

 
is 

 
( )

( )
1

2, ,0 2, 2, ,0 1/ 2*
2,2

i i i

i

yC C C C erfc
D

σ

τ
− = − .    (12.132) 
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Using the temperature gradient  

 

( )
( )

1
2, 2, ,0 2 *

2,1/ 2*
2,

exp / 4i i
i

i

C CC y D
D

σ∂ τ
∂τ π τ

−
⎡ ⎤= − −⎣ ⎦     (12.133) 

 
at y = 0 we compute the heat flux at the interface 
 

( ) ( ) ( )
*

1 2, 2,* 1
2 2, 2 2, 2, ,0 2 2, 2, ,02,

0

2i id
i i i i ii

y

C D Bw D C C C C
y

σ σ σ∂
ρ ρ ρ ρ

∂ πτ τ=

= = − = −  

 
( )1

2 2 2, 2, ,0i iC Cσβ ρ= − .      (12.134) 
 

The averaged heat flux over the time period τΔ  is 
 

( ) ( )1 1
2 2, 2, ,02,

2
i ii

Bw C Cσ σρ ρ
τ

= −
Δ

.    (12.135) 

12.3.3 Liquid side mass transfer due to turbulence diffusion 

Let 2τΔ  be the average time in which a turbulent eddy stays in the neighborhood 
of the free surface before jumping apart, sometimes called the renewal period. 
During this time the average heat flux from the interface to the eddies by heat 
conduction is 
 

( ) ( ) ( )1 1 1
2 2, 2, ,0 2 2 2, 2, ,02,

2
i i i ii

Bw C C C Cσ σ σρ ρ β ρ
τ

= − = −
Δ

.  (12.136) 

 
If the volume-averaged pulsation velocity is 2V ′  and the length scale of large tur-
bulent eddies in the film is ,2el  the time in which the eddy stays at the interface is  
 

( )2 ,2 2,ef Vτ ′Δ = l .      (12.137) 
 
Thus, the task to model turbulent mass diffusion from the interface to the liquid is 
reduced to the task to model 
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(i) pulsation velocity 2V ′  and  
 
(ii) turbulent length scale ,2el . 
 

Usually 2β  is  written  as a function of the dimensionless turbulent Reynolds

 
2 2 2 ,2 2/t

eRe Vρ η′= l ,      (12.138) 
 

and Prandtl number Pr2,  
 

*
2, 2 ,21/ 2 1/ 2 1/ 22

2 2 2 2
2 2 2 2

2 2 2i etD V
Sc Sc Re

η
β

π τ π ρ τ π τ
− − −

′
= = =

Δ Δ Δ

l
, (12.139) 

 
and is a subject of modeling work and verification with experiments. Once we 
know 2β  we can compute some effective conductivity by the equation 

 

( ) ( )
*
2, , 1 1

2 2, 2, ,0 2 2 2, 2, ,0
2

2 i eff
i i i i

D
C C C Cσ σρ β ρ

π τ
− = −

Δ
   (12.140) 

 
or 

* 2
2 , 2 22i effD π τ β= Δ ,      (12.141) 

 
and use Eq. (12.141) for both laminar and turbulent heat transfer. 

12.3.3.1 High Reynolds number 

One of the possible ways for computation of the renewal period 2τΔ  for high tur-
bulent Reynolds numbers  

 
2
tRe  > 500       (12.142) 

is the use of the hypothesis by Kolmogoroff for isotropic turbulence 
 

( )1/ 23
2 1 2 2 2/ec Vτ ν ′Δ ≈ l ,     (12.143) 

 
where 
 

2 1 2e Fc δ≈l ,       (12.144) 
 

number  
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where c1 is a constant. In this region the turbulence energy is concentrated in mi-
croscopic eddies (mechanical energy dissipating motion). Substituting 2τΔ  from 
Eq. (12.143) into (12.139) results in  

 

1/ 2 1/ 4
2 2 2 2

2 tSc Re Vβ
π

− − ′= .     (12.145) 

 
The qualitative relationship 1/ 2 1/ 4

2 2 2
tSc Reβ −≈  was originally proposed by Banerjee 

et al. (1968) and experimentally confirmed by Banerjee et al. (1990). Lamont and 
Scot, see in Lamont and Yuen (1982), describe successfully heat transfer from the 
film surface to the flowing turbulent film for high Reynolds numbers using Eq. 
(12.145) with a constant 0.25 instead of 2 /π . Recently Hobbhahn (1989) ob-
tained experimental data for condensation on a free surface, which are success-
fully described by Eq. (12.145) modified as follows  

 
0.6 1/ 5

2 2 2 20.07 tSc Re Vβ − − ′=      (12.146) 
 

where the discrepancy between the assumption made by the authors 
 

2 2e Fδ≈l        (12.147) 
 

and 
 

2 2 1 2 1 2/V V V Vρ ρ′ ≈ + −      (12.148) 
 

and the reality are compensated by the constant 0.07. 

12.3.3.2 Low Reynolds number 

For low turbulence Reynolds number  
 

2 500tRe <        (12.149) 
 

the turbulence energy is concentrated in macroscopic eddies. The choice of the 
liquid film thickness, as a length scale of turbulence  

 
,2 2e Fδ≈l        (12.150) 

 
is reasonable. Therefore the renewal period is 

 
2 2 2/F Vτ δ ′Δ ≈        (12.151) 
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and Eq. (12.139) reduces to 
 

1/ 2 1/ 2
2 2 2 2

2 tPr Re Vβ
π

− − ′= .     (12.152) 

 
For low Reynolds numbers Fortescue and Pearson (1967) recommended instead 
of 2 /π  in Eq. (12.152) to use  

 
const  = 0.7(1 + 0.44 / *

2τΔ ),     (12.153) 
 

where  
 

*
2 2 2 ,2/ 1eVτ τ ′Δ = Δ ≈l ,      (12.154) 

 
which is > 0.85, as recommended by Brumfield et al. (1975). 

 
Theofanous et al. (1975) showed that most of their experimental data for con-

densation on channels with free surface can be described by using Eqs. (12.141) 
and (12.152) with the above discussed corrections introduced by Lamont and Scot, 
and Fortescue and Person, respectively.  

12.3.3.3 Time scales for pulsation velocity 

a) Time scale of turbulence pulsation velocity based on average liquid velocity.  
 

A very rough estimate of the pulsation velocity is  
 

( )1 2 20.1  0.3  V c V to V′ = ≈ ,     (12.155) 
With this approach and  

 
2 2 2e Fc δ≈l        (12.156) 

 
the two equations for 2β  read 

 
2 1500FRe c< ,       (12.157) 

 

1/ 4 3/ 4 1/ 2 1/ 4 1/ 2 1/ 4
2 2 1 2 2 2 2 2 2

2  F Fc c Sc Re V const Sc Re Vβ
π

− − − − −= = .  (12.158) 

 
Comparing this equation with the McEligot equation we see that   
 

const ≈  0.021 to 0.037 .     (12.159) 
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For 
 

2 1500FRe c≥        (12.160) 
 

1/ 2 1/ 2 1/ 2
2 1 2 2 2

2
Fc Pr Re Vβ

π
− −= .     (12.161) 

 
b) The scale of turbulence pulsation velocity based on friction velocity 

 
Improvement of the above theory requires a close look at the reasons for the exis-
tence of turbulence in the liquid film. This is either the wall shear stress, 2wτ , or 
the shear stress acting on the gas–liquid interface, 12τ , or both simultaneously. 
The shear stress at the wall for channel flow is 

 
2

2 2 2 2
1 1
4 2w w Vτ λ ρ= ,      (12.162) 

 
where 
 

2 2 2
2 2

2

, /h w
w friction w h w

V D
k D

ρ
λ λ

η
⎛ ⎞

= ⎜ ⎟
⎝ ⎠

.    (12.163) 

 
Here 
 

2 2 24h w wD F Perα= .      (12.164) 
 

is the hydraulic diameter of the channel for the liquid, and 2/w h wk D  is the relative 
roughness. The shear stress of the gas–liquid interface in channel flow is  

 
2

12 12 1 12
1 1
4 2

Vτ λ ρ= Δ ,      (12.165) 

 
where 

 

1 12 1 2
2

2 1

/ 4,h F
w friction

h

V D
D

ρ δλ λ
η

⎛ ⎞
= ⎜ ⎟

⎝ ⎠
.    (12.166) 

 
Here 

 
1

1
1 12

4
h

w

FD
Per Per

α
=

+
,      (12.167) 
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is the hydraulic diameter of the “gas channel” and ( )2 1/ 4 /F hDδ  is the relative 
roughness of the “gas channel” taken to be a function of the waviness of the film. 

For vertical plane walls the average shear stress at the wall along zΔ  is 
 

2
2 2 2 2

1
2w wc Vτ ρ=       (12.168) 

 
where for laminar flow 

 
Re2z < (1 to 3)105      (12.169) 
 

The averaged steady state drag coefficient in accordance with Prandtl and Blasius 
is 

 
1/ 2

2 21.372 /w zc Re=       (12.170) 
 

and 
 

2 2 2/zRe V z ν= Δ       (12.171) 
 

and for turbulent flow  
 

1/ 5
2 20.072 /w zc Re= ,      (12.172) 

 
see Albring (1970). Similarly the gas side averaged shear stress is computed using 
 

1 12 2/zRe V z ν= Δ Δ .      (12.173) 
 

Thus the effective shear stress in the film is 
 

2 2 12 12
2

2 12

w w
eff

w

Per Per
Per Per
τ ττ +

=
+

.     (12.174) 

 
Now we can estimate the time scale of the turbulence in the shear flow 

 

( )1/ 23
2 2 2 2/F Vτ ν δ ′Δ ≈ ,      (12.175) 

 
using the dynamic friction velocity 

 
*

2 2 2/eff effV τ ρ= .      (12.176) 
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Assuming that the pulsation velocity is of the order of magnitude of the friction 
velocity  

 
*

2 2 effV const V′ ≈ ,      (12.177) 
 

where the 
 
const ≈  2.9,       (12.178) 
 

we obtain for 
 

*
2FRe  > const 500,      (12.179) 

 

3/ 4 1/ 2 * 1/ 4 *
2 2 2 2

2
F effconst Pr Re Vβ

π
− −= ,    (12.180) 

 
and for 

 
Re2 < const 500,      (12.181) 
 

1/ 2 1/ 2 * 1/ 2 *
2 2 2 2

2
F effconst Pr Re Vβ

π
− −= ,    (12.182) 

 
where 

 
*

2 2 2*
2

2

eff F
F

V
Re

ρ δ
η

= .      (12.183) 

 
More careful modeling of the turbulent length scale for the derivation of

Kim and Bankoff  (1983). The authors used the assumption 
 

*
2 2effV V′ ≈ ,       (12.184) 

 
and modified Eq. (12.182) as follows 

 
1/ 2 0.12 *

2 2 2 20.061 t
effSc Re Vβ −= ,     (12.185) 

 
where 

 

( )

1/ 2

8 *1.85 *0.006 0.23
2 1 2 2

2 1

3.03 10e Re Re Sc
g

σ
ρ ρ

− −
⎡ ⎤

= ×⎢ ⎥
−⎢ ⎥⎣ ⎦

l ,  (12.186) 
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Eq. (12.182) was done by 



 
for 3000 < *

1Re  < 18000 and 800 < *
2Re  < 5000, 12λ  = 0.0524 + 0.92× 10-5 *

2Re  
valid for *

2Re  > 340, and 12τ  >> 2wτ . Note the special definition of the Reynolds 
numbers as mass flow per unit width of the film  

 
* 1 1 1
1

1 12

V FRe
Per

α ρ
η

= ,      (12.187) 

 
* 2 2 2
2

2 12

V FRe
Per

α ρ
η

= .      (12.188) 

 
Assuming that the pulsation velocity is of order of the magnitude of the friction 
velocity as before but the time scale of the turbulence is 

 
( )1/ 2 *2

2 2 2 2 2/ / effVτ ν ε νΔ ≈ = ,     (12.189) 
 

results for 
 

*
2FRe  > const 500,      (12.190) 

 
in 

 

1/ 2 *
2 2 2

2
effPr Vβ

π
−= .      (12.191) 

 
This equation is recommended by Jensen and Yuen (1982) with a constant 0.14 in-
stead 2 /π  for 12τ >> w2τ . Hughes and Duffey reproduced an excellent agree-
ment with experimental data for steam condensation in horizontal liquid films by 
using Eq. (12.180) and the assumption 

 
( )2 12 2 / 2eff wτ τ τ= + .      (12.192) 

 
Nevertheless one should bear in mind that Eq. (12.174) is more general. 

An example of detailed modeling of the turbulence structure in the film during 
film condensation from stagnant steam on vertically cooled surfaces is given by 
Mitrovich, see Rohsenow and Choi (1961). Using the analogy between heat and 
mass transfer we rewrite their results to  

 
( ) ( )1 1

21, 2 2, 2,2, i i ii
w C Cσ σρ β ρ= −      (12.193) 
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where 
 

0.526* 0.33 1.9 1.267 1.11
2, 2 2, 2 2 2/ 1.05 1i F i F FD Re C Re Scβ δ − ⎡ ⎤= +⎣ ⎦ ,  (12.194) 

 
C = 8.8 10-3/(1 + 2.29 10-5Ka2

0.269),    (12.195) 
 

( )3 4
2 2 2/Ka gρ σ η= .      (12.196) 

 
Summarizing the results discussed above we can say the following: 
 

(a) Gas in the two-phase film flow behaves as a gas in a channel. Therefore the 
gas side mass transfer can be considered as a mass transfer between gas and the 
interface taking into account the waves at the liquid surface.  
 

(b) The liquid side mass transfer at the interface is due to molecular and turbu-
lent diffusion. The modeling of the turbulent diffusion can be performed by mod-
eling the time and length scale of the turbulence taking into account that turbu-
lence is produced mainly  
 

 (i) at the wall–liquid interface, and  
(ii) at the gas–liquid interface.  

 
(c) Gas side mass transfer in a pool flow can be considered as a mass transfer at 

plane interface.  
 

(d) The liquid side mass transfer from the interface into the bulk liquid is gov-
erned by the solution of the transient Fourier equation in terms of concentrations 
where in case of the turbulence the use of effective eddy diffusivity instead of the 
molecular diffusivity is recommended. 

Nomenclature 

Latin 
 
A  function 

cda  interfacial area density between the continuum and disperse phase, m²/m³ 

12a  1/ z= Δ  gas–liquid interfacial area density in Cartesian coordinates, 1/m 
B  acceleration function defining the diffusion controlled bubble growth or 

collapse, m/s² 
ib  coefficient defining the activation of nucleation sites for specific gas spe-

cie i, 1/m² 
2,iC  mass concentration of the specie i inside the liquid, dimensionless 

2,
sat

iC  saturation mass concentration of specie i inside the liquid, dimensionless 



,c iC  bulk mass concentration far from the interface in the continuum, dimen-
sionless 

, ,0c iC  bulk mass concentration far from the interface in the continuum at the 
beginning of the considered process, dimensionless 

,
d
c iC σ  interface concentration continuum site, dimensionless 

,
sat
c iC  saturation concentration in the continuum, dimensionless 

,d iC  mass concentration of the specie i inside the dispersed phase, kg/kg 

,d iC  
( ), , ,0

, , ,0

,
: d i d i

c
d i d i

C r C
C Cσ

τ −
=

−
, mass concentration of the specie i inside the dis-

persed phase, dimensionless 
c
diC σ  mass concentration of the specie i at the droplet surface, kg/kg 

, ,0d iC  mass concentration of the specie i inside the droplet at the beginning of 
the process considered, kg/kg 

, ,m d iC  volume-averaged mass concentration of the droplet, kg/kg 
d
cwc  drag coefficient, dimensionless 

difc  geometry constant, dimensionless 

tc  constant, dimensionless 

1D  bubble diameter, m 

1dD  bubble departure diameter, m 

21 , 1d wD =  bubble departure diameter for 1m/s liquid velocity, m 

1oD  initial size of micro-bubbles, m 
*
,c iD  diffusion coefficient for specie i in the continuous liquid c, m²/s 

dD  diameter dispersed phase, m 

0dD  initial diameter dispersed phase, m 
*

,d iD  diffusion coefficient for specie i in the dispersed liquid d, m²/s 

hD  hydraulic diameter, m 

huD  hydraulic diameter in x-direction, m 

hvD  hydraulic diameter in y-direction, m 

hwD  hydraulic diameter in z-direction, m 

1hD  hydraulic diameter for the gas, m 

2hD  hydraulic diameter for the liquid, m 

12hD  hydraulic diameter for computation of the gas friction pressure loss com-
ponent in a gas–liquid stratified flow, m 

e  aspect ratio width/height, dimensionless 
F channel cross section, m 
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f  function 

1wf  bubble departure frequency, 1/s 

cf  function originating after time averaging 
g  gravitational acceleration, m/s² 

hΔ  evaporation enthalpy, J/kg 
,c iJ  memory function 

k  specific turbulent kinetic energy, m²/s² 
wk   wall roughness, m 

ecl  characteristic size of the large eddies in the liquid, m 

dm  mass of the dispersed particle, kg 

0dm  initial mass of the dispersed particle, kg 

gasm  inert gas mass inside the bubble, kg 

im  mass of the specie i, kg 

1n′′  active nucleation site density for bubble generation, 1/m² 

1n′′′&  generated bubbles per unit time and unit mixture volume, 1/(m³s) 

dn  number of dispersed particles per unit mixture volume, 1/m³ 

dn′′&  number of the micro-bubbles striking the wall per unit time and unit sur-
face, 1/(m²s) 

dn′′′&  number of the micro-bubbles transferred in the turbulent boundary layer 
per unit flow volume and unit time, 1/(m³s) 

10nP  probability that a micro-bubble with size within dDΔ  is found in unit vol-
ume of the liquid,  1/m4 

p  pressure, Pa 
p′  rms-values of pressure fluctuation, Pa 

0p  initial pressure, Pa 

1ip  partial pressure of specie i in the bubble, Pa 

cp  pressure in the continuum, Pa 

dip  partial pressure of specie i in the dispersed phase, Pa 

gasp  partial pressure of the non-condensing gases, Pa 

2H Op  partial pressure of water or water steam, Pa 

pτ  : wdp dz= , Pa/s 
pΔ  pressure difference, Pa 

cdPe  *: d cd ci d cD V D Re Sc= Δ = , bubble diffusion Peclet number, dimen-
sionless 

*
dPe  ( ) ( )*: d cd di c c dD V D η η η= Δ + , droplet diffusion Peclet number, dimen-

sionless 



wPer  perimeter of the rectangular channel, m 

1wPer  wetted perimeters for the gas, m 

2wPer  wetted perimeters for the liquid, m 

1R  bubble radius, m 

dR  radius of the dispersed phase, m 

0dR  initial radius of the dispersed phase, m 

,d crR  critical radius of the dispersed phase, m 

gasR  gas constant,  

dRe  : d c cd cD Vρ η= Δ , Reynolds number, dimensionless 

Recw  : h c cD w ν= , Reynolds number of the continuum in pipe, dimensionless 

1Re  1 1 1 1/hw Dρ η= , gas Reynolds number, dimensionless 

2Re  2 2 2 2/hw Dρ η= , liquid Reynolds number, dimensionless 

*
1Re  1 1 1

1 12

V F
Per

α ρ
η

= , modified gas Reynolds number, dimensionless 

*
2Re  2 2 2

2 12

V F
Per

α ρ
η

= , modified liquid Reynolds number, dimensionless 

2FRe  2 2 2

2

FVρ δ
η

= film Reynolds number, dimensionless 

1zRe  1 1/V z ν= Δ , gas Reynolds number, dimensionless 

2
tRe  2 2 2 2/eVρ η′= l , liquid turbulent Reynolds number, dimensionless 

*
2FRe  

*
2 2 2

2

eff FVρ δ
η

= , liquid turbulent Reynolds number based on the friction ve-

locity, dimensionless 
r  radius, m 

cSc  ( )*
,: c c c iDη ρ= ,  Schmidt number, dimensionless 

cSh  
( )
( )

, ,
* *: cd i d i dc d

d
ci cic ci ci

wD D
D DC Cσ

ρβ

ρ
= =

−
, Sherwood number, dimensionless 

cwSh  
( )

( )
,

*
, , ,0 ,

:
d

hc i
d

c c i c i c i

w D

C C D

σ

σ

ρ

ρ
=

−
, Sherwood number for gas release or absorption 

in turbulent flow in pipes, dimensionless 

,d iSh  ,
*
,

: cd i d

c i

D
D

β
=  Sherwood number, dimensionless 

T  temperature, K 
T20 initial liquid temperature, K 
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cT  continuum temperature, K 

cTΔ  temperature difference in the continuum, K 
u  velocity in x-direction, m/s 
u′  fluctuation velocity in x-direction, m/s 

*
2effV  2 2: /effτ ρ= , dynamic friction velocity, m/s 

cdVΔ  : c dV V= − , velocity difference, m/s 
v  velocity in y-direction, m/s 
v′  fluctuation velocity in y-direction, m/s 
w  velocity in z-direction, m/s 
w′  fluctuation velocity in z-direction, m/s 

*
cw  friction velocity of the continuum, m/s 

cdwΔ  velocity difference, m/s 

effxΔ  some effective length scale, m 

diY  molar concentration of specie i inside the dispersed phase, dimensionless 
z  z-coordinate, m 
 
Greek 
 

1oα  initial gas volume concentration, dimensionless 

cα  volume concentration of the continuum phase, dimensionless 

dα  volume concentration of the dispersed phase, dimensionless 

,cd iβ  mass transfer coefficient for specie i from the continuum to the dispersed 
phase, m/s 

,dc iβ  mass transfer coefficient for specie i from the dispersed phase to the con-
tinuum phase, m/s 

2Fδ  film thickness, m 
ε  dissipation of the turbulent kinetic energy, m²/s³ 
ζ  irreversible friction coefficient, dimensionless 
η  dynamic viscosity, kg/(ms) 
θΔ  angular increment, rad 

λ  thermal conductivity, W/(mK) 

RTλ  2

21

:
g
σ
ρ

=
Δ

, Rayleigh-Taylor wavelength, m 

frλ  friction coefficient, dimensionless 

1wλ  friction coefficient for the gas–wall contact, dimensionless 

1,nuclμ  generated gas mass due to the production of bubbles with departure di-
ameter per unit time and unit mixture volume, kg/(m³s) 



,
d
c i
σμ  time-averaged mass transfer from the surface to the continuum per unit 

time and unit mixture volume, kg/(m³s) 
,

c
d i
σμ  time-averaged mass transfer from the surface to the droplet per unit time 

and unit mixture volume, kg/(m³s) 
ρ  density, kg/m³ 

( ) ,

d

c i
w σρ  mass flow rate of specie i into the continuum from the interface with the 

dispersed phase, kg/(m²s) 
( ) ,

c

d i
w σρ  mass flow rate of specie i into the dispersed phase from the interface with 

the continuum, kg/(m²s) 
σ  cavitation number, dimensionless 

cdσ  surface tension between continuum c and dispersed phase, N/m 
τ  time, s 
τ ′  time, s 
τΔ  time interval, s 

2τΔ  time for which the eddy stays at the interface, renewal period, s 

1dτΔ  bubble departure time, s 

dτΔ  : d cdD w= Δ  
*
cτΔ  ( )2 *

,: 6d c i cD D Sh= , time constant, dimensionless 
*
2τΔ  2 2 ,2: / eVτ ′= Δ l , time scale, dimensionless 

tτΔ  characteristic time constant, s 

1wτ  21
1 1 12: w Vλ ρ= , shear stress, N/m² 

2wτ  liquid–wall shear stress, N/m² 

12τ  gas–liquid interface shear stress, N/m² 
2
2oΦ  two phase friction multiplier, dimensionless 

cω  effective mass transfer coefficient at the continuum site of the interface, 
kg/(sm³) 

dω  effective mass transfer coefficient at the dispersed site of the interface, 
kg/(sm³) 

 
Subscripts 
 
c continuum 
d  disperse 
1 gas 
2 liquid 
2F liquid film 
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13 Thermodynamic and transport properties 
of diesel fuel 

13.1 Introduction 

Modeling of processes in modern combustion motors requires sophisticated 
mathematical models that culminate finally in very complex computer-code-
models. Multiphase flow analyses require a complete set of thermodynamic, ca-
loric and transport properties that are inherently consistent. Inherently consistent 
means that even being approximations, the thermodynamic relationships among 
the properties have to be strictly satisfied. Using for instance density function 
taken from one reference and the velocity of sound from other source may result 
in considerable mass losses in sensitive applications by using compressible fluid 
dynamic tools. Similar is the case by trying to simulate evaporation and condensa-
tion with densities and enthalpies at the saturation lines that do not satisfy e.g. 
Clausius-Clapayron relation. Non consistent enthalpy functions of temperature 
and pressure used for instance for phase transition, that do not take into account 
exactly the dependence of the latent heat of evaporation on temperature, may lead 
also to considerable energy losses during the analysis. The purpose of this work is 
to review the openly available sources of information and to attempt to derive 
from them a consistent set of thermodynamic, caloric and transport functions. 
Even being forced to accept the uncertainty of the available data we will explicitly 
document them. The so obtained functions are then recommended for use in com-
puter codes for consistent multi-phase dynamic analysis. 
 

This Chapter provides a review of the existing data on thermodynamic and trans-
port properties of diesel fuel from 20 references. From the collected data a set of 
approximations is generated enabling the use of the available information in com-
puter code models. The emphasis is on the strict consistency of the thermodynamic 
representations. Even being an approximation of the reality the generated corre-
lations are mathematically consistent to each other. The generated saturation line 
is consistent with the Clausius-Clapeyron equation, with the definition of the la-
tent heat of evaporation and the other vapor properties. The collection of analyti-
cal equations approximating the collected data set can be applied for the liquid 
diesel fuel being stable or meta-stable, as well for the diesel fuel vapor being sta-
ble or meta-stable. 
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The generated analytical approximations are: 
 
For liquid and gas 
 

( ),p Tρ ρ=  Density as a function of pressure and temperature, 
kg/m³ 

( ) ( ),Tp f p Tρ∂ ∂ =  Derivative of the density with respect to pressure at 
constant temperature, kg/(m³Pa) 

( ) ( ),pT f p Tρ∂ ∂ =  Derivative of the density with respect to temperature at 

constant pressure, kg/(m³K)  
 
The volumetric thermal expansion coefficient, the isothermal coefficient of com-
pressibility, isothermal bulk modulus 
 

( ) p
Tβ ρ ρ= − ∂ ∂ , ( ) 1/

T
k p Bρ ρ= ∂ ∂ = , 1/B k=  

 
are then easily computed. 

 
( ),h h p T=  Specific enthalpy as a function of temperature and pres-

sure, J/kg 
( ) ( ),Th p f p T∂ ∂ =  Derivative of the specific enthalpy with respect to pres-

sure at constant temperature, J/(kgPa) 
( ) ( ),pph T c p T∂ ∂ =  Derivative of the specific enthalpy with respect to tem-

perature at constant pressure – specific thermal capacity 
at constant pressure J/(kgK) 

( ),s s p T=  Specific entropy as a function of temperature and pres-
sure, J/(kgK) 

( ) ( ),Ts p f p T∂ ∂ =   Derivative of the specific entropy with respect to pres-
sure at constant temperature, J/(kgKPa) 

( ) ( ),ps T f p T∂ ∂ =   Derivative of the specific entropy with respect to tem-

perature at constant pressure,  J/(kgK²) 
( ),a a p T=   Velocity of sound, m/s 

( ),p Tλ λ=   Thermal conductivity, W/(mK) 

( ),p Tν ν=   Cinematic viscosity, m²/s 
 
In addition approximation of the surface tension at the liquid–gas interface as a 
function of temperature is given 
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( )Tσ σ=  Surface tension at the liquid–gas interface as a function 
of temperature, N/m 

 
Approximation for the saturation line is provided in two forms: 
 

( )T f p′ =   Saturation temperature as a function of the pressure, K 

( )p f T′ =   Saturation pressure as a function of the temperature, Pa 

( )dT dp f T′ =  Derivative of the saturation temperature with respect to 
pressure – the Clausius-Clapayron relation, K/Pa 

( )h h h f T′′ ′Δ = − =  Latent heat of evaporation as a function of the tempera-
ture, J/kg 

 
The properties at the saturation line for liquid, designated with  , and for vapor, 
designated with   , are computed from the p-T functions using the corresponding 
p’-T or T’-p couples of dependent variables. 

13.2 Constituents of diesel fuel 

Diesel fuel is a complex mixture consisting among others hydrocarbons having 
different properties like boiling points, densities etc. Table 13.1 summarizes some 
of the most important constituents taken from Wenck and Schneider [17] (1993). 
Therefore we have for the mass concentrations of the components groups  
 

0.456parC = ,        (13.1) 
 

0.256naphC = ,       (13.2) 
 
and for computational purposes  
 

1arom par naphC C C= − − .      (13.3) 

Table 13.1. Constituents of diesel  

Groups Mass % 
Paraffin 45.6 
Naphthalene 25.6 
- monocyclic 17.4 
- dicyclic 6.3 
- tricyclic 1.9 
Aromates 28.6 
- alkylbenzole 9.6 

”
’



- indane/tetralie 5.6 
- indene 1.3 
- monoaromats 16.5 
- naphthaline 0.1 
- alkylnaphthaline 6.9 
- acenaphthene/diphenyle 2.3 
- acenaphthene/fluorene 1.6 
- diaromats 10.9 
- triaromats 0.5 

 
 

Table 13.2 illustrates that there are also small amount of other constituents like 
sulfur, ash etc. Note that the data for the properties of the diesel fuel available in 
the literature spread mainly because of the variety of diesel fuel constituents being 
different for different geographical origination sources. That is why a practical ap-
proach for the approximation of state equation is to define a model fluid that repre-
sents approximately the diesel fuel. Therefore we will represent the variety of die-
sel fuels by a single-model of a diesel fuel. 

Table 13.2. Properties for diesel fuel  

 [12] p. 282 [3] p. 915 
light diesel

[3] p. 915 
heavy diesel 

[2] 
gas oil 

[12] n-
Heptane 

[12] n-
Octane 

[17] 
diesel 

Formula  ( )1.8n nC H l  ( )1.7n nC H l   ( )7 16C H l  ( )8 18C H l   
% mass composition    
Carbon 86.5 86.9 87.6 87 84 84.2  
Hydrogen 13.2 13.1 12.4 13 16 15.8  
Sulfur 0.3 0 0 0   max 0.2 
Ash       max 

0.01 
Water in 
mg/kg 

      200 

        
Molecular 
weight 

148.6 [12] 
p.133 

≈ 170 ≈ 200  100 114  

Density, 
kg/m³ 

840 
(15.6°C,  
1atm) 

840-880  
(0°C, 
1atm) 

820-950 
(0°C, 1atm) 

820-860 683.8 
(20°C, 
1atm) 

702.5 
(20°C, 
1atm) 

820-850 
(15°C, 
1atm) 

Cetane num-
ber 

52    56  47.4-
63.9 

Initial boiling 
point, °C 

180    98.4 125.67 ≈ 160, 
p. 72 

10% vol., °C 230       
50% vol., °C 270       
65% vol., °C       until 

250 
85% vol., °C       until 

350 
90% vol., °C 320       
95% vol., °C       until 

370 
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Final boiling 
point, °C 

340       

Flush point *, 
°C 

70   36.85   min 55 

Auto ignition, 
°C 

   206.85    

Freezing 
point 

    -90.61 -56.80  

Cloud point, 
°C 

-12 to -3       

Coefficient of 
cubic thermal 
expansion,  
K-1 

0.00067       

Heat of va-
porization 
kJ/kg 

192 at mid 
boiling 
point 

270 230  316.3 at 
boiling 
point 

302.2 at 
boiling 
point 

731,

Liquid spe-
cific heat, 
kJ/(kg K) 

2.81 at 
mid boil-
ing point 

2.2 1.9     

Vapor spe-
cific heat,  
kJ/(kg K) 

 ≈ 1.7 ≈ 1.7  1.659 
(25°C, 
0bar) 

1.656 
(25°C, 
0bar) 

 

Caloric value, 
higher/lower, 
MJ/kg 

45.7/42.9 
at 15°C 

44.8/42.5 43.8/41.4 46/    

Cinematic 
viscosity, 
m²/s 

5x10-6 at 
15.6°C, 3 
at 37.8°C 

     3.8x10-6 
at 20°C 
2.4 to 
2.6x10-6 
at 40°C, 
p. 10, 11 

Critical point        
T°C     267.01 295.6  
p, bar     27.31 24.83  
Density, 
kg/m³ 

    232 232  

Surface ten-
sion, N/m 

   0.025-
0.03 [2] 
p.284 

   

Saturation 
curve 

       

* Flush point: minimum temperature for spark ignition near the condense phase. 
Siemens reported in [15] density for diesel liquid fuel at 27.7 to 33.9°C to be 833kg/m³. 

13.3 Averaged boiling point at atmospheric pressure 

Due to different boiling point of the constituents the diesel fuel appears as not hav-
ing single boiling point. It has rather a temperature for boiling inception and tem-
perature at which the last liquids molecule evaporates at given pressure. From 

atmospheric pressure at which the boiling 
starts and ends as follows: 

p. 72 

Table 13.2 we select the temperature at 



 _ 273.15 180 453.15boiling incipiationT K′ = + = ,    (13.4) 
 

_ 273.15 380 653.15boiling completedT K′ = + = .    (13.5) 
 

The so-called averaged boiling temperature sometimes called mid boiling tem-
perature at atmospheric pressure is then 

 

( )5
mid boiling 1 10 273.15 280 553.15T Pa K′ × = + = .   (13.6) 

 
Some authors introduced a characteristic number defined as follows 
 

3
mid boiling

2,

1.8

/1000ref

T
K

ρ

′
= .      (13.7) 

 
With this selected reference density and averaged boiling temperature at atmos-
pheric pressure we obtain 

 
3 3

2,

1.8 1.8 553.15 12
/1000 840 /1000ref

TK
ρ

′ ×
= = = .    (13.8) 

 
This number classifies the diesel fuel as a hydrocarbon mixture from the type of 

Thus we select as a reference boiling temperature at atmospheric pressure 
 

1 bar 273.15 180 453.15T K′ = + = .    (13.9) 

13.4 Reference liquid density point 

The reference liquid density point is the result of the specific combination of hy-
drocarbons for each diesel fuel. It is used for approximate estimate of other prop-
erties. From Table 13.2 we select the following diesel liquid reference density: 
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those presented by Wenck and Schneider in p. 22, Fig. 4 [17] (1993). We will 
finally not use the dependence presented on this figure because of its inconsis-
tency at higher temperatures. 

This is of course an idealization. Up this moment we will considered diesel-fuel as a 
“single component” liquid. 
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( )5 3273.15 15 ,1 10 833.69 /ref K Pa kg mρ ρ= + × = .  (13.10) 

13.5 Critical temperature, critical pressure 

The critical point of a liquid–vapor system is defined as a (Tc, pc)-point where 
there is no more difference in the properties between the liquid and the vapor. 
Critical point for diesel fuel is not known to me. One orientation is the critical 
point for n-heptan and n-octane. Using the Reid et al. [11] (1982) Eq. (2.2.4) p. 20 

 

2

1 bar
,

lg lg lgref
c

H O ref
T A B C T

ρ
ρ

′= + + ,    (13.11) 

 
the constants for the hydrocarbons from Table 13.3, and weighting the resulting 
temperatures by using the mass concentrations we obtain 
 

658.4cT K= .       (13.12) 

Table 13.3. Constants for computation of the critical temperature from Table 2.3 Reid et al. 
[11] (1982) p.23 

hydrocarbons A B C 
paraffins 1.359397d0 0.436843d0 0.562244d0 
naphthalenes 0.658122d0 - 0.071646d0 0.811961d0 
aromatics 1.057019d0 0.227320d0 0.669286d0 

 
There are several methods for computation of the critical pressure discussed by 
Reid at al. in [11] (1982), and by Philipov in [8] (1978). Unfortunately for this 
purpose I need more accurate experimental information than I could obtain up to 
now. Therefore I select the critical pressure around the values for n-heptan and n-
octane  

530 10cp Pa= × .      (13.13) 

13.6 Molar weight, gas constant 

The molar weight of the diesel fuel varies between about 148 and 200 as seen 
from Table 13.2. I select for the molar weight 



170 /1M kg mole= − .      (13.14) 
 

The universal gas constant is 
 

( )8314 /  universalR J kg mole K= − .    (13.15) 
        
Therefore the gas constant for diesel fuel vapor is  

 
/ 48.906 /universalR R M J kg= = .     (13.16) 

13.7 Saturation line 

Wenck and Schneider reported in [17] p. 56 (1993) the Grabner’s data for diesel 
fuel in winter from 30 to 100°C given in Table 13.4. These are the only data we 
have. We smooth the data by the approximation  

 
p = 977292.0044d0 - 6313.34077d0 T +10.4084d0 T2,  (13.17) 

 
and correct the first point and last three points as indicated in Table 13.4. We will 
use these four points in a moment. 

Table 13.4. Saturation pressure as a function of temperature 

T in K ( )p T′  in Pa 
303.15 19000./19933. 
311.15 21000. 
313.15 21000. 
323.15 25000. 
333.15 30000. 
343.15 36000. 
353.15 45000/45818. 
363.15 56000/57240. 
373.15 72000/70744. 
  
417.97/551.15 100000. 

657.04cT =  3000000. 
 
The saturation line ( )p p T′ =  has to satisfy the Clausius-Clapayron relation 
 

dT v vT
dp h

′′ ′−
=

Δ
,      (13.18) 
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which is in fact the strict mathematical expression of the thermodynamic equilib-
rium. Because the critical pressure of about 30bar is relatively low, the Clausius-
Clapayeron relation can be simplified by considering the specific volume of the 
steam as much larger than the specific volume of the liquid. The result is 
 

dT Tv
dp h

′′
≈
Δ

.       (13.19) 

 
Assuming that the vapor behave as a perfect gas we have 
 

2
1dp h dT

p R T
Δ

= .      (13.20) 

 
We assume that the latent heat of evaporation is a quadratic function of the tem-
perature  
 

2
1 2 3h a a T a TΔ = + +       (13.21) 

 
and therefore 

 
1 2

32

1dp a a a dT
p R T T

⎛ ⎞= + +⎜ ⎟
⎝ ⎠

.     (13.22) 

 
After integration between two pressure-temperature points we obtain 

 

( )1 2 3 0
0 0 0

1 1ln lnp TR a a a T T
p T T T

⎛ ⎞
= − + + −⎜ ⎟

⎝ ⎠
.   (13.23) 

 
This is the form appropriate for fitting the Grabner’s data. The fit of the data as 
they are for instance using the first and the last three points gives a very low criti-
cal pressure which does not reflect the reality. That is why we use the already se-
lected critical point  
 

( )1 2 3
1 1 1exp lnc c

c c

Tp p a a a T T
R T T T

⎧ ⎫⎡ ⎤⎛ ⎞⎪ ⎪= − + + −⎨ ⎬⎢ ⎥⎜ ⎟
⎝ ⎠⎪ ⎪⎣ ⎦⎩ ⎭

.  (13.24) 

 
in addition to the last three points. The fitting gives for the constants a1 = 1.6e5, 
a2

 
= -187.629, a3 = 0.365. The result is plotted on Fig. 13.1. This equation giving

e temperature is strictly consistent 
 

a) with the Clausius-Clapayron equation,  
b) with the definition of the critical point,  

the saturation pressure as a function of th



c) with the definition of the evaporation enthalpy as a function of temperature, 
and 

d) with the assumption that the vapor is a perfect gas. 
 

We see that the agreement is acceptable for practical use. 
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Fig. 13.1. Saturation pressure as a function of the temperature strictly consistent with the 
Clausius-Clapayron equation and with the assumption that the vapor is a perfect gas. Com-
parison with the Grabner’s data 
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Fig. 13.2. Latent heat of evaporation as a function of temperature 

The latent heat of evaporation compatible with this coefficients computed by us-
ing Eq. (13.21) is presented in Fig. 13.2.  
 
Note: The points for the latent heat of evaporation given in Table 13.2 for 1 bar 
pressure are higher. If one fixes this point and generates a line or curve going to 
zero at critical pressure, the generated saturation line will not satisfy the 
Garbner’s data. That is why we select the opposite way – first to generate the 
saturation line satisfying the Garbner’s data and then to compute the latent heat 
of vaporization consistent with them. 
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In many applications there is a need to compute the saturation temperature as a 
function of the local pressure. For this purpose Eq. (13.24) has to be solved with 
respect to the temperature by iteration. The function 
 

( ) ( )101 logT p a b p′ ⎡ ⎤= +⎣ ⎦ ,      (13.25) 
 
where a = 0.00638  and b =  -7.58558e-4, is a good representation of this curve 
and can be used to compute the initial value. 
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Fig. 13.3. Saturation temperature as a function of pressure for diesel fuel 

Iteration method can then designed to improve the so obtained values based on 
Eq. (13.24) 

 

( )1
1 2 3

1= ln  lnn
c

c c c

p TT a R a a T T
T p T

+ ⎡ ⎤
− − − −⎢ ⎥

⎣ ⎦
.   (13.26) 

 
Seven iterations at maximum are then necessary to have accuracy less than 
0.001K. 

13.8 Latent heat of evaporation 

Equation (13.21) gives the latent heat of evaporation for diesel fuel. It is plotted in 
Fig. 13.4. 
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Fig. 13.4. Latent heat of evaporation for diesel fuel as a function of pressure 

From Table 13.2 we see that in accordance with Rose and Cooper [12] (1977) at 
the mid boiling point 533.15K the reported latent heat of evaporation is 

( ) ( )533.15 ,1 / 0.81,  1 192 /ref ref ch K bar h T T bar kJ kgΔ = Δ = = . At this tempera-
ture Fig. 13.4 gives about 60kJ/kg which, having in mind, is the very approximate 
data base we have that is acceptable. Note that Heywood [3] (1988) reported the 
values 270kJ/kg and 230kJ/kg for light and heavy diesel, respectively. Note also 
that n-heptan and n-octane have values of 316.3 and 302.2 kJ/kg, respectively, as 
given in Table 13.2.  

13.9 The liquid density 

The Siemens data [15] for the density of summer diesel fuel are well represented 
by the function 
 

    
3 3

1 1

1 1

j i
ij

i j

a T pρ − −

= =

⎛ ⎞
= ⎜ ⎟

⎝ ⎠
∑ ∑ ,     (13.27) 

 
where 
 

828.59744  0.63993  - 0.00216
8.65679e-07 -5.93672e-09 1.56678e-11
-7.59052e-16 8.99915e-18 -2.77890e-20

⎛ ⎞
⎜ ⎟= ⎜ ⎟
⎜ ⎟
⎝ ⎠

A .  (13.28) 

 
The corresponding density derivatives are then 
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( )
3 3

1 2

2 1
1 j i

ij
i jT

i a T p
p
ρ − −

= =

⎡ ⎤⎛ ⎞⎛ ⎞∂
= −⎢ ⎥⎜ ⎟⎜ ⎟∂ ⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦
∑ ∑ ,    (13.29) 

 

( )
3 3

2 1

1 2
1 j i

ij
i jp

j a T p
T
ρ − −

= =

⎡ ⎤⎛ ⎞∂⎛ ⎞ = −⎢ ⎥⎜ ⎟⎜ ⎟∂⎝ ⎠ ⎢ ⎥⎝ ⎠⎣ ⎦
∑ ∑ .    (13.30) 

 
The prediction of the correlation is given in Fig. 13.5. 
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Fig. 13.5. Liquid density as function of pressure for summer diesel fuel. Parameter – temperature 

The function can be successfully used for pressures between zero and 2400 bar 
and temperatures between 20 and 120°C. Because of the good data reproduction 
the extrapolation is also possible. 
 
The liquid density at the critical point is therefore 
 

327.71 / ³c kg mρ =       (13.31) 
 

Next we give additional comparison to available data for the volumetric thermal 
expansion coefficient and for the isothermal coefficient of compressibility. 
 
13.9.1 The volumetric thermal expansion coefficient 

Zenkevich [19] (1968) reported data for the density dependence of heavier diesel 
fuel as given in Table 13.5. The corresponding volumetric thermal expansion co-
efficients defined as 

 



1

pT
ρβ

ρ
∂⎛ ⎞= − ⎜ ⎟∂⎝ ⎠

      (13.32) 

 
are given in Table 13.6. From Table 13.5 we derive 
 

 0.67
pT

ρ∂⎛ ⎞ ≈ −⎜ ⎟∂⎝ ⎠
,      (13.33) 

 
see Table 13.6. 

Table 13.5. Density at constant pressure for diesel fuel, [19] see [16] p.1265 

T,°C, 1atm 2ρ , kg/m³ 2ρ , kg/m³, Eq. (13.27) 
20 878.7 830.62   
40 865.4 817.23   
60 852.0 802.12   
80 838.5 785.28   
100 825.1 766.71 

Table 13.6. The volumetric thermal expansion coefficient  

t,°C, 1atm β  [16] p.1265 β  [12] p. 282 β  Eqs. (13.30, 13.32) 
15.6  0.000670 0.000729 
30 0.000763  0.000812 
50 0.000780  0.000933 
70 0.000799  0.001061 
90 0.000805  0.001196 

 
Table 13.7.  The derivative ( ) pTρ∂ ∂ corresponding to Table 13.5 

t,°C, 1atm [16] p.1265 
15.6  
30 -0.6654 
50 -0.6698 
70 -0.6754 
90 -0.6696 

 
The volumetric thermal expansion coefficients computed by using Eqs. (13.29, 
13.32) are presented in Table 13.6 also. They are slightly higher. The density 
computed using Eq. (13.27) is smaller than the density reported by Zenkevich [19] 
(1968) – see for comparison Table 13.5. 
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13.9.2 Isothermal coefficient of compressibility 

The expression 
 

( ) 2
T

B v p v aρ= − ∂ ∂ ≈      (13.34) 
 
is traditionally called isothermal bulk modulus. The data used for verifying the 
density function for the isothermal coefficient of compressibility 
 

( ) ( )1 1/
T T

k p v p v Bρ ρ ⎡ ⎤= ∂ ∂ = − ∂ ∂ =⎣ ⎦    (13.35) 

 
are presented in Tables 13.8 and 13.9. This data are for gas–oil with reference 
density close to our reference density. 

Table 13.8. Isothermal bulk modulus B in MN/m² for gas–oil with density 840kg/m³ at 
1atm, 15.6°C Heywood [3] (1988) p. 291 

p in MN/m², T°C=> 15.5 30 50 
13.8 1500 1400 1300 
27.6 1700 1600 1500 
41.4 1800 1700 1600 

Table 13.9. Isothermal coefficient of compressibilityκ  in 1/Pa corresponding to Table 13.8 

p in Pa, T°C=> 15.5 30 50 
13.8 610×  
Eqs. (13.29, 13.35) 

6.70 1010−×  
5.29 1010−×  

7.14 1010−×  
5.89 1010−×  

7.69 1010−×  
6.88 1010−×  

27.6 610×  
Eqs. (13.29, 13.35) 

5.89 1010−×  
5.10 1010−×  

6.25 1010−×  
5.65 1010−×  

6.67 1010−×  
6.56 1010−×  

41.4 610×  
Eqs. (13.29, 13.35) 

5.56 1010−×  
4.91 1010−×  

5.89 1010−×  
5.42 1010−×  

6.25 1010−×  
6.26 1010−×  

 
Bhatt [1] (1985) reported the values for diesel-fuel liquid velocity of sound at at-
mospheric pressure presented in Table 13.10. In the last column we compute an 
approximate estimate of the isothermal coefficient of compressibility for compari-
son with the data of Heywood [3] (1988) – the order of magnitude is confirmed.  

The isothermal coefficient of compressibility computed by using Eqs. 
(13.29) and (13.35) is presented in Table 13.9 also. We see that the agreement 
is acceptable. 
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Fig. 13.6. Isothermal bulk modulus as a function of pressure. Parameter – temperature 

13.10 Liquid velocity of sound 

The Siemens data [15] for the liquid velocity of sound of summer diesel fuel are 
well represented by the function 
 

    
3 5

1 1

1 1

j i
ij

i j

a b p T− −

= =

⎛ ⎞
= ⎜ ⎟

⎝ ⎠
∑ ∑ ,     (13.36) 

 
where 
 

2226.4926 2.27318e-6 2.75574e-15 3.41172e-22 -1.74367e-30
-2.68172 3.79909e-9 -8.17983e-17 -1.65536e-24 9.50961e-33
-0.00103 1.77949e-11 6.4506e-20 2.19744e-27 -1.29278e-35

⎛ ⎞
⎜ ⎟= ⎜ ⎟
⎜ ⎟
⎝ ⎠

B . (13.37) 
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Fig. 13.7. Diesel fuel liquid velocity of sound as a function of pressure. Parameter - tem-
perature 

Table 13.10. Comparison between the measured by Bhatt [1] (1985) at 1bar and predicted 
diesel fuel liquid velocity of sound at 1bar 

T°C a2, m/s, exp.  a2, m/s, Eq. (13.36) 
30 1337 1319 
35 1319 1303 
40 1298 1286 

13.11 The liquid specific heat at constant pressure 

The Siemens data [15] for the liquid specific capacity at constant pressure of sum-
mer diesel fuel are well represented by the function 
 

15 3
1

5
1 1 10

i
j

p ij
i j

pc d T
−

−

= =

⎛ ⎞⎛ ⎞= ⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠

∑ ∑ ,     (13.38) 

 

 

Equation (13.27) gives the results presented in Fig. 13.7. We perform also com-
parison with the velocity of sound reported by Bhatt [1] (1985) – see Table 13.13. 
The agreement is good. 



-977.16186d0 14.025100d0 -0.01374d0
2.22361d-04 -1.62143d-04 2.23214d-09
-1.96181d-09 2.03748d-07 -1.78571d-14
4.15000d-14 -7.54100d-11 4.03897d-28
-3.48714d-18 1.00688d-14 -1.47911d-31

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟=
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

D .  (13.39) 
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Fig. 13.8. Specific heat at constant pressure as a function of the pressure for diesel liquid. 
Parameter – temperature 

For comparison the Cragoe formula from 1929, see Rose [12] (1977) p.281, ap-
plied for ( )15.6 ,1C atmρ ° = 833.33kg/m³ gives 

( )
( )

1684.8 3.39 273.15
831.25 3.714

15.6 ,1
1000

p

T
c T

C atmρ

+ −
= = +

°
.  (13.40) 

Wenck and Schneider [17] (1993) used the same formula. Thus we will use farther 
Eq. (13.39). 

 

where 
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Fig. 13.9. Specific heat at constant pressure for diesel liquid 

An example for the behavior of equation (13.40) for 1bar is presented in Fig. 13.9. 
 
Having in mind the definition of the velocity of sound for single phase fluid 
 

1/ 2

1
T

ppT

h
p

a
p T c

ρ
ρ ρ

ρ

−
⎡ ⎤⎛ ⎞∂

−⎢ ⎥⎜ ⎟∂⎛ ⎞∂ ∂⎛ ⎞ ⎝ ⎠⎢ ⎥= −⎜ ⎟ ⎜ ⎟⎢ ⎥∂ ∂⎝ ⎠⎝ ⎠⎢ ⎥
⎢ ⎥⎣ ⎦

,    (13.41) 

 
we realize that knowing the velocity of sound and the density function with its de-
rivatives, the derivative of the specific enthalpy with respect to the pressure at 
constant temperature can be computed 
 

2
1 11 p

T T

p

ch
p p a

T

ρρ
ρρ

⎧ ⎫
⎪ ⎪⎡ ⎤⎛ ⎞ ⎛ ⎞∂ ∂⎪ ⎪= + −⎢ ⎥⎨ ⎬⎜ ⎟ ⎜ ⎟ ∂∂ ∂ ⎛ ⎞⎝ ⎠ ⎝ ⎠⎢ ⎥⎪ ⎪⎣ ⎦ ⎜ ⎟⎪ ⎪∂⎝ ⎠⎩ ⎭

.   (13.42) 

 
The so obtained result is approximated by the following function, 
 

     
3 3

1 1

1 1

j i
ij

i jT

h c T p
p

− −

= =

⎛ ⎞⎛ ⎞∂
= ⎜ ⎟⎜ ⎟∂⎝ ⎠ ⎝ ⎠
∑ ∑ ,     (13.43) 

 

 



0.00404  -1.54245E-5  2.20238E-8
-7.34229E-11 4.84276E-13 -8.79805E-16
2.23591E-19 -1.60598E-21 3.17966E-24

⎛ ⎞
⎜ ⎟= ⎜ ⎟
⎜ ⎟
⎝ ⎠

C .  (13.44) 

 
Equation (13.43) reproduces the results given in Fig. 13.10. 
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Fig. 13.10. Derivative of the specific enthalpy with respect to the pressure at constant tem-
perature. Parameter – temperature 

13.12 Specific liquid enthalpy 

The differential form of the dependence of the specific enthalpy on temperature 
and pressure is 

 

p
T

hdh c dT dp
p

⎛ ⎞∂
= + ⎜ ⎟∂⎝ ⎠

.      (13.45) 

 
The derivatives for the liquid in the above equation are already known. We will 
integrate Eq. (13.45) taking into account that the final result do not depend on the 
integration path. First we keep the temperature ( )273.15 15refT K= +  constant 

and integrate from 510refp Pa=  to p to obtain 
 

( )
3 3 3 3

1 1 1

1 1 1 1

1*
ref refref

p p
j i j i i

ij ref ij ref ref
i j i jp pT T

hh dp c T p dp c T p p
p i

− − −

= = = ==

⎛ ⎞ ⎛ ⎞⎛ ⎞∂
= = = −⎜ ⎟ ⎜ ⎟⎜ ⎟∂⎝ ⎠ ⎝ ⎠ ⎝ ⎠

∑ ∑ ∑ ∑∫ ∫  

 

where 

288      13 Thermodynamic and transport properties of diesel fuel 



13.12 Specific liquid enthalpy      289 

2-142.3652+ 0,00142  -3.46467E-12  p p≈  
 

3 8.27876E-21 10088.55051+0.00102p p+ ≈ .   (13.46) 
 
The function under the integral is small but not negligible especially at very high 
pressures.  
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Fig. 13.11. Function under the integral in Eq. (13.46) 

Then we keep the pressure p  constant and integrate from refT  to T. The result is 

( ) ( ) ( )2 2 *
0 1 2

1
2ref refh f c T T c T T h p= + − + − + .   (13.47) 

The constant  f0  = 28538.07825 can be optionally added to obtain zero enthalpy at 
the reference pressure and 0°C. The results of Eq. (13.47) are presented in
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Fig. 13.12. Specific enthalpy as a function of pressure. Parameter – temperature 

Fig. 13.12. 



13.13 Specific liquid entropy 

The differential form of the dependence of the specific entropy on temperature and 
pressure is 

 

1
p T

h
c p

ds dT dp
T T

ρ

ρ

⎛ ⎞∂
−⎜ ⎟∂⎝ ⎠= + .     (13.48) 

 
From this expression we easily see the definitions of the derivatives 

p

p

cs
T T
∂⎛ ⎞ =⎜ ⎟∂⎝ ⎠

,       (13.49) 

1
T

T

h
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p T

ρ

ρ

⎛ ⎞∂
−⎜ ⎟∂⎛ ⎞∂ ⎝ ⎠=⎜ ⎟∂⎝ ⎠

.     (13.50) 

 
Again we will integrate Eq. (13.48) taking into account that the final result do not 
depend on the integration path. First we keep the temperature 

( )273.15 15refT K= +  constant and integrate from 510refp Pa=  to p to obtain 
 

*
ref ref

p

p T T

ss dp
p

=

⎛ ⎞∂
= ⎜ ⎟∂⎝ ⎠
∫ .      (13.51) 

 
The function under the integral can be replaced with very good accuracy as seen in 
Fig. 13.13 by the following quadratic polynomial  
 

2
1 2 3sf s s p s p= + + .      (13.52) 

 
where s1 = 7.80789e-07, s2 = -2.18515d-14, s3 = 8.34843d-23. 
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Fig. 13.13. Function under the integral in Eq. (13.50) 

Therefore we have 
 

( ) ( ) ( )2 2 3 3
1 2 3

1 1*
2 3ref ref refs s p p s p p s p p= − + − + − .  (13.53) 

 
Then we keep the pressure p  constant and integrate from refT  to T. The result is 
 

( ) ( )4 1 2ln *ref
ref

Ts s c c T T s p
T

= + + − + .    (13.54) 

 
An arbitrary constant s4 = 5869.20459410 is introduced in order to have at T = 1K 
and p = 105Pa zero entropy. This allows operating with positive entropies during 
practical analyses. Fig. 13.14 demonstrates the behavior of Eq. (13.54) for the ref-
erence temperature. 

 
Fig. 13.14. Specific liquid diesel entropy as a function of pressure for the reference tem-
perature of 15°C 
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Fig. 13.15. Specific liquid diesel entropy as a function of pressure. Parameter – Temperature

Figure 13.15 presents the pressure dependence of the entropy for different tem-
peratures. The slight increase of the entropy for low pressure is a result of inaccu-
rate approximation. This feature has to be improved in the future. 

13.14 Liquid surface tension 

Surface tension for gas–oil at atmospheric conditions is reported by Heywood [3] 
(1988) p. 284 to be 

 
0.025 to 0.03 /ref N mσ = .     (13.55) 

 
Using the Othmer equation, see Yaws and Chung [18] (1991), we extend this in-
formation up to the critical temperature 

 
11/ 9

c
ref

c ref

T T
T T

σ σ
⎛ ⎞−
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.      (13.56) 

13.15 Thermal conductivity of liquid diesel fuel 

The Siemens data [15] for the thermal conductivity of summer diesel fuel are well 
represented by the function 
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where 
 

0.13924 3.78253e-05 -2.89732e-07
 6.27425e-11 6.08052e-13 3.64777e-16
-1.38756e-19 -2.57608E-22 -2.70893e-24
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Fig. 13.16. Thermal conductivity of liquid diesel fuel as a function of pressure. Parameter – 
temperature 

The thermal conductivity of a diesel liquid fuel is given by Wenck and Schneider 
[17] (1993) p. 69 as 

 

( ) 50.17 1 0.00054 273.15 0.164 7.7112 10
1000

refT T
ρ

λ −= − − = − ×⎡ ⎤⎣ ⎦ . (13.59) 

 
This equation is very close to the Cragoe formula from 1929, see Rose and Cooper

 [12] (1977) p. 281, applied for ( ) 315.6 ,1 840 /C atm kg mρ ° = , 
 

50.1601 7.5343 10 Tλ −= − × .     (13.60) 
 

The comparison with the data reported by Zenkevich [19] (1968) and by Rose and 
Cooper [12] (1977) presented in Table 13.11 demonstrate the usefulness of Eq. 
(13.59). The prediction of Eq. (13.57) is also given in Table 13.11. The data for 



atmospheric pressure are between those reported by Zenkevich [19] (1968) and 
Rose and Cooper [12] (1977). 

Table 13.11. Thermal conductivity of liquid diesel fuel measured by Zenkevich [19] (1968) 
and reported in Vargaftik et al. [16] (1996) p.1265, data reported by Rose and Cooper [12] 
(1977), prediction of Eq. (13.57). 

t, °C ρ , kg/m³ λ , W/(mK) 
[19] see [16] p. 
1265 

λ , W/(mK) 
see [12] p. 281 

Eq. 
(13.59) 

Eq. 
(13.57) 

20 878.7 0.1169 0.1380 0.1414 0.1255 
40 865.4 0.1146 0.1365 0.1399 0.1227 
60 852.0 0.1122 0.1350 0.1383 0.1197 
80 838.5 0.1099 0.1335 0.1368 0.1165 
100 825.1 0.1076 0.1199 0.1352 0.1130 

13.16 Cinematic viscosity of liquid diesel fuel 

The Siemens data [15] for the liquid cinematic viscosity of summer diesel fuel are 
well represented by the function 

 

( )6 5 2
10log 10  =  8.67271 - 0.04287  +  5.31710 10T Tν −×  

 
( )5 8 2 -5+ 0.00538 - 2.78208 10  + 3.74529 10  10T T p− −× × .  (13.61) 

 
The prediction of Eq. (13.61) is presented in Fig. 13.17. 
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Fig. 13.17. Cinematic viscosity as a function of pressure. Parameter – temperature 
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For diesel liquid fuel at atmospheric pressure we have the experimental data sum-
marized in Table 13.12. Table 13.12 also contains the prediction of Eq. (13.61). 
We see that the prediction gives lower values to those by Vargaftik and close to 
the other authors. Note that the consistence of the diesel oil depends very much on 
the origin of crude oil. Therefore it is advisable to have own measurements for the 
particular applications. 

Table 13.12. Cinematic viscosity of liquid diesel fuel 610ν ×  m²/s at atmospheric pressure, 
[19] see Vargaftik et al. [16] (1996) p.1265, Rose and Cooper [12] (1977), Wenck and 
Schneider [17] (1993) p. 10, 11, Zoebl and Kruschik [20] (1978) 

t,°C [16]  [12] [17] [20] Eq. (13.61) 
15.6  5   5.34 
20 8.94  2.8 1.79-2.97 4.73 
37.8  3   3.05 
40 4.80  2.5  2.90 
60 3.04    1.96 
80 2.14    1.46 
100 1.62    1.20 

13.17 Density as a function of temperature and pressure 
for diesel fuel vapor 

We consider the diesel vapor as a perfect gas. The decision to consider the diesel 
vapor as a perfect gas results in the following well known relations 

 
( )p RTρ = ,       (13.62) 

 
and 

 

2
p

p T
T RT
ρ ρ∂⎛ ⎞ = − = −⎜ ⎟∂⎝ ⎠

,     (13.63) 

 
1

Tp RT
ρ⎛ ⎞∂

=⎜ ⎟∂⎝ ⎠
.       (13.64) 



13.18 Specific capacity at constant pressure

The Cragoe formulas from 1929, see Rose and Cooper [12] (1977) p. 281, applied 
for ( )15.6 ,1C atmρ °  = 840kg/m³ gives  

 
, 903.35894 4.0357143p liquidc T= +     (13.65) 

 
, , 448.80952 454.55 4.0357143p gas p liquidc c T= − = + .  (13.66) 

 
Wenck and Schneider [17] (1993) p. 67 reported an expression for the specific heat 
of the vapors of mineral oil products depending on their reference density and 
temperature. In our case this results in  

 

( )4186 0.109 0.00028 273.15 4 430.14 3.704
1000

reff
pc T T

ρ⎛ ⎞
= + − − = +⎡ ⎤ ⎜ ⎟⎣ ⎦

⎝ ⎠
. 

        (13.67) 
 

Comparing Eq. (13.67) with (13.66) we see close similarity having stronger de-
pendence on temperature in Eq. (13.66). For 25°C Eq. (13.67) gives 1534.5 
J/(kgK). For comparison see Table 13.2 where values for diesel fuel vapor are 
given to be about 1700 J/(kgK), and n-heptan and n-octane values – 1659J/(kgK). 

Heywood [3] (1988), p.133, provided a more accurate expression for the spe-
cific heat at constant pressure for diesel fuel vapor with molecular weight

 

( )2 3 2 2 3 2
1 2 3 4 5 1 2 3 4 54186 /148.6pc a a t a t a t a t d d T d T d T d T− −= + + + + = + + + + ,

        (13.68) 
 

where  
 

1000t T= .       (13.69) 
 

The coefficients are given in Table 13.13. 

Table 13.13. Diesel vapor specific heat at constant pressure Heywood  [3] (1988) p.133 

1a  2a  3a  4a  5a  
-9.1063 246.97 -143.74 32.329 0.0518 

 

for diesel vapor 

M = 148.6 as a polynomial fit 
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Fig. 13.18. Specific capacity at constant pressure. Comparison of different approximations 

In this work we will use Eq. (13.68). Further, for the computation of the specific 
enthalpies and entropies we will need the integrals 

 

( )
0 0

2 3 2
0 0 1 2 3 4 5

T T

p
T T

h h c dT h d d T d T d T d T dT−= + = + + + + +∫ ∫ , (13.70) 

or 

( ) ( ) ( )2 2 3 3
0 1 0 2 0 3 0

1 1
2 3

h h d T T d T T d T T= + − + − + −  

( )4 4
4 0 5

0

1 1 1
4

d T T d
T T

⎛ ⎞
+ − + −⎜ ⎟
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,     (13.71) 

and 

0 0

2 31
0 0 2 3 4 5

T T
p

T T

c ds s dT s d d T d T d T dT
T T

−⎛ ⎞= + = + + + + +⎜ ⎟
⎝ ⎠∫ ∫ , (13.72) 

or 

( ) ( ) ( )2 2 3 3
0 1 2 0 3 0 4 0 5 2 2

0 0

1 1 1 1 1ln
2 3 2

Ts s d d T T d T T d T T d
T T T
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.

        (13.73) 



13.19 Specific enthalpy for diesel fuel vapor 

In accordance with our assumption that the diesel vapor is a perfect gas we have 
for the caloric equation 

 

pdh c dT=        (13.74) 

where 

p
p

h c
T
∂⎛ ⎞ =⎜ ⎟∂⎝ ⎠

,       (13.75) 

 

0
T

h
p

⎛ ⎞∂
=⎜ ⎟∂⎝ ⎠

.        (13.76) 

 
For given pressure we have from Eqs. (13.24) and (13.26) the corresponding satu-
ration temperature 

 

( )T T p′ ′= .       (13.77) 
 

The saturation enthalpy of the liquid is then computed by the Eq. (13.45) 
 

( ),h h p T p′ ′= ⎡ ⎤⎣ ⎦ .      (13.78) 
 

The evaporation enthalpy is then computed by using Eq. (13.21) 
 

( )h h T p′⎡ ⎤Δ = Δ ⎣ ⎦ .      (13.79) 
 

The saturation enthalpy of the vapor is then 
 

( ) ( ),h h h h p T p h T p′′ ′ ′ ′= + Δ = + Δ⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦ .   (13.80) 
 

For temperatures deviating from the saturation temperature at a given pressure we 
have 

 

( ) ( )
( )

( ),
T

p
T p

h p T h p c T dT
′

′′= + ∫  

 

( ) ( ) ( ){ } ( ){ }2 32 3
1 2 3

1 1
2 3

h p d T T p d T T p d T T p′′ ′ ′ ′⎡ ⎤ ⎡ ⎤ ⎡ ⎤= + − + − + −⎣ ⎦ ⎣ ⎦ ⎣ ⎦  

( ){ } ( )
44

4 5
1 1 1
4

d T T p d
T p T

⎧ ⎫⎪ ⎪′⎡ ⎤+ − + −⎨ ⎬⎣ ⎦ ′⎪ ⎪⎩ ⎭
.   (13.81) 
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This equation is completely consistent 
 

a) with the liquid enthalpy equation,  
b) with the definition of the saturation line, and  
c) with the definition of the evaporation enthalpy being a function of the local 

temperature. 
 

The equation can be also used as a extrapolation into the meta-stable state of the 
vapor. 

13.20 Specific entropy for diesel fuel vapor 

Again with accordance with the assumption that the diesel fuel vapor is a perfect 
gas we have for the differential form of the entropy definition 
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The integrated form of Eq. (13.82) is 
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An useful approach is to select as a reference conditions 
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This equation is completely consistent  

 
a) with the liquid entropy equation,  
b) with the definition of the saturation line, and  
c) with the definition of the evaporation enthalpy being function of the local 

temperature. 
 

Like the specific enthalpy equation, the specific entropy equation can be also used 
for extrapolation into the meta-stable state of the vapor. 

13.21 Thermal conductivity of diesel fuel vapor 

Data for diesel vapor are not known to me. That is why I take the data for n-octane 
for 1bar presented by Vargaftik et al. [16] (1996). The approximation is 
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Fig. 13.19. Thermal conductivity of n-octane vapor at 1 bar as a function of temperature. 
Data taken from Vargaftik et al. [16] (1996), p.350 

40.02912 1.21171 10 Tλ −= − + × ,    (13.89) 
 

See Fig. 13.19. 
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13.22 Cinematic viscosity of diesel fuel vapor 

Data for viscosity of the diesel fuel vapor are not known to me. Taking an ap-
proximation of the data for saturated n-octane vapor from Vargaftik et al. [16] 
(1996), see Appendix 13.1, I obtain  
 

( )9.67068 1580.93134 110 Tν − +′′ = ,     (13.90) 
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Fig. 13.20. Cinematic viscosity of n-octane vapor as a function of the temperature 

See Fig. 13.20. 
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Fig. 13.21. Dynamic viscosity for saturated n-octane vapor as a function of the temperature 
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