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Preface

Various aspects of a low-temperature plasma are represented in the form of prob-
lems. Kinetics of this plasma is determined by elementary processes involving
electrons, positive and negative ions, excited atoms, atoms, and molecules in the
ground states. Along with collision processes involving these atomic particles,
radiative processes are of importance for a low-temperature plasma and excited
gas, both elementary radiative processes and transport of radiation through a gas
that includes reabsorption processes. The collective processes, oscillation plasma
properties, and nonlinear plasma processes are represented in the corresponding
problems. Transport of particles in a plasma is of importance for a nonequilib-
rium plasma. A cluster plasma, an aerosol plasma, and other plasma forms with a
dispersive phase are considered in the book. Because all these processes and phe-
nomena are given in a specific form for each plasma, we consider separately two
plasma types, a plasma of the atmosphere together with atmospheric phenomena
due to this plasma and some types of gas-discharge plasma. Appendices contain
information which is useful for the analysis of specific plasma types, and this infor-
mation is represented in the convenient form for the user. The book is intended
for students and professionals in the field of plasma physics, plasma chemistry,
and plasma applications.

Boris M. Smirnov
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1

1
Distributions and Equilibria for Particle Ensembles

1.1
Distributions of Identical Atomic Particles

� Problem 1.1 An ensemble of n weakly interacting identical particles is located in
a close space and does not interact with a surrounding environment. As a result
of interactions, particles can change their state. Find the probability of a certain
distribution of particles by states.

Distributing identical particles over states, if in each state many particles are found,
we account for particles that can change their states, but an average number of
particles in a given state almost conserve, and the better this is fulfilled, the more
the number of particles found in this state on average. Let us distribute n identical
particles over k states assuming that the probability for a test particle to be found in
a given state, as well as the average number of particles in this state, is proportional
to the number of versions which lead to this Gibbs principle.
Let us denote by P(n1 , n2, . . . , ni, . . .) the number of ways to place n1 particles in

the first group of states, n2 particles in the second group of states, ni particles in
the i-th group of states, etc. For determining this probability we use the character
of distributions for the location of a particle in a certain group of states does not
influence the character of distributions for other particles (Boltzmann statistics).
Under these conditions, the probability of locating n1 particles in the first state, n2
particles in the second state, etc. is given by

P(n1 , n2, . . . , ni, . . .) = p(ni)p(n2) · · · p(ni) · · · , (1.1)

where p(ni) is the number of ways to distribute ni particles in the i-th group of
states. Evidently, the number of ways to place n1 particles from the total number
n of particles in the first group of states is

Cn1
n =

n!
(n− n1)!n1 !

.

Correspondingly, the number of ways to place n2 particles from the remaining
n− n1 particles in the second group of states is C

n2
n−n1 . Continuing this operation,
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we determine the probability of the indicated distribution of particles in states,

P(n1 , n2, . . . , ni, . . .) = const
n!

∏
i
ni!

, (1.2)

where
“
const” is a normalization constant. The basis of this formula is the as-

sumption that particles are free, so that the distribution of one particle does not
influence the distribution of others.

� Problem 1.2 Derive the Boltzmann distribution for an ensemble of weakly inter-
acting particles.

The distribution under consideration relates to almost free classical particles when
the number of states in a given state group is large compared to the number of
particles which are found in states of a given group. Then the location of some
particles in states of a given group does not influence the possibility of finding test
particles in these states. Next, this distribution corresponds to conservation of the
total number of particles in all the states,

n = ∑
i
ni, (1.3)

and the total energy E for all the particles,

E = ∑
i

εini, (1.4)

because particle’s energy does not change with an environment. Here εi is the
energy of a particle located in the i-th group of states.
For determining an average ni or the most probable number of particles for a

given i-th group of states, we account for any probable distribution that the variation
of the number of particles in these states from the average value δni = ni − ni is
relatively small. Next, according to formulas (1.3) and (1.4), these variations satisfy
the relation

∑
i

δni = 0 (1.5)

and

∑
i

εiδni = 0. (1.6)

In addition, on the basis of the relation

ln n! = ln
n

∏
m=1

m =≈
n∫
0

ln xdx ,

we have d ln n!/dn = ln n. Using this relation with the expansion of formula (1.2)
over a small parameter δni, we obtain

ln P(n1 , n2, . . . , ni, . . .) = ln P(n1 , n2, . . . , ni, . . .) − ∑
i
ln niδni − ∑

i

δn2i
2ni

. (1.7)



1.1 Distributions of Identical Atomic Particles 3

Since the real distribution is near the maximum, the linear terms with respect to
δni disappear, which corresponds to the relation

∑
i
ln niδni = 0. (1.8)

In order to find the average number of particles in a given group of states, we use
the formal operation of multiplying equation (1.5) by a constant − lnC, equation
(1.6) by the parameter −1/T , and adding these equations to (1.8). The resultant
equation has the form

∑
i

(
ln ni − lnC +

εi
T

)
δni = 0. (1.9)

Since variations δni are random, the expression in the parentheses is zero, which
gives

ni = C exp
(
− εi
T

)
. (1.10)

As a result, we obtain the Boltzmann formula. During its deduction we introduce
two characteristic parameters, C and T . The first one is the normalization constant
that follows from the relation

C∑
i
exp(−εi/T) = n .

The energetic parameter T is the temperature of the system.

� Problem 1.3 Represent the Boltzmann distribution by taking into account the sta-
tistical weight of a particle.

Dividing the states of a particle ensemble in groups, we as above assume equal
number of states for each group. If these are different, we introduce the statistical
weight of the particle state gI as the number of states per particle. For example, if
this particle is a diatomic molecule, and we characterize its state by the rotational
momentum J, the number of its projections gi = 2J + 1 onto the molecular axis is
the statistical weight of a given state. As is seen, the statistical weight is the number
of states per particle of this particle ensemble.
By taking into account the statistical weight for a given state of a particle, the

Boltzmann distribution (1.10) is transformed to the form

ni = Cgi exp
(
− εi
T

)
. (1.11)

From this we have the following relation between the number densities of particles
in two states when an ensemble consists of the infinite number of particles,

Ni = No
gi
go
exp

(
− εi
T

)
, (1.12)

where No, Ni are the number densities of particles in these states, and go, gi are
the statistical weights of these states.
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� Problem 1.4 Find the distribution of molecules over vibrational states considering
vibrations of the molecule like harmonic oscillators.

In this approximation, the energy of excitation εv of the v-th vibrational state is

εv = h̄ω v ,

where h̄ω is the difference of energies for neighboring vibrational states. On the
basis of the Boltzmann formula (1.12) we obtain the number density of molecules
located in the v-th vibrational state,

Nv = N0 exp
(

− h̄ωv
Tv

)
,

where N0 is the number density of molecules in the ground vibrational state, and
Tv is the vibrational temperature. The total number density of molecules is

N =
∞

∑
v=0

Nv = N0
∞

∑
v
exp

(
− h̄ωv

Tv

)
=

N0

1 − exp
(
− h̄ω

Tv

) , (1.13)

which allows us to express the number density of molecules in a given vibrational
state, Nv, through the total number density N of molecules,

Nv = N exp(− h̄ωv
Tv

)
[
1 − exp(− h̄ω

Tv
)
]
. (1.14)

From this one can find the average vibrational excitation energy εvib

εvib = h̄ωv =
1
N

∞

∑
v=0

v Nv =
h̄ω

exp( h̄ω
Tv

) − 1
. (1.15)

� Problem 1.5 Find the distribution of diatomic molecules over rotational states.

The energy of excitation of a rotational state with a rotational momentum J is

εJ = BJ(J + 1) ,

where B is the rotational constant. The statistical weight of the state with a momen-
tum J, which is the number of momentum projections onto a given axis, equals
gJ = 2J + 1. On the basis of this and the Boltzmann formula (1.12), we obtain the
number density of molecules with a given rotational momentum and vibrational
state,

NvJ = Nv (2J + 1)
B
T

exp
[
−BJ(J + 1)

T

]
, (1.16)

where we assume B � T , as it is usually, and Nv is the total number density of
molecules in a given vibrational state. From this one can also find the average
rotational energy of molecules,

εrot = BJ(J + 1) = T . (1.17)
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In this analysis we account for that typical vibrational energies exceed significantly
typical rotational energies, which allows us to separate vibrational and rotational
degrees of freedom.We also note that we assume a diatomicmolecule to be consist-
ing of other isotopes. Otherwise, because of the molecule symmetry, only certain
values of the rotation momentum can be realized.

� Problem 1.6 Determine the statistical weight for a free particle.

Let us place an ensemble of free particles in a rectangular box with the edge size L,
so that particles are reflected from the box’s walls and cannot penetrate outside wall
boundaries. Each particle is free and moves freely inside the box. Hence the wave
function of a particle moving inside the box in the axis x direction can be composed
of two waves, exp(ipxx/h̄) and exp(−ipxx/h̄), propagated in opposite directions,
where px is the particle momentum. Placing the origin at lower-left corner of the
box cube and requiring the wave function to be zero at cube facets, we obtain from
the first boundary condition ψ(0) = 0 for the particle wave function ψ,

ψ = sin
pxx
h̄

.

The second boundary condition ψ(L) = 0 leads to quantization of the particle mo-
mentum

pxL
h̄

= πk ,

where k is an integer. This relation gives the prohibited values of the particle mo-
mentum if it is moving in a rectangular box of size L.
This gives the number of states for a particle with a momentum in the range

from px to px + dpx , which is equal to dg = Ldpx/(2π h̄), where we take into account
two directions of the particle momentum. Introducing a coordinate range to be dx,
we find the number of states for a free particle to be

dg =
dpxdx
2π h̄

. (1.18)

Generalization of this formula to the three-dimensional case leads to the following
number of states for a free particle:

dg =
dpxdx
2π h̄

dpydy
2π h̄

dpzdz
2π h̄

=
dpdr

(2π h̄)3
, (1.19)

where the quantity dpdr is an element of the phase space, and the notation is
used for three-dimensional elements of space dr = dxdydz and momentum dp =
dpxdpydpz. Formula (1.19) gives the statistical weight of the continuous spectrum–
the number of states per element of the phase space.

� Problem 1.7 Find the velocity distribution function for free particles–the Maxwell
distribution.
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We now use the Boltzmann formula (1.11) for the distribution of kinetic energies
of free particles. In the one-dimensional case the kinetic energy of a particle whose
velocity is vx equals εi = mv2x/2, and the statistical weight of states when the particle
velocity ranges from vx to vx + dvx is proportional to dvx . Then formula (1.11) gives
for the number of particles whose velocities are found in the range vx to vx + dvx

f (vx)dvx = C exp
(

−mv2x
2T

)
dvx , (1.20)

where C is the normalization factor. This is the Maxwell distribution for the one-
dimensional case.
Transferring to the three-dimensional case by taking into account the indepen-

dence of different directions of motion, we obtain

f (v)dv = C exp
(

−mv2

2T

)
dv. (1.21)

Here the vector v has components vx , vy, vz, and dv = dvxdvydvz. The kinetic
energy of a particle, mv2/2, is the sum of the particle kinetic energies for all the
directions of motion. Thus, the independence of different directions of particle
motion results in the isotropy of the distribution function.
Let us rewrite the Maxwell distribution for the number density of particles of

a given velocity, normalizing this distribution to the total number density N of
particles. Then formula (1.21) gives

f (v) = N
( m
2πT

)3/2
exp

(
−mv2

2T

)
. (1.22)

It is convenient to rewrite the Maxwell distribution function (1.22) through one-
dimensional distribution functions

f (v) = Nϕ(vx) ϕ(vy) ϕ(vz), (1.23)

where the functions ϕ(vi) are normalized to 1 and has the form

ϕ(vx) =
√

m
2πT

exp
(

−mv2x
2T

) ∞∫
−∞

ϕ(vx)dvx = 1. (1.24)

Figure 1.1 gives this dependence.

� Problem 1.8 On the basis of the Maxwell distribution connect an average kinetic
energy of a free particle with the temperature.

We introduce above the energetic parameter of the Boltzmann distribution func-
tion, T , which is the temperature of a given ensemble of particles and the temper-
ature is expressed in energetic units. Below we find the average kinetic energy for
an ensemble of free particles, and then the temperature of the particle ensemble
will be expressed in terms of the average particle energy.
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Fig. 1.1 The Maxwell distribution function f (vx ) as a function of the
reduced velocity x = vx

√
m/(2T), where vx is the particle velocity in a

given direction, m is the particle mass, T is the temperature.

Indeed, the average kinetic energy of free particles in a direction x is according
to its definition

mv2x
2

=

∞∫
−∞

mv2x
2 exp

(
−mv2x

2T

)
dvx

∞∫
−∞

exp
(
−mv2x

2T

)
dvx

= −
d ln

∞∫
−∞

exp
(
−mv2x

2T

)
dvx

d(−1/T)

= −d ln (aT 1/2)
d(−1/T)

=
T
2
, (1.25)

where the bar means an average over particle velocities, and the constant a does
not depend on the temperature. Thus, the particle kinetic energy per unit degree
of freedom is equal to T/2.
Transferring to the three-dimensional case, we take into account the isotropy of

particle motion, and the total kinetic energy of a particle is given by

mv2

2
=
mv2x
2

+
mv2y
2

+
mv2z
2

=
3 mv2x
2

=
3T
2
. (1.26)

Thus, the average particle kinetic energy in the three-dimensional space ismv2/2 =
3T/2. Formulas (1.25) and (1.26) may be used as the temperature definition.

� Problem 1.9 Find the energy distribution function for free particles.

Our task is to rewrite the distribution function (1.22) in the energy space ε = mv2/2,
where we denote it by f (ε). This distribution function is normalized according to
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the condition
∞∫
0

f (ε)ε1/2dε = N, (1.27)

where N is the number density of particles. In these terms the distribution function
(1.22) takes the form

f (ε) =
2 N√
πT3/2

exp
(
− ε

T

)
(1.28)

and is represented in Fig. 1.2.

Fig. 1.2 The Maxwell distribution function f (ε) as a function of the
reduced particle energy (ε is the particle energy).

� Problem 1.10 Show that the distribution function for two free particles can be
expressed through the distribution function of their relative motion and the center-
of-mass motion.

If the particles under consideration belong to two different groups, we have the
product of their distribution functions

f (v1) f (v2)dv1dv2 ,

where v1 , v2 are the velocities of the corresponding particles, f (v1) f (v2) are their
distribution functions, and dv1 , dv2 are the elements in the velocity space. Let us
introduce the relative velocity g of the particles and the velocity V of their center
of mass according to the relations

g = v1 − v2 , V =
m1v1 +m2v2
m1 +m2

,
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where m1 , m2 are the masses of these particles. One can see from these formulas
that

dv1dv2 = dgdV .

Next, the total kinetic energy of the particles is

m1

2
v21 +

m2

2
v22 =

µg2

2
+
M
2
V2 ,

where the reduced mass of the two particles is µ = m1m2/(m1 +m2), and their total
mass is M = m1 +m2. From this we obtain for the Maxwell distribution function
f (v), which is given by formula (1.21),

f (v1) f (v2)dv1dv2 = f (g) f (V )dgdV , (1.29)

and the relative particle motion is characterized by the reduced mass, whereas the
motion of the center of mass is connected with the total particle mass.

1.2
Statistics of Bose–Einstein and Fermi–Dirac

� Problem 1.11 Find the distribution function over states for an ensemble of parti-
cles in the case of the Bose–Einstein statistics if any number of particles can be
located in one state.

The Bose–Einstein statistics relates to an ensemble of identical particles with a
whole spin and permits us to find in the same state two and more particles. We
take for this case the probability (1.11), wi, of the location of a particle in a given
state i reducing this formula to one state of this group

wi = exp
(

µ − εi
T

)
. (1.30)

We introduce here the chemical potential µ, which is determined by the nor-
malization of the distribution function and therefore is expressed through the
normalization constant of formula (1.11) as C = exp(µ/T).
From this we find, for example, that the probability of the location of m particles

in a given state is wm
i , and therefore the average number of particles in this state

is given by

ni =
∞

∑
m=1

mwm
i =

wi

1 − wi
=

1

exp
(

εi−µ
T

)
− 1

. (1.31)

One can derive the Bose–Einstein distribution function (1.31) in the other manner
by placing particles over states, as was used for deduction of the Boltzmann distri-
bution (1.11). Indeed, let us find the probability of placing ni particles in gi states
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when the position of one particle does not depend on the positions of others. To
this end we take ni particles and gi states as elements of the same set and construct
sequences from these elements such that the first place is occupied by a state, and
other elements are arranged in a random order. Then we assume the number of
particles which are found after the corresponding state and before the next ones
which belong to this state, and this is the method of placing particles over states.
Then the number of ways to obtain different distributions of particles over states is
equal to (gi + ni − 1)!, and among them some are identical which can be obtained
by permutation of states or particles. Hence, the total number of ways to distribute
particles over states for the Bose–Einstein statistics is

p(ni) =
(ni + gi − 1)!
ni!(gi − 1)!

. (1.32)

The optimal number of particles ni in a given state corresponds to the maximum of
the function p(ni) or ln p(ni). Hence from the condition that the derivative d ln p(ni)

dni
is zero at ni = ni in the limit gi � 1, ni � 1 we obtain formula (1.31) for the average
number of particles in one state ni/gi.

� Problem 1.12 Find the distribution function over states for an ensemble of parti-
cles in the case of the Fermi–Dirac statistics if only one particle can be located in
one state.

The Fermi–Dirac statistics relates to particles with half-integer spin and does not
permit two particles to be located in the same state. In order to find the distribution
function of particles in this case, we place ni particles over gi states with the same
energy εi (ni � gi). It can be done by p(ni) ways, and the number of such ways is

p(ni) = Cni
gi =

gi!
ni!(gi − ni)!

, ni ≤ gi. (1.33)

The optimal number of distributions follows from the condition

d ln p(ni)
dni

= ln
ni

gi − ni
= 0, (1.34)

where we consider the limiting case gi � 1, ni � 1. Introducing the optimal num-
ber of particles in one state

ni =
ni
gi
,

we obtain the average number of particles in one state for the Fermi–Dirac distri-
bution

ni =
1

exp
(

εi−µ
T

)
+ 1

. (1.35)
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� Problem 1.13 Find the condition for the transition from the Bose–Einstein and
Fermi–Dirac distributions to the Boltzmann distribution.

In the case of the Boltzmann distribution the probability of finding particles’ loca-
tion in each state is small. This holds true if

ε − µ � T . (1.36)

Using this criterion in formulas (1.32) and (1.35) for the Bose–Einstein and Fermi-
Dirac distributions, we transfer them to the Boltzmann distribution

ni = exp
(

µ − εi
T

)
. (1.37)

This coincides with the Boltzmann distribution (1.10).

� Problem 1.14 Obtain the electron distribution over momenta in a dense electron
gas at low temperature (a degenerate electron gas).

The distribution for a dense cold electron gas is governed by the Pauli principle
according to which two electrons cannot be located in one state. We determine
below the distribution of electrons over momenta p at zero temperature when
formula (1.35) in a space of electron momenta takes the form

f (p) = fo η(p− pF) .

This formula means that all electron states are occupied until p ≤ pF, where pF
is the Fermi momentum. Correspondingly, the maximum electron energy, Fermi
energy εF, is equal to

εF =
p2F
2me

.

This electron distribution corresponds to the location of electrons inside a ball that
is restricted by the Fermi sphere. One can connect the parameters pF and εF of
this distribution with the electron density Ne. Indeed, the number of electrons in
an element of the phase space is given by

n = 2
∫

p≤pF

dpdr
(2π h̄)3

,

where the factor 2 accounts for two directions of the electron spin, and dp and dr
are elements of the electron momentum and volume. Taking the electron number
density as Ne = n/

∫
dr, we obtain the relation between the electron number density

and the maximum electron momentum and maximum electron energy,

pF = (3π2 h̄3Ne)1/3, εF =
p2F
2me

=
(3π2Ne)2/3 h̄2

2me
. (1.38)

Note that the chemical potential of electrons in the Fermi–Dirac formula (1.35) for
this distribution is

µ = εF .
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� Problem 1.15 Determine the total energy per unit volume of a degenerate electron
gas at low temperatures.

At zero temperature the total energy per unit volume of a degenerate electron gas
is equal to

Eo =

εF∫
0

ε · 2dp
(2π h̄)3

=
2
√
2

5π2
m3/2
e ε

5/2
F

h̄3
. (1.39)

At low temperatures the distribution of a degenerate electron gas is determined by
the Fermi–Dirac formula (1.35) and is characterized by a small parameter

η =
T
εF
. (1.40)

We find below the next term of formula (1.39) for the expansion of the total electron
energy over the small parameter above.
We consider a general formula for the electron energy per unit volume that at

low temperatures has the form

E =
∞∫
0

ε · 2dp
(2π h̄)3

1

exp
(

ε−µ
T

)
+ 1

, (1.41)

where we use formula (1.35) for the electron distribution with the chemical poten-
tial µ = εF, which corresponds to zero temperature, and the energy of an individual
electron is ε = p2/(2me). Note that under the condition T � εF = µ the integral

E − Eo =
m3/2
e

√
2

π2 h̄3


 ∞∫

0

ε3/2dε
1

exp
(

ε−µ
T

)
+ 1

−
εF∫
0

ε3/2dε


 (1.42)

converges near ε = εF. Introducing a new variable x = (ε − µ)/T , we transform this
expression to the form

E − Eo =

m3/2
e

√
2T5/2

π2 h̄3


 ∞∫

0

(
x +

µ

T

)3/2
dx

1
1 + exp x

−
0∫

−µ/T

(
x +

µ

T

)3/2
dx

exp x
1 + exp x


 .

Changing the variable in the second integral x → −x and the lower limit of inte-
gration −µ/T by −∞, we obtain the expansion over a small parameter T/εF,

E − Eo =
m3/2
e

√
2T5/2

π2 h̄3

∞∫
0

dx
1 + exp x

[( µ

T
+ x

)3/2 −
( µ

T
− x

)3/2]

=
3m3/2

e
√
2T2

√
µ

π2 h̄3

∞∫
0

xdx
1 + exp x

=
m3/2
e T2

√
µ√

2h̄3
,
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and the expansion of the total electron energy over a small parameter η = T
εF
takes

the form

E = Eo

(
1 +

5π2

4
T2

ε2F

)
. (1.43)

In particular, this gives the heat capacity of a degenerate electron gas per unit
volume,

C =
dE
dT

=
5π2

2
T
ε2F
Eo =

m3/2
e T

√
2εF

h̄3
. (1.44)

1.3
Distribution of Particle Density in External Fields

� Problem 1.16 Derive the barometric formula for the distribution of particles in
the gravitation field of the Earth.

Let us use the Boltzmann formula (1.12) and use the particle potential energyU in
an external field as the particle energy εi in this formula. For particles located in
the gravitational field of the Earth we have U = mgh, where m is the particle mass,
g is the free fall acceleration and h is the altitude above the Earth surface. Hence
the Boltzmann formula (1.12) takes the form

N(h) = N(0) exp
(

−mgh
T

)
, (1.45)

where N(z) is the molecule number density at an altitude z. This is the barometric
formula.
From this formula it follows that a typical altitude where the number density

of particles varies noticeably is ∼ (mg)−1 . In particular, for air molecule we have
mg = 0.11 km−1 , which tells us that a significant drop of the atmospheric pressure
proceeds at altitudes of several kilometers.

� Problem 1.17 Find the relation between the drift velocity of particles in a gas in a
weak external field and the diffusion coefficient of particles in a gas.

If a weak external field acts on particles located in a gas, it causes a flux j of these
particles that is proportional to the number density N of these particles and a force
F that acts on an individual particle. So, we have

j = Nw = NbF, (1.46)

wherew is the drift velocity of a particle, which is the definition of the mobility b for
a neutral particle. For a charged particle in a gas the following mobility definition
is used:

w = KE, (1.47)
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where E is the electric field strength and K is the mobility of a charged particle in
a gas.
If the distribution of admixture particles in a gas is nonuniform, the diffusion

flux jdif arises,

jdif = −D∇N , (1.48)

which tends to remove the gradient. Here D is the diffusion coefficient for test par-
ticles in a gas. When a gas is located in an external field that acts on its particles,
a nonuniform distribution of particles occurs. But since it is a stationary distribu-
tion, the flux due to the external field is compensated by the diffusion flux, and we
have

j = NbF −D∇N = 0 .

Since the test particles are found in thermodynamic equilibriumwith the gas, the
distribution for the number density of the test particles is given by the Boltzmann
formula N = No exp(−U/T), whereU is the potential due to the external field, and
T is the temperature of the gas. Using it in the above equation and accounting for
the force acting on the test particle is F = −∇U, we find from the last equation

b =
D
T
. (1.49)

This expression is known as the Einstein relation. It is valid for small fields that do
not disturb the thermodynamic equilibrium between the test and gaseous particles.
For the mobility of a charged particle K in a gas this gives

K =
eD
T

. (1.50)

� Problem 1.18 Find the character of distributions of positively charged particles
located in a weakly ionized gas.

The electric potential of a particle of charge e in vacuum is

ϕ =
e
r
. (1.51)

However, if this particle is surrounded by charge particles of a quasineutral plasma,
this field is screened since negatively charged particles are attracted to a test particle
and positively charged particles are repulsed from it. In order to ascertain the result
of this interaction, we analyze the Poisson equation for the field of a positively
charged test particle that has the form

∆ϕ = 4πe(Ne − Ni) ,

where we consider a plasma to be consisted of electrons and ions of a charge e, and
their number densities are denoted as Ne and Ni, respectively. The distributions of
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electrons and ions near a test particle are determined by the Boltzmann formula
(1.12) and are given by

N− = No exp
( eϕ
T

)
, N+ = No exp

(
− eϕ

T

)
, (1.52)

where No is the average number density of electrons and ions in the plasma (its
average charge equals zero), and T is the temperature of electrons and ions. Sub-
stituting this in the Poisson equation, reduce it to the form

∆ϕ = 8πeNo sinh
( eϕ
T

)
. (1.53)

This equation is valid at distances from a test particle where electrons and ions
are located, i. e., at distances larger than N−1/3

o , while at small distances from a
test particle, where the pressure of electrons and ions is negligible on average, the
right-hand side of the Poisson equation is zero, and the electric potential of a test
particle is given by formula (1.51).
Because of the problem symmetry, the particle electric potential is spherically

symmetric on average, which gives at large distances where eϕ � T

1
r
d2

dr2
(rϕ) =

8πNoe2

T
ϕ. (1.54)

We consider the case when the solution of this equation is substituted into (1.51)
at small distances r from a test particle. Then this solution has the form

ϕ =
e
r
exp

(
− r
rD

)
, rD =

√
T

8πNoe2
. (1.55)

The value rD is the Debye–Hückel radius that characterizes the character of screen-
ing of electric fields in the plasma. The solution obtained is valid if the Debye–
Hückel radius for this plasma is large compared to an average distance between
the charged particles of the plasma, N−1/3

o , which corresponds to the criterion

e2N 1/3
o

T
� 1. (1.56)

If this criterion holds true, many electrons and ions take part in the shielding
process that corresponds to the physical nature of this phenomenon. A plasma
that satisfies to the criterion (1.56) is the ideal plasma. In this plasma a typical en-
ergy of the interaction of charged particles or the interaction energy of two charged
particles at an average distance between charged particles, e2N 1/3

o , is small com-
pared to a typical thermal energy of particles (∼ T). This criterion tells that the
main part of time charged particles of the plasma is free. The same criterion is
fulfilled for neutral atomic particles of a gas.
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� Problem 1.19 Obtain the expression for the Debye–Hückel radius rD if the electron
Te and ion Ti temperatures are different.

In this case formula (1.52) for number densities of electrons and ions has the form

N− = No exp
(
eϕ
Te

)
, N+ = No exp

(
− eϕ
Ti

)
.

Repeating the steps of the previous problem, we finally obtain formula (1.55) for
the potential of a positively charged test particle, but the expression for the Debye–
Hückel radius now takes the form

rD =

√√√√(
1
Te
+ 1

Ti

)−1

4πNoe2
. (1.57)

� Problem 1.20 A dense plasma propagates in a buffer gas and conserves its qua-
sineutrality, i. e., electrons as more mobile particles come off the ions and create
in this way a field that breaks electrons and accelerates ions. As a result, electrons
and ions propagate in a buffer gas together and a plasma almost conserves its
quasineutrality. Find the diffusion coefficient for this plasma in a buffer gas.

One more general plasma property relates to the character of its propagation in
a neutral gas. Electrons as light particles move faster in a gas than ions, which
violates the plasma quasineutrality, and electric fields are generated. Only these
fields make the plasma almost quasineutral. As a result, the plasma propagates in
a buffer gas as a whole, and we consider below such a process.
In the regime under consideration, when electrons and ions propagate in a buffer

gas and the mean free paths of electrons and ions in the gas are relatively small,
we have the following expressions for the electron flux je and the ion flux ji,

je = −De∇Ne −KeENe ; ji = −Di∇Ni +KiENi .

Here Ne, Ni are the number densities of electrons and ions, respectively, De, Di

are their diffusion coefficients, and Ke, Ki are their mobilities. Because the electric
field acts on electrons and ions in opposite directions, the field enters into the flux
expressions with different signs. The electric field strength E satisfies the Poisson
equation

div E = 4πe(Ni − Ne) .

In the case of propagation of a dense plasma, the plasma converges to quasineu-
trality during evolution, i. e., the charge difference is small ∆N = |Ni − Ne| � Ne,
which gives Ne ≈ Ni ≈ N. Hence the plasma motion is self-consistent, and we
have je ≈ ji. Next, because of the higher mobility of electrons, the electron flux
is zero je = 0 on the scale of electron quantities. This means De∇Ne � ji and
eEKeNe � ji, so that in terms of the magnitudes of electron parameters we have
je = 0. This gives for the electric field strength that arises due to plasma motion as
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a single whole,

E = − De

eKe

∇N
N

.

From this we have for the flux of charged particles

j = ji = −
(
Di +De

Ki
Ke

)
∇N = −Da∇N .

In this way we define Da, the coefficient of ambipolar diffusion. Thus the plasma
evolution has a diffusive character with a self-consistent diffusion coefficient. In
particular, when electrons and ions are found in thermodynamic equilibrium that
allows us to define the electron Te and ion Ti temperatures for each subsystem on
the basis of the Einstein relation (1.50), we have for the diffusion coefficient of a
collective plasma motion

Da = Di

(
1 +

Te
Ti

)
. (1.58)

One can see that in the regime under consideration a plasma propagates in a buffer
gas with the speed of the ions rather than that of the electrons.
In this regime of plasma motion, the plasma remains almost quasineutral, so

the relation ∆N = |Ni − Ne| � N holds true. Then the Poisson equation gives
∆N ∼ E/(4πeL), where L is a typical plasma dimension. The above equation for
the electric field strength that follows from je = 0 together with the Einstein relation
(1.50) gives E ∼ T/(e2L), where for simplicity we assume the electron and ion
temperatures to be equal. From this we have ∆N ∼ Nr2D/L

2. Thus the criterion of
the regime of ambipolar diffusion corresponds to the plasma criterion L � rD.

� Problem 1.21 Find the distribution function over the potential energies for ions
in a quasineutral ideal plasma.

In considering a quasineutral ideal plasma, we assume that neutral atomic particles
(atoms or molecules) whose number density exceeds that of electrons and ions
provide the stability of this plasma. But because they do not influence the electric
properties of such a plasma, they will not be considered below.
An electric potential of this plasma is determined by charged particles, and ac-

cording to formula (1.55) the average potential energy for a test ion with other
electrons and ions is equal to

U = eϕ =
∞∫
0

e2

r
exp

(
− r
rD

) [
No exp

(
− eϕ

T

)
− No exp

( eϕ
T

)]
4πr2dr

=
e2

4rD
, eϕ � T . (1.59)

As is seen, for an ideal plasma that submits to the criterion (1.56) the average
potential energy of ions or electrons is small compared to its thermal kinetic energy

U � T .
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In addition, this average potential energy is identical for positively charged ions
and electrons.
In the same manner we have for the mean square of the potential energy for an

ion or electron

U2 =
∞∫
0

e4

r2
exp

(
− 2r
rD

) [
No exp

(
− eϕ

T

)
+ No exp

( eϕ
T

)]
4πr2dr

= 4πNoe4rD =
T
2
e2

rD
, eϕ � T . (1.60)

One can see that this value is small compared to the square of the thermal energy,

U2

T2
∼ e2

rDT
� 1 ,

for an ideal plasma, but is large compared to the square of the average potential
energy,

U2(
U

)2 = 16πNor3D � 1 .

The last relation allows us to neglect the divergence of the average ion potential
energy from zero, and the distribution function over ion potential energies has the
form of the Gauss distribution

f (U)dU =
1√

2π∆U2
exp

[
− U2

2∆U2

]
,

where ∆U =
√
U2/2 is the fluctuation of the ion potential energy.

Substituting in this formula the average square of the ion potential energy (1.60),
we find the distribution over ion potential energies,

f (U)dU =
1√

2π∆U2
exp

(
− U2

2∆U2

)
=

dU

2πe2
√
2NorD

exp
(

− U2

8πNoe4

)
. (1.61)

This value f (U)dU is the probability that the potential energy for a test ion and an
electron located inside a plasma ranges from U up to U + dU.

1.4
Laws of Black Body Radiation

� Problem 1.22 Determine the distribution of thermal photons over frequencies.

Let us consider thermal or black body radiation that is characterized by a tempera-
ture T . Such a radiation is located inside a vessel with the wall temperature T , and
an equilibrium for photons of different frequencies there results from absorption
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and radiation of the walls. The number of photons is not fixed, and the relative
probability that n photons of an energy h̄ω are found in a given state according
to the Boltzmann formula (1.11) is equal to exp(−nh̄ω/T). This gives the average
number of photons nω in this state,

nω =
∑
n
n exp(− h̄ωn

T )

∑
n
exp(− h̄ωn

T )
=

1
exp(h̄ω/T) − 1

. (1.62)

This is the Planck formula. As is seen, it corresponds to the Bose–Einstein distribu-
tion (1.31) with zero chemical potential. Thus, black body radiation as an ensemble
of photons is characterized by zero chemical potential.

� Problem 1.23 Determine the spectral density of black body radiation, i. e., the
energy of this radiation per unit time, unit volume, and unit frequency.

On the basis of the definition of the spectral density of radiation, the radiation
energy per unit time and unit volume with a range of frequencies from ω up to
ω + dω is ΩUωdω. On the other hand, on the basis of the statistical weight of
continuous spectrum (1.19), one can represent this value as 2h̄ωnωΩdk/(2π)3,
where k is the photon wave number, dk/(2π)3 is the number of states per unit
volume and for a given element of the wave numbers, the factor 2 accounts for two
polarizations of an electromagnetic wave, and nω is the number of photons located
in one state. We take into account that the electromagnetic wave is the transversal
one, i. e., its electric field strength E is directed perpendicular to the propagation
direction that is determined by the vector k. On the basis of the dispersion relation
for photons ω = ck between the photon frequency ω and its wave number k (c is
the light velocity), we obtain the Planck radiation formula

Uω =
h̄ω3

π2c3
nω. (1.63)

On the basis of formula (1.62) one can rewrite formula (1.63) in the form

Uω =
h̄ω3

π2c3 [exp(h̄ω/T) − 1]
. (1.64)

Let us consider the limiting case of this formula. In the case of small frequencies
h̄ω � T this formula is converted into the Rayleigh–Jeans formula

Uω =
ω2T
π2c3

, h̄ω � T . (1.65)

Because this formula corresponds to the classical limit, it does not contain the
Planck constant.
In the other limiting case of high frequencies h̄ω � T , the above formula is

transformed to the Wien formula

Uω =
h̄ω3

π2c3
exp

(
− h̄ω

T

)
. (1.66)
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� Problem 1.24 Evaluate the energy flux for radiation emitted from a black body
surface (the Stephan–Boltzmann law).

A black body surface emits a number of photons which propagate inside a vol-
ume occupied by thermal radiation. The energy flux per unit frequency range
ω is equal to dω to cUωdω, and the energy flux per unit elementary solid angle
dΘ = dϕd cos θ is

dΘ

4π
c

∞∫
0

Uωdω .

Because of the symmetry, the total flux is directed perpendicular to the surface, and
projecting the flux in each solid angle in this direction, we obtain the total energy
flux per unit frequency range of black body radiation from a surface,

jωdω =

π/2∫
0

c
4π

Uω dω 2π cos θd cos θ =
c
4
Uωdω ,

where θ is the angle between the normal to the surface and the direction of motion
of an emitting photon. Integrating over frequencies, we obtain from this on the
basis of the Planck formula (1.63)

J =
∞∫
0

jωdω = σ T4. (1.67)

This is the Stephan–Boltzmann law, and its component, Stephan–Boltzmann con-
stant σ, is equal to

σ =
1

4π2c2 h̄3

∞∫
0

(ex − 1)−1x3dx =
π2

(60c2 h̄3)
= 5.67 × 10−12 W

cm2 K4
. (1.68)

In deriving this formula, we use the relation

∞∫
0

x3dx
ex − 1

=
π2

15
.

� Problem 1.25 Find the dependence of the Stephan–Boltzmann constant on the
parameters from the dimensionality consideration.

The emitting energy flux depends on three-dimensional parameters–the radiation
temperature T , the Planck constant h̄, and the light velocity c. From these parame-
ters one can compose only one combination with the energy flux dimensionality,
and this gives

J ∼ T4

h̄3c2
.



1.5 Ionization and Dissociation Equilibrium 21

As is seen, this gives the temperature dependence as in the Stephan–Boltzmann
law (1.67) and the dependence on parameters for the Stephan–Boltzmann constant
as in formula (1.68).

1.5
Ionization and Dissociation Equilibrium

� Problem 1.26 Find the equilibrium number density of electrons and ions in an
equilibrium of a weakly ionized gas with the number density of atoms Na and
temperature T .

We considered above the equilibrium between discrete states (1.12) and between
states of continuous spectrum (1.23) for particle ensembles. We now analyze an
equilibrium between bound and free states of atomic particles.
We consider a quasineutral plasma located in a finite volume Ω and denote the

number of electrons, ions, and atoms in this volume as ne, ni, na (ne = ni),
respectively. These atomic particles are characterized by the statistical weights ge =
2 for electrons that account for two spin directions, gi for ions and ga for atoms, and
these statistical weights relate to electron states of these atomic particles. According
to the Boltzmann formula (1.12) and expression (1.19) for the statistical weight of
continuous spectrum states we have the ratio between free and bound states of
electrons,

ni
na

=
gegi
ga

∫
exp

(
− J + p2/(2me)

T

)
dp dr

(2π h̄)3
.

Here p is the electron momentum, J is the atom ionization potential, and J +
p2/(2me) is the energy of transition from the ground atom state to the state of
a free electron of a given momentum. We assume the atoms to be in the ground
state only.
Integrating this expression over the electron momenta, we obtain

ni
na

=
gegi
ga

(
meT

2π h̄2

)3/2

exp
(

− J
T

) ∫
dr .

During integration over the volume, we take into account the symmetry of an elec-
tron gas, so that the exchange of two electrons by their states does not change the
state of the electron system. Therefore,

∫
dr = Ω/ne, and introducing the number

densities of electrons Ne = ne/Ω, ions Ni = ni/Ω, and atoms Na = na/Ω, we reduce
the obtained expression to the form of the Saha distribution,

NeNi

Na
=
gegi
ga

(
meT

2π h̄2

)3/2

exp
(

− J
T

)
. (1.69)

One can introduce from this the equilibrium constant for the ionization equilib-
rium that has the form

K(T) =
gegi
ga

(
meT

2π h̄2

)3/2

exp
(

− J
T

)
. (1.70)
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� Problem 1.27 Show that states of continuous spectrum are characterized by a large
statistical weight compared to discrete atom states.

Rewriting the Saha formula (1.69) in the form of the Boltzmann formula (1.12)

Ni

Na
=
gc
ga
exp

(
− J
T

)
,

we define the statistical weight gc of continuous spectrum. Comparing this formula
with the Saha formula (1.69), we find for the statistical weight of the continuous
spectrum,

gc =
gegi
Ne

(
meT

2π h̄2

)3/2

. (1.71)

One can see that for an ideal plasma (1.56) this value is enough large. Hence,
the presence of free electrons in an equilibrium gas becomes noticeable at low
temperatures when the probability of atom excitation is small. This allowed one to
account for the ground atom state during derivation of the Saha formula.

� Problem 1.28 Analyze the ionization equilibrium for a large metallic particle of
the spherical shape.

Introducing the work function W of a metallic surface as the electron binding
energy, we reduce the problem of ionization equilibrium near the metallic surface
to the above problem of ionization equilibrium for atomic particles. Considering
the ionization equilibrium for a spherical metallic particle of charge Z � 1 and
radius ro, we account for the electron binding energy that includes a work for
electron removal to infinity and is

WZ =W +
Ze2

ro
.

Correspondingly, the Saha formula (1.69) takes the form

PZ Ne

PZ+1
= 2

(
meT

2π h̄2

)3/2

exp
(

−WZ

T

)
= 2

(
meT

2π h̄2

)3/2

exp
(

−W
T

− Ze2

roT

)
,

(1.72)

where PZ is the probability for the particle to have a charge Z, Ne is the electron
number density, the factor 2 accounts for two spin projections for an electron.
In reality, this formula gives the distribution of metallic particles over their

charges when a typical charge is large. Let us rewrite this formula in the form

PZ = PZ−1A exp
(

−Ze2

roT

)
= P0 AZ exp

(
−Z2e2

2roT

)
, (1.73)

where

A =
2
Ne

(
meT

2π h̄2

)3/2

exp
(

−W
T

)
.
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For large particle sizes this formula gives a sharp maximum for the particle distri-
bution function over charges. Indeed, the average particle charge Z coincides with
the maximum of PZ , and the latter according to formula (1.70) satisfies the relation

Z =
roT
e2

ln A , (1.74)

and Z � 1. Expanding formula (1.73) near the maximum PZ , we obtain

PZ = PZ exp
[
− (Z − Z)2

2∆Z2

]
, ∆Z2 =

roT
e2

. (1.75)

We have for the relative width of the particle distribution function over charges

∆Z
Z

=
e√

roT ln A
,

and for large particle sizes this ratio is small. As a result, the particle distribution
function over charges takes the form of the Gauss distribution.

� Problem 1.29 Evaluate the flux of emitting electrons from a hot metallic surface
considering an electron ensemble inside the metal and near its surface as almost
degenerate gas.

In considering an electron ensemble near the metal surface as almost degenerate
gas, we have for the electron distribution function over momenta according to
formula (1.37),

f (p)dp =
2dp

(2π h̄)3
exp

(
− ε − µ

T

)
.

This formula gives the number electrons withmomenta ranged from p up to p+dp,
and the chemical potential for this distribution is equal to the Fermi energy µ = εF.
Evidently, an electron can leave the metal surface if its kinetic energy exceeds the
value εF +W . Since the electron flux outside the metallic surface is

∫
vx f (p)dp,

where vx is the electron velocity in the perpendicular direction to the surface and
the integral is taken for electron energies mev2x/2 ≥ εF +W , the total electron flux
is equal to

j = 2πmeT
∞∫

ε=εF+W

vx
medvx
4π3 h̄3

exp
(

−mev2x
2T

+
µ

T

)
=

meT2

2π2 h̄3
exp

(
−W
T

)
,

and during evaluation of the integral we use the condition ε − µ � T . Correspond-
ingly, the current density of emitting electrons is

i = ej =
emeT2

2π2 h̄3
exp

(
−W
T

)
. (1.76)

This is the Richardson–Dushman formula that gives the density current for ther-
moemission of a metal surface.
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� Problem 1.30 Evaluate the flux of emitting electrons from a hot metallic surface
from the analysis of ionization equilibrium for a large metallic particle.

Let us transfer a spherical metal particle to a flat surface by turning a particle
radius to infinity. Then the electric potential of the particle is small compared to a
typical thermal energy, the parameter Ze2/(roT) in formula (1.74) becomes small,
and A = 1. This gives the equilibrium electron density near the surface,

Ne = 2
(
meT

2π h̄2

)3/2

exp
(

−W
T

)
. (1.77)

We assume that free electrons near a metallic surface can penetrate inside the
metal, and because of equilibrium, this current density is equal to the current
density of emitting electrons. From the equality of these current densities we obtain
the emitting current density

i = e

√
T

2πme
Ne =

emeT2

2π2 h̄3
exp

(
−W
T

)
. (1.78)

We derive again the Richardson–Dushman formula for thermoemitting electron
current density from other considerations. Usually it is represented in the form

i = ART2 exp
(

−W
T

)
, AR =

eme

2π2 h̄3

and the Richardson constant AR is equal to 120A/(cm2 K2) according to this for-
mula.

� Problem 1.31 Analyze the dissociation equilibrium for a gas consisting of diatomic
molecules.

With the transition of a discrete state to a continuous spectrum state, the disso-
ciation equilibrium becomes analogous to the ionization one. Therefore, one can
use the Saha formula (1.69) for the dissociation equilibrium with changing atomic
parameters by parameters of the molecule. As a result, we get the relation between
the number density of molecules Nm and atoms Na on which the molecule is dis-
integrated,

N2
a

Nm(v = 0, J = 0)
=

g2a
gm

(
µT

2π h̄2

)3/2

exp
(

−D
T

)
.

Here ga, gm are the statistical weights of an atom and a molecule with respect to
their electron state, µ is the reducedmass of atoms, andD is the dissociation energy
of the molecule. We assume the vibrational and translational temperatures to be
equal, and atoms are different isotopes, which allows us to escape the prohibition
of some rotational states.
In contrast to the ionization equilibrium, molecules can be found in excited

vibration-rotational states, so we change the number density of molecules in the
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ground state that is used in the above formula, by the total number density N of
molecules. As a result, we get

N2
a

Nm
= Kdis(T) =

g2a
gm

(
µT

2π h̄2

)3/2 B
T

[
1 − exp

(
− h̄ω

T

)]
exp

(
−D
T

)
, (1.79)

where Kdis is the equilibrium constant for the dissociation process.

� Problem 1.32 A cluster is located in a buffer gas with an admixture of a vapor con-
sisting of cluster atoms. Find the dependence of the equilibrium number density
of atoms on a cluster size.

Let us introduce the equilibrium number density of atoms over a flat surface
Nsat(T) at a given surface temperature T and the binding energy εo of the atom
with the surface. Considering a cluster consisting of n atoms with the binding
energy εn of surface atoms, we obtain the equilibrium number density of atoms,

N = Nsat(T) exp
(

− εn − εo
T

)
. (1.80)

At this number density the rate of atom evaporation from the cluster surface and
the rate of atom attachment to the cluster surface are equal. The difference of the
atom binding energies for the flat surface and cluster surface is determined mostly
by the surface tension.

1.6
Ionization Equilibrium for Clusters

� Problem 1.33 Find the ratio between numbers of metallic clusters of neighboring
charges in a hot vapor.

In considering the equilibrium between charged clusters

M+Z+1
n + e ↔ M+Z

n . (1.81)

Introducing the probability PZ(n) that a cluster consisting of n atoms to have a
charge Z, we have on the basis of the Saha formula (1.69)

PZ(n)Ne

PZ+1(n)
= 2

(
meTe
2π h̄2

)3/2

exp
[
− IZ(n)

Te

]
. (1.82)

Here Te is the electron temperature, and we assume the temperatures of free and
bound electrons to be identical,me is the electron mass, Ne is the electron number
density, and IZ(n) is the ionization potential of the cluster of a charge Z consisting
of n atoms.
Note that because the third particle in the recombination process (1.81) is a bound

electron, the number density of internal electrons of a metallic clusters greatly
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exceeds that of plasma electrons. Moreover, internal electrons of a metallic plasma
can be responsible for release of initially bound electrons. Thus, if the temperatures
of internal and plasma electrons are identical, the Saha formula is valid, but the
electron release for the equilibrium (1.81) can be determined by internal electrons.
Next, because the work function of metals (the binding energy of electrons with a
metallic surface) is lower than the ionization potential of corresponding atoms, the
ionization potential of metal clusters lies between these values. Hence, ionization
of metallic clusters occurs at relatively low electron temperatures of the plasma.

� Problem 1.34 Find the charge distribution of large metallic clusters in a hot vapor
in the limit e2/r � Te.

The equilibrium (1.81) between free electrons and bound electrons of a metallic
cluster relates to a large mean free path of electrons in a gas compared to the clus-
ter radius. Therefore, the interaction energy of a removed electron and a charged
cluster during electron removal from a charged cluster must be included in the
cluster ionization potential. Hence, the ionization potential IZ(n) of a large clus-
ter of n atoms differs from that of a neutral cluster I0(n) by the energy that is
consumed as a result of the removal of electrons from the cluster surface to infin-
ity, i. e.,

IZ(n) − I0(n) =
Ze2

r
,

where I0(n) is the ionization potential of a neutral cluster.
Substituting this into formula (1.82), one can represent this formula in the form

of the Gauss formula if Z � 1,

PZ
PZ−1

= A exp
(

−Ze2

rTe

)
, A =

2
Ne

(
meTe
2π h̄2

)3/2

exp
(

− I0
Te

)
.

Representing this formula in the form

PZ
P0

= AZ exp
(

−Z2e2

2rTe

)
,

we expand this expression near the maximum of the function ln PZ(n), reducing
it to the Gauss formula

PZ(n) = PZ(n) exp
[
− (Z − Z)2

2∆2

]
, (1.83)

where the mean particle charge is given by

Z =
rTe
e2

{
ln

[
2
Ne

(
meTe
2π h̄2

)3/2
]

− I0(n)
Te

}
, ∆2 =

rTe
e2

. (1.84)

This formula holds true if ∆ � 1, that is valid for large clusters.
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� Problem 1.35 Express the ionization potential of a charged cluster through the
atom ionization potential I and the work function of a corresponding metal W ,
and on this basis determine the cluster mean charge.

Defining the average cluster charge Z on the basis of the relation PZ(n) = PZ+1(n),
we have on the basis of the above formulas

Z =
Ter
e2

{
ln

[
2
Ne

(
meTe
2π h̄2

)3/2
]

− I0(n)
Te

}
.

Taking the cluster ionization potential such that I0(∞) =W , the metal work func-
tion, and I0(1) = I, the atom ionization potential, one can represent the ionization
potential of a large neutral cluster in the form I0(n) = W + const/n1/3, where
const = I −W . This gives

Z =
Ter
e2

{
ln

[
2
Ne

(
meTe
2π h̄2

)3/2
]

− W
Te

− I −W
Ten1/3

}
.

One can see that the basic dependence of the cluster charge on its size is Z ∼ n1/3,
and the proportionality coefficient depends on the cluster temperature.

� Problem 1.36 Find the conditions when a large metal cluster located in a plasma
is neutral.

Let us take the ionization potential of a neutral cluster as I0(n) =W + (I−W)/n1/3

and the electron affinity to a neutral cluster as EA(n) =W + (EA−W)/n1/3, where
I is the atom ionization potential, EA is the atom electron affinity, and W is the
metal work function. Comparing formulas for positively and negatively charged
clusters according to the Saha formulas (1.69) with these ionization potential and
electron affinity, we find the following ratio of the number densities of positive N+
and negative N− clusters of a charge e:

N+

N−
= ζ2 exp

(
− ∆

Ten1/3

)
, ζ =

2
Ne

(
meTe
2π h̄2

)3/2

exp
(

−W
Te

)
.

Here∆ = I0(1)+EA−2W , Ne is the electron number density, and Te is the electron
temperature. If a cluster is large and the parameter∆/(Ten1/3) is small, the electron
temperature T∗, at which the average cluster charge is zero, is given by the relation
ζ(T∗) = 0. At higher temperatures the cluster is charged positively, while at lower
temperatures it is charged negatively.
Let us demonstrate it on a copper example, when I = 7.73 eV, EA = 1.23 eV and

W = 4.4 eV. This gives ∆ = 0.16 eV, and the ratio ∆/(Ten1/3) is small for large
clusters. The neutralization temperature is T∗ = 2380 K for Ne = 1 × 1011 cm−3,
T∗ = 2640 K for Ne = 1 × 1012 cm−3, and T∗ = 2970 K for Ne = 1 × 1013 cm−3. The
neutralization temperature T∗ increases with an increase in the number density of
plasma electrons.
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� Problem 1.37 Find the maximum negative charge of an isolated dielectric particle
if the charge state is stable.

Charging of a dielectric particle has a different nature than that for metal clusters,
where electrons form a degenerated gas. The active knots or centers on the sur-
face of a dielectric particle are traps for electrons, and negative or positive ions.
The process of electron and ion attachment to the surface of a dielectric particle
proceeds according to the scheme

e + A−Z
n →

(
A−(Z+1)
n

)∗∗
,(

A−(Z+1)
n

)∗∗
+ A → A−(Z+1)

n + A , (1.85)

B+ + A−(Z+1)
n → B + A−Z

n ,

and an autodetachment state (A−(Z+1)
n )∗∗ is quenched by collisions with surround-

ing atoms. Because the rate constant of pair attachment of an electron to a dielectric
particle greatly exceeds the ionization rate constant of the particle by electron im-
pact, these particles are charged negatively.
In contrast to metallic particles, the binding energies for active centers do not

depend on the particle size, because the action of each center is concentrated in
a small region of space. Evidently, the number of such centers is proportional to
the area of the particle’s surface, and for particles of micron size this value is large
compared to that occupied by the charges. Hence, here we consider the regime of
charging of a small dielectric particle far from the saturation of active centers. Then
positive and negative charges can exist simultaneously on the particle’s surface.
They spread over the surface and can recombine there.
Usually, the binding energy of electrons in negative active centers is in the

range EA = 2–4 eV, and the ionization potential for positive active centers is about
Jo ≈ 10 eV. Hence, attachment of electrons is more profitable for electrons of a
glow discharge, and a small dielectric particle has a negative charge in a glow gas
discharge. Due to the particle charge Z, it has the electric potential ϕ = Ze/r, where
r is the particle radius. In the case eϕ < EA the electron state is stable, while in the
case eϕ > EA an electron tunnel transition is possible, which leads to the decay
of the electron state. Thus, the stable charge state of a dielectric particle is possi-
ble if new electrons can attach to the particle. An isolated charged particle emits
electrons until it reaches the limiting charge

Z∗ = r · EA/e2. (1.86)

We consider it as the maximum charge of a dielectric particle. As a demonstration,
we consider an example of a dielectric particle of radius r = 2 µm and EA = 2 eV,
which leads to its maximum charge Z∗ = 4 × 103 of the particle, and its electric
potential is equal to 2 V.

� Problem 1.38 Estimate a typical time of the electron transition for a dielectric
particle whose negative charge exceeds the critical one (1.86).
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If the negative charge of a micron dielectric particle exceeds the critical one (1.86), it
is energetically profitable for some surface electrons to liberate and to be removed
from the particle. Simultaneously, at the critical charge of a micron dielectric par-
ticle active centers of the particle are populated weakly. Indeed, in the example
of the previous problem, the distance between nearest surface charges is approxi-
mately 0.4 µm, which exceeds by one to two orders of magnitude a typical distance
between neighboring active centers. Hence, the critical particle charge (1.86) may
be exceeded, and we estimate below the lifetime of such autodetachment states
as a result of tunnel electron transitions. If this time exceeds the time of electron
capture, such states may be realized.
Let us estimate a typical time of the electron tunnel transition through the po-

tential barrier that has the following exponential dependence:

1
τ

∼ exp(−2S), S =
Rc∫
r

dR

√
2me

h̄2
[EA−U(r) +U(R)] .

Here r is the particle radius, EA is the electron binding energy (the electron affinity
of an active center), U(R) = Ze2/R is the interaction potential of an electron with
the Coulomb field of the particle if its distance from the particle’s center is R, and
Rc is the turning point, that is

Rc =
r

1 − EA/εo
,

where εo = Ze2/r. Thus we have

S =
π

2
r

√
2me

h̄2
εo

1 − EA/εo
.

Since Z ∼ Z∗, according to formula (1.86) the value εo is of the order of a typical
atomic value, which gives S ∼ r/ao, where ao is the Bohr radius. Being guided
by dielectric particles of micron sizes, we obtain a very high lifetime of surface
negative ions with respect to their barrier decay with electron release. Hence, in
reality the limit value Z∗ (1.86) of the particle charge may be exceeded.

� Problem 1.39 Estimate a charge of a dielectric particle that results from the equi-
librium of the particle charge with a surrounding electron gas.

This equilibrium under consideration proceeds according to the scheme

A + e ←→ A− , (1.87)

where A is an active center of the surface, and A− is its negative ion. Denoting
the total number of active centers on the particle’s surface by p and the electron
binding energy by EA, we have from this equilibrium on the basis of the Saha
formula (1.69)

(p− Z)Ne

Z
= g

(
meTe
2π h̄2

)3/2

exp
(

−EA
Te

)
.
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Here Ne is the number density of free electrons, Z is the particle charge or the
number of surface negative ions, and g ∼ 1 is the combination of statistical weights
of an electron, active center, and negative ion; for simplicity we take below g = 1.
From this we find the particle charge in the limit Z � p,

Z = Nep

(
2π h̄2

meTe

)3/2

exp
(
EA
Te

)
.

Since the number of active centers on the surface is proportional to its area, we
have

Z ∼ n2/3 .

Correspondingly, because the particle radius is r ∼ n1/3, the electric potential of a
large dielectric particle is

ϕ ∼ Ze
r

∼ n1/3 .

From this it follows that the interaction of surface electrons with the electric poten-
tial of a negatively charged dielectric particle may be responsible for the negative
charge of the large particle.

� Problem 1.40 Analyze detachment of surface negative ions of a dielectric particle
in collisions with electrons and positive ions of a surrounding plasma.

We now compare the rates of detachment of surface negative ions of a negatively
charged dielectric particle in collisions with electrons and ions of a surrounding
plasma. According to scheme (1.87), a surface negative ion decays in collisions with
electrons of a surrounding plasma, and the rate of this process is estimated as

νe ∼ ZveNeσo exp
(

−EA
Te

)
,

where ve ∼ √
Te/me is a typical electron velocity, Te is the electron temperature,

and me is the electron mass; σo is of the order of the cross section of the negative
ion, and EA is the electron binding energy in the surface negative ion.
Along with this process, detachment of surface negative ions of the dielectric

particle may result from charge exchange of plasma positive ions and surface neg-
ative ions, and also from capture of plasma positive ions by other active centers. In
the latter case, surface positive and negative ions can recombine after ion motion
on the particle surface. The rate of the charge exchange process is estimated as

νi ∼ ZviσexNi ,

where vi ∼ √
Ti/mi is a typical ion velocity, Ti is the ion temperature, and mi is the

ion mass; σex is the cross section of the charge exchange process for an incident
positive ion and a surface negative ion, and Ni is the number density of plasma
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positive ions. Taking σex ∼ σo and accounting for the plasma quasineutrality Ni =
Ne, we obtain for Te > Ti that the criterion νe � νi that the charge equilibrium
corresponds to scheme (1.87),

Te �
2EA

ln((Temi)/(Time))
,

and the equilibrium (1.87) can be realized at high electron temperatures.
If the dielectric particle has an active centers which can capture plasma positive

ions, the rate of the latter process is estimated as

νi ∼ πr2viNi ,

if the number of occupied active centers for positive ions is small compared with
their total number. Because the cluster radius r ∼ n1/3, a typical particle charge
is Z ∼ r ∼ n1/3. Hence, if active centers for positive ions exist on the dielec-
tric particle surface, the process of capture of positive ions with their subsequent
recombination with surface negative ions is responsible for the decay of surface
negative ions. Thus, the charge equilibrium for a dielectric particle may be deter-
mined by different processes.



This Page Intentionally Left Blank



Plasma Processes and Plasma Kinetics. Boris M. Smirnov
Copyright © 2007 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
ISBN: 978-3-527-40681-4

Druckfreigabe/approval for printing

Without corrections/
❏

ohne Korrekturen

After corrections/
nach Ausführung ❏

der Korrekturen

Date/Datum: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Signature/Zeichen: . . . . . . . . . . . . . . . . . . . . . . . . . . . .

33

2
Elementary Processes in Plasma

2.1
Elementary Act of Particle Collision

� Problem 2.1 Define the characteristic of the elementary inelastic process for the
transition of a particle A between the states i and f as a result of collision with a
particle B.

Let us consider a motionless particle A located in a gas of particles B, and interac-
tion with these particles cause the transition between the indicated states. Evidently,
the probability of surviving of a particle A in a state i up to time t is described by
the equation

dP
dt

= −νifP, (2.1)

where νif is the rate (the probability per unit time) of a transition.
The rate νif of transition is proportional to the flux j of particles B, which collide

with a test particle A. One can define the ratio of these values,

σif =
νif

j
, (2.2)

the cross section of an inelastic transition, as the parameter of elementary act of
collision. It is of importance that this parameter relates to the elementary act of
pair collision rather than to the parameters of a gas of particles B.
One can introduce the characteristic of the elementary collision as the ratio of

the transition rate νif to the number density [B] of particles B, and this is the rate
constant kif of this process,

kif =
νif

[B]
. (2.3)

If all the particles aremoving with an identical velocity v, the particle flux is j = v[B].
Hence

kif(v) = v · σif(v) .
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The cross section σif can depend on the relative velocity of the particles, as well as
the rate constant of transition kif. Both characteristics of elementary collision, σif
and kif, may be used equivalently.

� Problem 2.2 A test particle A is located in a gas consisting of particles B and can
change its state as a result of collisions. Write the balance equation for a particle
A in a given state.

We take into consideration the processes

Ai + B � Af + B ,

where the subscript shows a particle state. This leads to the balance equation for
the number density of particles in a given state,

dNi

dt
= ∑

f

[
kfi(v)Nf[B] − kif(v)Ni[B]

]
, (2.4)

where an overline means averaging over relative velocities of colliding particles A
and B. If we take into consideration other processes, new terms may be added to
balance equation in the same manner.

� Problem 2.3 Derive the expression for the differential cross section of elastic scat-
tering of classical particles through the impact parameter of collision.

Considering the two-particle scattering process as the motion of a single particle in
the center-of-mass frame, we characterize scattering of this particle by a scattering
angle ϑ, and the scattering has a cylindrical symmetry for the isotropic interaction
potential U(R) of particles. Let us find the differential scattering cross section,
which is the number of scattering events per unit time and unit solid angle divided
by the flux of incident particles. Evidently, for a monotonic interaction potential we
obtain the monotonic dependence of the scattering angle on the impact parameter
of collision of classical particles. Due to the cylindrical symmetry of the scattering
process, the elementary solid angle is dΘ = 2πd cos ϑ, and particles are scattered
into this element of solid angle from the range of impact parameters between ρ and
ρ + dρ. The particle flux is Nv, where N is the number density of incident particles
and v is the relative velocity of collision. The number of particles scattered per unit
time into a given solid angle is 2πρdρNv, so the differential cross section is (see
Fig. 2.1)

dσ = 2πρdρ . (2.5)

� Problem 2.4 A beam of electrons with identical velocities v moves perpendicular
to a gas boundary and penetrates in a gas as a result of elastic scattering of electrons
in atoms. Analyze the character of penetration of the electron beam in a gas.

Since the electron mass is small compared the atom mass, one can assume atoms
to be motionless and consider electron scattering in the laboratory frame of axes
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Fig. 2.1 The definition of the differential cross section σ as the ratio of
number of scattering acts in a given solid angle to the flux of incident
particles. O is the scattering center.

(see Fig. 2.2). If an electron is scattered by an angle ϑ, a variation of its momentum
along the beam is mev(1− cos ϑ). Correspondingly, the change of the electron flux
as the electron penetrates inside the gas is

dj
dx

= − 1
v
dj
dt

= −j Na

∫
(1 − cos ϑ)dσ = −j Na σ∗ ,

where x is the direction along the flux, and

σ∗ =
∫

(1 − cos ϑ)dσ (2.6)

is the diffusion or transport cross section of electron–atom scattering. Rewriting
this relation in the form

dj
dx

= − j
λ
,

we introduce in this way the mean free path of an electron in a gas as

λ = (Na σ∗)−1 . (2.7)

As is seen, the mean free path for an electron is expressed through the diffusion
cross section of elastic scattering as a cross section of scattering by a large angle.

Fig. 2.2 Penetration of a flux of atomic particles in a gas. A sphere is
drawn around each atom that corresponds to the collision cross
section.
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� Problem 2.5 Obtain the condition of gaseousness for an ensemble of weakly in-
teracting particles.

The criterion that an ensemble of atoms is a gas requires the mean free path
of particles λ = (N σ)−1 to be large compared to an average distance between
particles N−1/3, where N is the number density of particles and σ is the cross
section of scattering by a large angle in collision of particles. From this we obtain
the gaseousness criterion in the form

Nσ3/2 � 1. (2.8)

To derive this criterion, one can require the mean free path of particles λ = (N σ)−1

to be large compared to the interaction radius
√

σ. This leads to the gaseousness
criterion (2.8).
One can represent the gaseous state condition requiring that the interaction

potential of a test particle with its neighbors be small compared to its mean kinetic
energy. This criterion has the form

U(N−1/3) � ε .

If this criterion is fulfilled, neighboring particles interact weakly. Comparing this
formula with (2.8), we haveU(N−1/3) � U(ρo). Assuming the interaction potential
of two particles as a function of distances between the particles to be monotonic,
we obtain from this N−1/3 � ρo. As a result, this criterion leads to the criterion
(2.8).

� Problem 2.6 Obtain the gaseousness condition for a plasma – an ensemble of
weakly interacting charged particles.

Let us apply the gaseousness criterion for a plasma, i. e., an ensemble of charged
particles. Because of the Coulomb interaction between charged particles | U(R) |=
e2/R, the criterion (2.8) gives

σ ∼ e4/T2

for a typical large-angle scattering cross section, where the temperature T , which is
expressed in energy units, is a typical kinetic energy of the particles. From this we
have the criterion of the plasma gaseousness, that is this plasma is ideal. Specifi-
cally, T is their temperature. The criterion (2.8) that a particle system is a true gas
is transformed in the plasma case to

Ne e6/T3 � 1, (2.9)

where Ne is a typical number density of charged particles. This criterion of the
plasma gaseousness coincides with the plasma ideality criterion (1.56).
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2.2
Elastic Collision of Two Particles

� Problem 2.7 Show that in elastic collision of two classical particles their scattering
is characterized by the interaction in the center-of-mass frame of reference.

As a result of elastic collision, internal states of particles are not changed. We char-
acterize evolution of colliding particles by their coordinates R1 ,R2 whose variation
in time is described by Newton’s equations

M1
d2R1

dt2
= − ∂U

∂R1
, M2

d2R2
dt2

= − ∂U
∂R2

.

Here M1 and M2 are masses of the colliding particles, and the interaction potential
U between the particles depends on the relative distance R = R1 − R2 between
them. In addition, we introduce the coordinate of the center of mass, Rc = (M1R1 +
M2R2)/(M1 +M2). In new variables, the Newton equations take the form

(M1 +M2)
d2Rc
dt2

= 0, µ
d2R
dt2

= −∂U(R)
∂R

,

where µ = M1M2/(M1 +M2) is the reduced mass of the particles.
As follows from these equations, the center of mass travels with a constant veloc-

ity, and the relative motion of the particles determines their scattering. As a result,
the problem of collisions of two particles reduces to the problem of the motion of
one particle with a reduced mass in the center-of-mass frame of axes. Although the
analysis is made for classical particles, this conclusion holds true in the quantum
case also because the variables are separated for the Schrödinger equation in the
same manner.

� Problem 2.8 Show that the problem of elastic collision of two particles in the
absence of an external field is reduced to the problem of scattering of one reduced
particle in a force center in the quantum case.

Taking the interaction potential of the two particles as U(R1 − R2), we have the
following Schrödinger equation for colliding particles:[

− h̄2

2m1
∆1 − h̄2

2m2
∆2 +U(R1 − R2)

]
Ψ(R1 ,R2) = EΨ(R1 ,R2) .

The variables in this equation are separated if we introduce the same combinations
of distances as we use in the classical case. Namely, we use the coordinate of the
center of mass, Rc = (m1R1 +m2R2)/(m1 +m2) and the relative distance between
the particles, R = R1 − R2. In these variables the sum of Laplacians is equal to

h̄2

2m1
∆1 +

h̄2

2m2
∆2 =

h̄2

2(m1 +m2)
∆Rc +

h̄2

2µ
∆R ,

and we obtain two independent Schrödinger equations. The first equation cor-
responds to motion of the center of mass for colliding particles with a constant
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velocity, and the second equation for the relative distance takes into account the
interaction of particles, and only this equation is responsible for particle scattering.
This equation has the form

− h̄2

2µ
∆Rψ(R) +U(R)ψ(R) = εψ(R) ,

and ε = h̄2q2/(2µ) is the particle energy in the center-of-mass frame of reference.
We represent this equation in the form

(∆R + q2)ψ(R) =
2µ

h̄2
U(R)ψ(R)

and will consider the right-hand side of this equation as a nonlinearity. Based on
the Green function of the uniform equation that is given by

G(R,R′) = −exp
(
iq
∣∣R− R′∣∣)

4π |R− R′| ,

one can formally write the solution of this equation as

ψ(R) = C

[
eiqR − µ

2π h̄2

∫ exp
(
iq
∣∣R− R′∣∣)

|R− R′| U(R′)ψ(R′)dR′
]
.

As a matter of fact, it is an integral form of the Schrödinger equation. But this
representation of the wave function is convenient, because it allows us to transfer
to the limit of large R. In the limit R → ∞ we have

∣∣R− R′∣∣ = R− R′n, where n is
the unit vector directed along R. The expansion of the above equation in the limit
of large R can be represented as

ψ(R) = C
[
eiqR + f (ϑ)

eiqR

R

]
, (2.10)

and this is a general expression for the wave function far from the scattered center.
Here the first term is an incident wave, the second term is a scattered wave, the
value f (ϑ) is the scattering amplitude, which is responsible for particle scattering,
and ϑ is the scattering angle between the vectors R and q. This wave function is
normalized such that it tends to eiqR when R → ∞. As follows from the above
expression for the wave function, the scattering amplitude is given by

f (ϑ) = − µ

2π h̄2

∫
exp(−iqnR′)U(R′)ψ(R′)dR′. (2.11)

This expression does not allow us to find the scattering amplitude for a given in-
teraction potential since it includes the accurate wave function ψ(R) of particles.
Nevertheless, this form of the scattering amplitude is convenient for approxima-
tions.
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� Problem 2.9 Express the differential cross section of elastic scattering through the
scattering amplitude.

We obtain this expression from the analysis of formula (2.11). The first term of this
formula is a plane wave, i. e., the particle wave function without scattering, and
the second term is responsible for scattering. Let us obtain from this the flux of
incident particles and the rate of scattering particles. The flux of incident particles is

j =
h̄
2mi

(ψ∗∇ψ − ψ∇ψ∗) = |C|2 v ,

where v = h̄q/m is the particle velocity. In the same manner we find the flux of
scattering particles, which is determined by the second term. Multiplying it by
R2dΘ, we find the scattering rate in the solid angle dΘ, and dividing by the flux of
incident particles, we find the cross section of scattering dσ in an element dΘ of
the solid angle, which is given by

dσ =
∣∣ f (ϑ)

∣∣2 dΘ. (2.12)

Thus, the differential cross section of elastic scattering is connected with the scat-
tering amplitude in a simple way.

� Problem 2.10 Find the amplitude of elastic scattering of particles within the
framework of the perturbation theory.

Using the perturbation theory, we insert in formula (2.11) the wave function of
particles in the absence of interaction, when the wave function has the form of a
plane wave ψ(R) = eiqR. This gives for the scattering amplitude

f (ϑ) = − µ

2π h̄2

∫
e−iKRU(R′)dR′. (2.13)

Here K = qn − q is the variation of the wave vector for the relative motion of
particles due to collision, and formula (2.13) is named the Born approximation.
The relation between the wave vector variation K and the scattering angle ϑ is
K = 2q sin(ϑ/2).
The Born approximation is valid if the interaction potential is small compared

to the kinetic energy for distances between colliding particles, R ∼ 1/q, where
scattering proceeds. This gives the following criterion for the Born approximation:

U
(
1
q

)
� ε . (2.14)

2.3
Elastic Scattering of Classical Particles

� Problem 2.11 Represent the relation between the impact parameter of collision
and the distance of the closest approach for elastic scattering of particles when
their interaction potential is isotropic.
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Thus scattering of colliding particles can be represented as a motion of a single
particle of the reduced mass µ of colliding particles in the center-of-mass frame of
reference, where this particle is moving in the central interaction potential. Figure
2.3 gives the trajectory of classical particles in the center-of-mass system when the
central interaction potential is isotropic, i. e., it depends only on the scalar distance
between the particles | R1 − R2 |. The basic parameters of the collision are the
impact parameter ρ and the distance of the closest approach ro. We determine
below the relation between these parameters.

Fig. 2.3 Trajectory for relative motion of particles in the center-of-mass
frame of reference and collision parameters: 0 is a position of a scatter-
ing center, ρ is the impact parameter of collision, ro is the distance of
closest approach, ϑ is the scattering angle.

Let us use conservation of the momentum of a reduced particle moving in the
central field if U = U(R). Its momentum at large distances between the particles
is µρv and coincides with the momentum µvτro at the distance of the closest ap-
proach, where v =| v1 − v2 | is the relative velocity of the particles, and vτ is the
tangential component of the velocity at the distance of the closest approach. Since
the normal component of the velocity is zero at the distance of the closest approach,
we have from the energy conservation that µv2τ/2 = µv2/2−U(ro). From this we
obtain the expression

1 − ρ2

r2o
=
U(ro)

ε
, (2.15)

where ε = µv2/2 is the kinetic energy of the particles in the center-of-mass frame
of reference.

� Problem 2.12 Determine the cross section of collision when colliding particles,
e. g., an electron or a single charged ion and a spherical cluster of radius ro and
charge Z, are contacted.

The colliding particles are contacted if the distance of the closest approach in their
collision does not exceed the cluster radius. According to formula (2.15) this takes
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place if the impact parameter of collision does not exceed the value ρo, which
follows from the relation

ρ2o = r
2
o

[
1 +

U(ro)
ε

]
= r2o +

Ze2ro
ε

,

where we take the interaction potential of opposite charged particles to be U(R) =
−Ze2/R. This leads to the cross section of collisions when colliding particles are
contacted, i. e., an electron or ion reaches the cluster surface,

σ = πρ2o +πro
Ze2

ε
. (2.16)

� Problem 2.13 For a spherical interaction potential U(R) of classical particles de-
termine the angle of particle scattering at a given impact parameter of collision.

Separating the velocity of a reduced particlemoving in a central field with tangential
and normal motion, we obtain from the conservation of the total energy of normal
components

µv2R
2

+
µv2τ
2

= ε −U(R) ,

where vR = dR/dt and vτ = vρ/R = Rdϑ/dt are the normal and tangential velocity
components. This relation allows us to determine evolution of the trajectory angle
as

dϑ

dR
=

vτ

vR
=

ρ

R2
√
1 − ρ2

R2 − U(R)
ε

.

Solving this equation with taking into accounting the symmetry with respect the
time reversal R(t) = R(−t) and the boundary conditions R(∞) = ∞, R(0) = ro, we
find the total scattering angle

ϑ = π − 2
∞∫
ro

ρdR

R2
√
1 − ρ2

R2 − U(R)
ε

. (2.17)

According to this ϑ = 0 at U(R) = 0. This formula gives the scattering angle in the
classical case.

� Problem 2.14 Estimate the cross section of scattering by a large angle.

Processes in ensembles of weakly interacting particles determine an equilibrium of
this ensemble resulted from particle interaction that proceeds in particle collisions.
For classical particles their behavior inside a gas is described by the trajectories
of particles, and the curvature of trajectories is of importance for establishing
an equilibrium and some properties of the ensemble. As a result, a remarkable
change of the direction of a particle trajectory is determined by strong collisions
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with surrounding particles which are accompanied by scattering by a large angle in
collisions of the particles. Thus, the typical cross section of large-angle scattering
is of importance for some properties of an ensemble.
Let us estimate a typical cross section for elastic scattering by large angles. In this

case the interaction potential at the distance of the closest approach is comparable
to the kinetic energy of the colliding particles, and this cross section is given by
the relation

σ = πρ2o, where U(ρo) ∼ ε . (2.18)

In particular, for the interaction potential U(R) = AR−k the cross section of scat-
tering by a large angle according to this formula is given by

σ ≈ π

(
A
ε

)2/k

. (2.19)

� Problem 2.15 Find the differential and diffusion cross section for collision of par-
ticles within the framework of the hard sphere model.

The interaction potential between particles for the hard sphere model has the form
of a hard infinite wall (see Fig. 2.4), which is given by the relation

U(R) = 0, r > Ro, U(R) = ∞, r < Ro, (2.20)

where Ro is the hard sphere radius. The dependence of the distance of the closest
approach on the impact parameter is given in Fig. 2.5, and Fig. 2.6 shows the
character of scattering at such a collision. According to Fig. 2.6, the scattering angle
in this collision is equal to ϑ = π − 2α, and sin α = ρ/Ro, i. e., ρ = Ro cos(ϑ/2). This

Fig. 2.4 The interaction potential of colliding particles as a function
of a distance between them: dotted line corresponds to the interaction
potential, a solid line is an approximation of this interaction potential
for the hard sphere model.
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Fig. 2.5 The character of particle scattering for the hard sphere model:
R = ro is the hard sphere radius, ρ is the impact parameter of collision,
ϑ is the scattering angle.

Fig. 2.6 The dependence of the distance of closest approach ro on the
impact parameter of collision ρ for the hard sphere model.

leads to the following differential cross section:

dσ = 2πρdρ =
πR2o
2

d cos ϑ , (2.21)

and the diffusion cross section for the hard sphere model is equal to

σ∗ =
∫

(1 − cos ϑ)dσ =
1∫

−1

πR2o
2

(1 − cos ϑ)d cos ϑ = πR2o. (2.22)

� Problem 2.16 Determine the capture cross section for collision of particles inter-
acting through the potential U(R) = −CR−k.

The dependence of the impact parameter on the distance of the closest approach
for the above interaction potential is determined on the basis of formula (2.15) and
is represented in Fig. 2.7. One can see two branches for this dependence ρ(ro) that
are separated by the minimum. Region 2 is stable, whereas region 1 corresponds
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Fig. 2.7 The dependence of the distance of closest approach ro on
the impact parameter of collision ρ for the the interaction potential
U(R) = −CR−k , so that this dependence for collision of free particles is
given by curve 1, and motion of bound particles corresponds to curve 2.
ρc is the impact parameter of collision below which the capture of par-
ticles takes place, Rc the distance of closest approach for this impact
parameter.

to the bound state of particles, and then ρ characterizes the particle momentum in
the bound state. Regions 1 and 2 are separated by the impact parameter ρc and the
distance rc of the closest approach. For collisions at the impact parameters below
ρc the distance of the closest approach is zero. In reality the interaction poten-
tial at small distances between atomic particles corresponds to repulsion because
of the exchange interaction, and therefore the distance of the closest approach is
determined as U(rmin) = 0, but at thermal collisions rmin � rc.
As for the interaction potential of particles under consideration U(R) = −CR−k,

the distance of the closest approach follows from formula (2.15) at ρ ≥ ρc and is
zero at ρ < ρc. Therefore at small impact parameters the capture of particles takes
place, which leads to the approach of particles up to zero distance, if the interaction
potential corresponds to attraction. As follows from formula (2.15), the distance of
the closest approach ro and the impact parameter ρc at this distance are given by

rc =
[
C(k− 2)

2ε

]1/k
, ρc =

(
k

k− 2

)1/2 [C(k− 2)
2ε

]1/k
. (2.23)

From this it follows that the capture cross section

σc = πρ2c =
πk
k− 2

[
C(k− 2)

2ε

]2/k
. (2.24)

Let us consider the case of polarization interaction of an ion and atom, when the
interaction potential is U(R) = −αe2/(2R4), where α is the atomic polarizability.



2.3 Elastic Scattering of Classical Particles 45

Then the polarization cross section for capture of an atom by an ion is equal to

σc = 2π

(
αe2

µv2

)1/2

. (2.25)

� Problem 2.17 Obtain the criterion of reality for the capture cross section deter-
mined in a real situation.

A real dependence for the pair interaction potential is given in Fig. 2.8. This inter-
action potential is characterized by the minimum

U(Re) = −D

at a distance Re between atomic particles. Evidently, the capture cross section (2.24)
can be used in the case of this interaction potential if the collision energy ε satisfies
the criterion

ε � D .

Then scattering of atomic particles is determined by a long-range part of the in-
teraction potential that corresponds to distances between atomic particles R > Re.
Then, approximating the interaction potential by the dependence U(R) = −CR−k,
one can use formula (2.24) for the capture cross section. For this approximation
we take Ro from the relation |U(Ro)| = ε, and the parameter k of the interaction
potential is

k = −RoU ′(Ro)
U(Ro)

. (2.26)

Figure 2.9 shows the dependence ro(ρ) for a real interaction potential, and capture
of particles takes place at low collision energies.

Fig. 2.8 A typical interaction potential of two atomic particles as a
function of a distance between them.
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Fig. 2.9 The dependence of the distance of closest approach ro on
the impact parameter of collision ρ for a typical interaction potential
of two atomic particles. 1, 2 – free motion of colliding particles if the
impact parameter is above and below ρc, so that particles are scattered
or captured. Region 3 relates to bound particles.

� Problem 2.18 Find the cross section of mutual neutralization in collisions of
positive and negative ions within the framework of the model according to which
the exchange event takes place if the distance between colliding particles is less
than Ro.

This process of electron transition proceeds according to the scheme

A+ + B− → A∗ + B (2.27)

and results in the electron transition from the atom field B to the field of the posi-
tive ion A+. This process proceeds at enough strong interaction when the distance
between colliding particles is not large. For the above model, the cross section of
this process according to formula (2.15) is given by

σ = πR2o +
πRoe2

ε
, (2.28)

where we take the interaction potential of colliding particles as U(R) = e2/R.

� Problem 2.19 Determine the scattering angle for collision of particles with a
sharply varied repulsive interaction potential.

We use below a small parameter 1/k, where k = −d lnU(R)/dR. In the zero-th
approximation we obtain the hard sphere model for an interaction potential. Then
the distance of the closest approach is ro = ρ, ρ ≥ Ro; ro = Ro, ρ ≤ Ro, and
according to formula (2.17) the scattering angle at ρ ≤ Ro is equal to

ϑ = π − 2 arcsin
ρ

ro
.
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Representing the first approximation in the form

ϑ = π − 2 arcsin
ρ

ro
+ 2∆ϑ ,

we have

∆ϑ =
∞∫
ro

ρdR
R2


 1√

1 − ρ2

R2

− 1√
1 − ρ2

R2 − U(R)
ε


 .

The above expression for the scattering angle is exact, and ∆ϑ ∼ 1/k, i. e., pro-
portional to a small parameter of the problem. We determine the first expansion
term of ∆ϑ over 1/k. In order to avoid the divergence in the integral for ∆ϑ, we use
the relation

− d
dρ

∞∫
ro

dR

(√
1 − ρ2

R2
− U(R)

ε
−
√
1 − ρ2

R2

)

= −dro
dρ

√
1 − ρ2

R2
+

∞∫
ro

ρdR
R2


 1√

1 − ρ2

R2

− 1√
1 − ρ2

R2 − U(R)
ε


 .

From this it follows that

∆ϑ =
dro
dρ

√
1 − ρ2

R2
− d

dρ

∞∫
ro

dR

(√
1 − ρ2

R2
− U(R)

ε
−
√
1 − ρ2

R2

)
.

Taking into account that the above integral converges near R = ro(R− ro ∼ 1/k),
one can calculate this integral with the accuracy of the order of 1/k:

−
∞∫
ro

dR

(√
1 − ρ2

R2
− U(R)

ε
−
√
1 − ρ2

R2

)
≈

√
1 − ρ2

r2o

∞∫
ro

dR


1 −

√
1 − rko

Rk




=
√
r2o − ρ2

1∫
0

1 −
√
1 − x

kx1+1/k
dx

=
2
k
(1 − ln 2)

√
r2o − ρ2,

where

x =
U(R)

ε

1√
1 − ρ2

R2

=
rko
Rk .

From this we have

∆ϑ =
dro
dρ

√
1 − ρ2

R2
+
2
k
(1 − ln 2)

d
dρ

√
r2o − ρ2 .
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Let us introduce the value u = U(ro)/ε = 1 − ρ2/r2o . Since k � 1 and in the
scattering region the value u is close to unity, we obtain from the above formulas

ϑ = 2 arcsin
√
u + 2

[
2− (k− 2) ln 2

k

] √
u(1 − u)

1 + (k− 2)u/2

≈ 2 arcsin
√
u− 2 ln 2

√
u(1 − u)
1 + ku/2

, (2.29)

where k = −d ln u/dro. We conserve 1 in the denominator of this formula in order
to have the possibility for expansion of this formula at small scattering angles.

� Problem 2.20 Determine the diffusion cross section of elastic scattering of parti-
cles as a result of expansion over a small parameter for scattering of particles with
a sharply varied repulsion interaction potential.

According to the definition of the diffusion or transport cross section (2.6) and
taking into account that collisions with u ∼ 1 give the main contribution to the
diffusion cross section, we have on the basis of formula (2.29) the scattering angle

ϑ = 2 arcsin
√
u− 4 ln 2

k

√
1 − u
u

.

From this we find the diffusion cross section

σ∗ = 2π

1∫
0

u
[
(1 − u)dr2o − r2odu

]
+π

1∫
0

4 ln 2
k

√
1 − u
u

· 2
√
u(1 − u)r2odu .

Since u = 1 − ρ2/r2o , we use the relation dρ2 = (1 − u)dr2o − r2odu. Taking into
account that the first term is ∼ k times less than the second one, we take the
second integral on parts. This gives

−2π

1∫
0

ur2odu = π

1∫
0

r2odu
2 = πr2o

∣∣∣1
0
− π

1∫
0

u2dr2o

= πR2o +
2π

k

1∫
0

r2oudu = πR2o

(
1 +

1
k

)
,

where u(Ro) = 1. We use u ∼ r−k
o , so that dro/ro = −du/(ku). Note that ρ = 0

corresponds to u = 1, and ρ = ∞ corresponds to u = 0. Repeating these steps for
the other integral and keeping only terms of the order of 1/k, we finally find

σ∗ = πR2o

(
1 +

3− 4 ln 2
k

)
.

If we represent the diffusion cross section in the form σ∗ = πR21 , we have R1 =
Ro + (3− 4 ln 2)/(2k). This gives

u(R1) = (Ro/R1)k = exp(−3/2 + 2 ln 2) = 4 exp(−3/2) = 0.89 .
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Thus, the diffusion cross section has the form

σ∗ = πR21 , where
U(R1)

ε
= 0.89. (2.30)

� Problem 2.21 Determine the diffusion cross section of collision for particles with
the polarization potential of interaction U(R) = −αe2/(2R4).

Formula (2.29) for the scattering angle takes the form in this case

ϑ = π − 2
∞∫
ro

ρdR

R2
√
1 − ρ2

R2
+

αe2

2R4ε

.

Here the distance of the closest approach ro is zero if the impact parameter of
collision ρ ≤ ρc, where ρc =

√
2[αe2/(2ε)]1/4 according to formula (2.15) and it is

given by formula (2.15) for ρ > ρc. We divide the range of impact parameters into
two parts, ρ ≤ ρc and ρ > ρc. Introducing the reduced variables x = [αe2/(2εR4)]1/4

and y = ρ/ρc, we obtain for the diffusion cross section

σ∗ = σc (1 + J1 + J2) ,

where σc = πρ2c = 2π
√

αe2/ε according to formula (2.25) is the cross section of
capture of an atom in the polarization interaction potential, the integrals are in the
expression for the diffusion cross section

J1 =
1∫
0

2ydy cos
∞∫
0

2y
√
2dx√

1 + x4 − 2x2y2
,

J2 =
∞∫
1

2ydy


1 + cos

xo∫
0

2y
√
2dx√

1 + x4 − 2x2y2


 ,

and the distance of the closest approach is xo = y2 −
√
y4 − 1. These integrals are

calculated by numerical methods and are equal to J1 = −0.101, J2 = 0.207. Thus
the diffusion cross section of scattering in the polarization interaction potential is

σ∗ = 1.10σc, (2.31)

i. e., the contribution to the diffusion cross section from collisions with the impact
parameters larger ρc is approximately 10%.

� Problem 2.22 Determine the diffusion cross section of two charged particles in
an ideal plasma that satisfies the criterion (2.9).

The interaction potential of two charged particles of the same charge e according
to formula (1.55) is given by

U = eϕ =
e2

r
exp

(
− r
rD

)
, (2.32)
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where r is the distance between charged particles, rD is the Debye–Hückel radius
(1.55) and for an ideal plasma under consideration (2.9) it is large compared to an
average distance between charged particles in a plasma. Therefore, a pair collision
of charged particles in an ideal plasma is determined by the Coulomb interaction
potential (U = e2/r) between colliding particles.
The diffusion cross section of collision of two charged particles in a plasma is

determined by small scattering angles, so that it is equal to

σ∗ =
∫

(1 − cos ϑ)2πρdρ ≈
∫

ϑ2πρdρ , (2.33)

where ρ is the impact parameter of the collision. The scattering angle is ϑ = ∆p/p,
where ∆p is the variation of the particle momentum, p = µg is the momentum of
the colliding particles in the center-of-mass frame, meaning that µ is the reduced
mass of the particles and g is the relative velocity of the particles. We have for
the variation ∆p of the relative momentum of colliding particles at scattering at
small angles when the trajectory of colliding particles in the center-of-mass frame
of reference is straightforward,

∆p =
∞∫

−∞

Fdt ,

where F = e2n/r2 is the force acted on the reduced particle moving in the Coulomb
field of the force center, and n is the unit vector in the direction joining the force
center and the reduced particle. We have

∆p =
∞∫

−∞

e2ρ

r3
dt =

2e2n
ρv

, (2.34)

where n is the unit vector directed along the impact parameter of collision ρ, and
we use the relation for a straightforward trajectory r2 = ρ2 + v2t2. From this we
obtain for the scattering angle

ϑ =
e2

ερ
, (2.35)

where ε = µg2/2 is the particle energy in the center-of-mass frame of reference.
Substituting this expression in formula (2.33) for the diffusion cross section of

charged particles, we obtain

σ∗ ≈
∫

ϑ2πρdρ =
πe4

ε2

∫ dρ

ρ
. (2.36)

This integral diverges in limits of both the small and large impact parameters of
collision. The divergence at small impact parameters is due to violation of the as-
sumption of small scattering angles. This limit should really correspond to ϑ ∼ 1,
or ρmin ∼ e2/ε. The divergence at large impact parameters is caused by the infinite
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range of unscreened Coulomb interaction potential of charged particles in a vac-
uum, e2/r. Replacing it by the interaction potential (2.32) in a plasma, we obtain
the Debye–Hückel radius as the upper limit of integration. As a result, we have for
the diffusion cross section for the scattering of two charged particles

σ∗ =
πe4

ε2
lnΛ, Λ = rDe2/ε , (2.37)

where the quantity lnΛ is the so-called Coulomb logarithm. According to its defi-
nition, Λ � 1, and the accuracy of lnΛ is determined by a factor of the order of 1.
Thus, the accuracy of formula (2.37) improves with an increase in the Coulomb
logarithm.

� Problem 2.23 Within the framework of the liquid drop model determine the rate
of atom attachment to the cluster surface from a surrounding vapor. Consider atom
attachment to the cluster surface as a result of an atom–cluster contact.

Within the framework of the liquid drop model, the cluster Mn, which is a system
of n bound atoms M, is considered as a bulk liquid drop of spherical form whose
density coincides with the density of the bulk liquid. Then the radius rn of such a
cluster is connected with the number of cluster atoms n by the relation

rn = rW · n1/3, rW =
(
3m
4πρ

)1/3

, (2.38)

where rW is the Wigner–Seitz radius, m is the mass of an individual atom, and ρ

is the density of the bulk liquid.
The process of atom attachment is

Mn +M → Mn+1 ,

and we assume each contact of atom with the cluster surface leads to its sticking.
Then the process of atom–cluster collision with atom attachment to the cluster
surface is determined by the cross section σn = πr2n = πr2Wn

2/3, and the rate of
atom attachment, i. e., the atom flux to the cluster surface, is equal to

νn = Nvσn = Nkon2/3, where ko =

√
8T
πm

πr2W. (2.39)

Here v is the average atom velocity, T is the gaseous temperature, and m is the
atom mass.

2.4
Phase Theory of Particle Elastic Scattering

� Problem 2.24 A particle is scattered at a force center, and the force is spherically
symmetric. Introduce the scattering phases as characteristics of scattering by ex-
pansion of the particle wave function over spherical harmonics.
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Let us consider formula (2.11) for the asymptotic wave function of a scattering
particle far from the scattered center, which has the form

ψ(R) = C
[
eiqR + f (ϑ)

eiqR

R

]
,

where R is the particle coordinate with the force center as the origin of the frame
of reference, q is the particle wave vector, ϑ is the scattering angle, and f (ϑ) is the
scattering amplitude.
Let us expand the particle wave function over spherical harmonics. For quantities

of this formula we have

ψ(R) =
1
R

∞

∑
l=0

Alϕl(R)Pl(cos ϑ), (2.40)

eiqR =
√

π

2qR

∞

∑
l=0

il(2l + 1)J2l+1/2(qR)Pl(cos ϑ), (2.41)

f (ϑ) =
∞

∑
l=0

flPl(cos ϑ). (2.42)

Here Pl(cos ϑ) is the Legendre polynomial, J2l+1/2(qR) is the Bessel function whose
asymptotic form at large values of the argument has the following form:

J2l+1/2(x) =

√
2

πx
sin(x − πl/2)

The particle radial wave functions are solutions of the Schrödinger equations

d2ϕl

dR2
+
[
q2 − 2µU(R)

h̄2
− l(l + 1)

R2

]
ϕl = 0, (2.43)

and their asymptotic form is

ϕl(R) =
1
q
sin(qR− πl

2
+ δl). (2.44)

The quantities δl are the scattering phases which describe scattering of particles.
Expansions (2.41) and (2.42) are expressed through the scattering phases by the
relations

Al = eiδl (2l + 1)il , fl =
1
2iq

(2l + 1)(e2iδl − 1). (2.45)

Because the coefficients fl characterize the scattering amplitudes, the scattering
phases δl describe scattering of a particle in a given central field.

� Problem 2.25 Within the framework of the phase theory express the diffusion and
total cross section of scattering through scattering phases.
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Let us use expression (2.12) for the differential cross section of elastic scattering,
expansion (2.42) of the scattering amplitude over spherical harmonics and the dif-
fusion σ∗ and total σt cross sections of particle scattering. As a result, we obtain
for the total and diffusion cross sections of scattering of atomic particles

σ∗ =
1∫
0

∣∣ f (ϑ)
∣∣2 (1 − cos ϑ)2πd cos ϑ =

4π

q2
∞

∑
l=0

(2l + 1) sin 2(δl − δl+1) (2.46)

σt =
1∫
0

∣∣ f (ϑ)
∣∣2 2πd cos ϑ =

4π

q2
∞

∑
l=0

(2l + 1) sin 2δl . (2.47)

� Problem 2.26 Obtain expressions for the scattering phases in the Born approxi-
mation.

Let us use relation (2.11) and expand it over spherical harmonics. Separating l-
spherical harmonic, we obtain for the scattering phase the following equation:

sin δl = − µ

h̄2
√
2πq

∞∫
0

√
RJl+1/2(qR)ϕl(R)U(R)dR. (2.48)

Since ϕl(R) is the correct particle wave function, we obtain an equation for the
radial wave function. In the Born approximation one can change the radial wave
function by its expression in the absence of interaction, when the radial wave func-
tion has the form

ϕl(R) =

√
πR
2q

Jl+1/2(qR) .

This gives the following formula for the scattering phase in the Born approxima-
tion:

δl = −πµ

h̄2

∞∫
0

U(R)
[
Jl+1/2(qR)

]2 RdR. (2.49)

In particular, in the case of electron–atom scattering and the polarization interac-
tion potential between them, when U(R) = −αe2/(2R4), this formula gives

δl =
παq2

(2l − 1)(2l + 1)(2l + 3)ao
, (2.50)

where ao = h̄2/(me2) is the Bohr radius. This formula is valid if the main contribu-
tion to the integral gives large distances between an electron and atom, R ∼ 1/q �

ao, where the polarization interaction takes place. One can see that it is not valid
for the zero-th scattering phase, because the integral diverges in this case.
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� Problem 2.27 Derive the quasiclassical expressions for scattering phases.

We use the quasiclassical solution of the Schrödinger equation (2.43) for the radial
wave function that has the form

ϕl(R) = C sin


q R∫

ro

dR′
√
1 − U(R′)

ε
− (l + 1/2)2

q2R2
+

π

4


 .

Here ro is the classical turning point, or the distance of the closest approach at
which the integrand equals zero. Since the quasiclassical solution is valid at large
momenta l � 1, we simplify this formula by replacing in it l(l + 1) by (l + 1/2)2.
Comparing at large distances this radial wave function with its asymptotic ex-

pression (12.3), we obtain from this formula for the scattering phase in the quasi-
classical approximation:

δl = lim
R→∞


q R∫

ro

dR′
√
1 − U(R′)

ε
− (l + 1/2)2

q2R2
+

π

2
(l +

1
2
) − qR


 . (2.51)

� Problem 2.28 Show the correspondence between the phase theory of scattering
and the classical theory in the case when classical criterion is fulfilled.

Taking formula (2.12) for the differential cross section of elastic scattering and
expansion (2.42) for the scattering amplitude for spherical harmonics, we obtain
the following formula, which connects the differential cross section in an element
of solid angle dΘ = 2πd cos ϑ with scattering phases:

dσ = 2πd cos ϑ
∣∣ f (ϑ)

∣∣2
=

πd cos ϑ

2q2
∞

∑
l=0

∞

∑
n=0

(2l + 1)(2n + 1)Pl(cos ϑ)Pn(cos ϑ) exp(2iδl − 2iδn).

Being guided by the quasiclassical limit, we will consider large momenta l and not
small scattering angles ϑ, so that lϑ � 1. In this limit and l � 1 the Legendre
polynomials have the following asymptotic form:

Pl(cos ϑ) =

√
2 sin [(l + 1/2) ϑ +π/4]√

π(2l + 1) sin ϑ
, lϑ � 1 .

From this we have for the differential cross section

dσ =
dϑ

q2
∞

∑
l=0

∞

∑
n=0

√
(2l + 1)(2n + 1)

{
cos [(l − n)ϑ] − cos

[
l + n + 1

2
ϑ

]}
exp(2iδl − 2iδn).

Since the main contribution to these sums in the classical limit gives large collision
momenta l, we replace the sums by integrals. Because of oscillations of cosines,
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the second term does not give a contribution to the result, while the integral for
the first term converges near l = n. Therefore integrating over dn we obtain

dσ =
πdϑ

q2

∞∫
0

(2l + 1)dl
[

δ

(
2
dδl
dl

− ϑ

)
+ δ

(
2
dδl
dl

+ ϑ

)]
.

Let us introduce an impact parameter of collision as ρ = (l + 1/2)/q and the
scattering angle in the classical limit from the relation

ϑcl = ±2dδl
dl
, (2.52)

where the plus sign corresponds to a repulsion interaction potential and minus
relates to an attractive one. From this we obtain the classic cross section of elastic
scattering (formula 2.6)

dσ = 2πρdρ .

In this formula the angle of classical scattering ϑcl is connected with the impact
parameter of collision ρ by the classical formula (2.17). One can obtain this formula
on the basis of formula (2.52) by using the quasiclassical expression (2.51) for the
scattering phase. This gives

π ± ϑcl
2

=
∞∫
ro

ρdr√
1 −U(R)/ε − ρ2/R2

,

which is in accordance with formula (2.17) for a repulsed interaction.

� Problem 2.29 Show the oscillation character of the differential cross section of
elastic scattering for atomic particles interacted through a realistic interaction po-
tential (see Fig. 2.8) due to scattering near the rainbow point.

Because of the correspondence between the classical and quantum formalism, one
can include peculiarities of the quantum character of particle scattering in the
range where the classical criterion is fulfilled. Indeed, in the classical approach
the scattering amplitude is a real value, while in the quantum case it is a complex
value. Hence, one can represent the scattering amplitude in the classic limit in the
form

f (ϑ) = fcl(ϑ)eiηl ,

where fcl(ϑ) is the classical scattering amplitude, so its square is the classical dif-
ferential cross section of scattering, and the quasiclassical phase ηl reflects the
quantum nature of this quantity. This formula is valid in the classical limit for
large momenta l � 1.
Figure 2.10 gives the dependence of the classical scattering angle on the impact

parameter ρ or collision momentum l = µρv/h̄ for the realistic interaction potential
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Fig. 2.10 The dependence of the classical scattering angle on an impact
parameter of collision. The rainbow point corresponds to the maximum
scattering angle in an attractive direction, and the glory point relates to
the maximum of the scattering phase.

of particles that is given in Fig. 2.8 and corresponds to attraction of particles at large
distances between them and their repulsion at not so large distances. Then frontal
collisions are characterized by the scattering angle ϑ = π; at large impact parame-
ters the scattering angle tends to zero, and for an attractive interaction potential it
is negative. Therefore, the scattering angle as a function of the impact parameter
of collision has a negative minimum, the rainbow point. Near this point identical
scattering angles correspond to two different impact parameters of collision in the
region of negative angles of scattering. Hence, the scattering amplitude near the
rainbow can be represented in the form

f (ϑ) = f1(ϑ)eiη1 + f2(ϑ)eiη2 ,

where f1 , f2 are the classical scattering amplitudes and are positive values. Corre-
spondingly, the differential cross section for a given negative scattering angle is

dσ

dΩ
= f 21 + f 22 + 2 f1 f2 cos(η1 − η2) .

The phases η1 , η2 are monotonic functions of both the impact parameter of col-
lision and collision velocity. Therefore, the differential cross section of scattering
has an oscillating structure in the range of negative scattering angles as a function
of both the scattering angle and the collision velocity.

� Problem 2.30 Find the behavior of scattering phases for scattering of a slow elec-
tron in an atom.
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When the electron velocity v tends to zero, the scattering phases δl also tend to zero,
and formula (2.48) allows us to find the threshold behavior of phases. In the case
of a short-range electron–atom interaction, when ϕl(R) ∼ Rl near the atom, the
scattering phase is δl ∼ q2l+1 at low values of the electron wave vector q. Hence,
at low electron energies the main expansion term gives δ0 = −Lq, and it is the
definition of the electron–atom scattering length L. The cross section of scattering
of a slow electron in an atom is equal to

dσ

d cos ϑ
= 2πL2, σt = σ∗ = 4πL2. (2.53)

As is seen, in contrast to collision of classical particles, the total cross section and
the cross section of scattering by a large angle are equal. From this formula it
follows that electron scattering is isotropic at zero energy, i. e., the cross section is
determined by scattering of s-electron. Next, the scattering length may be expressed
through the wave function of the scattered electron Ψ as

d lnΨ

dr

∣∣∣∣
r=0

= − 1
L
,

where r is the distance of the scattering electron from the atom center. Note that
this character of electron scattering takes place in the case of a short-range electron–
atom interaction potential (Fermi potential)

Ush = 2πL
h̄2

me
δ(r), (2.54)

where r is the electron coordinate.
The above dependence of scattering phases on the electron wave vector q at its

low values results for a weak penetration of an electron in an atom region. In
the case of a long-range interaction potential the dependence is different because
scattering at any electron momentum is determined by a region far from the atom
center. In particular, for the polarization interaction potential the scattering phases
are proportional to q2 at small q according to formula (2.50).

� Problem 2.31 Within the framework of the phase theory of scattering obtain the
expression for the differential cross section of scattering of a slow electron by an
atom by taking into account the short-range and polarization electron–atom inter-
actions.

Along with a short-range electron–atom interaction, a long-range interaction can
give a contribution to parameters of electron–atom scattering. In contrast to a short-
range interaction, at low collision energies the contribution from a long-range
interaction is determined by an electron region far from the atom where coordi-
nates of scattered and atomic electrons may be separated. At low electron energies
the main long-range interaction corresponds to the polarization electron–atom in-
teraction, and the total electron–atom interaction potential for a slow electron has
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the form

U(r) = Ush − αe2

2r4
.

We treat this within the framework of the perturbation theory that is valid because
scattering as a result of the polarization interaction is determined by large electron–
atom distances where this interaction is small in comparison with the electron
kinetic energy. Then we have for the scattering amplitude

f (ϑ) = −L− me

2π h̄2

∫
αe2

2r4
[1 − exp(−iK r)] dr ,

where K = |q − q′| = 2q sin ϑ/2 is the variation of the electron wave vector as a
result of scattering. This formula gives for the scattering amplitude at low electron
velocities

f (ϑ) = −L− πα

4ao
K = −L− παq

2ao
sin

ϑ

2
, (2.55)

where ao = h̄2/(mee2) is the Bohr radius. This gives for the total and diffusion
cross sections of electron–atom scattering at low electron energies

σt = 4πL2
(
1 − 4

3
x +

1
2
x2
)
, σ∗ = 4πL2

(
1 − 8

5
x +

2
3
x2
)
, x = − παq

2Lao
. (2.56)

These formulas exhibit a sharp minimum for the cross sections of electron–
atom scattering (see Fig. 2.11) at small collision energies if the scattering length L
is negative (the Ramsauer effect), and the reason of this effect is such that the zero-
th phase is zero δ0 when the contribution of other phases to the cross section is
relatively small because of a low electron energy. The Ramsauer effect is observed
in elastic scattering of electrons in argon, krypton, and xenon atoms. As follows
from formula (2.56), the total cross section in this approximation has the mini-
mum 4πL2/9 at the electron wave number qmin = −8Lao/(3πα) (x = 4/3). The

Fig. 2.11 Electron-atom xenon diffusion cross section as a function of
the electron energy according to different experimental data and their
approximation. The electron-atom scattering length in the xenon case is
negative.
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minimum of the diffusion cross section in this approximation is equal to 4πL2/25
and corresponds to the electron wave vector qmin = −12Lao/(5πα) (x = 6/5) ac-
cording to formula (2.56). Thus, within the framework of this approximation, the
scattering cross section drops by an order of magnitude at low electron energies.

2.5
Total Cross Section of Elastic Collision

� Problem 2.32 Show that the total cross section of elastic collision σt =
∫
dσ, which

results from integration of the differential cross sections over all solid angles, is
infinity in the classical limit.

We assume that interaction of colliding particles takes place at any large distance
between them. This means that scattering of particles takes place at any impact pa-
rameters of collision, and therefore the integral is taken for all impact parameters.
As a result, we obtain the infinite total cross section of scattering in this case.

� Problem 2.33 Estimate the total cross section of elastic collision for classical par-
ticles.

Our consideration for the total cross section of classical particles was based on
an assumption that the classical character of scattering holds true at any impact
parameters of particle collisions, but it is not valid at large impact parameters.
Indeed, let us determine the variation of the particle’s momentum when particles
are moving along classical trajectories. This value is given by

∆p =
∞∫

−∞

Fdt ,

where F = −∂U/∂R is the force with which one particle acts upon the other, and
U is the interaction potential between the particles. This leads to an estimate for
the momentum variation ∆p ∼ U(ρ)/v.
In order to account for the classical description of scattering at small angles, we

use the Heisenberg uncertainty principle, so that the value ∆p can be determined
up to an accuracy of h̄/ρ. From this it follows that impact parameters which give the
main contribution to the total scattering cross section satisfy the relation ∆p(ρ) ∼
h̄/ρ. As a result, we obtain the following estimate:

σt ∼ ρ2t , where
ρtU(ρt)

h̄v
∼ 1 (2.57)

for the total scattering cross section.
In particular, for the interaction potential of classical particles in the formU(R) =

C/Rk, the total cross section is

σt ∼
(
C
h̄v

)2/(k−1)
.
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Since the scattering cross section is determined by quantum effects, it tends to
infinity in the classical limit h̄ → 0.
Particle motion will obey classical laws if the kinetic energy ε satisfies the condi-

tion

ε �
h̄
τ
, (2.58)

where τ is a typical collision time. Since τ ∼ ρ/v and ε = µv2/2, it follows that
the angular momentum of the particles l = µρv/h̄ � 1. If this criterion is valid, a
description that the motion of the particles follows classical trajectories holds true.

� Problem 2.34 Prove that for classical particles the total cross section of elastic
collision exceeds significantly the cross section of particle scattering by a large
angle.

Let us use the estimations (2.18) for the large-angle scattering cross section and
(2.57) for the total cross section and assume the interaction potential of colliding
particles U(R) to be a monotonic function of the distance R between particles.
From the indicated formulas we have

U(ρo)
U(ρt)

∼ µρtv
h̄

= l � 1 ,

where l is the orbital momentum of colliding particles, which is large for classical
particles. Thus, for collision of classical particles we have ρt � ρo because of a
monotonic dependence U(R), and this gives

σt � σ. (2.59)

Note that if scattering of atomic particles has a quantum nature, the large-angle
scattering cross section and the total scattering cross section have the same order of
magnitude. This is typical for elastic scattering of electrons in atoms andmolecules.

� Problem 2.35 Express the total cross section of elastic scattering through the clas-
sical scattering phase in the classical limit.

In the classical limit large collision momenta l give the main contribution to the
cross section. Introducing the impact parameter of collision ρ = l/q and replacing
the summation in formula (2.47) by integration, we find for the total cross section
of elastic scattering from this formula,

σt =
∞∫
0

8πρdρ sin 2δ(ρ). (2.60)

This formula allows us to evaluate the total cross section of elastic scattering, which
is given in the classical limit

σt = 2πρ2t , where δ(ρt) ∼ 1. (2.61)

The parameter ρt is called the Weiskopf radius.
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� Problem 2.36 Find the total cross section for the interaction potential U(R) =
ARn, n � 1, in the classical limit.

Let us use formula (2.51) for the scattering phase in the classical limit. We use
that the total cross section is determined by scattering at small angles where the
interaction potential is small in comparison with the particle energy. Expanding
formula (2.51) over this small parameter, we find the scattering phase for large
collision momenta in the form

δl = − 1

h̄2

∞∫
ro

U(R)dR√
q2 − (l+1/2)2

R2

,

where the distance of the closest approach corresponds to free particle motion
ro = ρ = (l + 1/2)/q. Introducing the classical time from the relation R2 = ρ2 + v2t2,
we rewrite the above relation in the form

δl = − 1
2 h̄

∞∫
−∞

U(R)dt. (2.62)

Correspondingly, formula (2.61) can be rewritten in the form

σt = 2πρ2t , where
ρtU(ρt)

h̄v
∼ 1. (2.63)

Formula (2.62) gives the interaction potentialU(R) = ARn, n � 1, in the classical
limit l � 1,

δ = − A
2 h̄

∞∫
−∞

dt
(ρ2 + v2t2)n

= − A
√

π

2h̄vρn−1

Γ
( n+1

2

)
Γ
( n
2

) .

Substituting this in formula (2.60) for the total cross section of elastic scattering,
we obtain

σt = 2π

(
A
h̄v

) 2
n−1

[√
πΓ

( n−1
2

)
Γ
( n
2

)
] 2

n−1

Γ

(
n− 3
n− 1

)
. (2.64)

� Problem 2.37 Show the oscillation character of the total cross section of elastic
scattering in the classical limit for atomic particles interacted through a realistic
(Fig. 2.8) interaction potential.

Using the correspondence (2.52) between the scattering angle and phase, we find
that the phase δl as a momentum function has the maximum at the glory point
(Fig. 2.10), where the classical scattering angle is zero. Near this point the scattering
phase can be expanded near the glory point,

δl = δ
(o)
l + α(l − lg)2 ,
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where lg is the collision momentum at the glory point, and 2α = d2δl/dl2 at this
point. The first term corresponds to a regular part of the scattering phase and the
second one accounts for its stationary part near the glory point.
According to the general expression for the total cross section of scattering (2.47),

this form of the scattering phase gives oscillations in the total cross section. The
oscillation amplitude is ∼ 1/lg, and since lg � 1, it is relatively small.

� Problem 2.38 Find the ratio of the total cross section of elastic scattering to the
diffusion one for the polarization interaction potential U(R) = −αe2/(2R4).

We use formula (2.64) for the total polarization cross section, taking in it n = 4.
Dividing it by the cross section of polarization capture (2.25), we obtain

σt
σc

=
(π

4

)2/3
Γ

(
1
3

)(
αe2µ2v2

h̄4

)1/6

= 2.3 l2/3c ,

where lc = µρcv/h̄ is the momentum of colliding particles that restrict the capture.
Since in the classical limit lc � 1, this ratio is large.

� Problem 2.39 Find the total cross section for the sharply varied interaction poten-
tial.

Let us approximate the potential of the force center by the dependence U(R) =
A/Rn, n � 1, and use formula (2.64) for the total cross section in the limit n � 1.
We represent this formula in the form

σt = 2πρ2t , where
ρtU(ρt)

h̄v
= g

and find in the limit of large n the parameter g, which is given by

g =
Γ
( n
2

)
√

πΓ
( n−1

2

) [Γ

(
n− 3
n− 1

)] n−1
2

.

We have in this limit n � 1[
Γ

(
n− 3
n− 1

)] n−1
2
=
[

Γ(1) − 2
n

Γ′(1)
] n
2
= eψ(1)Γ(1) ,

where ψ(1) = Γ′(1)/Γ(1) = −C + 1 = 0.423. Applying the Stirling formula, we
obtain

Γ
( n
2

)
Γ
( n−1

2

) =
( n
2

) n
2√

e
( n−1

2

) n−1
2

=
√

n
2e

(
1 − 2

n

) n
2
=
√

ne
2
.

Finally, we get g =
√ ne

2π e
ψ(1) ≈ √

n, and formula (2.64) for the total cross section
of elastic scattering takes the form

σt = 2πρ2t , where
ρtU(ρt)

h̄v
=
√
n. (2.65)
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3
Slow Atomic Collisions

3.1
Slow Collisions of Heavy Atomic Particles

� Problem 3.1 Within the framework of the two-state model analyze slow collisions
of heavy atomic particles.

We consider slow collisions of heavy atomic particles–ions, atoms, andmolecules–
when the relative velocity of their collision is small compared to a typical velocity
of atom electrons, ve. Under this condition, the electron distribution in each of
the colliding atomic particles corresponds to the internal fields of the particles and
differs slightly from their distributions at fixed nuclei. Then evolution of a system
of colliding particles is described by parameters of a quasimolecule that consists
of colliding atomic particles, and the electron energies for quasimolecule states as
a function of the distance between the colliding particles are the electron terms
of the quasimolecule, and their position determines the character of collision of
atomic particles.
The transitions between states of colliding particles proceed at separations where

some electron terms occur close or are intersected. We consider below the transi-
tion between two such states, and in considering this transition, one can ignore
other quasimolecule states. Thus, we consider evolution of the system of colliding
particles on the basis of the Schrödinger equation for the wave function Ψ of this
system,

i h̄
∂Ψ

∂t
= ĤΨ, (3.1)

and we use the positions of the electron terms–the electron energies Ei as a
function of the distance R between particles, which are the eigenvalues of the
Hamiltonian at motionless nuclei

ĤΨi = Ei Ψi , (3.2)
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and Ψi are the eigenfunctions for these states. Thus, restricting by two quasimole-
cule states, we represent the wave function of colliding atoms in the form

Ψ = (c1ψ1 + c2ψ2) exp[− i
2

t∫
(H11 +H22)dt′]. (3.3)

Here H11 =
〈
ψ1

∣∣Ĥ∣∣ ψ1
〉
, H22 =

〈
ψ2

∣∣Ĥ∣∣ ψ2
〉
, and we use the atomic units me =

e2 = h̄ = 1. Substituting this expansion into the Schrödinger equation, multiplying
it by ψ∗

1 or ψ∗
2 , and integrating over electron coordinates, we obtain the following

set of equations for the probability amplitudes

i
dc1
dt

=
κ

2
c1 +

∆

2
c2, i

dc2
dt

=
∆

2
c1 − κ

2
c2 , (3.4)

where κ(R) = H11 −H22, ∆(R) = 2H12− (H11 +H22)
〈
ψ2 | ψ1

〉
. This is the diabatic

set of equations for the amplitudes c1 , c2 that describes evolution of the system of
colliding atomic particles.
Note that the solution of the stationary Schrödinger equation (3.2) allows us find

the eigenfunctions Ψ1 , Ψ2 for the two-state basis ψ1 , ψ2 that have the form

Ψ1 = a1ψ1 + a2ψ2, Ψ2 = −a2ψ1 + a1ψ2, a1,2 =

[
1
2

± κ√
κ2 +∆2

]1/2
, (3.5)

and the difference of the energies E1 , E2 of the eigenstates is

E1 − E2 =
√

κ2 +∆2. (3.6)

In particular, this consideration is valid if the basis wave functions ψ1 , ψ2 corre-
spond to the location of an electron or excitation near the first or second atomic
core, and at large distances R between colliding particles the interaction of the
particles consists of two parts, the long-range interaction, κ(R), and the exchange
interaction ∆(R), which is determined by overlapping of the wave functions which
belong to different cores.

� Problem 3.2 Determine the velocity dependence of the probability of the inelastic
transition between states of heavy slow particles at low collision velocities.

At low velocities it is convenient to expand the wave function of slow colliding
particles over eigenfunctions of the quasimolecule ψn(r,R) at a fixed distance R
between nuclei

Ψ = ∑
n
bn(t)ψn(r,R) exp


− i

h̄

t∫
εn(R)dt′


 , (3.7)

where εn(R) are the eigenvalues of the Schrödinger equation (3.2), which has the
form Ĥψn(r,R) = εn(R) ψn(r,R), and r is a sum of electron coordinates. Substitut-
ing expansion (3.7) in the Schrödinger equation (3.1) and multiplying this equation
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by the wave function ψ∗
m(r,R), integrate it over electron coordinates. As a result,

we obtain the adiabatic set of equations for the amplitudes bm,

i
dbm
dt

= ∑
n
bn(t)

(
−i

∂

∂t

)
mn

ψn(r,R) exp


−i

t∫
ωmn(R)dt′


 , (3.8)

where ωmn = [εn(R) − εn(R)]/h̄, and the matrix element is taken between eigen-
states of the quasimolecule.
The operator in equation (3.8) consists of two parts and can be represented in

the form

∂

∂t
=
dR
dt

∂

∂R
+
dθ

dt
∂

∂θ
=
dR
dt

∂

∂R
− i

dθ

dt
l̂θ ,

where l̂θ is the projection of the electron orbital momentum over the vector dθ/dt,
which is perpendicular to the axis joining cores of colliding particles.
At low collision velocities one can solve the set of equations (3.8) on the basis of

the perturbation theory taking in the zero-th approximation bn = δn0, so that the
amplitude of the transition after collision is

bm =
∞∫

−∞

(
∂

∂t

)
0m

exp


−i

t∫
ωm0(R)dt′


 dt ,

and this value is small because of fast oscillation of the integrand. One can estimate
the probability of the transition as

Pm =
∣∣bm(∞)

∣∣2 ∼ exp(−ξ) ,

and the Massey parameter ξ is

ξ =
∆E · a
h̄v

, (3.9)

where a is a typical range of distances between nuclei associated with a significant
change of the electron terms, v is the relative collision velocity, ∆E = h̄ω0m is a
minimal difference of energies for these two states of the quasimolecule. Thus,
if the Massey parameter is large, the probability of the transition is adiabatically
small, and transitions between electron states in slow atomic collisions can be a
result of intersections or pseudointersections of corresponding electronic terms.

� Problem 3.3 In the two-state approach express the probability of electron transfer
in slow collisions of an ion and the parent atom with a valence s-electron through
the energetic parameters of the quasimolecule consisting of colliding particles.

This resonant charge exchange process proceeds according to the scheme

A+ + A → A + A+ . (3.10)
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In slow collisions electrons follow for the atomic fields, and their evolution is de-
termined by the parameters of the quasimolecule that consists of colliding atomic
particles with fixed nuclei. For a slow process (3.10) with s-valence electron the
quasimolecule consisting of a colliding ion and a parent atom has a symmetry for
reflection with respect of the symmetry plane that is perpendicular to the axis join-
ing nuclei and divides it into two halves. Correspondingly, the wave function of the
quasimolecule at large distances between nuclei can be even or odd with respect to
the above operation and have the following form at large distances between nuclei:

ψg =
1√
2
(ψ1 +ψ2), ψu =

1√
2
(ψ1 − ψ2) , (3.11)

where ψ1 ,ψ2 are the wave functions which are centered at indicated nuclei. These
eigenfunctions of the electron Hamiltonian satisfy to the Schrödinger equation

Ĥψg = εgψg, Ĥψu = εuψu .

Let us consider the case when inelastic transitions are absent. The transitions of
an electron from one core to other result from the interference of two eigenstates.
Indeed, assume that at the beginning t → −∞ an electron is located near the first
nucleus, and then the electron wave function is given by the formula

Ψ(r,R, t) =
1√
2

ψg(r,R) exp


−i

t∫
−∞

εg(t′)dt′



+
1√
2

ψu(r,R) exp


−i

t∫
−∞

εu(t′)dt′

 . (3.12)

If we fix nuclei, the electron will oscillate between nuclei. In the case of ion–atom
collision the transition probability Pexc in the end of collision is given by

P = sin 2
∞∫

−∞

(εg − εu)
2

dt = sin 2
∞∫

−∞

∆(R)
2

dt , (3.13)

where the exchange interaction potential between the ion and parent atom is intro-
duced by ∆(R) = εg(R) − εu(R), and the distance between nuclei R(t) corresponds
to a certain law of particle collision. Usually, the colliding ion and atommove along
straightforward trajectories, and therefore R2 = 
2 + v2t2. Thus, the nature of both
the resonant charge exchange processes reduces to the interference of the states
in absence of inelastic transitions between the states.

� Problem 3.4 Determine the probability of the transition between two neighboring
terms in the adiabatic approximation.

In expression (3.12) for the wave function of two colliding particles we neglect the
transitions between states under consideration. Though this formula is obtained
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for a symmetric system of colliding particles, in neglecting of inelastic transitions
one can write it for any states, and it has the form

Ψ(r,R, t) = ∑
k
ak(t)ψk(r,R) exp


−i

t∫
−∞

εk(t′)dt′

 ,

and in the absence of transitions the values |ak(t)| are independent of time in this
approximation, when the Massey parameter (3.9) is large. We determine below the
transition probability between two states with nearby electron terms for which the
transition probability is adiabatically small. In this case the Schrödinger equation
gives the following equations for amplitudes of the quasimolecule location in these
states,

d2a1,2
dt2

+ E21,2a1,2 = 0, (3.14)

and these equations take into account the above dependence of the quasimolecule
wave function on time. But because the adiabatic states of the quasimolecule are
not stationary states exactly, this distinction causes weak transitions between the
states when time t varies from−∞ to +∞. Therefore, if at t = −∞ the quasimolecule
is located in one state, a weak admixture of another state is absent in the wave
function, and we will find it.
Let us take the energies of states under consideration in accordance with formula

(3.6) as

E1,2 = ± 1
2

√
κ2 +∆2;

we have formally the quasiclassical solution of equations (3.14) for the amplitude
of the first state,

a1(t) =
1√
E1(t)

exp


−

t∫
0

E1(t′)dt′



in the absence of transitions. Below we take this solution in the limit t → −∞
and find an admixture of another amplitude at t → +∞, which characterizes the
transition probability of the quasimolecule transition into another state.
Evidently, this transition is possible when the energy difference is small. There-

fore in order to find it, wemove to the complex plane of time and then the transition
will be determined by a time range where E1(t)−E2(t) is close to zero. Introducing
the time tc of the intersection of these two electron terms on the complex plane of
time, E1(tc) = E2(tc), and from formula (3.6) we have near this point E1(t)−E2(t) =
A

√
tc − t. Indeed, formula (3.6) gives E1(R) = E2(R) = const

√
R− Rc at distances

R between nuclei near the distance Rc of the intersection of these electron terms,
and since R−Rc ∼ (t− tc), we obtain the above time dependence for the difference
of the electron state energies in the complex plane of time.
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The solution of equations (3.14) near the intersection of electron terms has the
form

a1(t) = B
√
tc − t H(2)

1/3

(
2A
3

(tc − t)2/3
)

,

where H(2)(x) is the Hankel function of the second type, and its asymptotic be-
havior at t → ∞ is

a1(t)t→−∞ =
1√
E1(t)

exp


−

t∫
tc

E1(t′)dt′ − i
5π

12


 .

Note that if we find in the vicinity of the intersection point t = tc, one can divide
a space by three lines

Im


−

t∫
tc

E1(t′)dt′

 = −2A

3
Im(t− tc)3/2 = 0 ,

which are represented in Fig. 3.1. Between two such lines the amplitude a1(t) is an
analytical function of time, but intersecting any of the three lines, we move from
one analytical region to another one, and this leads to a change of the amplitude
phase. In our case, the three lines Im(t− tc)3/2 = 0 form the angle 2π/3 with each
other. When we move along a real time line from t → −∞ to t → ∞, we intersect
one line, i. e., transfer from one analytical region to another one. This leads to a
phase change by 2π/3 in the expression of the amplitude phase, i. e., changes the
argument of the Hankel function by π. Using the relation for the Hankel functions

H(2)
1/3(−z) = H(2)

1/3(z) + e
iπ/3H(1)

1/3(z) ,

we obtain from this the form of the asymptotic amplitude in the limit t → ∞,

a1(t) ∝
1√
E1(t)

exp


−

t∫
tc

E1(t′)dt′ − i
5π

12


 +

eiπ/3√
E1(t)

exp


 t∫
tc

E1(t′)dt′ + i
5π

12


 .

Fig. 3.1 Peculiarities of the function Im(t − tc)3/2. Three analytical
regions for this function are restricted by indicated lines, and transition
between different analytical regions of this function leads to a stepwise
change of its phase by 2π/3. The line of integration for the amplitude
a1 (t) exponent is given by a dotted line.
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The first term relates to the location of the quasimolecule in the first state, and
the second term characterizes this for the second state. From the relation of these
values we have the probability of the transition from the first state to the second
one as the square of the amplitude relation,

P12 = exp


−4Im

tc∫
0

E1(t′)dt′

 = exp


−2Im

tc∫
0

√
κ2 +∆2dt′


 , (3.15)

where the energy difference is taken according to formula (3.6).

� Problem 3.5 Determine the probability of the adiabatic transition between two
quasimolecule states in the Landau–Zener case, if in the range of term intersection
κ(R) = F(R − Ro) and ∆(R) = const, where R is the distance between colliding
atomic particles, Ro is the distance of the term intersection in the absence of the
exchange interaction, and∆ is the minimum energy difference for these terms (see
Fig. 3.2).

Fig. 3.2 The behavior of electron terms in the Landau-Zener case of transition.

Let us determine the probability of transition between two neighboring terms for
the adiabatic approximation (3.15). We then have

2Im
tc∫
0

√
−F2v2R(t− tc)2 +∆2dt =

2∆2

FvR

1∫
0

√
1 − x2dx =

π∆2

2FvR
.

Here tc is an imaginary time at which two electron terms are coincided, Rc is the
complex distance of this intersection, so that R − Rc = vR(t − tc), and vR is the
radial relative velocity of colliding atomic particles.
We also introduce the real distance between particles, Ro, where the diagonal

energy part is zero, κ(R) = F(R− Ro), and at this distance the energy difference
has a minimum. Taking Ro > ro, where ro is the distance of the closest approach,
we obtain that the quasimolecule passes twice the intersection distance. Ignoring
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the phase correlation for this transition, we have for the total probability P of tran-
sitions between states as a result of double passage of the distance of the electron
term intersection in the collision,

P = 2P12(1 − P12) ,

where P12 is the probability of transition (3.15) as a result of a single passage of the
intersection distance. Finally, we obtain for the probability of transition as a result
of slow collisions in the Landau–Zener case,

P = 2 exp
(

− π∆2

2FvR

)
;

∆2

FvR
� 1 . (3.16)

� Problem 3.6 Determine the probability of the transition between two quasimole-
cule states in the Landau–Zener case (see Fig. 3.2) for any velocities of collision as
a result of a single passage of the intersection distance.

Our task is to solve the set of equations (3.4) for the amplitudes c1(t), c2(t) in
the Landau–Zener case, when κ(t) = k(t − to),∆(t) = const. It is convenient to
introduce new amplitudes,

c+ =
c1 + c2√

2
, c− =

c1 − c2√
2

,

and the equations for these amplitudes have the following form instead of the
set (3.4):

i
dc+
dt

− k
2
(t− to)c+ = −∆c−, i

dc−
dt

+
k
2
(t− to)c− = −∆c+ .

As is seen, the amplitudes c+ , c− relate to unperturbed energies ±k(t− to)/2. One
can reduce these equations to the form

i
dc2+
dt2

+ [
k2

4
(t− to)2c+∆2 + i

k
2

∆]c+ = 0 i
dc2−
dt2

+ [
k2

4
(t− to)2c+∆2 − ik

2
∆]c− = 0 .

Each of these equations is the equation of the quantum oscillator with a complex
phase. Their solutions are expressed through the functions of the parabolic cylinder
E(x, y). In particular, for the symmetric amplitude we have

c+(t) = cE

(
− i
2

− ∆2

k
,

√
k(t− to)

∆2

)
.

The asymptotic expressions of these functions in the limit t− to → ±∞ have the
form

|c+(±∞)| ∝ (t− to)−i∆2
k .

From this we obtain for the transition from t = −∞ to t = ∞

|c+(−∞)|
|c+(−∞)| = [exp(iπ)]−i∆2

k = exp
(

−π∆2

k

)
.
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This gives the expression for the probability of a single passage through the mini-
mum energy difference,

P12 = exp
(

− π∆2

2FvR

)
,

where we use k = FvR. As is seen, we obtain the Landau–Zener formula (3.16)
for the probability of a single passage of the minimum energy distance. Above
(previous Problem) we find this expression when the Massey criterion is large. As
is seen, this expression is valid for any value of the Massey parameter.

� Problem 3.7 Find the probability of the adiabatic transition between two electron
terms, if the time dependence for diagonal and nondiagonal matrix elements of
the quasimolecule energy in formula (3.6) is κ(t) = const, ∆(t) = δ exp(γt) (the
Rosen–Zener case, Fig. 3.3).

Fig. 3.3 The behavior of electron terms in the Rosen-Zener case of transition.

Formula (3.15) gives the transition probability of a single passage in the adiabatic
limit,

P12 = exp


−2Im

tc∫
0

√
κ2 +∆2dt




= exp


−2κIm

tc∫
0

√
1 = exp(2γt)dt


 =

κ

γ

π∫
0

√
1 + eiϕdϕ,

where ϕ = 2iγt. Since

Im
π∫
0

√
1 + eiϕdϕ = Im

√
2 cos

ϕ

2
eiϕ/4dϕ = 4

√
2

1∫
1/

√
2

√
2z2 − 1dz = π/2 .

This gives the transition probability in the Rosen–Zener case

P12 = exp
(

−πκ

γ

)
. (3.17)
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� Problem 3.8 On the basis of the set of diabatic equations (3.4) determine the
probability of the transition between two states in a two-state approach, if the
quasimolecule parameters in the range of transition can be approximated by the
dependences κ(t) = const and ∆(t) = 2δ exp(−t/τ) (the Rosen–Zener–Demkov
case, see Fig. 3.3).

A general method to solve the set of equations (3.4) is based on its solution in the
limiting cases when ∆ � κ or ∆ � κ and the accurate solution of this set at ∆ ∼ κ.
In the range ∆ � κ we have

c1 = a exp


i

t∫
κ

2
dt′


 , c2 = b exp


−i

t∫
κ

2
dt′


 ,

and the values |c1 | and |c2| do not vary in time. In the other limiting case ∆ � κ

the solutions of the set of equations (3.4) are

c1 = cos


i

t∫
∆

2
dt′ + γ


 ,

c2 = sin


i

t∫
∆

2
dt′ + γ


 ,

where γ is the phase. In this range the values |c1 + c2| and |c1 + c2| do not vary in
time. An intermediate range determines the transition probability between these
two states.
Let us apply this to the Rosen–Zener–Demkov case and divide the time into

some ranges, solve the set of equations (3.4) in each range and sew solutions on
the boundary of the neighboring ranges. We have in the limit t → −∞ where
∆ � κ that |c1 | = 1 and c2 = 0. Next, in the intermediate range ∆ ∼ κ the set of
equations (3.4) takes the form

i
dc1
dt

=
κ

2
c1 + δet/τc2, i

dc2
dt

= δet/τc1 − κ

2
c2, (3.18)

where the values κ and δ do not depend on time. The solution of this set under
boundary conditions c1(−∞) = 1, c2(−∞) = 0 is

c1 =
√

πκτ

2 cosh πκτ
2

et/(2τ)J−1/2−iκτ/2(δτet/τ) ,

c2 =
√

πκτ

2 cosh πκτ
2

et/(2τ)J1/2−iκτ/2(δτet/τ) .

In the limit t → ∞ where ∆ � κ we have from this on the basis of the asymptotic
expressions for the Bessel functions

c1 =
(
cosh

πκτ

2

)−1/2
cos

(
δκet/τ + i

πκτ

4

)
,
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c2 = −i
(
cosh

πκτ

2

)−1/2
sin

(
δκet/τ + i

πκτ

4

)
.

One can reduce this to a general dependence for ∆(t) in a range ∆ � κ, and then
these solutions in the limit t → ∞ are

c1 =
(
cosh

πκτ

2

)−1/2
cos


 ∞∫

−∞

∆dt + i
πκτ

4


 ,

c2 = −i
(
cosh

πκτ

2

)−1/2
sin


 ∞∫

−∞

∆dt + i
πκτ

4


 .

When the quasimolecule passes a range ∆ ∼ κ once more, its evolution is de-
scribed by the diabatic set of equations (3.18) with change t → −t. This set of
equations is

i
dc1
dt

=
κ

2
c1 + δe−t/τc2, i

dc2
dt

= δe−t/τc1 − κ

2
c2 .

Solving this set and transferring to the limit t → ∞ as above, we finally obtain the
probability of the transition of the Rosen–Zener–Demkov formula,

P =
∣∣c2(t = ∞)

∣∣2 =
sin2

(
∞∫

−∞
∆dt

)

cosh2 πκτ
2

. (3.19)

If we average over the phase, formula (3.19) gives the Rosen–Zener formula

P =
1

2 cosh2 πκτ
2

. (3.20)

Note that the parameter τ in this formula is given by

τ =
a

vR
, a =

(
d ln∆(R)

dR

)−1

,

where vR is the normal component of the relative velocity of colliding particles.
We consider the adiabatic limit, i. e., the limit of small velocities when the Rosen–
Zener formula gives the transition probability

P = 2 exp (−πκτ) ,

in accordance with formula (3.17) since P = 2P12 in the adiabatic limit and γ =
1/τ. The Massey parameter (3.9) is given by ξ = πκτ, and this coincides with
formula (3.9) with the accuracy up to a constant factor. In the case when the Massey
parameter (3.9) is small, the Rosen–Zener–Demkov formula (3.19) is transformed
into formula (3.13), and the transition probability is 1/2 on average, as in the case
of the resonant charge exchange at small impact collision parameters.
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3.2
Resonant Charge Exchange and Similar Processes

� Problem 3.9 Connect the cross section of the resonant charge exchange in slow
collisions with the parameters of the problem, assuming the cross section to be
large compared to an atomic value, i. e., electron transfer proceeds at large distances
between a colliding ion and atom in comparison with their sizes.

Using expression (3.13) for the probability of the charge exchange process, we ob-
tain the cross section of this process,

σres =
∞∫
0

2πρdρ sin 2ζ(ρ), ζ(ρ) =
∞∫

−∞

∆(R)
2

dt. (3.21)

Here ζ(ρ) is the charge exchange phase, and ρ is the impact parameter of colli-
sion. Taking into account that the main contribution to the cross section of electron
transfer goes from the large impact parameter of collision, where the charge ex-
change phase depends strongly on the impact parameter, we approximate this
quantity in the range of large impact parameters by the dependence ζ(ρ) = Aρ−n

with large n. Then we obtain the cross section of the resonant charge exchange,

σres =
∞∫
0

2πρdρ sin 2ζ(ρ) =
π

2
(2A)2/nΓ

(
1 − 2

n

)
cos

π

n
.

Let us represent the cross section in the form

σres =
πR2o
2

fn ,

where Ro is determined by the relation ζ(Ro) = a, and the function fn is equal to

fn = (2a)
2
n Γ(1 − 2

n
) cos

π

n
.

We now expand the cross section over a small parameter 1/n and restrict by two
expansion terms. For this representation it is convenient to take an arbitrary para-
meter a such that the expansion term of the function fn that is proportional to 1/n
would be zero. This gives

a =
e−C

2
= 0.28 ,

where C = 0.557 is the Euler constant. Then the expansion of the function fn at
large n has the form

fn = 1 − π2

6n2
.

Correspondingly, the cross section of the resonant charge exchange is determined
by the relation

σres =
πR2o
2

, where ζ(Ro) =
e−C

2
= 0.28. (3.22)
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� Problem 3.10 In the two-state approach express the exchange interaction potential
for an ion and parent atom at large separations through the wave function of a
valence s-electron.

The exchange interaction of atomic particles is determined by overlapping of the
electron wave functions which belong to different atomic centers. The Hamiltonian
of an electron when it is located in the field of two cores at large separations has
the form

Ĥ = − 1
2

∆+V(r1) +V(r2) +
1
R
.

Here we use the atomic units ( h̄ = me = e2 = 1), R is the distance between atomic
cores, r1 , r2 are the distances of the electron from the considering nucleus, V(r) is
the interaction potential of the electron with ion, and far from the ion this potential
is the Coulomb one V(r) = −1/r. Due to the symmetry of the problem, the eigen-
functions are expressed by formulas (3.11) through the wave functions centered on
a certain core and satisfy to the Schrödinger equations (3.2).
For determining the ion–atom exchange interaction potential we multiply the

first equation by ψ∗
u, the second equation by ψ∗

g, take the difference of the obtained
equations and integrate the result over the volume which is a half-space restricted
by the symmetry plane. Since the distance between the nuclei is large, the wave
function ψ2 is zero inside this volume and the wave function ψ1 is zero outside of
this volume. Hence

∫
V

ψ∗
uψgdr = 1/2, and the relation obtained has the form

∆(R)
2

=
1
2

∫
V

(
ψu∆ψg − ψg∆ψu

)
dr =

1
2

∫
S

(
ψ2

∂

∂z
ψ1 − ψ1

∂

∂z
ψ2

)
ds ,

where S is the symmetry plane which limits the integration range; we take the z
axis that joins nuclei, and the origin of the reference frame is located in the center
of the line joining nuclei. Since the electron is found in the s-state in the field of
each atomic core, its wave functions in this coordinate system can be represented
in the form

ψ1 = ψ

(√
(z + R/2)2 + ρ2

)
, ψ2 = ψ

(√
(z− R/2)2 + ρ2

)
,

where ρ is the distance from the axis in the perpendicular direction to it. Since
ds = 2πρdρ, we have from the above relation

∆(R)
2

=
∞∫
0

2πρdρ

[
ψ

(√
(z− R/2)2 + ρ2

)
∂

∂z
ψ

(√
(z + R/2)2 + ρ2

)

−ψ

(√
(z + R/2)2 + ρ2

)
∂

∂z
ψ

(√
(z− R/2)2 + ρ2

)]
z=0

.

Let us use the obvious relation

∂

∂z

[
ψ

(√
(z + R/2)2 + ρ2

)]
z=0

= R
∂

∂ρ2
ψ

(√
R2

4
+ ρ2

)
,
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which reduces the above formula to the form

∆(R)
2

= R
∞∫
0

dρ2
∂

∂ρ2
ψ2

(√
R2

4
+ ρ2

)
= R ψ2

(
R
2

)
. (3.23)

The wave function of this formula is centered on one core by taking into account
the action of another core; this molecular wave function differs from the wave
function in the field of one core by a numerical coefficient. At large distances r
between the electron and core the atomic wave function of the electron is given by

ψat(r) = Ar 1/γ−1e−rγ ,

where A is a numerical factor, and in atomic units γ =
√
2J, where J is the ioniza-

tion potential of the atom. This leads to the following dependence on the separation
R for the ion–atom exchange interaction potential:

∆(R) = CR2/γ−1 exp(−Rγ) , (3.24)

where C is a numerical coefficient.

� Problem 3.11 Determine the dependence on the collision velocity for the cross
section of the resonant charge exchange in slow collisions.

We consider the resonant charge exchange as a tunnel transition of a valence elec-
tron between two identical cores, and this transition proceeds at large impact
parameters of collision and distances between nuclei of colliding atomic parti-
cles in comparison with typical atomic sizes. This leads to a sharp dependence of
the exchange interaction potential (3.24) on a distance between nuclei, and corre-
spondingly a sharp dependence of the charge exchange phase (3.21) on the impact
parameter of collision, and we will approximate it by formula ζ(ρ) ∼ e−γρ/v. Then
we have on the basis of formula (3.22)

Ro =
1
γ
ln

vo
v
,

and a parameter vo � 1. This leads to the following formula for the cross section:

σres =
πR2o
2

=
π

2γ2
ln 2 vo

v
. (3.25)

Note that since transitions proceed at large distances between cores, the parameter
γRo is large (in reality in thermal collisions it exceeds 10). Therefore, the velocity
dependence for the cross section is enough weak. Indeed, from this formula it
follows
d lnσres
d ln v

= − 2
γRo

� 1 .

In particular, this allows us to represent the velocity dependence for the cross sec-
tion in the form

σres(v)
σres(v1)

=
(v1

v

)α
, α =

2
γRo

. (3.26)
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� Problem 3.12 Determine the cross section of the charge exchange process for
collisions of a slow highly excited atom and ion, assuming a bound electron to be
classical.

Under these conditions, a weakly bound electron is located in the field of two
Coulomb centers and interacts with cores through the interaction potential

U = − 1
r1

− 1
r2
+
1
R
,

where r1 , r2 are the electron distances from the corresponding nucleus, and R is
the distance between nuclei. We assume that the electron transition between cores
proceeds in the under-barrier manner (see Fig. 3.4). Take the electron binding en-
ergy with its core to be ε = −γ2/2, where J = γ2/2 is the ionization potential for this
atom state. Let us assume that an approach of the atom and ion proceeds enough
fast so that the electron energy does not vary during motion of nuclei (the diabatic
case). Then the condition of disappearance of the barrier U(r1 = r2 = Ro/2) = ε

gives Ro = 8/γ2. Assuming the under-barrier character of the electron transition to
another core, we obtain the cross section of the resonant charge exchange process
in this case:

σres =
πR2o
2

=
32π

γ4 =
8π

J2
. (3.27)

In the other limiting case (the adiabatic case) the electron follows to the variation of
core fields, and its binding energy in the fields of two cores becomes at a distance
R between them ε = −γ2/2 + 1/R. Correspondingly, the distance Ro between nuclei
when the barrier between cores disappears, which follows from the relationU(r1 =
r2 = Ro/2) = 4/Ro = ε = −γ2/2 + 1/Ro, becomes Ro = 6/γ2. Hence, the cross
section of the resonant charge exchange process in the adiabatic case is equal to

σres =
πR2o
2

=
18π

γ4 =
9π

2J2
. (3.28)

As is seen, the cross sections differ significantly in the diabatic and adiabatic cases.

Fig. 3.4 Planar section for the potential well for the resonant charge
exchange process when the electron transfers from the field of one core
to another one.
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� Problem 3.13 Find the total cross section and the cross section of exchange exci-
tation for collision of the S-atom in the ground state with the resonantly excited
atom in the P-state.

Scattering of atoms in the ground and resonantly excited states results from the
dipole–dipole interaction whose interaction operator V has the form

V =
1
R3

[D1D2 − 3(D1k)(D2k)] , (3.29)

where R is the distance between atoms, D1 , D2 are the operators of the dipole
moment for the first and second atoms, and k is the unit vector along the axis that
joins atoms.
The Hamiltonian of this atomic system consisting of two identical interacting

atoms is conserved if electrons are reflected with respect to the symmetry plane
that is perpendicular to the axis joining atoms and bisects it. Correspondingly, the
states of this atomic system can be even or odd, so the corresponding wave function
conserves or changes the sign as a result of electron reflection with respect to the
symmetry plane. Let ψ be the wave function of the ground state and ϕ be the wave
function of the resonantly excited state. Then the eigenfunctions Ψg, Ψu of the two
interacting atoms are

Ψg,u =
1√
2
(ψ1ϕ2 ± ϕ1ψ2) ,

where indices 1, 2 are the numbers of atoms, and the plus and minus signs corre-
spond to the even and odd states, respectively. From this we obtain the interaction
potential of atoms, U(R), in the first order of the perturbation theory, taking the
z-axis along the direction joining the atoms,

U(R) = ± 1
R3

(|〈ψ|Dx|ϕ〉|2 + |〈ψ|Dy|ϕ〉|2 − 2|〈ψ|Dz|ϕ〉|2) ,

where Dx ,Dy,Dz are the operators of the corresponding projections of the atom
dipole moment.
Let us introduce the parameter

d2 =
1
3 ∑

m
|〈00|D|1m〉|2, (3.30)

where D is the operator of the atom dipole moment, the matrix element is taken
between the ground S-state and the resonantly excited P-state, and m is the orbital
momentum projection for the excited state. This value can be expressed in atomic
units through the total oscillator strength f for the transition in the excited P-state
in ignoring its spin–orbit splitting (S-P transition) as

d2 =
f

2∆ε
, (3.31)

where ∆ε is the transition energy. Table 3.1 contains the values of this parameter
for atoms of the first and second groups of the periodical system of elements.



3.2 Resonant Charge Exchange and Similar Processes 79

In ignoring spin–orbit splitting of levels in the interaction between atoms in the
ground S-state and resonantly excited P-state, the interaction potentials are

Uzz = ± d2

R3
, Uxx = ± d2

R3
(1 − 3 cos2 θ), Uyy = ± d2

R3
(1 − 3 sin2 θ) , (3.32)

where the axis R joining atoms is located in the plane xy and forms an angle θ with
the axis x; the plus and minus signs refer to the even and odd states, respectively,
as above.

Table 3.1 Parameters of transitions between the ground and first excited
states for atoms of alkaline metals and alkaline-earth metals.

Element Transition ∆ε (eV) τ (ns) d2, e2a2o vσt (10−7 cm3/s)

H 12S → 22P 10.20 1.60 0.555 0.516
He 11S → 21P 21.22 0.56 0.177 0.164
Li 22S → 32P 1.85 27 5.4 5.1
Be 21S → 21P 5.28 1.9 3.4 9.6
Na 32S1/2 → 32P1/2 2.10 16 6.2 3.1
Na 32S1/2 → 32P3/2 2.104 16 6.2 4.8
Mg 31S0 → 31P1 4.35 2.1 5.9 5.5
K 42S1/2 → 42P1/2 1.61 27 8.9 4.1
K 42S1/2 → 42P3/2 1.62 27 8.8 6.3
Ca 41S0 → 41P1 2.93 4.6 7.9 7.3
Cu 42S1/2 → 42P1/2 3.79 7.0 2.4 1.1
Cu 42S1/2 → 42P3/2 3.82 7.2 2.4 1.7
Zn 41S0 → 41P1 5.80 1.4 3.5 3.3
Rb 52S1/2 → 52P1/2 1.56 28 8.4 3.9
Rb 52S1/2 → 52P3/2 1.59 26 8.6 6.2
Sr 51S0 → 51P1 2.69 6.2 10.1 9.4
Ag 52S1/2 → 52P1/2 3.66 7.9 2.4 1.1
Ag 52S1/2 → 52P3/2 3.78 6.7 2.4 1.7
Cd 51S0 → 51P1 5.42 1.7 3.5 3.3
Cs 62S1/2 → 62P1/2 1.39 31 11.5 5.3
Cs 62S1/2 → 62P3/2 1.46 27 11.4 8.1
Ba 61S0 → 61P1 2.24 8.5 9.7 9.0
Au 62S1/2 → 62P1/2 4.63 6.0 1.06 0.49
Au 62S1/2 → 62P3/2 5.10 4.6 1.04 0.75
Hg 61S0 → 61P1 6.70 0.13 2.4 2.2

In order to analyze the dynamics of the development of the system of colliding
atoms, we take as a basis the nonstationary Schrödinger equation for the wave
function Ψ of colliding particles, i h̄∂Ψ/∂t = ĤΨ, where Ĥ is the Hamiltonian of
the system, which is a sum Ĥ = Ĥo +V of the Hamiltonian Ĥo of noninteracting
atoms and the operator V of their interaction. We take now the wave function in
the form

Ψ = ∑
i
[a+i ψ+

i + a
−
i ψ−

i ] .

Here i is the quantum number of the state, in this case it is the momentum projec-
tion onto a given direction, ψ+

i and ψ−
i are the even and odd wave functions if an
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excited atom is found in the i-th state. If we substitute this expansion of the wave
function in the nonstationary Schrödinger equation, after standard operations we
obtain the equations for the expansion amplitudes:

i h̄ȧ+z =
d2

R3
a+z , i h̄ȧ−

z = − d2

R3
a−
z

ih̄ȧ+x =
d2

R3
(1 − 3 cos2 θ)a+x , i h̄ȧ−

x = − d2

R3
(1 − 3 cos2 θ)a−

x

ih̄ȧ+y =
d2

R3
(1 − 3 sin2 θ)a+y , i h̄ȧ−

y = − d2

R3
(1 − 3 sin2 θ)a−

y .

We take as the quantum states for the P-atom the states with zero projection
of the orbital momentum on the axes z, x, and y, respectively, and for collision of
two atoms the z-axis is perpendicular to the motion plane, the axis x corresponds
to the zero momentum projection onto the direction of the impact parameter of
collision, and the axis y is directed along the relative velocity; atoms are moving
along the straightforward trajectories. We use above the matrix elements (3.32) for
the interaction operators, and θ is the angle between the axis R joining atoms and
the impact parameter of collision �.
Note that the states x and y are bound through the angle θ, which vary in time

such that θ̇ = −ρv/R2, and a current distance R between atoms due to their free
motion is expressed through the impact parameter ρ of collision and the collision
velocity v as R2 = ρ2 + v2t2. Let us solve the equation for the z-state when the
momentum projection is zero on the axis that is perpendicular to the motion plane
and process of excitation transfer and momentum rotation are not entangled. We
have

a+z = exp


− i

h̄

∞∫
−∞

d2

R3
dt


 = exp

(
− 2id2

h̄vρ2

)

a−
z = exp


 i

h̄

∞∫
−∞

d2

R3
dt


 = exp

(
2id2

h̄vρ2

)
.

From this we obtain the cross section of the exchange excitation σexc, the cross
section of the elastic scattering σel, and the total cross section in this collision
σt = σexc + σel,

σzexc =
∞∫
0

|Im a+z |2 · 2πρdρ =
π2d2

h̄v
; σzel =

∞∫
0

|1 −Re a+z |2 · 2πρdρ =
π2d2

h̄v

σzt =
2π2d2

h̄v
.

In two other cases when at the beginning the axis onto which the momentum
projection for an excited atom is zero is located in the motion plane, equations for
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the appropriate amplitudes are solved only numerically, but all the cross sections
are proportional to d2/h̄v. Then the cross sections of the exchange transfer are

σx
exc =

2.65πd2

h̄v
; σ

y
exc =

πd2

h̄v
; σexc = 2.26

π2d2

h̄v
, (3.33)

where an overline denotes an average over momentum directions. In the same
manner we have for average cross sections

σel =
2.58πd2

h̄v
; σt =

4.84πd2

h̄v
. (3.34)

Table 3.1 contains the values vσt averaged over momentum projections.

� Problem 3.14 In the case of collisions of alkali metal atoms in the ground S-
state and resonantly excited 2Pj-states (j = 1/2, 3/2) analyze the role of spin–orbit
splitting in excitation transfer for such collisions.

We consider above the case when spin–orbit splitting of levels for excited states
that we denote by δf, may be ignored. We now estimate when this consideration
holds true for this consideration. Transitions due to the dipole–dipole interaction
of atoms take place at typical distances

Ro ∼
√

d2

h̄v
,

where transfer excitation proceeds. Transitions between fine structure states take
place at distances ∼ Rf where the potential of the dipole–dipole interaction of
atoms ∼ d2/R3f is comparable with the fine splitting of levels δf, that is

Rf ∼
(
d2

δf

)1/3

.

Evidently, fine splitting of levels can be ignored if Rf � Ro, or the parameter ζ ,
which is defined by

ζ ≡ Ro
Rf

=
(δf)1/3d1/3

(h̄v)1/2
, (3.35)

is large, ζ � 1. Table 3.2 gives parameters for alkali atom collisions in the ground
and first resonantly excited state if they proceed in a vapor of temperature 500 K.
The Massey parameter ξ for this process is estimated as

ξ ∼ δfRf
h̄v

∼ (δf)2/3d2/3

h̄v
∼ ζ2 ,

and according to the Table 3.2 data, the Massey parameter ξ is large for most cases
of alkali metal atoms if an excited atom is found in the lowest state. In this case
the probability of transitions between states of fine structure is small, and excita-
tion transfer takes place in each state of fine structure independently. In addition,
transitions between different fine states in collisions proceed only due to the inter-
section of electron terms of a different fine structure.
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Table 3.2 Parameters of collision between alkali metal atoms in the ground
and first resonantly excited state at the temperature of 500 K. v is the average
collision velocity and the parameter ζ is given by formula (3.35).

Atom Li Na K Rb Cs

δf (cm−1) 0.34 17.2 57.6 238 554
d2 (a.u.) 5.4 6.2 8.8 8.5 11.5
v (104 cm/s) 17 9.6 7.4 5.0 4.0
ζ 0.44 2.3 4.2 9.6 13

� Problem 3.15 Estimate the cross section and rate constant of excitation transfer
in collisions of atoms in the ground S and resonantly excited P-states if the fine
structure splitting is large.

As follows from the Table 3.2 data, the Massey criterion for thermal collisions of
most alkali metal atoms in the ground 2S and resonantly excited 2P-states is large.
This means that excitation transfer proceeds independently for each fine state of
excited atoms. But excitation transfer for each collision channel is determined by
dipole–dipole interaction atoms, as earlier, so the cross section of excitation transfer
for each fine state is estimated as

σ ∼ d2

h̄v
,

and the depolarization cross section has the same order of magnitude. The numer-
ical coefficients in this expression depend on the behavior of electron terms and
are given in Table 3.3 for excitation transfer.

Table 3.3 The cross sections of excitation transfer for collisions of atoms in
the ground S-state and resonantly excited P-states for two limiting cases with
respect to the fine splitting of levels.

Colliding atoms σexc/σo σel/σo σt/σo

A(S) + A(P) 2.26 2.58 4.84
A(2S1/2) + A(2P1/2) 1.12 1.29 2.41
A(2S1/2) + A(2P3/2) 1.66 2.06 3.72

Taken from Table 3.3 the values of the rate constants for the total elastic scattering
and excitation transfer 〈vσt〉 for each state of fine structure are given in Table 3.1.

� Problem 3.16 Determine the cross section and rate constant of transitions be-
tween fine structure states for collisions of atoms in the S- and P-states if the fine
structure splitting may be ignored.

The process under consideration proceeds according to the scheme

M(2S1/2) +M(2P1/2) ←→ M(2S1/2) +M(2P3/2). (3.36)
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As a result of this transition, the electron energy varies by δf, the energy of fine
splitting of levels, so that this energy is transferred or is taken from the kinetic en-
ergy of colliding atoms. Since the electron states 2P1/2,2 P3/2 are resonantly excited,
transitions between these states in collisions vary the wavelength of subsequent
radiation, and for this reason transitions between fine structure levels are of inter-
est.
According to the data of Table 3.2, the condition of a smallness of a fine splitting

energy is not fulfilled for the lowest resonantly excited states of alkali metals, but
it is valid for more excited states with lower fine splitting of levels. The Massey
parameter (3.9) is small for such collisions, and the system of colliding atoms
does not

“
feel” fine splitting of atoms. Therefore, excitation transfer takes place

independently on a fine state of an excited atom, so an excited electron
“
chooses” a

final fine state in a random way. Hence, the cross sections of the transition between
fine structure states in this case is equal to

σ

(
1
2

→ 3
2

)
=
1
2

σ

(
3
2

→ 1
2

)
=
1
3

σexc ,

where the argument indicates fine states of transition, and σexc is the cross section
of the exchange transfer in accordance with formula (3.33), which is given by

σexc = 2.26π
d2

h̄v
,

and correspondingly the cross sections for transitions between fine structure states
are equal to

σ

(
1
2

→ 3
2

)
= 0.75π

d2

h̄v
, σ

(
3
2

→ 1
2

)
= 1.5π

d2

h̄v
.

� Problem 3.17 A resonantly excited atom of alkali metal in the state 2P collides
with the parent atom in the ground 2S state. Find the cross section of the transi-
tion between states of fine structure if the Massey parameter (3.9) for the direct
transition between fine states is large.

Because the Massey parameter (3.9) for the transition between fine structure states
is large in this case, such transitions are possible only between intersection electron
terms. This relates to a term for an electron state 2P1/2 that is directed up and some
electron term of the electron state 2P3/2 that is directed down. these electron terms
are intersected at a distance between colliding atoms,

Ro ∼
(
d2

δf

)1/3

.

The character of the transition under consideration is as follows. Because in-
tersecting electron terms are characterized by different projections of the electron
momentum onto the axis connected atoms, the transition takes place due to ro-
tation of the axis and is realized at distances between nuclei when the energy
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difference for these electron terms is lower or is of the order of h̄θ̇, where θ is
the angle between the rotating axis and its initial direction. Thus, the transition
between fine structure states proceeds in the range ∆R of the distances between
atoms according to

d2

h̄R3o

∆R
Ro

∼ θ̇ =
v
Ro

.

During this time the axis rotates by an angle ∆θ ∼ ∆R/Ro, and it is of the order of
the transition probability

P ∼ ∆R
Ro

∼ vR2o
d2

.

We now assume that the kinetic energy of colliding atoms ε exceeds significantly
the fine structure splitting δf, which allows for the system of colliding atoms to
remain on a new electron term up to the infinite distance between the atoms.
The cross section of the transition between fine structure states is estimated as

σ ∼ PR2o ∼ vR4o
d2

∼ vd2/3

δ
4/3
f

.

Using numerical coefficients in this expression by taking into account a certain
behavior of electron terms for this electron system, we find for the transition cross
section

σ

(
3
2

→ 1
2

)
=
1
2

σ

(
1
2

→ 3
2

)
= 1.4

vd2/3

δ
4/3
f

.

Correspondingly, the rate constant of the fine structure transition for the Maxwell
distribution of atoms in this case T/ggδf is equal to

k
(
3
2

→ 1
2

)
= 3.9

Td2/3

µδ
4/3
f

,

where µ is the reduced mass of colliding atoms.

� Problem 3.18 Estimate the rate constant of the transition between the fine struc-
ture states in collisions between a resonantly excited atom of alkali metal in the
state 2P and the parent atom in the ground 2S state if the distance between fine
structure levels δf is small compared to a thermal energy T of atoms.

In this case the rate constants of the transition between fine structure levels are
connected by the principle of detailed balance,

k
(
3
2

→ 1
2

)
=
1
2
exp

(
−δf
T

)
k
(
1
2

→ 3
2

)
,

and this shows that the transition to an upper state 2P3/2 is possible for a tail of
the Maxwell distribution function of atoms. The transition to the lower electron
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terms results from the capture of atoms when colliding atoms are located enough
long on the attractive electron term. The capture cross section for the dipole–dipole
interaction of atoms (U(R) ∼ d2/R3) is estimated as

σc ∼
(
d2

T

)2/3

.

Correspondingly, the rate constant of this process is

k ∼ d4/3

T 1/6µ1/2 ,

where µ is the reduced mass of colliding atoms.
In this process the atom system is located enough long on an attractive electron

term for an upper fine structure state at an infinite distance between the atoms,
and during this time it has the possibility of transferring to the lower state near
the distance of the intersection of these electron terms. Evidently, this character of
the transition is valid if an atom capture proceeds at a large distance Rc between
the atoms, i. e.,

d4/3µ1/2T 1/6

h̄
� 1 ,

and this criterion along with the Massey criterion ξ � 1 holds true for excited
states with a small value of d.

3.3
Processes Involving Negative Ions

� Problem 3.19 On the basis of the delta-function model for an electron located in
the field of two atoms find the distance between atoms when the electron term of
the bound electron state intersects the boundary of the continuous spectrum. Use
this in the analysis of the character of the negative ion detachment in collisions of
the negative ion and atom.

The process

A + B− → A + B + e (3.37)

is possible if the electron term of quasimolecules constructed from colliding par-
ticles crosses the boundary of the continuous spectrum, and then a weakly bound
electron releases. We demonstrate this possibility on the basis of the delta-function
model for a valence electron located in the field of two atoms. The delta-function
model for the negative ion assumes that the radius of the action of the atom field in
a negative ion to be small compared to the size of the negative ion. Hence, one can
consider the atomic field as a boundary condition for the electron wave function
at the point of atom location.
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In considering the behavior of s-electron in the field of two atomic centers within
the framework of the delta-function model, we take into account that outside the
atoms fields are absent and the electron wave function satisfies the Schrödinger
equation

− 1
2

∆Ψ = − 1
2

α2Ψ ,

where 1
2α2 is the electron binding energy, and we use below the atomic units. On

the basis of this equation and accounting for a short-range atomic fields at points
of atom location we construct the electron wave function as

Ψ = Ae−αr1 /r1 + Be−αr2 /r2 ,

where r1 , r2 are electron distances from the corresponding nucleus. The boundary
conditions for the electron wave function near each atom have the form

d ln(r1Ψ)
dr1

(r1 = 0) = −κ1 ,
d ln(r2Ψ)

dr2
(r2 = 0) = −κ2,

where 1/κ is the electron scattering length for a given atom, or κ2/2 is the electron
binding energy in the negative ion formed on the basis of this atom.

The above boundary conditions give

−κ1 = −α +
B
A
e−αR/R; −κ2 = −α +

A
B
e−αR/R ,

where R is the distance between the atoms. Excluding the parameters A and B
from this equation, we obtain

(α − κ1)(α − κ2) − e−2αR/R2 = 0. (3.38)

The solution of this equation gives the dependence of the electron binding energy
1
2α2 on the distance between the atoms. It is of importance that the electron term
can intersect the boundary of the continuous spectrum (α = 0). The electron bond
is broken at Rc =

√
α1α2 =

√
L1L2, where L1 , L2 are the electron scattering lengths

for the corresponding atom. Within the framework of the delta-function model,
the electron–atom scattering length is L = 1/γ, where γ2/2 is the electron binding
energy in the negative ion (the electron affinity to the atom).
In slow collisions when the electron term is above the boundary of the continu-

ous spectrum, i. e., the electron state is an autodetachment one and is characterized
by a certain level width Γ, an electron can release as a result of decay of the au-
todetachment state. In any case, this takes place if Γτ > 1, where τ is the time of
the location of the quasimolecule in the autodetachment state.

� Problem 3.20 Estimate the rate constant of recombination of negative and positive
ions in slow collisions.
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In analyzing the pair process of mutual neutralization of positive and negative ions,
which proceeds according to the scheme

A+ + B− → A∗ + B, (3.39)

we assume the binding energy of an electron in the negative ion to be relatively
small, and it can proceed in many excited states of a forming excited atom. Because
of the tunnel character of this transition, its rate depends sharply (in the exponen-
tial way) on the distance between nuclei. Therefore, we use the model when a
tunnel transition takes place and the transition probability is 1, if the distance of
the closest approach between colliding ions is less than or equal to Ro, which is the
parameter of the problem. If the distance of the closest approach exceeds Ro, the
transition probability is zero. Then formula (2.15) gives the cross section of mutual
neutralization of ions within the framework of this model,

σrec = πρ2o = πR2o

(
1 +

e2

Roε

)
, (3.40)

where ρo is the impact parameter at which the distance of the closest approach of
the colliding ions is Ro, and ε is the kinetic energy of the ions in the center-of-mass
frame of reference.
From this it follows that at low collision velocities the recombination cross sec-

tion is inversely proportional to the collision energy,

σrec = πRoe2/ε. (3.41)

This gives the recombination coefficient of positive and negative ions in an ion-
ized gas, which equals α = vσrec. Averaging over the Maxwell energy distribution
function for the ions, we find

α = 〈vσrec〉 = 2
√
2πRoe2√

µT
, (3.42)

where the angle brackets denote averaging over the relative velocities of the ions.
Note that since the tunnel transition of a bound electron proceeds effectively at
distances between nuclei which exceed significantly the atomic size, usually for
thermal collisions Ro ∼ 10 ao, where ao is the Bohr radius.

� Problem 3.21 Determine the rate of mutual neutralization of ions (3.39) consider-
ing it as the transition between two electron terms and assuming that the transition
occurs only due to these two terms and proceeds under optimal conditions.

In contrast to the previous problem, we now consider the process of mutual neu-
tralization of ions (3.39) as the transition between two electron terms, as is shown
in Fig. 3.5. This transition is due to the intersection of two electron terms, and the
transition process is described by the set of equations (3.4). Assuming that these
terms are separated from others, we have for the probability of the transition, P,
as a result of double passing of the distance Rc of term intersection,

P = 2P12(1 − P12) ,



88 3 Slow Atomic Collisions

Fig. 3.5 Electron terms for the process of mutual neutralization where
the electron term for interaction of positive and negative ions (Coulomb
term) is intersected by a group of terms for interaction of neutral atoms
in different excited electron states.

where P12 is the probability of the transition during one pass through the intersec-
tion point. As is seen, the optimal conditions correspond to P12 = 1/2 and P = 1/2,
and according to the set of equations (3.4) this takes place if ∆ ∼ κ, i. e., the Massey
parameter (3.9) ξ ∼ 1. Note that in the previous problem where the electron tran-
sition can proceed in many atom excited states, we take P = 1 under optimal
conditions. Then under optimal conditions the cross section of this transition is
σrec = πR2c/2. Correspondingly, the rate of transition is

krec =

√
8T
πµ

σrec =

√
2πT

µ
R2c , (3.43)

where µ is the reduced mass of ions, and we assume here that the interaction po-
tential of ions at the transition distance to be small compared to the thermal energy
of ions e2/Rc � T . Accounting for this interaction, we obtain the rate constant of
this process,

krec =

√
2πT

µ
R2c

(
1 +

e2

RcT

)
. (3.44)

� Problem 3.22 Within the framework of the delta-function model for the electron
in the field of two identical atoms with which an electron can form a negative ion,
find the width of the autodetachment level at separations near the intersection of
the electron term for a negative molecular ion and the boundary of the continuous
spectrum.

When the electron term of the system A–A− is located above the boundary of the
continuous spectrum, the state becomes the autodetachment state that testifies the
possibility of the atomic system to decay with electron release. On the other hand,
one can consider this state as a bound state of the electron and molecule if its
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lifetime τ is enough large, i. e., this level is enough narrow, and its width Γ = h̄/τ
satisfies to the relation

ε � Γ, (3.45)

where ε is the electron energy after the decay of the autodetachment state.
We now return to the problem under consideration when an electron is found

in the field of two identical atoms with which it can form the negative ion. Then
the electron terms of such bound states within the framework of the delta-function
model for electron–atom interaction is given by equation (3.38), which for identical
atoms has the form

(α − κ)2 − e−2αR

R2
= 0, (3.46)

where for this model h̄2κ2/(2me) is the electron binding energy in the negative ion
on the basis of one atom, and h̄2α2/(2me) is the electron binding energy when it
is located in the field of two atoms.
Note that because of the problem symmetry, the electron have two bound states

with atoms, even and odd, depending on the property of the electron wave function
to conserve or change its sign as a result of electron reflection with respect to the
symmetry plane that bisects the axis joining nuclei is perpendicular to it. A decrease
of the distance between nuclei leads to an increase in the electron binding energy
in the even state and a decrease of it in the odd state. Therefore, considering the
intersection of the electron term with the boundary of the continuous spectrum,
we concentrate on the odd state only.
According to equation (3.46), the intersection takes place at the distance Rc = 1/κ

between nuclei, and we consider a distance range near the intersection, where
equation (3.46) takes the form

1
R

− α +
α2R
2

− α3R2

6
+ α − κ = 0 ,

and we restrict by the expansion terms up to ∼ α3. Let us denote ∆R = Rc − R
and the electron energy above the continuous spectrum boundary ε = h̄2q2/2me,
and a small parameter of the expansion is qRc � 1. From the solution of the above
equation we have

ε ≡ h̄2q2

2me
=
h̄2∆R
meR3c

; Γ = ε
qRc
3
. (3.47)

One can see that criterion (3.45), which allows us to consider the autodetachment
state as a bound electron state, holds true.

� Problem 3.23 Determine the cross section of negative ion detachment in a slow
collision with an identical atom based on formula (3.47) for the width of the au-
todetachment level.
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Fig. 3.6 Electron terms which determine the character of the negative
ion detachment in collisions with an atom.

This process proceeds at distances between colliding particles where the negative
ion term is over the continuous spectrum boundary, and this quasimolecule state
becomes autodetaching one. Then the quasimolecule decays in a molecule and a
free electron at distances below Rc, the distance of the term intersection (see Fig.
3.6). Correspondingly, the cross section of detachment of a negative ion in a slow
collision with a parent atom is given by

σdet =
1
2

Rc∫
0


1 − exp


− 1

h̄

∫
R<Rc

Γdt





 2πρdρ .

A factor 1/2 accounts for the possibility of detachment of the odd state of the
molecular negative only. We use expression (3.47) for the width of the detachment
level in the form

Γ =
h̄2

√
2

3me

∆R3/2

R7/2c
. (3.48)

Take into account that detachment of the negative ion proceeds mostly at dis-
tances between colliding particles near the intersection distance Rc, and therefore
the probability of surviving for the negative ion is possible for impact parame-
ters of collision which are close to Rc. Therefore, we first evaluate the integral
h̄−1 ∫

R<Rc
Γdt at impact parameters of collision near Rc under the assumption

that colliding particles move along straightforward trajectories. We have

1
h̄

∫
R<Rc

Γdt =
π h̄δρ2

4mevR3c
,

where δρ = Rc − ρ � Rc. From this we obtain for the detachment cross section as
a result of collision of a negative ion with a parent atom

σc =
πR2c
2

(
1 −

√
mevRc

h̄

)
. (3.49)

Under the above assumptions, the second term in the parentheses is small com-
pared to the first one because of a small collision velocity.
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� Problem 3.24 Determine the energy distribution function of electrons which are
formed as a result of detachment of a negative ion in collision with an atom and
results from the decay of a autodetachment state.

Detachment of a negative ion in collisions with atoms proceeds at distances be-
tween colliding particles below Rc where the electron term becomes autodetach-
ment. The probability P(t) of negative ion detachment is given by the equation

dP
dt

=
Γ

h̄
(1 − P), P = 1 − exp


−

t∫
tc

Γ
dt′

h̄


 .

The energy of a released electron is equal to the difference of the energies for an
autodetachment term and the boundary of continuous spectrum, so this energy is
connected unambiguously with a time after the intersection of electron terms, and
therefore the distribution function of electron energies is given by

f (ε) =
dP
dε

=
Γ

h̄
dt
dε

exp


−

ε∫
0

Γ
dε

h̄
dt
dε


 .

If we take the energy dependence for the autodetachment level width as

Γ = aεk ,

we obtain the electron spectrum in the form

f (ε) =
dP
dε

= C(k + 1)εk exp
(
−Cεk+1

)
, C =

a

vR h̄ dE
dR

,

where vR is the normal component of the collision velocity, and E is the difference
of the electron energies of the considering electron term and the boundary of the
continuous spectrum. In particular, formula (3.47) gives k = 3/2, and in this case
the distribution function is

f (ε) ∼ ε3/2 exp
(
−Cε5/2

)
. (3.50)

3.4
Three-Body Processes

� Problem 3.25 Determine the dependence of the rate of the three-body process on
parameters of the problem.

We consider the three-body process that proceeds according to the scheme

A + B +C → AB +C. (3.51)

As a result of a three-body collision, particles A and B combine to form a bound
system, and particle C carries away the energy released thereby. The balance equa-
tion for the number densities of particles of the process (3.51) has the form

d[AB]/dt = K[A][B][C] , (3.52)
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where [X ] is the number density of particles X , and K is the rate constant of the
three-body process, with dimensionality cm6/s. The balance equation (3.52) is the
definition of the three-body rate constant.
The rate constant of the three-body process can be estimated on the basis of

the Thomson theory. This theory takes into account the nature of the three-body
process (3.51) and the fact that a binding energy of forming bound state of atomic
particles is of the order of a typical thermal energy of particles, ∼ T . The latter in
turn is less significantly than the binding energy of particles in the final state AB.
In addition, because the formation of a bound state corresponds to highly excited
states of AB, the motion of the particles is governed by classical laws.
Let us find the rate of formation of a bound state AB in the three-body collision

(3.51) on the basis of the character of this process. Indeed, formation of a bound
state of particles A and B occurs in the following way. As particles A and B approach
each other, their energy increases as the potential energy of interaction is converted
into kinetic energy. If a third particle C interacts strongly with A or B when these
particles are close to each other, then the third particle takes from A or B an energy
in excess of the initial kinetic energy of these particles. The bound state of particles
A and B is thus formed as a result of a collision with the third particle.
Being guided by the above character of formation of a bound state, we find the

rate constant of a three-body process taking into account that typical kinetic en-
ergies of colliding particles are of the order of a thermal energy ∼ T . Assume
the mass of the third particle C to be comparable to the mass of either particle, A
or B. Requiring the energy exchange to be more than the initial kinetic energy of
particles A and B, we obtain that the interaction potential between these particles
during collision with the third particle C must also be of the order of T . From this
we define a critical radius b, i. e., a distance between particles C and A or B that
provides the possibility of forming a bound state of AB in three-body collisions

U(b) ∼ T . (3.53)

Here U(R) is the interaction potential for particle C with A or B.
On the basis of this character of bound state formation, we estimate the rate

constant of the three-body process (3.51). The rate of conversion of particle B into
particle AB is of the order of magnitude of the product of two factors. So the first
factor is the probability of the location of particle B in the critical region near A,
which is equal to [A]b3. The second factor is the rate [C]vσ of collisions with particle
C, where v is the typical relative collision velocity, and σ is the cross section for
the collision between C and either A or B, resulting in an energy exchange of the
order of T . Assuming the masses of the colliding particles to be of the same order
of magnitude, we find this cross section to be comparable to the cross section for
elastic collision. This estimate for the rate of formation of particle AB is thus

d[AB]/dt ∼ [A][B]b3[C]vσ .

A comparison of this expression with the definition of the constant of the three-
body process (3.52) gives the estimate for the rate constant,

K ∼ vb3σ. (3.54)
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Collision of three particles (3.51) is the three-body process if the number density
of the third particle C is small, and therefore colliding particles A and B can simul-
taneously collide with one particle C only. Hence, the mean free path of particles
A or B in a gas of particles C exceeds significantly the size b of the critical region.
This leads to the criterion

[C]σb � 1 , (3.55)

where σ is the typical elastic cross section of a particle A or B with a particle C.

� Problem 3.26 On the basis of the Thomson theory for three-body processes esti-
mate the rate of three-body recombination of positive and negative ions if the third
particle is a gas atom.

This process of three-body recombination of positive and negative ions proceeds
according to the scheme

A+ + B− +C → A∗ + B +C . (3.56)

In this process a bound state of the positive and negative ions A+ and B− is formed
first, and then a valence electron transfers from the field of the atom B to the field
of the ion A+, and the bound state decays into two atoms A∗ and B. The second
stage of the process occurs spontaneously when the three-body process finishes.
We stop at the first stage of this process, and in evaluating the rate of this process
we assume the atom C mass to be comparable to the mass of one of the ions A+

or B−.
Below we consider the Coulomb interaction between the ions and a polarization

interaction between each ion and atom. Then the rate constant of the three-body
recombination process according to formula (3.54) is given by

K =
α

Ni
∼ e6

T3

(
αe2

m

)1/2

, (3.57)

where α is the atom polarizability, m is a particle mass, and σ is the cross section
of the order of the diffusion cross section (2.31) in the case of the polarization
interaction potential.
The criterion (3.55) of the three-body character of the recombination process has

now the form

[C]e2(αe2)1/2

T3/2
� 1 . (3.58)

In particular, if we estimate the typical polarizability of the atom to be several
atomic units, the criterion (3.58) gives at room temperature the number density
[C] which must be much less than 1020 cm−3. Therefore, the three-body character
of the recombination of positive and negative ions takes place at the gas pressure
is of the order of one atmosphere, as it proceeds in atmospheric air.
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� Problem 3.27 On the basis of the Thomson theory for three-body processes esti-
mate the rate of three-body process for formation of molecular ions in an atomic
gas.

This three-body process of conversion of atomic ions into molecular ions develops
according to the scheme

A+ + 2A → A+2 + A (3.59)

and the rate constants of this process are given in Table 3.4 for inert gases. As-
suming that this process be determined by the polarization interaction U(R) =
−αe2/(2R4) of an ion A+ with atoms A, where R is the ion–atom distance and α is
the atom polarizability, we estimate on the basis of formula (3.54) the rate constant
of three-body formation of molecular ions A+2,

Kia ∼ (αe2)5/4

m1/2T3/4
.

Table 3.4 The rate constant of the three-body process (3.59) given at room
temperature and expressed in units 10−32 cm6/s.

A He Ne Ar Kr Xe

Kia 11 6 3 2.3 3.6
C 37 20 2.4 1.6 1.7

Taking the rate constant of this process in the form

Kia = C
(αe2)5/4

m1/2T3/4
, (3.60)

we give in Table 3.4 the values of factor C obtained on the basis of experimental
data. The difference of this parameter for light and heavy inert gases testifies the
role of the exchange ion–atom interaction in the three-body process for helium and
neon along with the polarization interaction.

� Problem 3.28 From the dimensionality consideration estimate the rate of three-
body formation of molecules in an atomic gas, if the interaction potential between
atoms is approximated by the dependence U(R) = −AR−k, and A > 0.

The three-body process of formation of diatomic molecules in an atomic gas is
described by the scheme (3.51). Assuming that the scattering cross section σ and
the critical size b in formula (3.54) are determined by the polarization interaction
potential, we have σ ∼ b2, and the rate constant of this process can be estimated as

K ∼ vb5 ∼ (A)5/k (T)1/2−5/km−1/2 , (3.61)
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wherem is the atommass, v ∼ (T/m)1/2 is the typical atom velocity, and the critical
size (3.53) is estimated as b ∼ (A/T)1/k. In the case of the Coulomb interaction
this formula gives b ∼ e2/T , whereas in the case of the polarization interaction
this formula is transformed into formula (3.60).

� Problem 3.29 Estimate the rate of three-body formation of molecular ions in an
atomic gas from the dimensionality consideration.

In the case of process (3.59) we have three dimensional parameters, the interaction
parameter αe2, a typical thermal energy of the particles T , and the atom mass M.
Calculating from these parameters the only quantity of the dimensionality of the
three-body rate constant, we again obtain formula (3.60). The same dependence
follows from formula (3.61).
Let us represent formula (3.60) in the form

K = Koα5/4m−1/2(300/T)3/4. (3.62)

If the polarizability α is expressed in atomic units (a3o), the atom mass in units
of atomic masses (1.66× 10−24 g), and the temperature in K, we obtain from a
comparison with the experimental data

Ko = (8± 4) × 10−32 cm6/s .

3.5
Principle of Detailed Balance

� Problem 3.30 Establish the relation between the cross sections of inelastic colli-
sions for direct and inverse processes (the principle of detailed balance).

Our task is to compare the cross sections of atom excitation and quenching for
direct and inverse collision processes with other particles according to the scheme

A + Bi ←→ A + Bf , (3.63)

where Bi, Bf denote an atom in initial and final states, and the transition between
these states results from collision with an atomic particle B. In order to establish
the relation between the cross sections of these processes, we consider these atomic
particles A and B to be located in a volume Ω, and the transitions of the atom B
are possible between the states i and f only in collisions with an atomic particle A.
Let us introduce an interaction operator V between atomic particles A and B

that is responsible for the above transitions. Then we have for the transition rates
within the framework of the perturbation theory between states i and f

wif =
2π

h̄
|Vif|2 dgidε

, wf i =
2π

h̄
|Vf i|2 dgfdε

.

Here dgi
dε ,

dgf
dε are the statistical weights per unit energy for the appropriate channels

of the process. On the basis of the definition, we have from this for the cross
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sections of these processes

σif =
wif

Nvi
= Ω

wif

vi
, σf i =

wfi

Nvf
= Ω

wfi

vf
,

where N = 1/Ω is the number density of particles, vi, vf are the electron veloc-
ities for the transition channels, and an atom assumes to be motionless. The
time reversal operation gives for the matrix elements of the interaction operator
Vif = Vfi, which leads to the relation between the cross sections of direct and inverse
processes in electron–atom collisions,

σifvi
dgi
dε

= σfi vf
dgf
dε

. (3.64)

The statistical weights for the transition channels are equal to

dgi = Ω
dpi

(2π h̄)3
gi, dgf = Ω

dpf
(2π h̄)3

gf,

where gi, gf are the statistical weights for given atom states. Then finally formula
(3.64) takes the form

σif = σf i
v2f gf
v2i gi

. (3.65)

� Problem 3.31 Within the framework of the liquid drop model for a cluster estab-
lish the relation between the rate of atom evaporation from the cluster surface and
the rate constant of atom attachment to the cluster surface.

We have now an equilibrium for the processes of cluster growth and evaporation
according to the scheme

M +Mn ←→ Mn+1 . (3.66)

Hence, the rate of atom evaporation νevn+1 for a cluster consisting of n + 1 atoms is
equal to the rate νn of atom attachment to a cluster

νevn+1 = νn = Nkon2/3 ,

and the equilibrium number density of atoms is given by formula (1.80). As a
result, we have for the rate of cluster evaporation

νevn+1 = νn = Nsat(T)kon2/3 exp
(

− εn − εo
T

)
, (3.67)

where εn is the binding energy of surface atoms of the cluster, and εo is the atom
binding energy for a macroscopic surface.
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� Problem 3.32 On the basis of the principle of detailed balance determine the rate
constant of formation of positive and negative ions as a result of collision of two
atoms if we consider this process to be detailed inverse with respect to the process
(3.39) of mutual neutralization of ions.

The process of formation of ions is the inverse process with respect to the mu-
tual neutralization process (3.39) and we consider it as the transition between two
electron terms in accordance with Fig. 3.5. Then the cross section is the same
σion = σrec as for mutual neutralization of ions, and under optimal conditions it is
equal to σrec = πR2c/2. Correspondingly, the rate constant of this process is

kion = v σion ,

where v is the relative velocity of atoms at large distances between them. Then in
the limit of a large thermal energy of atoms e2/Rc � T the rate constant of this
process is given by formula (3.43). In a general case on the basis of the Maxwell
distribution function on collision velocities we obtain

kion =

√
2πT

µ
R2c

(
1 +

e2

RcT

)
exp

(
− e2

RcT

)
. (3.68)
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4
Collisions Involving Electrons

4.1
Inelastic Electron–Atom Collisions

� Problem 4.1 Find the asymptotic expansion for the wave function of the electron–
atom under inelastic electron–atom collisions.

Let us start from the Schrödinger equation for the wave function Ψ(r, re) of the
electron–atom system, which has the form[

Ĥa(r) − 1
2

∆e − E
]

Ψ(r, re) = V(r, re)Ψ(r, re) ,

where r, re are the coordinates of atomic electrons and the incident electron, re-
spectively, Ĥa(r) is the Hamiltonian of atomic electrons, −∆e/2 is the operator of
the kinetic energy of an incident electron, V(r, re) is the interaction operator be-
tween incident and atomic electrons, and E is the total energy of the electron–atom
system. Note that the vector r is many dimensional here. The atomic units are used,
and the spin variables are included through the symmetry of the wave function. If
we consider the right-hand side of the above equation as a nonuniformity, one can
write a formal solution of this equation in the form

Ψ(r, re) = eiqoreΦ0(r) +
∫
G(r, re; r′; r′e)V(r′, r′e)Ψ(r′, r′e)dr′dr′e ,

where Φ0(r) is the atomic wave function for the initial state, qo is the wave vector
of an incident electron, and G(r, re; r′r′e) is the Green function of the Schrödinger
equation, which satisfies the equation[

Ĥa(r) − 1
2

∆e − E
]
G(r, re; r′; r′e) = δ(r − r′)δ(re − r′e) ,

and has the form

G(r, re; r′; r′e) =
1

4π3 ∑
k

Φk(r)Φk(r′) lim
ε→0

∫ exp[iq(re − r′e)]
q2k − q2 + iε

.

Here {Φk(r)} is the system of eigen atomic wave functions, qk is the wave vector
of a scattering electron, and the summation is made over all the atomic states
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including the states in which the transition is forbidden (qk < 0). For the prohibited
transitions we have

lim
ε→0

∫ exp[iq(re − r′e)]
q2k − q2 + iε

=
2π2 exp[iqk(re − r′e)]∣∣re − r′e

∣∣ .

This gives the following asymptotic expression for the wave function of the
electron–atom system,

Ψ(r, re)
∣∣
re→∞ = eiqoreΦ0(r) +∑

k
f0k(ϑ)Φk(r)

eiqkre

re
. (4.1)

This wave function of electrons is a sum of those for incident and scattering elec-
trons, and f0k(ϑ) is the scattering amplitude (the scattering angle ϑ is the angle
between the vectors re and q0), which has the form

f0k(ϑ) =
1
2π

∫
Φ∗
k (r

′)e−iqkr′enV(r′, r′e)Ψ(r′, r′e)dr′dr′e , (4.2)

where n is the unit vector along re.

� Problem 4.2 Express the differential cross section of the electron–atom inelastic
scattering through the scattering amplitude.

We will use expression (4.1) for the wave function of the electron–atom system
when the electron is located far from the atom. This wave function is normalized
by the flux q0 of an incident electron. The rate of an atom transition in a state k with
electron scattering in a solid angle dΘ is equal to qk

∣∣ f0k(ϑ)
∣∣ dΘ in this case, whereas

the incident electron flux is q0. Then according to the cross section definition as the
ratio of the scattering rate to the flux of incident particles we have for the inelastic
cross section now

dσ0k =
qk
q0

∣∣ f0k(ϑ)
∣∣ dΘ . (4.3)

� Problem 4.3 Find the threshold behavior for the cross section of atom excitation
by electron impact.

Let us use formula (4.2) for the scattering amplitude in the limit qk → 0. The
electron–atom wave function Ψ(r, re) in formula (4.2) does not depend on the wave
vector of a scattering electron qk in an atom region where scattering proceeds. This
means that the scattering amplitude is independent of qk at small qk. Then taking
the energy of an incident electron ε in the form ε = ∆E + q2k/2, where ∆E is the
excitation energy, and q2k � ∆E, we obtain the following energy dependence for the
excitation cross section:

σ0k = const
√

ε − ∆E . (4.4)
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� Problem 4.4 Determine the cross section of the inelastic ion–atom collision in the
Born approximation.

Considering the electron–atom interaction potential V(r, re) as a perturbation, we
have for the wave function of the electron–atom system ignoring this interaction

Ψ(r, re) = eiqoreΦ0(r) ,

and the scattering amplitude (4.2) takes the form in this limit

f0k(ϑ) =
1
2π

∫
Φ∗
k (r)e

−iK reΦ0(r) V(r, re)drdre ,

where K = qkn− q0 is the momentum (in atomic units) that is transferred to the
incident electron.
Representing a general coordinate of atomic electrons r as a sum of coordinates ri

of individual atomic electrons, we have for the electron–atom interaction potential

V(r, re) = −Z
re
+∑

i

1
|re − ri| ,

where Z is the core charge or the total number of valence electrons. Since

∫ e−iK re

|re − ri|dre = − 4π

K2

(
∑
i
e−iK ri

)
0k

,

we obtain for the scattering amplitude in the Born approximation

f0k(ϑ) = − 2
K2

(
∑
i
e−iK ri

)
0k

. (4.5)

In determining the total cross section of atom excitation, we use the relation
between the transferring electron momentum K and the scattering angle ϑ,

K2 = q20 + q
2
k − 2q0qk cos ϑ, KdK = q0qkd cos ϑ .

This gives the total cross section of atom excitation by electron impact,

σ0k =
8π

K2

q0+qk∫
|q0−qk|

∣∣∣∣∣
(

∑
i
e−iK ri

)
0k

∣∣∣∣∣
2
dK
K3 . (4.6)

The Born approximation is valid at high electron energies when the interaction
electron–atom potential in a region that is responsible for scattering is small com-
pared to the electron energy, and the wave function of the incident electron may
be represented as a plane wave. At high electron velocities we have

q0 − qk =
√
2ε0 −

√
2εk =

∆E√
2ε0

,
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where ε0, εk are the electron energies for the corresponding channel, and ∆E is the
excitation energy. Under these conditions we can expand the exponent in formula
(4.5) over a small parameter K ri. This gives the Bethe approximation for the atom
excitation cross section

σ0k =
8π

q20

∣∣(Dx)0k
∣∣2 ln qe∣∣q0 − qk

∣∣ , (4.7)

where D = ∑
i
ri is the operator of the atom dipole moment, and qe is a typical

electron wave vector. It is also convenient to represent the atom excitation cross
section by electron impact in the Born approximation in the form

σ0k =
4π

ε

∣∣(Dx)0k
∣∣2 ln(

const
ε

∆E

)
, ε � ∆E , (4.8)

where const ∼ 1. As is seen, resonantly excited atoms are excited in collisions with
a fast electron, i. e., the transition takes place mostly between the states which are
connected by a radiative transition.

� Problem 4.5 Find the similarity law for the cross section of atom excitation by
electron impact.

The cross section (4.8) of atom excitation in collision with a fast electron is propor-
tional to the square of the matrix element of the atom dipole moment, as well as
the rate of a radiative transition for an excited atom that has the form

1
τ
=
2∆E3

c3
∣∣(Dx)0k

∣∣2 g0 . (4.9)

Here c = 137 is the light velocity and g0 is the statistical weight of the initial atom
state. This formula allows us to transform formula (4.7) for the excitation cross
section to the form

σex =
c3

τ

gk
g0

π

ε∆E3
ln

(
const

ε

∆E

)
, ε � ∆E .

One can expand this formula in the total range of collision energies in the form

σex =
1
τ

gk
g0

ϕ
( ε

∆E

)
, (4.10)

where the universal function ϕ(x) ∼ ln(const · x)/x at high argument values
(x � 1), and at small x we have ϕ(x) ∼ √

x.

� Problem 4.6 Determine the cross section of exchange scattering for collision of a
classical electron with a one-electron atom at high electron energies.

In this problem we have two electrons, and an incident and atomic electrons
are exchanged. The wave function in fast collisions is exp(iqore)Φ0(r) and
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exp(−iqkr n)Φk(re) before and after collision, respectively, so the amplitude of the
exchange electron scattering in fast collisions has the form

f0k(ϑ) = − 1
2π

∫
Φ∗
k (re)Φ0(r) exp(iqore − iqkr n)

(
1

|re − r| − 1
re

)
drdre . (4.11)

Using the relative electron coordinate R = r − re, which is characterized by
spherical components R, θ, ϕ, and the coordinate re of an incident electron will
be described by spherical components re, θe, ϕe. Accounting for q0 � 1 and inte-
grating over d cos θ in parts, we have

f0k(ϑ) = − 1
2π

∫
Φ∗
k (re)Φ0(re + R) exp(−iKre + iqoR cos θ)

(
1
R

− 1
re

)
dRdre .

This gives

f0k(ϑ) = − 2
q20

(
e−iK r

)
0k
+ 0

(
1
q30

)
. (4.12)

One can see that the amplitude of exchange scattering (4.12) is less than that (4.5)
for direct scattering in K2/q20 times.
Summarizing formulas (4.5) and (4.12), we get for the amplitude of the electron

scattering of a fast electron on a one-electron atom depending on the total spin of
two electrons

f0k(ϑ) = −2
(

1
K2 ± 1

q20

) (
e−iK r

)
0k

. (4.13)

Here the sign + relates to the zero total spin (the symmetric coordinate wave func-
tion of electrons with respect to their permutation), and the minus sign is taken if
the total electron spin is 1 (the coordinate wave function of electrons changes the
sign as a result of electron permutation). In addition, the second term is less than
the first one when this expression holds true.

4.2
Atom Quenching by Electron Impact

� Problem 4.7 Establish the relation between the cross section of the atom excita-
tion by electron impact and the inverse process–quenching of an excited atom by
electron impact (the principle of detailed balance).

Our task is to compare the cross sections of the atom excitation and quenching by
electron impact if these processes are inversely opposite

e + A0 ←→ e + A∗ , (4.14)

where A0, A∗ denote an atom in the ground and excited states, respectively. In order
to establish the relation between the cross sections of these processes, we consider



104 4 Collisions Involving Electrons

one electron and one atom in a volume Ω. The atom can find in the states 0
and ∗, and transitions between these states result from collisions with the electron.
Introducing the interaction operator V that is responsible for these transitions, we
have for the transition rates within the framework of the perturbation theory

w0∗ =
2π

h̄
|V0∗|2 dg∗dε

, w∗0 =
2π

h̄
|V∗0|2 dg0dε

.

Here dg0/dε, dg∗/dε are the statistical weights per unit energy for the appropriate
channels of the process. On the basis of the definition, we have from this for the
cross sections of these processes

σ0∗ =
w0∗
Nv0

= Ω
w0∗
v0

, σ∗0 =
w∗0
Nv∗

= Ω
w∗0
v∗

,

where N = 1/Ω is the number density of particles, v0, v∗ are the electron ve-
locities for the transition channels, and an atom assumes to be motionless. The
time reversal operation gives for the matrix elements of the interaction operator
V0∗ = V∗∗0, which leads to the relation between the cross sections of direct and
inverse processes in electron–atom collisions

σ0∗ v0
dg0
dε

= σ∗0 v∗
dg∗
dε

. (4.15)

The statistical weights for the transition channels are equal to

dg0 = Ω
dp0

(2π h̄)3
g0, dg∗ = Ω

dp∗
(2π h̄)3

g∗ ,

where g0, g∗ are the statistical weights for given atom states. Then finally formula
(3.64) takes the form

σex = σq
v2∗g∗
v20g0

, (4.16)

where we denote by σex = σ0∗ the excitation cross section, and by σq = σ∗0 the
quenching cross section.

� Problem 4.8 Determine the dependence on the electron energy for the rate con-
stant of atom quenching by a slow electron.

When a plasma contains excited atoms which influence equilibrium in a plasma,
quenching of atoms by electron impact is responsible for the equilibrium of elec-
trons in the plasma. The cross section of atom quenching in collisions with a slow
electron is expressed through the threshold cross section of atom excitation by
electron impact on the basis of the principle of detailed balance (4.4). Since the
threshold excitation cross section has the form (3.64)

σex = C
√

ε − ∆E, ε − ∆E � ∆E ,
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the cross section of atom quenching is

σq = C
g0∆E

g∗
√

ε − ∆E
.

Here ε is the electron energy, ∆E is the atom excitation energy, C is a constant, and
g0, g∗ are the statistical weights for the ground and excited states, respectively.
From this we obtain the rate constant of atom quenching by a slow electron, kq,

kq = v∗σq = C
g0∆E

√
2

g∗
√
me

, (4.17)

where v∗ is the electron velocity in the quenching channel and me is the electron
mass. Correspondingly, the rate constant kex of atom excitation by electron impact
is equal to

kex = kq
g∗
g0

√
ε − ∆E

∆E
. (4.18)

Thus, the rate constant of atom quenching by slow electrons kq is independent of
both the electron energy and the energy distribution function for slow electrons.
Hence, it depends only on parameters of the transition atomic states, so that the
quenching rate constant is a convenient parameter characterized also by excitation
of atoms by electron impact near the threshold. The rate constant kq is of the order
of an atomic value, i. e., it has an order of 10−9–10−8 cm3/s. Table 4.1 contains
the quenching rate constants for metastable atoms of inert gases, and these data
confirm general conclusions.

Table 4.1 The rate constant of quenching of metastable states of inert gas
atoms in collisions with slow electrons (N. B. Kolokolov. Chemistry of Plasma,
12, 56, 1984).

Atom, transition ∆E (eV) kq (10−10 cm3/s)

He(23S → 11S) 19.82 31
Ne(23P2 → 21S) 16.62 2.0
Ar(33P2 → 32S) 11.55 4.0
Kr(43P2 → 42S0) 9.915 3.4
Xe(52P2 → 52S0) 8.315 19

� Problem 4.9 Determine the dependence of the rate constant for quenching of a
resonantly excited atom state by a slow electron on the excitation energy.

In the case of a resonantly excited state, the quenching process is more effective
than that for metastable states because the excitation cross section for a fast elec-
tron in the Born approximation for resonantly excited states exceeds significantly
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that for metastable states. Indeed, expressing the matrix element of the atom di-
pole moment through the oscillator strength f0∗ for this transition, we obtain the
excitation cross section of resonantly excited states near the threshold,

σex(ε) =
2πe4 f0∗
∆E5/2

a
√

ε − ∆E ,

where the numerical coefficient a in this formula, as follows from experimental
data in atomic units, is equal to

a = 0.130± 0.007 .

This gives the quenching rate constant in atomic units,

kq = A
g0 f0∗

g∗∆E3/2
, (4.19)

where A = 1.16±0.06. Table 4.2 gives the parameters of this formula for quenching
of resonantly excited states for atoms of the first group of the periodical system of
elements. As is seen, the quenching rate constant for resonantly excited states
exceeds that for metastable states (Table 4.1) by one to two orders of magnitude.

Table 4.2 Parameters of resonantly excited states of some atoms and the
rate constant of quenching of these states in collisions with a slow electron
( f0∗ is the oscillator strength for this transition, τ∗o is the radiative lifetime of
the resonantly excited state, and λ is the wavelength of the emitting photon).

Atom, transition ∆E (eV) λ (nm) f τ∗o (ns) kq (10−8 cm3/s)

H(21P → 11S) 10.20 121.6 0.416 1.60 0.79
He(21P → 11S) 21.22 58.43 0.276 0.555 0.18
He(21P → 21S) 0.602 2058 0.376 500 51
He(23P → 23S) 1.144 1083 0.539 98 27
Li(22P → 22S) 1.848 670.8 0.74 27 19
Na(32P → 32S) 2.104 589 0.955 16.3 20
K(42P1/2 → 42S1/2) 1.610 766.9 0.35 26 31
K(42P3/2 → 42S1/2) 1.616 766.5 0.70 25 32
Rb(52P1/2 → 52S1/2) 1.560 794.8 0.32 28 32
Rb(52P3/2 → 52S1/2) 1.589 780.0 0.67 26 33
Cs(62P1/2 → 62S1/2) 1.386 894.4 0.39 30 46
Cs(62P3/2 → 62S1/2) 1.455 852.1 0.81 27 43

� Problem 4.10 Express the rate constant of quenching of resonantly excited atom
states by a slow electron for atoms of the first group of the periodical system of
elements through the radiative time of excited states and the excitation energy of
these states.

Using the relation between the radiative lifetime τ∗o of a resonantly excited state
and the matrix element square for the operator of the atom dipole moment, one
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can rewrite formula (4.19) in the form

kq =
ko

(∆E)7/2 τ∗o
. (4.20)

If the atom excitation energy ∆E is expressed in eV, and the radiative lifetime is
given in ns, then the numerical coefficient in formula (4.20) is ko = (4.4± 0.7) ×
10−5 cm3/s, as follows from experimental data for the excitation cross sections of
alkali metal atoms.

� Problem 4.11 Based on the experimental data given in Table 4.2, express the de-
pendence of the rate constant of quenching for resonantly excited atom states by
a slow electron on the excitation energy.

According to formula (4.19), this dependence is kq ∼ ∆E−3/2. Of course, one can
treat the data of Table 4.2 for approximating the quenching rate constant kq by
a general power dependence kq ∼ ∆E−α and finding the optimal value of the
parameter α. But since kq depends also on other parameters, the accuracy of this
operation would not be sufficient. Hence we are restricted by the dependence (4.19)
only. Then statistical treatment of the Table 4.2 data gives in atomic units

kq∆E−3/2 = 0.6± 0.2 ,

where kq is taken in 10−7 cm3/s, and ∆E is expressed in eV. Note that the accuracy
of this approximation is worse than the accuracy of the experimental data used in
Table 4.2 by about 20%.

4.3
Atom Ionization by Electron Impact

� Problem 4.12 Determine the cross section of atom ionization by electron impact
as a result of collision of the incident and valence electrons. Consider colliding
electrons as classical particles and the valence electron to be the motionless particle
(Thomson model).

The process of atom ionization by electron impact proceeds according to the
scheme

e + A → 2e + A+ . (4.21)

In this process the incident electron interacts with a valence electron and transfers
to it a part of its kinetic energy, which can cause the detachment of the valence
electron from the initially neutral atom. We analyze this process below in terms of
a simple model developed by J. J. Thomson, in which it is assumed that electron
collisions can be described on the basis of classical laws, and that the electrons
do not interact with the atomic core during the collision. One can expect that the
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analysis of this quantum process on the basis of a classical consideration is in-
correct. Nevertheless, because of the identity of the classical and quantum cross
sections for elastic scattering of particles interacting through the Coulomb interac-
tion potential this model can give a correct qualitative description of the ionization
process.
An ionization event occurs within the framework of this model, if the energy

transferred to the valence electron exceeds the ionization potential J of the atom.
Hence, our task is to find the cross section for collisions of electrons in which
the energy exchange between electrons exceeds a given value ∆ε. We consider the
limiting case when the kinetic energy of the incident electron, ε = mv2/2, exceeds
remarkably the energy exchange ∆ε, and an incident electron is scattered in a small
angle. An electron momentum variation is equal to according to formula (2.34)

∆p =
∞∫

−∞

e2ρ

R3
dt =

2e2

ρv
.

We assume that the valence electron is motionless before collision and the energy
of an incident electron is relatively high. This gives the energy ∆ε of the valence
electron after collision,

∆ε =
∆p2

2me
=

2e4

ρ2mev2
=

e4

ρ2ε
,

where ε is the energy of the incident electron. The cross section for collisions
accompanied by the exchange of energy ∆ε is

dσ = 2πρdρ =
πe4d∆ε

ε (∆ε)2
.

Though this formula was deduced for the case ε � ∆ε, it is valid for any relative
magnitudes of these parameters. The ionization cross section corresponds to ε >

∆ε > J and on the basis of formula (2.34) is given by

σion =
ε∫
J

dσ =
πe4

ε

(
1
J

− 1
ε

)
. (4.22)

This expression is the Thomson formula for the atom ionization cross section by
electron impact. The model may be generalized for atoms with several valence
electrons by a simple multiplication of this cross section by the number of valence
electrons since these electrons take part in the ionization process independently.

� Problem 4.13 Determine the rate constant of atom ionization by electron impact
within the framework of the Thomson model for the ionization cross section and
for the Maxwell distribution function of electrons on energies.

On the basis of the Thomson formula (4.22) for the ionization cross section σion for
an atom with one valence electron by electron impact we have for the rate constant
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of ionization kion of atom ionization

kion =
2√
π

∞∫
J/Te

x1/2e−xdx

√
2ε

me

πe4

ε

(
1
J

− 1
ε

)
= kJF(J/Te) ,

where x = ε/Te, ε is the electron energy, and Te is the electron temperature, J is
the atom ionization potential. Next,

kJ =

√
8J

πme

πe4

J2
, F(y) =

√
y

∞∫
y

e−xdx
(
1 − y

x

)
. (4.23)

In the limiting cases we have from this for the rate constant of atom ionization

kion = kJ
√
y, y � 1; kion =

kJ√
y
e−y, y � 1 .

Figure 4.1 shows the dependence F(y) in an intermediate range of the argument.

Fig. 4.1 Function F(y) for the rate constant of atom ionization by elec-
tron impact according to the Thomson model.

� Problem 4.14 On the basis of the dimensionality consideration find the depen-
dence of the ionization cross section of an atom by electron impact on the parame-
ters of this problem. Assume the character of collision of the incident and valence
electrons to be classical and the distribution of a valence electron inside the atom
to be described by one parameter–the ionization potential of the atom J.

Under the classical treatment, we characterize the ionization cross section by the
following classical parameters of the problem: me (the electron mass), e2 (the in-
teraction parameter), ε (the electron energy), and J (the ionization potential). The
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most general form of the cross section expressed through these parameters is

σion =
πe4

J2
f
(

ε

J

)
, (4.24)

where f (x) is a universal function that is identical for all atoms. For the Thomson
model this function is given by

f (x) = 1/x − 1/x2 .

In the case when the valence electron shell contains n electrons, this formula takes
the form

σion =
πe4

J2
n f

(
ε

J

)
. (4.25)

� Problem 4.15 Determine the atom ionization cross section by electron impact
under the assumption of the Thomson model, but refuse from the assumption
that a valence electron is motionless.

If the change of the momentum of a valence electron is ∆p as a result of collision
with the incident electron whose velocity is u before the collision, the change ∆ε

of its energy is

∆ε =
(meu +∆p)2 −m2

eu
2

2me
,

and the transferred momentum ∆p is expressed through the energy change ∆ε as

∆p =
√

(meuk)2 + 2me∆ε −muk ,

where k is the unit vector directed along ∆p. From this we have for the ionization
cross section

σion =
ε∫
J

dσ =
4πe4

v2

ε∫
J

〈
med∆ε

(
√

(meuk)2 + 2me∆ε −muk)3
√

(meuk)2 + 2me∆ε

〉
,

where v is the velocity of the incident electron, and the angle brackets mean an
average over an angle between the vectors u and k, and over the velocities u of the
valence electron. Averaging over the angle, we obtain

σion =
πe4

ε

ε∫
J

〈
med∆ε

∆ε3
(∆ε +

2
3
meu2)

〉
=

πe4

ε

[
1
J

− 1
ε
+
2E
3

(
1
J2

− 1
ε2

)]
,

where E = meu2/2, and averaging is made over the electron distribution inside the
atom.
Under the assumption that the valence electron is motionless E we obtain from

this the Thomson formula (4.22). If we assume that the valence electron is located
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mostly in the Coulomb field of the atomic core, we have from the virial theorem
E = J, and this formula gives for the ionization cross section

σion =
πe4

ε

(
5
3J

− 1
ε
− 2J
3ε2

)
. (4.26)

Let us compare this formula with the Thomson formula in order to understand to
which changes leads accounting for the velocity distribution of the valence electron.
At the threshold the Thomson formula gives

σion =
πe4

J2
(ε − J), ε − J � J (4.27)

while formula (4.26) gives near the threshold

σion =
7πe4

3J2
(ε − J), ε − J � J . (4.28)

The Thomson formula leads to the maximum of the cross section at ε = 2J with
the value σmax = πe4/(4J2), whereas the maximum of the cross section accord-
ing to formula (4.26) is approximately twice compared to that of the Thomson
formula, and this maximum occurs at the electron energy ε = 1.85J. Next, the as-
ymptotic cross section according to formula (4.26) exceeds 5/3 times that of the
Thomson formula. Thus, even large energies of the incident electron accounting
for the nonzero velocity of a valence electron leads to a change in the ionization
cross section.

� Problem 4.16 Within the framework of the Thomson model for atom ionization
by electron impact find the rate of atom ionization in a plasma for the ground
and excited atom states which are in thermodynamic equilibrium with electrons.
Assume a typical thermal energy of electrons to be small compared to the atom
ionization potential.

We assume the Maxwell energy distribution function of electrons that is normal-
ized to one,

f (ε)dε =
2ε1/2dε

π1/2T3/2
exp

(
− ε

Te

)
,

and the electron temperature Te to be small compared to the ionization potential
J of the atom. Then taking the Thomson formula for the ionization cross section
near the threshold,

σion =
ε∫
J

dσ =
πe4n
J2

(ε − J) ,

where n is the number of valence electrons, we find the rate of atom ionization by
electron impact,

νion = No 〈veσion〉 = No
πe4n
J2

√
8Te
πme

exp
(

− J
Te

)
. (4.29)
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Here No is the number density of atoms in the ground state, and this rate is taken
per electron. The same formula can be obtained for excited atoms,

ν∗
ion = N∗

πe4n
J2∗

√
8Te
πme

exp
(

− J∗
Te

)
, (4.30)

where N∗ is the number density of atoms in a given excited state, and J∗ is the
ionization potential for an excited atom.

� Problem 4.17 Within the framework of the Thomsonmodel for atom ionization by
electron impact compare the rates of atom ionization in a plasma from the ground
and an excited atom state. Compare the contribution to the ionization rate from the
ground and an excited state under the assumption of thermodynamic equilibrium
between atoms and electrons. A thermal electron energy is small compared to the
atom ionization potential.

Since excited atoms are found in thermodynamic equilibrium with atoms in the
ground state, and this equilibrium is supported by atom collisions with electrons,
the number densities of atoms in the ground and excited states are determined by
the Boltzmann formula, so

N∗
No

=
g∗
go
exp

(
−∆ε

Te

)
,

where ∆ε = J− J∗ is the excitation energy, go, g∗ are the statistical weights for atoms
in the ground and excited states.
So, we have the ratio of the ionization rates (4.29) and (4.30),

ν∗
ion

νion
=

g∗
ngo

(
J
J∗

)2

. (4.31)

The first factor is of the order of 1, but in the case of a highly excited state the
second factor is large. Therefore, if atoms are excited in equilibrium with electrons,
ionization of the ground state through excitation of this state is more effective than
the direct ionization from the ground state. As a result, excited states give the main
contribution to the ionization rate of atoms by electron impact in a dense plasma,
where excited atom states are in thermodynamic equilibriumwith the ground atom
states due to collisions with plasma electrons. This character of atom ionization in
an equilibrium plasma is stepwise ionization.
We consider as an example ionization of helium atoms by electron impact in an

equilibrium plasma with the Maxwell distribution of electrons over energies. We
assume that electrons can ionize both atoms in the groundHe(11S) andmetastable
He(23S) states and due to collisions with electrons the Boltzmann equilibrium is
established between these states. Then the ratio of ionization rates (4.31) through
the metastable and ground atom states takes the form

ν∗
ion

νion
=
3
2

(
J
J∗

)3/2 F(J∗/Te)
F(J/Te)

,
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where J = 24.6 eV and J∗ = 4.77 eV are the ionization potentials for helium atoms
in the ground and metastable states, and F(y) is given by formula (4.23). In the
limit of low electron temperatures this formula is transformed to formula (4.31).
Figure 4.2 gives this ratio as a function of the electron temperature.

Fig. 4.2 The ratio of the ionization rates of the helium atom by electron
impact if ionization proceeds through the metastable (νmion) and ground
(ν(o)ion) atom states.

� Problem 4.18 Determine the threshold behavior of the atom ionization cross sec-
tion by electron impact.

The peculiarities of this ionization threshold process are as follows. First, both
electrons, incident and released ones, have small energies when they leave the
atomic core during atom ionization. Hence, when these electrons are located far
from the core, they can be considered to be classical. Second, both electrons leave
the core in opposite directions. If these directions are not opposite, the electrons
get an orbital momentum as a result of their interaction, and the total electron
energy takes part in this motion. Third, current distances of electrons from the core
during their removal are almost the same. If it is not so, a more removal electron
is screened by the nearest one and carries the potential energy. Another electron
remains to be bonded. These peculiarities of the threshold ionization process allow
us to use the classical character of electron motion under simplified conditions,
when in a space of electron coordinates r1 and r2 the region r1 ≈ r2 is responsible
for atom ionization. Themotion equations for the coordinates r1 and r2 of electrons
from the center have the following form in atomic units:

d2r1
dt2

= − r1
r31

+
r1 − r2
|r1 − r2| ,

d2r2
dt2

= − r2
r32

− r1 − r2
|r1 − r2| . (4.32)
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Let us introduce a new variable r = (r1 + r2)/2. Since the electrons emit in oppo-
site directions and are located at close distances from the center, we introduce

r1 , r2 = ±r + (∆r + δr)/2 ,

where ∆r is directed along of r, and δr is directed perpendicular to r. With an
accuracy of up to (∆r/r)2 and (δr/r)2 we have from the energy conservation law

(
dr
dt

)2

= ∆ε +
3
2r

,

where ∆ε = ε − J is the electron energy over the threshold, so that ε is the energy of
an incident electron, and J is the atom ionization potential. In the range r � 1/∆ε

this equation has the following solution:

r3 =
27
8
t2 . (4.33)

As follows from the Newton equations (4.32) for electrons, the difference of the
energies of releasing electrons is

δε =
1
2

(
dr1
dt

)2

− 1
2

(
dr2
dt

)2

= 2
dr
dt

d∆r
dt

.

The fulfillment of the criterion δε ≤ ∆ε is necessary for the ionization process. In
order to find the range where it holds true, we analyze the equation for ∆r that
follows from formula (4.32) and has the form

d2∆r
dt2

=
2∆r
r3

.

Expressing t through r in the range r � 1/∆ε in accordance with formula (4.33),
we get

d2∆r
rdr2

− 1
2r2

d∆r
dr

− 4
3

∆r
r3

= 0 .

The solution of this equation has the form

∆r
r
= C1r−1/2−α +C2rα, α =

1
4

√
100− 9
4− 1

= 1.127 .

The first term of this solution increases up to infinity in the limit r → ∞. Since by
the definition of ∆r the value ∆r/r is restricted, we have C1 = 0, which gives in the
case of release of both electrons

∆r
r
= C2rα, r � ∆ε .

In some range of possible values C2 we have |δε| ≤ ∆ε, and release of both elec-
trons takes place in this case. If the ratio ∆ε/J is small, the above relation is fulfilled
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in a relatively small range of possible value C2. According to the dimension consid-
eration, the reduced parameters r1∆ε, r2∆ε, t∆ε3/2 may be conserved at small ∆ε/J
when they are expressed through the parameter ∆ε only. Hence, from the dimen-
sion consideration it follows that the range of C2 that corresponds to ionization
varies as C2 ∼ ∆εα. From this it follows that the threshold energy dependence for
the ionization cross section σion has the form

σion ∼ (ε − J)α , (4.34)

and α = 1.127 for atom ionization.

� Problem 4.19 Determine the average energy of electrons formed in a plasma as
a result of atom collisions with plasma electrons. Electrons are found in thermo-
dynamic equilibrium, and their temperature Te is small compared to the atom
ionization potential J.

When collision of an electron of energy ε > J with an atom leads to atom ionization,
the total energy of two electrons (incident and released ones) after ionization is
ε − J, i. e., the average energy per electron is (ε − J)/2, and the energy dependence
for the ionization cross section is given by formula (4.34). Taking the rate constant
of ionization in the form

kion = 〈vσion〉 ,
where v is the electron velocity, an average is made over the Maxwell distribution
function of electrons with the electron temperature Te. From this we find the av-
erage reduced electron energy after ionization,

〈(ε − J)〉
2Te

=
〈x〉
2

=
〈x3/2+α〉
〈x3/2+α〉 =

∞∫
0
x2+αe−xdx

∞∫
0
x1+αe−xdx

=
α + 1
2

.

Hence, the energy that is consumed in the formation of one released electron is
equal on average to (α = 1.127)

E = J +
〈(ε − J)〉

2
= J +

α + 1
2

Te = J + 1.06 Te, (4.35)

and the second term is small compared to the first one.

� Problem 4.20 Determine the dependence of the rate constant of stepwise ioniza-
tion of atoms in a plasma on the plasma parameters.

We define the rate constant of stepwise ionization kion from the balance equation
for the number density Ne of plasma electrons if ionization processes by electron
impact are taken into account, and the balance equation has the form

dNe

dt
= Ne ∑

n
knNn ≡ NekionNo . (4.36)
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Here No is the number density of atoms in the ground state, Nn is the number
density of atoms in an excited state, and kn is the rate constant of atom ionization by
electron impact from the n-th excited state. In a dense plasma the number density
of excited atoms is determined by formula (4.22) if we use the Thomson formula
for the ionization cross section. But in a reality the dependence of this formula
from parameters of the problem is the same.
The main contribution to the rate constant of stepwise ionization is determined

by the states with the ionization potential of the order of the thermal electron
energy Jn ∼ Te since a typical energy change between an incident and valence
electrons is ∼ Te. We now estimate the rate constant of stepwise ionization on the
basis of formula (4.36),

kion = ∑
n
kn

Nn

No
. (4.37)

The statistical weight of the states with the dominant contribution to ionization
is gn ∼ gin2 ∼ gi/Jn ∼ gi/Te, where n is the principal quantum number of these
states, and gi is the statistical weight of the ion that is a core for an excited atom.
Since the number of terms of different n in this sum is ∼ n, we obtain for the rate
constant of stepwise ionization (4.37) by taking into accounting formula (4.30)

kion ∼ gi
goT3e

exp
(

− J
Te

)
.

Note that this ionization process is determined by highly excited states whose prop-
erties are determined by the Coulomb electron–core interaction, and hence other
parameters of this formula correspond to the parameters of the hydrogen tom.
Hence, reducing the above formula to the rate constant dimensionality, we obtain
for the rate constant of stepwise ionization

kion = A
gi
go

mee10

h̄3T3e
exp

(
− J
Te

)
, (4.38)

where the numerical coefficient A ∼ 1 (in reality, A ≈ 3).

� Problem 4.21 Compare the rate constants of stepwise ionization in a dense plasma
for two different kinds of atoms.

We consider the character of stepwise ionization of atoms by electron impact, so
that the main contribution to its rate constant follows from highly excited states
whose parameters are determined only by the Coulomb interaction between a
bound electron and a core-ion. Hence, the individuality of atoms is lost for these
states, i. e., the character of processes for these atom states proceeds in the same
manner for atoms of different kinds. We therefore can use formula (4.38) for the
rate constant of stepwise ionization, which gives the ratio of the rate constants of
stepwise ionization in a dense plasma that consists of atoms of different kinds,

k(1)
ion

k(2)
ion

=
g(1)
i g(2)

o

g(2)
i g(1)

o

exp
(
J2
Te

− J1
Te

)
, (4.39)
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where k(1)
ion , k

(1)
ion are the rate constants of stepwise ionization for indicated atoms,

whose ground states are characterized by the ionization potentials J1 , J2 and the

statistical weights g(1)
o and g(2)

o , respectively, and the ion statistical weights are g(1)
i

and g(2)
i , respectively.

4.4
Recombination of Electrons and Ions

� Problem 4.22 On the basis of the Thomson theory for three-body processes esti-
mate the rate of three-body recombination of electrons and ions with electrons as
third particles.

We consider the three-body recombination process of electrons and ions that pro-
ceeds according to the scheme

2e + A+ → e + A∗, (4.40)

and is of importance for a dense plasma. Evidently, the rate constant of this process
is given by formula (3.54), and we find the parameters of this formula. In this
process particles A and C are electrons, and particle B is ion, and these particles
interact through the Coulomb interaction potential U(R) = ±e2/r, where r is the
distance between them. Hence the cross section of the elastic scattering by large
angles is σ ∼ e4/T2e , and the size of the critical region for this process is b ∼ e2/Te.
Then formula (3.54) gives for the rate constant of the process (4.40)

Kei =
α

Ne
= C

e10

m1/2T9/2e
. (4.41)

From the definition, we have in this case the recombination coefficient α,

α = KeiNe = CNe
e10

m1/2T9/2e
. (4.42)

The numerical coefficient C in this expression is of the order of 1, C ∼ 1. From
treatment of numerical evaluation we have

C = 1.5× 10±0.2 ,

and this value will be used below.

� Problem 4.23 Estimate from dimensionality consideration the rate of three-body
recombination electrons and ions with electrons as third particles.

While accounting for the character of the process (4.40), which leads to an elec-
tron capture in bound atom states with the ionization potential ∼ Te, we have in
this problem three-dimensional parameters, the interaction parameter e2, the elec-
tron mass me, and the thermal electron energy Te (the electron temperature). We
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have only the combination of these parameters of the dimensionality cm6/s, which
corresponds to the rate constant of the three-body process,

Kei ∼ e10

m1/2T9/2
,

and this combination coincides with the rate constant (4.41) for the three-body
recombination process (4.40).

� Problem 4.24 Determine the rate constant of stepwise ionization of atoms in a
plasma on the basis of the rate constant of three-body recombination of electrons
and ions and the principle of detailed balance.

In considering this process in a dense low-temperature plasma (for example, in a
gas-discharge plasma), we assume that a typical electron energy is usually consid-
erably lower than atomic ionization potentials,

Te � J . (4.43)

Then ionization of atoms proceeds through excitation of atoms, as a result of step-
wise ionization, and the last stage of this process is ionization of an excited atom
with the electron binding energy of the order of the thermal electron energy in a
plasma. Then three-body recombination of electrons and ions with an electron as
a third body proceeds in the same succession, but in an inverse direction, and the
rate coefficient of stepwise ionization is related to the rate of three-body electron–
ion recombination by the principle of detailed balance. We consider this below.
Therefore, single ionization of atoms can occur only in collisions with high-

energy electrons from the tail of the distribution function. Ionization can also occur
as a result of the collision of an electron with an excited atom. For ionization by
electrons that are not energetic enough to produce ionization directly, the atom
must pass through the number of excited states, with transitions to these states
caused by collisions with electrons. This mechanism for ionization of an atom is
called stepwise ionization. We shall estimate the rate constant of stepwise ioniza-
tion assuming the electron energy distribution to be the Maxwell one, and taking
the electron temperature to be considerably lower than the atom ionization poten-
tial, so that stepwise ionization of atoms by electron impact can take place only
with a high number density of electrons, and there are no competing channels
for transitions between excited states. Then the stepwise ionization process is the
detailed-balance inverse process to the three-body recombination of electrons and
ions. In inverse processes, atoms undergo the same transformations but in oppo-
site directions.
Assuming the electrons to be in thermodynamic equilibrium with the atoms in

a plasma, where electrons are formed due to stepwise ionization, and their decay
is due to the three-body recombination process, we have the balance equation

dNe/dt = 0 = NeNakion − αNeNi .

Here Ne, Ni, and Na are the number densities of electrons, ions, and atoms, re-
spectively, and kion is the rate constant for stepwise ionization.
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Because of thermodynamic equilibrium, the number densities of electrons, ions,
and atoms are connected by the Saha distribution (1.69). From this we obtain the
relationship between the rate constants of the competing processes as

kion =
α

Ne

gegi
ga

(
meTe
2π h̄2

)3/2

exp
(

− J
Te

)
, (4.44)

where ge, gi, and ga are the statistical weights of electrons, ions, and atoms, respec-
tively, and Te is the electron temperature. Because the rate constants kion and α/Ne

do not depend on the number densities, relation (4.44) is valid even if the Saha dis-
tribution does not hold. Thermodynamic equilibrium in the system is used here
as a method that allows us to establish a relationship between the rate constants
of direct and inverse processes.
The separate question relates to the real ratio of the statistical weights of particles.

In considering the limiting case (4.43), we use expression (4.41) for the three-
body rate constant of electron–ion recombination. In this limit the recombination
process results in collision of two free electrons in the field of the Coulomb center
with the formation a bound state for one of colliding electrons. In this process
the statistical weights of colliding particles are equal to 1, in spite of a certain spin
projection for each electron and the ion statistical weight. Correspondingly, dur-
ing stepwise ionization, when an excited electron proceeds through some excited
states, the statistical weight for this electron is also equal to 1. Therefore, according
to the nature of this process when each valence electron is excited independently,
it is necessary to change the ratio gige/ga by the number of valence electron n,
and hence formula (4.44) for the rate constant of stepwise ionization of atoms in a
plasma takes the form

kion =
Cn

(2π)3/2
mee10

h̄3T3e
exp

(
− J
Te

)
. (4.45)

By taking into account the nature of the process, formula (4.45) coincides with
formula (4.38) for the rate constant of stepwise ionization, which is derived from
other method. Table 4.3 gives the rate constants for ionization of inert gas atoms
evaluated by this formula and C = 1.5.

Table 4.3 Rate constants (in cm3/s) of stepwise ionization of inert gas
atoms by electron impact.

Te (eV) He Ne Ar Kr Xe

0.8 2.0× 10−18 2.7 × 10−16 3.8× 10−13 3.3× 10−12 3.6× 10−11

1.0 4.9× 10−16 3.0× 10−14 1.0× 10−11 5.9× 10−11 3.8× 10−10

2.0 2.4× 10−10 1.8× 10−10 3.3× 10−9 8.0× 10−9 2.0× 10−8
3.0 7.8× 10−10 2.0× 10−9 1.4× 10−8 2.5× 10−8 4.6× 10−8
4.0 1.3× 10−9 5.0× 10−9 2.1 × 10−8 3.3× 10−8 5.3× 10−8



120 4 Collisions Involving Electrons

� Problem 4.25 Determine the recombination coefficient of a multicharged ion and
electron through the formation of an autoionization state (dielectronic recombina-
tion).

Autoionization and autodetachment states are of importance as they are inter-
mediate states in collision processes. In the previous chapter we considered the
formation of autodetachment states during collisions involving a negative ion and
an atom. The subsequent decay of these states during the collision leads to elec-
tron release. These states are intermediate states of collision processes involving
electrons, especially in recombination and attachment processes, and therefore we
consider now autoionization and autodetachment states in more detail.
An autoionization state is a bound state of an atom or a positive ion whose energy

is above the boundary of the continuous spectrum. Hence an electron can be re-
leased in the decay of such a state. For example, the autoionization state He(2s2,1 S)
is the state of the helium atom where both electrons are located in the excited 2s
state. This autoionization state can decay. As a result of such a decay one electron
makes a transition to the ground state, and the other electron ionizes. The scheme
of this process is

He(2s2,1 S) → He+(1s,2 S) + e + 57.9 eV. (4.46)

An autodetachment state is identical to the autoionization state, but occurs in a
negative ion. The decay of such a state proceeds with the formation of a free elec-
tron and an atom or a molecule. An example of an autodetachment transition is

H−(2s2,1 S) → H(1s,2 S) + e + 9.56 eV. (4.47)

Autoionization and autodetachment states are characterized by a certain width Γ

that is connected with the lifetime of the states τ with respect to their decay by the
relation Γ = h̄/τ.
Dielectronic recombination of an electron and multicharged ion results from

capture of the electron into an ion autoionization state and its subsequent decay
by the radiative transition to a stable state. The total process proceeds according to
the scheme

e + A+Z →
[
A+(Z−1)

]∗∗
, (4.48)[

A+(Z−1)
]∗∗ → A+Z + e, (4.49)[

A+(Z−1)
]∗∗ → A+(Z−1) + h̄ω . (4.50)

Since the radiative lifetime of the multicharged ion depends strongly (∼ Z−4)
on its charge Z, the process of dielectronic recombination is of importance for
recombination involving multicharged ions. We evaluate below the rate of this
process on the basis of the above scheme of these processes.
From the scheme of these processes we have the following balance equation for

the number density Nai of ions in a given autoionization state:

dNai

dt
= NeNZk− Nai

Γ

h̄
− Nai

1
τ
,
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where Nai is the number density of ions in an autoionization states, Ne is the
electron number density, NZ is the number density of ions of a charge Z, k is
the rate constant of the first process, Γ is the width of the autoionization level,
and τ is the radiative lifetime of the autoionization state. From this equation we
find the number density of ions in the autoionization state Nai, and the rate of the
recombination process I = Nai/τ as

Nai =
NeNZk

Γ/h̄ + 1/τ
, I =

Nai

τ
=

NeNZk
Γτ/h̄ + 1

. (4.51)

From this we find the recombination coefficient α as

α =
I

NeNZ
=

k
Γτ/h̄ + 1

. (4.52)

One can connect the rate constant k for electron capture in the autoionization
state with the width Γ of the autoionization level. We use the Saha formula for
the number density of ions in an autoionization state when electrons and ions are
found in thermodynamic equilibrium,

NZNe

Nai
=
gegZ
gai

(
meTe
2π h̄2

)3/2

exp
(
Ea
Te

)
, (4.53)

where ge, gZ , and gai are statistical weights for the atomic states, Ea is the excita-
tion energy of the autoionization state, and Te is the electron temperature. Since
thermodynamic equilibrium corresponds to the limit τ → ∞, a comparison of the
first expression in formula (4.51) with formula (4.53) gives for the rate constant of
the electron capture in the autoionization state of the ion as

k =
gai
gegZ

(
2π h̄2

meTe

)3/2
Γ

h̄
exp

(
−Ea
Te

)
. (4.54)

On the basis of formulas (4.52) and (4.54) we finally obtain for the rate of dielec-
tronic recombination

α =
gai
gegZ

(
2π h̄2

meTe

)3/2
Γ/h̄

Γτ/h̄ + 1
exp

(
−Ea
Te

)
. (4.55)

� Problem 4.26 Obtain the expression for the cross section of dissociative attach-
ment of an electron to a diatomic molecule as a result of the electron capture on
an autodetachment level or for the cross section of dissociative recombination of
an electron and a diatomic molecular ion as a result of electron capture on an au-
toionization level. Then atomic particles fly away until an unstable state of atomic
particles becomes a stable one (see Fig. 4.3).

The process of dissociative attachment of electrons to molecules proceeds through
the formation of an autodetachment state:

e + AB → (AB−)∗∗ → A− + B, (4.56)
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Fig. 4.3 Electron terms for the dissociative recombination process in
collisions of an electron and molecular ion.

and in the same manner the dissociative recombination process proceeds,

e + AB → (AB−)∗∗ → A− + B . (4.57)

Formally, both processes are identical. Indeed, the first stage of the process is the
electron capture on an autodetachment or autoionization level at a given distance
between nuclei, and the second stage is flying away of atomic particles up to the
formation of a stable state of atomic particles. The cross section for the first stage
of the process, electron capture on an autodetachment or autoionization level, is
given by the Breit–Wigner formula

σcap =
π h̄2

2meε

Γ2(R)

[ε − εa(R)]2 + Γ2(R)/4
, (4.58)

where ε is the electron energy, and εa(R) is the position of the electron term above
the energy of the initial molecule (or molecular ion) state at a given distance be-
tween nuclei where the electron capture takes place. In order to obtain from this
the cross section of the process (4.56) or (4.57), it is necessary to average this over
the initial distance between nuclei and multiply by the probability exp(− ∫

Γdt/h̄)
of survival for the autodetachment or autoionization state. Thus, the cross section
of this process is given by

σdis =
π h̄2

2meε

∫
dR

Γ2(R)
∣∣ϕo(R)

∣∣2
[ε − εa(R)]2 + Γ2(R)/4

exp


−

Rc∫
R

Γ(R′)dR′

h̄vR


 . (4.59)

Here ϕo(R) is the nuclear wave function, so |ϕo(R)|2dR is the probability that the
distance between nuclei in the initial state ranges from R up to R + dR, and we
replace dt by dR′/vR, where vR is the radial velocity for a relative motion of nuclei.
This formula is identical to both processes, dissociative attachment and dissociative
recombination, and the difference for these processes is contained in positions of
electron terms and dependence Γ(R).
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� Problem 4.27 Obtain the integral relation for the cross section of dissociative at-
tachment or dissociative recombination assuming the width of an autodetachment
or autoionization level to be relatively small.

When the width of the autodetachment or autoionization level is small compared
to the electron energy (only under this condition this unstable state can be consid-
ered as a bound electron state!), one can use the following change in scales of the
electron energy:

1
2π

Γ(R)

[ε − εa(R)]2 + Γ2(R)/4
= δ[ε − εa(R)] .

Using this change in formula (4.59), we obtain the following integral relation:

∞∫
0

σdisεdε =
π2 h̄2

me

〈
Γ(R) exp


−

Rc∫
R

Γ(R′)dR′

h̄vR


〉

, (4.60)

where the angle brackets mean an average over the distance between nuclei.

� Problem 4.28 Determine the rate constant of dissociative attachment of an elec-
tron to a diatomic molecule for the Maxwell velocity distribution function of elec-
trons.

According to the definition, the rate constant of dissociative attachment or disso-
ciative recombination is given by

kdis =
2√

πT3/2e

∞∫
0

√
2ε

me
σdis(ε)

√
ε exp

(
− ε

Te

)
dε .

On the basis of formula (4.59) we reduce it to the form

kdis =
(

2π

meTe

)3/2

h̄2
〈

Γ(R) exp


− εa(R)

Te
−

Rc∫
R

Γ(R′)dR′

h̄vR


〉

. (4.61)

In derivation this formula we assume Γ � Te and use the integral relation (4.60).

� Problem 4.29 Determine the rate constant of dissociative recombination of an
electron and molecular ion assuming the width of an autoionization electron term
to be independent of the excitation energy of this term, and this term varies linearly
with the distance between nuclei.

According to its nature, dissociative recombination is similar to dissociative attach-
ment and proceeds according to the scheme

e + AB+ → A + B+ .

Because of many excited states, this process usually is more effective than the
electron attachment process and chooses optimal excited atom states in the end.
As is shown, Fig. 4.4 represents the behavior of electron terms for this process.
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Fig. 4.4 Electron terms which are responsible for electron attachment
to a molecule (a) and the spectrum of captured electrons (b).

The rate constant of this process is determined by formula (4.61) with Γ(R) =
const,

kdis = h̄2Γ

(
2π

meTe

)3/2 ∫
|ϕo(R)|2dR exp


− εa(R)

Te
− Γ

h̄

√
2µ(Rc − R)

ER


 ,

where ER = dεa(R)/dR. Introducing the excitation energy of the autoionization
term Ea at the distance Rc of the term intersection, i. e., εa(R) = Ea + ER(Rc − R),
we consider two limiting cases with respect to the electron temperature and the
width of the autoionization term. In the case

Γ �
h̄ER√

µTe

the integral for the rate constant of dissociative recombination converges near the
intersection distance due to the energy dependence for the electron distribution
function, which gives in this case

kdis =
h̄2ΓTe
ER

(
2π

meTe

)3/2

|ϕo(Rc)|2 exp
(

−Ea
Te

)
. (4.62)

In the opposite limiting case, the range of distances which gives the contribution
to the rate constant is determined by survival of the autoionization term, and we
have in this limiting case

kdis =
2 h̄4Γ

ERµ

(
2π

meTe

)3/2

|ϕo(Rc)|2 exp
(

−Ea
Te

)
. (4.63)

In both cases we assume that the range of distances that determines dissociative
recombination is narrow and is concentrated in the vicinity of the intersection
distance Rc.
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� Problem 4.30 Determine the cross section of dissociative attachment of an elec-
tron to a molecule if the distances between nuclei in the molecule are concentrated
in a narrow range near Ro, and this distance is separated significantly from the in-
tersection distance Rc of the electron terms.

We use formula (4.61) for the cross section of dissociative attachment of an electron
to a molecule

σdis =
π h̄2

2meε

∫
dR

Γ2(R)
∣∣ϕo(R)

∣∣2
[ε − εa(R)]2 + Γ2(R)/4

exp


−

Rc∫
R

Γ(R′)dR′

h̄vR


 . (4.64)

Let us take the nuclear wave function of the initial (ground) vibrational state in the
form∣∣ϕo(R)

∣∣2 = 1√
π∆R

exp
[
− (R− Ro)2

∆R2

]
,

where Ro is the equilibrium distance between nuclei in the molecule, and ∆R is
the amplitude of nuclear oscillations. At small widths of an autoionization electron
term

Γ �
dE
dR

∆R,

electron capture proceeds in a narrow range of distances that allows us to use the
change

1
2π

Γ(R)

[ε − εa(R)]2 + Γ2(R)/4
−→ δ[ε − εa(R)]

as we have done above. This gives the cross section

σdis(ε) =
π2 h̄2Γ(Rε)

meε

∣∣ϕo(Rε)
∣∣2

ER
exp


−

Rc∫
Rε

Γ(R′)dR′

h̄vR


 ,

where from the resonance of the electron energy we have ε = εa(Rε), and εa(R) =
εa(Ro) + ER(R− Ro).
From this we obtain the resonance energy dependence for the cross section of

dissociative attachment

σdis(ε) = σmax exp
[
− (ε − εo)2

(∆R · ER)2

]
, (4.65)

where we denote εo = εa(Ro), and the maximum cross section is equal to

σmax =
π3/2 h̄2

meεo

Γ(Ro)
∆R · ER exp


−

Rc∫
Ro

Γ(R)dR
h̄vR


 . (4.66)

As is seen, the width of resonance in the cross section of dissociative attachment is
∆ε ∼ ∆R · ER, and we assume it to be small compared to the electron energy. Note
that the formulas obtained relate by an equal degree to the process of dissociative
recombination of an electron and molecular ion under the used conditions.
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5
Elementary Radiative Processes in Excited Gases

5.1
Broadening of Spectral Lines

� Problem 5.1 Find the broadening of spectral lines due to the Doppler effect owing
to thermal motion of atoms.

The distribution of emitting photons over frequencies is characterized by the dis-
tribution function aω, so that aωdω is the probability that the photon frequency
ranges from ω up to ω + dω. As the probability, the frequency distribution function
of photons is normalized as∫

aωdω = 1. (5.1)

Because spectral lines are narrow, in scales of emitting photons, the distribution
function of photons is

aω = δ(ω − ωo), (5.2)

where ωo is the frequency of an emitting photon.
If a radiating particle is moving with a velocity vx in the direction to a receiver

and emit a photon of frequency ωo, according to the Doppler effect it is conceived
by the receiver as having a frequency

ω = ωo

(
1 +

vx
c

)
, (5.3)

where c is the velocity of light.
If radiating atoms have the Maxwell distribution over velocities, they are charac-

terized by the distribution function,

f (vx) = C exp
(

−mv2x
2T

)
,

where T is the atom temperature expressed in energetic units, m is the radiating
particle mass, C is the normalized constant. Evidently,

aωdω = f (vx)dvx ,
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if we take the normalization constant such that the distribution function is nor-
malized to 1. This gives

aω =
1

ωo

mc2

2πT

1/2

exp
[
−mc2(ω − ωo)2

2Tω2
o

]
. (5.4)

From this it follows that the typical width of a spectral line due to Doppler broad-
ening ∆ωD is relatively small,

∆ωD

ωo
∼

√
T
mc2

.

For example, for hydrogen atoms at room temperature this ratio is approxi-
mately 10−5.

� Problem 5.2 Determine the spectral line shape due to a finite lifetime τ of the
excited state.

The stationary wave function is characterized by a time factor exp(−iEt/h̄), where
E is the energy of a given state, so the amplitude of transition with emission of
a photon of frequency ωo is given by a factor exp(−iωot). If an upper state of
transition has the lifetime τ, the time factor of its wave function is exp(−iE∗t/h̄) −
t/(2τ), where E∗ is the energy of the upper state of transition. Correspondingly, the
amplitude of transition with emission of a photon of frequency ωo is given now
by a factor c(t) ∼ exp[−iωot− t/(2τ)].
Taking the distribution function aω ∼ |cω|2, where cω is the Fourier component

of the amplitude of the radiation transition, we obtain by using the normalization
condition (5.1)

aω =
1

2πτ

1
(ω − ωo)2 + [1/(2τ)]2

. (5.5)

The spectral line for this character of broadening has the Lorentz form in contrast
to the Gauss form of the spectral line for the Doppler broadening mechanism (5.4).
In addition, one can prove that the relative width of spectral lines is low when it
is determined by the radiation lifetime. Indeed, the radiation time of resonantly
excited atoms is ∼ 10−9 s, while the frequency of this radiation is ∼ 10−16 s. Note
that while considering broadening of spectral lines, we take their relatively small
widths.

� Problem 5.3 Determine the spectral line shape if the Doppler and Lorentz mech-
anisms act simultaneously, but the width of a spectral line is given by the Doppler
mechanism.

When we have two independent broadening mechanisms, which are character-

ized by the photon distribution functions a(1)
ω and a(2)

ω , the resultant distribution
function aω is given by

aω =
∫

a(1)
ω′ a

(2)
ω−ω′dω′ .
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Using in this formula the photon distribution functions for the Doppler (5.4) and
Lorentz (5.5) broadening mechanisms, we obtain for the resultant photon distrib-
ution function

aω =
c

2πτωo

∞∫
−∞

exp
[
−mc2(ω′ − ωo)2

2Tω2
o

]
[(ω′ − ω)2 + [1/(2τ)2]]−1dω′ .

We have under the considered condition

∆ωD ∼ ωo

√
T
mc2

�
1
τ
.

Hence for frequencies |ω − ωo| � 1/τ one can replace in this formula the Lorentz
factor by the delta function, and we obtain the Doppler broadening (5.4) for the
photon distribution function.
It is of importance for this case that the Doppler function gives a more sharp fre-

quency dependence than the Lorentz one. Let us introduce the boundary frequency
ωb as

exp
[
mc2(ωb − ωo)2

2Tω2
o

]
= ∆ωDτ ,

or

|ωb − ωo| = ∆ωD ln(∆ωDτ) . (5.6)

Because of a small width of the spectral line due the Doppler broadening, we have
|ωb − ωo| > ∆ωD and |ωb − ωo|τ > 1. One can see that due to a sharp frequency
dependence for the Doppler photon distribution function it is possible that the
trunk of the distribution function with |ω − ωo| < |ωb − ωo| corresponds to the
Doppler broadening, whereas for the tail of the distribution function |ω − ωo| >

|ωb − ωo| we have the Lorentz shape of the spectral line. Figure 5.1 gives examples
of the photon distribution functions under consideration.

� Problem 5.4 Express the frequency distribution function of photons through the
correlation function.

We use a general frequency dependence for the frequency distribution function of
emitting photons as

aω = |cω|2 ∼
∣∣∣∣
∫
exp(−iωt)〈Ψo|D|Ψ∗〉dt

∣∣∣∣
2

.

Here cω is the transition amplitude, D is the operator of the atom dipole
moment that determines the intensity of the radiative transition, the wave
function of the lower Ψo and upper Ψ∗ states of transition depends on time as
Ψo ∼ exp(−iEot/h̄), Ψ∗ ∼ exp(−iE∗t/h̄), where Eo, E∗ are the energies of these
states, and angle brackets denote an average over internal atom coordinates.



130 5 Elementary Radiative Processes in Excited Gases

Fig. 5.1 Profiles of spectral lines for the Doppler broadening (1), and
Lorenz broadening (2) for identical line width, and for Lorenz broaden-
ing (3) with double width of the spectral line. The photon distribution
function with respect to the reduced frequency is ax = 1√

π
exp(−x2),

1
π(1+x2) and

2
π(1+4x2) in these cases.

Because the operator D does not depend on time, we obtain from this, if a radi-
ating atom is isolated,

aω ∼
∞∫

−∞

dt
∞∫

−∞

dt′ exp[i(ω − ωo)(t− t′)] = δ(ω − ωo),

where ωo = (E∗ − Eo)/h̄, and we use the normalization condition (5.1).
In a general case, if a radiating atom interacts with an environment, we denote

the matrix element as ϕ(t) = 〈Ψo|D|Ψ∗〉, and then we obtain the photon distribution
function in the form

aω = |cω|2 ∼
∫
exp(−iωt)ϕ(t)dt

∫
exp(iωt′)ϕ∗(t′)dt′ .

Introducing the variable τ = t− t′, t′, we obtain

aω =
1
2π

∫
Φ(τ) exp(−iωτ)dτ ,

where we denote the correlation function as

Φ(τ) = lim
T→∞

1
T

T/2∫
−T/2

ϕ∗(t)ϕ(t + τ)dt = ϕ∗(t)ϕ(t + τ) , (5.7)
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where the overline denotes averaging over time. We also chose the numerical factor
such that aω = δ(ω − ωo) if ϕ(t) = exp(−iωot).

� Problem 5.5 Determine the correlation function Φ(τ) considering collisions of
an excited atom with surrounding ones and assuming a random character of such
collisions.

Collisions of a radiating atom with surrounding atoms shifts a phase of the wave
function. We take into account such a shift for an excited atom state where the
interaction with surrounding atoms is more than that for the atom in a lower state
of radiation transition. Let us replace the energy of this state E∗ by E∗ +U(Rk),
where U(Rk) is the interaction potential of a given atom with k-th atom from an
environment, and Rk is the distance between these atoms. Excluding simultaneous

collision of a test atom with others, we obtain a shift of phase χk =
∞∫

−∞
U(Rk)dt as

a result of collision with k-th atom.

This gives for the amplitude ϕ(t)

ϕ(t) = exp(−iωot) − i∑
k

χkη(t− tk) ,

where tk is a time of k-th collision, χk is a phase shift due to this collision, and
η(t− tk) is the unit function, i. e., η(x) = 1, x > 0, and η(x) = 0, x < 0.
For determining the correlation function Φ(τ), let us compose the combination

∆Φ(τ) = Φ(τ) − exp(−iωo∆τ)Φ(τ +∆τ)

= ϕ∗(t)[ϕ(t + τ) − e−iωo∆τ ϕ(t + τ +∆τ)].

Let us take the value ∆τ to be large compared to a time of a strong atom interaction
during collision, but small compared to a time between neighboring collisions.
Since during this time only one collision proceeds, we obtain

ϕ(t + τ) − e−iωo∆τ ϕ(t + τ +∆τ) = ϕ(t + τ)[
1 − exp

(
i∑
k

χkη(t + τ +∆τ − tk) − χkη(t + τ − tk)

)]
= ϕ(t + τ)(1 − eiχk∆τ),

where we assume that the k-th collision proceeds in the time interval ∆τ. As a
result, we have for the correlation function change

∆Φ(τ) = Φ(τ)(1 − eiχ) ,

where an average is made over a time interval ∆τ. This average over collisions gives

1 − eiχ = ∆τNv
∫
2πρdρ[1 − eiχ(ρ)] = ∆τ(ν′ + iν′′) ,

where ν′ = Nvσ′, ν′′ = Nvσ′′, and σ′ =
∞∫
0
2πρdρ[1− cosχ(ρ)], σ′′ = −

∞∫
0
2πρdρ sinχ(ρ).
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Note that the phase of the elastic collision of particles at large collision momenta
according to formula (2.62) is given by

δl = − 1
2 h̄

∞∫
−∞

Udt = −χ(ρ)
2

,

and the cross section of the spectral line broadening as a result of the collision is

σ′ =
∞∫
0

2πρdρ[1 − cosχ(ρ)] =
∞∫
0

4πρdρ sin2
χ(ρ)
2

=
1
2

σt ,

where σt is the total cross section of elastic scattering that is given by formula
(2.60).
Let us return to the equation for the change of the correlation function ∆Φ(τ)

∆Φ(τ) = Φ(τ)(1 − eiχ) = Φ(τ)∆τ(ν′ + iν′′)

Using the definition of the function ∆Φ(τ) and turn the value ∆τ to zero, we have
the following equation for ∆Φ(τ):

∆Φ(τ) = Φ(τ) − exp(−iωo∆τ)Φ(τ +∆τ)

= Φ(τ) − (1 − iωo∆τ)(Φ +
dΦ

dτ
∆τ) = ∆τ(iωoΦ +

dΦ

dτ
).

Equalizing it to the above expression for ∆Φ(τ), we obtain the equation for the
correlation function Φ(τ),

dΦ(τ)
dτ

= Φ(τ)[i(ωo − ν′′)t− ν′t] .

Solving this equation by using Φ(0) = 1, we obtain finally for the correlation func-
tion

Φ(τ) = exp[i(ωo − ν′′)t− ν′t]. (5.8)

� Problem 5.6 On the basis of the above correlation function determine the fre-
quency distribution function aω due to collisions with surrounding particles.

Using the relation between the frequency distribution function aω and the corre-
lation function Φ(τ), we obtain for the distribution function

aω =
ν

2π
[
(ω − ωo +∆ν)2 +

(
ν
2

)2] , (5.9)

where ν = Nvσt is responsible for broadening of the spectral line, and ∆ν = Nvσ′′
gives a shift of the spectral line. One can see that collision broadening gives the
Lorentz form of the spectral line. In addition, due to the structure of the cross
sections we have σt � σ′′, if the total cross section is determined by large collision
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momenta. Therefore, usually one can ignore a collision shift of the spectral line in
comparison with its width.
The criterion of validity of formula (5.9) is based on the assumption that the prob-

ability of locating for two and more surrounding particles in a region of a strong
interaction with a radiating atom is small. A typical size of this region corresponds
to the Weiskopf radius ρt ∼ √

σt, and the criterion of the collision broadening of
a spectral line (the impact theory) for a typical frequency shift is

Nσ
3/2
t � 1. (5.10)

� Problem 5.7 Compare the broadening of a spectral line for the transition between
the ground and resonantly excited states of an alkali metal atom due to the Doppler
and Lorenz broadening mechanisms. Determine the number density Ntr of atoms
when the line widths for these mechanisms are coincided.

Let us represent the distribution function of emitting photons for the Doppler line
broadening (5.4) in the form

aω =
1√

π∆ωD
· exp

[
− (ω − ωo)2

∆ω2
D

]

where

∆ωD = ωo

√
T
mc2

is the width of a spectral line for the Doppler broadening mechanism. The values
of ∆ωD for resonant transitions of alkali metal atoms are given in Table 5.1.

Table 5.1 Broadening parameters for spectral lines of radiative transitions
between the ground and first resonantly excited states of alkali metal atoms.
λ is the photon wavelength for the resonant transition, τ is the radiative
lifetime of the resonantly excited state, ∆ωD, ∆ωL are the widths of these
spectral lines due to the Doppler and Lorenz mechanisms of the broadening,
Ntr is the number density of atoms at which these widths become identical.
The temperature of alkali metal atoms is 500 K.

Element Transition λ (nm) τ ∆ωD ∆ωL/N Ntr
(ns) (109 s−1 ) (10−7cm3/s) (1016cm−3)

Li 22S → 32P 670.8 27 8.2 2.6 16
Na 32S1/2 → 32P1/2 589.59 16 4.5 1.6 15
Na 32S1/2 → 32P3/2 589.0 16 4.5 2.4 9.4
K 42S1/2 → 42P1/2 769.0 27 2.7 2.0 6.5
K 42S1/2 → 42P3/2 766.49 27 2.7 3.2 4.2
Rb 52S1/2 → 52P1/2 794.76 28 1.7 2.0 4.5
Rb 52S1/2 → 52P3/2 780.03 26 1.8 3.1 2.9
Cs 62S1/2 → 62P1/2 894.35 31 1.2 2.6 2.3
Cs 62S1/2 → 62P3/2 852.11 27 1.3 4.0 1.6
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For the Lorenz broadening mechanism the width of a spectral line ∆ωL is given
by formula (5.9),

∆ωL =
1
2
Nvσt ,

where N is the number density of atoms. The total cross section σt for collision of
atoms in the ground and resonantly excited states is given by formula (3.34), and
its values for alkali metal atoms are given in Table 3.1. Along with the widths of
spectral lines due to the Doppler and Lorenz mechanisms of line broadening, we
show in Table 5.1 the values of the atom number density Ntr at which these widths
are identical, i. e.,

Ntr =
2∆ωD

vσt
.

� Problem 5.8 Within the framework of the quasistatic theory of spectral line broad-
ening determine the frequency distribution function of photons for a spectral line
wing, if the broadening occurs mostly due to the interaction of an upper state of
the radiation transition. Assume the interaction potential of a radiating atom with
surrounding ones to be pairwise and isotropic.

The quasistatic theory of the broadening of spectral lines assumes interacting
atoms to be motionless, and the shift of the spectral line of a radiating atom ow-
ing to its interaction with surrounding atoms is equal, for a given configuration of
surrounding atoms, to

∆ω ≡ ω − ωo =
1
h̄ ∑

k
U(Rk) , (5.11)

where Rk is the coordinate of k-th atom in the frame of reference where the radi-
ating atom is the origin.
The wing of a spectral line is created by nearby atoms at distances where the

probability of atom location is small. Therefore, we have for the frequency distrib-
ution function

aωdω = w(R)dR = N · 4πR2dR′ ,

where w(R)dR is the probability of atom location in a range from R up to R + dR
for the origin. Assuming a monotonic dependence U(R), we obtain from this

aω = 4πR2Nh̄(dU/dR)−1 . (5.12)

� Problem 5.9 Determine the frequency distribution function for the quasistatic
character of the broadening of spectral lines for the pair interaction of an upper
state of a radiating atom with surrounding gas atoms.

Because of a pair interaction of a radiating atom with surrounding ones, an inter-
action of a radiating atom with a given gas atom is independent of the interaction
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with other gas atoms. Hence the distribution function is

aω = ∏
k

∫
p(Uk)dUk ,

where p(Uk)dUk is the probability that the interaction potential with the k-th atom
ranges fromUk up toUk + dUk, and the spectral line shift for a given configuration
of surrounding atoms is equal to

h̄(ω − ωo) = ∑
k
Uk

Let us introduce the characteristic function

Λ(t) =
∞∫

−∞

ei(ω−ωo)taωdω ,

and the frequency distribution function results from the inverse transformation

aω =
1
2π

∞∫
−∞

e−i(ω−ωo)tΛ(t)dt .

Correspondingly, the characteristic function is the product of the characteristic
functions gk(t) of all the atoms,

Λ(t) = ∏
k
gk(t), gk(t) =

∫
exp

(
iUkt
h̄

)
p(Uk)dUk .

Let n gas atoms (n � 1) be located in a large volume Ω, so that p(Uk)dUk =
dRk/Ω is the probability for the k-th atom to be found in this volume element. We
obtain

gk(t) =
1
Ω

∫
exp

(
iU(Rk)t

h̄

)
dRk = 1 +

1
Ω

∫ [
exp

(
iU(Rk)t

h̄

)
− 1

]
dRk

and

ln gk(t) =
1
Ω

∫ [
exp

(
iU(Rk)t

h̄

)
− 1

]
dRk .

Because of an independent and random distribution of n gas atoms, we have

lnΛ(t) = ∑
k
ln gk(t) = ngk(t) = N

∫ [
exp

(
iU(Rk)t

h̄

)
− 1

]
dRk ,

N is the number density of atoms. This gives for the frequency distribution func-
tion

aω =
1
2π

∞∫
−∞

e−i(ω−ωo)tΛ(t)dt

=
1
2π

∞∫
−∞

exp
(

−i(ω − ωo)t + N
∫ [

exp
(
iU(R)t

h̄

)
− 1

]
dR

)
dt , (5.13)

where U(R) is the pair interaction potential.
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� Problem 5.10 Determine the mean shift of the spectral line for the polarization
interaction of the core of a radiating atom in an upper state of the radiative tran-
sition with surrounding atoms for the quasistatic character of the broadening of
spectral lines.

In this case the upper state of a radiating atom is strongly excited, and a size of
its orbit exceeds remarkably an average distance between gas atoms. Therefore,
the nearest atoms are located closer to a core of the radiating atom than its excited
electron, and the interaction potential with these atoms results from the interaction
of the core charge with an induced atom dipole of a gas atom. As a result, the energy
of a transferred photon differs from that of a free radiating atom by an energy of
the polarization interaction between a charged core and surrounding atoms located
inside an orbit of the upper state atom.
According to formula (5.11) a shift of the photon frequency as a result of the

polarization interaction with gas atoms is

∆ω = ω − ωo = − 1
h̄ ∑

k

αe2

2R4k
,

where α is the atom polarizability, Rk is the distance from the core to the k-th atom.
One can replace a sum by the integral for large distances from the core,

∆ω = −αe2

2 h̄

∞∫
R

N · 4πR2dR
R4

,

where N is the number density of atoms. If for the average shift, we take the lower
limit Ro such that one atom is located in the sphere of this radius, we obtain for
the average shift of a spectral line

∆ω = − 10αe2N4/3

h̄
.

Let us determine the average shift of a spectral line more accurately, on the basis
of the frequency distribution function (5.12), which in the case of the polarization
interaction has the form

aω =
1
2π

∞∫
−∞

exp[−it(ω − ωo) − (itν)3/4]dt ,

ν =
αe2

2 h̄

[
4πN
3

Γ

(
1
4

)]
≈ 19αe2N4/3

h̄
.

The maximum of the frequency distribution function aω determines the average
frequency shift ∆ω, which is given by

∆ω = −0.52ν = − 10αe2N4/3

h̄
. (5.14)

As is seen, this coincides with that obtained in a rough manner. The frequency
distribution function aω for the case of the polarization interaction is given in
Fig. 5.2.



5.1 Broadening of Spectral Lines 137

Fig. 5.2 Profile of a spectral line for static polarization broadening, and
the reduced frequency is x = (ω − ωo)/ν3/4.

� Problem 5.11 Give the criterion of the validity of the quasistatic theory of spec-
tral line broadening and compare it with that of the impact theory of broadening
(formula 5.10).

The quasistatic theory of spectral line broadening requires atoms to be motionless
during a typical time (∼ 1/∆ω) of creation of this broadening, and this holds true
under the condition

1
∆ω

�
R
v
,

where R is the typical distance from a nearest atom and v is the typical velocity of
their relative motion. For the average shift we have ∆ω ∼ U(Ro)/h̄, where Ro ∼
N−1/3 is the average distance between nearest neighbors, and N is the number
density of gas atoms. Substituting this in the above criterion, we get

RoU(Ro)
h̄v

� 1

Assuming the interaction potential U(R) to be a monotonic function of the dis-
tance R between atoms, we have from this

Ro < ρt ,

where ρt is the Weiskopf radius. Thus, the quasistatic theory of spectral line broad-
ening is valid at high densities of gas atoms. One can see that the criterion of the
validity of the quasistatic theory is opposite with respect the criterion of the collision
broadening theory (5.10). Thus, the quasistatic and impact theories of broadening
of spectral lines relate to opposite physical cases of broadening.
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� Problem 5.12 Determine the distribution function of electric field strengths at a
given point of a plasma if the resultant electric field is created by motionless ions.

Nearest ions create an electric field at a point of location of a radiating atom, and we
first find the distribution on the electric field strengths. The electric field strength
is ek = eRk/R3k from an individual ion located at point Rk in the frame of reference
where the origin is a radiating atom. Then one can obtain the distribution on
electric field strengths assuming a random distribution of ions in a space and
using the derivation of formula (5.12) spreading it from a scalar argument to a
vector one. We obtain by analogy with formula (5.12) for the probability P(E) that
the total electric field strength that is summed from individual ions is equal to a
given value E,

P(E) =
1

(2π)3

∫
exp

[
−irE + Ni

∫ (
eire − 1

)
dR

]
dr, (5.15)

where e(R) = eR/R3 we take into account E = ∑
k
ek, and Ni is the number den-

sity of ions. Using the isotropic character of the distribution on the electric field
directions, one can reduce this formula to the form

P(E)dE = H(z)dz, z =
E
2πe

(
15
4

)2/3

N−2/3
i ,

and the Holtzmark function H(z) is given by

H(z) =
2

πz

∞∫
0

x sin x exp
[
−

(x
z

)3/2]
dx .

In the limiting cases the Holtzmark function is equal to

H(z) =
4
3π

z2, z � 1, H(z) =
15
8

√
2
π
z−5/2, z � 1 .

The Holtzmark function is represented in Fig. 5.3.

� Problem 5.13 Determine the frequency distribution function in a hydrogen
plasma if the shift of spectral lines for radiative transitions involving an excited
hydrogen atoms when the broadening results from the interaction of excited
hydrogen atoms in degenerate states with electric fields which are created by
plasma ions (the Holtzmark broadening).

The distribution function on electric field strengths (5.15) allows us to determine
the frequency distribution of emitting photons. Indeed, if an excited hydrogen
atom is characterized by the parabolic quantum numbers n, n1 , n2, a shift of the
electron energy ∆ε under the action of an electric field of a strength E is

∆ε =
3 h̄2E
2mee

n(n2 − n1) .



5.1 Broadening of Spectral Lines 139

Fig. 5.3 The Holzmark function H(z) =
∞∫
0
x sin x exp

[
− ( x

z

)3/2] dx.

Let us assume identically the probability of the location of a hydrogen atom with
a given principal quantum number n in states with certain parabolic quantum
numbers n1 , n2. Ignoring a shift or splitting the lower transition state, we then
obtain the frequency distribution function of emitting photons

aωdω =
1
n2 ∑

n1 ,n2
H(z12)dz12, z12 =

1
3π

(
15
4

)2/3 me(ω − ωo)
h̄n(n2 − n1)

N−2/3
i

� Problem 5.14 Show that in an intermediate case of broadening, when the quasi-
static theory of broadening is valid for the central part of a spectral line, whereas
the wing of the spectral line is described by the impact theory of broadening, an
estimate for the width of the spectral line is identical for both methods.

On the basis of the impact theory, we have for the width of a spectral line

∆ω ≡ |ω − ω0| ∼ v/R ∼ U(R)/h̄ ,

where R is the typical distance between interacting atoms that determines a given
shift of the spectral line. Comparing the last relation (v/R ∼ U(R)/h̄) with the
estimation of the total cross section of particle scattering σt by formula (2.57), we
obtain R ∼ √

σt. On the other hand, on the basis of the quasistatic theory of
broadening we obtain the frequency distribution function, if the broadening for a
given frequency is created by distances form a radiating atom ∼ R,

aω = 4πR2Nh̄
∣∣dU/dR∣∣−1 ∼ h̄NR3/

∣∣U(R)
∣∣ ∼ Nσ3/2/ |ω − ω0| ∼ Nσ2/v .

As follows from the impact theory of broadening, the frequency distribution func-
tion is

aω ∼ ν/ |ω − ω0|2 ∼ Nvσ/(v2σ) ∼ Nσ2/v .



140 5 Elementary Radiative Processes in Excited Gases

One can see that both approaches exhibits the same behavior in the transition
region. This demonstrates the relation between the impact and quasistatic theories
of the broadening of spectral lines as opposite limiting cases of the interaction
between the emitting and the surrounding atoms.

5.2
Cross Sections of Radiative Tansitions

� Problem 5.15 Determine the rate of the radiative transition between two atom
states with nonzero matrix element of the atom dipole moment.

The resonantly excited atom states can be formed as a result of absorption of the
dipole radiation by atoms in the ground states, and below we will concentrate on
such excited states because they are important in the interaction between atoms
and a radiation field. We consider below the radiative process

A0 + h̄ω → Af , (5.16)

where the subscripts denote atom states, and we have in mind that index 0 relates
to the ground atom state, while f denotes a resonantly excited state. The transition
in an excited state under the action of an electromagnetic wave results from the
interaction between between the radiation and atomic fields, and the simplest and
strongest operator of this interaction has the form

V = −ED ,

where D is the operator of the atom dipole moment and E is the strength of the
radiation electromagnetic field.
We now find the rate of the process (5.16) on the basis of the nonstationary

perturbation theory, taking the electromagnetic wave strength as E = Eω cosωt,
where ω is the frequency of the electromagnetic field, and considering the atom–
field interaction as a perturbation. Then the atom wave function has the form

Ψ = ψ0e−iε j t/h̄ + cf · ψfe
−iεf t/h̄ ,

where ψ0 and ψf are the eigenfunctions of the unperturbed Hamiltonian Ĥo for
the noninteracting atom and radiation field, and the energies ε0, εf correspond to
these states. In addition, this is valid if cf � 1. The Schrödinger equation for this
system is

i h̄
∂Ψ

∂t
= (Ĥo +V)Ψ ,

and for the transition amplitude this equation can be rewritten as

i h̄ċf = V0f exp(−iωot) = Re
〈
0 |EωD| f 〉 ei(ω−ωo)t .

Here h̄ωo = εf − ε0, and the angle brackets denote the matrix element taken be-
tween the initial (0) and final (f) atomic states. Solving this equation in the limit
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ω ≈ ωo, we ignore in the expression the cf terms proportional to (ω +ωo)−1 , since
they are small compared to terms proportional to the (ω − ωo)−1 . This gives the
probability |cf|2 of the transition for large times t � ω−1 ,

|cf|2 = 1

h̄2
∣∣〈0 |EωD| f 〉∣∣2 sin 2 [(ω − ωo) t/2]

(ω − ωo)2
.

In the limit ω → ωo we use the delta function by replacing

sin2 [(ω − ωo) t/2]

(ω − ωo)2
→ π h̄

2
δ(h̄ω − h̄ωo) .

This gives the probability of the radiative transition per unit time,

w0f =
|cf|2
t

=
π

2 h̄
|〈0|EωD| f 〉|2δ[h̄ω − h̄ωo] .

We now connect the strength of an electromagnetic wave Eω with the number
photons of the radiation field nω per state. We have for the radiation energy per
unit time〈

E2

8π

〉
+

〈
H2

8π

〉
=

〈
E2

4π

〉
=
E2ω
8π

,

where brackets indicate an average over time; we account for the equality of the
average of the electric and magnetic energies of electromagnetic wave and the
definition of Eω, so that E2ω = E2/2. Note that in this way we introduce Eω to be
the electric field strength for a given mode of the radiation field. We now consider
the number of photons nω per state on the basis of relation (1.63) for the spectral
density of radiation Uω,

Uω =
E2ω
8π

=
h̄ω3

π2c3
· nω .

Replacing the electric field strength by the number of photons per state in the
expression for the rate of photon absorption, we obtain

w0f =
4ω3

h̄c3
· nω · ∣∣〈0 |D s| f 〉∣∣2 ,

where s is a unit vector of photon polarization (Eω = sEω). An average over po-
larizations and summation over final atom state give the following expression for
the rate of photon absorption with atom transition from the ground state to a res-
onantly excited one,

w0f =
4ω3

3 h̄c3
· ∣∣〈0 |D| f 〉∣∣2 gf · nω, (5.17)

where gf is the statistical weight of the final state.
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� Problem 5.16 Express the rates of radiative transitions between the ground and
excited states through Einstein coefficients.

Let us introduce the Einstein coefficients A and B on the basis of relations for the
rates of radiative transitions,

w(0, nω → f , nω − 1) = A · nω; w( f , nω → 0, nω + 1) =
1
τf
+ B · nω , (5.18)

where τf is the radiative lifetime of an excited state f with respect to the sponta-
neous radiative transition to a state 0. Formula (5.17) gives the expression for the
Einstein coefficient A. We find from the balance of transitions under thermody-
namic equilibrium the relation between the Einstein coefficients A and B and the
expression of the spontaneous lifetime τf for the transition in the ground state.
Indeed, because of an equilibrium, the number of emissions per unit time is

equal to the number of absorptions per unit time, which gives

N0 w(i, nω → f , n̄ω − 1) = Nf w( f , nω − 1 → 0, nω) .

Using expressions (5.18) of the transition rates, we get

N0 Anω = Nf (1/τ + Bnω) (5.19)

In the case of thermodynamic equilibrium, we have the Boltzmann formula
(1.12) connecting the number densities of atoms in the ground N0 and excited Nf
states and the Planck formula (1.62) for the average number of photons nω per
state which are given by

Nf =
gf
g0
N0 exp

(
− h̄ω

T

)
, nω =

[
exp

(
− h̄ω

T

)
+ 1

]−1

,

where g0 and gf are the statistical weights for the ground and excited states, and
the photon energy h̄ω coincides with the energy difference between the two states.
Substituting these expressions in formula (5.19), we obtain the Einstein coefficients

A =
gf
g0τf

B =
1
τf
=
4ω3

3 h̄c3
· ∣∣〈j |D| f 〉∣∣2 g0 . (5.20)

In addition, the rates of radiative processes are

w(0, nω → f , nω − 1) =
gf
g0τf

nω w( f , nω → 0, nω − 1) =
1
τf
+
nω

τf
. (5.21)

This analysis leads to the conclusion of the presence of stimulated radiation,
which is described by the last term and is of fundamental importance.

� Problem 5.17 Derive the expressions for the cross section of absorption and the
cross section of stimulated radiation.
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Using the above expressions (5.21) for the rates of absorption and stimulate radi-
ation, one can find the cross section of these processes on the basis of the cross
section definition (2.2), as the ratio of the process rate to the flux of incident par-
ticles. Indeed, the photon flux is cdNω, where c is the velocity of light, and the
number density of photons is dNω = 2nωdk/(2π)3, where k is the photon wave
vector and nω is the number of photons in a given state; the factor 2 accounts for
the two independent polarization states, and dk/(2π)3 is the number of states in
an element dk of the wave vector values. From this we obtain the photon flux

jωdω = nω
ω2dω

π2c2
,

by using the dispersion relation ω = kc for photons. Because the absorption prob-
ability per unit time in an interval dω of photon frequencies is Anωaωdω, we get
the absorption cross section from its definition,

σabs =
π2c2

ω2 Aaω =
π2c2

ω2

gf
g0

aω

τf
(5.22)

In the same manner we obtain the stimulated photon emission cross section

σem =
π2c2

ω2 Baω =
π2c2

ω2
aω

τf
=
g0
gf

σabs . (5.23)

� Problem 5.18 Determine the maximum of the absorption cross section.

Evidently, maximum absorption corresponds to the center of the spectral line under
conditions when the width is determined by a finite lifetime τf of an excited state
due to spontaneous radiation. In this case we have aωo ≡ a(ωo) = 2τf/π, and the
maximum absorption cross section is given by

σabs = 2π
gf
g0

c2

ω2 =
gf
g0

λ2

2π
, (5.24)

where λ = 2πc/ω is the photon wavelength. Thus, the maximum absorption cross
section is of the order of the square of the photon wave length. This is a large
value. In particular, for photons in the optical region of the spectrum, this value is
of the order of 10−10–10−9cm2, which exceeds a typical gas-kinetic cross section
by approximately six order of magnitude.

� Problem 5.19 Give the integral relations for the radiative cross sections.

These relations use the normalization condition (5.1) for the frequency distrib-
ution function. On the basis of this relation, using the normalization condition∫
aωdω = 1, and recognizing that the integral converges in a narrow region of

photon frequencies, we obtain

∫
σabs(ω)dω =

π2c2

ω2

gf
g0

1
τf
, (5.25)
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and∫
σem(ω)dω =

π2c2

ω2
1
τf
. (5.26)

5.3
Absorption Coefficient for Resonant Photons

� Problem 5.20 Derive the expression for the absorption coefficient of resonant pho-
tons.

According to the definition of the absorption coefficient kω for radiation propagated
in a gas, the intensity of radiation Iω of frequency ω is given by

dIω
dx

= −kω Iω , (5.27)

where x is the direction of radiation propagation. Then taking into account both
absorption and stimulated emission, we can represent the absorption coefficient as

kω = Niσabs − Nf σem = Niσabs

(
1 − Nf

Ni

gi
gf

)
. (5.28)

Here the absorption cross section σabs is given by formula (5.22), and the cross
section of stimulated emission σem is determined by formula (5.23), N0, Nf are the
number densities of atoms in the ground and excited states, and g0 and gf are the
statistical weights of these states.

� Problem 5.21 Derive the expression for the absorption coefficient of resonant pho-
tons in the case of thermodynamic equilibrium for atoms in the ground and excited
states.

In this case the relation between the number densities in the ground and excited
state is determined by the Boltzmann formula (1.12). Substituting this formula in
expression (5.28) for the absorption coefficient, we get this expression in the form

kω = N0σabs

[
1 − exp

(
− h̄ω

T

)]
. (5.29)

� Problem 5.22 Obtain the condition of laser operation.

In this case the absorption coefficient is negative, which takes place under the
condition of an inverted population of levels

N0

Nf
<

g0
gf

(5.30)

If this condition is fulfilled, the photon flux passing through the gas is amplified,
and this is a basis of operation of lasers, which are generators of monochromatic
radiation. A medium in which condition (5.30) holds true is an active medium.
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� Problem 5.23 Show that the absorption coefficient does not depend on the num-
ber density of the atom number density in the center of the spectral line for
resonant radiation, if the line width is determined by collision processes involv-
ing these atoms.

Use formula (5.29) for the absorption coefficient and formula (5.22) for the absorp-
tion cross section. Assuming that the broadening of the spectral line result from
the collision of a resonantly excited atom with its atom in the ground state, we
obtain according to formula (5.9) the frequency distribution function in the line
center, aω = 2/(πν) = 2/(πN0)〈vσt〉, where N0 is the number density of atoms in
the ground state, σt is the total cross section of the collision of atoms in the ground
and resonantly excited states that is averaged over momentum projections, v is
the relative collision velocity, and the angle brackets denote an average over colli-
sion velocities. As a result, we obtain the absorption coefficient in the line center
assuming the temperature to be relatively small

ko =
πc2

2ω2
1

〈vσt〉τ
gf
g0

[
1 − exp

(
− h̄ω

T

)]
. (5.31)

As is seen, the maximum absorption coefficient under the above conditions does
not depend on the number density of atoms. Moreover, because σt ∼ 1

v , the absorp-
tion coefficient does not depend on the temperature if T � h̄ω, i. e., the number
density of excited atoms is less than that for atoms in the ground state.
Table 5.2 gives the parameters of the first resonantly excited states for atoms of

alkali metals and of alkaline-earth metals whose valence electron shell contains
one or two electrons. Here λ is the photon wavelength for the resonant transition,
τ is the radiative lifetime of the resonantly excited state, and ko is the absorption
coefficient in the line center when the number density of excited atoms is relatively
small.

� Problem 5.24 Determine the dependence of the absorption coefficient for the res-
onant spectral line center in an alkali metal vapor on the atom number density.

The width of a spectral line for a resonant transition between the ground and res-
onantly excited states of alkali metal atoms is created by both the Doppler effect
and collisions of the emitting atom with surrounding ones. The absorption coeffi-
cient for a given frequency ω is inversely proportional to the frequency distribution
function of emitting photons aω, which is given by the formula

aω =
1√

π∆ωD

∞∫
−∞

dω′ exp
[
− (ω − ω′)2

∆ω2
D

]
1

(ωo − ω′)2 + (∆ωL)2
,
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Table 5.2 Parameters of radiative transitions between the ground and first
resonantly excited states for atoms of alkali metals and alkaline-earth metals.

Element Transition λ nm τ (ns) g∗/g0 vσt ko
(10−7 cm3/s) (105 cm−1 )

H 12S → 22P 121.57 1.60 3 0.516 8.6
He 11S → 21P 58.433 0.56 3 0.164 18
Li 22S → 32P 670.8 27 3 5.1 1.6
Be 21S → 21P 234.86 1.9 3 9.6 1.4
Na 32S1/2 → 32P1/2 589.59 16 1 3.1 1.1
Na 32S1/2 → 32P3/2 589.0 16 2 4.8 1.4
Mg 31S → 31P 285.21 2.1 3 5.5 3.4
K 42S1/2 → 42P1/2 769.0 27 1 4.1 0.85
K 42S1/2 → 42P3/2 766.49 27 2 6.3 1.1
Ca 41S → 41P 422.67 4.6 3 7.3 2.5
Cu 42S1/2 → 42P1/2 327.40 7.0 1 1.1 2.1
Cu 42S1/2 → 42P3/2 324.75 7.2 2 1.7 2.8
Zn 41S → 41P 213.86 1.4 3 3.3 4.8
Rb 52S1/2 → 52P1/2 794.76 28 1 3.9 0.91
Rb 52S1/2 → 52P3/2 780.03 26 2 6.2 1.2
Sr 51S → 51P 460.73 6.2 3 9.4 1.7
Ag 52S1/2 → 52P1/2 338.29 7.9 1 1.1 2.0
Ag 52S1/2 → 52P3/2 328.07 6.7 2 1.7 2.9
Cd 51S → 51P 228.80 1.7 3 3.3 4.5
Cs 62S1/2 → 62P1/2 894.35 31 1 5.3 0.77
Cs 62S1/2 → 62P3/2 852.11 27 2 8.1 1.0
Ba 61S → 61P 553.55 8.5 3 9.0 1.9
Au 62S1/2 → 62P1/2 267.60 6.0 1 0.49 1.9
Au 62S1/2 → 62P3/2 242.80 4.6 2 0.75 4.2
Hg 61S → 61P 184.95 1.3 3 2.2 5.7

where ωo is the frequency of the line center and ω is a current frequency. From
this we have for the distribution function for the line center

ao =
1√

π∆ωD

∞∫
−∞

dω′ exp
[
− (ωo − ω′)2

∆ω2
D

]
1

(ωo − ω′)2 + (∆ωL)2

=
1√

π∆ωD
F

(
∆ωD

∆ωL

)
,

and the function F(z) is given by

F(z) =
1√
π

∞∫
∞

dx
x2z2 + 1

exp(−x2) .

In the limiting cases we have

F(z) = 1, z → 0 F(z) =

√
π

z
, z → ∞ .

Figure 5.4 gives the function F(z). The dependence of the absorption coefficient
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Fig. 5.4 Function F(z) =
1√
π

∞∫
∞

dx
x2z2 + 1

exp(−x2).

on the number density of atoms is approximated by the dependence

k(N) =
ko√

1 + A(Ntr/N)2
, (5.32)

where ko is the absorption coefficient in the limit of a large number density N of
atoms as is given in Table 5.2, Ntr is the atom number density when the Doppler
∆ωD and Lorenz ∆ωL widths of the spectral line are coincided, and the values Ntr

are given in Table 5.1 for alkali metal vapors. The optimal value of the numerical
coefficient in this formula is A ≈ 0.3.

5.4
Absorption Coefficient in Molecular Gases

� Problem 5.25 Introduce parameters which determine passing of infrared radia-
tion through a molecular gas.

A spectrum of molecular transitions includes many spectral lines due to rotation-
vibration transitions. If the width of an individual spectral line is less than the
difference of frequencies for neighboring transitions, the absorption coefficient of
a molecular gas is an oscillation frequency function with minima for frequencies
between two neighboring lines and maxima for centers of spectral lines for corre-
sponding transitions. Evaluating the total radiation flux, it is necessary to average
over such oscillations. We have considered before some parameters of emitting
radiation where an average on oscillations is fulfilled.
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The absorption function A(ωo,∆ω) is defined as

A(ωo,∆ω) =
1

∆ω

ωo+∆ω/2∫
ωo−∆ω/2

(
1 − e−uω

)
dω (5.33)

and is the average probability that a photon is absorbed in a given gas layer. Here
uω is the optical thickness of this layer, and ∆ω is the width of the frequency range
considered. If ∆ω is large compared to the distance between neighboring lines,
the absorption function A(ωo,∆ω) depends weakly on ∆ω, and the absorption
function is a convenient characteristic of radiation passing through a given layer,
as well as the transmission function that is defined as

1 − A(ωo,∆ω) =
1

∆ω

ωo+∆ω/2∫
ωo−∆ω/2

e−uωdω . (5.34)

If a spectral band is narrow compared to the frequency of emitting photons, one
can represent the total photon flux from a flat layer as

j = j(o)ω ∆ω, ∆ω = 2
∞∫

−∞

dω

1∫
0

d cos θ
(
1 − e−uω/ cos θ

)
cos θ , (5.35)

and j(o)ω is the flux from the black body surface at a given temperature, and ∆ω is
the effective width of a spectral band.
One can represent the absorption coefficient of a molecular gas in the infrared

spectral range due to the vibration–rotation and rotation transitions as

kω = ∑
k
Skaω−ωk . (5.36)

Here the frequency ωk corresponds to a center of the transition, and the intensity
Sk of this transition is given by

Sk =
π2c2

ω2
kτk

No

[
1 − exp

(
− h̄ωk

T

)]
, (5.37)

where No is the number density of molecules for the lower state of transition.

� Problem 5.26 Consider simple models for description of photon absorption in a
molecular layer as a result of vibration–rotation and rotation transitions.

If the optical thickness of an emitting layer is small, and photons of an intermediate
frequency leave a molecular layer freely, the emission spectrum of the layer is
separated in independent spectral lines, and we call this consideration as a model
of single lines. For this model one can use formulas for transport of resonance
radiation. In particular, the width of an individual spectral line follows from the
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relation uoaωo±∆ω/aωo ∼ 1, where uo is the optical thickness of a gaseous volume
for the line center. Correspondingly, the absorption function for this model is equal
to A ∼ ∆ω/δ, where δ is the difference of frequencies of neighboring transitions.
Within the framework of the regular model the spectral lines are regularly

spaced, and their intensities vary slightly with variation of the transition number.
Then formula (5.36) takes the form

kω = S(ω)∑
k
a(ω − ωo ± kδ) , (5.38)

where δ is the frequency difference for neighboring transitions. This model de-
scribes linear molecules.
For a random model the average difference between neighboring transition fre-

quencies δ is given, while spectral lines are spaced in a random way, and the
probability p(S)dS is that the transition intensity is concentrated in a given range.

� Problem 5.27 Find the average absorption coefficient of a spectral band if the
width of an individual spectral line is small in comparison with the distance be-
tween neighboring lines.

In this case neighboring spectral lines are not overlapped, and the sum (5.36)
is divided into independent ranges. Correspondingly, formula (5.36) gives in this
case, if we take into consideration n individual lines,

kω =
n

∑
k=1

∫
Skaω−ωk

dω

nδ
=

1
nδ

n

∑
k=1

Sk =
S
δ
. (5.39)

� Problem 5.28 Evaluate the absorption coefficient for a molecular gas, which is
found in thermodynamic equilibrium and consists of linear molecules, for the
Lorentz shape of the spectral line. Absorption results from rotation-vibration transi-
tions and the spectral line width is small compared to the difference of frequencies
for neighboring lines.

Under thermodynamic equilibrium the number density of molecules in vibration
and rotation states is given by formulas (1.14) and (1.16), which give

NvJ = N0e−h̄ωov/T B
T
e−BJ(J+1)/T ,

where N0 is the number density of molecules in the ground vibration and rotation
states, h̄ωo is the energy of excitation of the lowest vibration state, v is the number
of vibration level, J is the rotation momentum, B is the rotation constant, T is the
temperature expressed in energetic units, and we considered that it is usually valid
that B � T . In addition, we restrict by only transition from the ground to the first
vibration state. The absorption coefficient (5.29) with the Lorentz shape (5.5) of the
spectral line is given by

kω =
π2c2

ω2 ∑
J

wJN0e−h̄ωov/T B
T
e−BJ(J+1)/T ν

(ω − ωJ)2 + ν2
,
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where wJ is the rate of the radiative transition from the excited vibration state, and
ν is the width of a spectral line, the transition energy is h̄ωJ = h̄ωo +B(J + 1) for the
absorption transition J → J + 1 (P-branch) and h̄ωJ = h̄ωo − BJ for the transition
J → J − 1 (R-branch). Taking into account B � h̄ωo, we ignore the difference
in the transition rate (w(J → J + 1) ≈ w(J → J − 1) = 1/2τ). Therefore, the
absorption coefficient has the form

kω =
π2c2ν
2ω2τ

B
T
N0

∞

∑
J=−∞

e−BJ(J+1)/T (J + 1/2)[
ω − ωo − 2B

h̄ (J + 1/2)
]2
+ ν2

.

On the basis of the formula

∞

∑
k=−∞

1
(x − k)2 + y2

=
π sinh(2πy)

y(cosh 2πy− cos 2πx)

and using B � T , we reduce the expression for the absorption coefficient to the
form

kω =
π2c2ν
4ω2τ

h̄2 |ω − ωo|
TB

N0
(
1 − e−h̄ωo/T

) sinh π h̄ν
B exp

[
− h̄2(ω−ωo)2

4BT

]
(
cosh π h̄ν

B − cos π h̄|ω−ωo|
B

) (5.40)

One can see that the absorption coefficient is almost a periodic function of fre-
quency with the period of 2B/h̄ (2B is the difference of the energies for neighboring
transitions). This frequency dependence is named the Elsasser function. The ra-
tio of the values for the absorption coefficient in the neighboring maximum and
minimum is equal to

1 + cosh π h̄ν
B

cosh π h̄ν
B − 1

This ratio is large in the limit h̄ν � B and equals [2B/(π h̄ν)]2. The maximum
absorption coefficient corresponds to excitation of the state with the maximum
population and the transition frequency ω = ωo ±

√
2BT/h̄. The maximum ab-

sorption coefficient is equal to

kω =
π2c2ν

ω2
h̄
√
2

τ
√
eTB

N0
(
1 − e−h̄ωo/T

) sinh π h̄ν
B(

cosh π h̄ν
B − 1

) . (5.41)

Figure 5.5 gives an example of the frequency dependence for the absorption co-
efficient of linear molecules that shows the oscillation character of this function.

� Problem 5.29 Determine the criterion of the validity of formula (5.40).

In derivation of formula (5.40) for the absorption coefficient we neglect the popu-
lation change if the rotation quantum number for the molecular transition varies
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Fig. 5.5 The Elsasser form for the absorption coefficient in a gas of
linear molecules as a frequency function due to vibration-rotation tran-

sitions. kω = x exp(−αx2)
cosh(πa)−cos(πx) in accordance with formula (5.40) and

parameters x = h̄(ω − ωo)/B, α = B/(4T) � 1, a = h̄ν/B.

by 1. This can be valid for basic rotation numbers of molecules if they are large,
i. e., if the rotation constant is less than a thermal energy (B � T). But it is not ful-
filled for relatively small rotation numbers J for which BJ ∼ T , but simultaneously
J ∼ 1. Under these conditions we cannot assume the intensities of neighboring
lines to be identical, as it was used in the derivation formula (5.40). Hence, this
formula holds true for transitions from rotation states for which J �

√
T/B.

� Problem 5.30 Within the framework of the regular model find the absorption
coefficient of a gas consisting of linear molecules for the Lorentz shape of the
spectral line.

On the basis of formula (5.36) and the Lorentz shape (5.9) of the spectral line, we
have for the absorption coefficient

kω =
∞

∑
k=−∞

Sν

π

[
(ω − ωo − kδ)2 + ν2

]−1
,

where ν is the width of an individual spectral line, ωo is the band center, δ is
the distance between neighboring lines, S is the intensity of a spectral line which
assumed to be independent of the frequency. On the basis of the Mittag–Leffler
theorem, we have

∞

∑
k=−∞

[
(x − n)2 + y2

]−1
=

π sinh 2πy
y(cosh 2πy− cos 2πx)

,

which gives for the absorption coefficient

kω =
S
δ
sinh

2πν

δ

[
cosh

2πν

δ
− cos

2π(ω − ωo)
δ

]−1

.



152 5 Elementary Radiative Processes in Excited Gases

The ratio of the absorption coefficient in the center of an individual line, kmax, to
that between two neighboring lines, kmin, is equal to

kmax

kmin
=
cosh 2πν

δ + 1

cosh 2πν
δ − 1

.

In the limit ν � δ, when spectral lines are overlapped, this ratio is maximum
[δ/(πν)]2.
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6
Boltzmann Kinetic Equation

6.1
Boltzmann Equation for a Gas

� Problem 6.1 Derive the kinetic equation for the distribution function of atomic
particles of a gas consisting of identical atomic particles.

The concept of the kinetic equation is based on the fact that each particle of a gas
is free and moves along a straightforward trajectory during a basic time, and dur-
ing a small time this particle takes part in a pair collision with other gas particles.
According to the definition of cross section, a relative time when a particle inter-
acts strongly with surrounding particles is ∼ Nσ3/2 � 1, where N is the particle
number density and σ is the cross section of scattering by a large angle.
The distribution function f (v, J, r, t) of particles is defined such that f (v, J, r, t)dv

is the number density of particles at the point r at time t, the particle velocity ranges
from v to v + dv, and J describes all internal quantum numbers. The normalization
condition has the form

N(r, t) = ∑
J

∫
f (v, J, r, t)dv .

The variation of the distribution function allows one to analyze the evolution of
the gas and has the form

d f
dt

= Icol( f ) , (6.1)

where Icol( f ) is the collision integral that takes into account pair collisions of par-
ticles in evolution of the gas.
The left-hand side of this equation, which describes the motion of particles in

external fields, has the form

d f
dt

=
f (v + dv, J, r + dr, t + dt) − f (v, J, r, t)

dt
.

Since dv/dt = F/m, where F is the external force acted on a single particle, m is
the particle mass, and dr/dt = v, we have

d f
dt

=
∂ f
∂t

+ v · ∂ f
∂r

+
F
m

· ∂ f
∂v

,
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and the kinetic equation (6.1) takes the form

∂ f
∂t

+ v · ∂ f
∂r

+
F
m

· ∂ f
∂v

= Icol( f ) . (6.2)

This is also called the Boltzmann kinetic equation.

� Problem 6.2 Give a simple form of the kinetic equation expressing the collision
integral through a typical time of change of a particle trajectory (tau-approxima-
tion).

The collision integral contained in the kinetic equation characterizes the evolution
of the system as a result of pairwise collisions of particles. A typical relaxation time
of the distribution function in a gas can be estimated as τ ∼ (Nσv)−1 , where v is
a typical collision velocity, σ is the collision cross section. This value suggests the
simple approximation, tau-approximation,

Icol( f ) = − f − fo
τ

for the collision integral, where fo is the equilibrium distribution function. The
nature of this approximation can be illustrated by a simple example. If we disturb
an equilibrium state of the system described by the distribution function fo so that
the distribution function at the initial time is f (0), then the subsequent evolution
of the system is described by the equation

d f
dt

= − f − fo
τ

, (6.3)

and its solution has the form

f = fo + [ f (0) − fo] exp
(

− t
τ

)
. (6.4)

Thus, the relaxation time τ of the system is of the order of the time between
consecutive collisions of a test particle with others. It can be dependent on the
collision velocity.

� Problem 6.3 Obtain the expression for the collision integral in the case of elastic
collisions.

The collision integral accounts for changes in the distribution function as a result
of pairwise collisions of particles. We analyze first the collision integral in the case
of an atomic gas, where it is expressed in terms of the elastic scattering cross sec-
tion of atoms. The transition probability per unit time per unit volume is denoted
by W(v1 , v2 → v′

1 , v
′
2), so the rate Wdv′

1dv′
2 is the probability per unit time and

per unit volume for collision of two atoms with velocities v1 and v2, if their final
velocities are in an interval from v′

1 to v′
1 + dv′

1 and from v′
2 to v′

2 + dv′
2, respectively.

By definition, the collision integral is

Icol( f ) =
∫

( f ′
1 f

′
2W

′ − f1 f2W)dv′
1dv′

2dv2 , (6.5)
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where we use the notations that f1 = f (v1), W = W(v1 , v2 → v′
1 , v

′
2), and other

quantities take subscripts according to the same rule. The principle of detailed
balance, which accounts for reversed evolution of a system as would occur in a
system in the case of a physical time reversal t → −t, yields W = W ′. Taking it
into account reduces the collision integral to the form

Icol( f ) =
∫

( f ′
1 f

′
2 − f1 f2)Wdv′

1dv′
2dv2 . (6.6)

� Problem 6.4 Express the collision integral through the differential cross section
of elastic scattering of particles.

The elastic scattering cross section follows from its definition as the ratio of the
number of scattering events per unit time to the flux of incident particles. The
differential cross section for elastic scattering is

dσ =
f1 f2Wdv1dv2v′

1v
′
2

f1dv1 f2dv2
=
Wdv′

1dv′
2

|v1 − v2| .

Substitution of this expression into formula (6.6) gives the collision integral

Icol( f ) =
∫

( f ′
1 f

′
2 − f1 f2)|v1 − v2|dσdv′

1dv′
2dv2 . (6.7)

As is seen, the nine integrations inferred in formula (6.6) are replaced by the
five integrations in formula (6.7). This is a consequence of accounting for the
conservation of momentum for the colliding particles (three integrations) and the
conservation of their total energy (one more integration).

� Problem 6.5 Derive the collision integral for electrons located in a gas if this col-
lision integral is determined by elastic collisions of electrons with gas atoms.

Because of a low number density, electrons do not influence the distribution func-
tion of atoms that is the Maxwell one ϕ(va). Here va is the atom velocity, and the
velocity distribution function of atoms is independent of the velocity direction. The
collision integral for electrons with atoms (6.7) takes the form

Icol( f ) =
∫

( f ′ϕ′ − f ϕ)vdσdva , (6.8)

where v is the electron velocity, f (v) is the velocity distribution function of elec-
trons, and dσ is the differential cross section of elastic electron–atom scattering.
We account for a large velocity of electrons compared to atom velocities, v � va.
As is seen, in this case the collision integral is linear with respect to the electron
distribution function.

6.2
Peculiarities of Statistical Description of Gas Evolution

� Problem 6.6 On the basis of the Boltzmann kinetic equation for atoms of a gas
find the equilibrium distribution function of atoms on velocities.
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If external fields do not act on gas atoms and the gas state is uniform and stationary,
the left-hand side of the kinetic equation (6.1) is zero, and it has the form Icol( f ) = 0.
Then on the basis of formula (6.6) for the collision integral for atoms we obtain

f1 f2 = f ′
1 f

′
2

for any pair of colliding atoms. It is convenient to rewrite this relation in the form

ln f (v1) + ln f (v2) = ln f (v′
1) + ln f (v′

2) .

From this it follows that the value ln f (v1) + ln f (v2) is conserved as a result of any
collisions of two particles. This means that ln f (v) must be an additive function
of the integrals of motion. One can find three such values for elastically collided
atoms: a constant, the atom momentum p, and the atom energy ε. This leads to
the following general form of the distribution function:

ln f (v) = C1 +C2p +C3ε ,

where C1 , C2, C3 are constants. This gives the distribution function

f (v) = A exp
[
−α(v − w)2

]
.

This expression is identical to formula (1.20) for the Maxwell distribution func-
tion in the frame of reference, where atoms are motionless as a whole. Here A
is the normalization constant, w is the average velocity of the distribution, and
α = m/(2T), where m is the particle mass and T is the gaseous temperature.

� Problem 6.7 Show for a uniform gas and in the absence of an external field that
according to the Boltzmann equation, the functional H(t) = (v, t) ln f (v, t)dv can-
not increase during the evolution of an atom (the Boltzmann H-theorem).

The kinetic equation (6.1) has the following form in this case:

∂ f1
∂t

=
∫
W(v1 , v2 → v′

1 , v
′
2)( f

′
1 f

′
2 − f1 f2)dv′

1dv′
2dv2 .

From this it follows that

dH
dt

=
∫
W(v1 , v2 → v′

1 , v
′
2)( f

′
1 f

′
2 − f1 f2) ln f1dv′

1dv′
2dv1dv2 +

d
dt

∫
f1dv1 .

Because of the conservation of the total number of particles, the second term on the
right-hand side of this equation is zero. From the symmetry for the rateW(v1 , v2 →
v′
1 , v

′
2) with respect to the changes v1 ←→ v2 and v1 ←→ v′

1 , v2 ←→ v′
2, we

have

dH
dt

=
1
4

∫
W(v1 , v2 → v′

1 , v
′
2)( f

′
1 f

′
2 − f1 f2) ln

(
f1 f2
f ′
1 f

′
2

)
dv′

1dv′
2dv1dv2 .



6.2 Peculiarities of Statistical Description of Gas Evolution 157

SinceW ≥ 0, the function (y− x) ln x
y is negative at any positive values of variables

x and y, and is zero if x = y. From this it follows that

dH
dt

≤ 0 . (6.9)

Note that dH
dt = 0 at f1 f2 = f ′

1 f
′
2, and this corresponds to the equilibrium. From

the Boltzmann H-theorem (6.9) it follows that in the absence of external fields
evolution of a gas leads to the equilibrium distribution of its particles.
The Boltzmann H-theorem proves that entropy increase when a gas tends to an

equilibrium and is of principle for the statistical physics.

� Problem 6.8 A gas is found in a nonequilibrium state and tends to an equilibrium.
Show that the statistical description of this process on the basis of the Boltzmann
kinetic equation and its dynamic description on the basis of the Newton equations
for particles (or the Schrödinger equations in the quantum case) have a different
nature.

According the Boltzmann H-theorem, an ensemble of weakly interacting particles
that is out of an equilibrium at initial time, will tend to the equilibrium in time.
Let an initial distribution function of particles be ϕ(v, r) and let the ensemble relax
to an equilibrium distribution function fo, but at time t the distribution function
does not reach the equilibrium function. If we reverse time t → −t, the distribu-
tion function does not reach the initial distribution function, but will tend to the
equilibrium function, as before.
Now let us analyze this scenario from another standpoint. Let the initial distri-

bution function of particles be ϕ(v, r), as before, and we describe each particle of
an ensemble by the Newton equation that for the i-th particle has the form

m
d2ri
dt2

= ∑
k
Fik,

where ri is the coordinate of the i-th particle. The force that acts on this particle
from the k-th particle is

Fik = −∂U(|ri − rk|)
∂ri

,

whereU is the interaction potential between two particles, and rk is the coordinate
of the k-th particle.
Let us stop the development of this ensemble at time t and reverse the time

t → −t. As is seen, the ensemble will develop in the reversed time, and at time t
all the particles will have the initial positions and will move with opposite velocity.
So, if we again reverse the time, we obtain the distribution function of particles to
be f = ϕ(v, r), which is the same as at the beginning.
Thus, two methods of description of a particle ensemble, the statistical method

through the kinetic equation and the dynamic method through the set of Newton
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equations for particles, lead to different results. Note that in the quantum case
when we describe the particle state by the Schrödinger equation, we also obtain
the inverse development of the particle ensemble at time reversal, as we have above
in the classical case on the basis of Newton equations.

� Problem 6.9 Show that the entropy of a uniform ensemble of weakly interacting
classical particles is different for the statistical and dynamical description of this
ensemble.

The entropy of an ensemble of independent particles is proportional to a number
of particles of this ensemble, and below we will consider the entropy S of a test
particle, which is introduced as

S = −Pi ∑
i
ln Pi , (6.10)

where Pi is the probability for a particle to be located in a given state i. Because the
definition of a state of a classical particle is arbitrary, the entropy is defined with
the accuracy up to constant. One can see that H-functional is the entropy taking
into account the velocity space.
Take an ensemble of particles to be restricted by a volume V and a typical velocity

of particles to be vT. Assume that the particle coordinate at a given time is known
with the accuracy ∆x, ∆y, and ∆z, and the accuracy of a given velocity component
is known with the accuracy ∆vx , ∆vy, and ∆vz for the corresponding component.
Then according to the above formula for the entropy, the difference of the entropies
per particle for the statistical Sst and dynamic Sdyn description of the ensemble is

Sst − Sdyn = ln

(
V · v3T

∆x · ∆y · ∆z · ∆vx · ∆vy · ∆vz

)
. (6.11)

Thus, the statistical description is irreversible and particles are characterized
by a more high entropy at this description than that at the dynamical reversible
description of this ensemble. The transition to the statistical description may be
a result of the action of a random force on a particle. Random fields may be very
weak, but their action on an ensemble of many particles is capable to make their
distribution to be random during a not large time. Then the statistical description
of this ensemble becomes correct, and the state of a particle becomes uncertain.

� Problem 6.10 Consider the Poincare instability that determines the divergence of
particle trajectories at their small uncertainty.

A weak interaction of a particle with random external fields leads to a displacement
of its trajectory that is intensified in time. Let us consider two neighboring trajec-
tories of a test particle and ascertain the divergence of these trajectories in time in
collisions with other particles. If the distance between the trajectories exceeds the
action radius of forces between particles, the trajectories become different after the
first collision, and as a result they redispersed after the first collision through the
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time ∼ L/vT, where L is the typical size of a volume occupied by particles, and vT
is a typical thermal velocity of particles.
We consider another limiting case when the trajectory divergence is small com-

pared to the action radius of interparticle forces, but the motion of a particle along
two trajectories remains classical. Moreover, for definiteness we assume that scat-
tering of colliding particles is described by the hard-sphere model, so that the
impact parameter of collision ρ is connected with the scattering angle θ and the
sphere radius Ro by the relation ρ = Ro cos θ. Assuming the initial displacement
of the trajectory δ to be small, we have the difference of impact parameters for two
trajectories ∆ρ1 ∼ δ and the difference of scattering angles ∆θ1 ∼ δ/Ro. From this
it follows that the divergence of the impact parameters at the second collision is
∆ρ2 ∼ λ∆θ1 ∼ λδ/Ro, where λ is the mean free path, i. e., the distance which the
particle travels between two collisions. Since for a gas λ � Ro, the divergence of
trajectories increases between each neighboring collision.
From this it follows that a small deviation of the particle trajectory is enforced

with time, i. e., any particle trajectory is instable with respect to its small displace-
ment. Evidently, if a significant change of the trajectory takes place after k collisions,
when ∆θk ∼ 1, from the above formula we have for an effective number of colli-
sions k, which lead to randomization,

k =
ln λ

δ

ln λ
Ro

. (6.12)

Let usmake an estimate for randomization in an atmospheric air. Then the number
density of molecules N ∼ 3 × 1019 cm−3 and the gas-kinetic cross section σ ∼
3× 10−15 cm2, so that λ = (Nσ)−1 ∼ 10−5 cm, Ro =

√
σ/π ∼ 3× 10−8 cm. If

the initial displacement of the trajectory is of the order of the nuclear size δ ∼
10−13 cm and the violation of classical laws on such distances is neglected, we
obtain from formula (6.12) k ≈ 4, i. e., several collisions of molecules lead to a
random distribution of molecules. Thus, the chaotization process proceeds fast
and leads to irreversibility of this system.
Thus, the above Poincare instability results in intensification of a random dis-

placement of the particles’ trajectory due to the random weak external fields’ di-
vergence due to collisions with other particles. Collisions lead to an exponential
growth of the particle entropy in time, and therefore under several conditions the
transition proceeds from a deterministic system to a random one described in
the statistical terms. Thus, the irreversibility of a statistical ensemble of particles
results from randomization inside this particle ensemble due to a weak external
action and collisions between particles.

� Problem 6.11 Analyze the collapse of wave functions for entangled processes and
its role in the irreversibility of evolution of a closed system of particles.

We now consider one more mechanism of randomization in the distribution of
particles by states that follows from the nature of quantum processes and relates
to entangle states. Indeed, the reversibility of the Newton or Schrödinger equations
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belongs to continuous processes. This can be violated if the ground state of particles
is degenerated, so two particles can form an Einstein–Podolsky–Rosen pair, and a
subsequent collision of one of these particles with a particle of the system chooses
the state of this particle of the pair. This chooses automatically the state of the
second particle of the pair. Such an action, the collapse of wave functions, is added
to the Schrödinger equation as an additional condition, and since it is a prompt
transition of the second particle in a certain state, and this transition has a random
character, all this causes an irreversibility of the particle ensemble. It cannot return
to the initial state as a result of time reversal.

� Problem 6.12 An atomic ion is moving in a parent gas and can transfer a charge
to atoms as a result of the resonant charge exchange process. Consider a colliding
ion and an atom as an example of the Einstein–Podolsky–Rosen pair.

We have the wave function of a colliding atom and its ion according to for-
mula (3.3),

Ψ =
1√
2

[ψ1 cos ζ(t) + iψ2 sin ζ(t)] exp


− i

h̄

t∫
εdt


 , (6.13)

where the wave functions ψ1 ,ψ2 correspond to ion location near the first or sec-
ond nuclei, respectively, ζ(t) =

∫ t(εg − εu)dt/h̄ is the charge exchange phase,
ε = (εg + εu)/2, εg, εu are the energies of the even and odd states for the quasimole-
cule consisting of the ion and atom. The value εg − εu drops exponentially with an
increase of the distance between nuclei at large distances. Hence, the transition of
a valence electron between fields of two ions finishes at some distances between
nuclei, so the probability for the first nucleus to belong to a charged particle after
collision equals cos2 ζ(∞), and the probability for the second nuclei to belong to the
charged particle after collision is sin2 ζ(∞). Let us measure the charge of the first
particle, for example, using a mass spectrometer. This measurement chooses au-
tomatically the charge of the second particle. Indeed, if the first particle is charged,
the other is neutral, and vice versa. Such a measurement leads to the collapse of
wave functions. The collapse of the wave function chooses only one term in the
above formula for the wave function of the quasimolecule.
This measurement in a gas proceeds automatically as a result of collision of one

of these atomic particles with a gas atom, and this collision establishes that whether
a colliding particle is an ion or atom. Therefore, each collision of an atom and ion
leads to the collapse of their wave functions through some time after it. Because the
collapse of wave functions has a random character, it leads to irreversible evolution
of this system. The collapse of wave functions is possible for any system of atomic
particles with degenerated states of individual particles.
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6.3
Integral Relations from the Boltzmann Equation

� Problem 6.13 Derive themacroscopic transport equations for a gas from the Boltz-
mann kinetic equation.

To this end we multiply the kinetic equation by an appropriate velocity function
Ψ(v) and integrate over the particle velocities. We have, taking the integral for
parts, for each term on the left-hand side of the kinetic equation
∫

Ψ
∂ f
∂t
dv =

∂

∂t

∫
Ψ f dv −

∫
f

∂Ψ

∂t
dv =

∂

∂t
(NΨ) − N

∂Ψ

∂t
,

where an overline means an average over particle velocities, and N is the number
density of particles.
In the same manner we have for the second term on the left-hand side of the

kinetic equation
∫

Ψvx
∂ f
∂x

dv =
∂

∂x

∫
Ψvx f dv −

∫
f vx

∂Ψ

∂x
dv =

∂

∂t
(N Ψvx) − N vx

∂Ψ

∂x
.

The above operations for the third term on the left-hand side of the kinetic equation
give
∫

Ψ
∂ f
∂vx

dv =
∫

∂

∂vx
(Ψ f )dv −

∫
f

∂Ψ

∂vx
dv = −N

∂Ψ

∂vx
.

Hence, we obtain the macroscopic equation in the form

∂

∂t
(NΨ) + div (N Ψv) − N

[
∂Ψ

∂t
+ v∇Ψ +

F
m

∂Ψ

∂v

]
= Ψ(v)Icol( f ) .

Let us prove that if Ψ(v) is the integral of motion, i. e., if the sum of these values
for colliding particles is identical before and after collision Ψ(v) +Ψ(v1) = Ψ(v′) +
Ψ(v′

1), the right-hand side of the last equation is zero. Indeed, since particles are
identical, we have

Ψ(v)Icol( f ) =
1
2

∫
[Ψ(v) +Ψ(v1)]W(v, v1 → v′, v′

1)
[
f (v′) f (v′

1) − f (v) f (v1)
]
dvdv1dv′dv′

1 .

The transition rate satisfies the principle of detailed balance according to which
the time reversal t → −t leads to the reversal transition that is analogous to the
change v ↔ v′, v1 ↔ v′

1 . This allows us to represent this value in the form

Ψ(v)Icol( f ) =
1
4

∫ [
Ψ(v) +Ψ(v1) − Ψ(v′) +Ψ(v′

1)
]
W
[
f (v′) f (v′

1) − f (v) f (v1)
]
dvdv1dv′dv′

1 ,

and since Ψ(v) is the integral of motion, this average value is zero. Finally, we
obtain the macroscopic equation in the form

∂

∂t
(NΨ) + div (N Ψv) − N

[
∂Ψ

∂t
+ v∇Ψ +

F
m

∂Ψ

∂v

]
= 0 , (6.14)
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where F is a force from an external field that acts on one gas particle, and m is the
particle mass.

� Problem 6.14 Derive the macroscopic transport equations of a gas for the cases
Ψ(v) = const, Ψ(v) = mv, and Ψ(v) = ε = mv2/2.

Taking Ψ(v) to be constant, we obtain the continuity equation

∂N
∂t

+ div (Nw) = 0 , (6.15)

where w is the average atom velocity at this time and coordinate. Applying the ob-
tained equation for Ψ(v) = mv, we have for vector components of the momentum
transport equation

∂

∂t
(Nmwi) +

∂

∂xk
(Nmwiwk) +

∂

∂xk
Pik = 0 , (6.16)

where

Pik = Nm(vi − wi)(vk − wk) (6.17)

is the pressure tensor. Taking it in the form

Pik = Nmδik(vi − wi)2 = pδik , (6.18)

where p is the gas pressure, we obtain the Euler equation

∂w
∂t

+ (w∇)w +
1

Nm
∇p− F

m
= 0 . (6.19)

Let us define the heat flux intensity as

qi =
1
2
mN (v − w)2(vi − wi) , (6.20)

and the gas temperature as

T =
m(v − w)2

3
.

Taking Ψ(v) = ε = mv2/2, substituting it into the macroscopic equation (6.14),
and excluding from this the continuity equation and the momentum transport
equation, we finally obtain the equation of energy transport or the heat conduction
equation for a gas in the form

3
2
N
(

∂T
∂t

+w∇T
)
= −Pik

∂wi

∂xk
− ∂qk

∂xk
. (6.21)
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� Problem 6.15 Define the kinetic coefficients in a gas with fluxes of particles, mo-
mentum, and heat.

Under thermodynamic equilibrium such gas parameters as the number density of
atoms or molecules of each species, the mean velocity of atoms or molecules, and
the temperature are constants in a region occupied by a gas. If some of these values
vary in this region, appropriate fluxes arise in order to equalize these parameters
over the total volume of a gas or plasma. The fluxes are small if variations of the
parameters are small on distances of the order of the mean free path for atoms or
molecules. Then a stationary state of the system with fluxes exists, and such states
are conserved during times much longer than typical times of collisions between
particles. In other words, the inequality

λ � L (6.22)

is satisfied for the systems under discussion, where λ is the mean free path for
particles, and L is the typical size of the system or a distance over which a parameter
varies noticeably. If this criterion is fulfilled, the system is in a stationary state to
the first approximation, and transport of particles, heat, or momentum occurs in
the second approximation in terms of an expansion over a small parameter λ/L.
Below we consider various types of such transport.
Let us introduce the kinetic coefficients or transport coefficients as the coef-

ficients of proportionality between fluxes and corresponding gradients. We start
from the diffusion coefficient D that is introduced as the proportionality factor be-
tween the particle flux j and the gradient of concentration c of a given species, or

j = −DN∇c . (6.23)

Here N is the total particle number density. If the concentration of a given species
is low (ci � 1), that is, this species is an admixture to the gas, the flux of particles
of this species can be written as

j = −Di∇Ni , (6.24)

where Ni is the number density of particles of the given species.
The thermal conductivity coefficient κ is defined as the proportionality factor be-

tween the heat flux q and the temperature gradient ∇T on the basis of the relation

q = −κ∇T . (6.25)

The viscosity coefficient η is the proportionality factor between the frictional force
acting on a unit area of a moving gas, and the gradient of the mean gas velocity
in the direction perpendicular to the surface of a gas element (see Fig. 6.1). If
the mean gas velocity w is parallel to the x-axis and varies in the z direction, the
frictional force is proportional to ∂wx/∂z and acts on an xy surface in the gas. Thus
the force F per unit area is

F = −η
∂wx

∂z
. (6.26)

This definition and the previous ones are valid not only for gases, but also for
liquids.
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Fig. 6.1 The geometry of a viscous flux of a gas.

� Problem 6.16 Give a general expression for the pressure tensor (6.17) of a gas by
taking into account the gas viscosity.

Our goal is to generalize expression (6.18) for the pressure tensor by including in
it the gas viscosity. This is a slow process because a constant pressure p = const
is established with the sound speed. Since the gas temperature is constant in a
space, from the state equation p = NT we have that the number density N of
atoms does not change in the space. Hence, from the continuity equation (6.15)
in the stationary case we have div (Nw) = 0, and if the average gas velocity w is
directed along the axis x, we have from this

∂wx

∂x
= 0 .

From this, accounting for expression (6.26) for the force per unit area and sym-
metrizing it by taking into account the above formula, we write the pressure tensor
(6.17) by adding to expression (6.18) the symmetrized expression (6.26). Then ac-
counting for divw = 0, we require the trace of the viscosity part of the pressure
tensor to be zero. This leads to the following expression for the pressure tensor:

Pik = pδik − η

(
∂wi

∂xk
+

∂wk

∂xi
− 2
3

δik
∂wi

∂xk

)
, (6.27)

where as usual xi, xk are the coordinates x, y, z, and the summation takes place
over twice repeated indices.

� Problem 6.17 Generalize the Euler equation (6.19) taking into account the gas
viscosity.

We generalize the equation for momentum variation (6.16) by inserting in it the
pressure tensor in the form (6.27). Dividing the initial equation by the atom mass,
we obtain the Navier–Stokes equation

∂w
∂t

+ (w · ∇)w = −∇p
ρ

+ ν∆w +
F
m

, (6.28)
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where ν = η/ρ is the kinematic viscosity that has the dimensionality of the diffusion
coefficient (cm2/s), and we account for in this equation that ∇w = 0.

� Problem 6.18 Derive the heat transport equation for a motionless and weakly
nonuniform gas where heat transport results from the gas thermal conductivity.

We use the equation of energy transport (6.21) taking there the zero gas velocity
w = 0 and introducing the heat flux intensity (6.20) according to formula (6.25). We
also assume that a nonuniform gas is supported at constant pressure. Therefore
instead of the heat capacity of an atom at the constant volume cV = 3/2, which
was used in equation (6.21), we introduce in this equation the heat capacity cp per
atom or molecule of this gas or constant pressure. As a result, we obtain the energy
balance equation (6.21) in the form

cpN
∂T
∂t

= κ∆T , (6.29)

where κ is the thermal conductivity coefficient of a gas. It is convenient to include
in this equation the thermal diffusivity coefficient χ for this gas, which is defined as

χ =
κ

cpN
. (6.30)

Then the heat balance equation under the considered conditions takes the form

∂T
∂t

= χ∆T . (6.31)

� Problem 6.19 Determine the contribution to the heat balance of gas particles due
to internal degrees of freedom.

The heat balance equation (6.29) includes the heat capacity cp per gas particle. This
value is equal to

cp =
i + 2
2

,

where i is the number of degrees of freedom for gas particles. In particular, for
an atomic gas (i = 3) we have cp = 5/2, and for a molecular gas consisting of
diatomic molecules (i = 5) we have cp = 7/2. In the latter case we assume vibration
degrees of freedom to be in thermodynamic equilibrium with translation degrees
of freedom. In addition, the energy per degree of freedom is taken to be T/2,
where T is the temperature expressed in energy units. This is not fulfilled for the
transition in a continuous spectrum, as in the cases of dissociation of molecules or
ionization of atomic particles. In these cases the binding energy of such transitions
usually exceeds significantly the thermal energy of particles. Hence, we extract heat
transport for such degrees of freedom separately, representing the heat flux in a
gas as a sum of two terms as

q = −κt∇T − κi∇T ,
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where κt is the thermal conductivity coefficient due to the transport of translational
energy, and the second term is due to transport of energy in the internal degrees
of freedom. The thermal conductivity coefficient is then just the sum of these two
terms

κ = κt + κi ,

and we now analyze the second term, where an internal state of the gas particle is
denoted by the subscript i.
Because of a temperature gradient, the number density of particles in this state

is not constant in space, and the diffusion flux is given by

ji = −Di∇Ni = −Di
∂Ni

∂T
∇T .

From this we obtain the heat flux

q = ∑
i

εi ji = −∑
i

εiDi
∂Ni

∂T
∇T ,

where εi is the excitation energy for the i-th state. Assuming the diffusion coeffi-
cient to be the same for excited and nonexcited particles, we obtain the thermal
conductivity coefficient due to internal degrees of freedom,

κi = ∑
i

εiDi
∂Ni

∂T
= D

∂

∂T ∑
i

εiNi = D
∂

∂T
εN = Dcp , (6.32)

where ε = ∑i εiNi/N is the mean excitation energy of the particles, N = ∑i Ni is the
total number density, and cp = ∂ε/∂T is the heat capacity per particle at constant
pressure.

� Problem 6.20 Charged particles are moving in a gas in an external electric field
and collide elastically with gas atoms. Based on the tau-approximation for the col-
lision integral of charged particles and gas atoms, derive the macroscopic equation
for momentum transport and compare it with the Newton equation for an individ-
ual charged particle.

Using the kinetic equation in the form (6.2), we take the collision integral in the
tau-approximation (6.3). The left-hand side of the equation for the average mo-
mentum of charged particles is given by equation (6.16) with F = eE, where E is
the electric field strength. The right-hand side is mw/τ. So, the equation for the
average momentum of a charged particles followed from the Boltzmann equation
for a uniform gas (N = const) takes the form

M
dw
dt

+M
w
τ
= eE ,

where M is the charged particle mass. This equation coincides with the Newton
equation for a charged particle moving in a gas if we introduce in this equation
the friction force Mw/τ resulted from collisions of this charge particle with gas
atoms.
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� Problem 6.21 Derive the momentum integral equation of ions in a gas in the
stationary regime by taking into account elastic ion–atom collisions.

We now derive the stationary equation of the previous problem taking into account
ion–atom collisions correctly. Then multiplying equation (6.2) with the collision
integral (6.7) by mv1 , and integrating over dv1 , we obtain

eENi =
∫

M(v′
i − vi)gdσ fi fadvidva .

Here the quantities vi and va are the initial velocities of the ion and atom before
collision, and v′

i and v′
a are their values after collision, respectively. The distribution

functions of ions fi(vi) and atoms fa(va) are normalized to the ion Ni and atom
Na number densities; M and m are ion and atom masses, and g is their relative
velocity that is conserved in the collision. We have used the principle of detailed
balance, which assures the invariance under time reversal of the evolution of the
system and yields

∫
v1 f ′

1 f
′
2dσdv1dv2 =

∫
v′
1 f1 f2dσdv1dv2.

Let us express the ion velocity vi before and after collision in terms of the relative
ion–atom velocity g and the center-of-mass velocity V by the relation vi = V +
mg/(m + M). This gives M(vi − v′

i) = µ(g − g ′). The relative ion–atom velocity
after collision has the form g ′ = g cos ϑ + kg sin ϑ, where ϑ is the scattering angle
and k is a unit vector directed perpendicular to g. Because of the random character
of scattering, the second term disappears after averaging, i. e., the integration over
scattering angles gives

∫
(g − g ′)dσ = gσ∗(g), where σ∗(g) =

∫
(1 − cos ϑ)dσ is the

diffusion cross section of ion–atom scattering. As a result, the above equation takes
the form

eENi =
∫

µggσ∗(g) fi fadvidva . (6.33)

This also means that as a result of ion collisions with gas atoms, a force is gener-
ated,

F = − 1
Ni

∫
µggσ∗(g) fi fadvidva ,

which acts on a moving ion in a gas.

� Problem 6.22 Find the drift velocity in an atomic gas for polarization ion–atom
interaction.

In the case of polarization interaction between an ion and atom, the diffusion cross
section is close to the cross section of polarization capture (2.25), and is inversely
proportional to the relative velocity g of collision. Then we have∫

g fi fadvidva = (wi − wa)NiNa = wiNiNa ,

where wi is the average ion velocity, and a gas is motionless, wa = 0. From this we
obtain

wi =
eE

µNakc
, (6.34)
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where kc = 2π
√

αe2/µ is the rate constant of the polarization capture process, and
α is the polarizability of the atom. Note that this formula is valid at any electric
field strength including very strong fields, when the ion distribution function is
very different from the Maxwell distribution dependence on the gas temperature.
Thus, the integral equation (6.33) can be a basis for the analysis of ion behavior in
a gas in any external electric field.

� Problem 6.23 Derive the macroscopic equation for the power that transfers to
ions from an external electric field and then to a gas as a result of collisions of ions
with gas atoms.

This operation is similar to that during the derivation of equation (6.33). Indeed,
we multiply the kinetic equation (6.2) with the collision integral (6.7) by the ion
kinetic energy Mv2i /2 and integrate it over ion velocities. This gives the following
equation:

eEwNiNa =
∫

M[(v′
i)
2 − v2i ]gdσ fi fadvidva ,

where we used the symmetry with respect to the time inversion t ↔ −t and use
the same notations as in the derivation of equation (6.33). Introducing the velocity
V = (Mvi +mva)/(m +M) of the center of mass for the colliding ion and atom and
the relative ion–atom velocity g = vi − va, we obtain

M
2

[(v′
i)
2 − v2i ] = µV (g − g ′) ,

where g, g ′ are the relative ion–atom velocities before and after collision. This
leads to the relation

eEwNiNa = µ
∫
Vggσ∗(g) fi fadvidva . (6.35)

This is the balance equation for the ion energy if an ion is moving in a gas in an
external electric field and is scattering on gas atoms elastically. The left-hand side
of this equation is the specific power that an ion acquires from an electric field,
and the right-hand side of this equation is the specific power transmitted to gas
atoms.

� Problem 6.24 Find the average ion energy in the case of elastic ion–atom collisions
in a gas in an external electric field, if the rate of ion–atom collisions is independent
of the collision velocity.

Under these conditions, an ionmoves in a constant electric field with a drift velocity
that is given by formula (6.34) and is w = eE/(µν). Here the rate of elastic ion–atom
collisions is ν = Nagσ∗(g) and does not depend on the relative ion–atom velocity g.
Correspondingly, formula (6.35) gives in this case

w2 = 〈Vg〉 = M
M +m

〈v2i 〉 − m
M +m

〈v2a〉 +
M −m
M +m

〈vi〉〈va〉 ,
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where brackets mean an average over ion or atom velocities. Assuming that a gas
is motionless, i. e., 〈va〉 = 0, we introduce the average ion kinetic energy as ε =
M〈v2i 〉/2 and the gas temperature as T = m〈v2a〉/3. As a result, we obtain from the
above equation for the average ion energy

ε =
(m +M)w2

2
+
3
2
T . (6.36)

� Problem 6.25 In the case when an ion is moving in a gas in an external electric
field derive the macroscopic equation for the variation of the average ion kinetic
energy per unit time for an ion motion along the field.

This equation as well as the method of its derivation is similar to the derivation
of equation (6.35). To this end we multiply the kinetic equation (6.2) with the col-
lision integral (6.7) by the ion kinetic energy along the field Mv2ix/2 (x is the field
direction), and integrate it over ion velocities, which gives

eEwNiNa =
∫

M[(v′
ix)

2 − v2ix]gdσ fi fadvidva .

As earlier, we introduce the velocity of the center of mass for the colliding ion and
atom, V = (Mvi +mva)/(m +M), and the relative ion–atom velocity g = vi − va.
Then we obtain

(v2ix − v′
ix)

2 =
2m

M +m
Vx(gx − g′

x) + (
m

M +m
)2[g2x − (g′

x)
2] .

Take the relative ion–atom velocity after collision as

(g)′ = (g) cos ϑ + ng sin ϑ ,

where g, g ′ are the relative ion–atom velocities before and after collision, respec-
tively, and n is the unit vector in the scattering plane that is perpendicular to the
vector g. We have
∫

(gx − g′
x)dσ =

∫
(g − g ′)xdσ = gx

∫
(1 − cos ϑ)dσ − nxg

∫
sin ϑdσ = gxσ∗(g) ,

since nx = cos θ cos ϑ + sin θ sin ϑ cosΦ = 0, so that θ,Φ are the polar angles of the
vector g with respect of the polar axis x, and ϑ is the scattering angle.

Next, taking

g′
x = g(cos θ cos ϑ + sin θ sin ϑ cosΦ) = gx cos θ + g⊥ sin θ cosΦ ,

where g⊥ is the projection of the relative velocity on the plane that is perpendicular
to E, we have, averaging over the azimuthal angle Φ,

g2x − (g′
x)
2 = g2x − g2x cos

2 ϑ − g2⊥ sin2 ϑcos2 Φ − 2gxg⊥ sin ϑ cos ϑcosΦ

= (g2x − g2⊥
2

) sin2 ϑ =
3
2
(g2x − g2

3
) sin2 ϑ ,
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where we use g2 = g2x + g
2⊥. Introducing the average cross section σ(2) =∫

(1 − cos2 ϑ)dσ, we have
∫

[g2x − (g′
x)
2]dσ =

3
2
(g2x − g2

3
)σ(2) .

As a result, we obtain the following integral relation:

eEw = µ〈Vxgxν1〉 + 3µm
4(m +M)

〈
(g2x − g2

3
)ν2

〉
. (6.37)

Here

ν1 = Nagσ∗(g), ν2 = Nagσ(2)(g) .

This is the balance equation for the ion kinetic energy in the field direction. The
left-hand side of this equation is the specific power that an ion acquires from an
electric field and is transformed into the kinetic energy of ions in the field direction.
The right-hand side of this equation is the specific power that is transferred from
the ion kinetic energy in the field direction to atoms as a result of ion–atom elastic
collisions.

� Problem 6.26 An ion is moving in a gas in a constant electric field. Assuming
the ion–atom cross section of elastic scattering to be inversely proportional to the
collision velocity, determine the ion kinetic energy in the field direction.

Under these conditions the rates ν1 and ν2 in equation (6.37) are independent of
the collision velocity, and this equation takes the form

eEw = µν1
〈Mv2ix〉 − 〈mv2ax〉

4(m +M)
+

3µmν2

4(m +M)

〈
(g2x − g2

3
)
〉

. (6.38)

While deriving this relation, we take into account that a gas is motionless, 〈vax〉 = 0,
and the distribution of atoms on velocities is isotropic 〈v2ax〉 = 〈v2a〉/3. Since the
ion drift velocity in this case is given by formula (6.34), w = eE/(µν1), and the
average kinetic ion energy is determined by formula (6.36), we have from this for
the average kinetic energy of the ion in the field direction〈

Mv2ix
2

〉
=
T
2
+

(m +M)w2

2
ν1 +mν2/(4M)
ν1 + 3mν2/(4M)

. (6.39)

Correspondingly, formulas (6.36) and (6.39) give the average ion kinetic energy in
directions that are perpendicular to the field〈

Mv2iy
2

〉
=

〈
Mv2iz
2

〉

=
1
2

(〈
Mv2i
2

〉
−
〈
Mv2ix
2

〉)

=
T
2
+

(m +M)w2

2
mν2/(4M)

ν1 + 3mν2/(4M)
. (6.40)
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Let us analyze the results. In the case M � m, which corresponds, in particular,
to electron motion in a gas, the average kinetic energy of the ion for motion in dif-
ferent directions is identical. Indeed, the velocity distribution function is isotropic
in this case. In another limiting case, when the ion mass is large compared the
atom mass, the ion kinetic energy in the field direction exceeds that in other direc-
tions at high electric field strengths.

� Problem 6.27 Prove the virial theorem for a uniform ensemble of classical parti-
cles that is the relation between the average kinetic energy of particles and their
potential energy.

The virial theorem establishes the relation between the mean kinetic energy of a
particle and averaged parameters of its interaction with surrounding particles or
fields. We deduce it in the classical case when the motion equation for the particle
is given by the Newton equation

m
d2r
dt2

= F ,

where r is the particle coordinate, m is its mass, and F is the force which acts on
this particle from other particles of this ensemble or fields.
Let us multiply this equation by x, the particle coordinate along the x axis, and

integrate this over a large time range. We have

mx
d2x
dt2

= m
d
dt

(
x
dx
dt

)
−m

(
dx
dt

)2
.

Averaging over a large time τ, we obtain for the second term

1
τ

τ∫
0

m
d
dt

(
x
dx
dt

)
=

m
τ
x
dx
dt

∣∣∣∣
τ

0
,

and in the limit τ → ∞ this term tends to zero. Thus, we get from the above
equation

m
2

(
dx
dt

)2
= − 1

2
xFx =

1
2
x

∂U
∂x

. (6.41)

This is the force virial equation that is useful for the analysis of uniform ensembles
of interacting particles. Here the overlinemeans averaging over time, Fx is the force
component, and U is the interaction potential for this particle and others in the
presence of external fields. The term on the left-hand side of this equation is the
average kinetic energy of this particle, and the right-hand side of this equation
corresponds to interaction of this particle with an environment.
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� Problem 6.28 Derive the state equation of a uniform ensemble of particles on the
basis of the virial theorem.

The state equation for an ensemble of particles under a constant pressure es-
tablishes the relation between the temperature, pressure, and other macroscopic
parameters of the ensemble. To create a constant pressure in this system, we place
the particles in a vessel where a certain pressure is supported. From the virial
theorem we have for the particle ensemble

∑
i

m
2

(
dxi
dt

)2
= − 1

2 ∑
i
xi(Fx)i − 1

2

[
∑
i
xi(Fx)i

]
walls

,

where an index i indicates the particle number, an overline means averaging over
time, and we divide the force virial for an individual particle into two parts, so that
the first one relates to other particles of the ensemble, and the second one refers
to the vessel walls. Because of equilibrium, one can change the second term on
the right-hand side of this equation by a force acting from the walls on the particle
ensemble. The force from a surface element ds acting on particles of the ensemble
is pds, where p is the pressure. Hence, we have

1
2

[
∑
i
xi(Fx)i

]
walls

=
1
2

∫
S

pxds =
p
2

∫
Ω

dΩ =
1
2
pΩ ,

where Ω is the volume restricted by the walls, and the particle ensemble is located
in this volume.
According to the temperature definition, the average kinetic energy of an indi-

vidual particle for motion in a given direction is

m
2

(
dxi
dt

)2
=
T
2
,

and the force virial averaged over a large time range is identical for different parti-
cles, which is

∑
i
xi(Fx)i = n xi(Fx)i ,

where n is the total number of particles of the ensemble under consideration. Thus,
we obtain

nT = −nxi(Fx)i + pΩ .

Introducing a specific volume per atom, V = Ω/n, we reduce this equation to the
form

T = −xi(Fx)i + pV . (6.42)

This is the state equation for a particle ensemble, and the left-hand side of this
equation is the kinetic energy of a particle. The first term on the right-hand side
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of this equation accounts for the force virial which acts on an individual particle
from other particles, and the second term takes into account the action of walls.
In particular, for a gas, i. e., for a system of weakly interacting particles, one can
neglect by the virial force, and the state equation takes the form

T = pV . (6.43)

6.4
Stepwise Quantities and Processes

� Problem 6.29 Find the probability that some variable x gets a given value after
n � 1 steps if each step is random.

We now consider a group of systems and processes when a parameter under con-
sideration is a sum of many small elements which have a random nature. An
example of this is the Brownian motion of a particle whose displacement after
many collisions with an environment is a sum of many random displacements.
Let us introduce the probability f (x, n) that the variable has a given value after

n steps, and ϕ(xk)dzk is the probability that the variable change ranges from xk
to xk + dzk after the k-th step. Since the functions f (x), ϕ(x) are the probabilities,
they are normalized by the condition

∞∫
−∞

f (x, n)dz =
∞∫

−∞

ϕ(x)dx = 1 .

From the definition of the above functions we have

f (x, n) =
∞∫

−∞

dx1 · · ·
∞∫

−∞

dxn
n

∏
k=1

ϕ(xk) ,

and

x =
n

∑
k=1

xk .

Let us use the characteristic functions

G(p) =
∞∫

−∞

f (x) exp(−ipx)dx, g(p) =
∞∫

−∞

ϕ(x) exp(−ipx)dx .

On the basis of the inverse operation, we have

f (x) =
1
2π

∞∫
−∞

G(p) exp(ipx)dp, ϕ(x) =
1
2π

∞∫
−∞

g(p) exp(ipx)dp .
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Using the definition of the characteristic functions, we obtain

g(0) =
∞∫

−∞

ϕ(x)dx = 1; g′(0) = i
∞∫

−∞

zϕ(x)dx = ixk; g′′(0) = −x2k ,

where xk, x2k are the average shift and the average square shift of the variable after
one step. Taking the displacement of the variable after n steps as a sum of those
from individual steps, we have for the characteristic function

G(p) =
∞∫

−∞

exp(−ip
n

∑
k=1

xk)
n

∏
k=1

ϕ(xk)dxk = gn(p) ,

and this gives

f (x) =
1
2π

∞∫
−∞

gn(p) exp(ipx)dp =
1
2π

∞∫
−∞

exp(n ln g + ipx)dp .

For a large number of steps n � 1 the integral converges at small p. Expanding
ln g in a series over small p, we have

ln g = ln
(
1 + ixkp− 1

2
x2k p2

)
= ixkp− 1

2

(
x2k − xk

2
)
p2 .

From this it follows that

f (x) =
1
2π

∞∫
−∞

dp exp
[
ip(nxk − x) − n

2

(
x2k − xk

2
)
p2
]

=
1√
2π∆2

exp
[
− (x − x)2

2∆2

]
. (6.44)

This formula is the Gauss distribution. Here x = nxk is the average shift of the

variable after n steps, and n∆2 = n
[
x2k − (xk)2

]
is the average square displacement

of this quantity. ∆ is the fluctuation of this quantity for a system of many identical
elements. The Gauss distribution holds true if small p gives the main contribution
to the characteristic function, i. e., xkp � 1, x2k p

2 � 1. Since this integral is deter-

mined by nx2k p2 ∼ 1, the Gauss distribution is valid for a large number of steps
or elements, n � 1.

� Problem 6.30 N free particles are located in a closed volume Ω. Find the proba-
bility that in a small part Ωo of this volume n particles are located, if the average
number of particles n = NΩo/Ω is large there.

The probability Pn of finding n particles in a given volume is the product of the
probability of locating n particles in this volume (Ωo/Ω)n, the probability of locat-
ing other N − n particles outside this volume (1 − Ωo/Ω)N−n, and a number of



6.4 Stepwise Quantities and Processes 175

ways Cn
N of doing it. Hence this probability is given by the formula

Pn = Cn
N

(
Ωo

Ω

)n(
1 − Ωo

Ω

)N−n

.

This probability satisfies the normalization condition ∑
n
Pn = 1.

Take the limiting case n � 1. Then the average number of particles in a given
volume is n = N Ωo

Ω � 1. In addition, we have n � N, n2 � N. Using the above
small parameters, we finally obtain the Poisson formula

Pn =
nn

n!
exp(−n) . (6.45)

� Problem 6.31 Expanding the Poisson formula for a large number of particles in a
given volume, find the fluctuations in the particle distribution and compare them
with an average particle number.

In the considered limiting case n � 1, n � 1, the probability Pn has a sharp
maximum at n = n. On the basis of the Stirling formula

n! =
1√
2πn

(n
e

)n
, n � 1 ,

we obtain the expansion of the probability Pn near its maximum n, which has the
form

ln Pn = ln Po − (n− n)2

2n
,

where Po = (2πn)−1/2, and the fluctuation of a number of particles in a given
volume is equal to

∆ =
√
n2 − (n)2 =

√
n � n . (6.46)

This allows us to demonstrate the role of fluctuations for a system ofmany identical
particles. Let us divide the total volume, where an ensemble of particles is located,
into some cells, so that the average number of particles is equal to ni = N Ωi

Ω in the
i-th cell of a volume Ωi. Here N is the total number of particles in the total volume
Ω. Then, ignoring the fluctuations, we deal with mean values ni of particles in
cells, and the distribution of the number of particles in a given cell is concentrated
near its average number. One can see that the fluctuations are small, and the above
statement is valid if the number of particles in cells is enough large, ni � 1.
Note that the distribution of particles in cells by neglecting the fluctuations can

be obtained by two methods. In the first case, we measure the distribution in cells
and find ni particles in the i-th cell. This value coincides with its average value ni
with the accuracy up to fluctuations. In the second case, we follow a test particle
which is found in a cell i during a time ti from the total observation time t. Then
the number of particles in the i-th cell is equal to Nti/t and it coincides with ni with
the accuracy up to fluctuations. Thus, when we find average values in the statistical
physics, in the first approximation we neglect fluctuations.
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� Problem 6.32 Derive the Fokker–Planck equation for the probability density
W(xo, to; x, t) to realize the variable x at time t if at time to this variable has the
value xo, assuming that the variable x varies by small steps.

We use the Smoluchowski equation for the probability density

W(xo, to; x, t + τ) =
∫
W(xo, to, ; z, t)W(z, t; x, τ)dz , (6.47)

which uses the definition of this quantity, and the normalization condition that has
the form∫

W(xo, to, ; x, t)dx = 1 . (6.48)

Because the variable x changes by a small increment in each individual event, the
system is diffusive in nature in the variable x, and the Smoluchowski equation
may be reduced to the Fokker–Planck equation in the limit τ → 0.
For this operation we multiply the Smoluchowski equation by an arbitrary con-

tinuous function g(x), which is zero at the boundary of the x-range together with
their derivatives, and integrate over dx. This gives
∫

g(x)W(xo, to; x, t + τ)dx =
∫
W(xo, to, ; z, t)dz

∫
g(x)W(z, t; x, t + τ)dx .

We now consider the limit τ → 0 and expand the function g(x) over a small
parameter x− z. Transferring the first term on the right-hand side to the left-hand
side and dividing the result by τ, we obtain

∫
g(x)dx

W(xo, to, ; x, t + τ) −W(xo, to, ; x, t)
τ

=
∫
W(xo, to, ; z, t)dz

[
g′(z)

x − z
τ

+ g′′(z)
(x − z)2

2τ
+ g′′′(z)

(x − z)3

6τ

]
.

Transferring to the limit τ → 0 and ignoring the cube term and others of more
high degree, we obtain

∫
g(x)dx

∂W(xo, to, ; x, t)
∂t

=
∫
W(xo, to, ; z, t)[g′(z)A(z, t) + g′′(z)B(z, t)]dz ,

where

A(x, t) = lim
τ→0

1
τ

∫
(z− x)W(z, t; x, t + τ)dz,

B(x, t) = lim
τ→0

1
2τ

∫
(z− x)2W(z, t; x, t + τ)dz . (6.49)

Integrating by parts and accounting for g = g′ = 0 at the boundary, we obtain

∫
g(x)dx

[
∂W
∂t

+
∂(AW)

∂x
− ∂2(BW)

∂x2

]
= 0 .
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Since it is valid for an arbitrary function g(x), the expression in the square brackets
is zero, which corresponds to the Fokker–Planck equation

∂W
∂t

= −∂(AW)
∂z

+
∂2(BW)

∂z2
. (6.50)

Note that the limit of small τ nevertheless means that there are many events at
this τ.

� Problem 6.33 Consider the Fokker–Planck equation for the probability density
W(xo, to; x, t) as the continuity equation for this quantity and establish the physical
sense of the equation components.

Due to a small change of the variable in one event, the evolution of the system has
the continuous character, so that the probabilityW satisfies the continuity equation

∂W
∂t

+
∂j
∂x

= 0

and the flux j can be represented in the form

j = AW − B
∂W
∂x

. (6.51)

Here the first term is the hydrodynamic flux, and the second corresponds to the dif-
fusion flux. Therefore, the Fokker–Planck equation accounts for drift and diffusion
in a space of the variable x.

� Problem 6.34 Generalize the Fokker–Planck equation for the case of curvilinear
coordinates.

In the case of curvilinear coordinates, if a state of a given parameter x is charac-
terized by the state density ρ(x), the normalization condition for the probability of
transition after many events takes the form∫

ρ(x)W(xo, to; x, t)dx = 1

instead of equation (6.48). Correspondingly, the probability density W is replaced
by ρW , so we obtain the Fokker–Planck equation in the form

ρ
∂W
∂t

= −∂(ρAW)
∂x

+
∂2(ρBW)

∂x2
(6.52)

instead of equation (6.51).

� Problem 6.35 Derive the Fokker–Planck equation as a function of the initial state.

First we simplify the notation of the density probability W(x, to; z, t) ≡ W(x, z, t)
by taking into account the uniformity of the transition processes. Let us start from
the Fokker–Planck equation (6.52),

ρ(z)
∂W(x, z, t)

∂t
= −∂[ρ(z)A(z, t)W(x, z, t)]

∂z
+

∂2[ρ(z)B(z, t)W(x, z, t)]
∂x2

,
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and the Smoluchowski equation (13.29) has the form

W(x, z, t + τ) =
∫
W(x, ξ , t)ρ(ξ)W(ξ , z, τ)dz .

From the Smoluchowski equation it follows that

∂W(x, z, t + τ)
∂t

=
∫

∂W(x, ξ , t)
∂t

ρ(ξ)W(ξ , z, τ)dz .

Using the Fokker–Planck equation (6.52) and integrating this equation by parts,
we get

∂W(x, z, t + τ)
∂t

=
∫

∂

∂ξ
[A(ξ)ρ(ξ)W(x, ξ , t)]W(ξ , z, τ)dξ

+
∫

∂2

∂ξ2
[B(ξ)ρ(ξ)W(x, ξ , t)]

W(ξ , z, τ)dξ = −
∫

A(ξ)ρ(ξ)W(x, ξ , t)
∂W(ξ , z, τ)

∂ξ
dξ

+
∫

B(ξ)ρ(ξ)W(x, ξ , t)
∂2W(ξ , z, τ)

∂2ξ
dξ .

Along with this, we have

∂W(x, z, t + τ)
∂t

=
∂W(x, z, t + τ)

∂τ
=
∫
W(x, ξ , t)

∂W(ξ , z, τ)
∂τ

ρ(ξ)dξ .

From comparison of the equations obtained, we finally have

∂W(ξ , z, τ)
∂τ

= −A(ξ)
∂W(ξ , z, τ)

∂ξ
+ B(ξ)

∂2W(ξ , z, τ)
∂ξ2

. (6.53)

� Problem 6.36 Find the relation between the quantities A and Bwhich characterize
the hydrodynamic and diffusion fluxes in formula (6.51).

The relation between the quantities A and B can be found from the condition
that if the distribution function coincides with the Maxwell distribution function
( fo ∼ exp(−ε/T)), the collision integral will be zero. This condition yields

A =
(

−B
T
+
dB
dε

+
B
ρ

dρ

dε

)
. (6.54)

Relation (6.54) between the quantities A and B which are characteristics of the
hydrodynamic and diffusion fluxes (6.51) is a general relation between transport
coefficients in an arbitrary space if the system is found in the thermodynamic
equilibrium. In the case when a particle is moving in a space in a gas under an
action of a weak external field these connect the mobility and diffusion coefficient
of the particle and have the form of the Einstein relation for a neutral (1.49) or
charged (1.50) particle.
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� Problem 6.37 Determine the recombination coefficient involving electrons if the
energy of a recombining electron varies by a small amount in an elementary
process of collision with other particles.

We now consider the Fokker–Planck equation for evolution of the recombining
electron in the energy space, and the recombination process results in many ele-
mentary events. The Fokker–Planck equation for the probabilityW(ε, ε′, t) of tran-
sition from an initial state of energy ε to a state of energy ε′ during a time t is
governed by the Fokker–Planck equation (6.53). One can define the boundary of
a continuous spectrum for electrons and assume that approaching this boundary
leads to recombination–formation of a bound state for these electrons. On the ba-
sis of these considerations we introduce the probability v(ε, t) for the electron to
approach a bound state, which is equal to

v(ε, t) = 1 −
∫
W(ε, ε′, t)dε ,

where the integral is taken over all continuous spectrum of electron states. Then
from the Fokker–Planck equation (6.53) for the probabilityW(ε, ε′, t) of transition
from an initial state we obtain

∂(1 − v)
∂τ

= −A(ε)
∂(1 − v)

∂ε
+ B(ε)

∂2(1 − v)
∂ε2

.

Let us introduce the average recombination time

τ(ε) =
∞∫
0

[1 − v(ε, t)]dt =
∞∫
0

t
v(∂ε, t)

∂t
dt ,

which satisfies the equation

B(ε)τ′(ε) − A(ε)τ′′ = −1 . (6.55)

Note that in reality states of a given energy are characterized by a certain density
of states ρ(ε) and to account for this fact, it is necessary to replace the probability
W by the quantity ρW . But because we are dealing with an integral value τ(ε), this
replacement does not change equation (6.55).
Taking into account the relation (6.54) between the coefficients of equation (6.55),

we reduce it to the form

Bτ′′ −
(
B
T

− B′ − B
ρ′

ρ

)
τ′ = −1 ,

and the solution of this equation is

τ(ε) =
ε∫

εo

exp(x/T)dx
ρ(x)B(x)

C∫
x

exp(− y
T

)ρ(y)dy ,

where εo and C are constants of integration.
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Being guided by the recombination of an electron and a positive ion, we will
consider the recombination process as a result of electron drift over free and bound
electron states. Then we take as εo the energy of the ground state of a forming atom,
i. e., εo = −J, where J is the atom ionization potential. Assuming this value to be
large compared to the thermal electron energy J � T , one can replace εo by −∞.
Next, if the electron energy ε is large compared to its thermal energy T , an electron
loses energy, so one can neglect the term Bτ′′ in equation (6.55). This is equivalent
to replace the integration constant C by infinity. As a result, the expression for the
quantity τ takes the form

τ(ε) =
ε∫

−∞

dx
∞∫
x

dy
exp

( x
T − y

T

)
ρ(y)

ρ(x)B(x)
.

The integration in the above formula is taken over a range that is shown in Fig. 6.2.
This range may be narrowed under real conditions when this process takes place
in an ideal plasma. We find the number density ρ(ε) in this case. This is given by
the relation

ρ(ε) =
dn
dε

=
∫

δ

(
ε − p2

2me
+∑

i

e2

ri

)
dpr

(2π h̄)3
,

where n is the number of states, p is the electronmomentum, ri is the coordinate of
the i-th ion with respect to the electron position. From this we have for the number
density of states of a continuous spectrum ρcont(ε) if the criterion ε � e2/Ni holds
true,

ρcont(ε) =
∫

δ

(
ε − p2

2me

)
dpr

(2π h̄)3
=
4π
√
2meεmeV

(2π h̄)3
,

where V is the plasma volume. For bound states ε < 0 under the condition |ε| �

e2Ni the integral for the state density is divided in a sum of integral near each ion,
that is

ρbound(ε) = NiV
∫

δ

(
−|ε| − p2

2me
+
e2

r

)
dpr

(2π h̄)3
=

√
2π3e6m3/2

e NiV
(2π h̄)3

|ε|5/2 .

One can see for an ideal plasma ρbound � ρcont. Hence, the basic time of recombi-
nation a test electron is located in bound states, i. e., τ(ε) ≈ τ(0). Therefore during

Fig. 6.2 The range of integration in evaluation of the recombination time.
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the integration of the formula for τ(ε) over the range of Fig. 6.2, one can restrict by
a shaded range only. This gives the following formula for the recombination time,

τ(ε) ≈ τ(0) =
2T3/2e

|π3/2e6Ni

∞∫
0

exp(−|ε|/Te)|ε|5/2d|ε|
B(|ε|) , (6.56)

and we include in this expression the electron temperature Te, which determines
the above processes. Note that along with the criterion of an ideal plasma (1.56) we
assume above the thermal electron energy to be relatively small (Te � J).

6.5
Collision Integral for Electrons

� Problem 6.38 Find the collision integral for the spherically symmetric part of the
electron distribution function in the energy space if electrons take part in elastic
collisions with gas atoms.

In a uniform gas without external fields the kinetic equation for the spherically
symmetric part fo of the electron energy distribution function has the form

∂ fo
∂t

= Iea( fo) ,

where Iea( fo) is the collision integral taking into account elastic electron–atom
collisions, and the normalization of the distribution function has the form

∞∫
0

fo ε1/2dε = 1 .

We account for the analogy between the above kinetic equation and the Fokker–
Plank equation that allows us to represent the collision integral for electrons as the
right-hand side of the Fokker–Planck equation. So, we have

Iea( fo) =
1

ρ(ε)
∂

∂ε

[
−Aρ fo +

∂

∂ε
(Bρ fo)

]
,

where ρ(ε) ∼ ε1/2.

On the basis of relation (6.54) between the quantities A and B, we have

Iea( fo) =
1

ρ(ε)
∂

∂ε

[
ρ(ε)B(ε)

(
∂ fo
∂ε

+
fo
T

)]
, (6.57)

where T is the gas temperature.

We now determine the quantity B(ε). By definition, it is given by

B(ε) =
1
2

〈∫
(ε − ε′)2Navdσ(ε → ε′)

〉
,
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where the angle brackets signify an average over atomic energies, and dσ is the
electron–atom cross section corresponding to a given variation of the electron en-
ergy. Note that the relative electron–atom velocity does not change in the collision
process, that is | v − va |=| v′ − va |, where v and v′ are the electron velocities before
and after the collision, respectively, and va is the velocity of the atom, unvarying in
a collision with an electron. From this it follows that v2 − (v′)2=2va(v − v′), which
leads to the following expression:

B(ε) =
m2
e
2

〈v2a
3

〉
∫

(v − v′)2Navdσ =
me

M
T
mev2

2
Navσ∗(v) . (6.58)

In this equation, 〈v2a/3〉 = T/M, T is the gas temperature, me and M are the elec-
tron and atom masses, | v − v′ |= 2v sin(ϑ/2), where ϑ is the scattering angle, and
σ∗(v) =

∫
(1 − cos ϑ)dσ is the diffusion cross section of electron–atom scattering.

Thus the collision integral from the spherical part of the electron distribution
function takes the form

Iea( fo) =
me

M
∂

v2∂v

[
v3ν

(
∂ fo

mev∂v
+
fo
T

)]
, (6.59)

where ν = Navσ∗(v) is the rate of electron–atom collisions.

� Problem 6.39 Determine the recombination coefficient for electrons and ions as
a result of three-body collisions of electrons with gas atoms.

The recombination coefficient α of electrons and ions in three-body collisions with
atoms is as follows:

α =
1

τNi
,

where the time τ of electron passage through its discrete spectrum is given by
formula (6.56) with expression (6.58) for the quantity B(|ε|). Evaluating the average
value of the electron velocity cube v3e in the bound space of electron energies, we
have

v3e =

∫
v3eδ

(
ε − m2

e
2 + e2

r

)
dvedr∫

δ
(

ε − m2
e
2 + e2

r

)
dvedr

=
16
3π

(
2|ε|
me

)3/2
.

We also take into account that the average atom velocity square in the frame of
reference where an ion is motionless is

v2a =
3T
ma

+ v2i ,

where T is the gas temperature, ma is the atom mass, and vi is the velocity of an
ion that takes part in the recombination event with a test electron. Substituting
this in formula (6.58), we obtain for ε < 0

B(|ε|) = T
ma

(
1 +

miv2i
3

)
Naσ∗ 16

√
ma

3π
(2|ε|)3/2 .
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Here Na is the number density of atoms, σ∗ is the diffusion cross section of
electron–atom scattering, and we assume it to be independent of the electron
velocity. We also assume that an ion velocity remains constant during several
electron–atom collisions. As a result, we obtain from this on the basis of formula
(6.56) for a recombination time

τ =
3maT

7/2
e

16
√
2πmee6Ni(1 +mav2i /3T)

Naσ∗ .

Averaging over the ion velocities, we obtain for the recombination electron–ion
coefficient due to three-body electron–atom collisions

α =
1

τNi
=
16
√
2π

3
Naσ

∗e6T
√
me

T 7/2
e µ

, (6.60)

where µ is the reduced ion–atom mass.

� Problem 6.40 Find the collision integral with participation of free electrons in a
plasma (the Landau integral).

Since the diffusion cross section of electron–electron collisions (2.37) is determined
mostly by scattering on small angles, a remarkable change of the momentum of a
test electron results from many collisions with other electrons, and therefore the
collision integral can be expressed through a flux jα in the momentum space,

Iee( f ) = − ∂ja
∂va

.

But in contrast to the Fokker–Planck equation, now the collision integral is a non-
linear function of the electron distribution function. In deriving the expression for
the collision integral for electron–electron collisions, we consider expression (6.6).
Using the symmetry of the rateW(v1 , v2 → v′

1 , v
′
2) in this formula, we write it in

the symmetric form as

W =W
(

v1 + v′
1

2
,
v2 + v′

2
2

,∆v
)
=W

(
v1 +

∆v
2
, v2 − ∆v

2
,∆v

)
,

where v1 , v2 are the velocities of colliding electrons, and ∆v is a variation of the
electron velocity as a result of collisions that is small compared with the velocity
of each colliding electron. From the principle of the detailed balance it follows that
W is an even function of ∆v, i. e.,W(∆v) =W(−∆v).
Our task is to expand the collision integral over a small parameter that is pro-

portional to ∆v. The first order of the expansion of the collision integral over the
small parameter gives

Iee( f ) = −
∫ [

f (v2)
∂ f (v1)

∂v1
− f (v1)

∂ f (v2)
∂v2

]
∆vWd(∆v)dv2 .

SinceW is the even function of ∆v, this approximation gives zero.
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From the second-order approximation in ∆v we have

Iee( f ) = −
∫
d∆vdv2W

(
1
2

∆α∆β
∂2 f1

∂v1α∂v1β
f2 − ∆α∆β

∂ f1
∂v1α

∂ f2
∂v2β

+

1
2

∆α∆β f1
∂2 f2

∂v2α∂v2β

)
−
∫

∆vdv2
1
2

∆α

(
∂W
∂v1α

− ∂W
∂v2α

)
∆β

(
∂ f1

∂v1β
f2 − f1

∂ f2
∂v2β

)
,

where indices α, β ≡ x, y, z, we use notations f1 ≡ f (v1), f2 ≡ f (v2), ∆α ≡ ∆vα,
and the summation is made over twice repeating indices. One can evaluate some
of the terms of the above expression by their integration by parts. We have

1
2

∫
d∆vdv2W · ∆α∆β

∂ f1
∂v1α

∂ f2
∂v2β

+
1
2

∫
d∆vdv2∆α∆β

∂W
∂v2α

∂ f1
∂v1β

f2 =

1
2

∫
d∆vdv2∆α∆β

∂ f1
∂v1α

∂

∂v2β
(W f2) = 0,

1
2

∫
d∆vdv2W · ∆α∆β f1

∂2 f2
∂v2α∂v2β

+
1
2

∫
d∆vdv2∆α∆β

∂W
∂v2α

f1
∂ f2

∂v2β
=

1
2

∫
d∆vdv2 · ∆α∆β f1

∂

∂v2α

(
W

∂ f2
∂v2β

)
= 0,

since the distribution function is zero at v2β → ±∞. After eliminating these terms
we find

Iee( f ) = − 1
2

∫
d∆vdv2∆α∆β

(
W

∂2 f1
∂v1α∂v1β

f2 −W
∂ f1
∂v1α

∂ f2
∂v2β

+

∂W
∂v1α

∂ f1
∂v1β

f2 − ∂W
∂v2α

f1
∂ f2

∂v2β

)
.

We represent the collision integral in the form

Iee( f ) = − ∂jβ
∂v1β

, (6.61)

and the flux in the space of electron velocities is equal to

jβ =
∫
dv2

(
f1

∂ f2
∂v2β

− ∂ f1
∂v1β

f2

)
Dαβ, Dαβ =

1
2

∫
∆α∆βWd∆v . (6.62)

Thus we represent the collision integral for electrons as the term of the conti-
nuity equation in the space of the electron velocities, and the quantity Dαβ in this
equation is an analog of the diffusion coefficient for motion in usual space.

� Problem 6.41 Determine the tensor Dαβ of electron diffusion in the velocity space
for electrons located in an ideal plasma.

To evaluate the diffusion coefficient Dαβ in the velocity space we consider a small
variation of the electron energy in collisions with surrounding electrons. Indeed,
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according to formula (2.34) we have for variation of the electron velocity after a
weak collision with other electron

∆α =
2e2ρα

ρ2gme
,

where we denote ∆ = ∆v: here ρ is the impact parameter of collision, ρα is its
projection on a given direction, and g is the relative velocity of electrons. From this
we have

Dαβ =
1
2

∫
∆α∆βWd∆v =

1
2

∫
∆α∆βgdσ =

2e4

m2
eg

∫ ραρβ

ρ4
dσ =

4πe4

m2
eg

nαnβ lnΛ .

(6.63)

Here nα, nβ are the components of the unit vector n directed along ρ, and lnΛ is
the Coulomb logarithm that is given by

lnΛ =

ρ>∫
ρ<

dρ

ρ
. (6.64)

According to formula (2.37) the Coulomb logarithm is equal to

lnΛ = ln
rDε

e2
.

If we take the frame of reference in such way that the direction of the relative
velocity of electrons g is directed along the x-axis, and xy is the motion plane, we
obtain that only ∆y is nonzero. Correspondingly, only the tensor component Dyy is
nonzero and is equal to

Dyy =
2e4

meg

∫ 1
ρ2
2πρdρ =

4πe4

meg
lnΛ . (6.65)

For an arbitrary position of the frame of reference, one can construct the tensor
Dαβ on the basis of two symmetric tensors δαβ and gαgβ. Evidently, it has the form

Dαβ =
4πe4

meg3
gαgβ lnΛ . (6.66)

Thus, finally one can represent the Landau collision integral that accounts for col-
lisions between electrons in the form

Iee( f ) = − ∂jβ
∂v1β

, jβ =
∫
dv2

(
f1

∂ f2
∂v2α

− ∂ f1
∂v1α

f2

)
Dαβ, Dαβ =

4πe4

m2
eg3

gαgβ lnΛ .

(6.67)

In contrast to the right-hand side of the Fokker–Planck equation in a velocity space,
the Landau integral is nonlinear with respect to the distribution function of elec-
trons.
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� Problem 6.42 Find the expression for the Landau integral in the case of fast elec-
trons in a plasma.

In this case one can separate a group of fast electrons from others. Because a num-
ber of fast electrons is relatively small, we obtain a two-component system with a
small concentration of a subsystem under consideration. Correspondingly, the col-
lision integral Iee( f ) becomes linear with respect to the distribution function of
fast electrons, and we can use formula (6.57) for the collision integral with expres-
sion (6.58) for the diffusion coefficient of fast electrons in the energy space. Thus,
we have now

Iee( fo) =
1

mev2
∂

∂v

[
vBee(ε)

(
∂ fo

mev∂v
+
fo
Te

)]
. (6.68)

Thus, this collision integral is linear with respect to the distribution function of
fast electrons and the index o indicates that the distribution function of electrons
is spherically symmetric. The diffusion coefficient B(ε) for a fast electron with an
energy ε = mev2/2 is equal to

B(ε) =
1
2

∫
(ε − ε′)2Nevdσ(ε → ε′) =

Ne

2

∫
(ε − ε′)2Wd∆v

=
Ne
2

∫
mevα(vα − v′

α) ·mevβ(vβ − v′
β)Wd∆v =

Ne

2
m2
evαvβDαβ .

Here an overline means an average over scattering angles, Ne is the electron num-
ber density, ε, ε′ are the energies of a fast electron before and after collision, and the
summation takes place over repeating indices. Use a small change of the energy
of a test electron as a result of collision, ε − ε′ = mevα(vα − v′

α). This allows us to
use the diffusion cross section for two charged particles (2.37) that follows after
integration over scattering angles or final electron velocities. Then on the basis of
the diffusion cross section (2.37) or the diffusion coefficient for a fast electron in
the velocity space (6.67) we obtain

Bee(ε) = 2πe4vNe lnΛ . (6.69)

� Problem 6.43 Find the collision integral Iea( fo) for the spherically symmetric part
of the electron distribution function in the energy space if the loss of the energy of
electrons is determined by excitation of diatomic molecules to the first vibrational
level, and the average electron energy exceeds remarkably the vibrational excitation
energy h̄ω.

The balance of electrons in the energy space has the form

4πv2dv · Iea( fo) = −4πv2dv · νex(v) fo(v) + 4π(v2 +
2h̄ω

me
) · νex



√

v2 +
2h̄ω

me




fo



√

v2 +
2h̄ω

me


 d

√
v2 +

2h̄ω

me
,
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where νex(v) is the rate of molecule excitation at the electron velocity v, and me

is the electron mass. We take into account that molecules of the gas are found in
the ground vibrational state. The left-hand side of this equation is the number of
electrons which go into a velocity range dv as a result of collisions with molecules,
and the terms on the right-hand side of this equation indicate the character of these
transitions. Expanding the right-hand side of the equation over a small parameter
h̄ω/ε, we obtain

Iea( fo) =
h̄ω

me

1
v2

∂

∂v
(vνex(v) fo) . (6.70)

In derivation of this formula, we account for excitation of the first vibrational level
only in electron–molecule collisions. In terms of the Fokker–Planck equation, this
expression accounts for the hydrodynamic flux only with A = h̄ωνex. The excitation
rate can be represented in the form νex = Nmvσex, where Nm is the number density
of molecules, and σex is the cross section of excitation of the vibrational state of the
molecule.

� Problem 6.44 Find the equilibrium number density of clusters of a given size in
a vapor.

Growth and evaporation of clusters of a given size result from the processes of
atom attachment and cluster evaporation whose rates are given by formulas (2.39)
and (3.67). The kinetic equation for the size distribution function fn of clusters,
i. e., number density of clusters consisting of n atoms, has the form

∂ fn
∂t

= Nkn−1 fn−1 − Nkn fn − νn fn + νn+1 fn+1 . (6.71)

From this it follows that if an equilibrium between clusters of a given size is sup-
ported by the processes of atom attachment and cluster evaporation, we have the
size distribution functions

fn+1νn+1 = fnNkn .

Using formulas (2.39) and (3.67) for the rates of these processes, we obtain

fn+1
fn

= S exp
(

εn+1 − εo
T

)
,

with the supersaturation degree S defined as

S =
Nsat(T)

N
. (6.72)

Within the framework of the liquid drop model for large clusters, we have for the
total binding energy of cluster atoms En,

En = εon− An2/3, n � 1 , (6.73)
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where εo is the atom binding energy for a macroscopic system, and the second
term accounts for the cluster surface energy with the specific surface energy A.
This gives for the atom binding energy εn in a large cluster n � 1,

εn =
dEn
dn

= εo − 2A
3n1/3

.

From this we have for the ratio of the equilibrium size distribution functions for
clusters of neighboring sizes

fn+1
fn

= S exp
(

− 2A
3n1/3T

)
. (6.74)

From this it follows that for a supersaturated vapor S > 1 the size distribution
function of large clusters grows with an increase of a cluster size. Next, the size
distribution function of clusters as a function of their sizes has a minimum at the
critical number of cluster atoms ncr, which is according to the above formula

ncr =
(

∆ε

T lnS

)3
. (6.75)

� Problem 6.45 Determine the collision integral for clusters in a space of their sizes.

For large cluster sizes we represent the collision integral of clusters in the form

Icol( fn) = −∂jn
∂n

and according to the kinetic equation (6.71) we have in the limit n � 1

jn = ko(T)ξn2/3
[
N fn − Nsat(T) fn+1 exp(

2A
3Tn1/3

)
]
.

Thus, the collision integral has the form of a flux in a space of cluster size. Taking
fn+1 = fn + ∂ fn/∂n, one can represent the collision integral in the form of the sum of
two fluxes, so that the first one is, the hydrodynamic flux, is expressed through the
first derivative over n, and the second flux, the diffusion one, includes the second
derivative over n. The diffusion flux is small compared to the hydrodynamic one,
but it is responsible for the width of the distribution function of clusters on sizes.
Neglecting the diffusion flux for large n, we get

Icol( fn) = − ∂

∂n

{
ko(T)ξn2/3 fn

[
N − Nsat(T) exp

(
∆ε

Tn1/3

)]}
(6.76)

and the expression inside the square brackets is zero at the critical cluster size.
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7
Transport and Kinetics of Electrons in Gases in External
Fields

7.1
Electron Drift in a Gas in an Electric Field

� Problem 7.1 Derive the kinetic equation for electrons moving in a gas in an
external electric field, when elastic electron–atom collisions dominate, whereas
electron–electron collisions are not essential.

The Boltzmann kinetic equation for the velocity distribution function f (v) of elec-
trons according to equation (6.2) has the form

eE
me

∂ f
∂v

= Iea( f ) , (7.1)

where Iea is the electron–atom collision integral which accounts for electron–atom
collisions.
In analyzing this kinetic equation, we take into account a small energy exchange

in electron–atom collisions, whereas the direction of electron motion varies signif-
icantly at each collision. Hence the velocity distribution of electrons moving in a
gas in an external electric field is nearly symmetrical with respect to directions of
electron motion and has therefore the form

f (v) = f0(v) + vx f1(v) , (7.2)

where x is the direction of the electric field E. The electron–atom collision integral
has a linear dependence on the distribution function f (v) according to expression
(6.8), which gives

Iea( f ) = Iea( f0) + Iea(vx f1) .

The first term of this formula is given by equation (6.59). The second term has the
form

Iea(vx f1) =
∫

(v′ − v)xvdσ f1(v)ϕ(va)dva ,

where v, v′ are the electron velocities before and after collision, respectively, va is
the atom velocity. Because of a small atom velocity, the character of collision does
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not depend on va, and the integration over atomic velocities gives
∫

ϕ(va)dva = Na,
where Na is the atom number density. Next, we represent the electron velocity after
collision as

v′ = v cos ϑ + vk sin ϑ ,

where ϑ is the scattering angle, and k is the unit vector located in the plane that
is perpendicular to the initial electron velocity v. Since this vector has an arbitrary
direction in a given plane,

∫
kdσ = 0, we obtain

∫
(v′ − v)xdσ = −vxσ∗(v), where

σ∗(v) =
∫

(1 − cos ϑ)dσ is the diffusion cross section of electron–atom scattering.
This gives finally

Iea(vx f1) = −νvx f1(v) ,

where ν = Navσ∗(v) is the rate of electron–atom collisions.
Thus, the kinetic equation (7.1) by taking into account for the expansion (7.2) and

the expressions for the collision integrals takes the form

eE
me

(
vx
v
d fo
dv

+ f1 + v2x
d f1
dv

)
= −νvx f1 + Iea( f0) .

It is convenient to represent it in terms of spherical harmonics. For this goal we
integrate this equation over d (cos θ), where θ is the angle between the vectors v
and E, and multiplying this equation by cos θ, integrate it over angles. Then we
obtain instead of this equation the set of the following equations:

a
d f0
dv

= −νv f1 ,
a
3v2

d
dv

(
v3 f1

)
= Iea( f0) , (7.3)

where a = eE/me. This set of equations establishes the relation between the spher-
ical and nonspherical parts of the electron distribution function.

� Problem 7.2 Derive the expression for the electron drift velocity if it is moving in
an atomic gas in an external electric field.

From the set of equations (7.3) for the electron distribution function, we obtain the
electron drift velocity in a gas–the average electron velocity in the field direction,

we =
∫

v2x f1dv =
eE
3me

〈
1
v2

d
dv

(
v3

ν

) 〉
(7.4)

with averaging over the spherical distribution function of the electrons. In particu-
lar, if the rate ν of electron–atom collisions is independent of the collision velocity,
the electron drift velocity we and its mean energy ε̄ are given by

we =
eE
meν

, ε̄ =
3
2
T +

M
2

w2
e . (7.5)
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� Problem 7.3 Find the criterion in the case of electron drift in an atomic gas in an
external electric field when one can ignore electron–electron collisions.

Since electron–atom and electron–electron collisions are not correlated in the
course of electron drift in a gas, we separate these processes and represent the
collision integral for electrons as a sum of the integral Iea of electron–atom colli-
sions and the integral Iee of electron–electron collisions. As a result, the kinetic
equation (7.1) takes the form

eE
me

∂ f
∂v

= Iee( f ) + Iea( f ) . (7.6)

The collision integrals in equation (7.6) are estimated as Iea ∼ me
M vσeaNa f and

Iee ∼ vσeeNe f , where v is a typical electron velocity, me, M are masses of electrons
and atoms, Ne, Na are the number densities of electrons and atoms, and σea, σee are
typical cross sections for collisions of electrons with atoms and electrons, respec-
tively. Above we consider the limiting case Iee � Iea. This limiting case requires
the validity of the criterion

Ne �
me

M
σea
σee

Na (7.7)

In order to present a more correct criterion (7.7), we compare the kinetic equation
(7.6) terms due to electron–electron and electron–atom collisions. Evidently, the
criterion (7.7) has then the form Bee � Bea, where Bee is given by formula (6.69)
and Bea by formula (6.58). As a result, we obtain instead of criterion (7.7)

Ne
Na

� ξ =
me

M
1

lnΛ

Tεσ∗
ea

2πe4
, (7.8)

where ε is the electron energy. We now obtain that a comparison between electron–
electron and electron–atom rates depends on the electron energy.
Since me � M and σea � σee, this criterion can be valid for an ionized gas with

a weak degree of ionization. As an example, Fig. 7.1 contains the parameter ξ of
formula (7.8) for helium if lnΛ = 10 and σ∗

ea = 6 Å
2. As is seen, electron–electron

collisions dominate in establishment of an electron equilibrium even at very low
degree of ionization.

� Problem 7.4 Determine the electron distribution function in the case when elec-
trons are moving in an atomic gas in an external electric field, and elastic electron–
atom collisions dominate for establishment of an electron-gas equilibrium.

In determination of the electron distribution function we take into account that
both distribution functions fo and f1 tend to zero at large electron energies. Then,
integrating the second equation of the set (7.3) with the use of expression (6.59) for
the collision integral, we obtain the second equation of the set (7.3) in the form

f1 =
3ν
a
me

M

(
f0 + T

d f0
dε

)
,
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Fig. 7.1 The boundary concentration of electrons when the transition
takes place between two regimes of electron equilibrium in a plasma in
an external electric field, so that the parameter (7.8) ξ = 1.

where ε is the electron energy. Substituting this expression for f1 in the first equa-
tion of the set (7.3), we reduce this set to the equation

f0 +
(
T +

Mu2

3
d f0
dε

)
= 0 ,

where u = a/ν = eE/(meν).
Solving this set, we obtain by taking into account f0 → 0 at large electron ener-

gies

f0(v) = A exp


−

v∫
0

mev′dv′

T +Mu2/3


 . (7.9)

One can see that the spherically symmetric function is transformed into the
Maxwell distribution function in the absence of an external electric field with the
gas temperature. Note that this distribution function is normalized by

∞∫
0

4πv2 f0dv = Ne .

Correspondingly, for the asymmetric distribution function f1 we have

f1(v) =
meu f0

T +Mu2/3
. (7.10)

From expressions (7.9) and (7.10) it follows that the ratio v f1/ fo of terms of for-
mula (7.2) is small. Nevertheless, taking into account for the asymmetric part f1
in the electron distribution function is of principle, because through this one the
interaction with an electric field is realized.
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� Problem 7.5 Determine the drift velocity and the average energy for an electron
that moves in a gas in an external electric field. Consider the case when the rate of
electron–atom collisions is independent of the electron velocity or is proportional
to it.

On the basis of expressions (7.9) and (7.10) we obtain the electron drift velocity in a
gas,

we =
1
3

∞∫
0

v2 f1 4πv2dv =
4π

3

∞∫
0

meu fo
T +Mu2/3

v4dv . (7.11)

From this we have for the case when the rate of electron–atom collisions is in-
dependent of the electron velocity (ν = const)

we =
eE
meν

, ε̄ =
3T
2

+
Mw2

e
2

, (7.12)

where we is the electron drift velocity and ε̄ is its mean energy.
In the case when the electron–atom diffusion cross section is independent of the

electron velocity (σ∗(v) = const), we obtain in the limit ε � T

we = 0.857
(me

M

)1/4√ eEλ

me
, ε̄ = 0.427eEλ

√
M
me

= 0.530Mw2
e , (7.13)

where λ = 1/(Naσ∗) is the electron mean free path in a gas.

� Problem 7.6 Determine the rate constant of atom ionization by electron impact
if electron evolution is determined by elastic electron–atom collisions and the rate
of such collisions does not depend on the collision velocity.

The electron distribution in this case according to formula (7.9) has the form

f0(v) =
2√
π

(T +Mu2/3)3/2 exp
[
− mev2

2(T +Mu2/3)

]
,

where u = eE/(meν), the electron energy is ε = mev2, the effective temperature is
Te = T +Mu2/3, and the distribution function f0 is normalized by the condition

∞∫
0

f0ε1/2dε = 1 .

The threshold ionization cross section σion is given by formula (4.34) and we take
for simplicity α = 1, i. e., σion(ε) = σo(ε − J)/J. In particular, for the Thomson model
(4.27) we have

σo =
πe4

J2
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Within the framework of the Thomsonmodel, we have for the rate constant of atom
ionization by electron impact when the rate of elastic electron–atom collisions does
not depend on the electron velocity

kion = exp
(

− J
Te

)√
8πTe
me

e4

J2
. (7.14)

� Problem 7.7 An electron is moving in helium in a constant electric field. Assum-
ing the cross section of elastic electron–atom scattering to be independent of the
collision velocity, determine the rate of atom ionization by electron impact within
the framework of the Thomson model for this process.

The elastic transport cross section for collision between an electron and helium
atom lies between 6 Å2 and 7 Å2 if the electron energy varies from 0.3 eV to 6 eV.
Hence we will consider below this cross section to be independent of the electron
velocity. In this case the distribution function (7.9) has the form

f0(ε) = A exp
(

− ε2

ε2o

)
, εo =

√
M
3me

eEλ, λ = (Naσ∗)−1 (7.15)

if the average electron energy εo exceeds significantly the thermal atom energy T .
From this expression we find the rate constant of atom ionization by electron im-
pact

kion =

∞∫
J

vσion(v) f0(v)ε1/2dε

∞∫
0
f0(v)ε1/2dε

,

where the electron energy is ε = mev2/2, and we use the Thomson formula (4.27)
for the ionization cross section. Assuming the ionization potential J to be large
compared with the average electron energy εo, we obtain from this

kion = ko exp
(

− J2

ε2o

)
ko = 1.81

√
εo
me

e4

J2

(
εo
J

)2
. (7.16)

� Problem 7.8 Determine the population of metastable helium atoms He(23S) in
a plasma that is supported by an electric field of strength E if electron–electron
collisions are not essential.

Assuming in this case the electron–atom transport cross section to be independent
of the electron energy, we take the energy distribution of electrons according to
formula (7.15). We use the principle of detailed balance (3.64) for the excitation kex
and quenching kq rate constants. Then the number density of metastable atoms
Nm in comparison with that in the ground state No follows from the balance of
excitation and quenching events,

Nmkq =
∫

f0(ε)kex(ε)
√

εdε ,
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where the electron distribution is normalized by the condition
∫

f0(ε)
√

εdε = 1

and is equal to

f0(ε) =
1.63

ε
3/2
o

exp
(

− ε2

ε2o

)
, εo =

√
M
3me

eEλ, λ = (Naσ∗)−1 .

From the principle of detailed balance (3.65) we obtain in the helium case
(g∗/go = 3) taking the quenching cross section to be independent of the electron
energy

Nm

No
= 3

∫
f0(ε)

√
ε(ε − ∆E)

∆E
dε ,

where ∆E is the atom excitation energy. Evaluating the above integral in the limit
∆E � εo, we obtain

Nm
No

= 1.53
( εo

∆E

)3/2
exp
(

−∆E2

ε2o

)
. (7.17)

One can see that in the limit under consideration ∆E � εo the population of
metastable states is small. In particular, even if εo = ∆E/2, the population of
metastable states is 1 %. Figure 7.2 gives the population of heliummetastable states
in a plasma under the above conditions.

Fig. 7.2 The relative population of metastable state He(23S) for a
helium plasma which is located in a constant electric field. Excitation
and quenching of metastable atoms results from collisions with
electrons.
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� Problem 7.9 Find the electron distribution function in the limiting case when
electron–electron collisions dominate.

This case is opposite with respect to the limiting case to equation (7.7) and corre-
sponds to the criterion

Ne �
me

M
σea
σee

Na . (7.18)

Expanding the kinetic equation (7.6) over this small parameter, we obtain in zero
approximation

Iee( f ) = 0

The solution of this equation leads to the Maxwell distribution function which has
now the form

ϕ(v) = Ne

(
me

2πTe

)3/2
exp
(

−mev2

2Te

)
, (7.19)

and the electron temperature Te here can differ from the gaseous one T and is
determined from both interaction of electrons with an electric field and collisions
with atoms. The electron temperature is determined by the character of the energy
transfer from an external electric field to a gas. Then the energy transfers first from
an external field to electrons, and later it goes from electrons to atoms as a result
of collisions.

� Problem 7.10 Derive the set of kinetic equations for the electron distribution
function, if electrons are moving in a gas in an external electric field, and electron–
electron collisions dominate.

Let us multiply the kinetic equation equation (7.6) by the electron energy mev2/2
and integrate the result over electron velocities. We consider the relation

∫ mev2

2
Ieedv = 0 ,

which reflects the physical sense of the collision integral and use conservation of
the total energy in the electron subsystem. Hence, we have the integral relation

eEwe =
∫ mev2

2
Ieadv . (7.20)

This is the energy balance equation for electrons; the left-hand side of this rela-
tionship is the power which an electron obtains from the electric field and the
right-hand side is the power transmitted from an electron to atoms as a result of
their collisions. From equation (7.6) it follows that ions give a small contribution to
the energy transfer between an external field and a gas in comparison with elec-
trons, because the electron drift velocity exceeds remarkably the ion drift velocity.
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Thus, the character of the energy transfer in a weakly ionized gas from an external
electric field to electrons, and from electrons to atoms does not depend if the crite-
rion (7.7) or (7.18) holds true. If the criterion (7.18) is valid, one can consider electrons
as a subsystem. If the criterion (7.7) holds true, another character of equilibrium
takes place for the electron–atom system.
Accounting for formula the spherical distribution function of electrons and the

character of electron collisions, we obtain instead of the set of kinetic equations
(7.3) the following one

f1 =
eE
νTe

f0,
a
3v2

d
dv

(
v3 f1

)
= Iea( f0) . (7.21)

� Problem 7.11 Determine the electron diffusion coefficient in a weakly ionized gas.

The diffusion coefficient of electrons De follows from the equation for the electron
flux je = −De∇Ne. When the electron number density varies in a space, the kinetic
equation for the electron distribution function has the form

vx∇ f = Iea( f ) ,

and the standard expansion of the distribution function is

f = f0(v) + vx f1(v) ,

where the x-axis is directed along the gradient of the electron number density.
Because the distribution function is normalized to the electron number density
f ∼ Ne, we have ∇ f = f ∇Ne/Ne. Hence the kinetic equation for the electron
distribution function has the form

vx f0∇Ne/Ne = −νvx f1 ,

which gives

f1 = − f0∇Ne

νNe
.

From this we obtain the electron flux

je =
∫

v f dv =
∫

v2x f1dv = −∇Ne
∫

v2x f0dv
νNe

= −∇Ne

〈
v2x
ν

〉
, (7.22)

where brackets mean averaging over the electron distribution function. Compar-
ing this formula with the definition of the diffusion coefficient according to the
equation je = −De∇Ne, we find for the electron diffusion coefficient

De =
〈

v2

3ν

〉
. (7.23)

When an electron is moving in an external electric field, this formula is correct for
transverse diffusion, because only in this case one can separate corrections to the
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spherical electron distribution function due to the electric field and those due to
the gradient of the electron number density.

7.2
Energy Balance for Electrons Moving in a Gas in an Electric Field

� Problem 7.12 Analyze times of equilibria establishment if an electron is moving
in a gas in an external electric field.

There are two typical times for electron–atom collisions when electrons are moving
in an atomic gas in an external field. The first one is τ = 1/ν (ν is the typical rate
of electron–atom collisions) and characterizes an electron momentum variation
in the course of electron–atom collisions, and the second time ∼ M/(meν) ∼
τM/me is a typical time of variation of the electron energy as a result of collisions
with atoms. As is seen, the ratio of these times is of the order of M/m, i. e., these
times differ very significantly. Indeed, the change of the electron momentum or
the direction of electron motion results from one strong electron–atom collision,
whereas a remarkable variation of the electron energy proceeds after ∼M/m such
collisions.
In terms of these times, the first equation of the set (7.3) is established for times

t ∼ 1/ν, while the second equation is established for times t ∼ M/(meν). Hence,
at times 1/ν � t � M/(meν) we have

f1(v) = − a
νv

d f0(v)
dv

,

while the symmetric distribution function differs from the solution (7.9) or (7.19)
of the equation set (7.3) under equilibrium conditions. Moreover, because the equi-
librium for the electron momentum is established fast, the above relation between
f0(v) and f1(v) is independent of the character of establishment of the electron
energy.

� Problem 7.13 Determine the electron drift velocity and the temperature of elec-
trons if electrons are moving in a gas in an external electric field, and electron–
electron collisions dominate.

This case is described by the set (7.21) of kinetic equations, and therefore the elec-
tron drift velocity according to its definition is equal to

we =
∫ v2x

3
f1dv =

eE
3Te

〈
v2

ν

〉
. (7.24)

The electron temperature Te is a parameter which can be found from the balance
equation (7.20) for the power transferred from an external field to electrons and
from electrons to atoms of a gas. This equation by using formula (6.59) for the
spherical part of the electron–atom collision integral of the electron distribution
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function takes the form

eEwe =
∫ mev2

2
Iea( fo)dv =

m2
e

M

(
1 − T

Te

)
〈v2ν〉 . (7.25)

Substituting formula (7.24) for the electron drift velocity in a gas in (7.25), we obtain

Te − T =
Ma2

3
〈v2/ν〉
〈v2ν〉 . (7.26)

where a = eE/me. In particular, in the case ν = const, we have from this

we =
eE
meν

, Te − T =
Mw2

e
3

. (7.27)

If the diffusion cross section is independent of the electron velocity (σ∗(v) = const),
we obtain, introducing the electron mean free path λ = (Naσ∗)−1 in a gas,

we =
eEλ

3Te
〈v〉 = eEλ

3Te

√
8Te
πme

= 0.532
eEλ√
meTe

, Te − T =
3πMw2

e
32

=
Mw2

e
3.4

(7.28)

in accordance with formulas (7.12). The last relation between the electron tem-
perature and drift velocity depends weakly on the relation between the rate of
electron–atom elastic collision and collision velocity. In the limit when the elec-
tron temperature is large compared to the gas temperature formulas (7.28) give

we = 0.99
(eEλ)1/2

(meM)1/4
, Te =

1

2
√
3

√
M
me

eEλ . (7.29)

� Problem 7.14 Since the cross section of electrons with ions at small collision en-
ergies exceeds significantly that for electron–atom collisions, the presence of ions
in a weakly ionized gas may be remarkable in the electron mobility even at low
ion number densities. Assuming that a not low number density of electrons estab-
lishes the Maxwell distribution function of electron with the electron temperature,
find the electron mobility in a weakly ionized gas in a low electric field the presence
of ions.

On the basis of formula (7.24) for the electron drift velocity in a weak field, we
represent the rate of electron collisions in this formula in the form

ν = νea + νei = Navσ∗
ea(v) + Nivσ∗

ei(v) .

Here v is the electron velocity that is large compared to the atom and ion velocity,
νea, νei are the rates of electron–atom and electron–ion collisions, Na, Ni are the
atom and ion number densities, σ∗

ea is the transport electron–atom cross section,
and σ∗

ei is the transport electron–ion cross section. Below for definiteness we take
the transport electron–atom cross section to be independent of an electron velocity
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and use formula (2.37) for the electron–ion cross section because of the Coulomb
character of their interaction in a plasma with Debye screening. Substituting this
expression for the rate of collisions in formula (7.24), we obtain the electron drift
velocity in a weak field,

we = woϕ(λNi
πe4

T2e
lnΛ) ,

where wo is the electron drift velocity in accordance with formula (7.28), when ions
are absent, λ = (Naσea)−1 and the function ϕ(y) is given by

ϕ(y) =
∞∫
0

xe−xdx
1 + y/x4

Figure 7.3 shows the dependence ϕ(y).

Fig. 7.3 The function ϕ(y) =
∞∫
0

xe−x dx
1+y/x4 .

Note that at small y this function is ϕ(y) = 1 − π
√
y/4. Hence the electron drift

velocity at small degree of gas ionization is equal to

we = wo

(
1 − π

4

√
Niπe4 lnΛ

NaσeaT2e

)
.

In particular, let us consider a certain case, if electrons are located in helium,
Ni/Na = 0.01, and Te = 2 eV. Taking lnΛ = 10, we obtain in this case (σea =
2 · 10−15 cm2) we/wo = 0.8.

� Problem 7.15 In the case when electron–electron collisions dominate in estab-
lishment of equilibrium for electrons, moving in a gas in an external electric field,
determine the rate for relaxation of the electron temperature.
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If we start from the nonstationary kinetic equation, we obtain instead of formula
(7.20) the following balance equation:

dε

dt
= eEwe −

∫ mev2

2
Ieadv . (7.30)

This leads instead of formula (7.25) to the following for establishment of the elec-
tron average energy ε:

dε

dt
= eEwe − m2

e
M

(
1 − T

Te

)
〈v2ν〉 . (7.31)

One can rewrite this equation for relaxation of the electron temperature

dTe
dt

= −νε(Te − To) , (7.32)

where To is the equilibrium electron temperature, Te is the current electron tem-
perature, and νε is the rate of relaxation of the electron temperature. We have for
this rate in the limiting cases

νε = 2
me

M
ν, ν = const , (7.33)

and

νε =
16

3
√

π

me

M
1
λ

√
2Te
me

, σ∗(v) = const (7.34)

Thus, the typical time of variation of the electron momentum, τ ∼ 1/ν is approx-
imately M/me times less than the typical time of variation of the electron energy,
τε ∼ M/(meν).

� Problem 7.16 Analyze the effect of runaway of electrons that corresponds to accel-
eration of fast electrons in a plasma in an external electric field because the cross
section of the Coulomb scattering decreases significantly with an increase of the
relative velocity.

In considering fast electrons on a tail of the distribution function, we analyze the
momentum balance equation for the momentum mevx of a test electron when it
is moving in the electrical field of strength E,

me
dvx
dt

= eE − 1
vx

dε

dt
.

Here dε/dt is the variation of the electron energy per unit time in collisions with
plasma electrons. We take into account that an individual collision leads to scatter-
ing at small angles, and an individual act of collision is accompanied by a small
energy variation. This derivative is equal to

dε

dt
=
∫

Nev · 2πρdρ · ∆p2

2me
.
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Here v is the velocity of a test electron, and v ≈ vx , Ne is the electron number
density, ρ is the impact parameter of collision, and ∆p is the momentum which is
transferred from a test electron to a plasma one during their collision. According
to formula (2.35) we have

∆p =
2e2

ρv
,

which gives

dε

dt
= Ne · 4πe4

mev
lnΛ .

Here the Coulomb logarithm lnΛ is given by formula (2.37). Finally, we obtain
the balance equation for the momentum of a test fast electron which moves in an
electric field in a plasma,

me
dvx
dt

= eE − Ne
4πe4

mev2
lnΛ . (7.35)

From this balance equation it follows that fast electrons are accelerated in the elec-
tric field starting from energies

ε ≥ εcr = Ne
2πe4

eE
lnΛ . (7.36)

In particular, if the electric field strength E is measured in V/cm, the number
density of electrons Ne is given in 1013 cm−3, and the electron energy ε is measured
in eV, the criterion (7.36) has the following form, if we take lnΛ = 10,

εcr = 13
Ne

E
. (7.37)

7.3
Dynamics of Electrons in a Gas in Electric and in Magnetic Fields

� Problem 7.17 Determine the drift velocity of electrons moving in a gas in an al-
ternative electric field.

When an electron ismoving in a gas in a harmonic electric field of strength E cosωt
under the condition ωτ � me/M, i. e., the electron energy does not vary during
the field period, one can represent the electron distribution function by analogy
with formula (7.2) in the form

f (v, t) = f0(v) + vx f1 exp(iωt) + vx f−1 exp(−iωt) ,

where the axis x is directed along the field. Substituting this expansion into the
kinetic equation (7.1) and separating the corresponding harmonics by the standard
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method, we obtain the following set of equations instead of equations (7.3):

a
2
d f0
dv

+ (ν + iω)v f1 = 0,

a
2
d fo
dv

+ (ν − iω)v f1 = 0, (7.38)

a
6v2

[
v3 ( f1 + f−1)

]
= Iea( f0) .

Ignoring electron–electron collisions and using the electron–atom collision in-
tegral, one can represent the solution of the set of equations (7.38) in the form

f0 = C exp


−

v∫
0

[
T +

Ma2

6(ω2 + ν2)

]−1

mevdv


 . (7.39)

Other harmonics of the electron distribution function follow from this on the basis
of the set of equations (7.38). This gives the electron drift velocity instead of formula
(7.4),

we(t) =
∫

v2x
[
f1 eiωt + f−1e−iωt

]
dv =

eE
3me

〈
1
v2

d
dv

(
v3

ν cosωt +ω sinωt
ω2 + ν2

) 〉
.

(7.40)

This expression corresponds to expansion over a small parameter me/(Mωτ) � 1
that allows us ignore other terms of expansion over the spherical harmonics and
time harmonics. Note that the relation between the parameters ω and ν may be
arbitrary, and just the relation between these parameters determines the phase shift
for a drift electron with respect to an external field. Formula (7.40) is transformed
into formula (7.4) in the limit ωt = 0.

� Problem 7.18 Determine the difference between the electron and gas tempera-
tures if electrons are located in a gas in an alternative electric field and electron–
electron collisions dominate.

Formula (7.40) is determined by the equilibrium for the electron momentum and
holds true under both criteria (7.7) and (7.18). We now consider electron motion
in an atomic gas in an alternating field when the criterion (7.18) is valid, and the
symmetric electron distribution function is the Maxwell one (7.19). Then formula
(7.40) for the electron drift velocity takes the form

we(t) =
eE
3Te

〈
v2
(

ν cosωt +ω sinωt
ω2 + ν2

) 〉
.

This formula is transformed into formula (7.24) in the limit ωt = 0.
The electron temperature can be found by analogy with the case of a constant

electric field (formula 7.26) on the basis of an analysis of the balance equation for
the electron energy that has the form

eEw cosωt =
∫ mev2

2
Iea( f0)dv ,
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where an overline denotes an average over time. Note that the expression for the
electron–atom collision integral does not depend on external fields. If electron–
electron collisions dominate, and f0 is the Maxwell distribution function (7.19),
on the basis of the above expression for the electron drift velocity we reduce the
balance equation to the form

eEw cosωt =
eE
6Te

〈
v2ν

ω2 + ν2

〉
.

From this we obtain on the basis of the above expression for the electron drift ve-
locity by taking into account the time averages cos2 ωt = 1/2 and cosωt sinωt = 0,

Te − T =
Ma2

6〈v2ν〉
〈

v2
ν

ω2 + ν2

〉
. (7.41)

In the limit ω � ν this formula coincides with formula (7.26) if we employ in that
the effective value E/

√
2 of the electric field strength instead of its amplitude E.

� Problem 7.19 Analyze motion of electrons in a gas in mutually perpendicular
constant electric and magnetic fields.

Let us take the directions of the electric and magnetic fields along the x and z,
respectively. Then electrons are accelerated along the electric field, but the mag-
netic field compels them to rotate and in this manner stop them. In addition, a
circular motion of electrons in a magnetic field creates electron currents in the di-
rection perpendicular to the electric and magnetic fields–the Hall effect. In order
to find the velocity electron distribution function, we solve the kinetic equation for
electrons that has the form(

eE +
e
c
[vH]

) ∂ f
∂v

= Iea( f ),

where E is the electric field strength, and H is the magnetic field strength.
Using the standardmethod for the solution of this kinetic equation, we represent

the electron distribution function in the form

f (v) = fo(v) + vx f1(v) + vy f2(v) .

Extracting spherical harmonics in the standard method, we obtain now instead of
the first equation of the set (7.3) the following equations:

v f1=
aν

(ν2 +ω2
H)

d f0
dv

, v f2 =
aωH

(ν2 +ω2
H)

d f0
dv

,

where a = eE/me, ωH = eH/(mec) is the Larmor frequency, and ν = Navσ∗
ea is the

rate of electron–atom collisions. These equations give the following expressions
for the components of the electron drift velocity:

wx =
eE
3me

〈
1
v2

d
dv

(
νv3

ν2 +ω2
H

)〉
, wy =

eE
3me

〈
1
v2

d
dv

(
ωHv3

ν2 +ω2
H

)〉
. (7.42)

In the limit ωH � ν the first formula is transformed into formula (7.4).
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Let us consider the case ν = const when the rate of electron–atom collisions does
not depend on the collision velocity. Then formulas (7.42) can be represented in the
vector form

w = − eEν

me(ω2
H + ν2)

+
e[E × ωH]
me(ω2

H + ν2)
, (7.43)

where the vector ωH = eH/(mec) is parallel to the magnetic field.

� Problem 7.20 Determine the difference between the electron and gas tempera-
tures if a weakly ionized gas is located in mutually perpendicular constant electric
and magnetic fields.

We assume the criterion (7.18) to be fulfilled, i. e., due to fast electron–electron
collisions one can introduce the electron temperature. The balance equation for
the electron energy has the form

eEwx =
∫ mev2

2
Iea( f0)dv .

Using formula (7.42) for the electron drift velocity and formula (6.59) for the
electron–atom collision integral, we obtain

Te − T =
Ma2

3

〈
v2ν

ν2+ω2
H

〉
〈v2ν〉 (7.44)

In the limiting case ν = const, this formula gives

Te − T =
Ma2

3(ν2 +ω2
H)

,

and in the limiting case ωH � ν from formula (7.44) it follows

Te − T =
Ma2

3ω2
H
=
Mc2E2

3H2 . (7.45)

� Problem 7.21 Determine an increase of the electron temperature in comparison
with the gas temperature if a weakly ionized gas is flowing with a velocity u in a
transversal magnetic field of strength H.

Under these conditions in the frame of axes where this gas is motionless, the
electric field of strength E′ = Hu/c occurs, where c is the light velocity. This field
creates an electric current which can be used for transformation of the kinetic
energy of the plasma flux into the electric energy. In this way the flow energy of
a gas is converted into the electric and heat energy. Correspondingly, this process
leads to a deceleration of the gas flow and to a decrease of its average velocity.
Along with this, an origin of an electric field causes an increase in the electron
temperature that is given by formula (7.45). From this formula it follows that the
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maximum increase of the electron temperature corresponds to the limit ωH � ν

when formula (7.45) takes the form

Te − T =
Ma2

3ω2
H
= M

u2

3
. (7.46)

� Problem 7.22 Find the transversal diffusion coefficient of electrons in a strong
magnetic field.

A highmagnetic field corresponds to the conditionωH � ν, whereωH = eH/(mec)
is the Larmor electron frequency and ν is the electron–atom collision rate. The elec-
tric field, if it exists, directs along the magnetic field. Under these conditions, the
projection of the electron trajectory on a plane perpendicular to the magnetic field
consists of circles whose centers and radii vary after each collision. By definition,
the diffusion coefficient in the transversal direction is given by D⊥ =

〈
x2
〉
/t, where〈

x2
〉
is the square of the displacement after time t in the direction x perpendicular

to the field.
We have x − xo = rH cosωHt, where xo is the x-coordinate of the center of the

electron rotational motion, and rH = vρ/ωH is the Larmor radius; and vρ is the
electron velocity in the direction perpendicular to the field. From this it follows
that〈

x2
〉
= n
〈
(x − xo)2

〉
=

nv2ρ
2ω2

H
,

where n is the number of collisions. Since t = n/ν, where ν is the rate of electron–
atom collisions, we obtain

D⊥ =

〈
v2ρν

2ω2
H

〉
=
〈

v2ν
3ω2

H

〉
, ωH � ν , (7.47)

where brackets mean averaging over electron velocities. Combining formula (7.47)
with the expression for the diffusion coefficient of electrons (7.23) in the absence
of a magnetic field, we find for the transverse diffusion coefficient of electrons in a
gas at an arbitrary relation between the Larmor frequency and the rate of electron–
atom collisions

D⊥ =
1
3

〈
v2ν

ω2
H + ν2

〉
. (7.48)

� Problem 7.23 Find the drift velocity of an electron that is moving in a gas in an
external electric and magnetic field within the framework of tau-approximation.

The kinetic equation for electrons in terms of tau-approximation (6.3) has the form

∂ f
∂t

+
F
me

· ∂ f
∂v

= − f − f0
τ

.

Here F is a force acting on the electron from external fields, me is the electron
mass, 1/τ = Navσea is the frequency of electron–atom collisions, Na is the number
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density of atoms, and σea is the cross section for electron–atom collisions. For
simplicity, we assume τ to be independent of the collision velocity. Note that in
this consideration we neglect electron–electron collisions, i. e., it relates to one
electron moving in a gas.
We take a general form for an external force F that allows us to analyze a variety

of aspects of the electron behavior and has the form

F = −eE exp(−iωt) − e
c

[v × H] ,

where E and H are the electric and magnetic field strengths, ω is the frequency of
the electric field, and v is the electron velocity. We assume the magnetic field to be
constant, and the electric field to be harmonic. We define a coordinate system such
that the vector H is directed along the z-axis and the vector E lies in the plane xz.
Let us multiply the above kinetic equation bymev and integrate over the electron

velocities, which finally gives the equation of electron motion in the form

me
dwe

dt
+me

we

τ
= −eE exp (−iωt) − e

c
[we × H] , (7.49)

where we is the electron drift velocity. From this equation it follows that electron–
atom collisions create a frictional force mewe/τ. Thus, this problem is reduced
to the problem of motion of an individual electron in external fields in a friction
matter.
Equation (7.49) is separated into three scalar equations having the form

dwx

dt
+

wx

τ
= axeiωt +ωHwy,

dwy

dt
+

wy

τ
= −ωHwx ,

dwz

dt
+

wz

τ
= azeiωt .

Here ωH = eH/(mec) is the Larmor frequency, ax = −eEx/me and az = −eEz/me.
The stationary solution of these equations for the components of the electron drift
velocity is

wx =
τ(1 + iωτ)axeiωt

1 + (ω2
H − ω2)τ2 + 2iωτ

,

wy =
ωHτ2axeiωt

1 + (ω2
H − ω2)τ2 + 2iωτ

, (7.50)

wz =
τazeiωt

1 + iωτ
.

� Problem 7.24 Find the drift of electrons in crossed electric and magnetic constant
fields.

Let the electric field be directed along the x-axis, and the magnetic field be directed
along the z-axis. According to formula (7.50), we have (ω = 0, ωHτ � 1)

wy = − eEx
meωH

= −c
Ex
H

, wx =
wy

ωHτ
. (7.51)
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As is seen, an electron (or a charged particle) in a crossed field is moving in the
direction perpendicular to field directions, and the drift velocity is proportional to
the electric field strength and inversely proportional to the magnetic field strength.
Finally, the drift velocity w of a charged particle in the crossed electric E and mag-
netic H fields is equal to

w = c
[E × H]
H2 . (7.52)

� Problem 7.25 Prove that the magnetic moment of a charged particle is conserved
in the course of its motion in a nonuniformmagnetic field. The magnetic moment
of a charged particle µ is the ratio of the particle kinetic energy along the magnetic
field mv2τ/2 to the magnetic field strength H.

Assuming that the presence of charged particles does not influence the space dis-
tribution of the magnetic field, we have from the equation divH = 0, when in the
case of the axial symmetry for the magnetic field,

1
ρ

∂

∂ρ

(
ρHρ

)
+

∂Hz

∂z
= 0 .

Because of the axial symmetry, on the axis, Hρ is zero. According to the above
equation near the axis we have

Hρ = −ρ

2

(
∂Hz

∂z

)
ρ=0

.

The force along the symmetry axis that acts on a moving charged particle from the
magnetic field is

Fz = − e
c
vτHρ =

vτρ

2c
∂Hz

∂z
. (7.53)

Let us analyze these equations from the standpoint of the particle magnetic mo-
ment µ, which is defined as µ = IS/c, where I is the particle current, S is the
area enclosed by its trajectory, and c is the velocity of light. In this case we have
I = eωH/(2π), and S = πr2L, where rL = vτ/ωH is the particle Larmor radius,
and the Larmor frequency is ωH = eH/(mc). In terms of the particle magnetic
moment µ we have for the force acting on the particle in the magnetic field

Fz = −µ
∂Hz

∂z
. (7.54)

The minus sign indicates the force is in the direction of decreasing magnetic field.
One can prove that the magnetic moment of the particle is an integral of the

motion; that is, it is a conserved quantity. We can analyze the particle motion along
a magnetic line of force when averaged over gyrations. The equation of motion
along the magnetic field gives mdvz/dt = Fz = −µdHz/dz, and since vz = dz/dt,
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it follows from this that d(mv2z/2) = −µdHz. From the law of conservation of the
particle energy we have

d
dt

(
mv2τ
2

+
mv2z
2

)
=

d
dt

(
µHz +

mv2z
2

)

d
dt

(µHz) − µ
dHz

dt
= Hz

dµ

dt
= 0 ,

and the latter equation gives for the magnetic momentum of the particle motion

dµ

dt
= 0 , (7.55)

so the magnetic moment is conserved during the motion of the particle.

� Problem 7.26 An electron is moving along an axial weakly varied magnetic field
in the direction of increasing magnetic field. Find the character of variation of the
kinetic energy ετ of transversal motion with variation of the magnetic field.

Let the magnetic field be directed along the z-axis and because of the equation
divH = 0 the radial component of the magnetic field occurs that follows from this
equation,

1
ρ

∂(ρHρ)
∂ρ

+
∂Hz

∂z
= 0 .

From this it follows that

Hρ = −ρ

2
∂Hz

∂z
, (7.56)

and the transversal component of the magnetic field is small compared to the
longitudinal one (Hρ � Hz). The equation of motion along the axis z is

me
dvz
dt

=
e
c
[v × H] .

Under these conditions, the transversal electron motion proceeds along circles in
the plane xy, and the force (7.53) acts on the electron in the longitudinal direction,
so the electron motion in this direction is described by the equation

me
dvz
dt

= Fz .

From this we find the longitudinal force (7.53) on the basis of formula (7.56)

Fz =
vτρ

2c
∂Hz

∂z
= − e

2c
v2τ

ωH

∂Hz

∂z
=

ετ

H
∂Hz

∂z

where vτ is the transversal electron velocity and ετ is the transversal part of the
kinetic electron energy. Multiplying the motion equation by vz, we reduce it to the
form

dεz
dt

= − ετ

H
dHz

dt
.
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Because of the conservation of the total electron kinetic energy εz + ετ = const,
solution of this equation is

ετ

H
= const (7.57)

Thus, the magnetic field gradient leads to redistribution between the parts of the
electron kinetic energy in the longitudinal and transversal directions, so that if the
electron is moving in the direction of a magnetic field increase, the Larmor radius
increases in the course of this motion, as is shown in Fig. 7.4. Note that relation
(7.57) is analogous to equation (7.55). Indeed, the magnetic moment of an electron
that is moving along a circular trajectory is equal to

µ =
IS
c
=

ετ

H
,

where the electric current is I = eωH/(2π), and the square area for this current
is S = πr2H , rH is the Larmor radius. Therefore, relation (7.57) corresponds to the
conservation of the electron magnetic moment (7.55) in the course of redistribution
between the transversal and longitudinal electron kinetic energies.

� Problem 7.27 Analyze the drift of a charged particle in a magnetic field that varies
weakly in a space.

Let us take the magnetic field direction to be z and the gradient magnetic field
direction to be y. Then a charged particle rotates in the plane xy. If the magnetic
field decreases along y and a particle moves clockwise, the upper Larmor radius of
particle rotation is larger than the lower one. As a result the particle shifts in the
x-direction (see Fig. 7.5).
We find the drift velocity on the basis of formula (7.52) where the force acted per

charged particle is given by formula (7.54). The magnetic moment for a rotating

Fig. 7.4 Trajectory of a charged particle moved in an slowly varied mag-
netic field along the magnetic field (the axis z) in the direction of its
decrease.

Fig. 7.5 Drift of a charged particle in an slowly varied magnetic field
that proceeds in the direction of the magnetic field gradient.
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particle of charge e is

µ =
1
c

πr2LeωH ,

and according to formula (7.52) the drift velocity of a charged particle in a varied
magnetic field is

w =
v2

2ωH

[∇H × H]
H2 , (7.58)

where v = rLωH is the particle velocity on the Larmor orbit.

� Problem 7.28 The behavior of magnetic lines of force in the magnetic trap is given
in Fig. 7.6. Find the angle of motion of a charged particle in the minimummagnetic
field region when it is captured by the magnetic trap.

Fig. 7.6 Magnetic lines of force in a simple magnetic trap with the axial
symmetry. Charged particles may be closed in this trap.

When the magnetic field increases, the transversal part of the particle kinetic en-
ergy increases. If the longitudinal part of the particle kinetic energy becomes zero,
the particle reflects from this point and returns back to a region of less fields. Let
us find conditions when it is fulfilled. Let us denote by Hmin the minimal magnetic
field in the trap, and by εz the longitudinal kinetic energy of a charged particle, and
by θ the angle between the particle velocity in a region of the minimum magnetic
field and the magnetic field direction z, so εz = ε cos2 θ, where ε is the total kinetic
energy of this particle.
According to formula (7.57) the longitudinal part of the particle kinetic energy ε′z

in a region with a magnetic field H is

ε′z = εz − (ε − εz)
H

Hmin
.

From this it follows that the condition ε′z > 0 is violated in the region of strong
magnetic fields if the angle θ exceeds θm, which is given by the relation

sin2 θm =
Hmin

Hmax
. (7.59)
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Then the charged particle is reflected from the region of a strong magnetic field
and is trapped in a bounded space. This formula is a basis of variousmagnetic traps
and relates for both positively and negatively charged particles, i. e., both electrons
and positive ions. The particle trajectory is a helix wound around a magnetic line
of force.
In particular, radiation belts of the Earth act according to this principle. Fast

electrons and protons can be captured in a region of a weak magnetic field of the
Earth and are reflected in vicinity of the Earth where the magnetic field is more
strong. Collisions of these particles with others allow them to escape from the
magnetic trap. The number of captured protons is greater than that of electrons
because protons have a longer lifetime due to a larger mass. In addition, due to
the influence of the solar wind, this magnetic trap acts more effectively on the side
of the Earth opposite to the Sun.

7.4
Conductivity of a Weakly Ionized Gas

� Problem 7.29 Determine the of a weakly ionized gas located in mutually perpen-
dicular constant electric and magnetic fields.

In the absence of a magnetic field, the plasma conductivity is scalar. The presence
of a magnetic field transforms the conductivity of a weakly ionized gas into a tensor.
We use Ohm’s law that takes the form

iα = ΣαβEβ , (7.60)

where iα is a component of the current density, and the summation takes place
over twice repeating indices. In the case when the collision rate ν does not depend
on the electron velocity, components of the are given by

Σxx = Σyy = Σo · 1
1 +ω2

H τ2
, Σyx = −Σxy = Σo · ωH τ

1 +ω2
H τ2

, (7.61)

where τ = 1/ν, Σo = Nee2me/τ.
In the limiting case ωHτ � 1 the electric current is directed perpendicular to

both the electric and magnetic fields. In this case the plasma conductivity and
electric current do not depend on the collision rate because the change of the
electron motion direction is determined by electron rotation in a magnetic field.
Then we have

iy = ecNe
Ex
H

=
Ex

RHH
,

where RH = 1/(ecNe) is the Hall constant.

� Problem 7.30 Show that the conductivity of a weakly ionized gas is determined
mostly by electron transport.
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The conductivity of a weakly ionized gas, Σ, is created by free electrons and is
defined as the proportionality factor between the electric current density i and the
electric field strength E in the Ohm law (7.60). The electric current is a sum of two
components, the electron and ion current,

i = −eNewe + eNiwi ,

where Ne,Ni are the electron and ion number density, and we,wi are the electron
and ion drift velocities, respectively, which are expressed through the electron and
ion mobilities Ke,Ki,

we = KeE , wi = KiE ,

which gives for the conductivity of a quasineutral ionized gas

Σ = e(Ke +Ki) .

Estimating the mobility of a charged particle in a gas, we have

K ∼ e
Naσ

√
µT

,

where Na is the number density of atoms, σ is the typical cross section of collision
of charged particles with atoms, and the temperature T is their typical relative
energy in such collisions. From this it follows that Ke � Ke, i. e., electrons give the
main contribution to the gas conductivity. This gives the following estimation for
the gas conductivity:

Σ ∼ Nee2

Naσ∗
ea
√
meTe

,

where σea is a typical cross section of electron–atom scattering. Next, from for-
mula (7.4) we obtain the plasma conductivity, if it is determined by electron–atom
collisions,

Σ =
Nee2

3me

〈
1
v2

d
dv

(
v3

ν

)〉
, (7.62)

where ν = Navσ∗
ea is the rate of electron–atom collisions. In particular, introducing a

collision time τ = 1/ν and assuming it to be independent of the collision velocity v,
we obtain the plasma conductivity in the traditional form

Σo =
Nee2τ

me
. (7.63)

� Problem 7.31 Find the conductivity of an ionized gas at high ionization degrees.

Note that electron–electron collisions do not change the total electron momentum
and therefore do not influence the plasma conductivity. Hence, for the determina-
tion of the plasma conductivity of a strongly ionized plasma, where electron–ion
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collisions are prevailed over electron–atom collisions, it is necessary to use the rate
νei of electron–ion collisions in formula (7.62) instead of electron–atom collisions,
and this formula takes the form

Σ =
Nee2

3me

〈
1
v2

d
dv

(
v3

νei

)〉
. (7.64)

Here νei = Nivσ∗, where v is the electron velocity, and the transport cross section
σ∗ of electron–ion scattering is given by formula (2.37),

σ∗ =
πe4 lnΛ

ε2
,

where ε is the electron energy, and the Coulomb logarithm is equal to lnΛ =
ln[e2/(rDT)], and rD is the Debye-Hückel radius. Taking the Maxwell distribution
function for electrons considering νei ∼ v−3, and Ne = Ni we finally obtain the
Spitzer formula for the plasma conductivity,

Σ =
25/2T3/2e

π3/2m1/2
e e2 lnΛ

. (7.65)

� Problem 7.32 Within the framework of tau-approximation for electron–atom col-
lisions determine the conductivity of a weakly ionized gas with a small electron
number density where collisions between electrons are negligible. This gas is lo-
cated in external electric and magnetic fields.

We consider the Ohm law for the electric current that is determined by electrons,

jα = ΣαβEβ ,

where jα is the current component. On the other hand, one can use the direct
expression for the electron current

jα = −eNewα ,

where the drift velocity is given by expressions (7.50). In particular, if an electron is
moving in a constant electric field, these formulas give for the conductivity of this
plasma

Σαβ = Σoδαβ, Σo =
Nee2τ

me
, (7.66)

where Ne is the electron number density.
In a general case, directing the magnetic field along the z-axis, we obtain the

components of the tensor of the reduced plasma conductivity σαβ = Σαβ/Σo,

σxx = σyy =
1 + iωτ

1 + (ω2
H − ω2)τ2 + 2iωτ

,

σxy = σyx =
ωHτ

1 + (ω2
H − ω2)τ2 + 2iωτ

, (7.67)

σzz =
1

1 + iωτ
.
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In addition to this we have

σxz = σyz = σzx = σzy = 0 .

� Problem 7.33 Establish the relation between the dielectric constant tensor for a
weakly ionized gas located in external fields and the conductivity tensor.

The dielectric tensor of a plasma εαβ is defined on the basis of the relation

Dα = εαβEβ, Dα = Eα + 4πPα, (7.68)

where D is the electric displacement vector and P is the polarization per unit vol-
ume of the plasma, i. e., P is the dipole moment per plasma unit volume, and this
moment is generated by an external electric field. In order to extract an electron
motion that is induced by the action of an external field, we represent the time de-
pendence of the electron coordinate as r = r0 + r′ exp(iωt), where r0 is independent
of an external field and r′ is determined by electron motion under the field action.
Hence, the electron velocity induced by the external field is

we =
dr
dt

= iωr′ exp(iωt) .

The plasma polarization is

P = −e∑
k
r′k exp(iωt) = −iNewe/ω ,

where the index k denotes an individual electron, and the sum is taken over elec-
trons per unit plasma. Expressing the electron current through an average electron
drift velocity i = −eNewe, we have D = E + 4πii/ω. From this it follows for the di-
electric constant tensor that

εαβ = δαβ +
4πi
ω

Σαβ , (7.69)

where δαβ is the Kronecker symbol. This relation establishes the connection be-
tween the dielectric constant tensor of a plasma and its conductivity tensor.

� Problem 7.34 Determine the dielectric constant tensor for a weakly ionized
isotropic gas located in external fields within the framework of the tau-approxima-
tion for electron–atom collisions.

We are based on formula (7.69), which allows us to express the dielectric constant
through the conductivity of an ionized gas that according formulas (7.66) and (7.67)
is given by

Σ =
Nee2τ

me

1
1 + iωτ

.

This formula describes the case when the magnetic field is absent; Ne is the elec-
tron number density, and ω is the frequency of an electric field. From this we
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obtain the dielectric constant of an ionized gas,

ε = 1 − iω2
pτ

ω(1 + iωτ)
, (7.70)

and ωp =
√
4πNee2/me is the plasma frequency. In the limit of high frequencies

ωτ � 1 this formula gives

ε = 1 − ω2
p

ω2 . (7.71)

� Problem 7.35 Determine the conductivity of an ionized gas near the cyclotron
resonance for electrons moved in a gas located in a magnetic field and alternating
electric field that is perpendicular to the magnetic field, and the frequency of an
electric field is close to the Larmor frequency.

According to formula (7.67) the conductivities Σ‖ and Σ⊥ in the directions parallel
and perpendicular to the magnetic field are

Σ‖ ≡ Σxx =
Σ0(1 + iωτ)

1 + (ω2
H − ω2)τ2 + 2iωτ

, Σ⊥ ≡ Σxy =
Σ0ωHτ

1 + (ω2
H − ω2)τ2 + 2iωτ

.

(7.72)

One can see a resonance at ω = ωH , where these components of the conductivity
tensor are Σ‖ = iΣ⊥ = Σ0/2, and the cyclotron resonance width is ∆ω ∼ 1/τ.
The cyclotron resonance has a simple physical explanation. In the absence of

an electric field, an electron travels in a circular orbit with the Larmor frequency
ωH . If an electric field is applied in the plane of the circular orbit, and if this field
varies such that its direction remains parallel to the electron velocity, the electron
continuously receives energy from the field. Then like the motion in a constant
electric field, the electron is accelerated until it collides with atoms. Hence, in both
cases the conductivities are of the same order of magnitude and are expressed in
terms of the rate 1/τ of electron–atom collisions. If the field frequency ω differs
from the cyclotron frequency ωH , the conductivity is considerably lower, since the
conditions of the interaction between the electron and field are not optimal.

� Problem 7.36 Find the power of absorbed energy in a weakly ionized plasma
located in an alternating electric and constant magnetic fields. Show that the con-
ditions of the cyclotron resonance corresponds to the maximum absorption.

If a plasma is found in an external field, it transforms the field energy into heat,
and the power of this process per unit plasma volume is equal to p = j · E. Taking
the x-axis as a direction of the electric field, we obtain the specific power absorbed
by the plasma,

p = (Σxx +Σ∗
xx)

E2

2
.
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Taking the magnetic field along the axis z, we obtain the specific absorbed power
on the basis of formula (7.72),

p =
po
2

[
1 − iωτ

1 + (ω2
H − ω2)τ2 − 2iωτ

+
1 + iωτ

1 + (ω2
H − ω2)τ2 + 2iωτ

]
, (7.73)

where po = Σ0E2 is the specific absorbed power for the constant electric field. Note
that absorption of energy by a plasma results from electron–atom collisions that
lead to transfer of energy to atoms obtained by the electrons from an external field.
Let us consider the limiting cases of formula (7.73). In the absence of a magnetic

field (ωH = 0) it gives

p = po
1

1 +ω2τ2
.

From formula (7.73) it follows for a constant electric field (ω = 0)

p = po
1

1 +ω2
Hτ2

.

In the region of the cyclotron resonance, with ωτ � 1, ωHτ � 1, and∣∣(ω − ωH) τ
∣∣ ∼ 1, formula (7.73) yields

p =
po
2

1
1 + (ωH − ω)2τ2

(7.74)

One can see that the resonant absorbed power is less than half of what is absorbed
in a constant electric field. The fact that the same order of magnitude is obtained
for these values is explained by the related character of the electron motion in these
cases.

7.5
Thermal Conductivity and Thermal Diffusion of Electrons in a Gas

� Problem 7.37 Determine the electron thermal conductivity of a weakly ionized
gas if the criterion (7.18) holds true, which allows us to introduce the electron tem-
perature Te, and a weak gradient of the electron temperature ∇Te exists in a space
that causes a thermal flux.

Because of a small mass of electrons, their transport can give a contribution to the
thermal conductivity of a weakly ionized gas. We introduce the thermal conductiv-
ity coefficient κe due to electrons on the basis of the formula

qe = −κe∇Te , (7.75)

and below we evaluate the coefficient of the thermal conductivity of electrons.
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In this case the velocity electron distribution function at each space point is the
Maxwell one ϕ(v) and is given by formula (7.19). By taking into account the electron
temperature gradient, this distribution function can be represented in the standard
form

f (v) = ϕ(v) + (v∇ ln Te) f1(v) .

Then the kinetic equation v∇ f = I( f ) takes the following form:

ϕ(v)
(
mev2

2Te
− 5
2

)
v∇Te = Iea( f )

Here we take the direction of the temperature gradient along the x-axis and as-
sume the electron pressure pe = NeTe to be constant in a space. From this on the
basis of the formula Iea(vx f1) = −νvx f1 we obtain the nonsymmetric part of the
distribution function,

f1(v) = − ϕ(v)
ν

(
mev2

2Te
− 5
2

)
.

Let us determine the electron heat flux that is given by

qe =
∫ me v2

2
vx f (v)dv =

∫ me v2

2
v2x∇ lnTe f1(v)dv .

Then on the basis of formula (7.75) we obtain the thermal conductivity coefficient
of electrons

κe = Ne

〈
v2

3ν
me v2

2Te

(
me v2

2Te
− 5
2

)〉
, (7.76)

where brackets mean averaging over the Maxwell electron distribution function.
Assuming ν ∼ vn, i. e., ν(v) = νozn/2, where z = mev2/(2Te), we have from

formula (7.76)

κe =
4

3
√

π

TeNe

νome

(
1 − n

2

)
Γ

(
7 − n
2

)

In particular, if ν = const, this formula gives

κe =
5TeNe

2νome

If n = 1, i. e., ν = v/λ (λ is the mean free path), we have from the above formula

κe =
2

3
√

π
Neλ

√
2Te
me

.
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� Problem 7.38 Connect the coefficient of the electron thermal conductivity of a
weakly ionized gas with the total coefficient of the thermal conductivity of this gas.

In order to determine the contribution of electron transport to the electron ther-
mal conductivity, it is necessary to reduce the heat flux due to electrons to the
gradient of the gas temperature. For this goal we must connect the gradients of
the electron Te and gas T temperatures that follows from the relation (7.26). Take
for definiteness Te � T and use the velocity dependence d ln νdv for the rate ν

of electron–atom collisions. This gives from formula (7.26) ∇Te = ∇T/(1 + n) and
leads to the following expression for the total thermal conductivity coefficient of a
weakly ionized gas:

κ = κa + κe
∇Te
∇T

= κa +
κe
1 + n

, (7.77)

where κa is the thermal conductivity coefficient of the atomic gas. Estimating the
contribution of electrons to the thermal conductivity of a weakly ionized gas, one
can find this contribution to be remarkable at low values of Ne/Na due to a low
electron mass in comparison with the atomic one.

� Problem 7.39 Find the thermodiffusion coefficient for a weakly ionized gas.

In electron transport in a weakly ionized gas cross-fluxes may be of importance.
In particular, an external electric field and the gradient of the electron temperature
cause both the electron flux j and the heat flux q, which are given by the equations

j = NeKE −DTN∇ ln Te , q = −κeq∇Te + αeE . (7.78)

In particular, the electron flux under a gradient of the electron temperature, which
will be analyzed below, is equal to

je = −DTN∇ ln Te , (7.79)

where DT is the thermodiffusion coefficient, and we will evaluate this value in the
case when the criterion (7.18) holds true, which is the electron distribution function
(7.19) that is characterized by the electron temperature Te. Correspondingly, the
variation of the electron distribution function owing to the electron temperature
gradient is described by the following equation for the asymmetric part f1(v) of
the distribution function:

vx
∂ f0
∂x

= −νvx f1 ,

where ν is the rate of electron–atom elastic collisions. This gives for the flux of
electrons (the temperature gradient is directed along the x-axis)

jx =
∫

vx f dv =
∫

v2x f1dv = − 1
3

∫ v2

ν

∂ fo
∂x

dv = − d
dx

[
Ne

〈
v2

3ν

〉]
,
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where brackets mean an average over electron velocities. Since the x-dependence
occurs due to a gradient of the electron temperature, we obtain from this formula

jx = −∇Te
d
dTe

(
Ne

〈
v2

3ν

〉)

Comparing this expression with formula (7.79), we find for the thermodiffusion
coefficient,

DT = Te
d
dTe

[
Ne
N

〈 v2

3ν
〉
]
= Te

d
dTe

(
Ne
N

De

)
,

where the diffusion coefficient of electrons in a gas De is given by formula (7.23).
If the electron pressure pe = NeTe is constant, this expression takes the form

DT = T2e
Ne

N
d(De/Te)

dTe
. (7.80)

In particular, if ν = const, this formula gives DT = 0. In the case of the power
velocity dependence for the rate of electron–atom collisions ν ∼ vn, we have

DT = −n
Ne
N

D ,

and the direction of the electron flux with respect to the temperature gradient
depends on the sign of n.

� Problem 7.40 Determine the cross-flux coefficient α for the heat flux under the
action of an electric field.

An external electric field acted on a weakly ionized gas creates an electric current
and also a heat flux. Since it is determined by an asymmetric part of the electron
distribution function that is given by the set of equations (7.3), we obtain this dis-
tribution function part f1 = eE fo/(νTe), and the coefficient α of the set (7.78) of
equations is equal to

α =
meNe

6Te
·
〈

v4

ν

〉
=

4TeNe

3
√

πmeνo
Γ

(
7
2

− n
2

)
,

where we take as usually ν = νo

(
v/
√

2Te
me

)n
. This gives for n = 0

α =
5TeNe

2meν

and for n = 1, when ν = v/λ, this formula yields

α =

√
2Te
me

λ

3
√

π
=
2λNe

3vT
,

where vT =
√

8Te
πme

is the mean electron velocity.
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� Problem 7.41 Determine the heat flux due to electrons when a plasma is located
in a metallic enclosure and in a dielectric enclose.

Depending on the enclosure character, different boundary conditions are realized.
Namely, if the walls are dielectric, j = 0, which corresponds to the regime of am-
bipolar diffusion when electrons travel together with ions. In the case of a metallic
enclosure, the transversal electric field is absent E = 0. Hence, the heat flux due to
electrons is different depending on the wall type. We represent the heat flux in the
form

q = −Cκe∇Te,

and determine the coefficient C for different enclosures. Evidently, for a metallic
enclosure C = 1. If walls are dielectric, j = 0, and that leads to origin of an electric
field of a strength E = DT∇ ln Te/(NeKe). This gives C = 1 − αNDTe/(κeTeNeKe).
Using the Einstein relation for the electronmobility in a gasD = KTe/e and formula
(7.80) for the electron thermodiffusion coefficient gives

C = 1 +
αn
κe

,

where we use as usually the velocity dependence for the rate of electron–atom
collisions in the form d ln ν/d ln v = n. This gives

C =
n + 2
2− n

As is seen, the effective thermal conductivity coefficient for electrons in the two
considering cases of metallic and dielectric walls depends on n. For n = 0 this
value is identical for both cases, while for n = 1 it is more in the second case in
three times than that in the first case.
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8
Transport of Ions and Atoms in Gases and Plasmas

8.1
General Peculiarities of Transport Processes

� Problem 8.1 Define the kinetic coefficients in a gas connected with fluxes of par-
ticles, momentum and heat with the corresponding gradients.

Under thermodynamic equilibrium such gas parameters as the number density
of atoms or molecules of each species, the mean velocity of atoms or molecules
and the temperature are constants in a region occupied by a gas. If some of these
values should vary in this region, appropriate fluxes arise in order to equalize these
parameters over the total volume of a gas or plasma. The fluxes are small if varia-
tions of the parameters are small at distances of the order of the mean free path for
atoms or molecules. Then a stationary state of the system with fluxes exists, and
such states are conserved during times much longer than typical times between
particle collisions. In other words, the inequality

λ � L (8.1)

is satisfied for the systems under discussion, where λ is the mean free path for
particles, and L is a typical size of the system or a distance over which a parameter
varies noticeably. If this criterion is fulfilled, the system is in a stationary state to
first approximation, and the transport of particles, heat or momentum occurs in
the second approximation in terms of an expansion over a small parameter (8.1).
Below we consider various types of such transport.
Let us introduce the kinetic coefficients or transport coefficients as the coef-

ficients of proportionality between fluxes and corresponding gradients. We start
from the diffusion coefficient D that is introduced as the proportionality factor be-
tween the particle flux j and the gradient of concentration c of a given species, or

j = −DN∇c . (8.2)

Here N is the total particle number density. If the concentration of a given species
is low (ci � 1), that is, this species is an admixture to the gas, the flux of particles
of this species can be written as (6.24)
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j = −Di∇Ni , (8.3)

where Ni is the number density of particles of the given species.
The thermal conductivity coefficient κ is defined as the proportionality factor be-

tween the heat flux q and the temperature gradient ∇T on the basis of the relation
(6.25)

q = −κ∇T (8.4)

The viscosity coefficient η is the proportionality factor between the frictional force
acting on unit area of a moving gas, and the gradient of the mean gas velocity in the
direction perpendicular to the surface of a gas element (see Fig. 6.1). If the mean
gas velocity w is parallel to the x-axis and varies in the z direction, the frictional
force is proportional to ∂wx/∂z and acts on the xy surface in the gas. Thus the
force F per unit area is in accordance with formula (6.26)

F = −η
∂wx

∂z
. (8.5)

This definition as well as the previous ones refer both to liquids as well as gases.

� Problem 8.2 Estimate the diffusion coefficient of atomic particles in a gas based
on the character of particle transport in a gas.

We have a group of atomic particles in a gas and will find the kinetic coefficients
for test particles taking into account their collisions with the atomic particles of a
gas. For this purpose we consider the definition of a kinetic coefficient and use the
character of transport processes. This allows us to find the dependence of kinetic
coefficients on the parameters of a gas and to estimate these values.
We start with the diffusion coefficient, considering a group of identical test par-

ticles in a gas and assuming particle transport to occur in both opposite directions,
which establishes a certain equilibrium in a gas. For the i-th types of particles their
fluxes in both directions, in order of magnitude, are Niv, where Ni is the number
density of the particles of a given species, and v is a typical velocity of these parti-
cles. Therefore, the net current behaves as j ∼ ∆Niv, where ∆Ni is the difference in
the number densities of oppositely directed particles participating in the transport.
Particles, which reach a given point without collisions, have distances from this
point of the order of the mean free path λ ∼ (Nσ)−1 , where σ is a typical cross
section for elastic scattering in large angles, and N is the total number density of
the gas particles. Hence, ∆Ni ∼ λ∇Ni and the diffusive flux behaves as j ∼ λv∇Nk.
Comparing this with the definition of the diffusion coefficient (6.24), we obtain

Di ∼ vλ ∼
√
T

Nσ
√
m

. (8.6)

Here T is the gas temperature and m is the mass of particles of a given species,
assumed to be of the same order of magnitude as the masses of other particles
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comprising the gas. In this analysis we do not need to account for the sign of the
flux because it is simply opposite to that of the number density gradient, and tends
to equalize the particle number densities at neighboring points. The same can be
said about the signs of the fluxes and gradients for the other transport phenomena.

� Problem 8.3 Estimate the thermal conductivity coefficient for a one-component
gas, using the character of heat transport in a gas.

For this purpose, we use the same procedure as in the case of estimation of the
diffusion coefficient. Taking any gas point, we find the heat flux in each of the
opposite directions to be q ∼ NvT for a given space point, where Nv is a flux of
particles, and T is the gas temperature that is expressed in energetic units. The dif-
ference of these heat fluxes in terms of a temperature gradient is determined by a
difference in the transferred thermal energy or by the difference in temperatures.
Hence, the resultant heat flux can be estimated as q ∼ Nv∆T . Since individual
particles propagate without collisions at a distance of the order of the mean free
path λ ∼ (Nσ)−1 , we obtain a typical temperature difference ∆T ∼ λ∇T . Substi-
tuting this in the estimation for the heat flux, we obtain the thermal conductivity
coefficient

κ ∼ Nvλ ∼ v
σ

∼
√
T

σ
√
m

. (8.7)

The thermal conductivity coefficient is independent of the particle number density.
Indeed, an increase in the particle number density causes an increase in the num-
ber of particles that transfer heat, but this then leads to a decrease in the mean free
path of particles, i. e., a distance on which heat is transported. These two effects
mutually cancel each other out.

� Problem 8.4 Estimate the viscosity coefficient of a gas, based on the character of
momentum transport in a gas.

In considering transport of momentum in a moving gas where the gas mean veloc-
ity varies in the direction perpendicular to the mean velocity, we base ourselves on
the character of friction that is determined, in this case, by transport of particles in
a moving gas with a gradient of the average velocity, as shown in Fig. 6.1. Indeed,
taking two neighboring gas elements which have different average gas velocities,
we obtain an exchange of particle momenta between these elements due to particle
transport between them. This creates a frictional force that slows down particles
of gas elements with higher velocities and accelerates particles of gas elements
having lower velocities.
Let us estimate the viscosity coefficient on the basis of its definition (8.5) by

analogy with the procedures employed for the diffusion and thermal conductivity
coefficients by using the character of momentum transport in this case. The force
acting per unit area of a gas as a result of the momentum transport is F ∼ vm∆wx ,
where Nv is the particle flux, and m∆wx is the difference of the mean momentum
carried by particles which are moving in opposite directions at a given point. Since
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particles reaching this point without collisions are located from it at distances of the
order of the mean free path λ, we havem∆w ∼ mλ∂wx/∂z. Hence, the force acting
per unit area of a gas is F ∼ Nvmλ∂wx/∂z. Comparing this with the definition of
the viscosity coefficient (8.5), and using (T/m)1/2 instead of v and (Nσ)−1 instead
of λ, we obtain the estimate

η ∼
√
mT
σ

(8.8)

for the viscosity coefficient η. One can see that the viscosity coefficient is inde-
pendent of the particle number density. By analogy with the thermal conductivity
coefficient, this independence results from the compensation of opposite effects
occurring with the momentum transport. Indeed, the number of momentum car-
riers is proportional to the number density of particles, while a typical transport
distance, the mean free path, is inversely proportional to it. These effects cancel
each other out mutually.

� Problem 8.5 Estimate the mobility of particles in a gas in weak external fields.

We use the definition of the mobility b of a particle in a gas according to the relation
w = bF between the mean velocity w of the particle and the force F acts on the
particle from an external field. Next, we use the Einstein relation b = D/T (1.49)
between the particle mobility b in a weak field and its diffusion coefficient D in
a gas. Then using the estimate (8.6) for the diffusion coefficient, we obtain the
following estimate for particle mobility

b ∼ 1

Nσ
√
mT

. (8.9)

� Problem 8.6 Determine the diffusion coefficient of a test particle in a gas if the
cross section of collision between a the test and the gas particles is inversely pro-
portional to their relative velocity.

We have an admixture of test particles of a small concentration in a gas or extract
a small group of test atomic particles in the parent gas for determination of the
self-diffusion coefficient. In both cases the diffusion coefficient D is defined by
formula (8.2) from the relation for the flux of test atoms j = −D∇N1 , where N1

is the number density of the admixture or test particles. The kinetic equation (6.2)
for the distribution function of these atoms with the collision integral (6.7) has the
form

v1 f
(0)
1

∇N1

N1
=
∫

( f ′
1 f

′
2 − f1 f2) |v1 − v2| dσdv2 . (8.10)

Here f1 is the distribution function of test particles that takes into account a den-
sity gradient, f2 is the Maxwell distribution function of the gas atoms, and the

Maxwell distribution function f (0)
1 of test particles is normalized by the condition∫

f (0)
1 dv1 = N1 and has the form
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f (0)(v) = N(r)
[

m
2πT(r)

]3/2
exp

[
−m[v − w(r)]2

2T(r)

]
, (8.11)

where N(r) is the number density of particles, T(r) is the temperature, and w(r)
is the average velocity of particles at a point r.
Taking the density gradient to be directed along the axis x, wemultiply the kinetic

equation by the test particle momentum along the density gradient Mv1x , where
M is the mass of a test atom, and integrate over velocities of test atoms. On the left-
side of the integral relation we obtain T∂N1/∂x. Introducing the relative velocity
g = v1 − v2 and the velocity of the center of mass V = (Mv1 +mv2)(M +m), we
reduce this relation to the form

T
∂N1

∂x
= µ

∫
f1 f2(g′

x − gx)gdσdv1dv2 . (8.12)

Here M, m are the masses of the test and the gas particles, and µ = mM/(m +M)
is the reduced mass of these particles. We above used the symmetry with respect
to the operation t → −t that gives
∫

f ′
1 f

′
2gxdv1dv2dv′

1dv′
2 =

∫
f1 f2g′

xdv1dv2dv′
1dv′

2 .

Let us represent the relative velocity of particles g ′ after collisions as

g ′ = g cos ϑ + kg sin ϑ ,

where ϑ is the scattering angle and k is the unit vector of a random direction in
the plane that is perpendicular to g. Integrating over scattering angles, we reduce
equation (8.12) to the form

T
∂N1

∂x
= −µ

∫
f1 f2gxgσ∗(g)dv1dv2 , (8.13)

where σ∗(g) =
∫

(1 − cos ϑ)dσ is the transport cross section of atom collisions.
Accounting for the rate constant k(1) = gσ∗(g) to be independent of the collision

velocity and the normalization condition
∫
f1dv1 = N1 , we find from the above

equation the drift velocity of particles

wx =

∫
f1v1xdv1∫
f1dv1

= − T
µk(1)N1N2

∂N1

∂x
.

Defining the particle flux as

j = wxN1 = −D
∂N1

∂x
,

we obtain the diffusion coefficient

D = − wxN1

∂N1/∂x
=

T
µk(1)N2

. (8.14)
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� Problem 8.7 Determine the mobility of atomic ions in a foreign gas assuming the
polarization interaction between a drifting ion and gas atoms.

We take the diffusion cross section of ion–atom collision at low collision energies to
be equal to the polarization cross section of capture according to formula (2.25), and
this is valid to an accuracy of 10% (see formula 2.31). Substituting the polarization
cross section (2.25) into expression (8.14) for the diffusion coefficient, we obtain
the latter formula in the form

D =
T
√

µ

2πN
√

αe2
, (8.15)

where N is the number density of gas atoms, α is the atom polarizability. On the
basis of the Einstein relation (8.66) this gives for the ion mobility

K =

√
µ

2πN
√

α
.. (8.16)

� Problem 8.8 Give a general expression for the pressure tensor (6.17) by taking
into account a gas viscosity.

Our goal is to generalize expression (6.18) for the pressure tensor including in it the
gas viscosity. This is a slow phenomenon because a constant pressure p = const is
established with the sound speed. Since the gas temperature is constant in a space,
from the state equation p = NT we have that the number density N of atoms does
not change in a space. Hence, from the continuity equation (6.15) in the stationary
case we have div (Nw) = 0, and if the average gas velocity w is directed along the
axis x, we have from this

dwx

dx
= 0 .

Thus, accounting for expression (8.5) for the force per unit area and symmetrizing
it with taking into account the above formula, we write the pressure tensor (6.17)
by adding to expression (6.18) the symmetrized expression (8.5)

Pik = pδik − η

(
∂wi

∂xk
+

∂wk

∂xi

)
, (8.17)

where as usual xi, xk are the coordinates x, y, z.

� Problem 8.9 Derive the kinetic equation for transport in a gas if thermodynamic
equilibrium results from the elastic collisions of gas particles.

Since the mean free path of gas particles is small compared to the typical sizes of
a system, we have a local thermodynamic equilibrium in each point, i. e., in each
point the Maxwell distribution function (8.11) of particles is established. In reality,
this point occupies a region whose size is comparable to the mean free path λ

of particles. For large systems comparable to λ we change this region by a point.
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Expanding the distribution function over a small parameter λ/L, we represent it
in the form

f (v) = f (0)(v) + f (1)(v) , (8.18)

if we restrict ourselves to the first expansion term. We take the number density of
particles N(r), the average velocity of particles w(r) and the temperature T(r) to
be determined by zero-approximation for the distribution function, and then we
have the average momenta from the first-order distribution function equal to zero,
that is∫

f (1)(v)dv = 0,
∫

f (1)(v)vdv = 0,
∫

f (1)(v) (v − w)2 dv = 0 . (8.19)

Let us represent the correction term for the distribution function due to gradients
of corresponding values that has the form

f (1)(v) = f (0)(v)θ , (8.20)

where the function θ characterizes the deviation of the distribution function from
the Maxwell one. Since in the zero-th approximation we neglect nonuniformities
of the gas, we have Icol( f (0)) = 0, that leads to formula (8.11) for the distribution
function. The next expansion terms over a small parameter λ/L in the kinetic
equation (6.2) and the integral collision in the form (8.20) gives

v1∇ f (0)
1 +

F
m

∂ f (0)
1

∂v1
=
∫

f (0)
1 f (0)

2
(
θ′
1 + θ′

2 − θ1 − θ2
) |v1−v2| dσdv2 . (8.21)

Here subscripts 1, 2 give the number of colliding particles, and a superscript ′ char-
acterizes their parameters after collision, while the initial parameters do not have
a superscript. This equation is useful for determining the transport parameters of
a gas.

8.2
Thermal Conductivity and Viscosity of Atomic Gases

� Problem 8.10 Determine the thermal conductivity coefficient of an atomic gas in
the tau-approximation.

The kinetic equation (8.21) by using the collision integral in the form of tau-
approximation (6.3), has the form

f (0)(v)
(
mv2

2T
− 5
2

)
v∇ ln T = − f (0)(v)θ

τ
,

where we use expression (8.11) for unperturbed distribution function of gas atoms
and accounts for the temperature gradient in the gas. From this we find the cor-
rection to the distribution function,

θ = −τ

(
mv2

2T
− 5
2

)
v∇ ln T ,
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and from the definition of the heat flux q =
∫

(mv2/2)v f (v)dv we obtain the heat
flux

q =
∫

τ

(
mv2

2T
− 5
2

)
v∇ ln T · mv2

2
v f (0)(v)dv .

Comparing this with the definition of the thermal conductivity coefficient q =
−κ∇T , we find the thermal conductivity coefficient

κ =
∫

τ

(
mv2

2T
− 5
2

)
· mv2

2T
·v

2

3
f (0)(v)dv .

We above have take into account the spherical symmetry of the distribution func-
tion. If we assume the relaxation time τ to be independent of the collision velocity,
we obtain

κ =
5TτN
2m

. (8.22)

This corresponds to the above estimate (formula 8.7) for the thermal conductivity
coefficient.

� Problem 8.11 Determine the viscosity coefficient of an atomic gas in the tau-
approximation.

When a gas is moving in the direction x with the mean velocitywx and the gradient
of the mean gas velocity occurs in the direction z, the kinetic equation (8.21) with
the collision integral in tau-approximation (6.3) has the form

vz
m(vx − w)

T
∂wx

∂z
f (0)(v) = − f (0)(v)θ

τ
, (8.23)

that gives for the correction to the distribution function if it is represented in the
form (8.18) and (8.20)

θ = −τvz
m(vx − w)

T
∂wx

∂z
.

We now determine the force per unit area that is equal to the product of the
particle flux Nvz and the momentum transferred m(vx − w). Hence, this specific
force is equal to

F =
∫

vz f (v) ·m(vx − w)dv = −∂wx

∂z

∫ mv2z
T

m(vx − w)2τ f (0)(v)dv .

Comparing this equation with formula (8.5) that defines the viscosity coefficient,
we obtain the viscosity coefficient

η =
∫ mv2z

T
m(vx − w)2τ f (0)(v)dv .

In particular, if the relaxation time τ is independent of the collision velocity, we
obtain

η = TτN . (8.24)

This result corresponds to estimate (8.5).
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� Problem 8.12 Determine the thermal conductivity coefficient of an atomic gas if
the differential cross section of atom elastic scattering does not depend on the
collision velocity.

We consider the kinetic equation (8.21) that under the condition p = NT = const
at a given temperature gradient, dT/dx has the form

f (v1)
(
mv21
2T

− 5
2

)
v1x

d ln T
dx

=
∫ (

f ′
1 f

′
2 − f1 f2

) |v1 − v2| dσdv2 .

Let us multiply this equation by v1xv21 and integrate over atom velocities dv1 . On
the left-hand side of this equation we have, using expression (8.11), for the atom
distribution function

∫
v1xv21 f (v1)

(
mv21
2T

− 5
2

)
v1x

d lnT
dx

=
5NT
m2

dT
dx

.

On the right-hand side of this integral relation we use the symmetry of the inte-
grand is conserved at time reversal, i. e., as a result of transformation v1,2 ↔ v′

1,2
and also as a result of exchange by colliding atoms v1,2 ↔ v2,1 . We obtain

5NT
m2

dT
dx

=
1
2

∫
(v′

1xv′2
1 + v′

2xv′2
2 − v1xv21 − v2xv22) f1 f2 |v1 − v2| dσdv1dv2 . (8.25)

Introducing the relative velocity of atoms g = v1 − v2 and the center-of-mass veloc-
ity V = (v1 + v2)/2, we reduce this equation to the form

5NT
m2

dT
dx

=
1
2

∫
[g′
x(Vg

′) − gx(Vg)] f1 f2gdσdv1dv2 . (8.26)

We now integrate the integrand on the right-hand side of the equation over an-
gles of vectors and scattering angles, taking the relative velocity of atoms after
collision in the form g ′ = g cos ϑ + kg sin ϑ, where ϑ is the scattering angle, and
k is the unit vector distributed randomly in the plane that is perpendicular to the
vector g. Taking the direction of the axis x in an arbitrary manner, we evaluate the
integral
∫ 〈

[g ′(Vg ′) − g(Vg)]dσ
〉
= −σ(2)(g)g(Vg)+

∫ 〈
[kg(Vg) sin ϑ cos ϑ + g(Vk)g sin ϑ cos ϑ + kg2(Vk) sin2 ϑ]dσ

〉
.

Here the angle brackets denote an average over angles between the vectors g and
V , and

σ(2)(g) =
∫

(1 − cos2 ϑ)dσ. (8.27)

The second and third terms give zero after integration over directions of the vector
k. In the last term we expand the vector k in components k = l cos ϕ +m sin ϕ,
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where l,m are the unit vectors, so that the vector l is located in the plane of the
vectors g and V , and the vector m is perpendicular to these vectors, and ϕ is the
polar angle in the plane perpendicular to g. Averaging over the polar angle ϕ, we
obtain∫ 〈

[g ′(Vg ′) − g(Vg)]dσ
〉
= −σ(2)(g)[g(Vg) − l

2
(Vl)g2] .

According to the definition of the vector l we have

g2l(Vl) = g2V − g(Vg) ,

and hence we obtain equation (8.26) in the form

5NT
m2

dT
dx

= − 1
4

∫
[3gx(Vg) −Vxg2] f1 f2gσ(2)(g)dv1dv2 . (8.28)

Up to now the equation has been deduced without any assumptions. At this stage
we assume that the value k(2) = gσ(2)(g) does not depend on the relative collision
velocity g. Then, returning to the velocities v1 , v2 of the individual particles and
using the symmetry of the integrand with respect to the exchange v1 ↔ v2, we
obtain this equation in the form

5NT
m2

dT
dx

= −k(2)

2

∫
[v1xv21 − 2v1xv22 + v1x(v1v2)] f1 f2dv1dv2 .

We consider the distribution functions of colliding atoms are almost spherically
symmetric, and the deviation from this symmetry is determined by a small temper-
ature gradient. One can see that the third term is proportional to the square of this
small parameter, and therefore we ignore this term. The second term corresponds
to the atom flux under the action of a temperature gradient, i. e., it describes the
thermodiffusion process. Focusing on the thermal conductivity process, we are
restricted by the first term only, and this gives

5NT
m2

dT
dx

= −k(2)N
m

qx , (8.29)

where according to its definition, the heat flux is q =
∫

v(mv2/2) f (v)dv. From this,
based on definition (8.4) of the thermal conductivity coefficient κ, we obtain

κ =
5T

mk(2) . (8.30)

� Problem 8.13 Determine the viscosity coefficient of an atomic gas if the differen-
tial cross section of atom elastic scattering is inversely proportional to the collision
velocity.

We now consider the kinetic equation (6.2) for the distribution function of atoms
and the collision integral (6.7), and assuming that the distribution function is close
to equation (8.11), we reduce this kinetic equation to the form

v1z
∂ f1
∂z

≡ v1z
m(v1x − w)

T
∂w
∂z

f1 =
∫

( f ′
1 f

′
2 − f1 f2) |v1 − v2| dσdv2 .
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We also use the definition of the viscosity coefficient η according to formula (8.5)
for the force F due to a gradient of the drift velocity

F =
∫

vz f dv ·m(vx − w) = −η
∂wx

∂z
,

where the first factor of the integrand is the particle flux, the second factor is the
transferring momentum.
For determination of the viscosity coefficient we multiply the above kinetic equa-

tion by mv1z(v1x − w) and integrate over the velocities. This gives the right-hand
side of the resultant equation as

∫
mv1z(v1x − w)v1∇ f1dv1 =

∫
mv21z

m(v1x − w)2

T
∂wx

∂z
= NT

∂wx

∂z
.

The right-hand side of the resultant equation is∫
mv1z(v1x − w)( f ′

1 f
′
2 − f1 f2) |v1 − v2| dσdv1dv2 =∫ [

mv′
1z(v

′
1x − w) −mv1z(v1x − w)

]
f1 f2|v1 − v2|dσdv1dv2.

Using the symmetry with respect to time reversal t → −t in the above equation
allows us to change parameters after collision by parameters before collision and
vice versa. On the basis of the relative velocity of atoms g = v1 − v2 and the center-
of-mass velocity V = (v1 + v2)/2, we reduce this resultant equation to the form
(V ′ = V )

NT
∂wx

∂z
= m

∫ [Vz
2

(g′
x − gx) +

Vx
2

(g′
z − gz) +

1
4
(g′

xg
′
z − gxgz)

]
f1 f2gdσdVdg .

Let us integrate the integrand on the right-hand side of the equation over scattering
angles, taking the atom relative velocity after collision in the form g ′ = g cos ϑ +
kg sin ϑ, where ϑ is the scattering angle, and k is the unit vector that is located in
the plane perpendicular to the vector g and is distributed randomly in this plane.
Integrating over directions of the vector k for the first and second terms in square
bracket gives zero, and after integration over the scattering angles we obtain

NT
∂wx

∂z
= −m

4

∫
gxgzgσ(2)(g) f1 f2dVdg , (8.31)

where the averaged cross section σ(2)(g) is given by formula (8.27).
We now take into account that the value k(2) = gσ(2)(g) is independent of the

collision velocity g. Then returning to the velocities of colliding particles v1 and v2
and ignoring cross terms in the integrand, because they relate to other transport
processes, we obtain

NT
∂wx

∂z
= −mk(2)

4

∫
gxgz f1 f2dVdg

= −mk(2)

4

∫
(v1xv1z + v2xv2z) f1 f2dv1dv2 = −Nk(2)

2
F ,
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where the force F per unit area is connected by formula (8.5) with the viscosity
coefficient. Hence, the latter is equal to

η =
2T
k(2) . (8.32)

� Problem 8.14 For a dissociating molecular gas, estimate the contribution to heat
transport due to the dissociation degree of freedom.

In a dissociating gas under consideration, along with thermodynamic equilibrium
between translation and vibrational degrees of freedom of molecules, the dissoci-
ation equilibrium

A + A ←→ A2

also occurs.
Under thermodynamic equilibrium, the number densities of atoms Na and

molecules Nm are connected by the Saha formula (1.69), so that N2
a /Nm =

F(T) exp(−D/T), where D is the dissociation energy of the molecule, and a
function F(T) is characterized by a weak temperature dependence in comparison
to the exponential one. Taking such a dissociation regime that Na � Nm, and since
D � T , we have ∂Nm/∂T = (D/T2)Nm. We hence obtain from relation (6.32)

κi =
(
D
T

)2
DmNm ,

where Dm is the diffusion coefficient of molecules in an atomic gas. Comparing
this expression with the thermal conductivity coefficient (8.7) due to translational
heat transport, we have

κi
κt

∼
(
D
T

)2 Nm

Na
.

In the regime under consideration the number density of molecules is relatively
small Na � Nm, while D � T . Therefore, heat transport due the dissociation equi-
librium may determine heat transport in a dissociating molecular gas. In this case
a molecule moves from a cold region to a hot one and is dissociated there. Though
the number of such molecules is small compared to that of atoms, each molecule
carries a more energy than an individual atom. Therefore, the contribution from
molecules can be dominant even at a weak dissociation degree of this gas.

8.3
Diffusion and Drift Character of Particle Motion

� Problem 8.15 Derive themacroscopic equation for the number density of particles
due to diffusion of particles.
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Let us use the continuity equation (6.15) that has the form ∂Ni/∂t + div j = 0 for
the i-th gas component, and the expression for the diffusion flux j = −D∇Ni From
this we obtain the diffusion equation

∂Ni

∂t
= D∆Ni; (8.33)

In this case a typical time τL of particle transport on typical distances L for this
gas is large compared with a typical time τo ∼ λ/v between successive collisions.
Indeed, according to this equation τL ∼ L2/D, and using the estimate for the
diffusion coefficient D ∼ λv, we have τL ∼ τo(L/λ)2, i. e., τL � τo. This allows us
to consider the diffusion process as time-independent.

� Problem 8.16 Determine the average displacement of a test particle in a gas for a
time t due to its diffusion in the gas. This time is large in comparison to the time
between successive collisions.

Let us introduce the probability P(r, t) that a test particle is located at point r at
moment t, if it was found at the spatial origin in the beginning. Evidently, this
probability is spherically symmetrical and satisfies the normalization condition

∞∫
0

P(r, t)4πr2dr = 1 . (8.34)

The probability P is described by the diffusion equation (8.33), which in the spher-
ically symmetrical case takes the form

∂P
∂t

=
D
r

∂2

∂r2
(rP) .

To find mean values for the diffusion parameters, we multiply this equation by
4πr4dr and integrate the result over all r. The left-hand side of the equation yields∫ ∞

0
4πr4dr

∂P
∂t

=
d
dt

∫ ∞

0
r2P4πr2dr =

d
dt
r2 ,

where r2 is the mean square of the distance from the origin. Integrating twice by
parts and using the normalization condition (8.34), we transform the right-hand
side of the equation into

D
∫ ∞

0
4πr4dr

1
r

∂2

∂r2
(rP) = −3D

∫ ∞

0
4πr2dr

∂

∂r
(rP) = 6D

∫ ∞

0
P · 4πr2dr = 6D .

The resulting equation has the forms dr2 = 6Ddt. Since at time zero the particle is
located at the origin, the solution of this equation has the form

r2 = 6Dt . (8.35)

Because the motion in different directions is independent and has a random char-
acter, it follows from this that

x2 = y2 = z2 = 2Dt . (8.36)
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� Problem 8.17 Find the solution of the one-dimensional diffusion equation and
also the solution of the three-dimensional equation in the spherically symmetric
case.

The diffusion process is an example of random processes, and hence the solution
of the diffusion equation is given by the Gauss distribution (6.44). In the one-
dimensional case we have ∆ = x2 = 2Dt, and the solution of the diffusion equation

∂P(x, t)
∂t

= D
∂2P(x, t)

∂x2
(8.37)

has the form

P(x, t) = (4πDt)−1/2 exp
[
− x2

4Dt

]
(8.38)

This formula relates to the initial condition P(x,0) = δ(x), i. e., the particle is
located in the origin of the frame of reference in the beginning. In the spherically
symmetric three-dimensional case we use the symmetry of the distribution

P(r, t) = P(x, t)P(y, t)P(y, t) ,

and the density probability in the right-hand side of this relation is given by formula
(8.38). This leads to the following probability density:

P(r, t) =
1

(4πDt)3/2
exp

(
− r2

4Dt

)
. (8.39)

If the particle is not located in the origin in the beginning, this distribution
function may be used as the Green function of the diffusion equation. Indeed, if
the initial space distribution of the particle is described by a distribution function
ϕ(r) that normalized by the condition

∫
ϕ(r)dr = 1, the probability p(r, t) of particle

location at point r at time t is given by

p(r, t) =
∫

P(r − r′, t)ϕ(r′)dr′ ,

where this probability is normalized by the condition
∫
p(r)dr = 1.

� Problem 8.18 Ions are injected in a drift chamber and are moving there in a gas
under a constant electric field. Taking the drift velocity of ions in the drift chamber
to be w, and the diffusion coefficient to be D, find the distribution function of ions
through a time t at a distance x from the drift chamber entrance.

Taking into account the drift of ions in a gas along with their diffusion, one can
change the coordinate x in formula (8.37) by x − wt. This leads to the following
expression for the distribution function, i. e., the probability of finding the particle
at a distance x from the origin at time t,

P(x, t) = (4πDt)−1/2 exp
[
− (x − wt)2

4Dt

]
. (8.40)
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� Problem 8.19 Ions of two kinds are injected in a drift chamber whose length is
L. Determine the time dependence for the ion current on the collector, if the drift
velocities of ions are w1 and w2, respectively, and they are characterized by the
identical diffusion coefficients D in a gas. Find the criterion when signals corre-
sponding to different ions can be separated.

On the basis of formula (8.40) we obtain the current on the collector at time t

I(t) =
J1√
4πD1 t

exp
[
− (L− w1 t)2

4D1 t

]
+

J2√
4πD2t

exp
[
− (L− w2t)2

4D2t

]
, (8.41)

where indices 1 and 2 refer to the two types of ions, and J1, J2 are the total number
of ions of a given type at the drift chamber entrance. Evidently, signals from these
two ion types can be resolved, if the time dependence I(t) has a minimum between
two maxima. Let us find the criterion when it is realized.
Denote w = (w1 + w2)/2, ∆w = w1 − w2 (w1 > w2) and take D1 = D2 =

D in accordance with the conditions of this problem. We assume the transport
parameters of different ions to be close to each other, so then ∆w � w. In this
case both maxima and minimum are located near to = L/w. In order to find the
minimum of the current (8.41) under this condition, we introduce the reduced
variable x and the reduced constant A according to the relations

x =
2w
∆w

(w
L
t− 1

)
, A =

eEL
8T

(
∆w
w

)2
.

We consider the case of low electric field strengths E in the drift camera w = KE
and the Einstein relation D = eK/T . In new variables the relation (8.41) takes the
form

I(t) = C
{
J1 exp

[
−A(1 + x)2

]
+ J2 exp

[
−A(1 − x)2

]}
, C =

√
eE

4πLT
.

Let us analyze this expression from the standpoint of resolution of two signals.
Evidently, these signals are resolved if the dependence I(t) has two maxima with a
minimum between them. Then one can relate to an appropriate ion a signal part
from the corresponding side of the minimum. Hence, the possibility of resolving
ions of different sorts connects with the existence of the minimum for the depen-
dence I(t). As it follows from formula for I(t), the extremum condition for the
function I(t) is given by the relation

F(x) =
J2
J1

1 − x
1 + x

e2Ax = 1,

and the extremum ion currents are located in a range

1 ≥ x ≥ −1 .

We now use the condition of this problem J1 = J2 = J. Then due to the symmetric
form of F(x) we obtain the relation

F(x)F(−x) = 1 .
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This gives the solution of this equation x = 0, and this solution is a minimum of
I(t) if d2I/dt2 > 0. The latter is fulfilled if A > 1/2 or

U = EL > Uo =
4T
e

( w
∆w

)2
, (8.42)

where U is the voltage in the drift chamber. As is seen, the limiting voltage does
not depend on the gas pressure.

� Problem 8.20 A charged cluster is located in a gas near a charged wall that re-
pulses the cluster. The diffusion coefficient of the cluster in a gas D, and under
the drift velocity w of the cluster is created by the wall electric field strength. Find
the probability of cluster attachment to walls if in the beginning it is located at a
distance xo from walls that is small compared to the radius of the wall curvature.

According to the problem conditions, the wall surface is plane for the cluster, and
the problem is one-dimensional. Taking the boundary condition P(0, t) = 0, where
P(x, t) is the probability for cluster location at a distance x from the walls at time
t, and this probability can be composed on the basis of formula (8.39) in the form

P(x, t) = (4πDt)−1/2
{
exp

[
− (x − xo − wt)2

4Dt

]
− exp

[
− (x + xo +wt)2

4Dt

]}
.

(8.43)

This gives for the cluster flux to the boundary

j = −D
∂P(x, t)

∂x
=

xo +wt
(4πD)1/2t3/2

exp
[
− (xo +wt)2

4Dt

]
. (8.44)

From this we find the probability of cluster attachment to walls (we assume the
attachment takes place if the cluster coordinate reaches the value x = 0)

W =
∞∫
0

xo +wt
(4πD)1/2

dt
t3/2

exp
[
− (xo +wt)2

4Dt

]
. (8.45)

Introducing the reduced parameter η = xow/(4D) and the reduced variable τ =
wt/xo, we represent this expression in the form

W(η) =
√

η

π

∞∫
0

(1 + τ)dτ

τ3/2
exp

[
−η(1 + τ)2

τ

]
. (8.46)

This integral is approximated by formula

W(η) = exp(−4η) = exp
(
−xow

D

)
. (8.47)
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8.4
Chapman–Enskog Approximation

� Problem 8.21 Evaluate the thermal conductivity coefficient of an atomic gas in
the first Chapman–Enskog approximation by taking into consideration elastic col-
lisions of atoms.

The Chapman–Enskogmethod corresponds to expansion of the kinetic coefficients
over a numerical parameter. In considering above the ion mobility in the first
Chapman–Enskog approximation, we find the term which is proportional to a
strength of a weak field. Now we use this method directly, based on the kinetic
equation in the form (8.21) that now has the form

f (0)
1 (v)

(
mv21
2T

− 5
2

)
v1∇ ln T =

∫
f (0)
1 f (0)

2
(
θ′
1 + θ′

2 − θ1 − θ2
) |v1−v2| dσdv2 ,

(8.48)

and the correction to the distribution function θ is proportional to the temperature
gradient that is relatively small, and we represent this correction as θ = −A∇ lnT .
A vector A can be constructed on vectors which we dispose in zero approximation
when gradients are absent. The only such vector is the atom velocity, and hence
we have A =A(v)v. Introducing the reduced velocity of particles u =

√
m/(2T)v, we

rewrite the above equation as

f (0)
1

(
u21 − 5

2

)
u1

(
2T
m

)1/2

=
∫

f (0)
1 f (0)

2
(
A′
1u

′
1 + A

′
2u

′
2 − A1u1 − A2u2

) |u1−u2| dσdu2 , (8.49)

and the normalization condition for the distribution function is
∫
f (0)du = 1.

Our goal is to find the value A(u) that we can get by solving the nonlinear integral
equation. We use a numerical solution for this that is based on the expansion of
A(u) over the Sonin polynomials

A(u) =
∞

∑
i=0

aiSin(u
2) .

The Sonin polynomials are defined as

Sin(x) =
i

∑
k=0

(−x)k
Γ(n + i + 1)

Γ(n + k + 1)k!(i− k)!
, (8.50)

and the first Sonin polynomials are S0n = 1, S1n = n + 1 − x. The Sonin polynomials
satisfy the orthogonality condition,

∞∫
0

Smn (x)Skn(x)e
−xxndx = δmk .
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The orthogonality condition for the Sonin polynomials allows us to satisfy condi-
tions (8.19) for each expansion term. In the case of heat transport we take n = 3/2,
i. e.,

A(u) =
∞

∑
i=0

aiSi3/2(u
2) ,

which gives a0 = 0 from the first condition (8.19), and the second condition of (8.19)
is fulfilled separately for each expansion term. Using this expansion, we obtain the
heat flux

q =
∫ mv2

2
v f dv =

∫ mv2

2
v f (0)θdv = −2T2

m

∫
u2u(u∇) ln(T)Af (0)du

= −2T2

3m

∫
u4∇ ln T

∞

∑
k=1

akS
k
3/2(u

2) f (0)du = −κ∇T .

Using the equilibrium Maxwell distribution function f (0) according to formula
(8.11), we obtain the thermal conductivity coefficient

κ =
4TN

3
√

πm

∞∫
0

e−zz5dz
∞

∑
k=1

akS
k
3/2(z) =

5TN
2m

a1 , (8.51)

and our task is to evaluate a1 . Let us use the notations

bkm =∫
f (0)
1 f (0)

2

[
u1Sm3/2(u

2
1) + u2S

m
3/2(u

2
2) − u′

1S
m
3/2(u

′2
1 ) − u′

2S
m
3/2(u

′2
2 )
]
|u1−u2| dσdu2 .

Multiplying the kinetic equation (8.49) by u1Sm3/2(u
2
1) and integrating it over du1 ,

we obtain the following set of equations for the coefficients ak:

∞

∑
k=1

akbkm =
15
4
Nδm1 , m = 1, 2, . . . (8.52)

From the solution of this set of equations one can determine the values ak.

For the coefficient a1 we have from this set of equations

a1 =
15N
4

lim
n→∞

∣∣∣∣∣∣∣∣
b22 b23 ... b2n
b32 b33 ... b3n
... ... ... ...
bn2 bn3 ... bnn

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
b11 b12 ... b1n
b22 b22 ... b2n
... ... ... ...
bn1 bn2 ... bnn

∣∣∣∣∣∣∣∣

=
15N
4

b11 + b12 D2
D+b13

D3
D+ · · · ,

whereD is the upper determinant, andDi is the lower determinant in which the i-th
columns and lines are absent. The Chapman–Enskog approximation allows us to
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restrict ourselves to the first terms of expansion over a numerical parameter. In the
first Chapman–Enskog approximation we use only one term in the denominator.
In this approximation we have

a1 =
15N
4b11

, κ =
75TN2

8mb11
,

and our task is to evaluate the integral

b11 =

√
2T
m

∫
f (0)
1 f (0)

2 u1(u21 − 5
2
)
[
u1(u21 − 5

2
) + u2(u22 − 5

2
) − u′

1

(
u′2
1

−5
2

)
− u′

2(u
′2
2 − 5

2
)
]

|u1−u2| dσdu1du2 .

This integral conserves if we change the atoms 1 and 2, and because of the symme-
try with respect to time reversal t → −t, the integral conserves if u → −u′, u′ →
−u. This allows us to reduce the integral to the form

b11 =

√
2T
m

∫
f (0)
1 f (0)

2

[
u1(u21 − 5

2
) + u2(u22 − 5

2
) − u′

1(u
′2
1 − 5

2
) − u′

2(u
′2
2 − 5

2
)
]2

|u1−u2| dσdu1du2 .

Let us introduce the reduced velocity of the mass center U and the reduced
relative velocity g. Since the velocity of the mass center is conserved in a collision
of particles, we haveU = U ′, and from the energy conservation law it follows g = g′.
From this we obtain the reduced velocities of particles before and after collisions

u1 = U + g/2, u2 = U − g/2, u′
1 = U + g ′/2, u′

2 = U − g ′/2 ,

and this gives

u1(u21 − 5
2
) + u2(u22 − 5

2
) − u′

1(u
′2
1 − 5

2
) − u′

2(u
′2
2 − 5

2
) = g(gU) − g ′(g ′U) .

Using the expression for the Maxwell distribution functions f (0)
1 , f (0)

2 of particles
in accordance with formula (8.11), we obtain

b11 = N2

√
2T
m

∫
e−2U

2−g2/2 [g(gU) − g ′(g ′U)
]2 gdσ

dUdg
4π3 .

Let us introduce the scattering angle ϑ, so that gg ′ = g2 cos ϑ. Take the directionU
as the direction of the polar axis, so that the vector g is characterized by the polar an-
gle θ, and gU = gU cos θ. Correspondingly, g ′U = gU(cos ϑ cos θ +sin ϑ sin θ cos ϕ),
where ϕ is the azimuthal angle. Next, dg = g2d cos θdϕ. After integration we get

b11 = 12

√
T

πm
N2σ2 ,

where the average cross section is

σ2 =
∞∫
0

t2 exp(−t)σ(2)(t)dt, t =
mg2

4T
, σ(2)(t) =

∫
(1 − cos2 ϑ)dσ (8.53)
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Correspondingly, the thermal conductivity coefficient is equal in the first Chap-
man–Enskog approximation

κ =
25
√

πT
32σ2

√
m

. (8.54)

If the scattering process is described within the framework of the hard sphere

model, so that dσ = πR2o
2 d cos ϑ, we have σ2 =

∫
(1 − cos2 ϑ)dσ = 2πR2o/3, and the

first Chapman–Enskog approximation gives for the gas thermal conductivity

κ =
75
√
T

64R2o
√

πm
. (8.55)

� Problem 8.22 Find the mobility of ions in a gas at low strengths of an external
electric field in the first Chapman–Enskog approximation.

In weak electric fields the energy acquired by an ion from the field in a time interval
between two successive collisions is of the order of eEλ ∼ eE/Nσ (λ ∼ 1/(Nσ) is
the mean free path of ions in a gas) and much lower than the mean thermal energy
of ions T , i. e.,

eEλ

T
≡ eE

TNσ
� 1 . (8.56)

Under condition (8.56), the drift velocity of an ion is much lower than its thermal
velocity. Therefore, the velocity distribution function for ions differs slightly from
the Maxwell distribution. In accordance with the apparatus of the previous prob-
lem, the Chapman–Enskog approximation represents an addition to the Maxwell
distribution function due to a weak electric field as an expansion over Sonin polyno-
mials, and the ion mobility is an expansion over a numerical parameter. Restricting
ourselves to the first Chapman–Enskog approximation, we use only one constant
in this approximation. Then one can use a more simple method in comparison to
the analysis of the set of equations as that (8.52) while determining the thermal
conductivity coefficient. In particular, we represent the ion distribution function in
this case as

f (v) = ϕ(v)[1 + v cos θ · ψ(v)] , (8.57)

where θ is the angle between the vectors v and E and where ψ(v) is assumed to be
independent of the collision velocity.
Substituting this expansion into the integral relation (6.33) for ions, one can

find ψ. As a result, we obtain the following expression for the ion mobility KI that
corresponds to the first Chapman–Enskog approximation

KI =
3
√

πe
8Nσ

√
2Tµ

, (8.58)
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where

σ =
∞∫
0

σ∗(x) exp(−x2)x2dx, x =
µg2

2T
. (8.59)

Formula (8.58) relates to small field strengths according to criterion (8.56) when
the ion drift velocity is small compared to the thermal velocity of ions.

� Problem 8.23 Express the ion mobility in a gas using the average cross section of
ion–atom collision in usual units.

Usually the mobility is reduced to the normal number density of the gas atoms
N = 2.69 · 1019 cm−3, which corresponds to the gas temperature of 0 ◦C and the
pressure of 1 atm. Expressing the gas temperature in formula (8.58) in Kelvin,
the reduced mass in atomic mass units, and the mean cross section in the units
πa2o = 0.879 · 10−16 cm−2, we reduce this equation to the form

KI =
2.1 · 104
σ
√

µT
cm2

V · s (8.60)

� Problem 8.24 Determine the diffusion coefficient of an atomic gas with elastic
collisions of atoms in the first Chapman–Enskog approximation.

In the Chapman–Enskog approximation for diffusion of test atoms in a gas we
represent the distribution function of test atoms as

f (v1) = f (0)(v1)
[
1 − v1x

∂ lnN1

∂x
h(v1)

]
,

and we take h(v) = const in the first Chapman–Enskog approximation. Then we
find from equation (8.13)

h =
3TM

µ2N
〈
g3σ∗(g)

〉 ,
where the angle brackets denote an average over the Maxwell distribution for rel-
ative velocities of test atoms and gas atoms. The flux of test atoms in the gradient
direction is equal to

j =
∫

v1x f (v1)dv1 = −∂ lnN1

∂x
h
∫

v21x f
(0)
1 dv1 = −hT

M
∂N1

∂x
.

Comparing this with the definition of the diffusion coefficient (8.2), we find for the
diffusion coefficient of a test atom in an atomic gas

D12 =
3T2

µ2
〈
g3σ∗(g)

〉 = 3
√

πT
8N
√
2µσ

, σ =
1
2

∞∫
0

e−tt2σ∗(t)dt, t =
µg2

2T
. (8.61)
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� Problem 8.25 Determine the viscosity coefficient for an atomic gas in the first
Chapman–Enskog approximation while accounting for elastic collisions of atoms.

We take, initially, the flow geometry according to Fig. 6.1, when the average gas
velocity w is directed along x and its gradient along z, and star from the integral
equation (8.31). The distribution function of atoms is close to the Maxwell distrib-
ution function (8.11), and the correction to it is given by formula (8.20), so that in
the case of the viscosity transport process, we take the factor of formula (8.20) that
is responsible for the viscosity process, and it has the form

θ = −C(vx − w)vz
∂wx

∂z
.

Thus, within the framework of the first Chapman–Enskog approximation we use
one free parameter C which we will find it from equation (8.5).
Substituting this expression in equation (8.5) and ignoring cross terms with re-

spect to atom velocities, since these terms correspond to other transport processes,
we find the parameter C from this equation

C =
8NT

m
∫
g2x g2z gσ(2)(g) f (o)

1 f (o)
2 dVdg

=
120T

mN〈g5σ(2)(g)〉 ,

where an average is made with the Maxwell distribution function over relative
particle velocities. The force per unit area for this distribution function is

F =
∫

vz f (v)dv ·m(vx − w) = −C
∫
mv2z(vx − w)2 f (o)(v)dv

∂wx

∂z
.

Since

(vx − w)2v2z =
T2

m2 ,

where an average is made over the Maxwell distribution function (8.11), we have
from this

F = −C
NT2

m
∂wx

∂z

Thus, we have in the first Chapman–Enskog approximation

η = C
NT2

m
=

120T3

m2〈g5σ(2)(g)〉 .

Finally, we obtain the viscosity coefficient

η =
5
√

πTm
16σ2

,

and the averaged cross section is given by formula (8.53).
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� Problem 8.26 Find the viscosity coefficient for assuming atomic gas at an isotropic
character of atom scattering within the framework of the hard sphere model.

The differential cross section of atom scattering for the hard sphere model accord-

ing to formula (2.21) is dσ = πR2o
2 d cos ϑ, where Ro is the radius of the scattering

sphere. This gives σ2 =
∫

(1 − cos2 ϑ)dσ = 2πR2o/3, and from the first Chapman–
Enskog approximation it follows for the viscosity coefficient

η =
15
√
Tm

32
√

πR2o
. (8.62)

� Problem 8.27 Determine the ratio of the thermal conductivity and viscosity coef-
ficients.

We evaluated above the thermal conductivity and viscosity coefficients in three
cases: in the tau-approximation, in the first Chapman–Enskog approximation, and
also in the case when the collision cross section of gas atoms is inversely propor-
tional to the collision velocity. One can see that averaging over scattering angles
proceeds in the same manner for these transport coefficients, and their ratio is

κ

η
=

5
2m

=
cp
m
, (8.63)

where m is the atom mass, and cp is the heat capacity per atom for an atomic ideal
gas at constant pressure.

8.5
Diffusion of Ions in Gas in an External Electric Field

� Problem 8.28 Derive the expression for the diffusion coefficient of ions, moving
in a gas in an external electric field, on the basis of the kinetic equation.

We evaluated above the diffusion coefficient for ions in a gas when external fields
are absent and the average drift velocity of ions is zero. We now consider a general
case when the drift velocity of ions is nonzero, and the gradient of the number
density Ni of ions causes the diffusion flux

j = −D∇Ni .

We use the kinetic equation for the distribution function f (v, r) of ions which is

∂ f
∂t

+ v∇ f +
eE
M

∂ f
∂v

= Icol( f ) ,

where M is the ion mass. In the stationary regime the ion distribution function
depends on the parameter r − wt instead of r, and taking this into account, we
reduce the kinetic equation to the form

(v − w) f ∇ lnNi +
eE
M

∂ f
∂v

= Icol( f ) .
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We now expand this equation over a small parameter λ∂ lnNi/∂x, where x is the
gradient direction, and find the correction to the unperturbed distribution function
due to this small parameter. Then we represent the expansion of the distribution
function in the form

f (v, r) = f (0)(v) − ∂ lnNi
∂z

Φ(v) ,

where the unperturbed distribution function satisfies the equation

eE
M

∂ f (0)

∂v
= Icol( f (0)) ,

and from the normalization condition for the distribution function we have∫
Φ(v)dv = 0 . (8.64)

As it follows from the kinetic equation for the distribution functions f (v, r) and
f (0)(v), the equation for the function Φ(v) has the form

(vx − wx) f (0) +
eE
M

∂Φ

∂v
= Icol(Φ) . (8.65)

Here we account for collisions of ions with gas atoms only since the number
density of ions is respectively small. Therefore, the collision integral is the linear
functional with respect to the function Φ(v). The ion flux is j =

∫
v f (v)dv. Tak-

ing into consideration that this flux is created due to the ion density gradient and
using expression (8.65) for the ion distribution function, we obtain the diffusion
coefficient from the comparison of this flux with the diffusion one

Di =
∫

vxΦ(v)dv .

Using the condition of normalization (8.64) for Φ(v), it is convenient to represent
the ion diffusion coefficient in the symmetric form

Di =
∫

(vx − wx)Φ(v)dv .

One can use this expression for evaluation of the ion diffusion coefficient.

� Problem 8.29 Prove the Einstein relation for ions on the basis of the kinetic equa-
tion.

For small electric field strength we represent the distribution function of ions as f =
ϕo + vxϕ1 , where ϕo is the Maxwell distribution function and the x-axis is directed
along the electric field. Expanding the kinetic equation for the ion distribution
function

eE
M

∂ f
∂v

= Icol( f )
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over a small parameter, we have in the first approximation (the zero-th approxima-
tion gives Icol(ϕo) = 0)

eE
M

dϕo
dv

≡ eEvx
T

ϕo = Icol(vxϕ1) ,

and since the collision integral is linear with respect to the argument, we have
from this

eE
T

ϕo = Icol(ϕ1) .

This equation coincides with equation (8.65) in the limit E → 0‚when wx = 0.
From the analogy of these equations it follows the analogy of the values vxϕ1 and
eE
T Φ. Therefore, according to formula (8.65) the diffusion coefficient is

Di =
T
eE

∫
v2xϕ1dv ,

where the gradient of the ion number density is directed along x. On the other
hand, the ion drift velocity according to its definition is

wx =
∫

v2xϕ1dv = EKi ,

where Ki is the ion mobility. Comparing these expressions, we find the Einstein
relation

Ki =
eDi

T
. (8.66)

� Problem 8.30 Find the drift velocity of ions whose mass is much greater than the
mass of the gas atoms.

The width of the ion velocity distribution is determined either by the thermal ve-
locity of ions or by the mean variation of the ion velocity in one collision with a
gas atom. The thermal velocity of ions is low compared with the thermal velocity
of atoms and the mean ion velocity variation is of the order of mg/M. Hence the
width of the ion velocity distribution is always smaller than the relative velocity g
of the ion–atom collision. Therefore, if we use the distribution function of ions in
formula (6.33) in the form f (v) = δ(v − w), we obtain

eE
µN

=
( m
2πT

)3/2 ∫
exp

(
−mv2a

2T

)
gxgσ∗(g)dva ,

where m is the atom mass, va is the atom velocity. This gives

eE
µN

=
1

w2 exp
(
−mw2

2T

)(
2T
πm

)1/2 ∞∫
0

exp
(
−mg2

2T

)
g2σ∗(g)(y cosh y− sinh y)dg,

y =
mwg
T

. (8.67)
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When the ion drift velocity is small compared to a thermal velocity of gas atoms,
it follows from the above

w =
3
√

πeE
8Nσ(2Tm)1/2

, (8.68)

where

σ =
∞∫
0

σ∗(x) exp(−x2)x2dx, x =
mg2

2T
.

This result corresponds with the first Chapman–Enskog approximation, but it
holds true in a wider velocity range (w �

√
T/m) than the Chapman–Enskog

approximation is valid (w �
√
T/M). Note that the method used of replacing the

distribution function with the delta function is applicable if w �
√
T/M. However,

the above result is valid for all drift velocities, since forw �
√
T/m the drift velocity

is proportional to the electric field strength, and the proportionality factor can be
found on the basis of this method.

At high drift velocities w �
√
T/m, the above formula gives

eE
mN

= w2σ∗(w) .

This relation can be obtained directly for the motion equation for a test ion

dPx
dt

= eE −
∫

∆PxNwdσ = eE −mNw2σ∗(w) = 0 ,

where Px is the projection of the ion momentum onto the electric field direction,
and ∆P = mw(1 − cos ϑ) is the momentum variation as a result of ion–atom colli-
sion, and ϑ is the scattering angle.

� Problem 8.31 Compare the exact formula for the mobility of electrons in a gas
in weak electric fields with the Chapman–Enskog approximation. Take the de-
pendence of the cross section of electron–atom elastic scattering on the collision
velocity to be σ∗(v) = Cv−k.

The mobility of an electron in a weak electric field is given by

K =
w
E
=

8e

3
√

πm

∞∫
0

t4 exp(−t2)
νea

dt, t =

√
mv2

2T
,

where νea is the rate of electron–atom elastic collisions.
Comparing this expression with that based on the first Chapman–Enskog ap-

proximation (8.9), we obtain for a given dependence of the diffusion cross section
of electron–atom scattering σ∗(v) on the electron velocity v

K
KI

=
16
9π

Γ

(
3− k

2

)
Γ

(
2 +

k
2

)
. (8.69)
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Note that in most of the actual cases 0 < k < 2, so that this relation is between 1
and 1.13. In the case of the Coulomb interaction between particles (k = 4) collisions
involvemany particles, while the above equations have been derived for two-particle
collisions.

� Problem 8.32 Find the dependence of the ion drift velocity on the electric field
strengths in strong fields. Assuming that the ion–atom scattering has the classical
nature and the potential of ion–atom interaction is approximated by the depen-
dence U(R) ∼ R−k, where R is the distance between the nuclei.

In strong electric fields, which satisfy a criterion that is opposite to (8.56), the ion
drift velocity is much higher than the thermal velocity of ions and atoms. In this
case the relative velocity of collision between an ion and a gas particle is equal to
the ion velocity, and according to equation (6.33) we have

eE
µ

=
∫

f (v)vvxσ∗(v)dv .

Since in this limiting case the only parameter with the dimension of velocity,
determining the distribution function, is the ion drift velocity, we obtain the above
equation eE/(µN) ∼ w2σ∗(w). For the interaction potentialU(R) ∼ R−k, the cross
section according to formula (2.19) is given by σ ∼ µ−2/kv−4/k. From this it follows

w ∼ 1√
µ

(
eE
N

) k
2(k−2)

.

� Problem 8.33 Determine the distribution function of ions which are moving in a
gas in an external electric field, if the ion mass is greater than the atom mass. Find
the parameters of the velocity distribution function if the ion–atom cross section
of elastic scattering is inversely proportional to the collision velocity.

Since the velocity of large ions varies weakly in the course of one ion–atom colli-
sion, the velocity distribution function of ions is delta-function. The width of this
distribution function is of the order of the ion thermal velocity which is realized in
the absence of an electric field. Based on the Gauss distribution, one can represent
the ion distribution function in the form

f (v) = const · exp
[
−M(vx − w)2

2T‖
− Mv2⊥

2T⊥

]
. (8.70)

Here Const is the normalized coefficient, vx , v⊥ are the ion velocities in the electric
field direction and perpendicular to it. In the absence of the electric field the longi-
tudinal T‖ and transversal T⊥ temperatures coincide with the gas temperature T .
In the limit of small longitudinal and transversal temperatures this distribution
function is

f (v) = δ(v) .
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The longitudinal and transversal temperatures in formula (8.70) can be found
from equations (6.39) and (6.40). With an accuracy up to the first expansion term
over a small parameter m/M we have

T‖ ≡ 〈M(vx − w)2〉 = T +mw2
(
1 − ν2

2ν1

)
,

T⊥ ≡ 〈Mv2y 〉 = 〈Mv2z〉 = T +mw2 ν2

4ν1
. (8.71)

In particular, it follows from this that if the ion drift velocity is small compared to
the thermal atom velocity, the ion distribution function is the Maxwell one and its
temperature coincides with the gas, i. e.,

f (v) = exp
[
−M(v − w)2

2T

]
.

� Problem 8.34 Determine the diffusion coefficient of ions in a gas in an exter-
nal electric field if the rate of ion–atom collisions is independent of the collision
velocity.

Let us multiply equation (8.65) with the velocity vz in the direction of the density
gradient and integrate the result over velocities. Accounting for the normalization
condition (8.64), we obtain

(〈v2z〉 − w2
z)Ni = −

∫
vzIcol(Φ)dv ,

where brackets mean an average over ion velocities and Ni is the number density
of ions. The right-hand side of this equation is

−
∫

vzIcol(Φ)dv =
∫

vz[Φ(v)ϕ(va) − Φ(v′)ϕ(v′
a)]|v − v′|dσdvdva∫

(vz − v′
z)Φ(v)ϕ(va)dσdvdva.

Here v, v′ are the ion velocities before and after collision, va, v′
a are the atom ve-

locities before and after collision. We used above the detailed balance principle
for elastic collisions that is based on the symmetry with respect to the operation
t ↔ −t and conserves the relative collision velocity of colliding particles.
Integrating over scattering angles, as was done for deriving equation (6.33),

transforms the above equation to the form

(〈v2z〉 − w2
z)Ni =

m
m +M

∫
gzΦ(v)ϕ(va)gσ∗dvdva. (8.72)

Assuming that the rate of ion–atom collisions ν1 = Nagσ∗(g) is independent of the
collision velocity. This transforms equation (8.72) to the form

(〈v2z〉 − w2
z)Ni =

ν1m
Na(m +M)

∫
(vz −Vaz)Φ(v)ϕ(va)dvdva .
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Using it in formula (8.41), we obtain the ion diffusion coefficient in the z direction

Dz =
M(〈v2z〉 − w2

z)
µν1

. (8.73)

On the basis of formulas (6.39) and (6.40) for the average ion kinetic energy
along the field and perpendicular to it, we obtain the longitudinal

D‖ =
1

|muν1 |
[
T +mw2 ν1 + (m− 2M)ν2/(4M)

ν1 + 3mν2/(4M)

]

and transversal ion diffusion coefficients

D⊥ =
1

|muν1 |
[
T +mw2 (1 +m/M)ν2

4(ν1 + 3mν2/(4M))

]
.

� Problem 8.35 Determine the transversal diffusion coefficient for heavy ions lo-
cated in a gas in an external electric field.

Using formula (8.72), we take into account that a typical transversal ion velocity is
small compared to the thermal atom velocity at low fields or when compared to the
drift ion velocity. This allows us to integrate over atom velocities that transforms
formula (8.72) to the form

〈v2z〉Ni =
m

m +M

∫
vzΦ(v)dvν1 ,

where ν1 is the rate of ion–atom collisions averaged over ion and atom velocities.
In the limit of low fields this value is

ν1 = Na〈vaσ∗(va)〉 ,
where an average is made over atom velocities. In the other limiting case of high
fields

ν1 = Nawσ∗(w) .

In any case ν1 does not depend on the transversal ion velocity. This gives

D⊥ =
m +M
m

〈v2z〉
ν1

=
T⊥
µν1

,

where µ ≈ m is the reduced ion–atom mass.

� Problem 8.36 Determine the longitudinal diffusion coefficient for heavy ions lo-
cated in a gas in an external electric field.

If the ion drift velocity is small compared to a typical thermal velocity of gas atoms,
the longitudinal ion diffusion coefficient is determined in the same manner as the
transversal diffusion coefficient and according to formula (8.73) is equal to

D‖ =
M(〈v2x〉 − w2

x)
µν1

=
T‖
µν1

,
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since ν1 does not depend on the longitudinal ion velocities.

In the other limiting case

w �

√
T
m

,

we have from formula (8.72)

(〈v2x〉 − w2
x)Ni =

m
m +M

∫
vzΦ(v)ν(v)dv .

Let us introduce the parameter

γ = −
(
d ln ν

d ln v

)∣∣∣∣
v=w

,

so that ν(v) ∼ v−γ. Because the ion velocities are concentrated near w, we have

ν(v) ≈ ν(v)
[
1 +

(vx − w)
w

]
.

Substituting this into equation for Φ(v), we obtain that the first expansion term
gives zero because of the normalization condition (8.64). As a result, we obtain the
longitudinal diffusion coefficient of an ion for strong fields

D‖ =
(m +M)(〈v2x〉 − w2

x)
m(1 + γ)ν1(w)

=
T‖

µ(1 + γ)ν1(w)
.

� Problem 8.37 Express the ion mobility in a mixture of gases in weak electric fields
in terms of the ion mobilities in each of the constituent gases.

The ion mobility in a mixture of gases K in the first Chapman–Enskog approxima-
tion (8.58) can be represented as

1
K
= Aνeff .

Here A is a function of gas parameters, and νeff is the effective rate of collisions
between ions and atoms of the gas. Since the gas is a mixture of different gases,
the total scattering rate is an additive function of the rates of collisions with the
particles of each of the gas species. Since we evaluate the ion mobility for the
constant total number density of gas atomic particles and the rate of collisions
with the particles of the i-th gas species is νir = Ni〈vσi〉, where the number density
of particles of the i-th component is Ni = ciN, where N is the total number density
of atomic particles of the gas, and ci is the concentration of the i-th component,
we have νeff = ∑i ciνi. Introducing the ion mobility Ki in a gas consisting of a pure
i-th component according to formula 1/Ki = Aνi, we obtain the ion mobility in a
mixture of gases

1
K
= ∑

i

ci
Ki

. (8.74)

This relation is known as the Blanck law and it has been derived for weak electric
fields only when it has the same accuracy as the Chapman–Enskog approximation.



8.5 Diffusion of Ions in Gas in an External Electric Field 253

� Problem 8.38 Determine the recombination of positive and negative ions in a
dense gas in the limit of a large density.

The case of a large gas density is opposite to the case (3.55) of the three-body
process, and the following criterion is required for this case

λ � b, (8.75)

where b = e2/T is the critical radius and λ is the mean free path of ions in a
gas. Under such circumstances, frequent collisions of the ions with gas particles
prevent them from approaching one another, and thus the typical recombination
time is essentially the time required for the ions to approach each other. If the
distance between ions is R, each ion is subjected to the field produced by the other
ion, and the electric field strength is E = e/R2. This field causes oppositely charged
ions to move towards each other with the velocity w = e(K+ + K−)/R2, where K+
and K− are the mobilities of the positive and negative ions in the gas. Such a
consideration holds true if R � λ.
The rate of the process when negative ions intersect a sphere around a positive

ion of radius R is the product of the surface area of the sphere, 4πR2, and the
negative ion flux N−w = N−e(K+ + K−)/R2. This leads to the balance equation for
the number density of positive ions as

dN+

dt
= −N+N−4πe(K+ +K−) ,

and comparing this with the definition of the recombination coefficient, we obtain
the Langevin formula for the recombination coefficient to be

α = 4πe(K+ +K−) . (8.76)

We note that from criterion (8.75) it follows that eEλ � T , and the electric field
strength E from a positive ion is relatively small until the distance from the positive
ion is large compared to the critical distance b. This means that at distances be-
tween ions whichmainly contribute to the recombination coefficient, the ionsmove
in a weak electric field. Therefore the ion mobilities K+ and K− in the Langevin for-
mula (8.76) correspond to small fields. Next, because these mobilities are inversely
proportional to the number density of gas atoms, the recombination coefficient of
ions has the same dependence on the number density of gas atoms. This means
that an increase in gas density leads to an increase in the frictional force for ions
that slows the approach of the ions.

� Problem 8.39 Analyze the dependence of the recombination coefficient for posi-
tive and negative ions on gas density in a wide range of gas densities.

At very low number density of gas atoms the exchange cross section is estimated by
formula (2.28), and the rate of this process does not depend on the number density
of gas atoms. At higher number densities which satisfy to the criterion (3.58) this
process has a three-body character, its rate is proportional to the number density
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of gas atoms and is given by formula (3.57). At high number densities the rate of
mutual neutralization is given by formula (8.76) and is inversely proportional to
the number density of gas atoms.
Figure 8.1 shows the dependence of the rate of the charge exchange process

on the number density of gas atoms that is deduced on the basis of the above
consideration. In the limit of the low number density of gas atoms (range 1), the
recombination coefficient of positive and negative ions at room temperature is
estimated as α1 ≥ h̄2/(m2

eµT)1/2, if we take Ro � ao in formula (2.28), where µ

is the reduced mass of ions, and ao = h̄2/(mee2) is the Bohr radius. At higher
number densities N of atoms (range 2 of Fig. 8.1) the recombination coefficient is
given by formula (3.57) α2 ∼ N(e6/T3)(βe2/µ)1/2, where β is the polarizability of
the particle C. In the range 3 of Fig. 8.1 according to formulas (8.76) and (8.16) the
recombination coefficient is α3 ∼ e

√
µ/(N

√
β), where β is the atom polarizability.

Fig. 8.1 The dependence of the recombination coefficient α of positive
and negative ions in a gas on the number density of gas atoms or mol-
ecules: 1 – pair recombination, 2 – three body recombination, 3 – the
Lanzhevin mechanism when approach of positive and negative ions is
hampered by collisions with gas atoms.

We estimate the number densities of transient regions, so that the number den-
sity of gas atoms N12 between ranges 1 and 2, and also the number density N23
between ranges 2 and 3 are equal, if we take the atom polarizability β ∼ a3o and
Ro ∼ ao

N12 ∼ T5/2

e5
√
ao
, N23 ∼

(
T
aoe2

)3/2
.

The recombination coefficient on the boundaries of these regions is

α12 ∼ α1 ∼ e2ao√
Tµ

, α23 ∼ e4

µ1/2T3/2
.
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One can see that the maximum recombination coefficient in number density corre-
sponds to the largest recombination α23, which corresponds to the Coulomb cross
section of ion scattering.
We make the above estimations for air at room temperature. According

to the above estimations, we have N12 ∼ 1017 cm−3, N23 ∼ 1020 cm−3,
α12 ∼ 10−9 cm3/s, and α23 ∼ 10−6 cm3/s. As is seen, the maximum recom-
bination coefficient corresponds to approximately atmospheric pressure. Figure
8.2 gives experimental values for the recombination coefficients of positive and
negative ions in air at room temperature as a function of pressure. This confirms
the above estimations.

Fig. 8.2 The recombination coefficient α of positive and negative
ions in air at room temperature depending on its pressure. Signs are
experimental data, solid curve is their approximation.

8.6
Transport of Atomic Ions in the Parent Gas in an External Electric Field

� Problem 8.40 Determine the mobility of atomic ions in the parent gas in the first
Chapman–Enskog approximation at low electric field strengths.

In this case the ion–atom scattering is determined by the resonant charge exchange
process, and if elastic ion–atom scattering is weak, the character of ion–atom scat-
tering is represented in Fig. 8.3 (the Sena effect). Then as a result of resonant
charge exchange, an incident atom is transformed into an ion, and therefore the
ion acquires the energy of a former atom.

The diffusion ion–atom cross section (2.6) is equal in this case

σ∗ =
∞∫
0

[1 − P(ρ)](1 − cos ϑ)2πρdρ +
∞∫
0

P(ρ)(1 − cos ϑ′)2πρdρ,

where P(ρ) is the probability of resonant charge exchange for an impact parameter
ρ of collision, ϑ is the scattering angle for the nucleus which initially belonged to
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Fig. 8.3 The Sena effect for ion scattering as a result of resonant charge
exchange if atom and ion are moving along straightforward trajectories
for capture particles.

the ion in the center-of-mass reference frame, ϑ′ is the angle between the velocity
of this nucleus before collision and the velocity of another nucleus after collision
in the center-of-mass reference frame; this angle describes the ion scattering if
resonant charge transfer occurs. Since ϑ + ϑ′ = π, we have

σ∗ =
∞∫
0

(1 − cos ϑ) · 2πρdρ +
∞∫
0

P(ρ) cos ϑ · 2πρdρ . (8.77)

In the absence of ion–atom elastic scattering (ϑ = 0), the diffusion cross section of
ion scattering is

σ∗ =
∞∫
0

P(ρ) · 2πρdρ = 2σres , (8.78)

where σres is the cross section of resonant charge transfer.
Substituting this diffusion cross section into the mobility that corresponds to the

first Chapman–Enskog approximation, we obtain the ion mobility in the parent
gas after accounting for a weak dependence of the resonant charge exchange cross
section on the collision velocity

KI =
3
√

πe

16N
√
TMσres

, (8.79)

where M = 2µ is the mass of the ion or atom and µ is their reduced mass. The
main contribution to the mobility corresponds to the relative collision velocity g =√
5T/µ =

√
10T/M, and the cross section of resonant charge exchange in formula

(8.79) is taken at this collision velocity.
Formula (8.79) is valid at low field strengths in accordance with the criterion

(8.56) when an energy (∼ eEλ) that an ion obtains from the field between two
nearest exchange events is small compared to the thermal ion energy T .
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� Problem 8.41 Determine the drift velocity of ions in the parent gas at low electric
fields in the second Chapman–Enskog approximation while ignoring ion–atom
elastic scattering.

Since the charge exchange process in the absence of ion–atom elastic scattering
leads to a change in velocities between an ion and atoms, the Boltzmann kinetic
equation (6.2) with the collision integral (6.7) takes the following form in this case:

∂ f
∂vx

=
∫ [

f (v′)ϕ(v) − f (v)ϕ(v)′
] |v − v′|Naσresdv′ .

Here the electric field is directed along the x-axis, v, v′ are the ion and atom veloc-
ity before collision, and Na is the number density of atoms. The ion distribution
function f (v) of ions and the Maxwell distribution function ϕ(v) of atoms are
normalized to unity.
At low electric field strengths we represent the ion distribution function in the

form

f (v) = ϕ(v)
[
1 +

eEλ

T
vxψ(v)

]
,

and then the kinetic equation is reduced to the following equation

vxϕ(v) =
∫

|v − v′|ϕ(v)ϕ(v)′
[
vxψ(v) − v′

xψ(v′)
]
dv′ , (8.80)

and we use in this derivation ∂ϕ(v)∂vx = −Mvxϕ(v)/T . It is convenient to expand
ψ(v) over Sonin polynomials

ψ(v) =
n=∞

∑
n=0

anSn3/2

(
Mv2

2T

)
,

and the ion mobility is

K =
〈vx〉
E

=
eλ
M
ao .

We use a general method to solve the kinetic equation (8.80), if we multiply it
by Sm3/2(Mv2/2T) and integrate over ion velocities. This leads to the following set
of equations:

δm0 =
∫ Mvx

T
Sm3/2

(
Mv2

2T

)
|v − v′|ϕ(v)ϕ(v)′

·∑
n
an

[
vxSn3/2

(
Mv2

2T

)
− v′

xS
n
3/2

(
M(v′)2

2T

)]
dvdv′ .

It is convenient to rewrite this equation in the symmetric form after taking into
account quantities an, which have the dimensionality

√
M/T . Thus, we have

∑
n
an

M
2T

∫ [
vxSm3/2

(
Mv2

2T

)
− v′

xS
m
3/2

(
M(v′)2

2T

)]
·

[
vxSn3/2

(
Mv2

2T

)
− v′

xS
n
3/2

(
M(v′)2

2T

)]
|v − v′|ϕ(v)ϕ(v)′dvdv′ = δm0 .
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Let us solve this set of equations in the second Chapman–Enskog approximation,
using the reduced velocities u =

√
M/(2T)v and u′ =

√
M/(2T)v′. Restricting two

expansion terms of ψ(v) over Sonin polynomials, we have

ao
〈
(ux − u′

x)
2|u− u′|

〉

+ a1

〈
(ux − u′

x)
[
ux

(
5
2

− u2
)

− u′
x

(
5
2

− (u′)2
)]

|v − v′|
〉
=

√
M
2T

,

where brackets mean an average on the basis of the Maxwell distribution function
of ions and atoms.
Introducing the reduced ion–atom velocity s = u− u′ and the reduced velocity of

the ion-atom center of mass S = (u− u′)/2, we have

ux

(
5
2

− u2
)

− u′
x

(
5
2

− (u′)2
)
= sx

(
5
2

− S2
1
4
s2
)

− 2SxsS ,

and the above set of two equations is reduced to the form

ao〈s2xs〉 + a1

〈
sxs
[
sx

(
5
2

− S2
1
4
s2
)

− 2SxsS
]〉

=

√
M
2T

ao

〈
sxs
[
sx

(
5
2

− S2
1
4
s2
)

− 2SxsS
]〉

+ a1

〈
s
[
sx

(
5
2

− S2
1
4
s2
)

− 2SxsS
]〉

=

√
M
2T

= 0 .

In particular, in the first Chapman–Enskog approximation we restrict ourselves
only to the first equation and assume a1 = 0. This gives,

ao =
3

〈s2〉

√
M
2T

=
3
√

πM

16
√
T

,

which gives for the mobility

K =
eλao
M

=
3λ
√

π

16M
√
T
,

that corresponds to formula (8.58).

Integrating the above set of equations over angles, we reduce it to the form

ao
〈s2〉
3

+ a1

(
5
6
〈s3〉 − 5

2
〈s3〉〈S2〉 − 〈s5〉

12

)
=

√
M
2T

;

ao

(
5
6
〈s3〉 − 5

9
〈s3〈S2〉 − 〈s5〉

12

)

+ a1

[
〈s3〉

(
25
12

− 25
3

〈S2〉 + 10
3

〈S4〉
)
+ 〈s5〉

(
5
18

〈S2〉 − 5
12

)
+

〈s7〉
48

]
= 0 .



8.6 Transport of Atomic Ions in the Parent Gas in an External Electric Field 259

After evaluation of the average values of the reduced center-of-mass velocities, we
reduce this set to the form

〈s3〉
3

(
ao − a1

4

)
=

√
M
2T

,
〈s3〉
12

(
ao − 31a1

2

)
= 0 .

From this, we have

a(2)
o =

62
63

a(1) =
31M

√
π

168
√
T

,

and the superscript means the Chapman–Enskog approximation has been used.
From this it follows that the result of the second Chapman–Enskog approximation
differs from that of the first by approximately 2%. This confirms an excellent con-
vergence for the Chapman–Enskog method. Finally, in the second approximation
we obtain the ion mobility in a parent gas

K =
eλao
M

=
31λ

√
π

168
√
TM

=
0.327

Naσres
√
TM

,

instead of formula (8.58) for the first Chapman–Enskog approximation.

� Problem 8.42 Determine the field correction for the atomic ion mobility in a par-
ent gas in the limit of low fields if ion–atom elastic scattering is ignored.

A small parameter is proportional to the electric field strength, but since a small
parameter is a scalar value, it contains a combination Ev, where v is the ion velocity.
Hence, we represent the ion distribution function as the following expansion

F(v) = ϕ(v)

[
1 +

∞

∑
n=1

ξnvnxχn(v)

]
,

where ϕ(v) is the Maxwell distribution function, and a small reduced parameter is

ξ =
eEλ

T
.

Substituting this expansion in the kinetic equation and extracting in it terms of
an identical degree with respect to a small parameter ξ , one can find values χn.
Then the ion mobility is

K =
〈vx〉
E

=
eλ
T

(
〈v2xχ1〉 + ξ2〈v4xχ3〉 + · · ·

)
,

and extracting terms with identical degrees EN in the kinetic equation, we get

T
M

d[vn−1
x χn−1(v)ϕ(v)]

dvx

=
∫

|v − v′|ϕ(v)ϕ(v′)[(v′
x)

nχn(v′) − vnxχn(v)]dv′[(v′
x)

n − vnx]dv′ .
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Taking χn for small n to be independent of the velocity, we reduce this equation to
the form

χn−1
T
M

d[vn−1
x ϕ(v)]
dvx

= χn

∫
|v − v′|ϕ(v)ϕ(v′)[(v′

x)
n − vnx]dv′ .

For the solution of this equation we transform it into an integral equation by mul-
tiplying vnx and integrating over ion velocities. Integrating the left-hand side of
the equation in parts and reducing the right-hand side to the symmetric form, we
obtain

χn−1
T
M

〈
v2n−2x

〉
=
1
2

χn
〈|v − v′|[(v′

x)
n − vnx]

〉
dv′ .

This recurrent relation allows us to connect the previous and subsequent expansion
terms. In particular, for first terms we have

χ2 =
4T
M

χ1
〈v2x〉

〈|v − v′|[(v′
x)2 − v2x]2〉

χ3 =
6T
M

χ2
〈v4x〉

〈|v − v′|[(v′
x)3 − v3x]2〉

.

From this we find the first two terms of the mobility expansion over a small para-
meter

K =
eλ
M

(χ1〈v2x〉 + ξ2χ3〈v4x〉) = Ko

(
1 + ξ2

χ3〈v4x〉
χ1〈v2x〉

)
=

Ko

[
1 + ξ2

24T2〈v4x〉2
M2〈|v − v′|[v2x − (v′

x)2]2〉〈|v − v′|[v3x − (v′
x)3]2〉

]
,

where Ko is the ion mobility in the limit of zero electric field strength.
We now evaluate the average values which are inserted in the above formula.

Thus, we have

〈v4x〉 =
15
4

(
2T
M

)2
=
15T2

M2 .

For evaluation of the denominator terms, we introduce the reduced relative ve-
locity s =

√
M/(2T)(v − v′) and the reduced velocity of the center of mass S =√

M/(2T)(v + v′)/2. We have(
M
2T

)5/2
〈|v − v′|[v2x − (v′

x)
2]2〉 = 4〈ss2xS2x〉 =

4
9
〈s2〉〈S2〉 = 8

√
2

3
√

π(
M
2T

)7/2

〈|v − v′|[v3x − (v′
x)
3]2〉 =

〈
ss2x

(
3S2x +

s2x
4

)2〉

=
3
5
〈s3〉〈S4〉 + 1

10
〈s5〉〈S2〉 + 1

112
〈s7〉 = 3 · 169

√
2

70
√

π
.

From this it follows for the first two terms of expansion for the ion mobility

K = Ko(1 + 6.9ξ2) . (8.81)
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� Problem 8.43 Determine the drift velocity of ions in the parent gas in the limit of
strong electric fields.

The criterion of strong electric fields is inverse with respect to the criterion (8.56)
and has the form

eE
TNσ

� 1 , (8.82)

so the drift velocity of ions is much higher than the thermal velocity of atoms.
Therefore, the atoms can be assumed to be motionless. Hence the ions will stop
after each charge transfer event, and subsequently will be accelerated by the action
of the electric field. The probability Pi(t) that the last charge exchange event for a
test ion occurs at a time t earlier, is given by the equation

dPi
dt

= −νPi, Pi = exp(−
t∫

0

νdt′) .

Here ν = Nvxσres, vx is the ion velocity that is directed along the field, N is the
number density of atoms, and σres is the cross section of resonant charge exchange.
The ion velocity at time t after the charge exchange event follows from the Newton
equation

Mdvx
dt

= eE ,

that gives vx = eEt/M. Taking into consideration that the velocity distribution func-
tion f (vx) is proportional to the probability P(t) and connecting a time after the
last charge transfer with the ion velocity, we obtain the distribution function

f (vx) = C exp(−
vx∫
0

ν
M
eE

dv′
x) , vx > 0 .

This is the velocity distribution function of ions, and C is the normalization
constant. Assuming the cross section of resonant charge exchange to be indepen-
dent of the collision velocity, we obtain the distribution function and the ion drift
velocity

f (vx) = C exp
(

− Mv2x
2eEλ

)
η(vx), C =

√
2M

πeEλ
, w =

√
2eEλ

πM
. (8.83)

� Problem 8.44 Determine the velocity distribution function for atomic ionsmoving
in the parent gases under an external electric field.

We use the fact that kinetics of atomic ions in the parent gas is determined by the
resonant charge exchange process, and assume that elastic ion–atom scattering
may be ignored. Then the collision of an ion with the velocity v and an atom with a
velocity v′ leads after the resonant charge exchange event to formation of an atom
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with velocity v and an ion with velocity v′. Next, we assume that the ion distribution
function f (v) can be expanded in the longitudinal and transversal directions

f (v) = f (vx)F(v⊥) .

In this case the kinetic equation can also be expanded in the transversal and lon-
gitudinal directions. Because of the absence of an electric field in the transversal
direction, the kinetic equation for this distribution function is Icol(F) = 0. Using
expression (6.7) for the collision integral, we have this equation in the form

F(v⊥)
∫

σres|v − v′| f (vx)ϕ(v′
x)ϕ(v′⊥)dvxdv′ =

ϕ(v⊥)
∫

σresF(v′⊥)|v − v′| f (v′
x)ϕ(vx)dvxdv′ .

Here ϕ(vx), ϕ(v⊥) are the Maxwell distribution functions of atoms for the trans-
versal and longitudinal directions of atom motion. One can see that the solution
of this equation is the Maxwell distribution function for the transversal motion of
ions

F(v⊥) = ϕ(v⊥) =
M
T
exp

(
−Mv2⊥

2T

)
. (8.84)

In deriving this formula we assume that the transversal ion velocity is indepen-
dent of the longitudinal one. This is justified since an external electric field does
not act on the transversal velocity component, and also the character of ion–atom
scattering does not depend on it. Hence, the transversal ion velocity is taken from
an atom after the charge exchange event, and therefore the ion distribution func-
tion on transversal velocity is the Maxwell one independently on the electric field
strength.

� Problem 8.45 Determine the average kinetic energy of atomic ions moving in the
parent gases under an external electric field for different directions of ion mo-
tion ignoring elastic ion–atom scattering in comparison with the charge exchange
process.

We assume transport of atomic ions in the parent gas to be resulted from the res-
onant charge exchange process, as it is given in Fig. 8.3. This means that colliding
ion and atommove along straightforward trajectories, i. e., the cross section of their
elastic scattering is small compared to the resonant charge exchange cross section.
From this it follows that the ion–atom scattering cross section has the form

dσ = σresδ(1 + cos ϑ)d cos ϑ .

This means that the scattering angle is ϑ = π if the charge exchange events
proceeds and gives formula (8.78) for the transport cross section of ion–atom scat-
tering. In addition, σ(2) =

∫
(1 − cos2 ϑ)dσ = 0 in this case.
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We now use formulas (6.39) and (6.40) for the ion kinetic energies in different
directions. From these formulas it follows〈

Mv2x
2

〉
=
T
2
+
Mw2

2
,

〈
Mv2y
2

〉
=
〈
Mv2z
2

〉
=
T
2
. (8.85)

Here vx is the ion velocity component along the field and vy, vz are the velocity
components in the perpendicular direction to the field, M is the ion mass, w is
the ion drift velocity. As it follows from formula (8.85), atomic ions have a thermal
energy in the transversal directions even at large fields.

� Problem 8.46 Determine the longitudinal diffusion coefficient for atomic ions
moving in the parent atomic gas under a large electric field. The resonant charge
exchange cross section is independent of the collision velocity.

Denoting the initial ion and atom velocities as v, v′, we found that their velocities
are changed after collision. Therefore, the kinetic equation (6.2) with the collision
integral (6.7) has the following form in this case:

eE
M

∂ f
∂vx

=
∫

[ f (v′
x)ϕ(v′

x) − f (vx)ϕ(vx)]|vx − v′
x| σresdv′

x .

Here f (vx) is the ion distribution function and ϕ(vx) is the Maxwell distribution
function. We consider that the transversal ion velocities are of the order of thermal
atom velocities, and since a typical atom velocity is small compared to the ion drift
velocity, we obtain the atom distribution function as

ϕ(vx) = Naδ(vx) ,

and the above kinetic equation is transformed to the form

eE
M

∂ f
∂vx

=
δ(vx)

λ

∫
v′
x f (v

′
x)dv′

x − vx
λ
f (vx) .

Here Na is the number density of atoms, λ = (Naσres)−1 . From this we derive
equation (8.65) for the function Φ(vx) through which the ion diffusion coefficient
is expressed as

(vx − w) f (vx) =
eE
M

dΦ

dvx
+

vx
λ

Φ(vx) − δ(vx)
λ

∫
v′
xΦ(v′

x)dv′
x .

It is convenient to use the reduced variable

u =
(
Mv2x
eEλ

)1/2

= vx

(
MNaσres

eE

)1/2

=
2√
π

vx
w

.

Using the ion distribution function (9.44), we reduce this equation to the form

2Niλ
πw

(
u−

√
2
π

)
exp(−u2)η(u) =

dΦ

du
+ uΦ − δ(u)

∫
u′Φ(u′)du′ ,
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where Ni is the ion number density and η(u) is the unit function. The solution of
this equation is

Φ(u) =
2λ

πw
Ni exp(−u2)

(
u2

2
−
√

2
π
u + A

)
η(u) .

The integration constant A follows from the normalization condition (8.64) and is
equal to A = 2/π − 1/2, which gives

Φ(u) =
2λ

πw
Ni exp(−u2)

(
u2

2
−
√

2
π
u +

2
π

− 1
2

)
η(u) .

From this we find the diffusion coefficient of ions in the parent gas along the field

D‖ =
1
Ni

∫
(vx − w)Φdvx =

1
Ni

eEλ

M

∫
Φ(u)udu = λw

(
2
π

− 1
2

)
= 0.137wλ .

(8.86)

� Problem 8.47 Determine the transversal diffusion coefficient for atomic ionsmov-
ing in the parent atomic gas under a large electric field. The resonant charge
exchange cross section is independent of the collision velocity.

According to formula (8.84) the ion distribution function on transversal velocity
components is the Maxwell one in this case, and hence equation (8.65) for the
transversal direction z takes the form

vzϕ(vz) =
w
λ

Φ(vz) − w
λ

ϕ(vz)
∫

Φ(v′
z)v

′
z .

The last integral in the right-hand side of this equation is zero according to the
normalization condition (8.64). Hence, the solution of this equation is

Φ(vz) =
λvzϕ(vz)

w
.

This gives for the transversal diffusion coefficient of ions

D⊥ =
λ〈v2z〉

w
=

λT
Mw

. (8.87)

As it follows from this formula, at high fields the transversal diffusion coefficient
of ions diminishes in ∼√eEλ/T times compared to that without fields.
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9
Kinetics and Radiative Transport of Excitations in Gases

9.1
Resonant Radiation of Optically Thick Layer of Excited Gas

� Problem 9.1 For the Lorentz and Doppler shape of a spectral line find the prob-
ability P(r) that a resonant photon crosses a distance r that exceeds significantly
the mean free path of the photon for the center of a spectral line. Assume a gas to
be uniform.

This probability is the product of the probability aωdω for emission at a given fre-
quency and the probability e−kωr of photon surviving, i. e., this quantity is equal to

P(r) =
∫

aωdωe−kωr . (9.1)

For the Lorentz line shape (5.5) we obtain, using a new variable s = (ω − ωo)/ν,

aωdω =
ds

π(1 + s2)
, kω =

ko
1 + s2

,

where ko is the absorption coefficient for the spectral line center. Let us define
u = kor the optical thickness in this way for the center line frequency; according to
the problem condition, u � 1. Formula (9.1) gives the probability for the photon to
cross a given distance

P(r) =
1
π

∞∫
−∞

ds
(1 + s2)

exp
(
− u
1 + s2

)
=

π∫
0

dϕ exp(−u cos2
ϕ

2
) = e−u/2I0

(u
2

)
,

where ϕ = arctan s and I0(x) is the Bessel function. In the limit under considera-
tion we have

P(r) =
1√
πu

, u � 1 . (9.2)

For the Doppler shape of the spectral line we use the variable

t = u exp

[
−mc2

2T

(
ω − ωo

ωo

)2
]



266 9 Kinetics and Radiative Transport of Excitations in Gases

that gives the probability to pass a distance r for the resonance photon

P(r) =
1√
πu

u∫
0

e−tdt
(
ln

u
t

)−1
=

1√
πu

√
ln u +C

, u � 1 , (9.3)

where C = 0.577 is the Euler constant.
Because wings of the Doppler spectral line drop sharper than that in the case

of the Lorentz spectral line, the probability to propagate on large distances for the
Lorentz spectral line is larger than that the Doppler one.

� Problem 9.2 Derive an expression for the flux of resonant photons of a given
frequency and the total flux of photons from a given gas volume. Resonant photons
originate from radiative transitions of excited atoms.

Let us take a point from the surface of this volume and evaluate the flux that
results from all the points inside the gas volume and therefore is the integral from
the following factors:

jωdω =
∫ N∗(r)dr

τ
aωdω

1
4πr2

exp


−

r∫
0

kωdr′

 cos θ. (9.4)

Here the first term is the rate of generation of photons in a volume element, the
second is the probability of photon generation in a given frequency range, the
third converts the rate in the flux under the assumption that photons are generated
isotropically, the fourth is the probability that a photon generated in a given point
reaches the surface, and the last term projects the flux from a given point on the
direction of the total flux. In addition, N∗(r) is the number density of resonantly
excited atoms in a given point, τ is the radiative lifetime of the excited state, r is a
distance from the surface point, which is taken as an origin from a current volume
point, and θ is an angle between the direction of the total flux from all the points
and the direction that joins the surface and a current point. In the case of the axial
symmetry, the total flux is directed perpendicular to the surface.
This formula is transformed into the total flux of photons j in the following way:

j =
∫

jωdω =
∫ N∗(r)dr

τ

P(r)
4πr2

cos θ. (9.5)

We above integrate formula (9.4) over frequencies and assume for simplicity that
all the partial fluxes have the same direction. In principle, the flux direction may be
different for different photon frequencies. In the case of axial symmetry all partial
fluxes of any frequency are directed perpendicular to the surface.

� Problem 9.3 Evaluate the radiation flux of a given frequency outside a plane layer
of a thickness L, if this layer is infinite in transverse directions and gas parameters
depend on a distance from the surface only.
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Let us introduce the optical thickness u of a given layer located at a distance x

from the surface as u =
x∫
0
kωdx′ and the total optical thickness of the layer as

uω =
x∫
0
kωdx. We have du = kωdx, and the volume element is dr = 2πr2drd cos θ.

Using the relations (5.24) and (5.28) between the absorption coefficient kω and the
frequency distribution function aω, we obtain the photon flux given by (9.4),

jω =
∫
d cos θdu

N∗aω

2τkω
e−u/ cos θ =

ω2

2π2c2

1∫
0

d cos θ

uω∫
0

due−u/ cos θ

(
g∗N0

g0N∗
− 1

)−1

.

(9.6)

In the case of thermodynamic equilibrium inside the layer when the temperature
T does not depend on a layer we have according to the Boltzmann formula (1.12)

g∗N0

g0N∗
= exp

(
h̄ω

T

)
,

and formula (9.6) takes the form

jω = j(o)ω

∫
cos θd cos θ

[
1 − exp

(
− uω

cos θ

)]
, (9.7)

where j(o)ω is the flux of photons that goes outside the black body and is given by

j(o)ω =
ω2

4π2c2

[
exp

(
h̄ω

T

)
− 1

]−1

. (9.8)

In the limiting cases the photon flux is

jω = j(o)ω , uω � 1; jω = 2j(o)ω uω, uω � 1 . (9.9)

As is seen, the optical thickness is the layer parameter that characterizes departure
of radiation outside the system.

� Problem 9.4 Estimate the flux of resonant photons of a given frequency which
live a gaseous volume with the constant number density of atoms in the ground
and resonantly excited states. The mean free path of a given photon is smaller than
a dimension of the gaseous volume and the curvature of its surface.

In this case the number density of atoms in the ground and resonantly excited
states inside the gaseous volume is supported by processes which are not connected
with radiation transfer, and there is an equilibrium inside the volume with respect
to absorption and emission processes. Denoting by iω the photon flux of a given
frequency that is propagated inside the volume, we obtain the rate of absorption
acts per unit volume and in a frequency range from ω to ω + dω to be iωkωdω,
where kω is the absorption coefficient given by formula (5.28). On the other hand,
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the number of emitting photons is given by N∗aωdω/τ, where N∗ is the number
density of excited atoms, τ is its radiative lifetime. From the equality of these rates
it follows

iω =
aωN∗
kωτ

. (9.10)

On the basis of formula (5.28) for the absorption coefficient we obtain from this

iω =
ω2

π2c2

(
N0
N∗

g∗
g0

− 1
)−1

. (9.11)

This photon flux is isotropic inside the gaseous volume until the distance from
its boundary is large compared with its mean free path (N0kω)−1 . Assuming the
curvature of the surface for photons of a given frequency to be small compared
to the surface curvature, we consider the volume boundary to be flat for these
photons. Since the photon flux to the boundary goes from one side and is directed
randomly, the resultant photon flux outside the volume is

jω =

π/2∫
0

iω cos θd (cos θ)


 π/2∫

−π/2

d (cos θ)




−1

=
iω
4
.

Here θ is an angle between the normal to the gas surface and the direction of
photon propagation; and we have taken into account that the total photon flux
outside the system is normal to the system surface. Finally, the flux of photons of
frequency ω outside the gaseous system is

jω =
ω2

4π2c2

(
N0
N∗

g∗
g0

− 1
)−1

, kωL � 1 ,

and this formula coincides with formula (9.6).

� Problem 9.5 Analyze the conditions of self-reversal of a spectral line and give the
criterion for this phenomenon.

The above analysis of propagation of resonant radiation through gas layer that is
large compared to mean free path of photons in the center of a spectral line is not
diffusive. The surface of a region occupied by a gas is crosses by photons which are
originated on a distance∼ 1/kω from the surface. Moreover, under thermodynamic
equilibrium in the gas region when the gas temperature is constant over all the
volume, the equilibrium flux of photons (9.8) is reached for frequencies for which
kωL ≥ 1, where L is a dimension of the gas region.
Let us now consider spread conditions when the temperature in the region,

which is responsible for emission in the center of the spectral line and hence
is located on a distance ∼ 1/ko from the surface, is lower that that for more deep
regions which are responsible for emission on wings of the spectral line. As a re-
sult, the flux for the central part of the spectral line becomes lower than that its
center, which leads to self-reversal of the spectral line as it is shown in Fig. 9.1.
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Fig. 9.1 Self-reversal of spectral lines. (1) shape of individual spectral
line, (2) spectral power of emitting radiation at constant temperature,
(3) spectral power of emitting radiation if the temperature drops
to the boundary.

Let us give the criterion when self-reversal of the spectral line will be remarkable.
Assuming a local thermodynamic equilibrium in each point, so that the number
density of atoms is given by Boltzmann formula (1.12) at each point. In addition,
the temperature is small T � h̄ω, and the number density of excited atoms is less
than that of excited ones. Then, connecting photons of a given frequency ω with a
distance ∼ 1/kω from the surface, one can represent the criterion of self-reversal
of spectral lines in the form

1
ko

h̄ω

T2

∣∣∣∣dTdx
∣∣∣∣ � 1 . (9.12)

� Problem 9.6 Analyze the self-reversal of a spectral line for the plane layer with
infinite transversal sizes, if the temperature varies inside the layer as T(x) = To +
αx, where x is the distance from the surface. In addition, αL � 1, where L is the
layer thickness, and the spectral line has the Lorentz shape.

Self-reversal of spectral lines results from radiation of a gas of a variable tempera-
ture when emission for the center of a spectral line is determined by a gas region
of a more low temperature, and Fig. 9.1 gives a typical spectral power emission in
this case. Let us represent formula (9.6) for the photon flux in the form

jω =
ω2

2π2c2

1∫
0

d cos θ

uω∫
0

due−u/ cos θF(u), F(u) =
(
eh̄ω/T − 1

)
. (9.13)

We suppose local thermodynamic equilibrium and a weak dependence on the ar-
gument for the function F[u(T)]. When it is expanded in a series

F = F(To) + αx
dT
dx

,

the second term is less than the first one. Under these conditions, the optical
thickness for a layer on a distance x from the surface is u = uωx/L. Next, for the
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Lorentz shape of the spectral line we have kω = ko(1 + s2)−1 , where the variable
s = (ω − ωo)/ν, so that ν is the line width, ko is the absorption coefficient for the
line center. From this we have the photon flux with accounting for two expansion
terms

jω = j(o)ω

1∫
0

d cos θ

uω∫
0

due−u/ cos θ

[
1 +

d ln F
dT

αu(1 + s2)
ko

]
, (9.14)

where the equilibrium flux j(o)ω corresponds to the surface temperature To and the
derivative d ln F/dT is taken at the surface also.
Let us evaluate this integral for frequencies of a large optical thickness uω � 1.

Then for the first term we also determine the correction with respect to a small
parameter 1/uω, while for the second term we restrict by the main term. As a
result, we obtain

jω = j(o)ω

(
1 − e−uω

uω
+

a
uω

)
, uω =

koL
1 + s2

, a =
2αL
3

d ln F
dT

, (9.15)

and a � 1.
From the analysis of formula (9.15) it follows that if uo ≡ koL � ln(1/a), the

photon flux increases at removal from the center of the spectral line. Themaximum
photon flux corresponds to the frequency where

(uω + 1) exp(−uω) = a . (9.16)

One can see that since a � 1, at this frequency uω � 1, i. e., the above formulas
hold true. In addition, the maximum photon flux corresponding to this frequency
is equal to

jω = j(o)ω

(
1 +

a
uω + 1

)
= j(o)ω [1 + exp(−uω)] , (9.17)

and because uω � 1, a � 1, the second term in this formula is small compared to
the first one.

� Problem 9.7 A region of a gas located in thermodynamic equilibrium is a source of
resonance radiation, and themean free path of photons in the center of a resonance
spectral line is small compared to dimensions of this region. Estimate the yield flux
of photons for an arbitrary form of this region and for the Lorentz shape of the
spectral line. Find the photon flux if a gas region is located between two parallel
infinite planes with a distance d between them, inside a cylinder tube of a diameter
d, and inside a spherical cavity of a diameter d.

First we estimate the photon flux. In the absence of absorption inside the system
this flux is estimated as

j ∼ N∗
τ
d ,
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where d is the minimal dimension of the gas region. But according to formula (9.2)
the probability to reach for a photon the surface is P(d) ∼ (kod)−1/2, which gives
the photon flux

j ∼ N∗d1/2

τk1/2o
. (9.18)

This estimate relates to an arbitrary geometry of the system.
We now consider the symmetric cases under consideration when the resultant

flux is directed perpendicular to the surface. Then we use formula (9.5) for the
photon flux and the asymptotic expression (9.2) for the probability for a photon to
reach the boundary. This gives

j =
N∗

4π3/2k1/2o τ

∫ dr cos θ

r5/2
. (9.19)

Taking the direction x to be perpendicular to the surface and introducing in accor-
dance with formula (9.18)

jo =
N∗d1/2

k1/2o τ
, (9.20)

we obtain a symmetric case

j = jo
1

4π3/2d1/2

∫ xdxdydz
(x2 + y2 + z2)7/4

. (9.21)

We now consider separately the cases under consideration. If the gas is lo-
cated between two parallel infinite planes, we obtain, introducing new variables
ρ =

√
y2 + z2, ϕ = arctan(y/z)

j =
jo

4π3/2d1/2

d∫
0

xdx
∞∫
0

2πρdρ

(ρ2 + x2)7/4
=

2jo
3π1/2 ≈ 0.376jo . (9.22)

In the other case when a gas is located inside an infinite cylinder tube of a diameter
d, on the basis of new variables ρ =

√
x2 + y2, ϕ = arctan(y/x) and formula (9.21)

we obtain

j =
jo

4π3/2d1/2

∫
ρ cos ϕρdρdϕ

√
πΓ(5/4)

ρ5/2Γ(7/4)

=
jo

4πd1/2
Γ(5/4)
Γ(7/4)

d∫
0

cos ϕdϕ

d cos ϕ∫
0

dρ√
ρ

≈ 0.274jo . (9.23)

If an excited gas occupies the volume inside the sphere of a diameter d, we use
spherical variables r, θ, ϕ and the origin to be located on the sphere surface, so
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that 0 ≤ r ≤ d cos θ, 0 ≤ θ ≤ π/2, 0 ≤ ϕ ≤ 2π. Integrating (9.21) over the region
inside the sphere, we obtain

j =
jo

4π3/2d1/2

1∫
0

2πd cos θ

d cos θ∫
0

r2dr
r cos θ

r7/2

=
jo√
π

1∫
0

cos3/2 θd cos θ ≈ 0.226jo . (9.24)

� Problem 9.8 Combine formulas (9.22), (9.23), and (9.24) to find the dependence
of the total flux of photons on the volume and surface of the region that is occupied
by an excited gas. Compare this flux with that in the absence of absorption inside
the volume.

On the basis of formulas (9.22), (9.23), and (9.24) one can suggest a general formula
for the total photon flux in the form

j =
0.54N∗
τk1/2o

√
V
S
. (9.25)

A numerical factor 0.54 differs from the accurate expressions in the above three
cases less than by 3%. Indeed, for emission from a flat layer this formula gives
0.382jo for the total photon flux, the value 0.272jo for emission of the cylinder tube,
and the value 0.220jo, if an excited gas is located inside a sphere.
All these results relate to the case when the mean free path k−1

o for resonance
photons in the center of a spectral line is small compared to dimensions of this
region occupied by an excited gas. If absorption inside this volume is absent and
photons leave this volume freely, the photon flux is equal to

j =
N∗
τ

V
S
.

One can see that the probability for a photon to leave the volume is

P = 0.5

√
S

koV
(9.26)

for the Lorentz shape of the spectral line. This corresponds to formula (9.2).

� Problem 9.9 For the Lorentz and Doppler shape of a spectral line estimate the
width of a resonance spectral line for radiation leaving a volume of dimension L
occupied by an excited gas. The mean free path of photons in the center of the
spectral line 1/ko is small compared to L.

The above analysis shows that under these conditions the width of a spectral line
for radiation leaving a volume of an excited gas is more than the width of the
spectral line of an individual atoms, because photons in the central part of the
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spectral line are absorbed inside the volume, while photons on wings of the spectral
line passes through this volume freely. Hence, the boundaries of the spectral line
can be estimated from the condition that the optical thickness for the boundary
frequencies is of the order of one

uω =
L∫
0

kωdx ∼ kωL ∼ 1. (9.27)

In the case of Lorentz broadening of the spectral line, if at wings kω = koν2/(ω −
ω0)2 according to formula (5.5), the width of the spectral line for the total radiation
flux is given by

∆ω ∼ ν
√
koL, koL � 1, (9.28)

where ν is the width of an individual line. In the same manner, when the spectral
line has the Doppler shape according to formula (5.3), the width of the spectral
line is

∆ω ∼ ∆ωD
√
ln(koL), koL � 1 , (9.29)

where ∆ωD is the width of the Doppler-broadened spectral line in the case of small
optical thickness of the plasma system. Thus resonant radiation emitting an excited
gas is characterized by broader spectral lines than is radiation from individual
atoms, because the main contribution to the emergent radiation arises largely from
the wings of the spectra of individual atoms.

9.2
Radiation Transport in Optically Thick Medium

� Problem 9.10 Evaluate the photon flux for a given frequency from a semi-infinite
layer with a weak temperature change that depend on a layer depth only.

We now consider formula (9.13) for the emission flux that has the form

jω =
ω2

2π2c2

1∫
0

d cos θ

uω∫
0

due−u/ cos θF(u), F(u) =
(
eh̄ω/T − 1

)
.

In the case of a constant temperature, the optically thick layer emits as a black body
with its temperature. If the layer temperature weakly varies, one can use the flux
of a black body with a temperature of a layer whose optical depth is of the order of
one.
This is an estimate, and to obtain a correct result, we expand F(u) near a point u1

F(u) = F(u1) + (u− u1)F′(u1) +
(u1 − u)2

2
F′′(u1) .
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Substituting this expansion in the expression for the photon flux, we obtain

jω =
ω2

2π2c2

[
1
2
F(u1) +

(
1
3
+
u1
2

)
F′(u1) +

(
1
4

− u1
3
+
u21
4
F′′(u1)

)]
.

Taking u1 = 1/3 such that the second term would be zero, we obtain the photon
flux

jω =
ω2

4π2c2

[
F

(
u =

2
3

)
+
8
5
F′′

(
u =

2
3

)]
. (9.30)

Ignoring the last term, we find that the radiation flux coincides with that from the
surface of a black body whose temperature is equal to the temperature of a layer
with the optical thickness of 2/3.
Let us estimate a small parameter used for deriving formula (9.30). This is

equal to

1
F
dF
du

=

dF
dT

dT
dx

du
dx

F
=
d ln T
kωdx

exp(h̄ω/T)
exp(h̄ω/T) − 1

∼ d lnT
kωdx

� 1 .

Thus, this expression for the photon flux holds true if the temperature varies weakly
on distances compared to the optical thickness.

� Problem 9.11 Determine the coefficient of radiative heat transfer in an optically
thick gas if a small temperature gradient occurs in a longitudinal direction, while
all the gas parameters are constant in transversal directions.

Let us determine the radiation flux jω that is equal at a given point to

jω = j+ω − j−ω ,

where j+ω, j
−
ω are the photon fluxes at this point which are created by spaces from

different sizes from this point. Taking formula (9.30) for the photon flux from each
side, we obtain the total photon flux at a given frequency

jω =
ω2

4π2c2

[
F(u =

2
3
) − F(u = −2

3
)
]
.

Using the expression

F(u) =
1

exp
(
h̄ω
T

)
− 1

,

and assuming the temperature gradient dT/dx to be relatively small (x is the lon-
gitudinal direction), we obtain the photon flux at a given frequency

jω =
ω2

3π2c2
dF
du

=
ω2

3π2c2
dF/dx
du/dx

=
ω2

3π2c2
h̄ω exp

(
h̄ω
T

)
kωT2

[
exp

(
h̄ω
T

)
− 1

]2
∣∣∣∣dTdx

∣∣∣∣ .
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From this we find the heat flux q due to radiation transfer

q =
∫

h̄ωjωdω .

On the basis of the above expression for the partial photon flux we obtain the
coefficient κrad of radiative heat transfer due to its definition q = −κdT/dx

κ =
∫

ω2

3π2c2

(
h̄ω

T

)2 exp
(
h̄ω
T

)
dω

kω

[
exp

(
h̄ω
T

)
− 1

]2 . (9.31)

One can see that the main contribution to the heat transfer coefficient follows
from the photon energies h̄ω ∼ T . Next, this formula is valid for a medium with a
wide absorption spectrum where the mean free path of photons k−1

ω ia small com-
pared to typical medium dimensions L. This is not valid for transport of resonance
radiation where for each medium dimension L one can find such frequencies for
which kωL ∼ 1. Then radiation transfer occurs with these frequencies which cor-
respond to wings of the resonance spectral line. Hence in this case the diffusion
character of heat transport will be violated.

9.3
Emission of Infrared Radiation from Molecular Layer

� Problem 9.12 Within the framework of a random model determine the average
absorption function A in a given frequency range where the distribution of the
transition intensities S is given by the probability p(S).

If the spectral band contains n spectral lines and the average distance between
neighboring spectral lines is δ, the absorption function according to formula (5.33)
is given by

A = 1 − 1
nδ

ωo+nδ/2∫
ωo−nδ/2

exp

[
−∑

k
u(k)

ω

]
dω ,

where ωo is the center of this frequency range, and u(k)
ω is the optical thickness

at a given frequency due to the k-th transition. The random model gives that the
probability of location of the k-th line center in the frequency range between ωk
and ωk + dωk is proportional to dωk, and we have

A = 1 −
exp

[
− ∑

k
u(k)

ω

]
∏
k
dωk

∏
k

∫
dωk

= 1 −
∏
k

ωo+nδ/2∫
ωo−nδ/2

dωk exp
[
−u(k)

ω

]

∏
k

ωo+nδ/2∫
ωo−nδ/2

dωk

.
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This average absorption function is the probability that a photon of a given fre-
quency range will be absorbed by the molecular layer. Because of the identity of
the frequency ranges, this integral takes the form

A = 1 −

 1
nδ

ωo+nδ/2∫
ωo−nδ/2

exp(−uω)dω



n

,

where uω is the optical thickness for an individual spectral line. We assume the
frequency range to be large compared to the width of an individual line, which
allows us to rewrite the above expression in the form

A = 1 −

1 − 1

nδ

ωo+nδ/2∫
ωo−nδ/2

(
1 − e−uω

)
dω



n

In the limit of an infinite number of spectral lines in a given frequency range
this formula gives

A = 1 − exp
[
−

∫ (
1 − e−uω

) dω

δ

]
. (9.32)

Using the distribution on intensities of spectral lines, one can represent this ex-
pression in the form

A = 1 − exp
[
−

∫ (
1 − e−uω(S)

) dω

δ
p(S)dS

]
. (9.33)

� Problem 9.13 Determine the distribution function on optical thicknesses for a
given frequency range on the basis of a random model.

The parameters of this problem are average frequency difference between neigh-
boring spectral lines δ and the distribution p(S) on the intensities in a given
frequency range. Our task is to find the distribution function f (u) on optical thick-
nesses. It is convenient to operate with the Fourier component of the distribution
function that is given by

χ(t) =
∞∫
0

e−itu f (u)du = ∏
k

∫
e−ituw(uk)duk = ∏

k
χk(t) ,

where uk is the optical thickness from a given spectral line, and the total optical
thickness u = ∑k uk; since within the framework of a random model distributions
for each line are independent, f (u)du = ∏k w(uk)dukt. On the basis of the inverse
operation we have

f (u) =
1
π

∞∫
−∞

eituχ(t)dt =
1
π

∞∫
−∞

∏
k

χk(t)eitukdt .
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Assuming the width of an individual spectral line to be small compared to the
width of a taken frequency range ∆ω, we have the probability that the center of a
given spectral to be located in a range between ωk and ωk + dωk is dωk/∆ω. Then
we have for the partial characteristic function

χk(t) =
∫
e−ituk dωk

∆ω
= 1 − 1

∆ω

∫ (
1 − e−ituk

)
dωk ,

and

lnχk(t) =
1

∆ω

∫ (
1 − e−ituk(ωk)

)
dωk .

This gives

lnχ(t) =
1

∆ω ∑
k

∫ (
1 − e−ituk(ωk)

)
dωk .

In the limit ∆ω/δ → ∞ we obtain from this

lnχ(t) =
∫ (

1 − e−ituk(ω−ωk,S)
) dω

δ
p(S)dS .

Here ωk is the center of the k-th spectral line, uk is the optical thickness due to this
line, and S is its intensity. From this it follows the distribution function x

f (u) =
1
π

∞∫
−∞

eituχ(t)dt

=
1
π

∞∫
−∞

eituχ(t)dt exp
[
itu−

∫ dω

δ
p(S)dS

(
1 − e−ituk(ω−ωk,S)

)]
. (9.34)

Let us determine from this the average absorption function that according to its
definition (5.33) is equal to

A =
∞∫
0

(1 − e−u) f (u)du = 1 −
∞∫
0

e−u f (u)du .

Using the above expression for the distribution function du and evaluating the
integral over du, we obtain

A = 1 − 1
π

∞∫
0

dt
(1 − it)

exp
[
−

∫ dω

δ
p(S)dS

(
1 − e−ituk(ω−ωk,S)

)]
.

The integrand has a pole at t = −i. Expressing the integral through a residue of
the integrand, we get finally

A = 1 − exp
[
−

∫ dω

δ
p(S)dS

(
1 − e−ituk

)]
.

This formula coincides with formula (9.33).
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� Problem 9.14 For a random model of spectral lines evaluate the effective fre-
quency width for emission of a molecular layer.

The definition of the effective width ∆ω of an emission band gives

∆ω = 2
∫
dω

∫
cos θd cos θ

[
1 − e−u(ω)/ cos θ

]
. (9.35)

Let us average this expression over optical thicknesses by using the distribution
function (9.34) on optical thicknesses. We have

1 − exp
(
− u
cos θ

)
= 1− 1

π

∞∫
−∞

dt
∞∫
0

du exp
[
− u
cos θ

+ itu−
∫ dωk

δ

(
1 − e−ituk

)]
,

where uk is the optical thickness that is created by an individual spectral line.
Integrating this expression over du and then over dt, as well as in the previous
problem, we obtain a residue of the integrand. As a result, we find

1 − exp
(
− u
cos θ

)
= 1 − exp

[
−

∫ dωk

δ

(
1 − e−uk/ cos θ

)]
.

This gives for the effective frequency width of the emission band

∆ω = 2
∞∫

−∞

dω

1∫
0

cos θd cos θ

(
1 − exp

[
−

∫ dωk

δ

(
1 − e−uk/ cos θ

)])
.

On the basis of the distribution function p(S) on frequencies for an individual
spectral line one can rewrite this expression in the form

∆ω = 2
∞∫

−∞

dω

1∫
0

cos θd cos θ

(
1 − exp

[
−

∫
p(S)dS

dωk

δ

(
1 − e−uk/ cos θ

)])
.

(9.36)

� Problem 9.15 For the Lorentz shape of the spectral line within the framework
of the random model of spectral lines evaluate the effective frequency width for
emission of a molecular layer.

The optical thickness of a layer due to an individual line according to formula (5.5)
is given by

u = umax
ν

(ω − ωk)2 + ν2
=

umax

1 + s2
,

where ωk is the frequency at the center of a spectral line, umax is the optical thick-
ness of the molecular layer for the line center, ν is the width of an individual
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spectral line, and the variable s = (ω − ωk)/ν. Substituting this expression in for-
mula (9.36), we get

∆ω = 2
∞∫

−∞

dω

1∫
0

cos θd cos θ


1 − exp


−ν

δ

∞∫
−∞

ds
(
1 − exp

[
− umax(ω)

(1 + s2) cos θ

])



 .

(9.37)

Here the optical thickness of the molecular layer at the line center umax(ω) is pro-
portional to the intensity of this spectral line, and the intensity in turn depends on
the transition frequency. The main contribution to this integral give frequencies
for which

ν

δ

∞∫
−∞

ds
(
1 − exp

[
− umax(ω)

(1 + s2) cos θ

])
∼ 1 .

We first consider the case when the width ν of an individual spectral line is small
compared to the mean difference of frequencies for neighboring transitions δ, i. e.,
ν � δ. Then the main contribution to integral (9.37) follows from the frequencies
whose difference with the frequency of the line center is larger than the line width
ν, i. e., s � 1. This gives

ν

δ

∞∫
−∞

ds
(
1 − exp

[
− umax

(1 + s2) cos θ

])
= 2

ν

δ

√
πumax

cos θ
.

Correspondingly, the effective width of an emission range is equal to

∆ω = 2
∞∫

−∞

dω

1∫
0

cos θd cos θ

[
1 − exp

(
−2ν

δ

√
πumax(ω)
cos θ

)]
.

For evaluating this integral, we take ω′ such that this frequency is close to the
central frequencyωo of the band, but the exponent at this frequency is large. Taking
into account a sharp frequency dependence of the optical thickness umax(ω) in
centers of lines, we approximate it by the dependence

umax(ω) = umax(ω′) exp[−α(ω − ω′)], α =
d ln umax

dω

∣∣∣∣
ω=ω′

.

Introducing a new variable, we reduce this expression to the form

∆ω = 2(ω′ − ωo) +
8
α

1∫
0

cos θd cos θ

B/
√
cos θ∫

0

(1 − e−z)
dz
z
,

where

z =
B√
cos θ

exp[−α

2
(ω − ω′)], B =

2ν
δ

√
πumax(ω′) .
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Using the asymptotic expression for the integral in ∆ω, we reduce it to the form

∆ω = 2(ω′ − ωo) +
8
α

1∫
0

cos θd cos θ
BeC√
cos θ

= 2(ω′ − ωo) +
4
α
ln(BeC+1/2) = 2(ω1 − ωo),

where C = 0.577 is the Euler constant, and the frequency ω1 is given by

umax(ω1) =
δ2

4πe2C+1/2ν2
= 0.015

δ2

ν2
. (9.38)

In the other limiting case ν � δ at frequencies, which give the main contribution
to the integral, umax � 1. From this we have

ν

δ

∞∫
−∞

ds
(
1 − exp

[
− umax(ω)

(1 + s2) cos θ

])
=

πνumax(ω)
δ cos θ

.

Repeating the operations of the previous limiting case, we obtain

∆ω = 2(ω′ − ωo) +
8
α

1∫
0

cos θd cos θ

B/
√
cos θ∫

0

(1 − e−z)
dz
z
,

and now

z =
B

cos θ
exp[−α(ω − ω′)], B =

πν

δ
umax(ω′) � 1 .

Evaluating the effective band width in the same method as early, we obtain

∆ω = 2(ω′ − ωo) +
4
α

1∫
0

cos θd cos θ
BeC

cos θ

= 2(ω′ − ωo) +
2
α
ln(BeC+1/2) = 2(ω1 − ωo) ,

where C = 0.577 is the Euler constant and the frequency ω1 is given by

umax(ω1) =
δ

πeC+1/2ν
= 0.11

δ

ν
. (9.39)

� Problem 9.16 For the Lorentz shape of the spectral line evaluate the effective width
of an emission band for a layer of a molecular gas whose vibration and transversal
temperatures coincide and are constant over the layer. Absorption results from
rotation–vibration transitions of linear molecules, and the intensities of centers
of spectral lines of these transitions varyslightly for neighboring lines, but vary
sharply in the limits of all the band.
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Formula (5.40) gives the optical thickness of a layer for a given frequency

uω = umax(ω)
cosh 2πν

δ − 1(
cosh 2πν

δ − cos 2π|ω−ωo|
δ

) . (9.40)

Here umax(ω) is the optical thickness in the centers of spectral lines, the difference
of frequencies of neighboring lines is δ = 2B/h̄, ν is the width of an individual
spectral line, and ωo is the frequency of the band center. The quantity umax(ω)
varies weakly, if the frequency ω varies by δ, but it varies strongly, if the frequency
ω varies by a value compared to the band width, i. e., at band edges it is small
compared to its value at the band center ωo. The band is symmetric with respect
to its center.
According to a general formula (5.35), the effective width of the spectral band is

now given by

∆ω = 2
∞∫

−∞

dω

1∫
0

cos θ d cos θ


1 − exp


−umax(ω)

cos θ

cosh 2πν
δ − 1(

cosh 2πν
δ − cos 2π|ω−ωo|

δ

)




 .

(9.41)

We consider below the limiting cases of this formula. If the width of an individual
spectral line ν is small compared to the distance δ between neighboring lines, this
formula takes the form

∆ω = 2
∞∫

−∞

dω

1∫
0

cos θ d cos θ

(
1 − exp

[
−umax(ω)

cos θ

])
. (9.42)

Because of a sharp dependence umax(ω) in scales of the band width we use the
standard method of evaluation of this integral. Let us take a frequency ω′ such that
umax(ω′) � 1, but ω′ is close to a frequency ω1 for which umax(ω1) ∼ 1. Using in
this range the dependence umax(ω) = umax(ω′) exp [−α(ω − ω′)], where α is the
logarithm derivative of the function umax(ω) at ω = ω′, we divide the integral over
frequencies in two parts with the boundary ω = ω′. This gives

∆ω = 2(ω − ω′) +
4
α

1∫
0

cos θ d cos θ

umax(ω′)
cos θ∫
0

(
1 − e−z) dz

z
,

where z = umax(ω)/ cos θ. Taking into account umax(ω′) � 1 on the basis of the
asymptotic expression of the last integral we find

∆ω = 2(ω − ω′) +
4
α
ln

[
umax(ω′)eC+1/2

]
≡ 2(ω1 − ωo),

umax(ω1) = e−C−1/2 = 0.34 .

Here C = 0.577 is the Euler constant.
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In the other limiting case, when the width of an individual line ν is small compared
to the distance δ between neighboring lines, we divide the integral (9.41) in integrals
near the centers of individual lines

∆ω =
δ

π

1∫
0

cos θ d cos θ ∑
k

2π∫
0

dϕ

(
1 − exp

[
−umax(ω)

cos θ

cosh 2πν
δ − 1(

cosh 2πν
δ − cos ϕ

)
])

,

where a new variable is introduced as

2π(ω − ωo) = ϕ + 2πk .

Assuming that the main contribution to the sum give many values of k, we replace
summation by integration over frequencies that gives

∆ω =
1
π

1∫
0

cos θ d cos θ

∞∫
−∞

dω

2π∫
0

dϕ

(
1 − exp

[
−umax(ω)

cos θ

cosh 2πν
δ − 1(

cosh 2πν
δ − cos ϕ

)
])

.

This operation allows us to separate the oscillating part from the part that varies
slightly for an oscillation period.
Let us expand the integrand over a small parameter ν/δ. Themain contribution to

the integral give ϕ ∼ 1, which allows us to expand cosh 2πν
δ over a small parameter.

This gives

∆ω =
1
π

1∫
0

cos θ d cos θ

∞∫
−∞

dω

2π∫
0

dϕ

(
1 − exp

[
−umax(ω)

cos θ

2π2ν2

δ2 (1 − cos ϕ)

])
.

As before, we introduce a frequency ω′ such that umax(ω′) � 1, but ω′ is close to
a frequency ω1 for which umax(ω1) ∼ 1. Using in this frequency range the depen-
dence umax(ω) = umax(ω′) exp [−α(ω − ω′)], where α is the logarithm derivative
of the function umax(ω) at ω = ω′, we divide the integral over frequencies in two
parts with the boundary ω = ω′. We get

∆ω = 2(ω′ − ωo) +
2
π

1∫
0

cos θ d cos θ

2π∫
0

dϕ

B
cos θ(1−cos ϕ)∫

0

(
1 − e−z) dz

z
,

where

z =
B

cos θ (1 − cos ϕ)
exp

[−α(ω − ω′)
]
, B = 2π2 ν2

δ2
umax(ω′) � 1 .

Using the asymptotic expression for the last integral at large values of the upper
limit, we obtain

∆ω = 2(ω′ − ωo) +
2

πα

1∫
0

cos θ d cos θ

2π∫
0

dϕ ln
BeC

cos θ (1 − cos ϕ)
.
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We reduce this integral to the form

∆ω = 2(ω − ω′) +
2
α
ln

[
2BeC+1/2

]
≡ 2(ω1 − ωo),

umax(ω1) =
δ2

4π2ν2
e−C−1/2 = 0.0086

δ2

ν2
.

Note that in the last limiting case ν � δ the optical thickness in the center of a
spectral line is created and is determined by one individual line. In the opposite
limiting case ν � δ when many individual spectral lines take part in absorption at
a given frequency, the total optical thickness in the center of an individual spectral
line increases compared to the optical thickness for this spectral line in πν/δ times.

� Problem 9.17 Within the framework of a model of single spectral lines and their
Lorentz shape find the average absorption function for a given frequency and the
effective width of an emission band for a layer of a molecular gas located under
thermodynamic conditions.

According to formula (5.5), the optical thickness of a layer due to an individual line
in the case of the Lorentz shape of spectral lines is given by

u = umax
ν

(ω − ωk)2 + ν2
=

umax

1 + s2
,

where ωk is the frequency at the center of a spectral line, umax is the optical thick-
ness of themolecular layer for the line center, ν is the width of an individual spectral
line, and the variable s = (ω − ωk)/ν is used. In the case under consideration in
the center of an individual spectral line the optical thickness umax(ω) � 1, whereas
between two individual lines the optical thickness is less than one. The absorption
function is equal to

A =
ν

δ

∞∫
−∞

ds
[
1 − exp

(
− umax

1 + s2

)]
,

where δ is the average difference of frequencies for neighboring lines. Since the
main contribution to this integral follows from s � 1 (umax � 1), we have from
this

A =
ν

δ

∞∫
−∞

ds
[
1 − exp

(
−umax

s2

)]
=

ν

δ

√
πumax δ � ν ,

and the average absorption function is

A =
ν
√

π

δ
u1/2max .
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The width of an emission spectral band is equal to

∆ω = ν ∑
k

1∫
0

cos θ d cos θ

∞∫
−∞

ds

(
1 − exp

[
−u(k)

max(ω)
s2 cos θ

])

= 2ν ∑
k

1∫
0

cos θ d cos θ

√
πu(k)

max cos θ =
4ν

√
π

5 ∑
k

√
u(k)
max , (9.43)

where u(k)
max is the optical thickness in the center of k-th spectral line. Assuming

that the effective band width is created by many individual spectral lines. Then
according to the definition of the line intensity

u(k)
max(ω) =

1
2πν

∫
S(ω)dx ,

where the integral is taken over the depth dx of a molecular layer. Assuming a cer-
tain frequency dependence for the intensity of spectral lines S(ω) and introducing
the distribution function p(S) on intensities of spectral lines, we obtain

∆ω =
2
√
2ν

5δ

∫ √∫
S(ω)dx p[S(ω)]dω .

Assuming the intensity S is connected with the frequency ω unambiguously, we
reduce this formula to the form

∆ω =
2
√
2ν

5δ

∫
dω

√∫
S(ω)dx .

� Problem 9.18 For the Lorentz shape of a spectral line determine the distribution
function f (u) on optical thicknesses u on the basis of the random model under
conditions when the regular model holds true.

On the basis of formula (5.31), we have the optical thickness of a layer u if we ex-
press it through the minimal optical thickness umin in the middle between centers
of neighboring lines

u = umin
cosh 2πν

δ + 1

cosh 2πν
δ − cos ϕ

,

where δ is the difference of frequencies of neighboring lines, ϕ = 2π(ω − ωk)/δ,
and we assume intensities of individual lines to be identical. The probability for a
given frequency ω to be located on the distance from the center of a nearest line
between ω − ωk and ω − ωk + dω is proportional to dω or dϕ. From this it follows
for the distribution function

f (u)du =
1
π
dϕ ,
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where ϕ ranges from 0 to π and the normalization of the distribution function has
the form

∫
f (u)du = 1. From this it follows

f (u) =
1
π

(
du
dϕ

)−1

. (9.44)

We consider below the limiting case δ � ν, and in this case the regular model
gives the following relation between the optical thickness u and the parameter ϕ:

u =
2umin

1 − cos ϕ
, sin

ϕ

2
=

√
umin

u
.

This gives for the distribution function according to formula (9.44)

f (u)du =

√
umindu

πu
√
u− umin

. (9.45)

We now use the random model when the distribution function is given by for-
mula (9.34)

f (u)du =
1
2π

∞∫
−∞

dt exp


itu−

∞∫
−∞

dω

δ

[
1 − exp

(
− itumax

1 + s2

)]
 ,

where we consider identical intensities of lines. Here umax is the optical thickness
for the center of some line, s = (ω − ω)/δ, so that ω is a current frequency, ωk is the
frequency of a center of an individual line. Introducing as early umin = umax(πν/δ)2

and using a new variable y = πνs/δ = π(ω − ωk)/δ, transform the above expression
to the form

f (u) =
1
2π

∞∫
−∞

dt exp


itu− 1

π

∞∫
−∞

dy
[
1 − exp

(
− itumin

y2

)]
 .

Evaluating the integral over dy, we obtain

f (u) =
1
2π

∞∫
−∞

dt exp

(
itu−

√
2
π
tumin − i

√
2
π
tumin

)
.

In the limit u � umin we obtain from this

f (u) =
1
π

u1/2min
u3/2

,

i. e., this distribution function coincides with the accurate one. When u ∼ umin ,

the random model gives the result that does not coincides with the accurate one.
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� Problem 9.19 Determine the absorption function of a flat layer within the frame-
work of the model of single spectral lines if the optical thickness sharply drops
along an individual spectral line and the optical thickness is small in the middle
between neighboring lines.

We have for the absorption function within the framework of the single line
model as

A =
∫ dω

δ
(1 − e−u) .

In fact, the absorption function is now a part of the spectral frequencies near the
centers of individual lines in which photons are absorbed by a gas layer. On the
basis of this formula, the absorption function may be estimated as

A = 2
|ω1 − ωk|

δ
, u(ω1) ∼ 1 , (9.46)

where ωk is the line center and δ is the average difference of frequencies for
neighboring lines. Let us evaluate this value more precise by using the standard
method that takes into account a sharp dependence u(ω). Then we introduce a
typical frequency ω′ such that u(ω′) � 1, but ω′ is close to a frequency ω1 for
which u(ω1) ∼ 1. Using this range of frequencies the approximation u(ω) =
u(ω′) exp [−α(ω − ω′)], where α is the logarithm derivative of the function u(ω)
at ω = ω′, we obtain dω = −du/(αu). This gives

A =
2
δα

u(ωo)∫
0

du
u

(1 − e−u) =
2(ω′ − ωk)

δ
+
2
δα

u(ω′)∫
0

du
u

(1 − e−u) .

The asymptotic expression for this integral for u(ω′) � 1 is

u(ω′)∫
0

du
u

(1 − e−u) = ln u(ω′) +C ,

where C = 0.577 is the Euler constant. Thus, we have

A =
2(ω′ − ωk)

δ
+
2
δα

(
ln u(ω′) +C

)
=
2(ω1 − ωk)

δ
, u(ω1) = e−C = 0.56 . (9.47)

� Problem 9.20 Determine the effective width of the emission band within the
framework of the model of single spectral lines for the Doppler form of the spectral
line.

The width of an individual line is small compared to the average distance δ between
neighboring lines, which leads to an independent contribution to the effective band
width from each individual spectral line. Therefore, we restrict by the contribution
∆ω from an individual spectral line, which is given by

∆ωk = 2
∞∫

−∞

dω

1∫
0

cos θd cos θ
[
1 − e−u(ω)/ cos θ

]
,
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where u(ω) is a sharply decreased function with removal from the central fre-
quency; in addition, the function u(ω) is symmetric with respect to the line center.
Taking the integral on parts, we have

∆ωk = 2
∞∫

−∞

dω
[
1 − e−u(ω)

]
+

∞∫
−∞

u(ω)dω

1∫
0

d cos θe−u(ω)/ cos θ

= Aδ +
∞∫

−∞

u(ω)dω

1∫
0

d cos θe−u(ω)/ cos θ ,

where A is the absorption function that is given by formula (9.47). The second
integral can be evaluated by the standard method for a sharply varied function
u(ω). In this method we take the frequency ω′ such that u(ω′) � 1, but ω′ is
close to a frequency ω1 for which u(ω1) ∼ 1. Using this range of frequencies the
approximation u(ω) = u(ω′) exp [−α(ω − ω′)], where α is the logarithm derivative
of the function u(ω) at ω = ω′, we have dω = −du/(αu), and the second integral
takes the form

2
∞∫
0

u(ω)dω

1∫
0

d cos θe−u(ω)/ cos θ =
2
α

1∫
0

cos θd cos θ =
1
α
,

where we use u(ωk) � 1. As a result, we obtain the effective line width

∆ω = 2(ω1 − ωk) +
1
α
= 2(ω2 − ωk) , u(ω2) = e−C−1/2 = 0.34 . (9.48)

We now use this result for the Doppler form of a spectral line (5.4), so that

u(ω) = u(ωk) exp

[
−mc2

2T
(ω − ωk)2

ω2
k

]
.

Assuming ∆ω � ωk, we obtain the average absorption function on the basis of
formula (9.47)

A =
2ωk

δ

(
T
mc2

)1/2

(ln u(ωk) +C)1/2 ,

where an average is made over centers of individual lines, and the effective width
of the emission band due to an individual line is

∆ωk = 2ωk

(
T
mc2

)1/2

(ln u(ωk) +C + 1/2)1/2 .

The total effective width of the emission band is equal to

∆ω = ∑
k

∆ωk . (9.49)
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� Problem 9.21 The absorption coefficient for an individual spectral line varies by
(ω − ωk)−n as the frequency ω removes from the line center ωk, and the width of
an individual spectral line is less than the distance between neighboring lines. The
emission band is symmetric with respect to the band center ωo, and the layer is
also optically thick near ωo between neighboring lines, whereas the optical depth
at centers of spectral lines drops sharply with removal from the central frequency.
Determine the effective width of a spectral band for such a layer, if the effective
width of an individual spectral line is relatively small, i. e., the optical thickness at
frequencies between two line centers is low.

Using the variable s = |ω − ωk| /ν, where ν is of the order of the width of an
individual spectral line, so that the layer optical width due to an individual spectral
line can be approximated as

u(ω) = u(ωk)
(

ν

ω − ωk

)n

= u(ωk)s−n ,

where u(ωk) is the optical thickness of the layer for the center of a given spectral
line.
On the basis of formula (9.48) we obtain the contribution to the effective band

width due to an individual spectral line

∆ωk = ν
[
u(ωk)eC+1/2

]1/n
.

The total effective width of the spectral band is equal according to formula (9.49)

∆ω = ∑
k

∆ωk =
ν

δ

∞∫
−∞

dωk

[
u(ωk)eC+1/2

]1/n
,

where we assume that many transitions determine the effective band width that
allows us to replace summation by integration; δ is the average difference of fre-
quencies for neighboring transitions. Next, we assume a sharp decrease of the
optical thickness in centers of spectral lines when we remove from the center band.
Let us take

u(ωk) = u(ωo) exp[−α(ωk − ωo)] ,

where ωo is the frequency of the band center. This gives for the total effective width
of the spectral band

∆ω =
2νn
αδ

[
u

(
ωoeC+1/2

)]1/n
. (9.50)

9.4
Propagation of Resonant Radiation in Optically Thick Gas

� Problem 9.22 Derive the kinetic equation for the number density of resonantly
excited atoms by taking into account re-emission of resonance photons.
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The balance equation (9.58) and its solution (9.59) relate to an average number
density of resonantly excited atoms, and this average is made over all the plasma
regions. We will refer now the number density of excited atoms to a certain point,
rather than to the total plasma. Then the balance equation for the number density
N∗(r, t) has the form

∂N∗
∂t

= NeNokex − NeN∗kq − N∗
τ

+
1
τ

∫
N∗(r′)G(r′, r)dr′. (9.51)

This equation is based on equation (9.58), but differs from it. First, it contains a
partial time derivative because the number density of excited atoms also depends
on coordinates. Second, τ is the radiative lifetime for an individual atom, rather
than a radiative time outside a plasma region. And the principal difference these
balance equations consists in the last term that accounts for reabsorption. Indeed,
G(r′, r)dr′ is the probability that a photon, which is originated at point r, will be
absorbed in a volume dr′ near a point r′.

� Problem 9.23 Obtain the expression for the Green function G(r′, r) of equation
(9.51).

The Green function G(r′, r) of equation (9.51) that describes the reabsorption of
resonance photons is symmetric with respect to its coordinates

G(r′, r) = G(r, r′) ,

as it follows from its physical nature. If a plasma occupies infinite space,
∫
G(r′, r)dr′ =

∫
G(r′, r)dr = 1 .

In order to write the expression for the Green function, we determine the prob-
ability G(r′, r)dr that a photon that is originated at point r′ will be absorbed in a
volume element dr near a point r. Let us represent this volume element dr = dxds,
where x is directed along the photon propagation, nd the area element ds is perpen-
dicular to this direction. One can represent the probability G(r′, r)dr as a product
of some probabilities. We have

G(r′, r)dr =
∫

aωdω
ds

4π |r − r′|2 kωdx exp
(

−
∫
kωdx

)
.

The first term is the probability that a photon is emitted in a given frequency range,
the second means the probability that a photon emitted isotropically will intersect
a given area element. The third term is the probability that the photon will be
absorbed in a range dx, and the fourth is the probability to survive for the photon
on the way to a point r. Thus, we obtain the Green function

G(r′, r) =
∫ aωkωdω

4π |r − r′|2 exp
(

−
∫
kωdx

)
. (9.52)
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Correspondingly, equation (9.51) now takes the form

∂N∗
∂t

= NeNokex −NeN∗kq − N∗
τ
+
1
τ

∫
N∗(r′)dr′

∫ aωkωdω

4π |r − r′|2 exp
(
−

∫
kωdx

)
,

(9.53)

This equation is named the Biberman–Holstein equation.

� Problem 9.24 Determine the Green function G(r′, r) of the Biberman–Holstein
equation (9.53) for a uniform optically thick gas or plasma for photons in the center
of the spectral line and both forms of a spectral line, the Lorentz and Doppler ones.

The Green function (9.52) for a uniform gas has the form

G(R) =
∫ aωkωdω

4πR2
exp (−kωR) . (9.54)

In the case of the Lorentz form of the spectral line (5.9) use the variable s = 2(ω −
ωo)/ν, and the Green function takes the form

G(R) =
ko

4πR2

∫ ds
(1 + s)2

exp
(

− koR
1 + s2

)
=

ko
4πR2

d
dkoR

[
e−koR/2Io

(
koR
2

)]
,

where ko is the absorption coefficient in the line center. In deriving of this expres-
sion we used the variable ϕ = 2 arctan s, and the definition of the Bessel function

Io(z) = 1
π

π∫
0
exp(−z cos ϕ)dϕ. In the limiting case koR � 1 this formula gives

G(R) =
1

(4πko)1/2R7/2
. (9.55)

In the case of the Doppler form of the spectral line (5.4) use the variable s =
(ω−ωo)

ωo
(mc2/T)1/2, so that aωdω = π−1/2 exp(−s2)ds and kω = ko exp(−s2). Sub-

stituting this in formula for the Green function and introducing the variable t =
koR exp(−s2), we obtain

G(R) =
ko

4(π)3/2R2

∞∫
−∞

ds exp(−s2 − t) =
1

4(π)3/2koR4

koR∫
0

te−tdt√
ln(koR/t)

.

In the limiting case under consideration koR � 1, replacing the upper limit by
infinity and considering ln koR � 1, we get

G(R) =
1

4(π)3/2koR4
√
ln(koR/to)

,

where to is the solution of the equation
∞∫
0
te−tdt

√
ln(t/to) = 0. Solving this equation,

we obtain

G(R) =
1

4(π)3/2koR4
√
ln(koR) − 0.42

. (9.56)
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� Problem 9.25 Obtain the criterion of thermodynamic equilibrium of resonantly
excited atoms in a plasma, if this equilibrium is established as a result of electron
collisions with atoms in the ground and excited states.

We use the following processes which determine the formation and decay of res-
onantly excited atoms:

e + A ←→ e + A∗ ; A∗ → A + h̄ω. (9.57)

Here A and A∗ are the atoms in the ground and excited states, respectively, and h̄ω

denotes a resonance photon. On the basis of this scheme of processes we have the
following balance equation for the number density of resonantly excited atoms:

dN∗
dt

= NeNokex − NeN∗kq − N∗
τ
, (9.58)

where No, N∗are the number densities of atoms in the ground and resonantly ex-
cited states, Ne is the number density of electrons, kex is the rate constant of atom
excitation by electron impact, kq is the rate constant of quenching of a resonantly
excited atom by electron impact, and τ is a lifetime of the resonantly excited state
with respect to radiation. Note that if an emitting photon is absorbed in a plasma
again, an excitation is conserved in a plasma. Therefore τ is the lifetime with re-
spect to the departure of the photon outside a plasma region. Solving this balance
equation under stationary conditions, we obtain

N∗ = No
kex
kq

(
1 +

1
Nekqτ

)−1

. (9.59)

Let us analyze this formula. If the number density of electrons is large, i. e., the
criterion

Nekqτ � 1 (9.60)

holds true, departure of radiation does not violate equilibrium that is established
by electrons. We assume the energy distribution of electrons to be the Maxwell one
with a certain temperature. Then in electron–atom collisions (9.57) an equilibrium
is established between the ground and resonantly excited atom states, i. e., the
relation between the number density of atoms in the ground and resonantly excited
states is given by the Boltzmann formula (1.12) with the electron temperature.
Thus, criterion (9.60) characterizes thermodynamic equilibrium for excited

atoms. Note that the quenching rate constant is included to this criterion, rather
than the excitation rate constant.

� Problem 9.26 Derive the criterion when resonant radiation does not violate ther-
modynamic equilibrium between the ground and resonantly excited atom states
that is established in electron–atom collisions (9.57).

We roughly obtain this criterion (9.60) above considering the plasma region as a
whole. We now obtain this criterion from the Biberman–Holstein (9.53) equation.
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It is convenient to rewrite this equation for the function y(r) = N∗/NB∗ , where the
number density of resonantly excited atoms NB∗ is given by the Boltzmann formula
(1.12) and corresponds to thermodynamic equilibrium. Introducing a reduced pa-
rameter β = Nekqτ and the reduced time t′ = t/τ, where τ is the radiative lifetime
of an individual atom, we reduced the Biberman–Holstein equation (9.53) to the
form

∂y(r)
∂t

=
∫
y(r′)G(r, r′)dr′ + β − (1 + β)y(r) . (9.61)

We consider the stationary regime and from this equation it follows that if β � 1,
the solution of this equation is y(r) = 1, i. e., thermodynamic equilibrium is sup-
ported. Let us introduce the probabilityW(r) =

∫
G(r, r′)dr′ that a photon arising

at a point r will be absorbed in a plasma region. We will operate below with an av-
erage over the plasma region quantities y andW . Then the approximated solution
of equation (9.61) is

y =
β

1 + β −W
. (9.62)

Introducing the mean probability for a photon to go outside a plasma region
P = 1 −W , we obtain the criterion of thermodynamic equilibrium for resonantly
excited atoms in the form β � P, or

Nekqτ � P .

This coincides with criterion (9.60) if we take into account that the quantity τ in
this criterion is a typical time of excitation location inside a plasma region, i. e., the
value τ/P in these notations.

� Problem 9.27 Assuming the number density of excited atoms N∗ and other para-
meters of a radiating gas to be constant inside a gas region, determine N∗ and the
flux of emitting photons for the Lorentz line form and an optically thick gaseous
region.

Let us introduced the reduced parameter

βef =
β

P
= Nekqτ/P ,

and the criterion (9.60) has the form βef � 1. Then the solution (9.62) has the form

y =
βef

βef + P

gives the number density of resonantly excited atoms.
In the limiting case βef � 1 when the number density of excited atoms N∗ is

smaller than that under thermodynamic equilibrium and is equal to

N∗ = NB∗ Nekqτ/P .
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The rate J of emitting photons (a number of photons per unit time that leave a gas
region) is equal to

J =
N∗V

τ
P ,

where V is the gas region volume. For the Lorentz line form a typical probability
for an emitting photon to leave a gas region according to formula (9.2) is estimated
as P ∼ (koR)−1/2, here R is a dimension of the gas region.
In the other limiting case βef � 1 the number density of excited atoms is given

by the Boltzmann formula (1.12), and the rate of emitting photons in accordance
with formula (9.26) is given by

J = 0.5

√
S

koV
NB∗ V =

0.5NB∗
τ
√
ko

√
VS ,

where S is the area of a surface that restricts the region occupied by an excited gas.

9.5
Kinetics of Atom Excitation by Electron Impact in a Gas in Electric Field

� Problem 9.28 Electrons are moving in a gas in a constant electric field. Electrons
obtain energy from an electric field and lost it in elastic collisions with atoms and
due to excitation of atoms. If the electron energy exceeds the threshold energy ∆ε

of atom excitation, electrons excite atoms. Find the rate of atom excitation.

For description of this process, we use expansion (7.2) for a nonstationary distrib-
ution function of electrons, and using the standard procedure, as for deduction of
the set of equations (7.3), we instead obtain this set of equations

∂ fo
∂t

+
a
3v2

∂(v3 f1)
∂v

= Iea( fo),
∂ f1
∂t

+ a
∂ fo
∂v

= −νv f1 . (9.63)

Assuming the excitation flux to be relatively small, we ignore a nonstationarity
overall, except the first term, which corresponds to a small flux in the energy space.
As a result, we obtain

∂ fo
∂t

= Iea( fo) +
a
3v2

d
dv

(
v2

ν

d fo
dv

)
. (9.64)

The nonstationarity of the distribution function is only due to atom excitation.
Hence, the rate of excitation is

dN∗
dt

= −dNe
dt

= −
∫
4πv2dv

∂ fo
∂t

,

where N∗ is the number density of excited atoms. Using the collision integral (6.59)
for the electron distribution function fo, we obtain from this

dN∗
dt

= 4π
me

M
v3ν

[(
T +

Ma2

3ν2

)
d fo
dε

+ fo

]∣∣∣∣
ε=∆ε

, (9.65)

where ε = mev2/2 is the electron energy and ∆ε is the energy of atom excitation.
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� Problem 9.29 Determine the energy distribution function of electrons under the
conditions of the previous problem.

We use the boundary condition fo(∆ε) = 0 for the distribution function which satis-
fies to the following equation under stationary conditions and below the excitation
threshold far from it(

T +
Ma2

3ν2

)
d fo
dε

+ fo = 0 .

This means a fast absorption of electrons above the excitation threshold and gives
the distribution function

fo(ε) = C [ϕo(ε) − ϕo(∆ε)] = C


exp


−

ε∫
0

dε′

T + Ma2
3ν2


 − exp


−

∆ε∫
0

dε′

T + Ma2
3ν2





 ,

(9.66)

and ϕo(ε) is the distribution function if we ignore absorption of fast electrons due
to the excitation process, so that far from the excitation threshold ϕo(ε) = fo(ε).
The constant C follows from the normalization condition

C = Ne


4π

vo∫
0

v2dv exp


−

ε∫
0

dε′

T + Ma2
3ν2







−1

. (9.67)

Here Ne is the number density of electrons and the electron threshold velocity is
vo =

√
2∆ε/me.

� Problem 9.30 Determine the efficiency of atom excitation by considering energy
losses due to elastic electron–atom collisions under the conditions of the previous
two problems. Take the rate of electron–atom elastic collisions to be independent
of the electron velocity.

Thus, we obtain the rate of atom excitation by individual electrons in a gas in an
external electric field

dN∗
dt

= 4πv3o
me

M
ν(vo)ϕo(vo) = Ne

me

M
ν(vo) ·

exp

(
−

∆ε∫
0

dε′

T+Ma2

3ν2

)

vo∫
0

(
v
vo

)2
dv
vo
exp

(
−

ε∫
0

dε′
T+Ma2

3ν2

) ,

(9.68)

where ϕo(vo) = ϕo(∆ε) is the electron distribution function at the excitation thresh-
old if we neglect the excitation process. In the case ν(vo) = const this formula takes
the form

dN∗
dt

=
4√
π

(
∆ε

T + Ma2
3ν2

)3/2

Ne
me

M
ν(vo) exp

(
− ∆ε

T + Ma2
3ν2

)
. (9.69)
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It is of interest to find which part ξ of the power, taken by electrons from an
external electric field, is consumed on atom excitation. We assume that the power
obtained by electrons from the electric field is transformed mostly into the atom
thermal energy as a result of elastic collisions between electrons and atoms, and
this power per electron is eFw, where w is the electron drift velocity. In the case
ν = const we have from formula (9.69) neglecting the atom thermal energy (T �

Mw2)

ξ =
∆ε dN∗

dt
eFwNe

=
4

3
√

π

(
∆ε

ε

)3/2

exp
(

−∆ε

ε

)
, (9.70)

where ε = Ma2/(3ν2) = Mw2/3 is the average electron energy. Figure 9.2 contains
the dependence of the efficiency of atom excitation ξ on the electron energy ε under
these conditions.

Fig. 9.2 The efficiency of atom excitation in a plasma located in a constant
electric field as a function of the reduced average electron energy in the
case when the rate of electron-atom elastic collisions is independent of the
electron velocity.

� Problem 9.31 Determine the energy distribution function of electrons near the
excitation threshold if the excitation process is weak and corresponds to a tail of
the distribution function. Find the criterion of this.

The above formulas are based on the assumption that the rate of atom excitation
is determined mostly by diffusion of electrons in an energy space from small ener-
gies up to the atom excitation energy. We now consider another limiting case when
excitation on the tail of the energy distribution function proceeds weakly and the
efficiency of atom excitation near the threshold is determined by individual elec-
trons which move in a gas in an external electric field. We first evaluate the electron
distribution function above the excitation threshold in the energy range ε ≥ ∆ε,
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including the kinetic equation for electrons the term of inelastic electron–atom
collisions. We assume that quenching of the excited atom proceeds by not electron
impact because of a small number density of electrons. Then the second equation
of set (7.3) takes the form

a
3v2

d
dv

(v3 f1) = Iea( fo) − νex fo , (9.71)

where νex = Nakex,Na is the number density of atoms, and kex is the excitation rate
constant of the atom by electron impact. The collision integral Iea (6.59) takes into
account elastic electron–atom collisions. Using relation (7.3) between fo and f1 , we
obtain the following equation for fo:

a
3v2

d
dv

(
v2

ν

d fo
dv

)
+ Iea( fo) − νex fo = 0 . (9.72)

Based on expression (6.59) for the electron–atom collision integral and neglecting
the atom kinetic energy (∼T) compared to the electron energy, we have

a
3v2

d
dv

(
v2

ν

d fo
dv

)
+
me

M
1
v2

d
dv

(v3ν fo) − νex fo = 0 . (9.73)

We assume the average electron energy ε to be small compared to the atom excita-
tion energy ∆ε. Then, as it follows from formula (7.26), the mean electron energy
is ε ∼ Ma2/ν2. In addition, we assume that atom excitation does not influence on
the electron distribution function below the excitation threshold, i. e.,

ν � νex � ν
me

M
∆ε

ε
. (9.74)

This allows us to neglect the second term of the kinetic equation (9.73). Let us solve
the resultant kinetic equation for the tail of the distribution function on the basis of
the quasiclassical method accepting fo = A exp(S), where S(v) is a smooth func-
tion, i. e., (S′)2 � S′′. This gives S′ =

√
3νexν/a, a = eF/me, and the distribution

function for ε � ε̄ has the form

fo(v) = fo(vo) exp (−S) = fo(vo) exp


−

v∫
vo

dv
a

√
3νexν


 , (9.75)

where vo =
√
2∆ε/me and fo(vo) is determined by elastic electron–atom collisions.

Near the threshold of atom excitation this formula gives

S =
2vo
5a

√
3
g∗
go

νqνo

(
ε − ∆ε

∆ε

)5/4

, (9.76)

where the rate of elastic electron–atom collisions at the excitation threshold is νo =
ν(vo), νq = Nakq, kq is the rate constant of quenching of the excited atom by
electron impact, go, g∗ are the statistical weights of the ground and excited atom
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states, a = eF/me, and we use formula (4.18) for the rate constant of atom excitation
by electron impact that connects this rate constant and the rate of quenching of an
excited atom by a slow electron. Using formula (9.75) for the electron distribution
function, we assume the logarithm derivative of the distribution function to be
determined by the excitation process not far from the threshold.

� Problem 9.32 Determine the efficiency of atom excitation under the conditions
of the previous problem.

Formula (9.75) gives the rate of atom excitation by electrons if this process proceeds
mostly near the excitation threshold

dN∗
dt

=
∫
4πv2dv fo(vo)e−Sνex(v) = 4.30av2o

(
a

voνo

)1/5 (
νqg∗
νogo

)2/5

fo(vo) ,

(9.77)

and the distribution function is normalized by condition (2.30).
Comparing formulas (9.69) and (9.77) for the rate of atom excitation by individual

electrons moving in a gas in an external electric field, one can do a choice between
these two limiting cases. Indeed, in the case

(
a

voνo

)6/5 (
νqg∗
νogo

)2/5

� 1 (9.78)

the excitation process is restricted by diffusion of electron in an energy space to
the excitation threshold, and the rate of this process is determined by formulas
(9.68) and (9.69). In the other limiting case the excitation rate is determined by for-
mula (9.77). Note that formula (9.77) is valid at low electric field strengths, whereas
formula (9.69) holds true at high field strengths.

� Problem 9.33 Determine the efficiency of atom excitation if the number density
of electrons is not small and electron–electron collisions establish the Maxwell
distribution function of electrons.

When electrons are located in a plasma, the energy distribution function of elec-
trons drops strongly on the tail due to excitation of atoms and can be restored
owing to collisions between electrons. Analyzing the character of atom excitation
in a plasma, we assume for simplicity that excited states are destroyed as a result
of radiation, i. e., quenching by electron impact is absent, and the excitation energy
does not return to electrons. We assume criterion (7.18) to be valid, so that we have
the Maxwell distribution function of electrons on velocities. In the first limiting
case we assume the Maxwell distribution function is restored at energies ε ≥ ∆ε

(∆ε is the atom excitation energy) which are responsible for excitation of atoms.
Then the rate of atom excitation is equal to

dN∗
dt

= Na
∫
4πv2dvϕ(v)kex(v) , (9.79)
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where N∗ is the number density of excited atoms, Na is the number density of
atoms in the ground state, ϕ(v) is the Maxwell distribution function of electrons,
kex is the rate constant of atom excitation by electron impact which is given by
formula (4.18). Averaging over the Maxwell distribution function of electrons, we
have

dN∗
dt

= NaNekex = NaNekq
g∗
go
exp

(
−∆ε

Te

)
, (9.80)

where the average rate constant of atom excitation in the limit ∆ε � Te (Te is the
electron temperature) is equal to

k̄ex =
1
Ne

∫
4πv2dvϕ(v)kex(v) =

g∗
go
kq exp

(
−∆ε

Te

)
. (9.81)

� Problem 9.34 Determine the energy distribution function of electrons near the
atom excitation threshold and the efficiency of atom excitation if the Maxwell dis-
tribution function of electrons is violated near the threshold because of excitation
of atoms, while far from the excitation threshold it is the Maxwell one.

Let us consider the other limiting case of excitation of atoms by electrons in a
plasma when criterion (7.18) is valid, but the Maxwell distribution function of elec-
trons is not restored due to electron–electron collisions above the excitation limit
because of absorption of fast electrons as a result of the excitation process. Then
the excitation rate of atoms is determined by the rate of formation of fast electrons
with the energy ε > ∆ε as a result of elastic collisions of electrons. Then on the ba-
sis of the kinetic equation (7.6), by using expression (6.68) for the electron–electron
collision integral, we obtain the excitation rate per unit volume as

dN∗
dt

= −
∞∫

vo

4πv2dv
∂ f
∂t

= −
∞∫

vo

4πv2dvIee( fo) = − 4πvo
me

Bee(vo)
(
fo
Te

+
d fo
dε

)
, (9.82)

where the distribution function fo is taken at the excitation energy ε = ∆ε. The elec-
tron distribution function in this case is the solution of the equation Iee( fo) = 0
under the boundary condition fo(vo) = 0 which accounts for an effective absorp-
tion of electrons above the excitation threshold. Then we have for the distribution
function

fo(v) = Ne

(
me

2πTe

)3/2 [
exp

(
− ε

Te

)
− exp

(
−∆ε

Te

)]
, ε ≤ ∆ε . (9.83)

From this it follows that the electron distribution function is the Maxwell one far
from the excitation threshold, while near the threshold the distribution function
tends to zero because of absorption of electrons due to excitation of atoms. Using
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this distribution function and expression (6.69) for Bee(v), we obtain in this case
the rate of excitation as

dN∗
dt

= 4
√
2π·N

2
e e

4∆ε lnΛ

m1/2
e T5/2e

exp
(

−∆ε

Te

)
. (9.84)

Formula (9.84) is valid at high number densities of electrons when fast estab-
lishment of the equilibrium takes place for the electron distribution function on
velocities. The corresponding criterion has the form

Ne

Na
�

kq
kee

, (9.85)

where the effective rate constant of elastic collisions of electrons kee due to the
Coulomb interaction of electrons follows from comparison of formulas (9.80) and
(9.84) and has the form

kee = 4
√
2π· go

g∗
e4∆ε lnΛ

m1/2
e T5/2e

. (9.86)

Formula (9.84) is valid under the opposite condition with respect to the criterion
(9.85). As it is seen, the criterion (9.85) is much stronger than the criterion (7.18)
becauseme � M. Thus both considering regimes of atom excitation in a plasma are
possible. At relatively small number densities of electrons the distribution function
is given by formula (9.76), while the Maxwell distribution function of electrons is
valid at not low degrees of ionization. Correspondingly, the rate of atom excitation
in a plasma varies from that by formula (9.80) to that by formula (9.84), as the
electron number density increases.
As a demonstration of these results, Table 9.1 contains values of the rate con-

stants (9.86) for rare gas atoms under typical conditions Te = 1eV, lnΛ = 10, and
the boundary ionization degree is given by the relation(

Ne
Na

)
b
=

kq
kee

(9.87)

for these parameters.

Table 9.1 The parameters of the criterion (9.86) for metastable inert gas atoms.

Metastable atom ∆ε (eV) kee(10−4cm3/s)
(
Ne
Na

)
b
(10−6)

He(23S) 19.82 5.8 5.4
Ne(23P2) 16.62 2.9 0.69
Ar(33P2) 11.55 2.0 2.0
Kr(43P2) 9.915 1.7 2.0
Xe(52P2) 8.315 1.4 13

Note that in the case of high electron densities when the electron distribution
function is the Maxwell one in the basic range of electron energies, this value is
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represented in the form f = f (vo) exp(−S), which is characterized by the following
exponent:

S =
ε − ∆ε

Te
= 3ν2o

(ε − ∆ε)
Ma2

. (9.88)

Here for simplicity we assume ν(v) = const. Because of criterion (9.85), formula
(9.83) gives a more slight decrease of the distribution function with an increase
in electron energy than that follows from formula (9.76), which holds true in the
limit when collisions between electrons are not significant.

� Problem 9.35 Determine the energy distribution function of electrons near the
atom excitation threshold if quenching of excited atoms is determined by electron
impact.

Above we assume that quenching of excited atoms is determined by other processes
than electron impact. We now consider the other case, when quenching of excited
atoms is determined by electron–atom collisions. Then, based on criterion (9.85),
we found that fast electrons are generated and destroyed as a result of inelastic
collisions between electrons and atoms. Because of equilibrium between the con-
sidering atomic states, this gives

νex fo(v)v2dv = νq fo(v′)v′2 . (9.89)

Here v2 = 2∆ε/me + v′ 2, and v, v′ are the velocities of fast and slow electrons,
νex = Nakex, νq = Nikq are the rates of excitation and quenching of atomic states by
electron impact, so that Na, Ni are the number densities of atoms in the ground and
excited states correspondingly, kex, kq are the rate constants of the corresponding
processes which are connected by the principle of detailed balance (4.18). From this
we have

Na

go
fo(v) =

N∗
g∗

fo(
√

v2 − v2), v >
√
2∆ε/m . (9.90)

This relation establishes the relation between the distribution functions of slow
and fast electrons. The relation can be written in the form

fo(v) =
fo(vo) fo(

√
v2 − v2o)

fo(0)
. (9.91)

In particular, for the Maxwell distribution function of slow electrons [ fo ∼
exp(−ε/Te)] this formula gives

fo(v) = fo(vo) exp
(

ε − ∆ε

Te

)
, (9.92)

where Te is the electron temperature, ε = mev2/2 is the electron energy. Thus,
inelastic collisions of electrons with excited atoms restore the Maxwell distribution
function above the threshold of the atom excitation.
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The above cases of atom excitation by electrons in a plasma show that this process
depends on the character of establishment of the electron distribution function
near the threshold of excitation. The result depends both on the rate of restoring
of the electron distribution function in electron–electron or electron–atom colli-
sions and on the character of quenching of excited atoms. Competition of these
processes yields different ways of establishment of the electron distribution func-
tion and different expressions for the effective rate of excitation of atoms in a gas
and plasma. Thus, the excitation rates depend on the collision processes which es-
tablish the electron distribution function below and above the excitation threshold,
and the equilibrium for excited atoms.
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10
Processes in Photoresonant Plasma

10.1
Interaction of Resonant Radiation and Gas

� Problem 10.1 A weak beam of resonant photons of a flux j+ is moving perpendic-
ular to a semi-infinite gas layer, so that processes of absorption and reabsorption
determine the number density of excited atoms in a gas. Find the number density
of excited atoms near the gas boundary.

We have two photon fluxes inside the gas region, the incident flux j+ and an
isotropic flux i(x) that is created by radiation of excited atoms. Here x is the coor-
dinate inside the gas region along the photon beam. When the stationary regime is
established, we have the equality of an incident and reflecting photon fluxes near
the boundary, that gives j+(0) = i(0)/4, i. e., under equilibrium between incident
resonant radiation and an absorbed gas we have i(0) = 4j+(0).
The number density of excited atoms N∗ follows from the balance equation be-

tween the rate of emission events N∗/τ per unit volume and the rate of absorption
events that is equal to [ j+ + i(0)/2]kω near the gas boundary, where kω is the ab-
sorption coefficient. We consider distances from the boundary exceeded the mean
free path of photons 1/kω and emission of spontaneous radiation as the channel of
a loss of excited atoms. From this we obtain the number density of excited atoms

N∗ = 3kω j+τ . (10.1)

We above assume the flux of incident radiation to be small that allows us to ig-
nore stimulated radiation. In addition, collision processes involving excited atoms
assume to be weak compared with reabsorption processes.

� Problem 10.2 A narrow beam of resonant radiation whose frequency corresponds
to the center of a spectral line of a resonant transition, passes through a gas and
is absorbed by it. Introducing the temperature of excitation according to the Boltz-
mann formula (1.12), find its connection with the incident radiation flux.

The balance equation for the number density of resonantly excited atoms N∗, by
taking into account the processes of absorption and emission of resonant photons
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in accordance with equations (5.27) and (5.28) has the form

dN∗
dt

= jωσabsN0 − jωσemN∗ − N∗
τ

,

where jω = Iω/(h̄ω) is the photon flux, σabs is the absorption cross section, σem =
σabsg0/g∗ is the cross section of stimulated emission, τ is the radiative lifetime of
excited atoms in a plasma, which in the absence of reabsorption processes is equal
to the radiative lifetime of an individual atom.
We introduce the temperature T∗ of excitation on the basis of the Boltzmann

formula (1.12)

N∗
N0

=
g∗
g0
exp

(
− h̄ω

T∗

)
.

Then the balance equation for the number density of excited atoms may be repre-
sented in the form

dN∗
dt

= jωko − jωko
N∗
N0

g0
g∗

− N∗
τ

. (10.2)

The stationary form of this equation is

jωko

[
1 − exp

(
− h̄ω

T∗

)]
=
N∗
τ

.

It is convenient to rewrite this relation in the form

jω =
jo

exp
(
h̄ω
T∗

)
− 1

; jo =
N0g∗
g0koτ

. (10.3)

This relation connects the flux of resonant photons in the spectral line center and
the temperature of excitation. This relation can be represented in the form

T∗ =
h̄ω

ln 1+η
η

; η =
jω
jo

= jωσabsτ
g0
g∗
. (10.4)

In particular, if jω = jo, we have T∗ = 1.44 h̄ω. Table 10.1 gives values of this ex-
citation temperature T∗, of the specific photon flux jo/N0 for g∗/g0 = 1 and the
specific intensity of incident radiation Io/N0 = h̄ω · jo/N0 for alkali metal vapors at
the Lorenz shape of a spectral line. Figure 10.1 shows the excitation temperature
as a function of an incident radiation flux in accordance with formula (10.4).

� Problem 10.3 The frequency of a narrow beam of resonant radiation is shifted
by ω − ωo from the center of a spectral line of a resonant transition with the
Lorenz character of broadening of the spectral line. Give the relation between the
temperature of excitation and the incident radiation flux.

The balance equation for resonantly excited atoms is given by formula (10.2) in
which the absorption coefficient in the center of a spectral line ko for incident



10.1 Interaction of Resonant Radiation and Gas 305

Table 10.1 Parameters of interaction of resonant radiation with vapors of alkali metals.

ko (105 cm−3) T∗ (eV) jo/N0 (100 cm/s) Io/N0 (10−17 W · cm)

Li(22P) 1.6 2.61 2.3 6.8
Na(32P1/2) 1.1 3.04 5.6 19
Na(32P3/2) 1.4 3.04 4.4 15
K(42P1/2) 0.85 2.32 4.5 15
K(42P3/2) 1.1 2.33 3.6 9.4
Rb(52P1/2) 0.91 2.25 3.9 10
Rb(52P1/2) 1.2 2.29 3.2 8.0
Cs(62P1/2) 0.77 2.00 4.3 9.6
Cs(62P3/2) 1.0 2.10 3.7 8.6

Fig. 10.1 The relative excitation temperature T∗ for for resonantly
excited atoms versus the radiation flux according to formula (10.4).

radiation must be replaced by the value kω, and for the Lorenz form of a spectral
line these values are connected by the relation

kω = ko
(ω − ωo)2

∆ω2 ,

where ∆ω is the width of the spectral line. Correspondingly, it is necessary to
replace the value ko by kω in formula (10.3).

� Problem 10.4 A broad beam of resonant radiation of a weak intensity (jω � jo)
has the cylinder symmetry and the photon frequency of this beam corresponds to
the center of a spectral line for a resonance transition. Find the effective radiative
time for the resonantly excited state.
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The condition of a broad radiation beam corresponds to a large beam radius ρo in
comparison with the mean free path of resonant photons 1/ko

ρoko � 1 ,

where ko is the absorption coefficient at the spectral line center. In this case the
radiative lifetime of resonantly excited atoms τef exceeds that τ of an individual
atom. In particular, for the Lorenz shape of the spectral line in accordance with
formula (9.23) we have

τef ∼ τ
√

ρoko .

� Problem 10.5 For a beam of incident photoresonant radiation of a small intensity
propagated in a broad gas region find the connection between the number density
of excited atoms of a photoresonant plasma and the intensity of incident radiation.
Broadening of spectral lines results from collisions of an excited atom with atoms
in the ground state.

The following chain of successive processes takes place in a forming photoresonant
plasma

A∗ + A∗ → A+2 + e; A∗ → A + h̄ω; e + A∗ → e + A, (10.5)

and these processes are realized in certain gases and vapors and under certain
conditions. We will keep below this scheme for a photoresonant plasma.
One can see that an equilibrium of a photoresonant plasma with incident reso-

nant radiation is established by photons which leave this plasma. This allows us
to estimate the number density of excited atoms. Indeed, if Iω is the intensity of
an incident radiation, we obtain the balance equation between an absorbed and
emitting power as

N∗
τ
P(R)V ∼ Iω

h̄ω
,

where N∗ is the number density of resonantly excited atoms, τ is the radiative
lifetime of an excited atom, R is a dimension of the plasma region, V ∼ R3 is its
volume, and P(R) is the probability for an emitting photon to leave the plasma
region.
Since according to formula (9.2) P(R) ∼ (koR)−1/2 for the Lorenz shape of a

spectral line, we obtain the number density of excited atoms from the balance
equation

N∗ ∼ Iωτk1/2o

h̄ωR5/2
. (10.6)

If we represent this formula in the form

N∗ = C
Iω
R5/2

and according to parameters of Table 5.1 take ko ∼ 104cm−1 , h̄ω ∼ 1 eV, τ ∼ 10 ns,

we estimate the proportionality coefficient as C = τk1/2o
h̄ω ∼ 1013 W−1cm−1/2.
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� Problem 10.6 Consider the distribution of atoms of a photoresonant plasma on
excited sublevels depending on the number density of atoms and the intensity of
polarized incident radiation.

Incident radiation of a given polarization transfers atoms in excited states of a cer-
tain polarization. Subsequent collisions of excited atoms with atoms in the ground
states lead to change of an atom polarization. Therefore, we have two possibilities
depending on gas and beam parameters. In the first case excited atoms return in
the ground state under the action of stimulated and spontaneous radiation of ex-
cited atoms. Then we have excited atoms of one polarization only, and the statistical
weight of excited atoms which take part in the radiation processes is equal to the
statistical weight of atoms in the ground state, i. e., g∗/g0 = 1 in this case.
In the other case forming excited atoms as a result of collisions with atoms in

the ground state can change their polarization, and excited atoms are redistributed
over polarizations in this case, where the ratio of the statistical weight of resonantly
excited and ground states of alkali metal atoms is g∗/g0 = 3 in this case.
The total cross section of collision of an atom in the ground S-state and excited

P-states due to dipole–dipole interaction of colliding atoms is given by formula
(3.34). In such a collision, the cross section of variation of the atom momentum
projection is 0.602πd2/(h̄v)without exchange excitation and is 0.56πd2/(h̄v) in col-
lisions with exchange excitation (the notations are given in formula (3.34)). Hence,
the total cross section of depolarization of an excited atom in these collisions is
1.16πd2/(h̄v) = 0.24σt, where the total cross section of this collision σt is given by
formula (3.34). The values of the depolarization rate constants kdep in accordance
with this formula are given in Table 10.2. Note that these formulas relate to the
case when spin-orbit splitting is relatively small. Though this is not fulfilled for
the most cases, these data may be used for estimations.

Table 10.2 The rate constant of depolarization kdep for resonantly excited
atoms of alkali metals in collisions with the same atoms in the ground state.

kdep (10−7cm3/s) Ndep (1014cm−3)

Li(22P) 1.2 3.1
Na(32P1/2) 1.5 4.1
Na(32P3/2) 1.5 4.1
K(42P1/2) 2.1 1.8
K(42P3/2) 2.1 1.9
Rb(52P1/2) 2.0 1.8
Rb(52P1/2) 2.1 1.7
Cs(62P1/2) 2.8 1.2
Cs(62P3/2) 2.7 1.4

On the basis of the above values, we have the criterion that only one excited state
takes part in interaction with incident resonant radiation

N0 � kdepτ
jω + jo
jω

= Ndep

(
1 +

jo
jω

)
. (10.7)
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The values of the transient number density of atoms Ndep for alkali metal vapors
are given in Table 10.2.
It is convenient to characterize mixing of excited atoms over polarizations by the

parameter

ζ =
kdepτNo

(1 + jω
jo

)2
,

where No is the total number density of atoms which interact with resonant radia-
tion. Then the ratio of the effective statistical weights of the excited g∗ and ground
g0 states is equal to

g∗
g0

=
1 + 3ζ
1 + ζ

for atoms of alkali and alkali earth metals with the ground S-state and resonantly
excited P-state.
This formula means that at small rates of mixing one polarization of an excited

state is occupied only, whereas at high number densities of atoms redistribution
takes place between sublevels of excited states as a result of atom collision with
rotation of the momentum of an excited atom. Due to this process, the probabilities
for an excited atom to have arbitrary momentum projections are identical.

10.2
Excited Atoms in Photoresonant Plasma

� Problem 10.7 Estimate a typical time of establishment of an equilibrium for inci-
dent radiation of a weak intensity in an optically thick photoresonant plasma.

This equilibrium results from reabsorption processes. In particular, if an incident
radiation corresponds to the center of the spectral line, the number density of
excited atoms near the surface is given by formula (10.1), that is higher than that
of formula (10.6). And this number density of excited atoms is supported near
the surface during plasma radiation, i. e., a photoresonant plasma is not uniform.
Forming excited atoms emit resonant radiation, and for the Lorenz form of the
spectral line this radiation reaches any plasma surface for a time of the order of
τ
√
koR, where ko is the absorption coefficient for the spectral line center, and R

is a plasma dimension. According to the nature of the reabsorption process, only
this time is responsible for establishment of an equilibrium for resonantly excited
atoms in a photoresonant plasma.

� Problem 10.8 Find the dependence of the mean free path for resonant photons in
a photoresonant plasma depending on the intensity of a beam of resonant radiation
and a shift of its frequency with respect to the center of a spectral line of the
resonant transition.
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Let us use the balance equation (10.2) for the photon flux of incident resonant
radiation that has the form

djω
dx

= −jωσabsN0 + jωσemN∗ ,

where the axis x is directed along an incident beam. For a weak beam intensity,
when the second term may be ignored and when the radiation frequency coincides
with the center of the corresponding spectral line, this equation takes the form

djω
dx

= − jω
λo

, λo = (σoN0)−1 =
1
ko

,

where σo is the absorption cross section and ko is the absorption coefficient at the
line center.
Taking into account stimulated radiation, we obtain the mean free path of pho-

tons

λω =
λo

1 − exp
(
− h̄ω

T∗

) . (10.8)

As is seen, transition of a part of atoms in an excited state causes blooming of a
gas with respect to an incident radiation that occurs in decrease of its absorption
by the gas. If the frequency of incident radiation does not coincide with the center
of the corresponding spectral line, in accordance with the result of the previous
problem this expression must be multiplied by the factor (ω − ωo)2/∆ω2 in the
case of the Lorenz shape of the spectral line.

� Problem 10.9 Estimate the penetration depth of a narrow beam of incident reso-
nant radiation propagated inside a photoresonant plasma.

Evidently, the penetration depth coincides with the mean free path of photons in a
photoresonant plasma that follows from the balance equation (10.2) for the photon
flux of incident resonant radiation

djω
dx

= −jωko

[
1 − exp

(
− h̄ω

T∗

)]
,

and for simplicity we take the frequency of incident photons to be coincided with
the center of a spectral line of atom transition. This gives the connection of the
mean free path of photons λ with the excitation temperature T∗

λ = k−1
o

[
1 − exp

(
− h̄ω

T∗

)]−1

.

One can find this value from the balance equation for absorbed and reabsorbed
photons

jωko

[
1 − exp

(
− h̄ω

T∗

)]
=
N∗
τ

,
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which gives

λ =
jωτ

N∗
.

In particular, if jω ∼ jo ∼ N0/(koτ) and N∗ ∼ N0, from this it follows the above
relations T∗ ∼ h̄ω and λ ∼ k−1

o .
Since the absorption coefficient for the Lorenz form of a spectral line is ko ∼

105cm−1 , the mean free path of a resonant radiation beam photons of a low or
intermediate intensity is small (∼ 10−5cm) for the center of a spectral line. In
order to increase this value, it is necessary to increase the intensity of an incident
radiation beam or to shift its frequency from the spectral line center.

� Problem 10.10 Give the saturation criterion for a narrow beam of resonant radia-
tion as the criterion to ignore spontaneous radiation.

This is a strictly criterion of saturation for resonant radiation when only processes
of absorption and stimulated emission for this radiation are of importance. Based
on the balance equation (10.2) for the number density of resonantly excited atoms,
one can represent the possibility to neglect there spontaneous radiation. As a result,
we have the criterion of saturation jω � jo or

T∗ � h̄ω.

If the opposite criterion is fulfilled, spontaneous radiation of resonantly excited
atoms is of importance for the balance of excited atoms.
Note the principal peculiarity of interaction of a high intensity incident beam of

radiation with a gas when excited atoms are quenched mostly due to generation
of stimulated radiation. These excited atoms have a certain polarization that is
determined by the polarization of incident radiation, and therefore the ratio of the
statistical weights of the ground g0 and excited g∗ states in the Boltzmann formula
(1.12) is g0/g∗ = 1. In addition, the region of excitation is restricted mostly by the
region of propagation of an incident radiation beam.

� Problem 10.11 Estimate a typical time of establishment of an equilibrium for res-
onantly excited atoms in an optically thin photoresonant plasma created by a beam
of resonant radiation of a weak intensity.

We now consider the balance equation (10.2) for the resonantly excited atoms that
is represented in the form

dN∗
dt

= − [N∗ − N(o)
∗ ]

τ

(
1 +

jω
jo

)
.

Here N(o)
∗ is the equilibrium number density of excited atoms. From this it fol-

lows for a strong intensity of incident radiation jω � jo that a typical time τexc of
establishment of the equilibrium number density of excited atoms is

τexc = τ
jo

jo + jω
,
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where τ is the radiative lifetime of an excited state. As is seen, a typical time of
establishment of the equilibrium number density of excited atoms decreases with
an increase of the intensity of incident radiation, and for a strong intensity of
incident resonant radiation is equal to

τexc = τ

[
1 − exp

(
− h̄ω

T∗

)]
, (10.9)

where T∗ is the excitation temperature.
In this case of a high intensity of an incident radiation beam reabsorption

processes are not essential because of importance of stimulated radiation for
establishment of an equilibrium for excited atoms.

� Problem 10.12 A photoresonant plasma is formed under the action of a narrow
laser beam of resonant radiation whose radius ro is small compared to the mean
free path of excited atoms in a gas. Find the condition when the process of transport
of absorbed atoms influences the properties of a forming photoresonant plasma.

Let us write the balance equation for the number density of excited atoms based
on equation (10.2) and adding to this equation the term that accounts for transport
of excited atoms. This balance equation has the form

dN∗
dt

= jωko − jωko
N∗
N0

g∗
g0

− N∗
τ

− N∗
τtr

,

where the last term accounts for passage of atoms outside the laser beam. One can
see that the last term is negligible if τtr � τ.
We now evaluate a transport time τtr for a cylinder tube of a small radius, and

this is a time of atom renewal inside this tube. This time is the ratio of the total
number of atoms inside a tube of a length l, which is πr2o lN to the total number of
atoms 2πrolj that intersect the tube boundary per unit time. Here N is the number
density of atoms, the atom flux through the tube boundary is j = vN, and v is the
average atom velocity. From this we have

τtr =
ro
2v

,

and the possibility to neglect the atom renewal τtr � τ has the form

ro � 2vτ .

The parameter of the right-hand side of this criterion for alkali metal vapors (Na,
K, Rb, Cs) at temperature of 500 K is given in Table 10.3. Since simultaneously the
mean free path of atoms is large in comparison with the beam radius ro, transport
of excited atoms may be of importance for interaction of a laser beam with a gas at
low gas pressure or a narrow laser beam. Note that in this consideration we assume
the mean free path of photons to be large compared to the width of the laser beam.
But since for an intense laser beam the mean free path of transversal photons is
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Table 10.3 Parameter 2vτ of transport of alkali metal atoms in the field
of a resonant radiation beam.

Element r = 2vτ (µm)

Li 76
Na 22
K 27
Rb 19
Cs 16

determined by stimulated radiation, the above condition does not influence this
analysis.

10.3
Processes in Photoresonant Plasma Involving Electrons

� Problem 10.13 Obtain the criterion when associative ionization in collisions be-
tween resonantly excited atoms in a photoresonant plasma do not influence on the
number density of excited atoms.

Collisions of two excited atoms are of importance for formation of highly excited
atoms or ions as it follows from scheme (10.5), i. e., these processes lead to plasma
formation. These processes may be responsible for the balance of excited atoms.
Analyzing ionization of an excited gas according to scheme (10.5), we consider col-
lision processes involving two excited atoms to be secondary ones, i. e., they are
weak in comparison to radiative processes of decay of excited atoms, and hence
these processes do not determine the number density of excited atoms. But these
processes lead to the formation of free electrons on the first stage of plasma evo-
lution according to the scheme

2A∗ → A+2 + e− ∆εi, (10.10)

where ∆εi is the energy for this process. Table 10.4 gives values of the rate constant
kas of this process for resonantly excited atoms of alkali metals at the temperature
of 500 K.

Table 10.4 Parameters of process (10.10) at the temperature of 500 K, the
number density Nef of excited atoms according to formula (10.11).

A∗ ∆εi (eV) kas (cm3/s) Nef (1017 cm−3)

Na(32P) < 0 4 · 10−11 0.14
K(42P) 0.1 9 · 10−13 4.5
Rb(52P) 0.2 4 · 10−13 4.2
Cs (62P) 0.33 7 · 10−13 4.1
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The criterion of the validity of scheme (10.10) has the form

N∗
τ
P(R) � N2∗ kas ,

where kas is the rate constant of the process of associative ionization of two ex-
cited atoms (10.10). Thus, the criterion that associative ionization is the secondary
process in a photoresonant plasma created by a weak incident resonant radiation
(T∗ � h̄ω) has the form

N∗ � Nef =
1

τkion
√
koR

, (10.11)

and under typical parameters (τ ∼ 10−8s, ko ∼ 105cm−1 , R ∼ 1 cm, kas ∼
10−12cm3/s) this gives N∗ � 3 · 1018cm−3. Table 10.3 contains values of the quan-
tity Nef if R = 1 mm. Criterion (10.11) holds true for a weakly excited photoresonant
plasma.

� Problem 10.14 Analyze the character of ionization in a photoresonant plasma
where associative ionization leads to the formation of free electrons on the first
stage of plasma evolution, and a subsequent growth of the electron number den-
sity results from ionization of excited atoms by electron impact.

When electrons are formed in a photoresonant plasma, they collide with excited
atoms that leads to the equilibrium

e + A∗ ↔ e + A (10.12)

where A, and A∗ are the atoms in the ground and resonantly excited states, respec-
tively. As a result, the electron temperature is established that corresponds to the
temperature of excited atoms in accordance with the Boltzmann formula (1.12)

T∗ =
∆ε

ln N0g∗
N∗g0

,

and this formula is based on definition (1.12) of the excitation temperature. Here
∆ε = h̄ω is the excitation energy for a resonantly excited state, N0, N∗ are the
number densities of atoms in the ground and excited states, and g0, g∗ are their
statistical weights. This temperature of excitation is equal to the electron tempera-
ture Te = T∗ if the above process for the balance of the electron energy dominates.
Therefore, finally the electron number density is established in accordance with
the ionization equilibrium that is described by the Saha formula (1.69).
We now consider the character of evolution of a gas with resonantly excited atoms

to ionization equilibrium. We include in this scheme (10.5) ionization of excited
atoms by electron impact

e + A∗ ↔ 2e + A+ . (10.13)
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Evidently, this process is stepwise. As a result, electrons are formed both in colli-
sions of two excited atoms according to scheme (10.5) and as a result of ionization
of excited atoms by electron impact. Correspondingly, the balance equation for
the number density of electrons on the first stage of evolution of a photoresonant
plasma takes the form

dNe

dt
= M + NeN∗kion ,

where Ne,N∗ are the number densities of electrons and excited atoms, kion is the
rate constant of ionization of an excited atom by electron impact, and M = kasN2∗
in accordance with scheme (10.5). The solution of this balance equation is

Ne =
M

N∗kion
[ exp(N∗kiont) − 1] . (10.14)

It is seen that the process of associative ionization is of importance in growth of the
electron number density on the first stage of evolution of a photoresonant plasma.
Subsequent growth of the electron number density is determined by ionization of
atoms by electron impact.

� Problem 10.15 Determine a typical time of establishment of the average electron
energy.

We have the balance equation for the average energy of electrons per unit volume
that results from processes (10.12)

d(Ne εe)
dt

= h̄ωNe(kqN∗ − kexcN0) ,

where εe = 3Te/2 is the average electron energy, kq is the rate constant of quenching
of excited atoms by electron impact, and kexc is the rate constant of atom excitation
by electron impact. We assume the energy distribution function of electrons to be
the Maxwell one, whereas the electron temperature Te varies in time. Introducing
the excitation temperature T∗ in accordance with formula (10.4) and using the prin-
ciple of the detailed balance that connects the rate constants kq and kexc, we reduce
this balance equation to the form

dTe
dt

=
2 h̄ω

3
kqN∗

[
1 − exp

(
h̄ω

T∗
− h̄ω

Te

)]
.

This balance equation in the case when the electron temperature Te and the exci-
tation temperature T∗ are nearby takes the form

dTe
dt

=
2(h̄ω)2

3T2∗
kqN∗(T∗ − Te) = − (T∗ − Te)

τT
.

From this we find a typical time for establishment of the electron temperature τT
in a photoresonant plasma

τT =
3T2∗

2(h̄ω)2kqN∗
(10.15)
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� Problem 10.16 Compare two regimes of establishment of the electron temperature
in a photoresonant plasma, so that in both electrons obtain energy as a result of
quenching of excited atoms, while the energy loss results from excitation of atoms
in the ground state in the first regime and from ionization of excited atoms in the
second regime.

In the first regime the evolution of a photoresonant plasma is governed by
processes (10.12)

e + A∗ ↔ e + A ,

whereas in the second regime of electron equilibrium the following processes are
dominant:

e + A∗ → e + A , e + A∗ → 2e + A+ . (10.16)

In the first regime the average electron energy is determined by processes of exci-
tation and quenching of atoms in collisions with electrons, whereas in the second
regime of evolution of the photoresonant plasma the electrons obtain energy by
quenching of excited atoms and lose the energy as a result of ionization processes.
In this manner an average electron energy is established.
Let us analyze the transition between these two regimes that corresponds to the

following balance equation for the electron energy:

h̄ωN∗Nekq = J∗N∗kionNe ,

where kq is the rate constant of quenching of a resonantly excited atom by electron
impact, kion is the rate constant of ionization of an excited atom in collision with
an electron that assumes to have the stepwise character, and J∗ is the ionization po-
tential of a resonantly excited atom. From this we obtain the electron temperature
T∗
e at transition between two regimes

kion(T∗
e ) =

h̄ω

J∗
kq(T∗

e ) . (10.17)

One can see this electron temperature to be independent of the number density of
atoms.
Table 10.4 gives the value of the parameter T∗

e for excited alkali metal vapors, if
the rate constant of quenching of a resonantly excited atom by electron impact is
taken from Table 4.2, and formula (4.38) is used for the rate constant of stepwise
ionization of excited atoms in collisions with electrons. Table 10.4 also contains
values of the equilibrium constant K(T∗

e ) at this temperature that is given by the
relation

Kion =
N2
e

N∗
,

where Ne and N∗ are the number densities of electrons and excited atoms, respec-
tively, in a quasineutral plasma under thermodynamic equilibrium.
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Along with the above parameters, we give in Table 10.5 the intensities of incident
beam of photoresonant radiation I∗ω at the temperature T∗ = T∗

e , which is given by

I∗ω(T∗
e ) =

h̄ωjo

exp
(
h̄ω
T∗

)
− 1

,

and jo is determined by formula (10.3).

Table 10.5 The transition temperature T∗
e between two regimes of evolution

of a photoresonant plasma, the equilibrium constant Kion for ionization
equilibrium at this temperature, and the intensity of the incident radiation I∗ω
if the excitation temperature is equal to the transition temperature T∗

e .

T∗
e (eV) Kion (1017 cm−3) I∗ω (W/cm2)

Li(22P) 0.55 6.4 0.07
Na(32P1/2) 0.45 3.8 0.02
Na(32P3/2) 0.45 3.9 0.02
K(42P1/2) 0.40 3.0 0.04
K(42P3/2) 0.41 3.2 0.04
Rb(52P1/2) 0.38 2.3 0.03
Rb(52P1/2) 0.38 2.4 0.03
Cs(62P1/2) 0.38 3.1 0.05
Cs(62P3/2) 0.36 2.5 0.03

Thus, in the second regime of evolution of a photoresonant plasma, when the
electrons lose energy as a result of ionization of excited atoms, the electron tem-
perature does not increase the intensity of incident resonant radiation and corre-
spondingly the excitation temperature. As it follows from the data of Table 10.5,
the equilibrium constant Kion exceeds a typical number density of atoms, and this
corresponds to total ionization of atoms under stationary conditions. Hence, this
regime of evolution of a photoresonant plasma is not stationary. When the number
density of electrons becomes of the order of the initial number density of atoms,
absorption of incident radiation decreases. A typical time when this will be attained
is the lifetime of the photoresonant plasma.

� Problem 10.17 Assuming that the equilibrium for the electron temperature results
from electron collisions with atoms in the ground and resonantly excited states,
find the critical electron temperature Tcr when the equilibrium electron number
density under stationary conditions corresponds to the number density of atoms.

In the stationary regime the electron temperature is established as a result of
processes (10.12). If this regime is realized, the electron temperature Tcre coincides
with the excitation temperature. Hence, the equilibrium constant for the ionization
process Kion(Tcre ) = N2

e /N0 coincides with the number density of atoms N0, i. e.,
under this temperature

Ne(Tcre ) = N0(Tcre ) . (10.18)
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Table 10.6 gives values of the critical electron temperature Tcre for N0 =
1 · 1016cm−3. This table also coincides with the total number density of reso-
nantly excited atoms at this temperature according to the Boltzmann formula
(1.12), and a typical time of establishment of this equilibrium is given by

τion = (kionN0)−1 ,

where the rate constant of stepwise ionization of atoms by electron impact is given
by formula (4.38). As is seen, a typical time of establishment of ionization equi-
librium is enough large, so that electron temperatures above the critical one are
available in reality.

Table 10.6 The critical electron temperature Tcre at which the equilibrium
electron number density in a stationary photoresonant plasma is equal to the
number density of atoms, the number density of excited atoms at this tem-
perature N∗, a time of establishment of the ionization equilibrium, and the
electron number density (Ne)o starting from which the Maxwell distribution
function is established for electrons.

Tcre (eV) N∗(1013 cm−3) τion s (Ne)o(109 cm−3)

Li(22P) 0.26 2.7 1200 3.4
Na(32P) 0.25 0.70 990 0.72
K(42P) 0.22 1.7 490 2.4
Rb(52P) 0.21 1.6 420 2.2
Cs(62P) 0.19 2.4 310 4.2

� Problem 10.18 Find the electron number density (Ne)o in a photoresonant plasma
in the course of growth of the number density of electrons starting from which one
can use the electron temperature Te as a characteristic of the energy distribution
function of electrons.

Using the electron temperature as a characteristic of the average electron energy,
we assume the Maxwell distribution function for electrons. In reality the Maxwell
distribution of electrons requires that the electron equilibrium is established by
electron–electron collisions. Hence, the rate of electron–electron collisions keeNe

exceeds that for electron–atom collisions that is kqN∗. In this case electrons obtain
energy in quenching collisions with excited atoms, and mixing of electrons in the
energy space results from electron–electron collisions. Hence, the Maxwell distri-
bution function of electrons starts from the electron number density (Ne)o that is
given by the relation

(Ne)o =
kq
kee

N∗ .

In particular, one can use formula (9.86) for the rate constant kee of electron–
electron collisions with variation of the electron energy by the value of the order
of the atom excitation energy ∆E. The corresponding electron number densities
(Ne)o are given in Table 10.5 for N0 = 1 · 1016 cm−3.
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� Problem 10.19 For a photoresonant plasma created by resonant radiation of an
intermediate intensity find typical times of its evolution: a typical time τexc for
establishment of the equilibrium for excited atoms, a typical time τT for establish-
ment of the average electron energy, the time τion for total ionization of atoms.

Let us consider the transition from small intensities of incident radiation to high
ones, so that the radiation flux is jω = jo. The corresponding values of the excitation
temperature T∗ for alkali photoresonant plasma are given in Table 10.1, and a typical
time of establishment of equilibrium between atoms in the ground and resonantly
excited states is given by formula (10.9) that under these conditions (jω = jo) is
τexc = τ/2, where τ is the radiative lifetime of an excited state. Values of τexc are
given in Table 10.6.
A typical time of establishment of the average electron energy is given by formula

(10.15)

τT =
3T2∗

2(h̄ω)2kqN∗
.

Note that under used conditions (jω = jo), we have T∗ = h̄ω/ ln 2, and one third
part of atoms are transferred in an excite state. Hence, this formula takes the form

τT =
9.4
kqN0

,

where N0 is the initial number density of atoms. Values of this time are given
in Table 10.7 for an alkali metal photoresonant plasma at N0 = 1 · 1015cm−3. As
is seen, a time of establishment of the electron average energy is less than that
for the excitation temperature, and hence the average electron energy follows for
excitation of atoms.

Table 10.7 Typical times of establishment of equilibria in a photoresonant
plasma of alkali metals if the flux of radiation jω = jo and the initial number
density of alkali metal atoms is N0 = 1 · 1015 cm−3.

τexc (10−9 s) τT (10−8 s) τion (10−7 s) kion (10−7 cm3/s)

Li(22P) 14 4.9 3.6 1.0
Na(32P) 8 4.7 1.8 1.4
K(42P) 13 3.0 2.0 1.8
Rb(52P) 14 2.9 2.1 1.8
Cs(62P) 14 2.1 1.5 2.5

In considering the growth of the electron number density in a photoresonant
plasma, we take into account that formation of free electrons results from the
associative ionization process (10.10) on the first stage of plasma evolution, and
subsequently the process of ionization of excited atoms by electron impact (10.16) is
responsible for this. Then in accordance with scheme (10.5) of processes involving
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electrons, the balance equation for the electron number density Ne has the form

dNe
dt

= M + kionNeN∗ ,

where M = kasN2∗ , kas is the rate constant of associative ionization in collisions of
two excited atoms, kion is the ionization rate constant of an excited atom by electron
impact. From this we have the variation of the electron number density in time in
accordance with formula (10.14)

Ne(t) =
M

kionN∗
exp(kionN∗t) ,

and this dependence is violated when Ne ∼ No, where No is the initial number
density of atoms (or their total number density in the course of atom excitation).
We assume τion � τexc, i. e., during a basic time of ionization the number density
of excited atoms does not vary in time. We have then for a typical lifetime of this
photoresonant plasma

τion =
1

kionN∗
ln

NokionN∗
M

.

We take C as an initial electron number density in this formula such that the
process of associative ionization of excited atoms gives the same contribution to
growth of the electron number density as the process of ionization of excited atoms
by electron impact, that gives kasN2∗ ∼ kionCN∗, where kas is the rate constant of
associative ionization in collisions of excited atoms (see Table 10.2). Since N∗ ∼ No,
where No is the initial number density of atoms, we have for the lifetime of a
photoresonant plasma with respect to ionization of its atoms

τion =
exp

(
h̄ω
T∗

)
+ 1

kionNo
ln

kion
kas

. (10.19)

Here No is the total number density of nuclei, i. e., No = N0 +N∗ +Ne, and according
to the Boltzmann formula (1.12) N∗/N0 = g∗ exp(−h̄ω/T∗)/g0, where T∗ is the
excitation temperature. In particular, in the case jω = jo and the criterion (10.7)
holds true, one third part of atoms is found in excited states, and then formula
(10.19) gives

τion =
3

kionN∗
ln

kion
kas

.

Table 10.7 contains the values obtained on the basis of this formula for the lifetime
τion of a photoresonant plasma of alkali metal vapors with respect to total ionization
of atoms. In the regime under consideration the ionization rate constant is given
by relation (10.17). The rate constants of associative ionization are given from Table
10.3, and the logarithm in formula (10.19) is equal in average to 12± 2. This value is
used in the lithium case where the rate constant of associative ionization is absent.
As it follows from Table 10.7, the lifetime of this photoresonant plasma exceeds by
one order of magnitude of typical times of establishment of equilibria.
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� Problem 10.20 Find the rate constants of atom ionization by electron impact in a
photoresonant plasma of alkali metals in the limit of high intensities of incident
radiation.

These values follow from formula (10.17) and correspond to the largest possible
electron temperatures. Assuming the rate constant of atom quenching by electron
impact to be independent of the electron energy and using for them the data of
Table 4.2, we evaluate the values of these rate constants which are given in Table
10.7. Since these values are concentrated in a restricted range, we make statistical
averaging over different alkali metals. This gives for the average rate constant of
ionization of an excited atom by electron impact at maximal electron temperatures

kion = 1.6 · 10−7cm3/s · 10±0.15 .

� Problem 10.21 Determine a typical time of ionization τion for a photoresonant
plasma if the ratio between a typical time between a time of equilibrium establish-
ment for excited atoms τexc and the ionization time τion is arbitrary.

As above, we take the first stage of electron formation due to collisions of ex-
cited atoms including associative ionization (10.10), and subsequently generation
of electrons results from ionization of excited atoms by electron impact (10.16).
Correspondingly, as early the balance equation for the electron number density Ne

has the form

dNe

dt
= M + kion(Te)NeN∗(T∗) ,

but the electron temperature Te and the excitation temperature T∗ are not constants
now in time. Here M = kasN2∗ , so that kas is the rate constant of associative ion-
ization in collisions of two excited atoms, kion is the ionization rate constant of an
excited atom by electron impact. From the solution of this equation and taking into
consideration dependences Te(t) and T∗(t), one can find the time of full plasma
ionization.
In the course of equilibria establishment the excitation temperature Te grows

up to its equilibrium value, as well as the electron temperature T∗. Correspond-
ingly, ionization processes are accelerated as the equilibrium is established for the
electron temperature Te and for the excitation temperature T∗. Subsequent growth
of the electron number density proceeds according to the above balance equation
with constant parameters kion and N∗. From this one can conclude that the increase
of the electron number density starts practically when the equilibrium electron Te
and excitation T∗ temperatures are established. This gives that the typical time of
full ionization of the photoresonant plasma is

τexc + τT + τion ,

where we use formula (10.9) for a time τexc of equilibrium establishment for the
number density of excited atoms, formula (10.15) for a time τT of establishment of
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the equilibrium electron temperature Te, and formula (10.19) for a time of full ion-
ization of a photoresonant plasma, if the electron Te and excitation T∗ temperatures
are constants in the course of this process.

� Problem 10.22 Obtain the relation between the electron temperature Te of a pho-
toresonant plasma and the excitation temperature T∗.

Based on processes (10.12) and (10.13) in a photoresonant plasma, we obtain the
following balance equation for the average energy of electrons per unit volume:

d(Ne ε)
dt

= h̄ωNe(kqN∗ − kexcN0) − j∗kionNeN∗ ,

where ε = 3Te/2 is the average electron energy, kq is the rate constant of quenching
of excited atoms by electron impact, kexc is the rate constant of atom excitation by
electron impact, and kion is the rate constant of ionization of an excited atom by
electron impact.
Let us use the Boltzmann formula (1.12) that connects the number densities of

atoms in the ground and excited states through the excitation temperature Texc and
the principle of detailed balance that connects the rate constants of excitation kexc
and quenching kq through the electron temperature Te. This gives the following
relation between the excitation temperature and the electron temperature in the
stationary case

h̄ωkq

[
1 − exp

(
h̄ω

T∗
− h̄ω

Te

)]
= j∗kion(Te) . (10.20)

Ignoring the second term in the left-hand side of this equation, we obtain from
this formula (10.17).
Taking the quenching rate constant kq in relation (10.20) to be independent of the

electron energy, we obtain the connection between the excitation T∗ and electron
Te temperatures, and is convenient to represent this relation in the form

T∗ =
[
1
Te

+
1
h̄ω

ln
(
1 − j∗kion

h̄ωkq

)]−1

. (10.21)

The solution of this equation gives T∗ = Te in the limit of low temperatures, and
in the limit of high excitation temperatures the electron temperature tends to the
limit T∗

e (formula (10.17)). Figure 10.2 shows the dependence Te(T∗) for a sodium
photoresonant plasma on the basis of equation (10.21).

� Problem 10.23 Find the criterion when the excitation temperature is determined
by radiative processes in accordance with the balance equation (10.2), and processes
involving electrons do not influence on the excitation temperature.

We take the balance equation (10.2), as the basis, for the number density N∗ of
excited atoms and add in this equation the terms connected with electron processes
(10.10) and (10.16). This gives

dN∗
dt

= jωko − jωko
N∗
N0

g0
g∗

− N∗
τ

− kqN∗Ne + kexcN0Ne − kionN∗Ne .
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Fig. 10.2 The electron temperature Te of a sodium (1) and potas-
sium (2) photoresonant plasma as a function of the excitation
temperature T∗ according to equation (10.21).

We consider the electron temperature to be small in comparison to the excitation
energy, i. e., ignore the process of formation of excited atoms by electron impact.
Using relation (10.20) between the rate constants of ionization and quenching of
excited atoms by electron impact under the equilibrium for electrons, reduce the
balance equation for the number density of excited atoms to the form

dN∗
dt

= jωko − jωko
N∗
N0

g0
g∗

− N∗
τ

− kqN∗Ne

(
1 +

h̄ω

j∗

)
.

This equation is transformed into (10.2), if the following criterion holds true

Ne � Ntra ≡
[
kqτ

(
1 +

h̄ω

j∗

)]−1

. (10.22)

Table 10.8 contains the values of Ntra in the case of alkali metal vapors. Note that
if this criterion is not valid, the character of the above electron processes and the
electron temperature do not change, but the excitation temperature decreases in
accordance with the above balance equation.

� Problem 10.24 Determine a time of ionization of excited atoms in a photoresonant
plasma when a decrease of the number density of atoms in the ground state makes
a given plasma region to be transparent with respect to resonant radiation. The
initial number density of atoms No exceeds significantly the number density Ntr of
formula (5.32) above which the absorptioncoefficient is independent of the atom
number density.

Ionization of atoms of an absorbing gas leads to blooming of a photoresonant
plasma. Formula (10.19) gives a typical time of ionization of atoms, so that through
this time the number density of electrons and ions becomes comparable with the
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Table 10.8 Parameters of contribution of electron processes in establish-
ment of electron processes. Ntra is a typical number density of electrons
according to formula (10.22) and the efficiency of ionization η due to
formula (10.26).

Ntra (1014 cm−3) η

Li(22P) 1.3 0.50
Na(32P) 1.8 0.41
K(42P) 0.78 0.62
Rb(52P) 1.1 0.62
Cs(62P) 0.69 0.70

initial number density of atoms (Ne ∼ No). But since No � Ntr, such an atom
ionization does not lead to blooming of an absorbing gas that takes place when the
number density of atoms will be comparable with Ntr.
Let us denote by τbl a time after which the number density of atoms becomes

∼ Ntr. We below determine this value. For this purpose, we consider the balance
equation for the number density of ions

dNe

dt
= M + kionNeN∗ ,

which we used above for determination of the ionization time (10.19). Here the first
term of the right-hand side of this equation is related with the process of association
ionization (10.10) and is of importance at low number densities of electrons. Let
us rewrite this equation in the form

dNe

dt
= κNe(No − Ne) ,

where κ = kionN∗/(No − Ne). The solution of these equations is

Ne =
No

1 + No
N1

exp(−κNot)
; No − Ne =

No
1 + N1

No
exp(κNot)

.

Here N1 is the number density at t = 0, when associative ionization and direct
atom ionization give the same contribution to formation of free electrons (N1 ∼
Nokas/kion), and N1 � No.
This solution allows us to find a time of blooming τbl at which the number

density of atoms in the ground state is N0 ∼ Ntr. We obtain the blooming time

τbl =
1

κNo

N2
o

N1Ntr
;

τbl
τion

= 1 +
ln No

Ntr

ln No
N1

. (10.23)

� Problem 10.25 Determine the excitation temperature at high intensity of a reso-
nant radiation beam as a function of the electron number density.

At low number densities of electrons, the excitation temperature is determined
by the balance equation (10.2) that accounts for radiative processes. Let us denote
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by Tr the excitation temperature in neglecting collision processes that follows the
balance equation (10.2) and is given by formula (10.4)

Tr =
h̄ω

ln jω+jo
jω

. (10.24)

Including in the balance equation (10.2) processes (10.16) involving electrons, we
obtain the number density of excited atoms

N∗ =
jωkoN0

ko
g0
g∗ (jω + jo) + Nekq

(
1 + h̄ω

J∗
) .

This gives the excitation temperature

T∗ =
h̄ω

ln[ jojω + 1 + Nekqτ(1 + h̄ω
J∗ )]

=
h̄ω

ln( jo
jω
+ 1 + Ne

Ntra
)
.

Note that this formula is derived under the condition when the electron temper-
ature is determined by processes (10.16), and the rate constant of ionization of
excited atoms by electron impact is given by formula (10.17).
On the basis of formulas (10.4) and (10.24) we obtain the ratio of the excitation

T∗ and radiative Tr temperatures (Tr is the excitation temperature in the absence
of collision processes)

T∗
Tr

=
ln

(
jo
jω
+ 1

)
ln

[
jo
jω
+ 1 + Nekqτ

(
1 + h̄ω

J∗
)] . (10.25)

Figure 10.3 shows the dependence (10.25) on the reduced electron number density.
Since formula (10.25) is valid at high values of the excitation temperature, it holds
true at not large electron number densities.

� Problem 10.26 Analyze the character of variation of the number density of excited
atoms in during evolution of a photoresonant plasma created by a high intensity
beam of resonant radiation.

Along with resonant radiation that excites a gas and creates resonantly excited
atoms, processes (10.16) involving electrons must be taken into account. The first
stage of the process of plasma evolution consists in formation of excited atoms,
and equilibrium for the number density of excited atoms is established during a
time of the order of τjo/jω. When the number density of electrons reaches the
value Ntra jo/jω, the number density of excited atoms decreases with time.

� Problem 10.27 Determine the efficiency of plasma generation by a resonant radi-
ation beam in the case of local equilibrium for excited atoms and electrons with a
forming plasma.
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Fig. 10.3 The ratio of the excitation and radiation temperatures as a func-
tion of the reduced electron number density according to formula (10.25).

In the case of the processes under consideration excited atoms are formed as a re-
sult of absorption of incident radiation, and then the absorbed energy is consumed
on ionization of excited atoms. Along with this, a part of absorbed energy releases
as a result of spontaneous emission of excited atoms, and this energy is transferred
to neighboring regions. Since transport processes are absent, the above processes
provide all the energy release transmitted from an incident radiation beam. The
ratio of the rates of atom ionization and spontaneous radiation is

ξ =
kionN∗Ne

N∗/τ
=

τ

τion
.

Here an average is made over time of plasma evolution, and τion is the average
time of ionization, kionN∗Ne is the number of ionization events per unit time and
unit volume, N∗/τ is the number of events of spontaneous radiation per unit time
and unit volume; τion is an ionization time that is given by formula (10.19), τ is the
radiative lifetime of an isolated resonantly excited atom.
Note that because of a high excitation temperature, for a broad beam of resonant

radiation, transverse photons leave an excited region due to stimulated radiation.
But since an inoculating photon results from spontaneous radiation, we reduce
losses due to transverse photons to spontaneous radiation. We take the energy per
one forming electron and ion as J + 3Te/2, where J is the atom ionization potential,
3Te/2 is the average kinetic energy of a forming electron that exceeds that for an
ion, and the energy per spontaneous photon h̄ω. Let us introduce the portion of
energy of absorbed radiation that η is consumed on ionization, and is related with
the ratio of the above rates by the relation

η =
(J + 3Te/2)ξ

(J + 3Te/2)ξ + h̄ω
=

(J + 3Te/2)τ
(J + 3Te/2)τ + h̄ωτion

. (10.26)
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Table 10.8 contains the values of the parameter η for a photoresonant plasma of
alkali metals at the initial number density of atoms No = 1 · 1015 cm−3. One can
see that the efficiency of transformation of the incident radiation energy into the
energy of ionization increases with an increase of No, the total number of atoms at
the beginning, and in the end all the atoms are converted into ions and electrons.
Thus the process of absorption of incident resonant radiation in a vapor proceeds

as follows. Absorption of radiation by atoms transfers atoms in resonant excited
states, and these atoms can emit stimulated or spontaneous radiation or take part
in processes of plasma generation. Simulated radiation restores an incident beam
and does not influence on the processes of energy conversion that proceeds from
spontaneous radiation and ionization of excited atoms by electron impact. Note
that resonant radiation is absorbed in a small region of a vapor (or in a buffer
gas with a buffer gas admixture), and after total ionization of vapor atoms this
region becomes transparent for incident radiation, so that absorption takes place
in a neighboring region. We assume a dimension of a vapor region L to be large
in comparison with the mean free path (10.8) for resonant photons.

10.4
Propagation of Excitation and Ionization Waves

� Problem 10.28 Determine the velocity of propagation for an intense incident
beam of resonant radiation through the vapor when the mean free path of photons
λ is small compared to a vapor dimension l.

We take the following character of absorption of incident photons. Assuming for
simplicity the photon frequency to be identical to the center of a transition spec-
tral line, we first observe radiation penetrates on a depth of 1/ko, where ko is the
absorption coefficient for the spectral line center of a nonexcited gas. If we neglect
emission of spontaneous radiation, which holds true for intense beams, we find
according to equation (10.2) a typical time τ′ of atom excitation on this path

τ′ ∼ N0

ko jω
∼ joτ

jω
.

Through this time a part of a beam path of a size ∼ 1/ko is bloomed due to exci-
tation of atoms, and incident radiation excites the next region. Hence the velocity
of propagation of a resonant laser beam inside a gas or vapor is

vp =
jω
N0

. (10.27)

Note that this velocity is identical for different photon frequencies, if the mean free
path of photons is relatively small. Indeed, a decrease of the absorption coefficient
kω compared to its value in the spectral line center leads to an increase of an
excitation region and simultaneously to a corresponding decrease of a time τ′ of
atom excitation in this region. Both effects are mutually cancelled.
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� Problem 10.29 Find the depth of penetration of an intense resonant beam under
conditions of the previous problem and a time of establishment of its equilibrium
with the gas.

In considering the velocity of propagation of a resonant radiation beam through a
gas, we ignore spontaneous radiation of excited atoms because of a high intensity
of a beam. In the course of propagation of this beam, the excitation temperature
increases according to formula (10.4), and the absorption coefficient decreases,
since the number density of excited and nonexcited atoms becomes nearby and
stimulated radiation occurs. The propagation process finishes when spontaneous
radiation becomes of importance, and this determines the depth L of penetration
for a resonant radiation beam. Comparing the number of absorbed photons per
unit time and per unit area jω and the number of excited photons per unit time
N∗/τ, we find the penetration length

L =
jω
joko

. (10.28)

Note that this value is identical for different photons frequencies if their mean free
path is small compared to the penetration length L. The total time of establishment
of the equilibrium, if resonant radiation penetrates in a gas such that its absorption
is equalized by spontaneous radiation, is of order of τ – the radiative lifetime of
an isolated atom with respect to spontaneous radiation.

� Problem 10.30 Estimate the dependence of the penetration depth of an intense
resonant beam inside an absorbing gas on a beam radius.

In deriving formula (10.28) for the depth of penetration of an intense resonant
beam in a gas we assume implicitly a beam radius to be small in comparison the
mean free path of resonant photons of the spectral line center. Then under consid-
ered conditions jω � jo, where the excitation temperature T∗ exceeds significantly
the photon energy h̄ω, we found the number densities of atoms in the ground N0

and resonantly excited states N∗ states almost identical N∗ ≈ N0. Therefore, the
penetration depth exceeds the mean free path of resonant photons in a nonexcited
gas in T∗/(h̄ω) times because of stimulated radiation. Thus, an incident beam cre-
ates a medium with new optical properties and propagates in this medium. Then
amplification in transversal directions is absent because of relatively small beam
width.
If an incident beam becomes wide, stimulated radiation will determine prop-

agation of radiation in transversal directions. This means that if even the laser
beam is enough broad, an atomic gas becomes transparent with respect to trans-
verse photons because of stimulated radiation. Hence, the character of penetration
of resonant radiation inside a gas is independent of the beam width until a sur-
rounding gas is not excited strongly. Then each photon resulted from spontaneous
radiation of excited atoms, leaves the beam region, possibly due to stimulated ra-
diation, and the relation is conserved between incident photons and transversal
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photons originated as a result of spontaneous emission. Therefore, the character
of propagation of an intense resonant beam does not depend on the beam width.
This consideration shows a nonstationary character of the absorption process

for resonant radiation. In the first stage this radiation is absorbed in a region of
order of the mean free path for photons in a nonexcited gas. Excitation of this gas
leads to a decrease of the absorption coefficient, and the beam of resonant radiation
propagates in a gas and clarifies it. This stage of absorption of resonant radiation
lasts ∼ τ, the radiative lifetime of an isolated atom. Subsequently excitation of a
gas proceeds in a region that surrounds a beam region.

� Problem 10.31 Find the velocity of propagation on large distances for an intense
incident beam of resonant radiation through the vapor when a typical time of es-
tablishment of ionization equilibrium is large compared to the radiative lifetime τ

of an isolated atom.

A beam of resonant radiation propagates in a gas in the form of an excitation wave,
and the velocity of propagation of this wave vp is given by formula (10.27). In this
case absorption proceeds in a narrow region on the beam path. This absorption
leads to clarifying of this region and causes subsequently a displacement of the
absorption region. The propagation of this beam finishes on a depth L of propa-
gation of a resonant radiation beam that is determined by formula (10.28) and is
connected with spontaneous radiation of excited atoms.
We now consider the next step of this process when a gas is clarified as a result

of ionization of excited atoms by electron impact. After transformation of atoms
into ions and electrons, a given region of a vapor is converted in a plasma with the
total ionization of atoms and becomes transparent for incident radiation. In this
way an incident radiation beam propagates in a vapor.
For determining the velocity of the photoresonant wave, we consider the energy

per ionization of atoms per unit volume to be NoJ, where No is the initial number
density of atoms and J is the ionization potential of atoms. Because in the course of
plasma ionization a certain part of energy is consumed on spontaneous radiation
of excited atoms, so that the energy NoJ/ζ is inserted per unit volume from a beam
of photoresonant radiation. Since the energy flux is h̄ωjω, where jω is the photon
flux, we have for the velocity w of propagation of the photoresonant radiation in
the vapor–the velocity of the ionization wave

vp =
h̄ωjωζ

NoJ
=

wo

1 + ξ
; wo =

jωτ

2τionN∗
. (10.29)

On the basis of formula (10.19) we obtain this formula

wo =
jωτkion
2 ln kion

kas

. (10.30)

One can see that this value is proportional to the flux of incident photons, as well
as in the regime according to formula (10.27) and is independent of the number
density of atoms.
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� Problem 10.32 Summarize the character of propagation for a resonant radiation
beam of a high intensity in a dense gas.

There are two mechanisms which lead to blooming of an absorbing gas and in-
crease penetration of a resonant radiation beam inside the gas. The first one follows
from the excitation of a gas, and then stimulated radiation increases the mean
free path of resonant photons in a gas. Subsequent ionization of excited atoms
decreases firstly for propagation of a region of excitation, so that the absorption
coefficient due to disappearance of absorbing atoms and subsequently a gas be-
comes transparent with respect to resonant radiation. We now consider the series
of these processes.
The first stage of these processes is excitation of a given region that proceeds

through a time τjω/jo in accordance with the balance equation (10.2). Here τ is
the radiative lifetime of an isolated atom, and for an intense radiation beam the
ratio jo/jω according to formula (10.3) is small. Through this time the absorption
coefficient for a given region drops from ko to ko jo/jω, and radiation penetrates in
a more deep region.
The second stage is the formation and development of a photoresonant plasma

in this region. Through a time τion that is given by formula (10.19) a remarkable
part of excited atoms is ionized. Though through a time (10.19) a region under con-
sideration becomes not transparent, the absorption coefficient drops because of a
decrease of the number density of atoms and correspondingly the parameter jo de-
creases according to formula (10.3). This region becomes transparent for resonant
radiation through a time (10.23), but a time range from τion to τbl is not essential
for beam propagation because of a small part of a beam energy is absorbed on this
stage. Therefore, just the parameter τion rather than τbl determines the velocity of
propagation of the ionization wave.

10.5
Heating of Atoms and Expanding of Photoresonant Plasma

� Problem 10.33 Find the conditions of generation of sound from a photoresonant
plasma.

This photoresonant plasma results from absorption of incident resonant radiation
by a gas or vapor. As a result, an absorbed radiation energy is transformed in the
excitation energy of excited atoms and in ionization of the vapor. Because these
processes proceed fast, we obtain a gas with nonuniformities due to heated re-
gions or to a heightened pressure. Such regions expand that results in generation
of acoustic waves. Therefore, for sound generation a fast increase of the atom tem-
perature is required for a photoresonant plasma or a fast increase of its pressure.
Returning of these regions to an equilibrium causes generation of acoustic waves.
So, we have two mechanisms of sound generation, as a result of fast heating of

regions where incident radiation is absorbed or by generation of new particles–
electrons and ions that leads to a fast increase of pressure of a photoresonant
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plasma. Subsequent expansion of these regions leads to gas oscillations and hence
to generation of acoustic waves. The condition of this process is that the rate of
formation of nonuniformities 1/τ would be large compared to the wave frequency
∼ R/cs, where R is a nonuniformity dimension, cs is the sound speed, i. e., the
criterion of sound generation has the form

1
τ

≥ R
cs
.

� Problem 10.34 Give the criterion of sound generation resulted from heating of a
photoresonant plasma.

In this case atoms of a photoresonant plasma formed by laser pumping of a gas
or vapor that is located inside a buffer gas are heated in collisions, and hence
some region of a photoresonant plasma has a heightened temperature. This region
expands that leads to motion of a gas as a whole and causes oscillations in a gas–
sound generation. Let us consider the first stage of expansion of the absorbing
gas assuming adiabatic conditions to be fulfilled. This gives T3/2V =const for an
expanding atomic gas, where V ∼ R3 is a heated volume occupied by the absorbing
gas, and R is a typical dimension of this region. From this we obtain a temperature
decrease as a result of expansion(

dT
dt

)
exp

=
T
2R

dR
dt

.

The rate of this volume is restricted by the sound speed cs, i. e., dR/dt ∼ cs. Since
a time of heating of this region is higher than that for expansion, we obtain the

criterion for the heating rate
(
dT
dt

)
heat(

dT
dt

)
heat

�
Tcs
R

. (10.31)

Thus, generation of acoustic waves is realized due to fast channels of energy trans-
fer to atoms of a photoresonant plasma.

� Problem 10.35 Determine the rate of gas heating in a photoresonant plasma due
to elastic collisions between electrons and atoms.

One of the mechanisms of gas heating results in elastic collisions between elec-
trons and atoms in a photoresonant plasma. Since the electron temperature is
higher than the gaseous temperature, this process leads to heating of a gas. On the
basis of formula (7.32)we have the balance equation for the gaseous temperature
in this case

dT
dt

=
Ne

N0

me

M
ν(Te − T) ,

whereme,M are the electron and atom masses, respectively, Ne, N0 are their num-
ber densities, Te,T are the electron and gaseous temperatures, respectively, and
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ν is the rate of elastic electron–atom collision (ν = N0〈vσ∗〉, where v is the elec-
tron velocity, σ∗ is the diffusion cross section of elastic electron–atom scattering,
an average is made over electron velocities).

From this we find the law of variation of the gaseous temperature

T = To + (Te − To)[1 − exp(−νTt)] ,

where To is the initial gaseous temperature, and we assume typical times of estab-
lishment of the electron temperature to be small compared to this for the gaseous
one. A typical rate of establishment of the gaseous temperature is

νT ∼ me

M
Ne〈vσ∗〉 ,

and a typical time τT of variation of the initial gaseous temperature (To � Te) is
estimated as

τT ∼ T
TeνT

.

Since a typical rate constant of electron–atom collisions in a photoresonant plasma
of alkali metals is ∼ 10−6 cm3/s, at a typical number density of alkali metal atoms
No ∼ 1016 cm−3 and atm/M ∼ 10−5 for heavy alkali metals, we have νT ∼ 105 s−1 .
This value corresponds to the rate (10.31) of sound propagation.

� Problem 10.36 An equilibrium between the states of fine structure of resonantly
excited atoms in a plasma results from collisions with electrons whose temperature
is Te and exceeds the gas temperature T . Collisions between atoms in the ground
states and resonantly excited atoms with a change of fine structure of excited atoms
lead to gas heating. Under conditions δf � T < Te (δf is the difference energies
for states of fine structure) find the rate of gas heating due to transitions between
fine structure states.

This is a mechanism of heating of a photoresonant plasma as a result of conversion
of the electron energy of atom excitation into the thermal energy of colliding atoms.
For definiteness, we consider a vapor consisting of alkali metal atoms with the
ground state 2S1/2 and resonantly excited states 2P1/2 and 2P3/2. The heat balance
equation owing to the processes of transitions between fine structure states has
the form

C
dT
dt

= δf

[
k
(
3
2

→ 1
2

)
N3/2 − k

(
1
2

→ 3
2

)
N1/2

]
No

Here C = 3No/2 is the gas heat capacity, No is the number density of atoms in
the ground state, N1/2, N3/2 are the number densities of resonantly excited states
with a given state of fine structure, the argument of the rate constants indicates
the transition states. Because of the thermodynamic equilibrium with the electron
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temperature, the number densities of excited atoms are connected by the Boltz-
mann formula (1.12)

N3/2 = 2N1/2 exp
(

− δf
Te

)
,

and according to the principle of detailed balance, the relations between the rates
of the processes with the fine structure change have the form

k
(
1
2

→ 3
2

)
= 2k

(
3
2

→ 1
2

)
exp

(
−δf
T

)
.

Expanding exponents of these relations, we reduce the heat balance equation to
the form

dT
dt

= (Te − T) = νef(Te − T), νef =
4
27

δ2f
TeT

N∗kex ,

where N∗ = N1/2 +N3/2 is the total number density of resonantly excited atoms, and
we use k

( 1
2 → 3

2

)
= 2

3kex , k
( 3
2 → 1

2

)
= 1

3kex, kex is the rate constant of excitation
transfer, and its values for the excitation transfer cross section are given in Table
3.1.

� Problem 10.37 Being guided by a photoresonant plasma of alkali metals, find the
optimal conditions of sound generation as a result of atom ionization in a pho-
toresonant plasma if a width of an incident radiation beam is R ∼ 1 mm.

Fast ionization of a vapor of a photoresonant plasma leads to an increase of the
pressure in a region occupied by this plasma. One can estimate this increase as
∆p = NeTe, where Ne is the number density of electrons, and Te is the electron
temperature. The energy transformed into gas oscillations is of the order of V∆p,
where V is the volume of a photoresonant plasma, and Te is the energy per atom.
A typical time of ionization is given by formula (10.19), and we use formula

(4.38) for the rate of stepwise ionization. This process starts from the ground state,
and the number density of excited atoms is relatively small in the course of the
ionization process. A typical time of development of acoustic oscillations is given
by formula (10.31). Table 10.9 contains the electron temperature of alkali metal

Table 10.9 Parameters of a photoresonant plasma which provide the optimal
conditions of sound generation at the number density of alkali metal atoms
of 1016 cm−3 and at the temperature of the alkali metal vapor of 500 K.

cs (103 cm/s) Te (eV) N∗ (1012 cm−3) ηo( %)

Li 4.6 0.28 12 5.2
Na 2.5 0.25 2.3 4.9
K 1.9 0.20 3.6 4.6
Rb 1.3 0.19 2.7 4.6
Cs 1.0 0.17 3.3 4.4
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atoms that provides the time of total ionization of photoresonant plasma during a
time (10.31) of sound propagation. This table contains also the number density of
excited atoms at this electron temperature.

� Problem 10.38 Estimate the coefficient of conversion of an energy of an incident
radiation beam into the energy of acoustic oscillations if the total ionization of a
photoresonant plasma proceeds.

The process of sound generation from a photoresonant plasma results from con-
version of the energy of an incident radiation into the mechanical energy, and this
causes oscillations of a gas. Assuming total ionization of atoms under the action
of an incident radiation beam and subsequent ionization of the photoresonant
plasma, we obtain the thermal energy per electron 3Te/2 that is converted subse-
quently into the energy of acoustic oscillations. The energy enclosed in a gas per
one electron is of the order of J, the atom ionization potential. Hence, the efficiency
of this process is

η ∼ ηo =
Te
J
.
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11
Waves in Plasma and Electron Beams

11.1
Oscillations in an Isotropic Weakly Ionized Gas

� Problem 11.1 Analyze acoustic oscillations of an atomic gas.

In considering wave and oscillations in a gas and plasma, we assume them to be
weak. This means the amplitude of oscillations is small and a perturbation due to
oscillations is small. Hence any macroscopic parameter A of this system may be
represented as

A = Ao +∑
ω

A′
ω exp[i(kx − ωt)] .

Here Ao is an unperturbed parameter (in the absence of oscillations), A′
ω is the

amplitude of oscillations, ω is the oscillation frequency, and k is the wave number
of the oscillation. We assume the oscillation to be propagated in the form of a wave
in the x-direction. Next, because of a weakness of oscillations, one can neglect the
interaction between oscillations of different frequencies and to separate them in
this way. Therefore, in this linear approximation one can restrict by an oscillation
of one frequency, i. e., instead of the above expression for a macroscopic parameter
A one can use a more simple one

A = Ao + A′ exp[i(kx − ωt)] (11.1)

In analyzing an oscillation, we shift a system from its equilibrium state weakly.
This causes a returning force that tries to restore a system in an equilibrium state.
As a result, oscillations occur near an equilibrium state, and our task is to find
the relation between the frequency ω and the wavelength or wave vector k of the
oscillation.
In the case of elastic oscillations or acoustic waves in a gas, we consider weak

perturbations (11.1) for the gas density, its pressure and wave velocity. We use for
this purpose a standard form of the continuity equation (6.15)

∂N
∂t

+ div (Nw) = 0 ,
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the Euler equation (6.19)

∂w
∂t

+ (w · ∇)w +
∇p
ρ

− F
m

= 0

and the adiabatic conditions in the wave from the equation

pN−γ = const . (11.2)

Here N is the number density of gas atoms, p is the gas pressure, w is the mean
gas velocity, and for a motionless gas wo = 0;m is the atommass, and F is the force
per atom. Next, γ = cp/cV is the adiabatic exponent, that is, cp is the specific heat
capacity at constant pressure, cV is the specific heat capacity at constant volume,
and for an atomic gas γ = 5/3.
If we represent gas parameters in the form (11.1), we obtain from the continuity

equation

ωN′ = kN0w′ ,

since acoustic wave is a longitudinal oscillation, the gas velocity w is directed along
the wave vector k. Taking an external force F to be zero in the Euler equation, we
obtain from it on the basis of formula (11.1) in the first approximation

ωw′ =
k

mNo
p′ .

Next, from the adiabatic equation in the wave we have

p′/po = γN′/No .

Excluding perturbed gas parameters from the above equations, we find the rela-
tion between the wave frequency ω and its wave vector k (the dispersion relation)

ω = csk , (11.3)

where the speed of sound cs is

ω =

√
γT
m

k . (11.4)

We below use the state equation for an ideal motionless gas po = NoT . The sound
velocity is seen to be of the order of the thermal velocity of gas particles. Figure
11.1 represents the dispersion relation (11.4) for air at T = 300 K in the range of
centimeter wavelengths.

� Problem 11.2 Find the criterion of validity of the dispersion relation (11.4) for
acoustic oscillations in an atomic gas.

The dispersion relation (11.4) for acoustic oscillations in a motionless gas is valid
under adiabatic conditions in the wave if a typical time τ of heat transport in the
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Fig. 11.1 Dispersion relation (11.4) for air at T = 300 K in the centimeter range of wavelengths.

wave is small compared to the period of oscillations 1/ω. Assuming the heat trans-
port in the wave to be due to thermal conductivity, we obtain τ ∼ r2/χ ∼ (χk2)−1 ,
where a distance r is of the order of the mean free path of atoms in a gas λ, and χ

is the coefficient of thermal diffusivity. This leads to the adiabatic criterion

ω � c2s /χ .

Let us express the coefficient of thermal diffusivity through the mean free path of
atoms in a gas χ = κ/(cpN) ∼ vTλ, where vT is a typical thermal velocity of atoms
and cs ∼ vT. Then the above criterion takes the form

λk � 1 . (11.5)

Thus, under adiabatic conditions, the wavelength of the acoustic oscillations is
large compared to the mean free path of the gas atoms.

� Problem 11.3 Determine the frequency of oscillations of plasma electrons which
result from a displacement of electrons as a whole.

Let us take a uniform infinite plasma and shift all the plasma electrons. This causes
a returning force due to electric fields that lead to oscillation of electrons as a whole.
We will find the frequency of these oscillations.
If starting from a plane x = 0 all the electrons are shifted at the initial time by a

distance xo to the right, this creates an electric field whose strength follows from
the Poisson equation

dE
dx

= 4πe(Ni − Ne) ,

where Ni,Ne are the ion and electron number density, respectively. Assuming the
electric field strength at x < 0 to be zero, we obtain the electric field strength



338 11 Waves in Plasma and Electron Beams

E = 4πeNoxo for x > xo by solving the Poisson equation, where No is the average
number density of electrons and ions in the plasma. The motion of all the electrons
under the influence of the electric field leads to a change in the boundary position.
The equation of motion for each electron has the form

me
d2 (x + x0)

dt2
= −eE ,

where me is the electron mass and x is the distance of an electron from the
boundary. Because x is a random value and is independent of oscillations under
consideration and therefore it is not depended on time. This gives the equation of
electron motion,

d2xo
dt2

= −ω2
pxo .

As is seen, the electron motion proceeds now in the form of oscillations, and the
plasma frequency (or the Langmuir frequency) is

ωp =

√
4πNoe2

me
. (11.6)

The value 1/ωp is a typical time for a plasma response to an external signal. Note
that the value rDωp =

√
2T/me is the thermal electron velocity. Thus, considering

a plasma response on an external electric signal as an electron displacement on a
distance of the order of the Debye–Hückel radius rD, that is a shielding distance
for fields in a plasma, and electrons move with a typical thermal velocity, we obtain
the above time of the response time.

� Problem 11.4 Derive the dispersion relation for plasma oscillations.

In considering the plasma oscillations, let us take the macroscopic equations for
a plasma similar to the method of derivation of the dispersion relation (11.4) for
acoustic waves. Then by analogy with the case of the acoustic oscillations, we obtain
from the continuity equation (6.15), Euler equation (6.19) and adiabatic equation
(11.2), the relations which connect unperturbed and perturbed plasma parameters,

−iωN′
e + ikNow′ = 0 , −iωw′ + i

kp′

meNo
+
eE′

me
= 0 ,

p′

po
= γ

N′
e

No
. (11.7)

Here unperturbed and perturbed parameters are defined in accordance with for-
mula (11.1), N′

e is the perturbed number density of electrons in the wave, No is the
average number density of electrons and ions, and in the Euler equation the force
F = −eE is introduced from the electric field of the wave that occurs owing to the
disturbance of the plasma quasineutrality; k and ω are the wave number and the
frequency of the plasma oscillations, respectively. Along with these equations, we
take into account the Poisson equation that gives

ikE′ = −4πeN′
e .
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Using the state equation for electrons of a motionless plasma po = N0me
〈
v2x

〉
, we

obtain the above equations.
Eliminating the oscillation amplitudes N′

e, w′, p′, and E′ from the set of the
above equations, we obtain the following dispersion relation for plasma oscilla-
tions:

ω2 = ω2
p + γ

〈
v2x

〉
k2 , (11.8)

where ωp =
√
4πN0e2/me is the plasma frequency that is given by formula (11.6).

Plasma oscillations are longitudinal ones similar to acoustic oscillations where a
plasma motion and the wave vector have the same direction.

� Problem 11.5 Find the criterion of validity of the dispersion relation (11.8) for
plasma oscillations.

The dispersion relation (11.8) for plasma oscillations is valid under adiabatic con-
ditions of wave propagation. Taking heat transport to be due to electron thermal
conductivity, we obtain the adiabatic condition in the form ωτ ∼ ω/(χk2) � 1,
where ω is the frequency of oscillations, τ ∼ (χk2)−1 is a typical time for heat
transport in the wave, χ is the electron thermal diffusion coefficient, and k is the
wave number of the wave. Since χ ∼ veλ, then ω ∼ ωp ∼ ve/rD, where ve is
the mean electron velocity, λ is the electron mean free path, and rD is the Debye–
Hückel radius. Thus, the adiabatic condition yields

λrDk2 � 1 . (11.9)

� Problem 11.6 Derive the dispersion relation for plasma oscillations under isother-
mal conditions.

Under the isothermal condition that is reversed with respect to condition (11.9),
the relation for the pressure and a perturbed pressure is the same as that for un-
perturbed one and has the form

p′ = γN′
eme

〈
v2x

〉
. (11.10)

As a result, we obtain the dispersion relation (11.8) with another proportionality
coefficient γ between the perturbed pressure p′ and the perturbed number density
N′
e of electrons. For neutral particles this coefficient is one since only kinetic energy

of particles determines the pressure of these particles. For a plasma it is necessary
to include in the plasma state equation the Coulomb interaction between charged
particles, and then γ = 3. We obtain correctly this derivation of the dispersion
relation for plasma oscillation in the isothermal case on the basis of the kinetic
consideration below.
Note that plasma oscillations exist if their frequency exceeds remarkably by a

reciprocal time between neighboring electron–atom collisions ωp � ve/λ, where
ve is a thermal electron velocity and λ is the mean free path of electrons with
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respect to their collisions with atoms. This gives the condition for existence of
plasma oscillations,

λ � rD . (11.11)

� Problem 11.7 Derive the dispersion relation for plasma oscillations on the basis of
the kinetic equation for electrons, assuming the distribution function of electrons
to be the Maxwell one, and the wavelength λ exceeds significantly the Debye–
Hückel radius rD for the plasma.

We above obtain the dispersion relations for plasma oscillations (11.8) on the basis
of macroscopic equations for the electron component. Now we obtain it directly
from the kinetic equation (6.2) expanding the distribution function as f (v) =
fo(v) + f ′(v). Here the first term relates to an equilibrium electron distribution,
and the second term accounts for plasma oscillations, and from the kinetic equa-
tion (6.2) we obtain

∂ f ′

∂t
+ v∇ f ′ − eE′

me

∂ fo
∂v

= 0 .

The electric field strength E′ due to oscillations directs along the wave and satisfies
the Poisson equation

div E′ = −4πeN
∫

f ′dv .

This distribution function is normalized as
∫
f dv =1, and we assume the absence

of external fields in a nonperturbed plasma. Taking the time and coordinate de-
pendence of f ′ and E′ in the wave as exp(ikr−iωt), we obtain

f ′ = i
eE′

me(ω − kvx)
∂ fo
∂vx

,

where the x-axis is directed along the wave. From this we have the dispersion
equation

ω2
p

k2

∫ ∂ fo
∂vx

vx − ω
k
dv = 1 ,

where the plasma frequency ωp is given by formula (11.6). Extracting the distribu-
tion function that depends on vx and crossing around the pole at vx = ω/k, as it is
shown in Fig. 11.2, we reduce this dispersion relation to the form

ω2
p

k2
�

∞∫
−∞

∂ fo
∂vx

dvx
vx − ω

k
+ iπ

ω2
p

k2
∂ fo
∂vx

∣∣∣∣
vx=ω/k

= 1 .

Let us expand the first integral over a small parameter kvx/ω � 1

ω2
p

k2

∞∮
−∞

∂ fo
∂vx

dvx
vx − ω

k
= −ω2

p

k
�

∞∫
−∞

1
vx

∂ fo
∂vx

dvx
∞

∑
n=0

(
kvx
ω

)n

≈ ω2
p

ω2

(
1 + 3

k2

ω2

〈
v2x

〉)
.
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Fig. 11.2 The character of pass near the pole.

In this approximation k2
〈
v2x

〉
� ω2 , we obtain the following dispersion equation

for plasma oscillations:

ω2 = ω2
p + 3k

2
〈

v2x
〉
+ iπ

ω4
p

k2
∂ fo
∂vx

∣∣∣∣
vx=ω/k

. (11.12)

This dispersion equation consider damping or amplification of waves due to elec-
trons whose velocity vx is equal to the wave phase velocity ω/k. In addition, this
dispersion relation corresponds to the isothermal character of equilibrium, because
assuming the nonperturbed distribution function of electrons to be independent
of the wave, we postulate the isothermal wave conditions.
Comparing the dispersion relation (11.12) with that (11.8) from hydrodynamic

considerations, we find these formulas to be identical at γ = 3. This cannot be
justified. Indeed, as a longitudinal wave, the Langmuir wave includes oscillations in
one direction only, and then according to formula (11.10) γ = 1. We here ignore the
ion displacement as a slow component. Therefore, the contradiction between the
above formulas is related with the difference between hydrodynamic and kinetic
descriptions.

� Problem 11.8 Derive the dispersion relation for ion sound.

Since a plasma incudes two types of charged particles, electrons and ions, two types
of oscillations may be realized in a uniform plasma. The first one relates to fast
oscillations due to electron motion, and ion motion is of importance for the second
branch of oscillations of the plasma, that is the ion sound. Because of a small
electron mass, they response fast on ion displacements that conserve the plasma
quasineutrality in average, i. e., Ne = Ni. In addition, the electron distribution is
established in accordance with plasma fields, i. e., the electron number density is
determined by the Boltzmann formula

Ne = No exp
(
eϕ
Te

)
≈ No

(
1 +

eϕ
Te

)
,
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where ϕ is the electric potential due to oscillations, and Te is the electron temper-
ature. This allows us to express the amplitude of oscillations of the ion number
density as

N′
i = No

eϕ
Te

.

The relation between the ion velocity wi in the wave and the variation of the ion
number density N′

i due to the wave follows from the continuity equation (for ions
∂Ni/∂t + ∂(Niwi)/∂x = 0). This gives

ωN′
i = kNowi ,

where ω is the frequency, k is the wave number, and wi is the mean ion velocity
due to oscillations, and we use the standard dependence (11.1) for oscillation para-
meters. The equation of motion for ions due to the electric field of the wave has
the form M(dwi/dt) = eE = −e∇ϕ, where M is the ion mass. From this it follows

Mωwi = ekϕ .

Eliminating the oscillation amplitudes of Ni, ϕ, and wi in the above equations,
we obtain the dispersion relation for the ion sound

ω = k

√
Te
M

. (11.13)

Similar to plasma oscillations and acoustic waves, ion sound is a longitudinal wave,
i. e., the wave vector k of this wave and the oscillation velocity is parallel to the os-
cillating electric field vector E. In addition, the dispersion relation for ion sound
is similar to that for acoustic waves, since both types of oscillations are character-
ized by a short-range interaction. In the case of ion sound, the interaction is short
ranged if the wavelength of the ion sound is larger than the Debye–Hückel radius
for the plasma on which an electric field of the propagating wave is shielded by the
plasma. This is the criterion of validity of relation (11.13).
Thus, oscillations in a two-component plasma consisting electrons and ions in-

clude two branches, plasma oscillations (11.11) and ion sound (11.13). Figure 11.3
represents these oscillations in a helium gas-discharge plasma.

� Problem 11.9 Derive the dispersion relation for the ion sound taking into account
a long-range interaction in a plasma.

In generalization the dispersion relation for ion sound (11.13) that we obtain below
for long-wave oscillations, we use the Poisson equation for the plasma field

d2ϕ

dx2
= 4πe(Ne − Ni) ,

while in the case of long-wave oscillations treated above, we took the left-hand side
of this equation to be zero. We now consider this equation side to be −k2ϕ on
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Fig. 11.3 Dispersion relations for plasma oscillations (11.12) and ion
sound(11.13) in a helium discharge plasma with parameters T = Ti = 400 K,
Te = 2 eV, Ne = 1 · 1013cm−3 in the centimeter range of wavelengths.

the basis of expansion (11.1), and accounting for electric fields in the wave due to
violation of the plasma quasineutrality with the Boltzmann formula for the electron
number density, we get from the Poisson equation

N′
i = No

eϕ
Te

(
1 +

k2Te
4πNoe2

)
.

As a result, the dispersion relation (11.13) is now replaced by

ω = k

√
Te
M

(
1 +

k2Te
4πNoe2

)−1/2

. (11.14)

This dispersion relation is converted into formula (11.13) in the limit krD � 1
when oscillations are determined by a short-range interaction in the plasma. In
the opposite limiting case krD � 1 we get

ωip =

√
4πNoe2

M
. (11.15)

In this case a long-range interaction in the plasma is of importance, and from
the dispersion relation, we see that ion oscillations are similar to plasma oscil-
lations. Figure 11.4 represents the dispersion relation (11.14) for ion sound in a
helium plasma when the wavelength range includes the transition from the case
(11.14) to the case (11.15). The helium gas-discharge plasma parameters are Ne =
1 · 1013cm−3, Ti = 400 K, Te = 2 eV.

� Problem 11.10 Derive the dispersion relation for the ion sound on the basis of the
kinetic equation for electrons. Assume the distribution function of electrons and
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Fig. 11.4 Dispersion relations (11.14) for ion sound in a helium dis-
charge plasma with parameters T = Ti = 400 K, Te = 2 eV,
Ne = 1 · 1013 cm−3 in the centimeter range of wavelengths.

ions to be the Maxwell one, and the electron temperature Te exceeds significantly
the ion Ti by one.

Since the plasma contains two charged components, and the behavior of the elec-
tron component influences the ion, it is necessary to consider both components
for the analysis of oscillations of the ion component. As for the above plasma os-
cillations, we represent the distribution function of electrons fe and ions fi as

fe = f (o)
e + f ′

e , fi = f (o)
i + f ′

i .

Here the first terms relate to nonperturbed plasma with the Maxwell distribution
functions of electrons and ions, and the second terms account for oscillations in a
plasma. Considering the second terms as a perturbation and taking the time and
coordinate dependence for wave parameters as exp(ikx − iωt), we obtain on the
basis of the kinetic equation (6.2) and the Poisson equation in analogy with the
case of plasma oscillations

f ′
e = i

eE′

me(ω − kvex)
∂ f (o)

e

∂vex
, f ′

i = i
eE′

M(ω − kvix)
∂ f (o)

i
∂vix

,

ikE′ = 4πNee
(∫

f ′
i dvix −

∫
f ′
edvex

)
,

where M is the ion mass, Ne is the number density of electrons or ions in a quasi-
neutral plasma under consideration, and the electron temperature Te is taken large
compared to the ion temperature Ti. Taking the Maxwell distribution function of
electrons and ions with the electron Te and ion Ti temperatures

∂ f (o)
e

∂vex
= −mevex

Te
f (o)
e ,

∂ f (o)
i

∂vix
= −Mvix

Ti
f (o)
i ,
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we obtain the dispersion equation for the plasma

ω2
p

k2

(
me

Ti

∫ vix f
(o)
i dvix

ω
k − vix

+
me

Te

∫ vex f
(o)
e dvex

ω
k − vex

)
= 1 . (11.16)

This equation can leads to dispersion relation of waves due to oscillations of both
electron and ion plasma components. In particular, excluding the ion part from this
equation, we obtain the dispersion relation (11.12) for electron oscillations. We now
use this equation for the ion component taking the oscillation frequency ω in the
range kvix � ω � kvex then the above equation takes the form

−ω2
p

k2
me

Te
+

ω2
p

ω2
me

M

−iπ
ω2
p

k2
me

Te

(
vex f

(o)
e

)∣∣∣
vex=ω/k

− iπ
ω2
p

k2
me

Te

(
vix f

(o)
i

)∣∣∣
vix=ω/k

= 1 , (11.17)

and the imaginary part is determined by poles of the corresponding functions
under the integrals. Ignoring the imaginary part, we obtain from this the dispersion
relation (11.14)

ω2 = k2
Te
M

1
1 + k2r2D

,

where rD =
√
Te/(4πNee2) is the Debye–Hückel radius in the case if screening is

determined by electrons only.

� Problem 11.11 Analyze the character of shielding of an external field in a quasi-
neutral plasma from the dispersion relation (11.16).

Shielding of a constant electric field penetrating in a plasma reflects a reaction of
electrons on an external signal. We take the dependence of an external field directed
inside the plasma as E = Eo exp(ikx − iωt) and use the dispersion relation (11.16)
for an isothermal plasma. Taking this dispersion relation for a stationary plasma
ω = 0, we obtain k = irD, where rD is the Debye–Hückel radius. From this we
obtain that the electric field strength inside the plasma varies as E = Eo exp(−x/rD)
in accordance with the definition of the Debye–Hückel radius by formula (1.55).
On the basis of the above analysis, one can determine the Debye–Hückel radius

from the dispersion relation (11.16) if we substitute in this relation ω = 0. Such an
operation gives

− 1
k2

=
1
Ti
+ 1

Te
4πNoe2

= r2D ,

and formula (1.57) is used for the Debye–Hückel radius in the case of different
electron Te and ion Ti temperatures.
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11.2
Plasma Oscillations in Magnetic Field

� Problem 11.12 Derive the dispersion relation for magnetohydrodynamic waves in
a plasma, when this plasma is located in a strong magnetic field and the magnetic
lines of force are frozen in the plasma.

We consider oscillations of a high-conductivity plasma that is located in a strong
magnetic field, and the magnetic lines of force are frozen in the plasma. Then
a change in the plasma current causes a change in the magnetic lines of force,
which acts in opposition to this current. As a result, this plasma oscillates and
magnetohydrodynamic waves are generated in it.
We assume the wavelength of magnetohydrodynamic waves to be small com-

pared to the radius of curvature of magnetic lines of force, that is

1
k

�

∣∣∣∣ H
∇H

∣∣∣∣ , (11.18)

where H is the magnetic field strength. This allows us to consider the magnetic
lines of force as straightforward lines. A displacement of themagnetic lines of force
causes a plasma displacement, and due to the plasma elasticity, such a motion is an
oscillation. By analogy with acoustic oscillations, the velocity of their propagation
follows from the continuity and Euler equations and is equal to cA =

√
∂p/∂ρ,

where p is the pressure, ρ = MN is the plasma density, and M is the ion mass.
Because the pressure of a cold plasma is determined by the magnetic pressure
p = H2/(8π), we obtain

cA =

√
H∂H/∂N
4πM

for the velocity of propagation of magnetohydrodynamic waves. Since the magnetic
lines of force are frozen in the plasma, ∂H/∂N = H/N, which gives the velocity of
magnetohydrodynamic waves–the Alfvén speed.

cA =
H√
4πMN

. (11.19)

There are two types of magnetohydrodynamic waves depending on the direction
of wave propagation (see Fig. 11.5). If the wave propagates along the magnetic lines
of force (Fig. 11.5a), it is called an Alfvén wave or magnetohydrodynamic wave. This
wave is analogous to a wave propagating along an elastic string. In the other case
(Fig. 11.5b), the vibration of one magnetic line of force causes the vibration of a
neighboring line, and the wave, the magnetic sound, propagates perpendicular to
the magnetic lines of force. The dispersion relations for both types of oscillations
are identical and have the form

ω = cAk . (11.20)
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Fig. 11.5 Two types of magnetohydrodynamic waves. (1) magnetic sound; (2) Alfvén waves.

� Problem 11.13 Analyze the wave properties of a nonuniform plasma located in
an external magnetic field if the wave propagates perpendicular to the direction of
variation of the plasma density. The magnetic field is directed perpendicular to the
density gradient.

Under these conditions, an electron drift in the direction of the density gradient
leads to rise of the electric field in the direction, which is perpendicular to the
magnetic field and the density gradient. This causes a reverse motion of electrons.
As a result, oscillations are originated in the form of drift waves which will be
considered below.
We assume the phase velocity of drift waves to be within the limits

√
Ti
M

�
ω

k
�

√
Te
me

.

The left inequality allows us to ignore the motion of ions and according to the
right equality electrons follow for the wave field, so that the electron number den-
sity Ne corresponds to thermodynamic equilibrium in the wave potential ϕ

Ne = No exp
(
eϕ
Te

)
,

where we use the Boltzmann formula (1.12), taking into account the sign of electron
charge, and No is the equilibrium number density of electrons. Introducing the
electron number density N′ due to the wave according to the relation Ne = No +N′,
we obtain from the above equation

N′ = No
eϕ
Te

if we consider the wave to be weak.
In order to derive the dispersion relation for the drift wave, we take the depen-

dence of wave parameters as exp(ikyy− iωt) and use the continuity equation (6.15)
for electrons

∂Ne

∂t
+ div (Neve) = 0 .
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In the absence of oscillations the plasma is motionless. Next, the gradient of the
electron number density is directed along x, and the wave propagates along y. We
obtain from the continuity equation

−iωN′ + vex
∂No

∂x
,

where ∂No/∂x is the initial gradient of the electron number density. The drift of
electrons under the action of the magnetic field H and the electric field E of the
wave proceeds in the direction x that is perpendicular to the magnetic field direc-
tion (z) and the wave direction (y). We obtain the electron drift velocity under the
action of electric and magnetic fields

vex =
cEy
H

= −i
ckyϕ

H
.

Substitute this into the continuity equation and excluding the wave electric poten-
tial by using the Boltzmann formula, we obtain the dispersion relation for the drift
wave in the form

ω = −ky
cTe
eH

d lnNo
dx

. (11.21)

This dispersion relation is valid only if its phase velocity significantly exceeds a
typical ion velocity and is small compared to an electron thermal velocity. This
condition gives

1 �
ωHL√
Te/me

�

√
M
me

Te
Ti

,

where ωH = eH/(mec) is the Larmor frequency for electrons and L is a character-
istic distance over which the electron number density varies noticeable.

11.3
Propagation of Electromagnetic Waves in Plasma

� Problem 11.14 Analyze the character of transformation of an electromagnetic wave
if it propagates in a uniform weakly ionized gas.

If an electromagnetic wave propagates in a plasma, plasma motion due to fields
of an electromagnetic field influences wave parameters, and therefore the plasma
behavior establishes the dispersion relation for the electromagnetic wave. We shall
now derive the dispersion relation for an electromagnetic wave in a plasma based
on the Maxwell equations for the wave fields and include in these equations plasma
currents under the action of electromagnetic fields. We have for the electromag-
netic wave

curlE = − 1
c

∂H
∂t

, curlH =
4π

c
j− 1

c
∂E
∂t

,
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where E and H are the electric and magnetic fields in the electromagnetic wave,
respectively, j is the density of the electron current produced by the action of the
electromagnetic wave, and c is the light velocity. Applying the curl operator to the
first equation of this set and the operator − (1/c) (∂/∂t) to the second equation of
the set, and then eliminating the magnetic field from the resulting equations, we
obtain

∇div E − ∆E +
4π

c2
∂j
∂t

− 1
c2

∂2E
∂t2

= 0 . (11.22)

We take the plasma to be quasineutral, so that according to the Poisson equation
div E = 0. Next, the electric current due to motion of electrons is j = −eNow,
where No is the average number density of plasma electrons in the absence of
an electromagnetic wave, and we is the electron velocity due to the action of the
electromagnetic field. The equation of motion for electrons is medwe/dt = −eE,
which gives

∂j
∂t

= −eNo
dwe

dt
=
e2No

me
E .

From this we obtain the equation for the electric field of the electromagnetic wave

∆E − ω2
p

c2
E +

1
c2

∂2E
∂t2

= 0 ,

where ωp is the plasma frequency (11.6). Taking the wave parameters in the stan-
dard form according to formula (11.1) and substituting it in the above equation, we
obtain the following dispersion relation for the frequency of a propagating electro-
magnetic wave in a plasma:

ω2 = ω2
p + c

2k2 . (11.23)

When the plasma density is low (Ne → 0, ωp → 0), the dispersion relation
transfers to that of an electromagnetic wave propagating in a vacuum, ω = kc. Ac-
cording to the dispersion relation (11.23), electromagnetic waves do not propagate
in a plasma if their frequencies are lower than the plasma frequency ωp. A charac-

teristic damping distance for such waves is of the order of c/
√

ω2
p − ω2 according

to formula (11.23).

� Problem 11.15 Analyze the character of plasma interaction with an electromag-
netic wave on the basis of the kinetic equation for electrons while ignoring ion
motion.

Taking the coordinate and time dependence for the electric field strength E of an
electromagnetic wave propagating in a plasma as exp(−iωt + ikr), and the same de-
pendence for the electron current j, we obtain equation (11.22) for these parameters
in the form

k2E − k(kE) =
ω2

c2
E − 4πiω

c2
j . (11.24)
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For determining the electric current due to plasma electrons, we consider the
kinetic equation for electrons (6.3) in the tau-approximation. On taking the dis-
tribution function in this equation in the form f (o) + f ′ and the dependence of f ′
in the form exp(−iωt + ikr), we obtain this equation

f ′
(

−iω + ikr − 1
τ

)
− eE

me

∂ f (o)(v)
∂v

= 0 .

Taking the electric field direction along the x-axis as well as the direction of the
current density j, we obtain

f ′ =
ieE
me

∂ f (o)

∂vx

(
−iω + ikv − 1

τ

)−1

.

Taking the direction of wave propagation along the z-axis, we find from this

f ′ =
ieE
me

∂ f (o)

∂vx

(
ω − kvz − 1

τ

)−1

.

This gives the electron current density due to the wave electric field as

jx = −e
∫

f dv = − ie2E
me

∫
vx

∂ f (o)

∂vx
dvx

(
ω − kvz − 1

τ

)−1

.

Taking this integral over the parts and using the normalization condition for the
distribution function (

∫
f (o)dv = No), we obtain

jx =
iNoe2E
me

〈
1

ω − kvz − 1
τ

〉
,

where brackets imply an average over the electron distribution in the absence of the
electromagnetic wave. Substituting this expression for the electron current density
in formula (11.22), we obtain the dispersion relation for the electromagnetic wave
propagating in a plasma

ω2 = c2k2 +ωω2
p

〈
1

ω − kvz − 1
τ

〉
. (11.25)

In particular, for high frequencies we have the following dispersion relation for an
electromagnetic wave:

ω2 = c2k2 +ω2
p

(
1 − i

ωτ

)
, (11.26)

that coincides with formula (11.23) if we ignore damping due to collisions.
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� Problem 11.16 Determine the depth of penetration for electromagnetic waves of
a low frequency inside a plasma, if the electron current density is determined by
electron–atom collisions.

We analyze the dispersion relation (11.25) at low wave frequencies, when the left-
hand side of this equation can be neglected. In addition, ωτ � 1, which allows us
to restrict by the term 1/τ in the denominator of the second term of the right-hand
side of the dispersion relation (11.25). Then this dispersion relation is reduced to
the form

ω = −i
k2c2

ω2
pτ

. (11.27)

This dispersion relation allows us to find the penetration depth of an electromag-
netic wave in a plasma. Since the coordinate dependence is exp(ikx), we represent
it in the form exp(−x/∆), so that 1/∆ = Im k. From the above dispersion relation
we obtain the depth of penetration of an electromagnetic wave in a plasma

∆ =
1

Im k
=

c

ωp
√
2ωτ

. (11.28)

One can see that the penetration depth becomes infinite in the limit of low fre-
quencies, until this depth attains the Debye–Hückel radius. This phenomenon is
the normal skin effect.
A numerical example of the skin effect can be given for the plasma of the Earth’s

ionosphere at an altitude of about 100 km. The plasma conductivity is Σ ∼ 109 Hz
and the plasma frequency is ωp ∼ 3 · 107 Hz. For frequencies of the order of the
plasma frequency, the penetration depth is of the order of 1 m. Electromagnetic
waves with frequencies smaller than the plasma frequency cannot pass through
the Earth’s ionosphere.

� Problem 11.17 Determine the depth of penetration for electromagnetic waves of a
low frequency inside a plasma.

This limit corresponds to the criterion

ω � k

√
Te
me

,

where Te is the electron temperature. We now consider the limit ωτ � 1 when col-
lisions in a plasma are not essential. Taking the residue of the integrand function,
we obtain the dispersion relation at low wave frequencies if

ω = −i

√
2Te
πme

c2k3

ω2
p
.
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This dispersion relation gives the penetration depth of an electromagnetic wave in
a plasma, which in this case is equal to

∆ =
1

Im k
= 2

(
2Te
πme

)1/6
(

c2

|ω|ω2
p

)1/3

. (11.29)

One can see that the penetration depth becomes infinite in the limit of low fre-
quencies. Indeed, since ωτ � 1, we have ∆ �

√
Te/me/τ. But ωτ � 1 in this case,

i. e., the frequency is restricted below. This result relates to the abnormal skin ef-
fect. Note that the normal and abnormal skin effects which are described by the
dispersion relations (11.28) and (11.29) relate to different frequency ranges.

� Problem 11.18 Derive the dispersion relation for small oscillations in an isotropic
plasma on the basis of the plasma dielectric constant.

A general method of deriving the dispersion relation for small oscillations consists
in obtaining equations for quantities which characterize a weak difference of each
quantity from the equilibrium one. Then parameters of oscillations follow from the
condition of existence of such deviations from their steady values, and this reduces
to the condition that the determinant of the equation set for quantity additions is
zero. We use this set of equation in the form (11.24) and represent this equation in
the form

k2Eα − kαkβEβ − ω2

c2
Eα − i

4πω

c2
jα = 0 ,

and the summation is implied over twice repeated subscripts. Using Ohm’s law
(7.60) (jα = ΣαβEβ) and relation (7.69) between the conductivity Σαβ and plasma
dielectric constant εαβ, we reduce the above equation to the form

k2Eα − kαkβEβ − ω2

c2
εαβEβ = 0 .

A nonzero solution of this set of equations exists if its determinant is zero, that is∣∣∣∣k2Eα − kαkβEβ − ω2

c2
εαβEβ

∣∣∣∣ = 0 . (11.30)

The dispersion equation (11.30) establishes a relation between the parameters of
waves in a plasma.

� Problem 11.19 Obtain the dispersion relation for long-wave oscillations due to
electrons in a cold isotropic plasma on the basis of equation (11.30).

For long-wave oscillations in an isotropic plasma, equation (11.30) has the form
ε(ω, k = 0) = 0. Using the dielectric constant, expression (7.70) that takes into
account motion of electrons as a whole and their collisions with atoms in the form
of the tau-approximation. Then the dispersion relation for such waves has the form

ω2 = ω2
p − i

ωp

τ
,
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where we account for ω ≈ ωp. This corresponds to formula (11.8) with k = 0 if we
ignore electron–atom collisions.

11.4
Electromagnetic Waves in Plasma in Magnetic Field

� Problem 11.20 Analyze the Faraday effect–rotation of the polarization vector for
an electromagnetic wave propagating in a plasma in a magnetic wave.

The Faraday effect is a rotation of the polarization vector of an electromagnetic
wave propagating in a medium in an external magnetic field. This effect is due to
electric currents in a medium subjected to a magnetic field, and leads to different
refractive behaviors for waves with left-handed circular polarization as compared
to right-handed circular polarization. Hence, electromagnetic waves with differ-
ent circular polarizations propagate with different velocities, and propagation of
electromagnetic waves with plane polarization is accompanied by rotation of the
polarization vector of the electromagnetic wave.
We consider an electromagnetic wave in a plasma propagating along the z-axis

while being subjected to an external magnetic field. The wave and the constant
magnetic field H are in the same direction. We treat a frequency regime such
that we can neglect ion currents compared to electron currents. Hence, one can
neglect motion of the ions. The electron velocity under the action of the field is
given by formulas (7.50). The electric field strengths of the electromagnetic wave
corresponding to right-handed (subscript +) and left-handed (subscript −) circular
polarization are given by

E+ = (Ex + iEy)e−iωt , E− = (Ex − iEy)e−iωt.

For a plasma without collisions (ωτ � 1), formulas (7.50) lead to

j+ = −eNe(wx + iwy) =
iNee2E+

me(ω +ωH)
=

iω2
pE+

4π(ω +ωH)
,

j− = −eNe(wx − iwy) =
iω2

pE−
4π(ω − ωH)

.

Let us use expansion (11.1) on time and space coordinates of wave parameters in
equation (11.22), that leads to equation (11.22) in the form

k2E − 4πiωj
c2

− ω2E
c2

= 0 . (11.31)

We consider propagation of the electromagnetic wave along the magnetic field.
Using the above expressions for the density of the electron currents, we obtain the
dispersion relations for the electromagnetic waves with different circular polariza-
tions in the form

k2+ +ω+
ω2
p

ω+ωH
− ω2

+
c2

= 0 , k2− +ω−
ω2
p

ω−ωH
− ω2−

c2
= 0 , (11.32)
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where subscripts + and − refer to right-handed and to left-handed circular po-
larizations, respectively. Based on these dispersion relations, we can analyze the
propagation of an electromagnetic wave of frequency ω in a plasma in an external
magnetic field. At z = 0 we take the wave to be polarized along the direction of the
x-axis, so that E = iE exp (−iωt), and we introduce the unit vectors i and j along
the x and y axes, respectively. The electric field of this electromagnetic wave in the
plasma is

E = iEx + jEy =
i
2
(E+ + E−) +

j
2i

(E+ − E−) .

We use the boundary condition

E+ = E0ei(k+z−iωt) , E− = E0ei(k−z−iωt) .

Introducing k = (k+ + k−)/2 and ∆k = k+ − k−, we obtain the result

E = E0ei(kz−ωt)
(
i cos

∆kz
2

+ j sin
∆kz
2

)
. (11.33)

From the dispersion relations (11.32) it follows

k2+ =
ω2

c2

[
1 − ω2

p

ω(ω +ωH)

]
, k2− =

ω2

c2

[
1 − ω2

p

ω(ω − ωH)

]
.

Assuming the criterion ∆k � k to be valid and ωH � ω, we obtain from the
above equation taking into account ω+ = ω− = ω

∆k =
ωH

c

ω2
p

ω2 . (11.34)

This result establishes the rotation of the polarization vector during propagation
of the electromagnetic wave in a plasma. The angle ϕ of the rotation in the polar-
ization direction is proportional to the distance z of propagation. This is a general
property of the Faraday effect. In the limiting case ω � ωp, ω � ωH , we have

∂ϕ

∂z
=

∆k
2

=
ωH

c

ω2
p

2ω2 .

For a numerical example we note that for maximum laboratory magnetic fields
H ∼ 104G the first factor ωH/c is about 10 cm−1 , so that for these plasma con-
ditions the Faraday effect is detectable for propagation distances of the order of
1 cm.
From the above results it follows that the Faraday effect is strong in a frequency

range near the cyclotron resonance ω ≈ ωH . Then a strong interaction takes place
between the plasma and the electromagnetic wave with left-handed polarization.
In particular, it is possible to have the electromagnetic wave with left-handed po-
larization absorbed, while the wave with right-handed circular polarization passes
through the plasma freely. Then the Faraday effect can be detected at small dis-
tances.
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� Problem 11.21 Analyze propagation of cyclotron waves in a plasma in an external
magnetic field. These waves propagate along the magnetic field with the frequency
close to the Larmor one.

We now consider equation (11.31) that follows from the Maxwell equations and has
the form

(ω2 − k2c2)E + 4πiωj = 0 , (11.35)

and the current density is determined by electrons, so that j = −eNove, where No

is the equilibrium number density of electrons and ve is its velocity due to the
oscillation.
The motion equation for an electron in the magnetic field H and the electric

field E of the wave has the form

me
dve
dt

= eE +
eme

c
[ve × H] .

Using the time harmonic dependence for wave parameters, we obtain from this

−iωj = ωH[j× h] − ω2
p

4π
E . (11.36)

Here ωH = eH/(mec) is the Larmor frequency, h is the unit vector directed along
the magnetic fieldH, and we above return to the electron current density j from the
velocity of an individual electron ve. Excluding the current density from equations
(11.35) and (11.36), we reduce them to the equation

iω(ω2
p − ω2 + k2c2)E + (ω2 − k2c2)ωH[E × h] = 0 .

Writing down this equation in vector components and equalizing the determinant
of the set of equations to zero, we obtain from this the dispersion relation

ω2(ω2 − ω2
p − k2c2)2 − ω2

H(ω2 − k2c2) = 0 .

We consider the limiting case kc � ωp when this dispersion equation is divided in
two branches. The first one describes an electromagnetic wave with the frequency
near kc, and the second relates to the cyclotron wave whose frequency is close to
the Larmor frequency and is given by the dispersion relation

ω = ωH

(
1 +

ω2
p

ω2
H − k2c2

)
. (11.37)

� Problem 11.22 Analyze hybrid waves resulted from mixing of an electromagnetic
wave and cyclotron waves–whistlers.

Insertion of a magnetic field into a plasma leads to a large variety of new types
of oscillations in it. We considered above magnetohydrodynamic waves and mag-
netic sound, both of which are governed by elastic magnetic properties of a cold
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plasma. In addition to these phenomena, a magnetic field can produce electron
and ion cyclotron waves that correspond to rotation of electrons and ions in the
magnetic field. Mixing of these oscillations with plasma oscillations, ion sound,
and electromagnetic waves creates many types of hybrid waves in a plasma. As an
example of this, we now consider waves that are a mixture of electron cyclotron
and electromagnetic waves. These waves are called whistlers and are observed as
atmospheric electromagnetic waves of low frequency (in the frequency interval
300–30 000 Hz). These waves are a consequence of lightning in the upper at-
mosphere and propagate along the magnetic lines of force. They can approach
the magnetosphere boundary and then reflect from it. Therefore, whistlers are
used for exploration of the Earth’s magnetosphere up to distances of 5–10 Earth
radii. The whistler frequency is low compared to the electron cyclotron frequency
ωH = eH/(mec) ∼ 107 Hz, and it is high compared to the ion cyclotron frequency
ωiH = eH/(Mc) ∼ 102–103 Hz (M is the ion mass). Below we consider whistlers
as electromagnetic waves of frequency ω � ωH that propagate in a plasma in the
presence of a constant magnetic field.
We employ expansion (11.1) for oscillatory parameters of a monochromatic elec-

tromagnetic wave. Then equation (11.22) gives

k2E − k(k · E) − i
4πωj
c2

= 0 ,

when ω � kc. We take the current density of electrons in the form j = −eNew,
where Ne is the electron number density. The electron drift velocity follows from
the electron equation in neglecting electron–atom collision and variation of the
electric field strength ν � ω � ωH , that has the form eE/me = −ωH (w × h), and
h is the unit vector directed along the magnetic field. Substituting this in the latter
equation, we obtain the dispersion relation

k2 [j× h] − k [k · (j× h)] − ij
ωω2

p

ωHc2
= 0 ,

where ωp =
√
4πNoe2/me is the plasma frequency. We introduce a coordinate

system such that the z-axis is parallel to the external magnetic field (along the unit
vector h) and the plane xz contains the wave vector. The x and y components of
this equation are

− iωω2
p

ωHc2
jx + (k2 − k2x)jy = 0 , −k2 jx − iωω2

p

ωHc2
jy = 0 . (11.38)

The determinant of this system of equations must be zero, which leads to the
dispersion relation

ω = ωH
c2kkz
ω2
p

= ωH
c2k2 cos ϑ

ω2
p

. (11.39)

Here ϑ is the angle between the direction of wave propagation and the external
magnetic field.
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One can see that the whistler frequency is considerably higher than the frequency
of Alfvén waves and magnetic sound. In particular, if the whistler propagates along
the magnetic field, according to the dispersion relation (11.39) gives ω = ω2

A/ωiH ,
where ωA is the frequency of the Alfvén wave, and ωiH is the ion cyclotron fre-
quency. Since we assume ω � ωiH , this infers that

ω � ωA � ωiH . (11.40)

In addition, because ω � ωH , the condition ω � kc leads to the inequalities

ω � kc � ωp . (11.41)

� Problem 11.23 Derive the dispersion relation for helicons–a whistler propagating
along the magnetic field.

Whistlers are determined entirely by the motion of electrons. To examine the na-
ture of these waves, we first note that the electron motion and the resultant current
in the magnetized plasma give rise to an electric field. This electric field, in turn,
leads to an electron current according to equation (11.31). In the end, the whistler
oscillations are generated. Note that because the dispersion relation has the depen-
dence ω ∼ k2, the group velocity of these oscillations, vg = ∂ω/∂k ∼ √

ω, grows
with the wave frequency. Then the tone of a short-time signal with a wide band of
frequencies is the whistler like, which explains the name of this wave.
The polarization of a whistler propagating along the magnetic field can be found

from the relation between two current components, jx and jy, that leads to the
dispersion relation (11.39). As it follows from relations (11.38), in this case (k =
kz, kx = 0) we obtain the following relation between the current components:

jy = ijx , jx = −ijy . (11.42)

From this it follows that this wave, the helicon, has a circular polarization. There-
fore, this wave propagating along the magnetic field has a helical structure. The
direction of rotation of wave polarization is the same as the direction of electron
rotation. The development of such a wave can be described as follows. Suppose
electrons in a certain region possess a velocity perpendicular to the magnetic field.
This electronmotion gives rise to an electric field and compels electrons to circulate
in the plane perpendicular to the magnetic field. This perturbation is transferred
to the neighboring regions with a phase delay.

11.5
Damping of Waves in Plasma

� Problem 11.24 Determine the attenuation coefficient for plasma oscillations due
to collisions of electrons with atoms, which are taken into account in the tau-
approximation (6.3).
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Based on the set of equations (11.7), we introduce a friction force Ffr into the motion
equation for electrons, which is taken as mewx/τ, where wx is the drift velocity
along the wave. Then the dispersion equation (11.11) takes the form

ω(ω − i/τ) = ω2
p + k

2〈v2x〉 ,

and this dispersion relation is valid if ωpτ � 1. In this approximation we obtain
the dispersion relation in the form

ω =
√

ω2
p + k2〈v2x〉 − i

τ
. (11.43)

As is seen, the attenuation time for this mechanism of damping is τ.
Let us analyze the condition ωpτ � 1 of existence of plasma oscillations under

real conditions. Taking a typical collision time for electrons as 1/τ ∼ (Naσv)−1 ,
where Na is the atom number density, σ is the cross section for electron–atom
collisions, which is equal to a typical gas-kinetic cross section, and v is the electron
energy and is ∼ 1 eV. Then the above criterion is

N 1/2
e

Na
� 10−12cm3/2 ,

and this condition may be valid for some plasma types with a low density of atoms
and not small degree of ionization.

� Problem 11.25 Analyze the decay of plasma oscillations in a collisionless plasma.

Let us represent the frequency of plasma oscillations in the form ω = Reω −
iδ. According to formula (11.12) we obtain plasma waves with a frequency |ω −
ωp| � ω

δ = −πω2
p

2k2
∂ f (o)

∂vx

∣∣∣∣∣
vx=ω/k

, (11.44)

which is the Landau damping. One can see that the attenuation of the plasma
wave takes place if the electron distribution function f (o) decreases with a velocity
increase. For the Maxwell distribution function this formula gives

δ = −πω2
p

2k2

√
me

2πTe
exp

(
−meω

2
p

2k2Te
− 3
2

)
. (11.45)

When the dispersion relation (11.11) holds true, i. e., krD � 1, we obtain δ � ωp,
i. e., decay of plasma oscillations proceeds through many oscillations.

� Problem 11.26 Analyze damping of the ion sound in a collisionless plasma.

Based on the dispersion relation (11.17) and using theMaxwell distribution function
for the ion velocities, we obtain in addition to the dispersion relation (11.13) for the
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ion sound its damping in the form

δ =

√
πme

8M
+

πω2

2k

√
M
2πTi

exp
(

−Mω2

2k2Ti

)
,

if we take the frequency of the ion sound as ω = Reω − iδ, assume δ � ω, Ti � Te,
and use the Maxwell distribution function for ions.
From this formula according to the dispersion relation (11.13), it follows that the

ion sound is realized, i. e., δ � ω, if

Ti � Te .

� Problem 11.27 Analyze the Landau damping as a result of capture of electrons by
a wave and give the criterion of wave damping.

In considering interaction of plasma electrons with plasma oscillations, one can
divide electrons in two types, captured by a plasma wave and noncaptured ones.
A strong interaction of a plasma wave proceeds with captured electrons which
exchange with the wave by energy as a result of reflection from potential walls
of the wave. According to the phase diagram for electrons located in the field of
the plasma wave, given in Fig. 11.6, captured electrons have closed trajectories in
the phase space, whereas trajectories of noncaptured electrons are infinite. Thus,
electrons travel inside the potential well of the wave, and reflection of the captured
electrons from its walls leads to energy exchange between a captured electrons
and the wave. If a captured electron has a velocity u, its reflection from the wave
potential well leads to an energy change

∆ε =
1
2
me(vp + u)2 − 1

2
me(vp − u)2 = 2mevp ,

where vp = ω/k is the phase velocity of the wave. But if an electron losses and
energy near one wall, it returns this energy after reflection from another wall.
Thus, for effective exchange of energy between an electron and wave, collisions
between electrons are necessary. These collisions take a captured electron from
the potential wave, and after this event interaction of this electron with the wave
finishes.

Fig. 11.6 Trajectories of electrons in the phase space when electrons
interact with plasma oscillations. Captured electrons have closed
trajectories.
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Since the electron distribution function is restored by electron–electron colli-
sions, one can find the direction of the energy exchange between the wave and
plasma electrons. The electron distribution function is not altered by the interac-
tion with the wave, and it is necessary to compare the number of electrons with
velocity vp + u that transfer energy to the wave and the number of electrons with a
velocity vp − u that take energy from the wave, where u is the wave phase velocity.
The number of captured electrons is proportional to the electron distribution func-
tion f (v). Hence, the wave gives its energy to electrons and is damped if f (vp + u)
is larger than f (vp − u). This means that the wave is damped when[

∂ f (o)

∂vx

]∣∣∣∣∣
vx=ω/k

< 0 . (11.46)

Here vx is the component of the electron velocity in the direction of the wave
propagation, and the derivative is taken for the electron velocity being equal to the
phase velocity vp of the wave. When the above condition is not satisfied, the wave
takes energy from the electrons, and its amplitude increases.

� Problem 11.28 Obtain the criterion for the wave amplitude when the mechanism
of wave damping due to electron capture by the wave is valid.

The above character of electron–wave interaction requires that a frequency of
oscillations of a captured electron in a wave field must be small compared
to the collision rate between electrons. The latter is given by formula (2.37)
ν ∼ Nee4T

−3/2
e m−1/2

e lnΛ, and the frequency of oscillations of a captured electron
is of the order of (eϕk/me)1/2 ∼ √

eE′k/me∼
√
e2N′/me, where k is the wave num-

ber of such an oscillation, ϕ, E′, and N′ are the corresponding parameters of this
oscillation. This leads to the following criterion of the smallness of oscillations:

N′

Ne
�

Nee6

T3e
ln2 Λ .

Note that the first factor of the right-hand side of this criterion corresponds to the
ideal criterion (1.56) of a plasma. Therefore, a small part of electrons partake in
plasma oscillations.

� Problem 11.29 Determine the dependence for the attenuation factor δ of plasma
oscillations on plasma parameters on the basis of the character of plasma oscilla-
tions.

We introduce the attenuation factor δ such that the energy density W for plasma
oscillations drops in time asW ∼ exp(−δt). Taking this quantity asW ∼ (E′)2 ∼
ϕ2/k2, where E′ is the amplitude of the electric field of the wave. Let us estimate
the variation of time with the energy density of the plasma oscillations as

dW
dt

∼ ν

u0∫
−u0

f (v)∆εdu ,
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where ν ∼ u0k is the oscillation frequency for a captured electron in the potential
well of the wave, u0 = (2eϕ/me)1/2, ϕ is the amplitude of electron oscillations in
the wave field, and ∆ε = 2mevpu0 is the maximum change in the electron energy
when the direction of the electron motion is reversed. Hence, the right-hand side
of the above expression is given by

ν
∂ f
∂v x

u0∆εu0 ∼ u0k
∂ f
∂v x

u0mevpu0u0∼ ∂ f
∂v x

e2ω

mek 2
W ,

where the phase velocity of the wave is vp = ω/k. Using the definition of the
attenuation factor δ for the plasma wave dW/dt = −δW , we obtain the estimate
for it

δ ∼ e2ω

mek2
∂ f (o)

∂vx
.

One can see that this formula is analogous to formula (11.44).

� Problem 11.30 Show that electron–electron collisions in an ideal plasma cannot
give the rate of damping of plasma oscillations that is comparable to the oscillation
frequency.

The attenuation coefficient of plasma oscillations due to electron–electron colli-
sions is of the order of the rate of electron–electron collisions, which is given by

δ ∼ Nevσ ∼ Ne
e4

T3/2e m1/2
e

lnΛ ,

where we use formula (2.37) for the cross section σ of electron–electron collisions.
From this we have

δ

ωp
∼

(
Nee6

T3e

)1/2

lnΛ ,

and in this case Λ ∼ eϕ/Te, where ϕ is the electric potential of the wave. Taking
lnΛ ∼ 1, we obtain this ratio to be small in an ideal plasma according to the
criterion (1.56).

� Problem 11.31 Determine the attenuation factor δ for plasma oscillations on the
basis of the motion character of an individual electron in the wave field.

Let us consider the motion equation of an individual electron that has the form

me
dvx
dt

= −eE cos(kx − ωt) ,

where x is the wave direction, E is the electric field strength of the wave, and vx is
the electron velocity. We use the expansion for the electron velocity v + vo + v1 + v2,
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so that vn ∼ En, and use the same expansion for the electron coordinate x =
xo + x1 + x2. This gives

dvo
dt

= 0, me
dv1
dt

= −eE cos(kxo − ωt) ,

me
dv2
dt

= −eE cos[k(xo + x1) − ωt] + eE cos(kxo − ω = t) ,

eEkx1 cos(kxo − ωt) = eEk
t∫

0

sin(kxo − ωt)v1dt .

In the zero-th approximation we obtain xo = vot + a, where a is the electron coor-
dinate in the beginning. The first approximation gives

v1 = − eE
me

sin[(kvo − ω)t + ak] − sin ak
kvo − ω

,

and

x1 =
t∫

0

v1dt sin(kxo − ω)t = − eE
me

[
cos ka− cos[ka + (kvo − ω)t]

(kvo − ω)2
− t sin ka

kvo − ω

]
.

From these expressions we evaluate the rate of variation of the electron energy ε

with an accuracy up to ∼ E2 and is given by

dε

dt
= mevx

dvx
dt

= mevo
dv1
dt

+mev1
dv1
dt

+mevo
dv2
dt

.

Based on the above expressions for electron parameters, we average over the initial
electron positions, so that we have sin ka = cos ka = 0 and sin2 ka = cos2 ka = 1/2.
As a result, we have

dε

dt
e2E2

2me
=

[
sin(kvo − ω)t

kvo − ω
+

vok sin(kvo − ω)t
(kvo − ω)2

+
vokt cos(kvo − ω)t

kvo − ω

]
.

Because this energy is taken from the wave, we find from this for the wave energy
W per unit volume

dW
dt

= − e2E2Ne

2me∫
f (vo)dvo

[
sin(kvo − ω)t

kvo − ω
+

vok sin(kvo − ω)t
(kvo − ω)2

+
vokt cos(kvo − ω)t

kvo − ω

]
.

Here the energy variation of an individual electron is averaged over electron ve-
locities, the distribution function is normalized to one (

∫
f (vo)dvo = 1), and the

principal value of the integral is taken.
Let us evaluate this integral in the limit t → 0. Then the first term is zero, as

well as the third term, because we take the principal value of the integral, and the
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value �

∫
f (vx)dvx/(kvx − ω) is finite. Hence we have

dW
dt

= − e2E2Ne

2me
lim
t→0

∫
f (vo)dvo

[
vok sin(kvo − ω)t

(kvo − ω)2

]
=
e2E2Ne

2me

ω

k
∂ f (o)

∂vx

∣∣∣∣∣
vx=ω/k

lim
t→0

∞∫
−∞

dvo
sin(kvo − ω)t

kvo − ω
.

We above used that this integral is converged in the vicinity vo = ω/k, taking the
integral by parts and considering the first expansion term of f (vo) that gives zero
because of the symmetry of the integrand. Since

∞∫
−∞

dz
sin z
z

= π ,

we obtain from this

dW
dt

= −πe2E2ωNe

2mek2
ω

k
∂ f (o)

∂vx

∣∣∣∣∣
vx=ω/k

.

On taking the wave energy density as

W =
E2

4π
cos2(kx − ωt) =

E2

8π
,

and reducing the equation for this quantity to the form

dW
dt

= −2δW ,

so that the latter is the definition for the attenuation factor, we find the following
expression for the attenuation factor:

δ = −2π2e2ωNe

mek2
∂ fo∂vx

∣∣∣∣
vx=ω/k

= −πω2
p

2k2
∂ f (o)

∂vx

∣∣∣∣∣
vx=ω/k

,

since the wave frequency ω is close to the plasma frequency ωp. This formula
coincides with formula (11.44) that is obtained from another consideration.

� Problem 11.32 Give the criterion of development of instability for plasma oscilla-
tions.

The possibility of attenuation or amplification of plasma oscillations in a plasma is
determined by the sign of the distribution function derivative for electrons at the
velocity corresponding to the wave phase velocity. The criterion (11.46) corresponds
to damping of oscillations, and the opposite criterion[

∂ f (o)

∂vx

]∣∣∣∣∣
vx=ω/k

> 0 (11.47)
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relates to amplification of oscillations. In this case the oscillation amplitude in-
creases exponentially in time, but the wave exists until this amplitude is relatively
small. Amplification of an oscillation results from transfer of the energy of plasma
particles to the wave, and amplification of the wave make a plasma state to be an
unstable one. When an oscillation amplitude becomes large, nonlinear interactions
in a plasma will lead to the formation of new distributions in plasma depending
on the character of these interactions.

� Problem 11.33 Consider damping of cyclotron waves due to collisions of electrons
with atoms within the framework of the tau-approximation (6.3).

We modify the dispersion equation (11.37) for cyclotron waves taking into account
electron–atom collisions. Then we include the term meve/τ into the motion equa-
tion for electrons, and then equation (11.36) takes the form

(−iω +
1
τ

)j = ωH[j× h] − ω2
p

4π
E . (11.48)

Repeating the deduction of the dispersion equation (11.37), we obtain it in the form

ω = ωH

(
1 +

ω2
p

ω2
H − k2c2

)
− i

τ
. (11.49)

One can see that the cyclotron wave exits under the condition ωhτ � 1.

� Problem 11.34 Analyze damping of whistlers while taking into account electron–
atom collisions within the framework of the tau-approximation (6.3).

We now repeat the deduction of the dispersion relation (11.39) by using equation
(11.48) for the electron current density. The parameter τ considers electron–atom
collisions, and we assume ωHτ � 1. Now repeating the deduction of relation
(11.39), we obtain

ω =
c2k2

ω2
p

(
ωH cos ϑ − i

τ

)
. (11.50)

As is seen, these waves can exist even if their frequency ω is less than the rate 1/τ
of electron–atom collisions.

� Problem 11.35 Analyze damping of drift waves in a weakly ionized gas.

Drift waves have a simple nature. Usually a weakly ionized gas is supported by an
external electric field that creates an electric current. If some perturbation occurs
in the number density of electrons, it propagates together with the current, and
hence the wave phase velocity is equal to the drift velocity w of electrons, i. e., the
dispersion relation for drift waves is

ω = kw .
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One can derive this dispersion relation directly from the continuity equation
(6.15) for electrons that has the form

∂Ne

∂t
+ div je = 0 .

Substituting the electron current density je = New in this equation, we obtain the
above dispersion relation.
Damping of a drift wave may be resulted from expansion of an initial perturba-

tion for electrons due to their diffusion in a gas. Including the diffusion process in
the electron current, so that je = wNe −D∇Ne, where D is the diffusion coefficient
for electrons in a gas, we get the dispersion relation for drift waves in the form

ω = kw − iDk2 . (11.51)

The diffusion of electrons leads to damping of the drift wave, and the attenuation
factor is equal in this case

δ = Dk2 ,

i. e., long-range drift waves are realized.

11.6
Dynamics of Electron Beams in Plasma

� Problem 11.36 Electrons are ejected from ametallic surface as a result of thermoe-
mission in a vacuum gap and are moving toward an electrode under the voltage
Uo between planemetallic electrodes. Assuming the distance between electrodes to
be small as compared to electrode sizes, determine the dependence of the electron
flux j on the voltage Uo and distance L between electrodes.

We find the relation between parameters of this problem on the basis of general
relations. The electron flux j is constant in the gap because electrons do not recom-
bine in the gap, i. e.,

j = Ne(x)ve(x) = Ne(x)
√
2eϕ
me

= const ,

where x is the distance from the cathode, Ne is the electron number density, ve =√
2eϕ(x)/me is the electron velocity, and the electric potential is zero at the cathode

surface, i. e., ϕ(0) = 0. In addition, electrons in a gap creates an electric field that
influences on electron parameters. The electric field strength E = −dϕ/dx follows
from the Poisson equation

dE
dx

= −4πeNe(x) = −4πje
√

me

2eϕ
.
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It is easy to transform this equation by multiplying it by E = −dϕ/dx. Solving the
equation obtained, we obtain

E2 = E2o + 8πj
√
2meeϕ (11.52)

with Eo = E(0).
The boundary condition on the cathode is taken from the condition that the

electron current density near the cathode is lower than that can be emitted by the
cathode. We consider the regime when the current density of the beam is small
compared to the electron current density of thermoemission. This means that most
of the emitted electrons return to the metallic surface under the action of a spatial
charge. This leads to the boundary condition of solution (11.52) E(0) = 0, i. e., it
coincides with that in the absence of an electric field near the cathode. As a result,
we obtain the following equation for the voltage distribution ϕ(x) inside the gap:

(
dϕ

dx

)2

= 8πj
√
2meeϕ .

Solving this equation with the boundary condition ϕ(0) = 0, we obtain

ϕ3/4(x) =
3x
4

(8πj
√
2meeϕ)1/2

(
9πj

√
me

2e

)2/3

x4/3 .

From this we find the relation between the electron current density i = ej, the
voltage Uo between electrodes, and a distance L between them

i = je =

√
2e

9π
√
me

U3/2
o

L2
. (11.53)

This dependence, the three-halves power law, describes the behavior of a uniform
plasma of electrons in a space between plates if the field in a space between plates
is created by an electric charge of the beam plasma.

� Problem 11.37 An electron beam of a flux j propagates between two infinite plates
with a voltage Uo and distance L between them. Determine the distribution of
the electric field potential in the region between plates depending on the electric
current.

We use equation (11.52) for the electric potential between plates on the basis of
reduced variables Φ = ϕ/Uo, ξ = x/L. In these variables this equation has the
form(

dΦ

dξ

)2

= 4A(
√

Φ + α), A =
2πjL2

U3/2
o

√
2eme .

Here α is the integration constant, and this equation is added by the boundary
conditionsΦ(0) = 0, Φ(1) = 1. Using a new variable F =

√
Φ+α, one can solve this
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equation, and this solution in old variables with the boundary condition Φ(0) = 0
has the form

3
√
A

2
ξ =

√√
Φ + α

(√
Φ − 2α

)
+ 2α3/2, (11.54)

and the boundary condition Φ(1) = 1 gives the relation between the integration
constant α and the parameter A as

3
√
A

2
=

√
1 + α(1 − 2α) + 2α3/2 . (11.55)

Let us introduce the function

G(α) =
√
1 + α(1 − 2α) + 2α3/2 .

This function is given in Fig. 11.7 for positive values of the integration constant α.
The function G(α) decreases monotonically when the argument α increases. The
maximum values of this function corresponds to α = 0 and G(0) = 1. The as-
ymptotic expression at large α is G(α) = 0.75/

√
α. Correspondingly, the maximum

values of the parameter A is A = 4/9, which is described by formula (11.54) for the
maximum electron flux.
Figure 11.8 gives the dependence of the reduced electric potential Φ(ξ) on the

reduced distance ξ from the first plate for some values of the parameter α in ac-
cordance with equation (11.54). In the case α = 0 this dependence has the form

Φ = ξ3/4 ,

in the other limiting case α → ∞ equation (11.54) takes the form

Φ = ξ .

Fig. 11.7 The function (11.55) G(α) =
√
1 + α(1 − 2α)+ 2α3/2.
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Fig. 11.8 The reduced electric potential Φ(ξ) in a gap with an electron
beam as a function of a reduced distance ξ from a lower plate.
(1) α = 0, (2) α = 1, (3) α = ∞.

This limit corresponds to small electric current, so that the electron number density
in the gap does not influence on the electric field potential between the plates.
Figure 11.8 also shows the relation between Φ and ξ in the intermediate case α = 1,
when equation (11.54) has the form

3
√
A

2
ξ =

√√
Φ + 1(

√
Φ − 2) + 2 .

� Problem 11.38 A weak monochromatic electron beam is inserted into an atomic
gas, and atoms are ionized and excited by electron impact. Decay of excited atoms
result from their radiation and associative ionization with the formation of molec-
ular ions. Express the ratio of currents of atomic and molecular ions through rates
of collision processes.

The following processes proceed under these conditions:

e + A −→ 2e + A+, e + A −→ e + A∗, A∗ + A −→ A+2 + e, A∗ −→ A + h̄ω ,

where A, A∗ are atoms in the ground and excited states, A+, A+2 are an atomic and
molecular ion, and h̄ω is a photon. These processes lead to the following set of
balance equations:

dN1

dt
= NeNaki,

dN∗
dt

= NeNakex − N∗
(
1
τ
+ Nakas

)
,
dN2
dt

= N∗Nakas ,

where Na, Ne are the atom and electron number densities, N1 , N2 are the num-
ber densities of atomic and molecular ions, ki, kex are the rate constants of atom
ionization and excitation by electron impact, kas is the rate constant of associative
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ionization, and τ is the radiative lifetime of an excited atom (we take such an atom
excitation that gives the main contribution to formation of molecular ions). Solving
the above balance equations under the assumption Nakexto � 1, where to is the
pulse duration, we obtain t = to

N1(to) = Naki

to∫
0

Nedt ,N∗(to) = Nakex

to∫
0

Nedt ,N2 = 0 .

Solving the balance equation at t > to under the assumption Ne = 0, we obtain the
ratio of the number densities of atomic and molecular ions

N2

N1
=
kex
ki

1 − exp(−t/τ − Nakext)
1 + (Nakexτ)−1 ,

where t is a time after switching of the electron beam. From this formula one can
find the parameters of the above processes kex/ki, kas, τ may be found on the basis
of variation of the parameters Na and t.

� Problem 11.39 A cylinder beam of electrons of a radius r propagates along an axis
of the cylinder with metal walls of a radius R, R ≥ r and crosses in the end through
a ground grid. Find the maximum electron current.

The electric field strength due to an electron charge is equal at a distance R from
the cylinder axis according to the Gauss theorem

E =
4πne
2πR

=
2I
Reve

,

where ne is the number of electrons per unit beam length, I is the current of
electrons, and ve is the electron velocity in the beam. This gives on the basis of the
equation E = −dϕ/dx for the voltage difference between the beam and walls

ϕ =
2I
eve

ln
R
r
.

After passage of a ground grid (or a surface with the electric potential of walls)
the electrons losses an energy eϕ. If the electron energy after an entrance in the
tube is eVo (Vo is the electric potential in which electrons are accelerated), we have
the electron energy eVo − eϕ at an exit, and the velocity of electrons is

ve =

√
2e
me

(Vo − ϕ) .

This gives the electron current

I =
eveϕ

2 ln(R/r)
=

√
(2e/me)(Vo − ϕ)ϕ

2 ln(R/r)
. (11.56)

From this we obtain the maximum current, the limiting Bursian current,

Imax =
e
3

(
2e
3me

)3/2 V3/2
o

ln(R/r)
(11.57)
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that corresponds to the beam voltage with respect to walls

ϕmax = 2Vo/3, (11.58)

which is the voltage though which the electron beam passes.

� Problem 11.40 Analyze propagation of an intense electron beam inside a cylinder
metal tube.

When an electron beam propagates inside a metallic tube in a vacuum, an increase
of the electron current leads to an increase of the electric potential of the beam with
respect to walls. When this potential reaches the value ϕ = 2Vo/3, an instability
occurs that increases the locking voltage up to Vo by jump. As a result, a part of
electrons is reflected and return back. In this manner the total electron current
does not exceed its limiting value Imax.
Note that in reality electrons are moving with different velocities in the beam,

and the locking voltage affects in the first place on slow electrons and restricts in
this way the current of passing electrons.

� Problem 11.41 Show that the limiting Bursian current results from an instability,
so that a random variation of the beam electric potential would be amplified.

Based on formula (11.56) that relates the beam current and its potential, we assume
a fluctuation δϕ of the beam potential with respect to walls. We analyze the result
of this fluctuation. First, it causes a decrease in the electron velocity

δve = −
√

e
2me(Vo − ϕ)

δϕ = − veδϕ

2(Vo − ϕ)
.

Since the current density is conserved at this fluctuation, the number density of
beam electrons increases

δne
ne

= −δve
ve

=
δϕ

2(Vo − ϕ)
.

An increase of the number density of beam electrons causes an increase of the
potential difference δϕ′ between the beam and walls

δϕ′ = ϕ
δne
ne

=
ϕ

2(Vo − ϕ)
δϕ .

An instability takes place, if δϕ′ > δϕ, i. e., an initial potential fluctuation leads to
its subsequent increase. This takes place if

ϕ

2(Vo − ϕ)
> 1 ,

which is the threshold of this instability determined by formula (11.58). As a result
of this instability, a virtual cathode arises and due to its electric potential Vo a part
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of electrons is reflected. In this manner, the electric current of passing electrons is
restricted.

11.7
Beam-Plasma Instabilities

� Problem 11.42 Analyze the beam-plasma instability, when an electron beam prop-
agates in a plasma, and the beam velocity exceeds significantly a typical electron
velocity in a plasma.

We below consider interaction of an electron beam with a plasma. Then the total
velocity distribution function for plasma and beam electrons has the form of Fig.
11.9, and on the beam front criterion (11.47) holds true. As a result, beam electrons
slow down, and the wave of this phase velocity is amplified. We derive below the
dispersion relation for the wave of the total wave-plasma system, and this will give
the rate of wave amplification.
Let us repeat the derivation of the dispersion relation (11.8) related to electrons

of a plasma and beam. As early, on the basis of the continuity equation (6.15) and
the Euler equation (6.19) for plasma electrons we derive equations for the wave
amplitudes which are the first two equations of the set (11.7). Taking p′ = 0 for a
cold plasma in this set of equations and eliminating the electron velocity w′ in the
wave, we obtain the following relation of plasma and wave parameters:

N′
e = −i

kE′

meω2No .

The same relation follows for beam parameters, if we take the electron number
density in the beam as Nb + N′

b exp[i(kx − ωt)] and the velocity of the electrons in
the beam as u + wb exp[i(kx − ωt)], where the x-axis is parallel to the velocity of

Fig. 11.9 The velocity distribution function for plasma and beam elec-
trons when electron beam is injected in a plasma. The solid curve
corresponds to the initial electron distribution in a plasma and beam.
Ranges with a positive derivation are unstable, and development of the
instability transforms the distribution function into that indicated by a
dotted line.
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the beam, and Nb and u are, respectively, the electron number density and velocity
in the unperturbed beam. From this it follows

N′
b =

−ikE′Nb

me(ω − ku)2
.

Poisson’s equation gives the following relation between parameters of this system:

ikE′ = −4πe(N′
e + N

′
b) .

Eliminating the wave parameters from these three equations, we finally finally the
dispersion relation for the wave in this system in the form

ω2
p

ω2 +
ω2
p

(ω − ku)2
Nb

N0
= 1 . (11.59)

If the number density of the beam electrons is zero (Nb = 0), equation (11.59)
reduces to the dispersion relation (11.6) for the plasma of zero temperature.
Analyzing the beam–plasma interaction on the basis of the dispersion relation

(11.59), we observe that the strongest interaction occurs when the phase velocity
of the plasma waves ω/k is equal to the velocity of the electron beam u. In this
case, taking the number density of beam electrons Nb to be small compared to the
number density No of the plasma electrons, we find the frequency of the plasma
oscillations to be close to the plasma frequency ωp. Hence, we consider below
waves with the wave number k = ω/u, which have the most effective interaction
with the electron beam. We represent the frequency of these oscillations as ω =
ωp + ε and insert it into the dispersion relation (11.59). Expanding the result in a
series in terms of the small parameter δ/ωp, we obtain

ε = ωp

(
Nb
2N0

)1/3

exp
(
2πin
3

)
,

where n is an integer. One can see that ε/ωp ∼ (Nb/N0)1/3 � 1, and this justifies
an expansion over a small parameter ε/ωp.
When the imaginary component of the frequency ω, that is equal to the imag-

inary component of ε, is negative, the wave is damped; in the opposite case it is
amplified. The maximum value of the amplification factor corresponds to n = 1
and gives for the amplification factor δ (the wave amplitude ∼ exp(iωt− δt))

−δ =

√
3
2

(
Nb

N0

)1/3

ωp = 0.69ωp

(
Nb
N0

)1/3

. (11.60)

The amplitude N′
b varies with time as exp(γt); this result is valid if the plasma

oscillations do not affect the properties of the plasma. As a result of the beam-
plasma instability, the distribution function of the beam electrons expands (see
Fig. 11.9) in the velocity space, and the energy surplus is transferred to plasma
oscillations.
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� Problem 11.43 Determine the threshold of the beam-plasma instability.

Let us analyze the dispersion relation (11.59) that is given in Fig. 11.10 in the form
f (ω) = 1, where

f (ω) =
ω2
p

ω2 +
ω2
p

(ω − ku)2
· Nb

No
.

We assume the number density of beam electrons Nb to be small compared to the
average number density No of plasma electrons (Nb � No), and the wave vector k
to be given by a geometry of the plasma system. Let us consider the limiting cases
with respect to ku/ωp in the dispersion relation (11.59).
If ku � ωp, the dispersion relation is divided into two branches, in the vicinity

ω = 0 and ω = ku. The corresponding expressions for the frequency have the form

ω =

(
ku± ωp

√
Nb

No

) [
1 − ω2

p

2(ku)2

]
, ω = ±ωp

[
1 − ω2

p

2(ku)2
Nb

No

]
.

All these four solutions are real and damping is absent. These solutions correspond
to the curve 1 in Fig. 11.10.
In another limiting case ku � ωp the oscillation frequency is close to ku that

allows us to ignore unity in the dispersion relation (11.60) in comparison to ω2
p/ω

2.
This gives

ω = ku
(
1 ± Nb

No

)
.

These solutions are imaginary and are not represented in Fig. 11.10. Two other
solutions ω = ±ωp are given in Fig. 11.10 by intersections of a line 2 with a curve
f (ω).

Fig. 11.10 The frequency dependence for the function f (ω) if the equa-
tion (11.59) is represented as f (ω) = 1.
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We now consider the complex solutions of equation (11.59), so that one of these
correspond to damping of oscillations, and other one relates to their amplification.
The threshold of an instability corresponds to transition from one limiting case to
the other one and is described by line 3 in Fig. 11.10. We have at the threshold

f (ω) = 1 , f ′(ω) = 0 ,

that gives at the threshold

ω = ωp

√
1 +

(
Nb
No

)1/3

=
ku

1 + (Nb/No)1/3
.

Hence, the instability can occur if the parameters of this system satisfy the relation

ku
ωp

<

[
1 +

(
Nb
No

)1/3
]3/2

≈ 1 +
3
2

(
Nb

No

)1/3

.

Under these conditions oscillations occur with the phase velocityω/k that coincides
with the beam velocity u. These oscillations can be amplified, and then the energy
of the electron beam is converted in the energy of plasma oscillations.

� Problem 11.44 Analyze the Langmuir paradox, when an electron beam is injected
from a hot metal surface and penetrates in a plasma that borders on the metal
surface. For a rare plasma a path of breaking of this beam is less than the mean
free path of beam electrons colliding with plasma particles.

When electrons with a certain drift velocity propagates in a rare plasma, they slow
down as a result of collision with plasma particles, and the Langmuir paradox is
such that the mean free path of electrons λ with respect to collisions with plasma
particles is larger than the observed value. Note that in this case the velocity of beam
electrons vb is higher than a thermal velocity of plasma electrons, and the number
density Nb of beam electrons is considerably lower than the number density No

of plasma electrons. Assume the deceleration of the electron beam to occur owing
to the scattering of beam electrons on electrons and ions of the plasma. Then the
mean free path of beam electrons with respect to their transformation in plasma
electrons is λ ∼ N−1

o .
There is, however, another mechanism for deceleration of the electron beam due

to the beam instability, and the amplification factor for this process is determined
by formula (11.60) and gives the following dependence on the beam and plasma pa-
rameters |δ| ∼ N 1/6

o N 1/3
b . Since the mean free path of beam electrons with respect

to this process is λ ∼ vb/|δ|, we have a more weak dependence on the number
density of plasma particles than that due to collisions processes. Therefore, for a
rare plasma the mechanism of beam deceleration owing to the beam-plasma insta-
bility may be dominant, and deceleration proceeds on less distances than that due
to collision processes. This explains the Langmuir paradox. Finally, transforma-
tion of the beam kinetic energy into the plasma energy proceeds through collective
degrees of freedom of the beam-plasma system instead of collision processes.
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� Problem 11.45 Estimate the mean free path of electrons in an ideal plasma due
to fluctuations of internal plasma fields.

We convince that along with collision processes, collective plasma degrees of free-
dommay be responsible for energy transformation in the plasma.We now consider
interaction of an individual particle with a plasma through fluctuations of particle
densities and fields in the plasma. Indeed, location of a charged particle in an ideal
plasma causes displacement of surrounding particles. In turn this provides shield-
ing of the particle field by plasma particles. Along with this, surrounding charged
particles create random fields near a test charged particle because of large fluc-
tuations with respect to the mean particle energy. We now determine the mean
free path of a charged particle (electron or ion) in an ideal plasma as a result of
scattering in a random field.
Taking into account that the electric potential of a plasma field varies by∼ ∆U on

a distance of ∼ rD, where the average potential energy U of a test charged particle
in a plasma and its fluctuation are given by formulas (1.59) and (1.60). The particle
energy varies by ∼ ∆U at a distance of ∼ rD, and since this change has an arbitrary
sign, a typical energy of a charged particle ∼ T results from ∼ (T/∆U)2 events of
scattering. From this we estimate the mean free path λ of a charged particle, that
is a distance on which the particle energy varies by ∼ T

λ ∼ rD

(
T

∆U

)2

=
1

2πNo(e2/T)2
. (11.61)

As is seen, the mean free path of a charged particle in an ideal plasma due to
its scattering on plasma nonuniformities is inversely proportional to the mean
number density of charged particles and is proportional to the temperature square.

� Problem 11.46 Electrons are moving in a plasma with the drift velocity u with
respect to ions. Determine the threshold of an instability that leads to growth of
plasma oscillations. Assume the drift velocity of electrons to be large compared to
thermal velocities of ions.

This problem is analogous to that for interaction of an electron beamwith a plasma,
but because of electron–ion interaction, it is necessary to change parameters of
plasma electrons by ion parameters, and this dispersion relation takes the form

me

M

ω2
p

ω2 +
ω2
p

(ω − ku)2
= 1 .

Here M is the ion mass, and the plasma is quasineutral, i. e., the number densities
of the electrons and ions are equal. Below we determine the maximum amplifica-
tion factor of the plasma oscillations.
Taking the ratio me/M to be zero, we obtain the dispersion relation ω = ωp + ku.

Therefore, we represent the oscillation frequency as

ω = ωp + ku + δ .
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Substituting this expression into the above dispersion relation and expanding the
result in a power series in terms of the small parameter δ/ωp, we obtain

2δ

ωp
=
me

M

ω2
p

(ωp + ku + δ)2
.

From this it follows that the strongest interaction between the electron beam and
the wave takes place, if the oscillation wave number is k = −ωp/u. This gives

δ =
(me

M

)1/3
ωp exp

(
2πin
3

)
,

where n is an integer. The highest amplification factor corresponds to n = 1 and is
given by

−δ = Imω =

√
3
2

( me

2M

)1/3
ωp = 0.69ωp

(me

M

)1/3
. (11.62)

As is seen, the frequency of oscillations and the amplification factor have the same
order of magnitude. This type of instability of the electron beam due to interaction
with plasma ions, the Buneman instability, can be realized in gas discharge plasma
where electrons are drifting under the action of external electric field.
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12
Relaxation Processes and Processes with Strong
Interaction in Plasma

12.1
Relaxation Processes in Plasma

� Problem 12.1 A plasma beam propagates in a gas, and the electron temperature
Te decreases in this process such that dTe/dt is constant. Analyze the character of
evolution of the electron number density Ne(t).

In the first stage of the relaxation process, equilibrium in this system is supported
by the processes

e + A ←→ 2e + A+ , (12.1)

and the number density of electrons is NS(Te), the equilibrium number density of
electrons under a current temperature Te that is given by the Saha formula (1.69).
Taking into account the relation between the rate constants of processes (12.1), one
can represent the balance equation for the number density of electrons in the form

dNe

dt
= Kei

(
N2
S(Te) − N2

e

)
Ne ,

where Kei is the coefficient of three-body electron–ion recombination.
As it follows from this equation, at slow cooling or high electron temperatures

Te we have Ne = NS(Te), while at low electron temperatures the equilibrium (12.1)
is violated. Then, we get Ne � NS and Ne = (2Keit)−1/2 at large t if we ignore the
temperature dependence for Kei. In a general case we obtain this limit

Ne =


 t∫

to

2Keidt




−1/2

. (12.2)

One can give the asymptotic solution of the above equation if we take NS(T) =
Ns exp(−αt), where Ns = NS(To), T(t = 0) = To, and

α =
J
T2e

∣∣∣∣dTedt
∣∣∣∣ ,
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and dTe/dt is negative. This gives the balance equation in the form

dNe

dt
= Kei

(
N2
S(Te) − N2

e

)
Ne ,

and its solution at large t is

1
N2
e
=
2Kei

α

[
αt− ln

2KeiN2
s

α
−C

]
,

whereC = 0.577 is the Euler constant. Comparing this solution with formula (12.2),
we find Ns = NS(to)

KeiN2
s =

α

2
e−C = 0.28α =

0.28J
T2e

∣∣∣∣dTedt
∣∣∣∣ . (12.3)

This relation gives the parameter to in formula (12.2).

� Problem 12.2 A flux of an equilibrium plasma passes through an orifice and
moves in a rare buffer gas such that the flux forms an angle β with respect to
the perpendicular to the orifice of a radius ro (Fig. 12.1). This adiabatic expansion
of the flux leads to decrease of the plasma temperature. Taking into account the
temperature dependence for the three-body rate constant of electrons and ions
(4.41), find the electron number density at large times, when the equilibrium (12.1)
is violated.

Assuming the flux drift velocity u to be independent of the distance from the orifice,
we find a current flux radius R = ro + ut tan β, where t is a time of drifting to this
cross section, and the number density of atoms in this cross section is

N =
Nor2o

(ro + ut tan β)2
.

Fig. 12.1 Geometry of a plasma flow through an orifice.
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Here No is the number density near the orifice, and we take into account that
the total flux of atoms is conserved in each cross section. Because of the adiabatic
character of expanding N ∼ T3/2, the gas temperature varies as

T =
T(0)r3o

(ro + ut tan β)3
,

and T(0) is the temperature near the orifice. From this it follows

dT
dt

= −3T(0)r3ou tan β

(ro + ut tan β)4
= −3u tan β

ro

T4/3

T 1/3(0)
.

Let us account for the temperature dependence (4.41) of the three-body recom-
bination rate constant Kei(Te) ∼ T−9/2

e , and below we take the electron Te and gas
T temperatures to be identical. Formula (12.3) gives the temperature To at time to
when the transition from the equilibrium to nonequilibrium regime takes place
for evolution of the electron number density

Kei(To)N2
s =

0.84J

T2/3o T 1/3(0)

u tan β

ro
.

From this, on the basis of formula (12.3) for the electron number density at a
given temperature T when the ionization equilibrium is violated, we obtain

Ne =


 T∫
To

2Kei(T ′)dT ′∣∣∣ dT ′
dt

∣∣∣



−1/2

=

[
4
29

roKei(To)
u tan β

(
T9/2o T 1/3(0)

T29/6
− T 1/3(0)

T 1/3
o

)]−1/2

.

(12.4)

This relation establishes a relation between the electron number density and a
current temperature.

� Problem 12.3 Relaxation of a plasma results from three-body recombination of
electrons and ions (4.40) and a released energy is consumed on electron heating.
Prove that under these conditions, a typical time τT of variation of the electron
temperature is less than that τN for variation of the electron number density.

Let us analyze the balance equations for the number density of electrons Ne

and temperature. Assuming recombination proceeds according to the three-body
process (4.40), we obtain the number density of electrons in a quasineutral plasma

dNe

dt
= −KeiN3

e ,

where the rate constant of three-body process according to formula (4.41) is given by

Kei ∼ e10

m1/2
e T9/2e

.
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Since Te � J, where J is the ionization atom potential, we obtain from the balance
equation for the average energy of the electron component

d
dt

(
3
2
NeTe

)
=
3
2
Ne

dTe
dt

= −JdNe
dt

.

Thus, in the course of relaxation of this plasma, recombination of electrons and
ions leads to the formation of atoms and heating of electrons. From the above
balance equation we have d ln Te/dt ∼ (J/Te)d lnNe � d lnNe/dt, i. e.,

τT � τN . (12.5)

A typical time of the electron temperature variation follows from the balance
equation∣∣∣∣dTedt

∣∣∣∣ ∼ Te
τT

,

and we obtain the following estimation for this typical time:

τT ∼ m1/2
e T5.5e
Je10N2

e
. (12.6)

� Problem 12.4 Show that the lifetime of a two-component plasma with strong cou-
pling is less than a typical atomic time.

The ideality parameter (1.56) of this plasma is β = Nee6/T3e , so that for an ideal
plasma β � 1, while for a plasma with strong coupling β � 1. Let us compare a
typical time of variation of the electron temperature τT that is given by formula
(12.6) and a typical atomic time τo that is a time for electron displacement on a
distance of the order of an atom size

τo ∼ r
v

∼ e2

J

√
me

Te
.

Here a typical atom size is r ∼ e2/J, and a typical electron velocity is v ∼ (Te/me)1/2.
Formula (12.6) gives

τT ∼ τo
β2

,

where β is the ideality parameter. From this formula, it follows that a typical time
of relaxation of a plasma with a strong coupling is less than a typical atomic
time. Of course, this deduction is based on formulas which are valid for an ideal
plasma. Nevertheless, this deduction gives a general tendency in relaxation of a
two-component plasma with strong coupling, namely such a plasma decays fast
in comparison with atomic times. Of course, additional interactions in a plasma
can reject this conclusion, for example, if along with electrons and ions, a neutral
component affects the plasma behavior, this conclusion may be violated.
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� Problem 12.5 Consider hardening of an air plasma in which ozone is formed as
a result of fast cooling of a dissociated oxygen in air.

Ozone is a metastable oxygen compound, and its formation in molecular oxygen
may result from nonequilibrium conditions. We now consider a rapid cooling of
partially dissociated air when ozone formation and its decay proceeds in the fol-
lowing processes:

O + 2O2 ↔ O3 +O2, O +O2 + N2 ↔ O3 + N2, O +O3 ↔ 2O2. (12.7)

Assume the degree of oxygen dissociation in the initial state to be small. This
allows us to neglect those recombination processes that require the participation
of two oxygen atoms. The cooling rate dT/dt is an important parameter in these
reactions.
The hardening phenomenon is associated with equilibrium violation at rapid

cooling. At high temperatures the equilibrium among O, O2, and O3 is supported
by the processes shown in formula (12.7), but starting from a typical temperature
T0, the equilibrium between atomic andmolecular oxygen is violated. We introduce
the equilibrium constants from the Saha relations (1.69)

[O]2

[O2]
= K2(T) = C2(T) exp

(
−D2

T

)
,

[O][O2]
[O3]

= K3(T) = C3(T) exp
(

−D3

T

)
,

where [X ] means the number density of particles X , K2(T), and K3(T) are the
equilibrium constants, so that C2(T) and C3(T) are weak functions of T , D2 =
5.12 eV is the dissociation energy of oxygen molecules O2, and D3 = 1.05 eV is
the dissociation energy of ozone molecules O3. Taking into account the principle
of detailed balance relating the rate constants of these processes, we obtain the
balance equation for ozone molecules

d[O3]
dt

= −k[O3][O] +Ka[O2]2[O] , (12.8)

where Ka, k are the rate constants for the first and third processes (12.7), respec-
tively.
We assume that in the course of cooling the equilibrium between atomic oxy-

gen and ozone is maintained up to temperatures of the order of To. Then this
equation is

d[O3]
dt

= −k[O3]2K3
[O2]

+KaK3[O2][O3] .

At temperatures below To, one can neglect the second term on the right-hand side
of this equation. Then the ozone number density [O3] at the end of the process is
given by the relation

1
[O3]

− 1
No

=
k(To)K2(To)

[O2]
T2o

D3dT/dt
,
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where No is the number density of ozone molecules at the temperature To, and we
assume a weak temperature dependence for k(T).
From this we estimate a typical ozone number density at the end of the process as

[O3] ∼ [O]eq[O2]eq
K2(To)

∼ [O2]D3

k(To)K3(To)T2o

dT
dt

,

where [X ]eq means the equilibrium number density at this temperature. Note that
the parameters are taken at a temperature To at which an equilibrium violates. This
temperature follows from the equation

dT
dt

∼ C exp
[
− D2

2To

]
,

where C depends weakly on the temperature. This gives

k[O]eq ∼ D3

T2o

dT
dt

,

where [O]eq ∼ √
K2[O2] is the equilibrium number density of atomic oxygen. From

this we obtain the final ozone number density

[O3] ∼
(
dT
dt

)1−2D3/D2

∼
(
dT
dt

)0.6

. (12.9)

The rate constants allow us to find parameters of this process at a given rate of
cooling. In particular, To ranges 1700–2000 K for a cooling rate 104–105 K/s, and
the ozone number density at the end of the process is [O3] ∼ 1010 cm−3.

12.2
Thermal Phenomena and Thermal Waves in Plasma

� Problem 12.6 A weakly ionized gas is formed under the action of an external
electric field, and the electron number density satisfies to criterion (7.18) that leads
to the Maxwell distribution function of electrons. Find the attenuation factor for
damping of a heightened density of electrons originated as a perturbation at a
certain point.

Under considered conditions, local ionization equilibrium is supported within the
plasma, so that the Saha relation for the electron number density Ne is valid and
heat transport processes are not essential. Because the electron number density
and temperature Te are connected, a perturbation of one value causes variation of
the other one, which in turn leads to a change of the first quantity. In this way one
can find the rate of damping or growth of an initial perturbation.
First, we find the relation between perturbations of the electron number den-

sity N′
e and temperature T ′

e. Because of the local ionization equilibrium, we have
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according to the Saha formula (1.69) Ne ∼ exp(−J/2Te), where J is the atom ion-
ization potential. This gives

N′
e

Ne
=
T ′
e
Te

J
2Te

. (12.10)

From this it follows

T ′
e
Te

�
N′
e

Ne
.

We now use the balance equation for the electron energy per unit volumeW =
3NeTe/2, which according to equations (7.31), (7.32), and (7.33) have the form

dWe

dt
= [−eEweNe]′ − 3

me

M
[(Te − T)νNe]′. (12.11)

We take here for simplicity the rate ν of electron–atom collisions to be independent
of the collision velocity, and below we assume Te � T .
When the plasma is under equilibrium, the left-hand side of this equation (12.11)

as well as the right-hand are zero. Note that j = −eEwe = const. Inserting in
equation (12.11) perturbations of the electron number density N′

e and electron tem-
perature T ′

e, which vary in time, we reduce this equation to the form

1
Ne

dN′
e

dt
+
1
Te

dT ′
e

dt
= −T ′

e
Te

.

Expressing a perturbation of the electron temperature through a perturbation of the
electron number density and using formula (7.33), we reduce this balance equation
to the form

dN′
e

dt
= −δN′

e, δ = 2
me

M
Te
J

ν. (12.12)

Note that a typical time of establishment of local thermodynamic equilibrium as-
sumes to be small compared to 1/δ.

� Problem 12.7 A gas is located in a gap between two infinite plates with a distance
L between them. The wall temperature is supported to be Tw, and the rate of heat
release depends on the temperature exponentially. Find the temperature difference
between the gap middle and its walls and analyze the possibility of development
of a thermal instability under these conditions.

Let us take z-axis to be perpendicular to the walls and the middle of the gap to be
z = 0, so that the coordinates of walls are z = ±L/2. Denote by f (T) the specific
power of heat release per unit volume and take its temperature dependence in
accordance with the Arrhenius law

f (T) = A exp(−Ea/T) , (12.13)
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where Ea is the activation energy of the heat release process. This dependence of
the rate of heat release is identical to that of the chemical process and represents
a strong temperature dependence because Ea � T . Assume that heat transport
results through thermal conductivity of a gas in the gap, so that the heat balance
equation (6.29) has the form

κ
d2T
dz2

+ f (T) = 0 ,

where κ is the thermal conductivity coefficient. Let us introduce a new variable
X = Ea(T − To)/T2o , where To is the gas temperature in the center of the gap, and
then the heat balance equation takes the form

d2X
dz2

− Be−X = 0 ,

where B = EaA exp(−Ea/To)/(T2o κ). Solving this equation with the boundary con-
ditions X(0) = 0, dX(0)/dz = 0 (the second condition follows from the symmetry
consideration X(z) = X(−z)), we have

X = 2 ln cosh z .

This gives the temperature difference between the gap center and the walls as

∆T ≡ To − Tw =
2T2o
Ea

ln cosh

[
L
2

√
AEa
2T2o κ

exp
(

− Ea
2To

)]
. (12.14)

Figure 12.2 shows the dependence on To for the left-hand and right-hand parts
of this equation (curves 1 and 2, respectively) at a given wall temperature Tw. The
intersection of these curves yields the center gap temperature To. The right-hand
part of the equation does not depend on the wall temperature and depends strongly
on To. Therefore, it is possible that curves 1 and 2 do not intersect, i. e., a stationary
solution of the problem is absent. The physical implication of this result is that
thermal conduction cannot ensure removal of heat release from the gas, and this
leads to a thermal instability.

� Problem 12.8 Find the threshold of the thermal instability in a gas located in a
gap between two plane plates which are supported at a certain temperature. The
specific power of heat release is determined by formula (12.13).

The threshold of the thermal instability corresponding to the curve 1′ of Fig. 12.2,
along with the equality of the left-hand side and right-hand side of equation (12.14)
and their derivatives are also equal. The latter gives

∆T =
2T20
Ea

ln cosh y, 1 = y tanh y ,

where

y =
L
2

√
AEa
2T2o κ

exp
(

− Ea
2To

)
.
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Fig. 12.2 The dependencies on the temperature at the gap middle for
the left-hand side and right-hand side of equation (12.14). The right
intersection of these curves gives the solution of this equation. The
threshold of the thermal instability takes place when the line and curve
are tangential with each other.

The solution of the above equation for y gives y = 1.2, which means the following
relation at the threshold the thermal instability is:

AEaL2

T2o κ
exp

(
−Ea
To

)
= 11.5, ∆T = 1.19

T2o
Ea

. (12.15)

These relations show that the thermal instability starts at the following ratio of
the specific power of heat release in the middle gap and at walls:

f (Tw)
f (To)

= exp (−1.19) = 0.30 .

Correspondingly, the threshold of the thermal instability in terms of the wall para-
meters for heat release has the form

AEaL2

T2wκ
exp

(
− Ea
Tw

)
= 3.5 .

Though we considered the Arrhenius temperature dependence for the rate of heat
release, in reality it is valid for arbitrary strong temperature dependence. Hence,
one can rewrite the condition for the threshold of thermal instability in the form

L2

κ

∣∣∣∣d f (Tw)
dTw

∣∣∣∣ = 3.5, (12.16)

and this criterion is based on the condition

Tw

∣∣∣∣d f (Tw)
dTw

∣∣∣∣ � 1 .

Relation (12.16) gives a certain connection between rates of heat release and heat
transport.
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� Problem 12.9 When the condition of thermal instability is fulfilled for a large
gas system, this instability propagates inside this system in the form of a wave.
Determine the velocity of thermal wave.

If a size of a gas system exceeds significantly by the parameter L in formula (12.16),
thermal instability develops in the form of a thermal wave. Thus, the thermal wave
propagates in a medium, which is a nonequilibrium at the beginning, and a re-
markable energy part is located in internal degrees of freedom. For example, in
a chemically active gas the rate of the chemical process that leads to heat release
depends strongly on the temperature. This chemical process proceeds on the wave
front with a heightened temperature, and the region of the chemical process prop-
agates in the form of a wave.
Figure 12.3 shows the space temperature distribution in a gas in the course of

propagation of a thermal wave. Region 1 relates to the initial gas state, the tempera-
ture rise proceeds in region 2 due to heat transport from hotter regions. Processes
of heat release occur in region 3, where the gas temperature is close to its maxi-
mum. Region 4 of Fig. 12.3 is located after the passage of the thermal wave, and
its temperatureTm is determined by the specific internal energy at the beginning.
On the basis of formula (12.13), in a range of a thermal process, we take the

temperature dependence for the specific power of heat release in the form

f (T) = f (Tm) exp [−α(Tm − T)] , α =
Ea
T2m

, (12.17)

where Tm is the final gas temperature that is determined by the internal gas energy.
Taking the time and coordinate dependence of the temperature in thermal wave
as T = T(x − ut), where x is the coordinate, and u is the velocity of the thermal
wave, we transform the heat balance equation (6.31) to the form

u
dT
dx

+ χ
d2T
dx2

+
f (T)
cpN

= 0 .

We find below the wave velocity u as the eigenvalue of this equation by sewing its
solution in different regions of Fig. 12.6. For this goal it is convenient to use a new

Fig. 12.3 Space distribution of the temperature in the course of propagation of a thermal wave.
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variable Z(T) = −dT/dx, and in the temperature range To < T < Tm we have
Z(T) ≥ 0. This gives

d2T
dx2

=
d
dx

(
dT
dx

)
=
ZdZ
dT

.

In new variables, the heat balance equation reduces to the form

−uZ + χ
ZdZ
dT

+
f (T)
cpN

= 0 . (12.18)

We use a simple and rough method of solution of this equation that is illustrated
in Fig. 12.4. In regions 1, 4 according to definition of Fig. 12.3 we have Z(To) =
Z(Tm) = 0. In region 2 heat release is absent practically that allows us to ignore
the last term of equation (12.18) and yields region 2

Z =
u(T − To)

χ
, (12.19)

where To is the initial temperature. Neglecting the first term of the above equation
in region 3, we obtain

Z =

√
2

cpNχ

∫ Tm

T
f (T)dT . (12.20)

One can sew the above solutions in regions 2 and 3 by equalizing them at a tem-
perature T∗ on the boundary region where these solutions are identical. As a result,
we obtain the Zeldovich formula for the thermal wave velocity

u =
1

T∗ − To

√√√√√ 2χ

cpN

Tm∫
T∗

f (T)dT . (12.21)

Fig. 12.4 The temperature dependence for the temperature gradient
Z(T) according to equation (12.18).
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One can expect that though the temperature T∗ is close to Tm (T∗ − To � Tm − T∗),
but f (T∗) � f (Tm). Then the Zeldovich formula can be rewritten as

u =
1

Tm − To

√√√√√ 2χ

cpN

Tm∫
To

f (T)dT . (12.22)

� Problem 12.10 Analyze the correctness of the Zeldovich formula (12.22) by deriv-
ing the solution of equation (12.18).

Approximating the rate of heat release by formula (12.17), it is convenient to obtain
the solution of equation (12.18) as

Z(T) = Z =
u(T − To)

χ

√
1 − exp[α(T − Tm)] .

This expression gives the correct solutions in regions 1 and 4 of Fig. 12.3 Z(To) =
Z(Tm) = 0, and this formula gives solution (12.19) in the region 2. If we substitute
this expression into equation (12.18), one can find the thermal wave velocity. Taking
the criterion α(Tm −To) � 1 to be valid, one can find the velocity of a thermal wave,
comparing the above expression and formula (12.20) in the region 3 of Fig. 12.3.
As a result, we obtain the Zeldovich formula (12.22).

� Problem 12.11 Analyze propagation of the wave of vibration relaxation in a non-
equilibrium molecular gas in the case when the diffusion coefficient for excited
molecules in a gas and the thermal diffusivity coefficient of the gas are identical.

We have at the beginning a molecular gas whose vibrational temperature exceeds
remarkably the translation one. Then the relaxation process leads to quenching of
excited molecules and gas heating. Since the rate constant of relaxation increases
significantly with growth of the temperature, i. e., the relaxation process accelerates
in the course of gas heating. Our goal is to determine the velocity of the wave of
vibration relaxation. Along with thermal process as considered earlier we take in
consideration the process of diffusion of excited molecules.
We consider the balance equation for the number density N∗ of excitedmolecules

∂N∗
∂t

= D∆N∗ − NN∗k(T) ,

where N is the total number density of molecules, and N � N∗, D is the diffusion
coefficient of excited molecules in a gas, and k(T) is the rate constant of vibrational
relaxation. Taking into account the usual dependence of wave parameters N∗(x, t) =
N∗(x − ut), where u is the wave velocity, we transform the above equation to the
form

u
dN∗
dx

+D
d2N∗
dx2

− N∗Nk(T) = 0 . (12.23)

In the wave front we have N∗ = Nmax, and after the wave we have N∗ = 0. In-
troducing the mean molecule energy ∆ε released in a single vibrational relaxation
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event, Then the difference of the gas temperatures after (Tm) and before (T0) the
relaxation wave is

Tm − T0 =
No∆ε

Ncp
, (12.24)

where No is the initial number density of excited molecules.

The heat balance equation (12.18) may be represented in the form

u
dT
dx

+ χ
d2T
dx2

− ∆εN∗k(T)
cp

= 0 . (12.25)

The wave velocity can be obtained from the simultaneous analysis of equations
(12.24) and (12.25). The simplest case occurs when D = χ. Then both balance equa-
tions are identical, and the relation between the gas temperature and the number
density of excited molecules is

Tm − T = N∗∆ε/(Ncp). (12.26)

In this case we have the analogy between the heat release specific power and the
rate constant of relaxation f (T)/(cpN) = (Tm − T)Nk(T). Then on the basis of
formula (12.22) we obtain the relaxation wave velocity

u =
T2m

Ea(Tm − T0)

√
2χ

τ(Tm)
, (12.27)

where τ(Tm) = 1/[Nk(Tm)] is a typical time for vibrational relaxation at the temper-
ature Tm. Because of the exponential temperature dependence (α(Tm − T0) � 1)
for the vibrational relaxation rate constant assumption, we have

u �

√
χ

τ(Tm)
.

� Problem 12.12 Analyze the propagation of the wave of vibration relaxation in a
nonequilibrium molecular gas in the limiting cases of the relation between the
diffusion coefficient of excited molecules in a gas and the thermal diffusivity coef-
ficient.

Let us first consider the case D � χ that is represented in Fig 12.5a and which
gives the spatial distribution of the number density of excited molecules N∗ and
gas temperature T along the wave. Note that the centers of these two distributions
coincide because quenching-excited molecules input heat into a gas, and the dis-
tribution of the number density of excited molecules is wider than that for the
temperature. According to the balance equation (12.23) for the number density of
excited molecules N∗ = Nmax − (Nmax − N0) exp(−ux/D), for x > 0, where N0 is
the number density of excited molecules at x = 0. Since the temperatures varies
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Fig. 12.5 Space distribution of the temperature and the number density
of excited molecules in the course of propagation of a vibrational relax-
ation wave in cases of different limiting relations between the diffusion
coefficient D of excited molecules in a gas and the thermal diffusivity
coefficient χ of the gas.

by step, vibrational relaxation is absent at x > 0 and takes place at x < 0, and
equation (12.23) gives at x < 0

N∗ = N0 exp(αx), α =

√( u
2D

)2
+

1
Dτ

− u
2D

,

where τ = 1/[Nk(Tm)]. Equalizing derivatives of these expressions for N∗ at x = 0,
we get in this case when propagation of the thermal wave of vibrational relaxation
is governed by diffusion of excited molecules in a hot region where vibrational
relaxation takes place

α =
u
D
, u =

√
2D

τ(T)
=

√
2DNk(Tm), D � χ . (12.28)

In accordance with character of relaxation process, the velocity of the vibrational
relaxation wave is u ∼ √

D/τ in this case, and the width of the wave front is
∆x ∼

√
Dτ.

Figure 12.5b shows the spatial distribution for the number density of excited
molecules and temperature in the opposite limiting case χ � D, when diffusion of
excitedmolecules is not essential, and the velocity of the thermal wave of vibrational
relaxation is determined by formula (12.22). Connecting the specific power of heat
release in this formula with the rate of vibrational relaxation according to (12.26)
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and accounting the relation (12.24) between the final temperature and the initial
number density of excited molecules, we obtain this approximately

u =
Tm√

Ea(Tm − T0)

√
χ

τ
, (12.29)

where τ = [Nk(Tr)]−1 and roughly Tr ≈ T(x = 0). Note that in this case the wave
velocity is lower than that in the case D = χ since vibrational relaxation proceeds
at lower temperatures.

� Problem 12.13 Analyze the propagation of the wave of ozone decomposition in
air.

This example is of interest because processes of diffusion transport and heat trans-
port are comparable in wave propagation, and the rates of chemical processes are
known that allows us to analyze a real phenomenon. Chemical processes of ozone
decomposition in air proceed according to the following scheme:

O3 +M
kdis→ O2 +O +M

O +O2 +M
K→ O3 +M (12.30)

O +O3
k1→ 2O2,

and definitions of their rate constants are given above; M is an air molecule. The
air temperature Tm after the thermal wave is connected with its initial temperature
To by the relation

Tm = T0 + 48c, (12.31)

where the temperatures are expressed in Kelvin, and c is the ozone concentration
in air expressed as a percentage.

On the basis of scheme (12.30) we obtain the set of balance equations

d[O3]
dt

= −kdis[M][O3] +K[O][O2][M] − k1 [O][O3]

d[O]
dt

= kdis[M][O3] −K[O][O2][M] − k1 [O][O3] , (12.32)

where [X ] is the number density of particles X . Estimates show that the three-body
process is weak compared to the pair one under considering conditions (p ≤ 1 atm,
Tm > 500 K) we have K[O2][M] � k1 [O3] and the second term of the right-hand
side of each equation in (12.32) is less than the third one. In addition, in reality
[O] � [O3], which gives d[O]/dt � d[O3]/dt, and it allows us to take below d[O]/dt =
0 and [O] = kdis[M]/k1 . As a result, the first equation of (12.32) is transformed into

d[O3]/dt = −2kdis[M][O3] .
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Joining this with equations (12.23) and (12.25), we obtain the number density of
ozone molecules [O3] and air temperature T in the wave of ozone decomposition

u
d[O3]
dx

+D
d2[O3]
dx2

− 2kdis[M][O3] = 0

u
dT
dx

+ χ
d2T
dx2

+
2
cp

∆εkdis[O3] = 0, (12.33)

where ∆ε = 1.5 eV is the energy released from the decomposition of one ozone
molecule.
We can now substitute numerical parameters for the above processes for

a thermal wave in air at atmospheric pressure, namely D = 0.16 cm2/s and
χ = 0.22 cm2/s. These quantities are almost equal and have identical temperature
dependence. Therefore we take them to be equal and given by

D = χ =
0.19
p

(
T
300

)1.78

,

where the values D and χ are expressed in cm2/s, the air pressure p is given in
atmospheres, and the temperature is expressed in Kelvin. We also use below the
dissociation rate constant kdis = 1.0 · 10−9 cm3/s exp(−11 600/T). We can observe

Fig. 12.6 The velocity of propagation of the wave of ozone decomposi-
tion in air depending on the initial ozone concentration (or the final air
temperature), and the width ∆x of this wave front.
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how equating of the values D and χ simplifies the problem. Then formula (12.27)
gives the thermal wave velocity expressed in cm/s

u =
1.3T2.39m
Tm − T0

exp
(

−5800
Tm

)
.

Figure 12.6 shows the wave velocity obtained on the basis of this formula for T0 =
300 K, and u does not depend on the air pressure.
The width of the wave front is characterized by the value ∆x = (Tm − T0)/

(dT/dx)max, where the maximum temperature gradient is (dT/dx)max = u(T∗ −
T0)/χ and the temperature T∗ corresponds to the maximum of Z(T) that is given
in Fig. 12.4. Figure 12.6 contains ∆x depending on the temperature. As it follows
from the data of Fig. 12.6, the thermal wave velocity is small compared with the
sound velocity, i. e., propagation of a thermal wave is a quiet process.

12.3
Plasma in Magnetic Field

� Problem 12.14 Derive the set of magnetohydrodynamic equations for a plasma of
a high density located in a magnetic field.

In a dense plasma located in a magnetic field the plasma motion is connected
with the magnetic field and creates a self-consistent field. Hence, these parameters
must be considered simultaneously and are described by the set of magnetohy-
drodynamic equations for a plasma. This set of equations includes the continuity
equation for the number density of electrons and ions (9.5), the equation for the av-
erage momentum of electrons and ions (9.8), Poisson’s equation, and the Maxwell
equations. The resulting set of equations is called the set of equations of magne-
tohydrodynamics and has the form

∂N
∂t

+ div (Nw) = 0

∂w
∂t

+ (w · ∇) w +
∇p
mN

− F
N

= 0

div E = 4π(Ni − Ne)

curl H =
4π

c
j− 1

c
∂E
∂t

(12.34)

curl E = − 1
c

∂H
∂t

div H = 0 .

The first two equations can be written both for electrons and ions. Here w and N
are the drift velocity and the number density of electrons or ions in a quasineutral
plasma. It is necessary to add to the equation set (12.35) the equation of plasma
state and the thermodynamic equation for the processes in the plasma. The above
equations relate the number density of plasma particles, their temperature and the
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pressure, and Ohm’s law (7.60). The set of magnetohydrodynamic equations with
the indicated additions and the initial conditions will give a complete description
of plasma evolution.

� Problem 12.15 Based on the set of magnetohydrodynamic equations for a high-
density plasma (12.35), show that magnetic lines of force are frozen in the plasma.

A plasma of a high conductivity contains electrons whose velocities considerably
greater than the velocities of ions. Then the electric current is determined by elec-
trons and is given by

j = −eNewe ,

where we is the drift velocity of the electrons, and Ne is their number density. If
the motion occurs in a magnetic field, an additional electric field is produced in
the laboratory frame of axes, whose strength is

E′ =
1
c

(we × H) = − 1
ecNe

(j× H) .

This field acts on the electrons, giving rise to an additional force acting on the
entire plasma. The force per unit volume of the plasma is

eE′Ne = − 1
c

(j× H) .

If the plasma conductivity is sufficiently high, its response to the electric field (ac-
cording to this equation) will result in the movement of electrons. This movement
will continue until separation of the electrons and ions gives rise to an internal
electric field in the plasma

E = − 1
c

(we × H) , (12.35)

which compensates the above electric field. Inserting this into the Maxwell equa-
tion −(∂H/∂t) = c curl E that yields

∂H
∂t

= curl [we × H] . (12.36)

Let us analyze the variation of the magnetic field in a moving plasma of a high
conductivity when the electric current is created by electrons mostly. We transform
equation (12.36) by using the relation

curl (we × H) = wediv H + (H · ∇)we − (we · ∇)H − Hdiv we .

Using the Maxwell equation div H = 0, and taking the expression for divwe from
the continuity equation for electrons, we obtain

∂H
∂t

− H
Ne

∂Ne

dt
+ (we · ∇)H − H

Ne
(we · ∇)Ne = (H · ∇)we .
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Dividing this equation by Ne, we obtain

∂

∂t

(
H
Ne

)
=

(
H
Ne

· ∇
)

we , (12.37)

where

∂

∂t

(
H
Ne

)
=

∂

∂t

(
H
Ne

)
+ (we · ∇)

H
Ne

is the derivative at a point that moves with the plasma.
To analyze the motion of an element of plasma volume with the length dl and the

cross section ds containing Nedsdl electrons, we assume at first that the vector dl is
parallel to the magnetic field H so that the magnetic flux through this elementary
plasma volume is Hds. If the plasma velocity at one end of the segment dl is we,
then at its other end the velocity is we + (dl · ∇)we, so that the variation of the
segment length during a small time interval δt is δt(dl · ∇)we. Hence, the length
of the segment satisfies the equation

d
dt

(dl) = (dl · ∇)we ,

which is identical to equation (12.37). From this it follows that during plasma evo-
lution the element dl has the same direction as the magnetic field. In addition,
the length of the plasma element remains proportional to the quantity H/Ne. This
means that the magnetic flux through this plasma element does not vary with time
during the plasma motion. Thus, the magnetic lines of force are frozen into the
plasma, that is, their direction is such that the plasma electrons travel along these
lines. Note that this is valid for a high conductivity plasma.

� Problem 12.16 Analyze the penetration of a slow magnetic field in a motionless
plasma.

Since an electric current passes through a plasma, the electric field arises, and its
strength (E) follows from Ohm’s law (7.60)

j = ΣE ,

where j is the electric current density and Σ is its conductivity. We insert this
relation into the Maxwell equations

curl H =
4π

c
− 1

c
∂E
∂t
, curl E = −∂H

∂t
, div H = 0 .

We apply the operation curl to the first equation, the operation ∂/∂t to the second
equation and exclude the quantity E from these equations. We use the relation
curl curl a = grad div a− ∇2a and assume a typical frequency ω of variation of
fields to be small compared to the plasma conductivity Σ. As a result, we obtain
the following equation of the magnetic field strength:

∂H
∂t

= DH∆H, DH =
c2

4πΣ
. (12.38)
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This is the diffusion equation (8.33), so that we have a diffusion character of pene-
tration of a magnetic field in a plasma, and a typical time of penetration in a depth
L is

τ ∼ L2

DH
,

and the penetration depth ∆ for fields of a typical frequency ω is

∆ ∼
√

DH

ω
=

c√
4πΣω

.

One can see that a decrease of a typical field frequency leads to an increase of the
penetration depth for such fields in a plasma. Since the plasma conductivity (7.63)
is Σ ∼ ω2

pτ/(4π)4, we find that the above formula gives the penetration depth
(11.28) in the case of the normal skin effect.

� Problem 12.17 Analyze the steady-state motion of a high-conductivity plasma on
the basis of the relation of magnetohydrodynamics.

The property of moving plasma of a high density in a magnetic field according to
which magnetic lines of force are frozen in a plasma allows us to analyze some
aspects of this plasma with a strong interaction between motion of electrons and
self-consistent magnetic field. In particular, according to equation (12.35), the force
in this plasma per electron is equal to

F = −eE =
e
c

[we × H] = − 1
cNe

[j× H] .

Taking into account the Maxwell equation that connects the current density with
the magnetic field strength j = c/(4π) · curlH, we obtain

F = − 1
cNe

[j× H] =
1

4πNe
[H × curlH] =

1
4πNe

[
1
2

∇H2 − (H · ∇)H
]
.

Let us substitute this relation into the second equation (12.37). Assuming the drift
velocity of the electrons to be considerably smaller than their thermal velocity that
allows us to neglect the term (we · ∇)we compared to the term ∇p/(mNe). As a
result, we obtain

∇
(
p +

H2

8π

)
− (H · ∇)H

4π
= 0. (12.39)

The quantity H2/(8π) is the magnetic field pressure or magnetic pressure that
according to its action on a plasma is analogous to the kinetic pressure.

� Problem 12.18 The electric current in a plasma with frozenmagnetic lines of force
in the plasma occupies a cylinder region. Find the relation between parameters of
this plasma.
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In the case under consideration the magnetic lines of force are cylinders, and be-
cause of the axial symmetry, equation (12.39) for the direction perpendicular to the
field and current has the following form:

∇⊥
[
p +

H2

8π

]
= 0 .

The solution of this equation shows that the total plasma pressure, which is the
sum of the gas-kinetic and magnetic pressures, is independent of the transverse
coordinate,

p +
H2

8π
= const. (12.40)

Let the radius of the plasma column be ro and the current in it be I, so that the
magnetic field at the surface of the column is Hϕ = 2I/(ca) and is directed per-
pendicular to the current direction. The total pressure outside the column near its
surface is equal to the magnetic field pressure, i. e., I2/(2πc2r2o ). If the magnetic
field is absent inside the plasma, the total pressure inside the plasma column is
equal to the gas-kinetic pressure p. From the equality of these pressures we obtain
the radius of the plasma column,

ro =
I

c
√
2πp

. (12.41)

This pinch effect establishes the relation between the current radius and the mag-
netic field that is created by this current.

� Problem 12.19 Analyze the stability of a cylinder current in a column of a cold
plasma with respect to pinching, when a linear current of the cylinder shape prop-
agates in a gas in an external magnetic field directed along the current. Pinching
involves variation of the plasma column radius, but does not change its axial sym-
metry.

Under these conditions, an electric current propagates in a cylinder column located
in an external electric field, and if this current shrinks in some point, the radius
of curvature of magnetic lines of force exceeds significantly the radius of current
column. Taking z as the current direction, and let the column of a radius ro be
changed by δro. Since the magnetic lines of force are frozen in the plasma, the
magnetic flux across the plasma column Hzπr2o is conserved. From this it follows
that the variation δHz of the longitudinal magnetic field is connected with the
radius variation δro by the relation

δHz

Hz
+ 2

δro
ro

= 0 .

Next, the electric current, that is Iz = croHϕ/2, does not change as a result of a
radius change. This gives the variation of the tangential component of themagnetic
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field

δHϕ

Hϕ
+

δro
ro

= 0 .

Hence,

δHz

Hz
= 2

δHϕ

Hϕ
.

In addition, we have that variation of the column radius leads to variation of the
magnetic pressure. The variation of the magnetic field pressure inside the plasma
due to variation of the magnetic field frozen inside the plasma is

δp = δ
H2
z

8π
.

In the same manner we find that the variation of a magnetic field outside the
plasma column is,

δp = δ
H2

ϕ

8π
.

Thus, an increase of the magnetic pressure outside the plasma as a result of a
decrease of the column radius must be compensated by the magnetic pressure of
a cold plasma inside the column. Then the plasma column may be protected from
pinching. From the above relations it follows that this is fulfilled if the criterion

H2
z ≥ H2

ϕ

2
(12.42)

holds true. Thus, the current in plasma may be stable if an external longitudinal
magnetic field is used. In other case, an instability of the sausage type can develop.

� Problem 12.20 A weakly ionized gas is located in crossed constant electric and
magnetic fields, and an electron current supports an electron number density and
temperature. Analyze the possibility of an ionization instability when a random
perturbation at some plasma region is amplified in time.

In this case a plasma is restricted by electrodes, and a current flows through the
plasma of the current density j = −eNowo, where No and wo are the stationary
values of the electron number density and drift velocity. In order to ascertain the
possibility of growth of a random perturbation in a plasma, we analyze the variation
in the heat release per unit volume that isW = −jE. A variation of this quantity is

W ′ = eN′
ewoEo − eNow′Eo − eNowoE′ ,

where unperturbed values are denoted by subscript
“
o,” and perturbed values are

supplied by superscript ′.
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The motion equation for an electron is

me
dw
dt

= −eE − e
c
[w × H] −mewν .

Solution of this equation in the absence of perturbations is given by formula (7.43),
and from this formula it follows the electric field strength

E = −meν

e
w − me

e
[ωH × w] ,

where ωH = eH/(mec). Taking from this formula the electric field strength for the
stationary Eo and perturbed E′ distributions and substituting them in equation for
variation of the specific electron energy, we obtain

W ′ = N′
emew2

oν + 2Nomewow′ν . (12.43)

The relation between perturbationsw′ and N′
e follows from the continuity equation

(6.15) for electrons div (New) = 0. Taking a perturbation value as ∼ exp(ik · r),
where k is the wave vector, we obtain

Ne(w′ · k) + N′
e(wo · k) = 0 .

Let us now find the direction of a perturbed drift velocity w′. Assuming that the
perturbation develops slowly, we have E′ = −∇ϕ′, which gives E′ = −ikϕ′, where
ϕ′ is the perturbation of the electric potential. Thus, the vectors E′ and k are ei-
ther parallel or antiparallel. Next, from formula (7.43) we obtain the direction of a
perturbed drift velocity

w′ = const · [k− (k× ωH) /ν] .

Multiplying this vector by itself, we find the constant in this expression, that is

w′ = ±w′ νk− (k× ωH)

k
√

ω2
H + ν2

.

Substituting this expression into the relationship derived from the continuity equa-
tion yields

w′

w
= ±N′

e
Ne

(wo

ν

) √
ω2
H + ν2 cos α ,

where α is the angle between vectors w and k and cos α = kx/k. This gives

W ′ =Wo

(
1 − 2cos2α +

ωH

ν
sin 2α

)
,

whereWo = Nemew2
oν.

We now analyze equation (12.11) that has the form

dW ′

dt
=W ′ −Wo

T ′
e
Te

.
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On the other hand,

dW ′

dt
=

d
dt

(
3NeTe
2

)
=Wo

1
Ne

dN′
e

dt
+Wo

1
Te

dT ′
e

dt
,

and according to formula (12.10), one can neglect the second term in the right-hand
side compared to the first because the atom ionization potential is J � Te.

On the basis of these relation we have

dW ′

dt
≡ Wo

1
Ne

dN′
e

dt
=Wo

N′
e

Ne

(
ωH sin 2α

ν
− cos2 α − Te

2J

)
.

The instability occurs if the right-hand side of this equation is positive. Then any
random perturbation of the electron number density will grow. The right-hand side
is maximum when tan 2α = −ωH/ν. For this direction of the vector k, the previous
equation takes the form

dW ′

dt
= N′

emew2ν




√
ω2
H + ν2

ν
− 1 − Te

2J


 . (12.44)

From this it follows that this instability has a threshold and starts if ωH/ν ≥
(Te/J)1/2. In the case of a large parameter ωH/ν, the ionization instability devel-
ops perturbations propagating at the angle α = 45◦ to the current direction. If
this ratio is small, the most unstable perturbations propagate in a direction almost
perpendicular to the current.

� Problem 12.21 An electric current flows in a cylindrical tube, and the electric and
magnetic fields are directed along the plasma column axis. A plasma is quasi-
neutral, and the number density of charged particles varies slowly along the tube
radius. Taking into account that electrons and ions are magnetized, find the con-
ditions when an ionization instability is developed.

Under the above conditions, the plasma under consideration is quasineutral and
its electrons and ions are magnetized, i. e., the Larmor radius for electrons and ions
is small compared to their mean free path. Since electrons and ions recombine on
the tube walls, the electric current is constant along the tube axis. Hence, if small
gradient of the number density of electrons in the current direction, an additional
electric field arises along the current in order to conserve its value.
Let us create an oblique perturbation of the electric field that forms a certain

angle with nonperturbed electric field strength. Then an azimuthal electric field
compels electrons to rotate and may enforce separation of electrons and ions. This
can create an ionization instability. We below determine the threshold of this in-
stability. The nature of this instability consists in drift of electrons and ions in
different directions under the action of crossed electric and magnetic fields. This
creates an electric field that can be enforced. In particular, in the case under con-
sideration the number density of electrons and ions in the radial direction means
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the existence of an electric field in this direction. This causes the azimuthal drift
of electrons and ions in different directions that creates an azimuthal electric field.
In turn, this can strengthen the number density gradient of charged particles and
lead to an ionization instability.
In order to find the conditions of this instability, we derive below the dispersion

relation for such perturbations. The drift velocity of electrons and ions under the
action of the magnetic field H and electric field E of the wave according to formula
(7.51) is equal to

w = c
[E × H]
H2 ,

and we neglect a magnetic field because of a small wave amplitude. Therefore, the
wave electric field can be described by the potential ϕ, where E = −∇ϕ.
Taking the direction along the tube axis to be z, we have Ohm’s law (7.60) for

the current density jz = ΣEz, where Σ is the plasma conductivity. The electric field
is the sum of the external (E0) and wave fields. Since the wave parameters are
proportional to exp(ikr − iωt), we have Ez = E0 − ikzϕ. The plasma conductivity is
determined by electrons and is proportional to the electron number density, which
gives

Σ = Σo +Σ′ = Σo

(
1 +

N′
e

No

)
,

where Σo is the plasma conductivity, No is the electron number density in the ab-
sence of perturbations, andΣ′ and N′

e are the corresponding perturbed parameters.
The condition for conservation of the current density in the field direction has

the form

−ikzϕΣo +Σ′Eo = 0 ,

or

−ikzϕ +
N′
e

No
Eo = 0 .

We add to this the continuity equation (6.15) for electrons

∂Ne

∂t
+ div (New) −Da

∂2Ne

∂z2
= 0 ,

where Da is the ambipolar diffusion coefficient for the plasma. We have ignored
the diffusive flux of electrons perpendicular to the magnetic field because of its
smallness. Taking the harmonic dependence of perturbed parameters on time and
coordinates, we can rewrite the above equation in the first order as

(−iω + k2zDa)N′
e +wx

dNo

dx
= 0 ,

where the x-axis is in the direction of the maximum gradient of the equilibrium
number density.
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Let us use the above expression (7.51) for the electron drift velocity in the azimu-
thal direction

wx =
cEy
H

= − ickyϕ

H
=
ky
kz

cEo
H

N′
e

No
.

Substituting this in the above dispersion relation, we obtain it in the form

iω = k2zDa +
ky
kz

cEo
HL

, (12.45)

where we introduce the characteristic length L as 1/L = −d(lnNo)/dx. One can
see that an instability (Imω < 0) will develop if the ratio ky/kz has an appropriate
sign and value. The instability has a threshold with respect to the electric field. The
magnetic field must be high enough to meet the conditions described above. This
ionization instability is named the current-convective instability.
Equation (12.45) gives the optimal condition for this instability when the Larmor

frequency for ions is of the order of the collision frequency of ions with gas parti-
cles. Because the diffusion motion of charged particles demolishes perturbations,
the threshold of this instability is connected with the diffusion of charged particles.

12.4
Nonlinear Phenomena in Plasma

� Problem 12.22 Taking the dependence of the oscillation frequency ω as a function
of the oscillation amplitude E as ω = ωo(k) + αE2, show that the wave packet with
a narrow range ∆k of wave vectors k (∆k � k) can conserve a small width in time
if the Lighthill criterion

α
∂vgr
∂k

< 0 (12.46)

holds true, where vgr is the group velocity of the wave packet.

Nonlinear phenomena in a plasma affect on the character of wave propagation, and
we below consider it on the example of a one-dimensional wave packet consisting
of waves concentrating a narrow range of wave numbers (∆k � k). The amplitude
a(x, t) of the signal can be composed from monochromatic waves in the form

a(x, t) = ∑
k
a(k) exp(ikx − iωt) ,

where a(k) is the amplitude of the wave with a wave number k. Taking into consid-
eration a nonlinearity wave according to formula (12.46) and the dispersion relation,
we represent the wave frequency as

ω(k) = ω(ko) +
∂ω(ko)

∂k
(k− ko) +

∂2ω(ko)
∂k2

(k− ko)2

= ωo + vg(k− ko) +
1
2

∂vg(ko)
∂k

(k− ko)2 .
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Here ko is the mean wave number of the wave packet, and vg is the group velocity
of the wave. Since wave number values are restricted to an interval of width ∆k
near ko, then the wave packet is initially concentrated in a spatial region of extent
∆x ∼ 1/∆k. As the wave packet evolves, it diverges due to different group veloci-
ties of individual waves. The initial wave packet, which has a size of the order of
1/∆k, diverges on a time scale given by τ ∼ (∆k2)−1 (

∂vg/∂k
)−1 . Thus, the wave

dispersion usually leads to increasing spatial extension of the wave in time.
The interaction of waves of different k affects on the behavior of this process.

Taking the wave frequency in the form ω = ω0 − αE2, where E is a field amplitude,
we below show that a nonlinearity can leads to the wave compression, if criterion
(12.46) is valid. Using the above formula for the wave frequency, we obtain the
amplitude of the wave packet as

a(x, t) = ∑
k
a(k) exp

[
i(k− ko)(x − xo) − ikoxo − i(k− ko)2

∂vg
∂k

t− iαE2(x)t
]
,

where xo = vgt.
From this relation it follows that nonlinear wave interactions can lead to modu-

lation of the wave packet. With certain types of modulation, the wave packet may
decay into separate bunches, or it may be compressed into a solitary wave–a soli-
ton. Because of the nature of this process, it is known as a modulation instability.
According to this formula, the compression of a wave packet or its transforma-

tion into separate bunches can take place only if the last two terms in the exponent
of this relation have opposite signs. Only in this case can a nonlinear interaction
compensate for the usual divergence of the wave packet. Therefore, modulation
instability can occur if the Lighthill criterion (12.46) is fulfilled.

� Problem 12.23 Derive the Korteweg–de Vries equation that includes a small non-
linearity together with a small dispersion of waves of the acoustic type, if the wave
dispersion may be represented in the form

ω = vgk(1 − r2ok
2), rok � 1 . (12.47)

According to the Lighthill criterion (12.46) a small wave nonlinearity in combina-
tion with a small wave dispersion can lead to compression of a wave packet. We
derive the equation that describes simultaneously this combination for long waves
propagated in an elastic medium, as a liquid, gas or plasma, if the dispersion re-
lation (12.47) is applicable for these waves. This equation follows from the Euler
equation (6.19) that has the form for the velocity of particles in a longitudinal wave

∂v
∂t

+ v
∂v
∂x

− F
m

= 0 ,

where v(x, t) is the particle velocity in a wave that propagates along the x-axis, F is
the force per particle, and m is the particle mass. Within the framework of a linear
approximation one can write the particle velocity in the form v = vg + v′, where vg
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is the group velocity, and v′ is the particle velocity in the frame of reference where
the wave is at rest. Because v′ � vg, we have the linear approximation as

∂v′

∂t
+ vg

∂v′

∂x
− F

m
= 0 ,

and the last term is a linear operator with respect to v′. Determining this term
in the harmonic approximation v′ ∼ exp(ikx − iωt), when the dispersion relation
(12.47) is valid, we reduce the Euler equation to the form

∂v
∂t

′
+ vg

(
∂v′

∂x
+ r20

∂3v′

∂x3

)
= 0 .

The last term of this equation takes into consideration a weak dispersion of long-
wave oscillations. In order to account for a nonlinearity of these waves, we analyze
the second term of this equation. In the linear approach we replace the particle
velocity v by the group velocity vg. If we return this term to its initial form and in
this manner take into account weak nonlinear effects, we obtain the Korteweg–de
Vries equation

∂v
∂t

+ v
∂v
∂x

+ vgr20
∂3v
∂x3

= 0 . (12.48)

This equation accounts for nonlinearity and weak dispersion simultaneously, and
therefore serves as a convenient model equation for the analysis of nonlinear dis-
sipative processes. As applied to plasmas, it describes propagation of long waves
in a plasma, such as sound and ion sound for which the dispersion relation (12.47)
is valid.

� Problem 12.24 Analyze the propagation of a solitary wave (soliton) in a plasma on
the basis of the Korteweg–de Vries equation.

The above analysis shows that wave dispersion leads to divergence of the wave
packet. If this divergence is weak, a weak nonlinearity is able to change its character,
and we consider this for solitary waves–solitons with the dispersion relation (12.47)
which are described by the Korteweg–de Vries equation (12.48). As it follows from
the dispersion relation (12.47), such waves propagate more slowly than long waves,
but nonlinear effects compensate for the spreading of the wave. In order to obtain
this conclusion analytically, we consider a wave of a velocity u, so that the space and
time dependence for the particle velocity in this wave has the form v = f (x − ut).
This gives

∂v/∂t = −u∂v/∂x ,

so that the Korteweg–de Vries equation in the frame of reference moved with the
wave takes the form

(v − u)
dv
dx

+ vgr20
d3v
dx3

= 0. (12.49)
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One can decrease the order of this equation assuming that a perturbation is absent
at large distances from the wave. This gives v = 0, d2v/dx2 = 0 at x → ∞ and
transforms the above equation to the form

vgr2o
d2v
dx2

= uv − v2

2
.

Among solutions of this equation we have the solution of the form v = a/ cosh2(αx)
that correspond to location of the wave in a restricted region. Substituting this
solution in the above equation, we find the parameters of such a solution. As a
result, we obtain

v = 3u cosh−2
(

x
2r0

√
u
vg

)
. (12.50)

The wave described by formula (12.50) is concentrated in a limited spatial region
and does not diverge in time. The wave becomes narrower with increase of its
amplitude, with its extension inversely proportional to the square root of the wave
amplitude.
Thus, this analysis shows the existence of stationary solutions of the Korteweg–

de Vries equation in the form of nonexpansible waves or solitons. The amplitude a
and extension 1/α of solitons are such that the value a/α2 does not depend on the
wave amplitude. If the initial perturbation is relatively small, evolution of the wave
packet leads to the formation of one solitary wave. Therefore, the solitons describe
evolution of perturbations in a nonlinear disperse medium.

� Problem 12.25 Derive the equation for the electric potential of a nonlinear ion
sound.

For the analysis of the nonlinear ion sound we use for its description the Euler
equation (6.19), the continuity equation (6.15), and the Poisson equation for ions.
In the linear approach they lead to the dispersion relation (11.13) for ion sound.
Taking these equations without a linear approximation, we obtain

∂vi
∂t

+ vi
∂vi
∂x

+
e
M

∂ϕ

∂x
= 0

∂Ni

∂t
+

∂

∂x
(Nivi) = 0,

∂2ϕ

∂x2
= 4πe(Ne − Ni) .

Here vi is the velocity of ions in the wave, ϕ is the electric potential of the wave,
Ne and Ni are the number densities of electrons and ions, respectively, and M is
the ion mass. As was discussed above, electrons are in equilibrium with the field
owing to their high mobility. Therefore, the Boltzmann distribution applies to the
electrons, so Ne = No exp(eϕ/Te), where No is the mean number density of charged
particles, and Te is the electron temperature.
Let us analyze the motion of ions in the field of a steady-state wave when the

time and spatial dependence for plasma parameters vi, Ni and ϕ has the form
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f (x − ut), where u is the velocity of the wave. Then the above set of equations for
plasma parameters takes the form

(vi − u)
dvi
dx

+
e
M

dϕ

dx
= 0

d
dx

[Ni(vi − u)] = 0 ,

d2ϕ

dx2
= 4πe

[
No exp

(
eϕ
Te

)
− Ni

]
.

The perturbation is assumed to be zero far from the wave, which gives Ni = No,
vi = 0 and ϕ = 0 at x → ∞. From the first two equations it follows

v2i
2

− uvi +
eϕ
M

= 0, Ni = No
u

u− vi
,

and the second equation gives vi ≤ u because Ni ≥ 0. This means that ϕ ≥ 0 in
the first equation, i. e., the electric potential of this ion-acoustic wave is positive.
The first equation gives

vi = u−
√
u2 − 2eϕ

M
,

where we use the physical condition vi ≤ u. The second equation takes the form

Ni = No
u√

u2 − 2eϕ
M

.

Substituting this in the last equation of the above set of equations, we obtain the
electric potential of nonlinear ion sound

d2ϕ

dx2
= 4πeN0

[
exp

(
eϕ
Te

)
− u√

u2 − 2eϕ/m

]
. (12.51)

This equation describes the spatial distribution for the electric potential of the non-
linear ion-acoustic wave. This has the form of the motion equation for a particle
if ϕ is regarded as the coordinate and x as time. A general property of this type
of equations corresponds to the energy conservation law that follows from mul-
tiplication by dϕ/dx and integration of the obtaining expression. This operation
gives

1
2

(
dϕ

dx

)2

− 4πNoTe exp
(
eϕ
Te

)
− 4πNoMu

√
u2 − 2eϕ

M
= const .

Assuming that at large distances from the wave the potential ϕ and the electric
field strength of the wave −dϕ/dx are zero, we can evaluate the constant of inte-
gration and obtain the following equation for the electric potential of a nonlinear
ion sound:

1
2

(
dϕ

dx

)2

+ 4πNoTe

[
1 − exp

(
eϕ
Te

)]
+ 4πNoMu

(
u−

√
u2 − 2eϕ

M

)
= 0 .

(12.52)
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This solution describes a solitary wave because, according to the boundary condi-
tions, the perturbation goes to zero at large distances. The solution allows one to
determine the soliton profile and the relation between wave parameters for various
amplitudes of a nonlinear ion sound.

� Problem 12.26 Derive the relation between the maximum electric potential of a
nonlinear ion sound and the velocity of its propagation.

As it follows from the problem symmetry, the maximum electric potential corre-
sponds to x = 0, where dϕ/dx = 0 and ϕ = ϕmax. Using the reduced variables
ζmax = eϕmax/Te and ηmax = Mu2/(2Te), we represent equation (12.52) in the form

1 − exp ζmax + 2ηmax

(
1 −

√
1 − ζmax

ηmax

)
= 0. (12.53)

Figure 12.7 shows the dependence ζmax(ηmax) in accordance with this equation.

Fig. 12.7 The dependence for the reduced maximum electric potential
of the ion sound soliton on the reduced maximum transversal energy.

Let us consider the limiting cases of equation (12.53). At small amplitudes of
the ion-acoustic wave, ζmax → 0, equation (12.52) gives ηmax = 1/2. From this we
find the phase velocity of the wave u = (Te/M)1/2 in accordance with the dispersion
relation (11.13) for ion sound of a small amplitude. At large wave amplitudes, taking
ζmax = ηmax, we transform equation (12.53) for ζmax to the form

1 − exp ζmax + 2ζmax = 0

The solution of this equation is ζmax = 1.26, which yields

eϕmax = 1.26Te, u = 1.58

√
Te
M

.
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For larger wave amplitudes the electric potential in the wave center becomes too
large, and ions are reflected from the crest of the wave. As a result, part of the
wave reverses and the wave separates into parts. Thus, a solitary ion-acoustic wave
exists only in a restricted range of wave amplitudes and velocities. Exceeding the
limiting amplitude leads to a wave splitting into bunches–separate waves. Thus
solitary waves exist in a restricted range of their parameters.
Introducing the reduced variables ζ = eϕ/Te, η = Mu2/(2Te) and the reduced

length ξ = x/rD, where rD =
√
4Noe2/Te is the Debye–Hückel radius for motionless

ions, we rewrite equation (12.52) in the form

1
2

(
dζ
dξ

)2

+

(
1 − eζ + 2η

(
1 −

√
1 − ζ

η

))
= 0 .

Figure 12.8 shows the spatial distribution of the soliton electric potential that is
obtained according to this equation at different values of its maximal value.

Fig. 12.8 The dependence on the reduced distance from the center of the
ion sound soliton for the reduced electric potential if eϕmax/Te = 0.715 that
corresponds to η = 1.

� Problem 12.27 Obtain the dispersion equation for nonlinear plasma oscillations
under the condition that the electric field strength due to plasma oscillations varies
weakly at distances of the order of the wavelength of oscillations.

The nature of solitons is such that an electric field occurs in a plasma as a result of
a wave process, and this field locks a plasma perturbation in a restricted region. We
considered above this phenomenon as a result of combination of the dispersion
and nonlinearity of waves of an acoustic type.We now consider anothermechanism
of this phenomenon when a wave creates a spatial well for a plasma, and due
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to this well the number density of a plasma increases in the well region. This
phenomenon also exists in the wave form and is typical for plasma oscillations.
Therefore, we consider below plasma oscillations as a solitary wave.
Introducing the electric field strength of the plasma oscillations E(x, t), we obtain

the energy densityW of the plasma with accounting for plasma oscillations

W(x) =
E2

8π
,

where the bar means a time average. Assuming the equality of electron and ion
temperatures Te = Ti = T , we obtain the pressure of a quasineutral plasma as
p = 2NeT . The plasma pressure is established with a sound velocity that is larger
than the velocity of propagation of long-wave oscillations. Then, because of the
uniformity of plasma pressure at all points of the plasma, we have

2N(x)T +W(x) = 2NoT ,

where No is the number density of charged particles at large distances where
plasma oscillations are absent; the plasma temperature is assumed to be constant
in space.

The dispersion relation for plasma oscillations (11.8) has the form

ω2 = ω2
p

(
1 − E2

16πNoT

)
+ γ

〈
v2x

〉
k2 ,

where we use the above relation between the average and current electron num-
ber density, and the plasma frequency ωp is taken in the absence of oscillations
according to formula (11.6).
Let us transform this relation, taking the electric field strength of the wave as E =

Eo cosωt, which gives E2 = E2o/2. Using v2x = T/me for electrons and inserting in
the above relation the Debye–Hückel radius rD, we reduce this dispersion relation
to the form in the isothermal case,

ω2 = ω2
p

(
1 − E2o

32πNoT
+ 2γr2Dk

2
)
. (12.54)

The first term on the right-hand side of this dispersion relation is significantly
larger than the other two.
Thus, nonlinear Langmuir oscillations can form a solitary wave–Langmuir soli-

ton. The dispersion relation (12.52) shows that if the energy density of plasma
oscillations is high enough, so that the second term of equation (12.52) is larger
than the third one, then the oscillations cannot exist far from the soliton. The os-
cillations create a potential well in the plasma and become enclosed in this well.
These oscillations propagate in the plasma together with the well and occupy a re-
stricted spatial region. The size of the potential well, i. e., the soliton size, decreases
with increase of the energy density of the plasma oscillations. Because rDk � 1, the
solitons are formed when the energy density of the oscillations is small compared
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to the specific thermal energy of charged particles of the plasma. Thus, this analy-
sis demonstrates the tendency of long-wave plasma oscillations to form solitons,
but the above analysis does not allow one to study the evolution of large-amplitude
oscillations.

� Problem 12.28 Show that the Lighthill criterion (12.46) is fulfilled for long-wave
plasma oscillations which are locked in a restricted plasma region.

For isothermal plasma oscillations the dispersion relation (12.54) for plasma oscil-
lations can be represented as

ω = ω(k) + αE2o ,

and for an isothermal plasma

ω(k) = ωp(1 + r2Dk
2), α = −ωp/(64πNoTe)

Since the group velocity of plasma oscillations is vg = ∂ω/∂k = 6Tek/me, we have

α
∂vg
∂k

= − 3ωp

32πmeNo
< 0 .

Thus, the Lighthill criterion (12.46) holds true for long-wave plasma oscillations,
and these waves can form a solitary wave.

� Problem 12.29 Show the instability of an electron drift wave for a nonmonotonic
dependence of the electron drift velocity on the electric field strength.

A drift wave is a perturbation of the electron number density that propagates to-
gether with the electron current. These waves damp due to diffusion (11.21). But in
the case of a nonmonotonic dependence of the electron drift velocity on the electric
field strength, as it is shown in Fig. 12.9, they can grow since drift waves related to
different electric fields can propagate with identical drift velocity. We prove this in
consideration the stage when these waves are weak that allows us to consider this
problem in the linear approximation.

Fig. 12.9 A non-monotonic dependence of the electron drift velocity on
the electric field strength that can lead to formation of a domain.
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For description of the drift wave, we use the continuity equation (6.15) and the
Poisson equation

∂Ne

∂t
+

∂je
∂x

= 0,
∂E
∂x

= 4πe(No − Ne), (12.55)

where No is the equilibrium number density of electrons. The electron flux je is
equal to

je = −New −D
∂Ne

∂x
,

i. e., the electron diffusion motion is taken into account along with the drift mo-
tion (D is the diffusion coefficient of electrons). We repeat the deduction of the
dispersion relation (11.21) by using the harmonic dependence on the coordinate
and time for perturbation parameters, but in addition we account for the term
Nodwo/dx · ∂E/∂x in the expression for ∂je/∂x. This leads to the dispersion rela-
tion

ω = −kw − iDk2 − i4πNoe
dw
dE

(12.56)

that coincides with equation (11.21) for monotonic dependence w(E). Then pertur-
bation of the electric field causes an additional damping of drift waves along with
the diffusion one. But if dw/dE < 0, long drift waves with Dk2 < i4πN0edw/dE
can develop. As a result, a stable structure, the electric domain, is formed and
propagates with an electric current.

� Problem 12.30 Analyze the decay of a plasma oscillation in a plasma oscillation
of a low frequency and ion sound.

Nonlinear phenomena are responsible for interaction between different modes of
oscillation. A possible consequence of this interaction is the decay of a wave into
two waves. Since the wave amplitude depends on time and spatial coordinates by
the harmonic dependency exp(ik · r − iωt), such a decay corresponds to fulfilling
the relations

ω0 = ω1 +ω2, k0 = k1 + k2 , (12.57)

where subscript 0 relates to the parameters of the initial wave, and subscripts 1
and 2 refer to the decay waves. This results from a parametric instability for which
the relations (12.57) are fulfilled. We consider below decay of a plasma oscillation
that decays into a plasma oscillation of a lower frequency and an ion-acoustic wave
(ion sound).
The electric field of the initial plasma oscillation is

E = E0 cos(k0x − ω0t) ,

where x is the direction of propagation. In zero approximation we assume the
electric field amplitude E0 and other wave parameters to be real values. The equa-
tion of motion for electrons medv0/dt = −eE yields the electron velocity v0 =
u0 cos(k0x − ω0t), where u0 = eE0/(meω0).
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Let another plasma wave and the ion sound wave be excited in the system si-
multaneously with the initial plasma oscillation, and let their amplitudes be small
compared to the amplitude of the initial oscillation. Consider the time develop-
ment of these waves taking into account their interaction with each other and with
the initial oscillation. Since ion velocities are much lower than electron velocities,
one can analyze these waves separately. The equation of motion and continuity
equation for ions are

M
dvi
dt

= eE,
∂N′

i
∂t

+ N0
∂vi
∂x

= 0 ,

where M is the ion mass, vi is the ion velocity, N0 is the equilibrium number den-
sity of ions, N′

i is the perturbation of the ion number density due to the oscillation,
and E is the electric field due to the oscillations. Elimination of the ion velocity
from these equations yields

∂2N′
i

∂t2
+
eN0

M
∂E
∂x

= 0. (12.58)

We can find the electric field strength E that acts on ions from the equation of
motion for the electrons by averaging over fast oscillations. The one-dimensional
Euler equation (6.19) for electrons can be rewritten as

∂ve
∂t

+ ve
∂ve
∂x

+
1

meN
∂pe
∂x

+
eE
me

= 0 ,

where the electron gas pressure pe is expressed through electron temperature Te
and number density N as pe = NTe. Taking the electron velocity as ve = v0 + v′

e,
where v′

e is the electron velocity due to the small-amplitude plasma wave. After
averaging over fast oscillations, when the first term in this equation becomes zero,
we transform this equation to the form

ve
∂ve
∂x

=
1
2

∂v2e
∂x

=
1
2

∂

∂x
(v0 + v′

e)2 =
∂

∂x

(
v0v′

e
)
,

where the bar denotes averaging over fast oscillations. We take the electron temper-
ature to be constant in a space. During the ion motion, the plasma quasineutrality
is supported due to fast electron motion. Hence, the deviation of the electron num-
ber density from the equilibrium one is the same as that for ions, and the third
term of the above Euler equation is

1
meN

∂pe
∂x

=
Te

meN0

∂N′
i

∂x
(N ≈ N0) .

The Euler equation after these operations is transformed into

∂

∂x

(
v0v′

e
)
+

Te
meN0

∂N′
i

∂x
+
eE
me

= 0 .
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Substituting the electric field from this equation into equation (12.58), we obtain

∂2N′
i

∂t2
− Te

M
∂2N′

i
∂x2

− meN0

M
∂2

∂x2
(
v0v′

e
)
= 0. (12.59)

If we ignore the last term in equation (12.59) and assume harmonic dependence of
the ion density on time and x, it gives the dispersion relation (11.13) for ion sound,
i. e., ω = csk, cs =

√
Te/M.

To take into account the interaction between ion sound and plasma oscillations,
it is necessary to analyze the motion of electrons in the field of the small-amplitude
plasma wave. For this purpose, we consider the Maxwell equation for the electric
field of the small amplitude wave E′, ignoring the magnetic field, which gives

∂E′/∂t + 4πj′ = 0 ,

where j′ is the electric current density under the wave action. For simplicity, we
shall ignore the thermal motion of the electrons, since it has only a small effect
on the oscillation frequency. Hence we ignore the variation of the electron num-
ber density due to the electron pressure of the plasma wave. Assume the electron
number density to be Ne +N′

i , where Ne includes the equilibrium electron number
density and its variation under the action of the initial plasma wave, and N′

i is the
variation of the ion number density owing to the motion of ions. Correspondingly,
the electron velocity is v0 + v′

e, where v0 is the electron velocity due to the initial
plasma wave, and v′

e is the electron velocity due to the small-amplitude plasma
wave. From this we obtain the current density due to the small-amplitude plasma
wave as

j′ = −e(Ne + N′
i )(v0 + v′

e) + eNev0 = −eNev′
e − eN′

i v0 ,

and we neglect the second-order terms. Then the Maxwell equation takes the form

∂E′

∂t
− 4πeN′

i v0 − 4πeNev′
e = 0 .

The motion equation for an electron has the form

me
dv′

e
dt

= −eE′ .

Eliminating E′ from these equations, we obtain the equation for the electron ve-
locity due to the small-amplitude plasma wave

∂2v′
e

∂t2
+ω2

pv′
e +

N′
i

Ne
ω2
pv0 = 0 . (12.60)

Here ωp is the frequency of plasma oscillations in neglecting a thermal motion
of electrons. One can see that if we ignore the interaction between the small-
amplitude plasma wave with the initial plasma oscillation and the ion-acoustic
wave, i. e., ignore the last term of equation (12.60), then the small-amplitude plasma
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wave frequency coincides with the plasma frequency in accordance with assump-
tions used.
For solution of the set of equations (12.59) and (12.60) we take the wave parame-

ters in the form

v0 = u0 cos(k0x − ω0t), ve = a cos(kex − ωet), N′
i = bN0 cos(kix − ωit) ,

where a and b are slowly varying oscillation amplitudes,ωe and ke are the frequency
and the wave number of the small-amplitude plasma wave, ωi and ki are the fre-
quency and the wave number of the ion sound, and N0 is the equilibrium number
density of the charged particles. [We assume that Ne = N0 in equation (12.60)].
Since the oscillation amplitudes vary slowly, the time and space dependences are
identical, so we find from equations (12.59) and (12.60) that

ω0 = ωe +ωi; k0 = ke + ki ,

in accordance with formulas (12.57). This condition is similar to that for parametric
resonance of coupled oscillators, and therefore the instability that we analyze is
termed a parametric instability.
Taking into account a slow variation of the oscillation amplitudes and condition

(12.57), we find from equations (12.59) and (12.60) the following set of equations
for the oscillation amplitudes:

∂a
∂t

=
ωeu0b
4

,
∂b
∂t

= −mekiu0a
4Mωi

.

From solution of these equations, a growth of oscillations corresponds to the de-
pendence a, b ∼ exp(δt) with

δ =
1
4

√
meωe

Mωi
u0ki =

1
4

√
meωe

Mωi

eE0
meω0

ki. (12.61)

Thus, the initial plasma wave is unstable. It can decay into a plasma wave of a
lower frequency and the ion sound. This instability is also known as the decay
instability. The exponential growth parameter for the new wave is proportional to
the amplitude of the decaying wave.

12.5
Plasma Structures

� Problem 12.31 A lightly ionized admixture is added to a buffer gas in which gas
discharge is burnt. Ions of gas discharge belong to the admixture, and the number
density of admixture ions Ni is small compared to the number density Na of ad-
mixture atoms. Ions are drifting to the cathode under the action of the discharge
electric field and transfer their momentum to atoms due to the resonant charge
exchange process. Estimate the dimension of a discharge tube L where admixture
atoms and ions are concentrated.
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This phenomenon, electrophoresis, corresponds to separation of a lightly ionized
and a buffer gas in gas discharge. As a result, a lightly ionized gas is concentrated
in a restricted discharge region, and discharge glowing due to radiation of the
admixture excited atoms is observed in this discharge region only. In considering
this phenomenon, we assume atoms and ions of an admixture to be a unit system
located in a region of a dimension L. It is valid if a typical time of transformation
of a test atom into an ion as a result of the resonant charge exchange process
(Niσresva)−1 is small compared to a typical diffusion time of atom diffusion L2/Da

through this region, i. e.,

Niσresv �
Da

L2
.

Here σres is the cross section of resonant charge exchange in collisions of admixture
ions and atoms, v is a typical velocity of admixture atoms or ions,Da is the diffusion
coefficient of admixture atoms in buffer gas.

Under the above conditions, we have the following balance equation:

−Da
dNa

dx
+wiNi = 0 ,

that means that the diffusion transport of atoms in the direction of the discharge
direction x is compensated by ion drift, where wi is the ion drift velocity under the
action of the discharge electric field. Assuming the discharge electric field strength
E to be relatively small, we use the Einstein relation for the ion drift velocity

wi =
eEDi

T
,

where T is the temperature of atoms and ions and Di is the diffusion coefficient
of ions in a buffer gas. Assuming Di ∼ Da, we estimate a dimension L of a region
where admixture atoms and ions are located

L =
(
d lnNa
dx

)−1

∼ T
eEci

wi =
eEDi

T
, (12.62)

where ci = Ni/Na is the concentration of admixture ions. We assume this value
L to be less than the tube length. One can see that electrophoresis influences the
parameters of a gas discharge.

� Problem 12.32 Determine the electric field distribution along the discharge tube
in the discharge positive under electrophoresis condition. Estimate a typical time
of the electrophoresis establishment after switching on the discharge.

In considering the electrophoresis in a long discharge tube, we assume a plasma
is formed in each cross section due to ionization processes in electron–atom col-
lisions, and electrons obtain energy from the discharge electric field. Therefore in
the region, where admixture atoms are located, this field is less than that in the
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region occupied by buffer gas atoms, since ionization of admixture atoms proceeds
at less electron energies.
For electrophoresis establishment after switching on the discharge it is necessary

to transport admixture atoms to the corresponding region that proceeds under the
action of ions which transfer the momentum to admixture atoms. Hence, a typical
time for electrophoresis establishment is estimated as

τ ∼ L
ciwi

,

where a dimension with admixture atoms is determined by formula (12.62).

� Problem 12.33 Analyze the properties of a nonlinear electric domain–a plasma
structure that propagates with the drift velocity of electrons in a plasma.

A nonlinear electric domain refers to a unstable range of the electric field strengths
of Fig. 12.9. It is described, as earlier, by set (12.55) of equations, and nonperturbed
electric current density is

jo = −Now(E2) = −New(E) −D
∂Ne

∂x

in notations of Fig. 12.9. Combining this equation with the Poisson equation (12.55)
and eliminating the electron number density from these equations, we obtain the
distribution of the electric field strength in the electric domain as

D
d2E
dx2

= w(E)
dE
dx

− 4πeN0 [w(E) − w(E2)] .

Considering diffusion to be of importance on the periphery of this structure and
neglecting diffusion for its main part, we reduce this equation to the form

dE
dx

= 4πeN0

[
w(E2)
w(E)

− 1
]
. (12.63)

Figure 12.10a contains the solution of this equation with the boundary condition
E = E2 at x = 0, and Fig. 12.10b shows the corresponding distribution of the
electron number density in the electric domain. From this it follows that E(x)
increases with x until E2 < E < E3, and w(E3) = w(E2). At E = E3 we have
dE/dx = 0, and for subsequent values of x we obtain E = E3. Thus, this solution
describes the conversion of the system from the unstable state E2 to the stable state
with E = E3.
This transition means that the change of the discharge regime as a result of the

perturbation of the electric field strength increases up to E3. This would require a
variation of the discharge voltage that is impossible, because the discharge voltage
is maintained by the external voltage. Therefore, the variation of the electric field
strength from E2 to E3 is a perturbation that takes place in a limited region of the
plasma. A return to the initial value of the field occurs as a result of diffusion,
leading to decay of the perturbation. Hence, a typical size of the back boundary
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Fig. 12.10 The distribution of the electric field (a) and the electron
number density (b) in the electric domain.

zone of the electric domain is of the order of D/w. The forward boundary zone
size can be estimated from equation (12.63), and is ∆x = ∆E/(4πeNo∆w), where
∆E = E3 − E2, and ∆w = w(E2)− wmin according to Fig. 12.9. A concomitant of the
distribution of the electric field strength in the electric domain is the distribution of
the electron number density shown in Fig. 12.10, arising from Poisson’s equation
(12.55).

� Problem 12.34 Analyze the conditions of striation formation in a long discharge
tube at small number densities of electrons and ions.

Striations or strates are ionization waves which can exist within a certain range of
parameters of nonlinear processes involving electrons and transport phenomena.
In the Tsendin model, under consideration, we consider the mechanism of forma-
tion of ionization waves that can be realized in a dense gas and proceeds through
associative ionization involving excited atoms. Electrons with energy exceeded the
atom excitation energy εex excite atoms and then these atoms form molecular ions
in collisions with atoms in the ground state. Because electrons take energy from
the discharge electric field of strength E, ionization processes proceed at a distance
l from a previous ionization event that satisfies the relation

∫ l

0
eE(x)dx = εex .

Here we assume that excitation takes place near the threshold, and the processes
takes place in a narrow long discharge tube.
Let us introduce the ionization probability for an excited atom in collisions with

ground state atoms to be ξ , i. e., the probability of its quenching is 1 − ξ , and 0 <

ξ < 1. In addition, we introduce the lifetime τ for electrons and ions with respect
to their attachment to walls. In the absence of ionization, the balance equation for
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the electron number density Ne is

we
dNe

dx
− Ne

τ
= 0 ,

where x is directed along the gas discharge tube, andwe is the electron drift velocity.
This balance equation has the following solution:

Ne(x) = N0 exp
(

−
∫ x

0

dy
weτ

)
.

Within the framework of the Tsendin model, we assume that all the electrons have
zero energy at the origin x = 0. When these electrons acquired the energy εex
it excites an atom, and this atom is then ionized in subsequent collisions with
atoms. As a result, (1 + ξ) slow electrons are formed at this point instead of one
fast electron. Therefore, if the first ionization process takes place at x = l, we have
the balance of attachment and ionization processes as

∫ l

0

dx
weτ

= ln(1 + ξ) .

This leads to a periodic function Ne(x) with a period l, and Fig. 12.11 gives the
distributions of the electron number density and the electric field strength along
the x in this case. The electric field strength E(x) is a periodic function also. Indeed,

Fig. 12.11 Distributions of the number density of electrons (a) and the
electric field strength (b) along a gas-discharge tube of a small radius
under formation of striations.
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the electric field strength E(x) satisfies the Poisson equation

dE
dx

= 4πe(Ni − Ne) ,

and a plasma is quasineutral on the average, i. e.,

l∫
0

Nidx =
l∫

0

Nedx .

Hence, from the Poisson equation it follows E(0) = E(l), and the period of the
function E(x) is l.
Under these conditions, we neglect energy exchange between electrons and

atoms in elastic collisions, as well as that in electron–electron collisions, i. e.,
the electron number density is small. Hence, the number density of electrons is
relatively small. If the number of ionization events per period of the striation is ν,
the total number of electrons and ions in one striation band is ντ. However, ions
are concentrated in an ionization zone near the point where they formed, whereas
electrons formed in this ionization zone are distributed over a region of several
striations.

� Problem 12.35 Show the stability of the Tsendin model for a periodic distribution
of the electron number density and electric field under conditions of validity of this
model.

In analyzing the reality of the Tsendinmodel, we note that it relates to atomic gases.
Then the energy exchange in electron–atom elastic collisions is small because of
the small parameter me/M, where me is the electron mass and M is the atom
mass. As a result, electrons expand the energy obtained from the electric field
on excitation of atoms mostly. Assuming that the ionization event proceeds when
electrons reach the energy εex, we obtain a jump in the electron number density
and electric field strength which occurs over the distance l = εex/

(
eE

)
from the

origin (E is the average electric field strength). Correspondingly, a strong glow
occurs near this point due to excitation of atoms by electron impact. In fact, the
excitation cross section is zero at threshold, so that excitation proceeds in some
region in space, where the electron energy leads to effective atomic excitation. But
if the width of the excitation region increases with its population of electrons, the
periodic structure of the plasma is destroyed. We analyze below this effect.
Let us construct the sequence of events when an electron that has zero energy at

the origin excites an atom within a distance l + δl1 from the origin, where it has the
energy εex + eEδl1 . After excitation of k atoms this electron has traveled a distance
kl +∑k

i=1 δli, where δli is the distance required for the i-th excitation beyond l, and
εk is the electron energy after the k-th excitation. Taking this energy to be zero, we
obtain the relation

k

∑
i=1

δli = 0 .
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From this it follows that the distance required for k excitations by any electron
approaches kl, which infers the bunching of electrons. This effect supports a peri-
odical distribution structure for the electron and ion number densities, as well as
for the electric field strength.
Evidently, accounting for the real behavior of this plasma leads to the broadening

of ionization zones. In particular, within the framework of the simplified Tsendin
model being used, we assume the spatial oscillation period l to be large compared
to the tube radius. Because the lifetime τ of electrons and ions is the time required
for ion drift over a distance of the order of the tube radius, the width of the ion-
ization zone exceeds this value. This means that the bunching effect refers to long
discharge tubes of small radius. Bunching of electrons takes place if each electron
excites many atoms during its lifetime. Note that there are different mechanisms
which can lead to the formation of striations, and we consider above one of these.
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13
Cluster Plasma

13.1
Equilibrium of Clusters in Vapor

� Problem 13.1 Find the equilibrium number density of clusters of a given size in
a vapor.

Growth and evaporation of clusters of a given size result from the processes of
atom attachment and cluster evaporation whose rates are given by formulas (2.39)
and (13.7). The kinetic equation for the size distribution function fn of clusters
according to formula (6.71), i. e., the number density of clusters consisting of n
atoms, has the form

∂ fn
∂t

= Nkn−1 fn−1 − Nkn fn − νn fn + νn+1 fn+1 . (13.1)

From this it follows that if an equilibrium between clusters of a given size is sup-
ported by the processes of atom attachment and cluster evaporation, we obtain the
size distribution function

fn+1νn+1 = fnNkn .

Using formulas (2.39) and (13.7) for the rates of these processes, we obtain

fn+1
fn

= S exp
(

εn+1 − εo
T

)
,

with the supersaturation degree S defined according to formula (6.72)

S =
Nsat(T)

N
. (13.2)

Within the framework of the liquid drop model for large clusters, we obtain the
total binding energy of cluster atoms En

En = εon− An2/3, n � 1 , (13.3)
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where εo is the atom binding energy for a macroscopic system, and the second
term accounts for the cluster surface energy with the specific surface energy A.
This gives for the atom binding energy εn in a large cluster n � 1

εn =
dEn
dn

= εo − 2A
3n1/3

.

From this we obtain the ratio of the equilibrium size distribution functions for
clusters of neighboring sizes

fn+1
fn

= S exp
(

− 2A
3n1/3T

)
. (13.4)

From this equation it follows that for a supersaturated vapor S > 1 the size distri-
bution function of large clusters grows with an increase of a cluster size. Next, the
size distribution function of clusters as a function of their sizes is minimum at the
critical number of cluster atoms ncr, which is according to the above formula

ncr =
(

∆ε

T lnS

)3

(13.5)

� Problem 13.2 Show that an atomic vapor can be converted in clusters in full only
under nonequilibrium conditions.

According to formula (13.4), the number density of clusters as a function of their
size is minimum at the critical size of clusters. From this follows an important
conclusion. Clusters are an intermediate phase of matter between gaseous and
condensed phases. According to formula (13.4), the majority of atoms of a super-
saturated vapor S > 1 consisting of a gas and a condensed phase under thermo-
dynamic equilibrium are found in the condensed phase. On the other hand, in a
nonsaturated vapor S < 1 the majority of atoms are found in the gaseous phase.
This means that clusters include a small portion of the atoms of a system under
thermodynamic equilibrium. But transition from the gaseous to the condensed
phase in a space proceeds through the formation and growth of clusters. From
this one can conclude that a high portion of atoms in clusters corresponds to non-
equilibrium conditions. Hence, methods of generation of clusters are based on fast
nucleation of vapors or gases in a volume at the stage of absence of thermodynamic
equilibrium between clusters and a condensed phase.
For this reason, generators of clusters or small particles formed from a super-

saturated vapor are based on the expansion of a vapor in a region of low pressure.
In the course of expansion, the vapor temperature decreases and the vapor comes
to be supersaturated, which leads to the formation and growth of clusters or small
particles. But the time for the process is not sufficient for the transformation of
clusters in a condensed system, so that almost all the atoms of the incident vapor
belong to clusters at the end of the process.

� Problem 13.3 Determine a typical time of evaporation of metal clusters in a dense
buffer gas if this process is restricted by diffusionmotion of metal atoms in a buffer
gas.
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The concentration c of free metal atoms in a buffer gas is small. Because of
processes of evaporation and attachment of atoms to a cluster, the atom concentra-
tion varies near the cluster. Let us denote their concentration far from the cluster
by c∞. The flux of attached metal atoms to the cluster surface is given by,

j = −DN∇c ,

where D is the diffusion coefficient for metal atoms in a buffer gas and N is the
number density of buffer gas atoms. Since a number of atoms is conserved in a
volume, we have J = 4πR2 j = const, where R is a distance from the cluster. This is
the equation for the concentration of metal atoms c in a space

J = −4πR2D
dc
dR

,

and the solution of this equation is

c(R) = c∞

(
1 − r

R

)
,

where c∞ is the concentration of free metal atoms far from the cluster. Introducing
the rate Jev of atom evaporation and Jat of atom attachment to the cluster surface,
we obtain the total rate of atom attachment

J = Jat − Jev .

In the diffusion regime of attachment J � Jat

c(R) = c∞ +
J

4πDNR
. (13.6)

The total atom flux toward the cluster is

J = Jat − Jev = Jev
S− So
So

, (13.7)

where Jev is proportional to the attachment rate that is given by formula (13.7), S =
N/Nsat is the supersaturation degree, and So is the supersaturation degree when
the cluster radius is equal to the critical radius. In the case of a dense buffer gas we
have Jat ≈ Jev � J. Hence, near the cluster surface S = So, i. e., the number density
of metal atoms of the parent vapor decreases until the cluster radius becomes equal
to the critical radius. Then the concentration of free atoms of the parent gas at a
distance R from the particle center is c(R) = c∞ + (c∗ − c∞)r/R, where r is a cluster
radius, and the rate of cluster evaporation is given by

Jev = 4πDNr(c∗ − c∞) .

Here c∗ is the concentration of metal atoms in a buffer gas if the cluster radius is
equal to the critical one at which the fluxes of atom evaporation and atom attach-
ment are equal. Assuming c∗ � c∞, we obtain the balance equation for cluster
evaporation

dn
dt

=
4πr2ρ

m
· dr
dt

= 4πrDNsat(T) exp
(
2γm
ρTr

)
.
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Taking r � 2γm/(ρT), we obtain an evaporation time,

τev =
r2ρ

2mDNsat(T)
. (13.8)

� Problem 13.4 Give the criterion for the diffusion and kinetic regimes of cluster
equilibrium if the cluster is located in a buffer gas and the equilibrium results
from processes of attachment and evaporation of cluster atoms.

In the diffusion regime of cluster equilibrium in a buffer gas, the mean free path
of metal atoms is small compared to a cluster radius, while in the kinetic regime
the inverse relation between these parameters is fulfilled. It is easy to characterize
the competition of these regimes by the parameter

α =

√
T

2πm
ξr
D
, (13.9)

where T is the temperature, m is the mass of a metal atom, D is the diffusion
coefficient of metal atoms in a buffer gas, and ξ is the probability of attachment as
a result of atom contact with the cluster surface.

From relation (13.6), we obtain the atom concentration co near the cluster surface,

co = c∞ + α(c∗ − co) ,

and the parameter α given by formula (13.9), characterizes competition between
the kinetic and diffusion regimes of cluster growth.
We have the following relation between the concentration of metal atoms at the

cluster surface:

co =
c∞ + αc∗
1 + α

,

where their concentration is c∞ far from the cluster surface and the criterion of
the diffusion regime of evaporation corresponds to c∞ � co. Under the condition
c∞ � c∗, this corresponds to

α =

√
T

2πm
ξr
D

� 1 .

This criterion corresponds to the diffusion character of cluster evaporation if the
cluster radius is large compared to the mean free path λ of free parent atoms in the

buffer gas. Using the estimation for the diffusion coefficient of atoms D ∼ λ
√

T
m ,

we get α ∼ ξr/λ. Hence, the diffusion regime of cluster growth and evaporation
(α � 1) takes place for large clusters

r �
λ

ξ
.
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� Problem 13.5 Determine a typical time of cluster evaporation in a buffer gas for
the diffusion regime of the process at a given number density of buffer gas atoms.

In the diffusion regime, the concentration of atoms of a parent gas near the cluster
surface is c∗ and it exceeds that far from the cluster surface c∗ � c∞. Formula (13.8)
is valid if c∗ ≤ 1. The above formulamust be change if the number density of buffer
gas atoms is less than that for metal atoms near the cluster of the critical radius.
Taking near the cluster surface the concentration of metal atoms to be co = 1, one
can transform formula for an evaporation time to the form

τev =
r2ρ

2mDN
,

where N is the number density of buffer gas atoms.

� Problem 13.6 For the diffusion regime of atom attachment to the cluster surface,
find a typical time of cluster growth on a nucleus of condensation in a buffer gas.

In the diffusion regime of growth of metallic clusters in a buffer gas and a parent
metal vapor, the concentration of metal atoms at a distance R from the cluster
surface is equal to

c(R) = c∞

(
1 − r

R

)
.

From this it follows the flux of attaching atoms toward the cluster surface is

Jat = 4πr2DN |∇c| = 4πrDNc∞ .

Next, the balance equation for the number n of cluster atoms dn/dt = Jat gives the
law of evolution of the cluster radius

r =

√
mDNc∞t

2ρ
.

13.2
Kinetics of Cluster Growth in Plasma

� Problem 13.7 Growth of metallic clusters in a plasma where an atomic metal va-
por is an admixture to a buffer gas, results from the formation of metallic diatomic
molecules in three-body collisions and later these diatomic molecules are the nu-
clei of condensation. Under the assumption that the number density of metallic
atoms remains constant until all the free atoms are transformed in bound atoms
of clusters, find a time of this process and the cluster size in the end.

Growth of metallic clusters which are formed from atoms in a dense buffer gas
proceeds according to the scheme

2M + A → M2 + A, Mn +M ←→ Mn+1 . (13.10)
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Here M and A are the metallic atom and atom of a buffer gas, respectively, and n is
the cluster size–the number of cluster atoms. The rate constant of the pair attach-
ment process kn = kon3/2 is given by formula (2.39), if the cluster is modelled by
the liquid drop model. Because the first stage of this process has a three-body char-
acter, formation of a diatomic metallic molecule is a slow process. Subsequently
forming diatomic molecules become the nuclei of condensation and are converted
fast in large clusters as a result of attachment of free metallic atoms in pair colli-
sion processes. From this it follows that at the end of the nucleation process, when
initially free atoms are converted into bound ones, the final clusters are large.

This character of cluster growth is governed by a large parameter

G =
ko
NaK

� 1 . (13.11)

Here Na is the number density of buffer gas atoms, K is the rate constant of for-
mation of a diatomic molecule in three-body collisions, and its typical value in this
case is K ∼ 10−32 cm6/s, whereas a typical rate constant of the attachment process
is ko ∼ 3 · 10−11 cm3/s for metallic atoms in a buffer gas. Hence, the considering
character of cluster growth (G � 1) takes place if Na � 3 · 1021 cm−3, i. e., this
character of cluster growth is realized in a not dense buffer gas.
The scheme of processes (13.11) leads to the following set of balance equations for

the number density N of free metallic atoms, the number density Ncl of clusters,
the number density of bound atoms Nb in clusters, and cluster size n (a number
of cluster atoms) :

dNb
dt

= −dN
dt

=
∫

Nkon2/3 fndn +KN2Na,
dNcl
dt

= KN2Na , (13.12)

where fn is the size distribution function of clusters that satisfies the normalization
conditions

Ncl =
∫

fndn, Nb =
∫
n fndn .

The set (13.12) of balance equations describes the character of cluster growth for
conditions under consideration. One can see that the ratio of the second and third
terms of the right-hand side of the first balance equation (13.12) is of the order
Gn2/3, where n is a current cluster size n, and since G � 1, n � 1, one can neglect
the third term in the first balance equation. In addition, we here assume that a
typical cluster size n is large compared to the critical cluster size that allows us to
neglect the processes of cluster evaporation in the set of balance equations (13.12).
We solve below this set of balance equations where we ignore cluster evaporation

processes and for simplicity we assume in these equations N = const, until Nb
reaches the value N. Then relation

Nb(τ) = N

gives the time τ of the nucleation process.



13.2 Kinetics of Cluster Growth in Plasma 427

In determining the size distribution function fn of clusters, we note that a size
n(t) of the cluster satisfies the equation

dn
dt

= kon2/3N ,

if a diatomic molecule, a condensation nuclei for this cluster, is formed at t = 0.
From this, it follows that a size of this cluster at time t is

n =
(
Nkot
3

)3

. (13.13)

We have fndn, the number density of clusters with a size range between n and
n + dn is proportional to the time range dt, when diatomic molecules are formed
which are nuclei of condensation. This corresponds to fndn ∼ dt, which leads to
the following size distribution function of clusters:

fn =
C
n2/3

n < nmax , (13.14)

where C is the normalization constant, nmax is the maximum cluster size at this
time and fn = 0, if n > nmax. This formulamay be obtained directly from the kinetic
equation for the distribution function fn if we neglect evaporation processes

∂ fn
∂t

= − ∂

∂n

(
Nkon2/3 fn

)
,

and hence this equation confirms formula (13.14).
Using this distribution function, we determine the cluster parameters at the

end of the nucleation process on the basis of the normalization condition and the
cluster distribution function (13.14)

C =
4N

3n4/3max
, Ncl = 3Cn

1/3
max =

4N
nmax

, n =
nmax

4
,

where n is the average cluster size, and according to formula (13.13) we obtain
the maximum cluster size at the end of the nucleation process introducing the
parameter ξ = Nkoτ

nmax(τ) =
(
Nkoτ

3

)3

=
(

ξ

3

)3

.

Integrating the balance equations (13.12) over time of nucleation and neglecting
the second term in the right-hand side of the second equation, we obtain

Ncl = KN2Naτ = N
ξ

G
, Nb(τ) =

∫
NkoCnmaxdt =

1
4
ξCnmax = N .

This gives,

nmax =
4G
ξ
, ξ = 3

(
4
3
G

)1/4

= 3.2G1/4 ,
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and because G � 1, the reduced nucleation time is large. This also leads to large
cluster sizes at the end of the nucleation process. Finally, we obtain the cluster
parameters at the end of the nucleation process

nmax = 1.2G3/4, n = 0.31G3/4, Ncl = 3.2NG
−3/4, τ =

3.2NG1/4

Nko
. (13.15)

� Problem 13.8 Metal-containing molecules MXk (M is a metal atom and X is a
halogen atom) are injected in a plasma. Find the conditions when decomposition
of molecules leads to the formation of metal clusters.

The chemical equilibrium for metal-containing molecules MXk in a buffer gas is
described by the scheme

MXk ←→ M + kX . (13.16)

Denote the binding energy per halogen atom by εX , so that the total binding energy
of atoms in the compound MXk is kεX . In addition, the equilibrium for metal
clusters has the form

Mn +M ←→ Mn+1 . (13.17)

Introducing the binding energy per atom for a bulkmetal εM, we have the following
rough criterion of existence of the above chemical compound at low temperatures:

εM < kεX .

From the chemical equilibrium (13.16) for the component MXk one can estimate
a typical temperature T1 when this compound is decomposed in atoms, and from
the chemical equilibrium of clusters (13.17) a typical temperature T2 follows when
clusters are transformed in atoms

T1 =
εX

ln No
[X ]

, T2 =
εM

ln No
[M]

Here [X ] denotes the total number density of free and bound halogen atoms, No
is a typical atomic value, and [M] is the total number density of free and bound
metallic atoms. Evidently, clusters are formed form metal-containing molecules
and exist in the temperature range

T1 < T < T2 . (13.18)

One can determine the temperature of destruction of clusters T2 more precisely
on the basis of the saturation number density Nsat from the formula

[M] ∼ Nsat(T2) .

Evidently, if [X ] ∼ [M], the possibility of existence of clusters corresponds to the
criterion

εX < εM .
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� Problem 13.9 Assuming the binding energies of bondsMXk −X for different radi-
cals to be identical, analyze the kinetics of radical formation whenmetal-containing
molecules MX6 are injected in a hot dense plasma and metal clusters are produced
after decomposition of these molecules.

In the course of decay, a metal-containingmoleculeMXk is transformed into atoms
and radicals, and then metal atoms are converted into metal clusters, whereas halo-
gen atoms and molecule leave a region where metal-containing moleculesMX6 are
located at the beginning (we assume a dimension of this region to be small in com-
parison with the plasma dimension). Assuming the identical binding energies εX
for each bondMXk −X (k = 1÷ 5), we use the following rates of decay of molecules
and radicals in collisions with buffer gas atoms:

νd = Nakgas exp
(
− εX

T

)
. (13.19)

Here Na is the number density of buffer gas atoms, T is a current temperature of
buffer gas atoms, kgas is the gas-kinetic rate constant for collisions of molecules and
radicals with atoms of a buffer gas, and we assume the rate νd to be independent
of the number of halogen atoms k in the molecule or radicals. On the basis of this
model, below we analyze kinetics of destruction of metal-containing molecules in
a hot buffer gas.
Under the above conditions, the set of balance equations for the radical concen-

trations ck, if a radical contains k atoms, has the form

dc0
dt

= νdc1 ,
dck
dt

= −νd(ck − ck+1), k = 1 ÷ 5;
dc6
dt

= −νdc6 . (13.20)

From the beginning, the system consists of molecules that corresponds to the fol-
lowing boundary conditions

c6(0) = cM; ck = 0, k �= 6 ,

where cM is the total concentration of free and boundmetallic atoms, and we ignore
here transport processes.
This set of balance equations with given boundary conditions may be solved

analytically, and the solution is

ck = cM
x6−k

(6− k)!
e−x , c0 = cM [1 − f (x)] ; f (x) = e−x

5

∑
k=0

xk

k!
, (13.21)

where k = 1 ÷ 6, x =
t∫
0

νddt, f (x) is a part of molecules and radicals, i. e., 1 − f (x)

is a part of free metallic atoms. Figure 13.1 shows the dependence f (x).

� Problem 13.10 Metal-containing molecules MX6 injected in a hot buffer gas
plasma. Find cooling of a buffer gas as a result of transformation of metal-
containing molecules in metal clusters.
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Fig. 13.1 The function f (x) in accordance with formula (13.21).

Assuming a prompt cooling of a buffer gas after decomposition of molecules and
radicals, we obtain from the set of balance equations (13.20) and their solution
(13.21) the following heat balance equation in the course of molecule destruction

dT
dt

= δT
5

∑
k=0

(
dck+1
dt

− dck
dt

)
= δT

(
dc6
dt

− dc0
dt

)
= −νdcMδT f (x) ,

where δT is the cooling temperature for a buffer gas per metal-containingmolecule
and per broken bond. We also include in this parameter the heat release resulted
from conversion of metal atoms into clusters.
The solution of this set of equations gives the temperature of a buffer gas after

destruction of molecules and transformation of metal atoms into metal clusters

T = To − δT
5

∑
k=0

(6− k)ck = To − cMδTF(x) , (13.22)

where

F(x) = 6− e−x
(

x5

120
+
x4

12
+
x3

2
+ 2x2 + 5x + 6

)
. (13.23)

Here the function F(x) given in Fig. 13.2 is a number of broken bonds per mole-
cule, To = T(0) is the initial temperature, and the total temperature of the buffer
gas cooling is

To − T(∞) = 6cMδT

This formula is based on assumption that a buffer gas has enough high heat ca-
pacity, that is valid at low concentrations of metal-containing molecules.
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Fig. 13.2 The function F(x) defined by formula (13.23).

� Problem 13.11 Metal-containing molecules MX6 injected in a flow of a hot dense
plasma, are located in the beginning in a cylinder region of a radius ρo. Analyze
the thermal regime of transformation of metal-containing molecules into clusters
if heat release is determined by thermal conductivity of a buffer gas.

Since the binding energy of metal-containing molecules εX is large in comparison
with a thermal energy∼ T , the process of molecule destruction acts strongly on the
heat balance of a buffer gas with a metal admixture in spite of a small concentration
of metal-containing molecules in a buffer gas. On the basis of equation (13.22), the
heat balance equation considering thermal conductivity of a buffer gas is

∂T
∂t

= χ∆T − −νdcMδT f (x) ,

where χ is the thermal diffusivity coefficient of a buffer gas, and we ignore diffusion
of molecules and radicals outside this region.
In considering this equation in the case, when metal-containing molecules oc-

cupy a cylindrical region in a plasma of a radius ρo, we reduce this equation, to a
quasi-stationary regime. Let the buffer gas temperature be To in the region ρ ≥ ρo,
and be T∗ at the center. Then this equation is reduced to the form

To − T∗
τeq

= νdcMδT f (x), τeq =
0.17ρ2o

χ
, (13.24)

where τeq is a typical time of equilibrium establishment.
Another typical time of this process is the total time of destruction of metal-

containing molecules that is equal to

τo =
6

νd(T∗)
=

6

Nakgas exp
(

− εX
To

) .
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Since we consider the quasi-stationary regime of destruction of metal-containing
molecules and heat transport, the following criterion must be fulfilled:

τeq � τo .

Table 13.1 is a demonstration of the above results and gives both the parameters of
compounds of somemetal-containing molecules (ρ is the density at room tempera-
ture, Tm,Tb are the melting and boiling temperatures, respectively) and parameters
of kinetics of destruction of these molecules in hot argon. We there represent an
initial stage of molecule destruction x = 0, and take the optimal buffer gas temper-
ature far from the destruction region such that Nm/Nsat(T∗) ≈ 10 for MoF6, WF6,
and Nm/Nsat(T∗) ≈ 1000 for IrF6, WCl6. We assume metal-containing molecules
to be located in a cylinder of radius ρo = 1 mm, the argon pressure is p = 1 atm, and
the concentration of metal-containing molecules is cM = 10% with respect to argon
atoms. In addition, we take gas-kinetic cross section to be σgas = 3 · 10−15 cm2 and
use this value in the rate constant of destruction of metal-containing molecules
and their radicals in collisions with argon atoms.

Table 13.1 Parameters of evolution of metal-containing molecules in hot
argon (p = 1 atm, cM = 10%, ρo = 1 mm).

Compound MoF6 IrF6 WF6 WCl6

ρ(g/cm3) 2.6 6.0 3.4 3.5
Tm K 290 317 276 548
Tb K 310 326 291 620
εX (eV) 4.3 2.5 4.9 3.6
εM (eV) 6.3 6.5 8.4 8.4
T1 (K) 2200 1200 2500 1700
T2 (K) 4100 4000 5200 5200
δT(103 K) 12 3.7 13 4.8
To (K) 3700 6000 5000 5800
T∗ (K) 3600 2900 4600 4200
τeq (10−5 s) 12 17 8 9
τo (10−3 s) 5 0.1 1 0.1
Nm (1017 cm−3) 2.0 2.5 1.6 1.8

Thus, the heat balance of a mixture consisting of a dense hot buffer gas and
metal-containing molecules, includes heat absorption due to destruction of metal-
containing molecules and heat release as a result of joining of metal atoms in
clusters which are compensated by heat transport from surrounding regions.

� Problem 13.12 Analyze nucleation in a hot buffer gas with metal-containing mol-
ecules within the framework of a model where the rate of formation of free metal
atoms Q is approximated by an appropriated dependence.

If criterion (13.18) is fulfilled, thermodynamic equilibrium of a buffer gas with an
admixture of metal-containing molecules corresponds to destruction of molecules
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and formation of a condensed metal. This leads to the following scheme of basic
processes:

MXk → M + kX , M +Mn → Mn+1 . (13.25)

Note that in contrast to nucleation in a pure metal vapor that proceeds accord-
ing to the scheme (13.10), one can ignore now slow three-body processes, and the
first stage of cluster growth processes due to formation of diatomic molecules pro-
ceeds as

MX +M → M2 + X .

Hence, in this case a buffer gas does not account in the nucleation process, so that
the nucleation rate does not depend on the number density of buffer gas atoms.
But a buffer gas determines destruction of metal-containing molecules and their
radicals, so that the specific rate of formation of free metal atoms as a result of
molecule destruction is Q = Naνd = NaNbkd, where Na is the number density
of buffer gas atoms, Nb is the number density of bound atoms at the end of the
destruction process, and the rate νd of this process is given by formula (13.19).
Note that the nucleation process proceeds in a restricted space region where

metal-containing molecules are located from the beginning. Free halogen atoms
and molecules go out the cluster region, whereas clusters remain in this region
because of a low mobility. Thus, we neglect the role of halogen atoms in cluster
growth, and though the nucleation process is considered in a uniform system, for
other processes it is not uniform.
Under the above conditions, we obtain the following balance equations for the

number density of free metallic atoms N, the number density of clusters Ncl and
a typical cluster size n (a number of cluster atoms)

dN
dt

= Q − NclknN,
dNcl

dt
= kchN

2,
dn
dt

= knN . (13.26)

Here kn = kon2/3 is the rate constant of atom attachment to a cluster, kch is the
rate constant of the process of formation of a metal diatomic molecule M2. We
consider a diatomic metal molecule that is transformed later in a growing cluster
as a nucleus of condensation, and attachment of atoms to it takes place in pair
collisions as well for larger molecules and clusters.
The analysis of this set of balance equations shows that the cluster number den-

sity Ncl and cluster size n grow in time, while the number density of free atoms
N grows on the first stage of the cluster growth process and drops on its second
stage. Roughly, one can divide the time in three ranges, as it is shown in Fig. 13.3,
so that at t ≤ τmax the number density of free atoms grows, and at a time τ ∼ 1/νd
metal-containing molecules are destructed.
In the second stage of the nucleation process (τ > t > τmax), we have

Q = NaNbkd ∼ Ncl
dn
dt

∼ kchN
2n ,
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Fig. 13.3 Time dependence for the number density of free metal atoms
in the course of formation of metal clusters from metal-containing
molecules in a buffer gas.

and assuming kd ∼ kch, we obtain in the second stage of the nucleation process

N ∼
√

NaNb

n
. (13.27)

Note that from the first equation of set (13.26) the maximum N is attained at time

τmax ∼ N
Q

∼ N
NaNbkd

,

and since a typical time of decay of metal-containing molecules is

τ ∼ 1
Nbkd

,

this gives

τ � τmax .

This means that the time dependence for the number density of free atoms N
has the form of Fig. 13.3, and the maximum of this value is achieved before total
destruction of metal-containing molecules.
In addition, we have from the last equation of set (13.26) and relation (13.27) for

the number density of free atoms the following estimate for the cluster size n in
the end of the nucleation process

n ∼ (koNτ)3 ∼ (koτ)3
(
NaNb

n

)3/2

,

which gives

n ∼ (koτ)6/5(NaNb)3/5 ∼
(
ko
kd

)6/5 (
Na

Nb

)3/5

,

and each factor of this product is large.
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In the same manner, using the above formulas for τmax and formula (13.27) for
the number density of free metal atoms at this time, we obtain the cluster size at
this time

n ∼
(

ko
nkd

)3

,

which gives

n ∼
(
ko
kd

)3/4

� 1 ,

and since ko � kd, we deal with large clusters on this stage of the nucleation
process. Thus, the cluster growth process through decomposition of metal-
containing molecules in a buffer gas proceeds mostly at large cluster sizes.

� Problem 13.13 Within the framework of the liquid drop model for clusters derive
the kinetic equation for evolution of the size distribution function of clusters as a
result of cluster coagulation.

Coagulation is one of themechanisms of cluster growth (see Fig. 13.4) that proceeds
according to the scheme,

Mn−m +Mm → Mn . (13.28)

Fig. 13.4 Mechanisms of cluster growth: a) attachment of free atoms
to clusters; b) the coagulation process results in joining clusters at their
contact; c) the coalescence process that follows from cluster equilib-
rium with a parent vapor that is created by cluster evaporation and is
disappeared by atom attachment to clusters; as a result, small clusters
evaporate, large clusters grow, and the average cluster size increases.
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Because of this character of cluster growth, evolution of the size distribution func-
tion fn is described by the Smolukhowski equation

∂ fn
∂t

= − fn
∫
k(n,m) fmdm +

1
2

∫
k(n−m,m) fn−m fmdm . (13.29)

Here k(n−m,m) is the rate constant of process (13.29), the factor 1/2 considers the
collisions of clusters consisting of n−m and m atoms are present in the equation
twice, and the distribution function is normalized as

∫
fndn = Ncl, where Ncl is the

number density of clusters.

� Problem 13.14 Show that the total number density No of bound atoms is con-
served in during the coagulation process.

The total number density of bound atoms is No =
∞∫
0
n fndn. We obtain the equation

for this value, multiplying equation (13.29) by n and integrating over dn, which
gives

dNo

dt
= −

∫
nk(n,m) fndn fmdm +

1
2

∫
nk(n−m,m) fn−m fmdndm ,

and in the second integral n > m. Changing n−m by n in the right-hand side of
this relation, we obtain the terms to be mutually cancelled, and dNo/dt = 0, i. e.,
with the framework of the Smolukhowski equation, the total number density No
of bound atoms is conserved in this process.

� Problem 13.15 Find the time dependence of the average cluster size when it is
large compared to the mean free path of gaseous atoms and then the rate constant
of joining of two clusters is independent of the cluster size.

Taking the rate constant of two clusters joining kas to be independent of cluster
size, we reduce equation (13.29) to the form

∂ fn
∂t

= −kas fn

∞∫
0

fmdm +
1
2
kas

n∫
0

fn−m fmdm .

Multiplying this equation by n2 and integrating over dn, we obtain

d
dt

∞∫
0

n fndn = −kas

∞∫
0

n fndn
∞∫
0

fmdm +
1
2
kas

∞∫
0

ndn
n∫
0

fn−m fmdm = 0 .

This means that the total number density of bound atoms No =
∫ ∞
0 n fndn is

conserved during cluster growth. If we multiply the kinetic equation by n2 and
integrate over dn, we get

d
dt

∞∫
0

n2 fndn =
dn
dt

= −kas

∞∫
0

n2 fndn
∞∫
0

fmdm+
1
2
kas

∞∫
0

n2dn
n∫
0

fn−m fmdm =
1
2
kasNo ,
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where we define the average clusters size n as

n =

∞∫
0
n2 fndn

∞∫
0
n fndn

.

This gives for evolution of the average cluster size,

n =
1
2
kasNot , (13.30)

if in the beginning the average size is relatively small.

� Problem 13.16 Find the size distribution function of clusters during their coagu-
lation if a typical cluster size is large compared to the mean free path of gaseous
atoms, so that the rate constant of joining of two clusters does not depend on the
cluster size.

Let us introduce the concentration of clusters of a given size cn = fnNo, where No is
the total number density of bound atoms in clusters. The normalization condition
for the cluster concentration is ∑

n
ncn = 1, and the kinetic equation (13.29) in terms

of cluster concentrations has the form

∂cn
∂τ

= −cn

∞∫
0

cmdm +
1
2

n∫
0

cn−mcmdm (13.31)

where the reduced time is τ = Nokast. The solution of this equation is

cn =
4
n2

exp
(

−2n
n

)
. (13.32)

This expression satisfies the normalization condition
∫ ∞
0 ncndn = 1 and the average

cluster size n corresponds to formula (13.30). Indeed, substituting (13.32) in the
kinetic equation, we confirm formula (13.30) n = τ.

� Problem 13.17 Within the framework of the liquid drop model for association of
two clusters, determine the time dependence for the average cluster size if it is
small compared to the mean free path of gaseous atoms.

In this case the cross section of association of two clusters σas is similar to the
association of two liquid drops and is equal to

σas = πr21 +πr22 ,

where r1 , r2 are the radii of colliding clusters. Correspondingly, the rate constant
of association of two clusters k(n,m) of sizes n and m which within the framework
of the liquid drop model for clusters is given by

k(n,m) = ko(n1/3 +m1/3)2
√

n +m
nm

,
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where ko is given by formula (2.39). Multiplying the Smolukhowski equation
(13.29) by n2 and integrating over dn by using the normalization condition∫
n fndn = Nb, where (Nb is the number density of bound atoms in clusters), leads

to the following relation:

dn
dt

= koNbI n
1/6, I =

1
2

∞∫
0

∞∫
0

(x1/3 + y1/3)2
√

x + y
xy

exp(−x − y)dxdy = 3.5 ,

where we use the notations x = n, y = m. This gives

n = 3.6(Nbkot)1.2 . (13.33)

Because we use the assumption n � 1, these formulas are valid under the condition

koNbt � 1 .

� Problem 13.18 A buffer gas containing liquid clusters expands in a vacuum. Tak-
ing into account nucleation of small clusters (in comparison to the mean free path)
according to the scheme (13.28), determine the mean size of small clusters at the
end of the process. Assume the diffusion character of the motion of clusters in a
buffer gas, and take the typical size of clusters to be larger than the mean free path
of gaseous atoms.

Under these conditions, the normalization condition takes the form ∑
n
n fn =

No exp(−t/τex), where τex is the typical expansion time. Correspondingly, the ki-
netic equation (13.31) is transformed to the form :

∂cn
∂τ

= − cn
τex

− Nocn

∞∫
0

kn,mcmdm +
1
2
No

n∫
0

kn−m,mcn−mcmdm ,

where No is the initial total number density of bound atoms. According to this
equation, during expansion the rates of cluster collisions decrease, and at the end
of the process the buffer gas becomes so rare, that cluster collisions cease. This
gives the mean cluster size at the end of the process n ∼ Nokdifτex.
For a more accurate determination of the mean particle size at the end of the

expansion process let us multiply the above equation by n2 and integrate the result
over dn. Using the normalization condition ∑

n
ncn = exp(−t/τex), we obtain

dn
dt

= Nokon1/6Ie−t/τex ,

where the integral I is

I =
1
2

∞∫
0

∞∫
0

(x1/3 + y1/3)2
√

x + y
xy

exp(−x − y)dxdy = 3.5 .

The solution of the above equation in the limit t → ∞ is

n = 3.6 (Nokoτex)1.2 . (13.34)

This formula corresponds to formula (13.33).
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� Problem 13.19 Determine the number of released atoms resulting from joining
two large clusters because of heat release in this process.

Take the binding energy of a large cluster consisting of n atoms in accordance
with formula (13.3) E = εon− An2/3. Therefore, process (13.28) leads to the energy
release

∆E = A
[
m2/3 + (n−m)2/3 − n2/3

]
.

In particular, in the case m = n/2, when this function of m at a given n has a
maximum, this formula gives

∆Emax = 0.25An2/3 .

Thus, the released energy at cluster coagulation results from the surface cluster
energy, which is small compared to the total binding energy of the cluster atoms,
but can exceed the binding energy of one surface atom.
Release of this energy leads to an increase of the temperature of a forming cluster

compared to that of the joining clusters, which can cause the release of surface
atoms. Note that an excited cluster can emit only one atom, because evaporation of
molecules and fragments is characterized by a small probability. Hence, an excited
cluster resulting from the joining of two clusters can subsequently emit several
atoms, and we have amore complicated process compared to process (13.28), which
proceeds according to the scheme

Mn−m +Mm → Mn−q + qM . (13.35)

Let us find a number of released atoms under the assumption that in the end of
process (13.35) the temperature of a formed cluster is equal to the temperature of
colliding clusters. This means that the released energy is spent on the liberation
of atoms, so that the number of released atoms is given by

q = ∆E (dE/dn)−1 ,

where dE/dn is the binding energy of the surface atoms. In the case of a large
cluster we take dE/dn = εo − 2A/(3n1/3) ≈ εo, so that the maximum number
of released atoms as a result of the formation of a cluster containing n atoms is
given by

qmax = 0.25An2/3/εo

Thus, this effect of cluster heating resulting from joining of clusters can be re-
sponsible for the formation of free atoms in an expanding nucleating vapor, but
the number of released atoms is small compared to the number of atoms in a
formed cluster.
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13.3
Charging of Clusters

� Problem 13.20 Determine a current of positive ions of a plasma on the surface of
a small spherical cluster located in a weakly ionized gas if its radius greatly exceeds
the mean free path of atoms of a gas.

We consider that motion of ions is determined by their diffusion in a gas and that
they drift under the action of an electric field of a charged cluster. Then the number
density of ions equals zero on the cluster surface and tends to the equilibrium value
at large distances from the cluster. Taking the cluster charge to be Z, we obtain the
current I of positive ions toward the cluster at a distance R from it

I = 4πR2
(

−D+
dN
dR

+K+EN
)
e .

The first term corresponds to diffusion motion of ions, the second term corre-
sponds to their drift motion in a gas, N is the number density of ions, D+, K+
are the diffusion coefficient and the mobility of positive ions in a gas, and e is the
ion charge (for simplicity. We take the ion charge to be identical to the electron
charge e) and E = Ze/R2 is the electric field strength from a charged cluster. Using
the Einstein relationship (8.66) D+ = eK+/T , where T is the gaseous temperature,
we obtain the positive ion current on the cluster surface

I = −4πR2D+e
(
dN
dR

− Ze2N
TR2

)
.

Considering that ions do not recombine in space, we observe that the ion current
is of independent R. Then one can consider the above relation for the ion current
as an equation for the ion number density. Solving this equation with the boundary
condition N(r) = 0, we obtain

N(R) =
I

4πD+e

R∫
r

dR′

(R′)2
exp

(
Ze2

TR′ − Ze2

TR

)
=

IT
4πD+Ze3

[
exp

(
Ze2

Tr
− Ze2

TR

)
− 1

]

Let us assume that at large R the ion number density tends to the equilibrium
value in a plasma N+ far from the cluster. This leads to the following expression
for the ion current:

I+ =
4πD+N+Ze3

T
{
exp[Ze2/(Tr)] − 1

} . (13.36)

This is the Fuks formula.

� Problem 13.21 Analyze the limiting case of the Fuks formula (13.36) for the ion
current on the surface of a small neutral particle.

First, we consider the limit when the particle charge tends to zero. Then the Fuks
formula (13.36) is transformed into the Smoluchowski formula for the diffusion
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flux Jo of neutral particles on the surface of an absorbed sphere

Jo =
I+
e
= 4πD+N+r . (13.37)

This formula is valid if the cluster radius is large compared to the mean free path
of atoms that allows us to consider the diffusion character of atom motion near
the cluster surface.

� Problem 13.22 Analyze the limiting case of the Fuks formula (13.36) for the cur-
rent of negative ions on the surface of a positively charged cluster.

The Fuks formula (13.36) describes the positive ion current if the particle charge
has the same sign. In order to obtain the expression for negative ion current, it is
necessary to substitute in this formula Z → −Z, and the parameters of positive
ions must be replaced by the parameters of negative ions. Then we obtain the
negative ion current toward the cluster as

I− =
4πD−N−Ze3

T ·
[
1 − exp

(
−Ze2

Tr

)] . (13.38)

In the limit Ze2/(rT) � 1 this formula is transformed into the Langevin formula

I− =
4πZe3D−

T
= 4πZe2K− . (13.39)

Note that the relation between the flux of negatively charged ions on the cluster
surface J− and the current I− of ions are connected by the relation I− = eJ−.

� Problem 13.23 Generalize formula for the current of positive and negative ions
on the surface of positively charged spherical cluster.

Introducing the reduced variable x = |Z|e2/(rT), one can represent the Fuks for-
mula (13.36) in the form

I< =
{

eJox/(ex − 1), Ze2 > 0,
eJox/(1 − e−x), Ze2 < 0

, λ � r . (13.40)

Here Jo is the diffusion flux of neutral atomic particles on the surface of an ab-
sorbed sphere of radius r according to the Smoluchowski formula (13.37) Jo =
4πDNr, where N is the number density of atoms and D is its diffusion coefficient
of atoms in a gas. In the limiting case x � 1 this formula is transformed into the
Langevin formula (13.39).

� Problem 13.24 Determine the average charge of a spherical cluster located in a
quasineutral plasma if its radius is large in comparison to the mean free path of
gas atoms.
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In a quasineutral plasma N+ = N− the currents of positive and negative ions given
by formulas (13.36) and (13.38) are identical. This yields for the cluster equilibrium
charge.

Z =
rT
e2

ln
D+

D−
. (13.41)

From this it follows that the cluster has a positive charge if D+ > D−, i. e., positive
ions have a greater mobility than negative ones. Note that formula (13.41) is valid
under the condition

r �
e2

T
.

Under fulfilment of this criterion, an individual ion captured by the cluster does
not vary essentially the cluster electric potential. An additional criterion of validity
of the above expressions is r � λ. At room temperature, the first criterion gives
r > 0.06 µ, and according to the second criterion for atmospheric air we have
λ = 0.1 µ.

� Problem 13.25 Find a charge of a large spherical cluster located in a nonquasi-
neutral plasma if its radius is large compared to the mean free path of gas atoms.

Taking the number density of positive N+ and negative ions N− far from a charged
cluster to be different, we repeat derivation of previous problem for ion currents
and the average cluster charge Z. As a result, we obtain formula (13.41)

Z =
rT
e2

ln
D+N+

D−N−
. (13.42)

� Problem 13.26 Determine the average charge of a small spherical particle located
in a plasma of a glow gas discharge if the particle radius is large compared to the
mean free path of gas atoms.

A plasma of the positive column of a glow gas discharge includes electrons and
ions, so that the distribution function of electrons on velocities differs from the
Maxwell distribution. The Fuks formula (13.36), without using the Einstein relation
between themobility and diffusion coefficient of attached charged particles, has the
form for the current Ie of electrons on a small particle

Ie =
4πKeNeZe3

1 − exp[−Ze2/(Te f r)]
.

Here we introduce the effective electron temperature Tef as Tef = eDe/Ke instead of
the electron temperature Te, and Ke,De are the mobility and diffusion coefficient
of electrons in a gas. We take a cluster charge to be −Z, and use a typical electron
energy eDe/Ke to be large in comparison to a typical ion energy. Then according
to the Langevin formula (13.39) the ion current I+ on the cluster surface is

I+ = 4πZe2K+N+ ,
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where N+ is the number density of positive ions far from the cluster and r is the
cluster radius. Equalizing the fluxes of charged particles, taking into account the
plasma quasineutrality Ne = N+, we obtain the cluster charge

Z = −r
De

eKe
ln

Ke
K+

. (13.43)

According to this formula, we have Ze2/(rT) � 1, where T can corresponds to the
temperature of both electrons and ions.

� Problem 13.27 Determine the current of ions on the surface of a spherical cluster
if its radius is small compared to the mean free path of gas atoms.

For a neutral particle, the rate J of atom attachment to the cluster surface is

Jo =
1
4

v · 4πr2No =

√
T

2πm
· πr2No ,

where the average thermal velocity of atoms is v =
√
8T/(πm), so that T is the

gas temperature, m is the atom mass, No is the number density of atoms. If a
cluster charge is Ze, and the mean free path of atoms exceeds the parameter e2/T
(λ � e2/T), then collisions with atoms are not essential for the collision of ions
with the cluster. Because the distance of closest approach ro is connected with the
impact parameter of collision ρ by relation (2.15) 1 − ρ2/r2o = Ze2/(roε), where ε is
the collision energy in the center-of-mass system of axes, we have that the cross
section of ion collision with the cluster surface under these conditions is

σ = πr2
(
1 − Ze2

rε

)
. (13.44)

If Z > 0, i. e., the charges of the cluster and ions have the same sign, it is
necessary to consider that if ε ≤ Ze2/r, then the cross section equals to zero,
because in this case the potential energy of repulsion of the cluster and colliding
ion exceeds their kinetic energy near the cluster surface. From this it follows that
the rate constant of contact between a colliding ion and cluster after average over
the ion energies on the basis of the Maxwell ion distribution is

k = 〈vσ〉 = kr exp
(

−|Z| e2
rT

)
,

where r is the cluster radius and kr = πr2
√
8T/(πm). In the case of attraction of

the particle and ion, the mean rate constant of their collision is given by

σ = πr2
(
1 +

Ze2

rε

)
, k = kr

(
1 +

|Z| e2
rT

)
. (13.45)

Introducing the reduced parameter x = |Z| e2/(rT), we combine the above for-
mulas for the ion current to the cluster and obtain, assuming that each contact of
an ion with the cluster surface leads to its attachment,

I> = ekrNi ·
{

(1 + x), Ze2 < 0
exp(−x), Ze2 > 0

λ � r . (13.46)
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� Problem 13.28 Generalize formula for the ion current to the cluster surface for
arbitrary relation between a cluster radius and the mean free path of gas atoms.

In order to combine formulas (13.40) and (13.46) for the ion current on the surface
of a spherical particle, let us first consider the limiting case λ � r with a general
boundary condition on the cluster surface N(r) = N1 �= 0. Using expression (13.46)
for the current near the cluster surface, let us find the ion number density in an
intermediate region where it varies from the value N1 near the cluster surface up
to the value Ni, which it has far from the cluster. Repeating the operations that we
used at deduction of the Fuks formula (13.36), we have

N(R) − N1 =
I

4πeDi

R∫
r

dR′

(R′)2
exp

(
Ze2

TR′ − Ze2

TR

)

=
IT

4πDiZe3

[
exp

(
Ze2

Tr
− Ze2

TR

)
− 1

]
.

Using the second boundary condition N(∞) = Ni, we obtain the ion current

I =
4πDi(Ni − N1)Ze3

T
[
exp

(
Ze2
Tr

)
−1

] .

Taking the boundary value N1 of the ion number density such that formula (13.46)
is valid for the ion current leads to the following expression for the ion current

I =
(

1
I>

+
1
I<

)−1

, (13.47)

where the ion currents I< and I> correspond to formulas (13.40) and (13.46). For-
mula (13.47) is transformed into formula (13.40) in the limit I< � I>, and into
formula (13.46) for the opposite relation I< � I> between these currents. Thus,
formula (13.47) includes both relations between the problem parameters. Note that
the ratio of these currents is estimated as

I<
I>

∼ ξr
λ

where ξ is the probability of ion attachment to the cluster surface at their contact.

� Problem 13.29 A spherical cluster whose radius is small compared to the mean
free path of ions in a gas is charged by attachment of electrons and positive ions.
Find the cluster charge if the temperature of electrons and ions is identical.

The charge of clusters in a weakly ionized buffer gas is negative because of a
more high mobility of electrons. We assume the Maxwell distribution function of
electrons and each contact of an electron and ion with the cluster surface leads to
transferring of their charge to the cluster. We obtain the rate of electron attachment
to the cluster surface of a radius r � λ (λ is the mean free path of gas atoms)

Je =
2√
π

∞∫
x

z1/2e−zdz

√
2ε

me
πr2o = (1 + x)e−x

√
8T

πme
Neπr2 .
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Here ε is the electron energy, T is the electron temperature, Ne is the number
density of electrons, me is the electron mass, z = ε/T , x = |Z|e2/(rT), Z is the
negative cluster charge, and we account for the electron attachment to the cluster
surface is possible if the electron energy ε exceeds the repulsion energy of charge
interaction |Z|e2/r. The cross section of ion contact with the surface of charged
cluster is given by formula (13.45), and the ion current to the cluster surface is

Ii = e(1 + x)
√

8T
πmi

Niπr2 ,

where Ni is the ion number density and mi is the ion mass.
Equalizing the electron and ion currents on the surface of a charged cluster and
assuming the plasma to be quasineutral Ne = Ni, we obtain the cluster charge

|Z| = roT
2e2

ln
|Z| e2
roε

ln
mi

me
. (13.48)

� Problem 13.30 Metal clusters are located in a glow gas discharge where the elec-
tron temperature Te exceeds remarkably the gas temperature T . Find the temper-
ature of internal cluster electrons Tcl under the assumptions that an electron and
an atom after collision with the cluster has an energy 3Tcl/2. A cluster radius is
small compared to the mean free path of electrons and ions in a buffer gas.

Assuming that the series of temperatures is

Te > Tcl > T ,

we find that the cluster obtains energy from electrons and transfers it to atoms
of a buffer gas. Colliding with clusters, atoms and electrons exchange energy with
them, so that the cluster temperature is determined by the temperature of the gas
and of the electrons. Within the framework of a simple model we assume that
the average energy of the atoms varies from 3T/2 to 3Tcl/2 after collision with
the cluster, and the mean electron energy varies from 3Te/2 to 3Tcl/2. This takes
place when a strong interaction exists between colliding atoms and clusters and
can proceed through the atom capture by the cluster surface. Evidently, this takes
place at strong interaction of colliding particles that can result from contact of an
incident atom or electron with the cluster. The cross section of such atom–cluster
collisions is equal to the cluster cross section πr20 , where r0 is the cluster radius.
The rate constant of electron-cluster collisions is given by formula (2.16). Hence
within the framework of the liquid drop cluster model, we obtain the rate constants
of atom–cluster (ka) and electron–cluster (ke) collisions.

ka =
〈

vaπr2o
〉
=

√
8T
πm

πr2o ,

ke =
〈

veπr2o

(
1 +

Ze2

εero

)〉
=

√
8Te
πme

πr2o

(
1 +

Ze2

roTe

)
.

Here va, ve are the atom and electron velocities, respectively, εe is the electron
energy, and an average is done over the velocity distribution of atoms or electrons.
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We assume the cluster radius to be sufficiently large so that collisions are governed
by classical laws, but still small in comparison to the mean free path of atoms and
electrons. Hence, each cluster collision is with a single particle.
Assuming an atom and electron have the average energy 3Tcl/2 after collision

with a cluster, we obtain the following balance equation for the cluster temperature

(T − Tcl)kaNa + (Te − Tcl)keNe = 0 ,

where Na and Ne are the number densities of atoms and electrons respectively.
From this we find the cluster temperature

Tcl =
T + ζTe
1 + ζ

, ζ =

√
Tem
Tme

(
1 +

Ze2

roTe

)
Ne

Na
. (13.49)

This formula contains two small parameters,me/m and Ne/Na, and they are govern
by the cluster temperature.

� Problem 13.31 Find the charge of a spherical cluster whose radius is small com-
pared to the mean free path of electrons and ions if the cluster is located in a weakly
ionized gas where the temperatures of electrons Te and ions Ti are different.

Using the above expressions for electrons and ions, we obtain the cluster charge,
equalizing the electron and ion currents to the cluster surface,

x ≡ |Z| e2
roT

= ln

[
mi

me
(1 + x)

(
1 + x

Te
Ti

)−1
]
,

where x = |Z|e2/(rTe) and in the case x � Ti/Ti this formula gives

x ≡ |Z|e2
rT

= ln
[
Ti
Te

mi

me

(
1 +

1
x

)]
. (13.50)

� Problem 13.32 Analyze the character of charging of a small spherical cluster in a
unipolar plasma.

The equation of cluster charging has the form

dZ
dt

=
I
e
,

where Z is the cluster charge and I is the current of ions on the cluster surface.
According to this equation, the cluster charge increases monotonically in time.
Using formula (13.47) for currents on the cluster surface, one can rewrite the above
equation in the form

dx
dτ

=
x

ex − 1
,
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where x = Ze2/Tr, τ = te/(TR)(1/I> + 1/I<)−1 . The solution of this equation in
the limiting cases is given by

x =
{

τ, τ � 1
ln(1 + τ), τ � 1 .

Figure 13.5 gives the dependence x(τ).

Fig. 13.5 The dependence of the reduced cluster charge x on the reduced time τ.

13.4
Cluster Transport

� Problem 13.33 Find the diffusion coefficient of clusters in an atomic gas within
the framework of the hard sphere model for atom–cluster collisions.

The diffusion coefficient of a cluster is similar to the atom diffusion coefficient
(8.40) within the framework of the hard sphere model. Next, because a radius of
action of atomic forces in atom-cluster collision is small compared to a cluster
radius r, the diffusion cross section of atom-cluster scattering is σ∗ = πr2. Because
the reduced mass of the atom–cluster system coincides with the atom mass, and
a cluster radius r = rWn1/3, where rW is the Wigner–Seitz radius for a cluster
material, m is the mass for a buffer gas atom, and n is a number of cluster atoms.
We obtain the diffusion coefficient of a cluster consisting of n atoms,

Dn =
3
√
T

8
√
2πmNar2Wn

2/3
. (13.51)

Here Na is the number density of buffer gas atoms and T is the gas temperature.
This formula is valid if atoms collide with the cluster separately, i. e., each time a
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strong cluster interaction is possible with one atom only. Therefore the mean free
path of buffer gas atoms λ is large compared to a cluster radius r.
From this we obtain the following dependence of the cluster diffusion coefficient

on a number of cluster atoms:

Dn =
Do

n2/3
, (13.52)

and the temperature dependence of the cluster diffusion coefficient is Dn ∼
√
T .

� Problem 13.34 Find a force acting on the cluster that is moving in an atomic gas
with a velocity w. Consider atom–cluster collisions within the framework of the
hard sphere model.

The force acting on a cluster consisting of many atoms is the variation of the cluster
momentum per unit time, and this force is transferred to a cluster from atoms as
a result of elastic atom–cluster collisions. If a cluster radius is small compared
to the mean free path of atoms in a gas, two subsequent collisions of the cluster
with atoms are separated, and the momentum mv(1 − cosϑ) is transferred to the
cluster at elastic collision with an atom, where m is the atom mass that is small
compared to the cluster mass, v is the relative velocity of colliding particles, and ϑ

is the scattering angle. Thus, the force F acting on the cluster is given by

F =
∫
mv(1 − cos ϑ) f (v)vdσdv ,

where f (v) is the velocity distribution function of atoms in the frame of reference,
where the cluster is motionless, that is normalized as

∫
f (v)dv = N, N is the num-

ber density of atoms, and dσ is the differential cross section of elastic scattering.
Assume the cluster velocity w to be small compared to a typical atomic veloc-

ity and taking the Maxwell distribution function of atoms on velocities ( f (va) ∼
exp[−mv2a/(2T)]), where va is the atom velocity, and transferring to the frame of
reference where the cluster is motionless, we obtain v = va − w. This gives for the
force acting on the cluster

F =
∫
mv(1 − cos ϑ) f (va − w)vdσdv =

∫
mvσ∗ f (va − w)vdv ,

where σ∗ = πr2 is the diffusion cross section of atom-cluster scattering. Expanding
the Maxwell distribution function over a small parameter, we have

f (va − w) = f (va)(1 − mvaw
T

) .

This leads for the cluster resistance force with respect to a gas flow

F = −w
m2Nσ∗

3T

〈
v3a

〉
= −8

√
2π

3

√
mTNr2w . (13.53)

Here brackets denote an average over atom velocities for the Maxwell velocity dis-
tribution function of atoms.
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� Problem 13.35 Determine the cluster mobility in an atomic gas.

If a cluster of a charge Z is moving in an electric field, the force acting on the
cluster from the electric field F = ZeE is equalized by the friction force (13.53).
Here E is the electric field strength, and defining the cluster mobility K from the
relation w = KE, we obtain the cluster mobility

Kn =
3Ze

8
√
2πmTNr2

=
3Ze

8
√
2πmTNr2Wn

2/3
, λ � r , (13.54)

and this formula is valid if a cluster radius is small compared to the mean free
path of atoms in a gas.
Formula (13.54) also follows from the Einstein relation (8.66) and expression

(13.52) for the cluster diffusion coefficient which give

Kn =
ZeDn

T
, Kn =

Ko
n2/3

, (13.55)

where the cluster diffusion coefficient Dn in a buffer gas is given by formula (13.51).
The reduced cluster mobility is

Ko =
3Ze

8
√
2πmTNar2W

.

� Problem 13.36 Determine the force acting on a moving cluster in an atomic gas
if its radius exceeds the mean free path of atoms.

The resistance force that acts on a moving cluster in a motionless gas occurs be-
cause a gas flows together with the cluster near its surface, whereas far from the
cluster the average atom velocity is zero. Hence in this case the frictional force
has the viscosity nature and therefore is expressed through the gas viscosity coeffi-
cient. By definition, the viscosity force F per unit surface acted from a flowing gas
is given by formula (8.5)

F
S
= η

∂vτ

∂R
,

where η is the viscosity coefficient of the gas, S is the area of the frictional sur-
face, vτ is the tangential component of the velocity with respect to the flux, and
R characterizes the normal direction to this stream. From this one can estimate
the friction force, taking into account S ∼ r2, R ∼ r, vτ ∼ v, the cluster velocity,
which gives

F ∼ ηrv .

The accurate derivation gives the Stokes formula for the friction force that has the
form

F = 6πηrv, λ � r . (13.56)
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Taking the friction force to be equal to the electric force eE acted on the cluster
from an electric field of a strength E, we obtain the following expression for the
cluster mobility:

K = v/E =
e

6πrη

and the Einstein relation (8.66) gives for the cluster diffusion coefficient

D =
KT
e

=
T

6πrη
, λ � r . (13.57)

As is seen, the only cluster parameter of this formula is the cluster radius r.

� Problem 13.37 Generalize the expression for the cluster diffusion coefficient for
an arbitrary relation between the cluster radius an the mean free path of atoms.

For this goal we first express the gas viscosity coefficient through the mean free
path of gas atoms λ within the framework of the hard sphere model where the
mean free path does not depend on the atom velocity. After this, combining for-
mulas (13.52) and (13.57), we get for the cluster diffusion coefficient in the gas

D =
T

6πrη
(1 +CKn) , (13.58)

where the numerical coefficient isC = 3.1 and Kn = λ/r is the Knudsen number. In
particular, for the air at atmospheric pressure and room temperature this formula
can be rewritten in the form

D =
Do

r

(
1 +

0.14
r

)
,

where Do = 1.3 · 10−7 cm2/s and the particle radius r is expressed in microns.

� Problem 13.38 Compare the cluster and atom diffusion coefficients in a buffer
gas.

Within the framework of the hard sphere model for atomic collisions, the mean
free path of atoms does not depend on the collision velocity, and one can consider
colliding atoms as rigid balls. Then the diffusion coefficient of atoms Da is given
by formula (8.40). Taking in this formula the average cross section σ = πρ2o, where
ρo is the radius of action of atomic forces, we obtain the ratio of the cluster Dcl and
atom diffusion coefficients

Dcl

Da
=

ρ2o
r2

=
σgas

πr2
,

where r is the cluster radius, ρo is of the order of atomic value and πρ2o is the
gas-kinetic cross section. This ratio depends weakly on the gas temperature and
gas parameters. In particular, for the atmospheric air at room temperature the
parameters of this formula are equal ρo = 40 nm, DaN = 4.8 · 1018 cm−1s−1 ,
DclNr2 = 4.6 · 103 cm/s, and N is the number density of air molecules.
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� Problem 13.39 Determine the cluster mobility in a weakly ionized gas in the limit
of large cluster radius.

In this limit a cluster radius exceeds greatly themean free path of gas atoms and the
cluster mobility K is expressed through its diffusion coefficient D by the Einstein
relation (8.66)

K =
ZeD
T

,

where Z is the cluster charge. On the basis of formula (13.57) for the cluster diffu-
sion coefficient and formula (13.41) for the cluster charge in an ionized gas we get

K =
T2

6πηe
ln

(
D−
D+

)
, r � λ (13.59)

where D−,D+ are the diffusion coefficients of negative and positive ions of the
weakly ionized gas which attach to the cluster, and we take D− > D+. Of course,
we use here the criterion of a large cluster radius r � λ. Because the cluster charge
is proportional to its radius, whereas the cluster diffusion coefficient is inversely
proportional to its radius, the mobility of a large cluster does not depend on its
radius.
In particular, for atmospheric air of a typical humidity for which D+/D− = 0.8,

this formula gives K = 1.8 · 10−5 cm2/(V · s).

� Problem 13.40 Determine the free fall velocity for a cluster in a gas under the
action of the gravitational force, if the cluster radius greatly exceeds the mean free
path of gas atoms, and the Reynolds number of a moving cluster is small.

The equilibrium velocity of a falling cluster v of the particle follows from the equal-
ity of the gravitational and resistance forces, which has the form

4π

3
ρgr3 = 6πηrv ,

where ρ is the cluster density and g is the acceleration of gravity. This gives for the
cluster free fall velocity

v =
2ρgr2

9η
. (13.60)

This formula is valid for small values of the Reynolds numbers Re = vr/v � 1,
where v = η/ρg is the kinematic gas viscosity, and ρg is the gas density, and this
criterion has the form

r �
η2/3

(ρρgg)1/3
.

In particular, for water clusters in atmospheric air this criterion gives r � 30 µ.
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� Problem 13.41 Determine a typical time during which a cluster injected in a gas
flow obtains the flow velocity if the particle radius is larger than the mean free path
of gas atoms.

This time follows from solution of the motion equation for a cluster that has the
form

M
dv
dt

= 6πηr(vo − v) ,

where M is the cluster mass, v is its velocity and vo is the equilibrium cluster
velocity. Solving this equation, we have

v = vo[1 − exp(−t/τ)], τ =
M

6πrη
.

Let us represent the relaxation time in the form

τ = τo
( r
a

)2
, τo =

9ρa2

2η

where ρ is the cluster density and a is a parameter. In particular, for a water cluster
moving in atmospheric air we have τo = 1.2 · 10−5 s for a = 1 µm.

� Problem 13.42 Determine the recombination rate constant of two oppositely
charged clusters in a dense buffer gas.

Under these conditions the recombination process of two clusters of charges Z+e
and Z−e in a dense gas is restricted by cluster approach because of a large frictional
force. The velocities of positively v+ and negatively v− charged particles are deter-
mined by an electric field that is created by another charged particle. The electric
field strength at the point where a particle is located is E = e/R2, and the velocities
of particles are v+ = EK+, v− = EK−, where K+,K− are the mobilities of clusters.
Thus the number of negatively charged clusters which fall on a test positive cluster
per unit time is J− = 4πR2(v+ + v−)N− = 4πe(K+ +K−)N−, where N− is the num-
ber density of negative clusters. According to the definition, the recombination
coefficient krec of ions is

dN+
dt

= −krecN+N− = −J−N+ ,

where N+ is the number density of positively charged clusters. From this we get
the Langevin formula for the recombination coefficient of positive and negatively
charged clusters in a dense gas

krec = 4πe(K+ +K−) .

Using cluster parameters, one can represent the recombination coefficient for op-
positely charged clusters in the form

krec =
3
√

πZ+Z−e2

2
√
2mTNr2

(
1
r2+

+
1
r2−

)
,λ � r+, r− , (13.61)
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where r+, r− are the radii of the positive and negative clusters. As is seen, the
recombination coefficient krec ∼ 1/r2, where r ∼ r+, r−. In particular, taking
r+ = r− = r for air at room temperature and atmospheric pressure, we have
krecr2 = 2.6 · 10−20 cm5/s.

� Problem 13.43 Analyze the cluster instability that develops in a buffer gas with
an admixture of a metallic vapor if temperature varies in this system. As a result,
clusters are formed in a cold region, and atoms are moving from a hot region and
attach to clusters in a cold region.

One can expect an equilibrium in a buffer gas with an admixture of a metallic vapor
if the temperature varies in a direction that we denote as z. Then metallic atoms
travel to a cold region and attach to clusters there. In turn, clusters travel in a hot
region and evaporate there. For the analysis of this equilibrium, we study evolution
of an individual cluster that travels to a hot region for evaporation. Growth of
this cluster results from attachment of free atoms and is described by the balance
equation

dn
dt

= kon2/3N ,

where n is a current number of cluster atoms and N is the number density of
metallic atoms. Next, the cluster travels due to its diffusion in a buffer gas, and its
displacement is given by the equation

dz2

dt
= 2Dn ,

where the dependence of the diffusion coefficient Dn of the cluster on its size is
given by formula (13.52).
On the basis of these equations, we represent evolution of the cluster size as it

displaces from an initial point in the form

dz2

dn
=

2Do

kon4/3N
.

From this equation it follows that the average distance square z2(t) from an initial
point at the end of the process is

z2(∞) =
∆2

n1/3
, ∆2 =

6Do

koN
. (13.62)

One can see, the larger is a cluster, the less distance it can go. As a result, an
instability occurs, and due to motion of atoms, all the metal is collected in a cold
region in the form of clusters.
Table 13.2 gives values of the reduced parameter ∆

√
NoN that does not depend

on the density of metallic atoms and atoms of a buffer gas. Under typical parame-
ters of a dense cluster plasma Na ∼ 1019 cm−3, and N ∼ 1013–1015 cm−3 we have
∆ ∼ 0.01–0.1 cm, i. e., the cluster instability is realized under typical real laboratory
conditions.
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Table 13.2 The reduced diffusion coefficient according to formulas (13.51)
and (13.58) for metallic clusters in argon at the temperature T = 1000 K
and the normal number density of argon atoms Na = 2.69 · 1019 cm−3.
The reduced displacement of clusters ∆

√
NaN is given by formula (13.62).

Element Do (cm2/s) ∆
√
NoN (1015 cm−2)

Ti 0.91 1.59
V 1.05 3.51
Fe 1.17 2.13
Co 1.20 2.22
Ni 1.22 2.31
Zr 0.74 1.52
Nb 0.90 1.85
Mo 0.98 2.05
Rh 1.05 2.23
Pd 1.01 2.16
Ta 0.90 2.19
W 0.98 2.42
Re 1.01 2.49
Os 1.05 2.60
Ir 1.01 2.51
Pt 0.98 2.45
Au 0.93 2.32
U 0.81 2.11

� Problem 13.44 Estimate the depth of penetration of a flux of metallic atoms in
a cluster plasma consisting of a dense buffer gas and an admixture of an atomic
metallic vapor and metal clusters.

There is a local thermodynamic equilibrium between clusters and the atomic va-
por at each point that is governed by the processes of evaporation of clusters and
attachment of atoms to their surface. In the limit of large clusters, the number
density of atoms tends to the saturated vapor density at a given temperature. The
gradient of the temperature of a buffer gas ∇T which is supported in the plasma
creates a gradient of the number density of metallic atoms

∇N = − εo
T2

N∇T ,

and this number density increases toward a cold region. As a result, the flux of
metallic atoms is directed to a cold region where atoms attach to clusters. There-
fore, clusters in a hot region are evaporated, and forming atoms partake in the
growth of clusters in a cold region. Finally, metallic atoms are gathered in a cold
discharge region forming there clusters. Thus, as a result of the above processes a
metal is concentrated in a cold region of a nonuniform plasma.
For estimating the depth of penetration of the atomic flux in the cluster plasma,

we consider favorable conditions for cluster growth when one can neglect the clus-
ter evaporation in a cold region. Then the atomic flux in a cold region is

j = −Da∇N = DaN
εo
T2

∇T ,
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where Da is the diffusion coefficient of metal atoms in a buffer gas. Taking into
account the character of cluster growth through attachment of atoms to a cluster,
we obtain the depth l of penetration of free atoms into a cold region of the cluster
plasma

l =
j

kon2/3NclN
=

Da

koNb

εo
T

∇T
T

n1/3 . (13.63)

Here Ncl is the number density of clusters, Nb = nNcl is the total number density
of bound atoms in clusters and n is the average number of cluster atoms. In this
regime of cluster evolution the following criterion holds true:

Nb � N ,

i. e., the most part of metal atoms is bound in clusters. This condition corresponds
to intense nucleation processes in a plasma and provides in the end collection of
metallic atoms in a narrow region of the plasma.
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14
Aeronomy Processes

14.1
Oxygen Atoms in the Upper Atmosphere

� Problem 14.1 The photon flux of the intensity of j = 3 · 1012 cm−2s−1 in the
spectral range λ = 132–176 nm propagates in the upper atmosphere from the Sun,
and causes photodissociation of molecular oxygen. Determine the distribution of
absorbed photons on altitudes if the altitude distribution of molecular oxygen is
determined by the barometric formula.

Properties of the upper Earth atmosphere are determined by processes of photo-
dissociation and photoionization under the action of solar radiation. Table 14.1
gives fluxes from solar radiation penetrated in the Earth atmosphere which corre-
spond to wavelength ranges responsible for photodissociation and photoionization
processes (see also Fig. 14.1). In particular, oxygen atoms are formed in the upper
atmosphere as a result of electron excitation of oxygen molecules by a short-wave
radiation in the range of 132 to 176 nm. As a result, molecule transfers into
a repulsive electron term that leads to its dissociation. This spectral range, the
Schumann–Runge continuum, corresponds to the photon energy range of 6 to
10.3 eV and is characterized by cross sections of photodissociation of molecular
oxygen of 10−19 cm2 to 10−17 cm2, and the cross section as a function of the
wavelength has an oscillation structure.
Let us consider the character of absorption for a given photon frequency, denot-

ing the photodissociation cross section for this frequency by σω and the photon

Table 14.1 The flux of solar radiation on the Earth level in corresponding spectral ranges.

Spectral range ∆λ (nm) Range of photon energies (eV) Photon flux (cm−2 s−1 )

177–132 7.00–9.39 2.7 · 1013
132–103 9.39–12.0 3.5 · 1011
103–91 12.0–13.6 1.2 · 1010
91–80 13.6–15.5 1.3 · 1010
80–63 15.5–19.7 4.6 · 109
63–46 19.7–27 6.1 · 109
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Fig. 14.1 The spectral power of Sun radiation that penetrates in the
upper atmosphere of the Earth.

flux far from the atmosphere by jω. The balance equation for the photon flux jω of
solar radiation of a given frequency, when it moves through the atmosphere toward
the Earth surface, has the form

djω
dz

= −jωσωN, (14.1)

where z is the altitude, N(z) is the number density of molecular oxygen at a given
altitude, and σω is the photodissociation cross section of the oxygen molecule for
these photons. We assume the solar radiation to be perpendicular to the Earth
surface, and the number density of molecular oxygen varies almost according to
the barometric formula N(z) = No exp(−z/l), where l = T/mg ≈ 10 km (see Fig.
14.2). Then the solution of the balance equation (14.1) is

jω(z) = j(o)ω exp
[
− exp

(
−z− zo

l

)]
, (14.2)

where j(o)ω is the intensity of solar radiation above the atmosphere, and the altitude
z0 is determined by the relation σωlN(zo) = 1. Figure 14.3 shows the altitude
dependence for the reduced radiation flux propagates in the atmosphere.
From formula (14.2) it follows that photons of a given frequency are absorbed

mostly in a layer of a thickness ∼ l near z ≈ zo. In fact, because the photodis-
sociation cross section for the oxygen molecule is σω ∼ 10−19–10−17 cm2 in a
wide frequency range, the absorption takes place in a wide altitude range ≈ 5l.
This proceeds at altitudes approximately 120–180 km where the number density
of molecular oxygen ranges N ∼ 1011–1013 cm−3. The number density of atomic
oxygen is equalized to the number density of molecular oxygen at altitudes of 100
to 120 km, and to the number density of molecular nitrogen at altitudes of 150 to
200 km. In particular, the average total number densities of nitrogen and oxygen
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Fig. 14.2 The total number density of atmospheric molecules and
atoms as a function of an altitude z; l is a typical dimension, that is
expressed through the number density of atmosphere atoms and mole-
cules N as l = −d lnN/dz.

Fig. 14.3 The altitude dependence for a passing solar radiation inside
the atmosphere according to formula (14.2).

molecules varies from 7 · 1012 cm−3 to 3 · 109 cm−3, as the altitude varies from
100 to 200 km. The average number density of atomic oxygen varies in the altitude
range from 6 · 1011 cm−3 to 4 · 109 cm−3.



460 14 Aeronomy Processes

Note that along with the Schumann–Runge continuum spectrum, a weak absorp-
tion due to the weak Herzberg continuum is observed in the wavelengths range
of 140 to 175 nm, where the absorption cross section is less than 2 · 10−24 cm2

and can lead to photodissociation of molecular oxygen. This determines the gen-
eration of atomic oxygen at altitudes below 80 km. The recombination rate of two
oxygen atoms in three-body collisions decreases as altitude increases, and hence
the concentration of atomic oxygen increases.

� Problem 14.2 Estimate a typical time of the photodissociation of molecular oxygen
in the upper atmosphere.

Let us introduce a photodissociation lifetime of an oxygen molecule by averaging
it over the photon frequencies as

τdis=
1
4

(∫
σω jωdω

)−1

=
1

4jωσω
≈ 1 × 106 s ≈ 10 days . (14.3)

Here jω is the photon flux at a given frequency ω at high atmosphere altitudes, the
factor 1/4 results from averaging the radiation flux over the entire surface of the
Earth, the average photodissociation cross section is σω ∼ 10−19 cm2, and h̄ω = 6–
10 eV is the photon energy. From this it follows that the daytime and nighttime
number density of atomic oxygen is the same.

� Problem 14.3 Find the drift velocity of an oxygen atom formed at a high altitude
toward the Earth surface under the action of gravity force.

Motion of an individual oxygen atom is governed by the weight force mg, where
m is the oxygen atom mass and g is the free fall acceleration. This gives the drift
velocity

wO = b ·mg =
mg
T

DO ,

where b is the atommobility and D is the diffusion coefficient which are connected
by the Einstein relation. Taking the gas-kinetic cross section for collision of an
oxygen atom and nitrogen molecule to be σgas = 35 Å2, which gives the diffusion
coefficient D = 0.32 cm2/s. Note that this diffusion coefficient is reduced to the
number density of nitrogen molecules 2.7 · 1019 cm−3. From this we obtain the
reduced drift velocity of atomic oxygen in molecular nitrogen

wON = 5.5 · 1012 cm−2s−1 , (14.4)

where N is the number density of nitrogen molecules. One can assume this iden-
tical for molecular nitrogen and oxygen, and then transferring this formula to the
upper atmosphere, one can consider N to be the total number density of molecu-
lar nitrogen and oxygen that assumes to exceed significantly the number density
of atomic oxygen. Correspondingly, this gives the diffusion coefficient of oxygen
atoms in air as

DON =
T
mg

wON =
T
300

· 8.7 · 1018 cm−1s−1 , (14.5)



14.1 Oxygen Atoms in the Upper Atmosphere 461

where the temperature is expressed in Kelvin. Under equilibrium conditions, the
altitude distribution of atomic oxygen is given by the barometric formula, and then
the drift flux of atomic oxygen is equalized by its diffusion flux.

� Problem 14.4 Compare typical times of drift of molecular oxygen to upper layers
of the atmosphere and a typical time of photodissociation of the oxygen molecule
in the upper atmosphere.

If a typical transport time for molecular oxygen is small compared to a typical time
of photodissociation of an oxygen molecular under the action of solar radiation,
this transport restores the equilibrium number density of molecular oxygen, and
it is given by the barometric formula. We first find the parameters of transport of
oxygen molecules by analogy with that of transport of atomic oxygen analyzed in
the previous problem, and we have in this case

wO2N = 6.0 · 1012 cm−2s−1 , DO2N = 4.8 · 1018 cm−1s−1 . (14.6)

We ignore in these formulas the temperature dependence for the mobility and dif-
fusion coefficient. Let us divide the upper atmosphere in layers of the thickness of
the order of l = T/mg ≈ 10 km (m is the molecule mass), so that the equilibrium
number density of molecules varies remarkably according to the barometric for-
mula when we go from one layer to the neighboring one. Let us estimate a transport
time of oxygenmolecule τO2 through one layer that is equal to l/wO2 . At the altitude
h = 100 km, where the total number density of molecules is N = 7 · 1012 cm−3,
the drift velocity of oxygen molecules is wO2 ≈ 1 cm/s, and the transport is
τO2 ∼ 106 s. At the altitude h = 200 km, where the total number density of mole-
cules is N = 3 · 109 cm−3, this time is τO2 ∼ 3 · 103 s. Comparing these values with
the photodissociation lifetime (14.3) of an oxygen molecule, we find that transport
of oxygen molecules cannot restore their concentration at lower altitudes, i. e., the
concentration of molecular oxygen there is lower than that near the Earth surface.
On the contrary, at high altitudes a typical transport time becomes small and re-
stores the equilibrium concentration of molecular oxygen between neighboring
layers. Of course, this concentration is less than that near the Earth surface and it
drops as the altitude increases.

� Problem 14.5 At low atmosphere altitudes oxygen atoms recombine in three-body
processes. Compare the rates of three-body processes of the formation of oxygen
and ozone molecules.

Oxygen atoms decay in lower atmosphere layers as a result of the processes given
in Table 14.2. Comparing the rates of processes 1 and 2 of this table with the rates
of the processes 4 and 5, we find a portion of oxygen atoms whose decay leads to
the formation of ozone molecules is approximately

η =
1

1 + 6 [O]
N

,
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where N is the total number density of nitrogen and oxygen molecules and [O]
is the number density of oxygen atoms. Because at low altitudes, where these
processes are important, [O] < 0.1N, the main part of oxygen atoms is converted
into ozone molecules (Fig. 14.4).

Table 14.2 The rate constants of the processes involving oxygen atoms at room temperature.

Number Process Rate constant, activation energy

1 O + 2O2 → O3 +O2 7 · 10−34 cm6/s
2 O +O2 + N2 → O3 + N2 6 · 10−34 cm6/s

3 O +O3 → 2O2 1.7 · 10−11 exp
(− 2230

T

)
cm3/s a)

4 2O +O2 → 2O2 3 · 10−33 cm6/s
5 2O +N2 → O2 + N2 4 · 10−33 cm6/s

a) The temperature T is expressed in Kelvin.

Fig. 14.4 A part of oxygen atoms that is converted in ozone molecules in the atmosphere.

� Problem 14.6 Determine the concentration of oxygen atoms in the upper atmos-
phere, where the formation of oxygen atoms results from photodissociation of
molecular oxygen in lower atmosphere layers, which is responsible for their losses.

We assume that a loss of atomic oxygen as a result of three-body processes fin-
ishes at such altitudes where three-body processes are not essential. This gives the
balance equation

j
4
= wO[O] ,
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where [O] is the number density of oxygen atoms, and the factor 1/4 accounts
for the radiation flux of the Sun spent over the entire surface of the Earth. Using
formula (14.4) for the drift velocity of oxygen atoms, and the value of the total
radiation flux that causes dissociation of molecular oxygen, we obtain this formula

[O] ∼ 0.14N . (14.7)

This corresponds to the maximum concentration of oxygen atoms and is realized
at altitudes until three-body processes are absent.

� Problem 14.7 Determine the maximum of the number density of oxygen atoms
in the upper atmosphere.

The concentration of oxygen atoms is constant in some altitude range according
to formula (14.7). This means that the number density of oxygen atoms increases
as we move toward the Earth surface.
The maximum number density of atomic oxygen may be found by comparison

of the balance of transport of oxygen atoms wO[O] with the rate of three-body loss
of atomic oxygen according to processes 1, 2, 4, 5 of Table 14.2, and the maximum
number density is observed at altitudes where the rates of transport and three-body
processes are comparable.
Thus, the maximum number density of atomic oxygen [O]max follows from the

relation

wO[O]max

L
∼ K[O]maxN [O2] .

We take a dimension L ∼ 100 km, where the concentration of oxygen atoms varies
significantly, and a typical three-body rate constant we take to be K ∼ 10−33 cm6/s.
This gives that the maximum number density of oxygen atoms is attained at alti-
tudes where

N2[O2] ∼ wON

KL
.

Taking [O2]/N = 1/4, we find the number density of nitrogen and oxygen mol-
ecules in a region of the maximum number density of atomic oxygen N3 ∼ 4 ·
1040 cm−9, and this gives the maximum number density of oxygen atoms [O]max ∼
4 · 1012 cm−3.

� Problem 14.8 Ozone molecules are formed as a result of three-body attachment
of oxygen atoms to oxygen molecules and decay in collisions with oxygen atoms.
Determine the maximum concentration of ozone molecules at high atmosphere
altitudes.

Taking into account the processes 1, 2 of Table 14.2 for the formation of ozone
molecules and the process 3 for their decay, we obtain the equilibrium number
density of ozone molecules [O3]

[O3] =
[O2]NK

k3
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Taking [O2] = N/4 and the rate constant of the pair process 3 of Table 14.2 at the
temperature T ≈ 300 K to be k3 = 1 · 10−14 cm3/s, we obtain

[O3]
N2 ≈ 2 · 10−20 cm3 .

One can expect that the maximum ozone concentration reaches at the region of
the maximum number density of oxygen atoms where N ∼ 4 · 1013 cm−3, and
the ozone concentration is [O3]/N ∼ 10−4. Thus, the photodissociation process in
the upper atmosphere leads to a high ozone concentration (up to 10−4) at altitudes
from 40 to 80 km.

14.2
Ions in the Upper Earth Atmosphere

� Problem 14.9 Molecular ions are formed as a result of photoionization of nitrogen
and oxygen molecules and decay by dissociative recombination. Determine the
maximum electron and ion number density in the upper atmosphere taking into
account that the average photon flux with the wavelengths shorter than 100 nm
which can ionize molecules and atoms is jion = 2 · 1010 cm−2s−1 .

Atmospheric ions are formed as a result of photoionization of molecules N2, O2

and atoms O, and the photoionization cross section is σion∼10−18–10−17 cm2,
so that the number density of molecules Nm ∼ (σionL)−1 ∼ 1011–1012 cm−3
at altitudes where photoionization occurs, and L ∼ 30 km is the thickness of
the atmosphere layer where ionization proceeds. A typical number density of at-
mospheric ions is determined by the balance of ionization and recombination
processes. Table 14.3 contains the values of dissociative recombination at room
temperature.

Table 14.3 Rates of some recombination processes involving electrons at room temperature.

Number Process Rate constant (10−7 cm3/s)

1 e + N+
2 → N +N 2

2 e + O+
2 → O +O 2

3 e + NO+ → N +O 4
4 e + N+

4 → N2 + N2 20

A typical number density of charged particles follows from the balance of ion-
ization and recombination processes that gives the number density of molecular
ions Ni at altitudes where molecular ions are formed αNeNi ∼ jion/L, and α is the
dissociative recombination coefficient whose values are given in Table 14.2. From
this we find (α ∼ 2 · 10−7 cm3/s)

Ni ∼
√

jion
αL

∼ 2 · 105 cm−3 . (14.8)
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� Problem 14.10 Estimate a typical number density of molecular ions for a night
atmosphere.

A typical time for establishment of the equilibrium for molecular ions that leads to
estimate (14.8) gives τrec ∼ (αNe)−1 ∼ 30 s, whereas a characteristic ion drift time
for these altitudes is τdr ∼ 105 s. Therefore, local equilibrium for molecular ions
results from the competing ionization and recombination processes. In addition,
from this it follows that the number density of charged particles for daytime and
for nighttime atmospheres is different. The above estimate refers to the daytime
atmosphere when the flux of solar radiation passes through the atmosphere. The
ion number density of the nighttime atmosphere follows from the balance relation
in the absence of the solar flux that takes the form αNit ∼ 1, where t is a time after
stoppage of the solar flux. Taking this time to be equal to the night duration, we
obtain the number density of molecular ions Ni ∼ 4 · 102–103 cm−3 for a nighttime
atmosphere.

� Problem 14.11 Determine the maximum number density of molecular ions in an
upper atmosphere.

Atomic ions found at high altitudes are there because of the short transport time
required. We can estimate the maximum number density of oxygen atomic ions
by comparing a typical drift time L/w and a characteristic time for ion-molecular
reactions listed in Table 14.4, measured by (k[N2])−1 . Assuming the basic compo-
nent of the atmosphere at these altitudes to be atomic oxygen, we find that the
maximum number density of atomic ions O+ occurs at altitudes where [N2][O] ∼
3× 1019 cm−6. This corresponds to altitudes of approximately 200 km. The maxi-
mum number density of atomic ions Ni follows from the balance equation

[O]
∫

σiondjion ∼ k[N2]Ni

in the case of photoionization of atomic oxygen we have
∫

σiondjion = 2 · 10−7 s−1 ,
and the maximum number density of atomic ions is

Ni ∼ 2 · 105 cm−3 [O]
[N2]

∼ 106 cm−3. (14.9)

In higher layers of the atmosphere the number density of atomic ions is deter-
mined by the barometric formula, because it is proportional to the number density
of primary atoms, and declines as the altitude increases.

� Problem 14.12 Molecular ions transfer in a lower atmosphere as a result of drift
under the action of gravitation force and decay due to dissociative recombination.
Estimate the number density of molecular ions at low altitudes.

This number density follows from the balance of ions which are transported from
upper atmosphere layers, where ions are formed, and dissociative recombination
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Table 14.4 Rates of some ion-molecular processes involving nitrogen and
oxygen ions and processes of electron attachment in three-body processes at
room temperature.

Number Process Rate constant, activation energy

1 O+ + N2 → NO+ +N + 1.1 eV 6 · 10−13 cm3/s
2 O+ + O2 → O+

2 + O + 1.5 eV 2 · 10−11 cm3/s
3 N+ + O2 → NO+ +O + 2.3 eV 2 · 10−11 cm3/s
4 N+

2 + O → NO+ +N + 3.2 eV 1 · 10−11 cm3/s
5 e + 2O2 → O−

2 + O2 3 · 10−30 cm6/s
6 e + O2 + N2 → N−

2 + N2 1 · 10−31 cm6/s

of molecular ions and electrons. This leads to the balance equation

wiNi

L
∼ αN2

i ,

where wi is the drift velocity of ions under the action of the gravitation force and L
is a distance from a region of generation of molecular ions. This gives the number
density of ions

Ni ∼ wi

αL
.

Let us find the drift velocity for ions being guided by the Dalgarno formula for
the mobility of ions that results from the polarization interaction between ions and
molecules of the atmosphere. Then by analogy with deduction of formula (14.6),
we obtain the reduced drift velocity and diffusion coefficient of ions

wiN = 1.7 · 1012 cm−2s−1 , DiN = 2.1 · 1018 cm−1s−1 . (14.10)

Taking a typical distance from a region of molecular ion generation L ∼ 100 km,
we obtain the ion number density

Ni ∼ 1012cm−6

N
, (14.11)

and the number density of ions drops inversely proportional to the number density
of atmospheric molecules, as we move toward the Earth surface.

� Problem 14.13 Atomic oxygen ions are formed in the upper atmosphere by pho-
toionization of oxygen atoms and decay in ion-molecular processes. Determine an
altitude of decay of atomic oxygen ions.

Atomic oxygen ions are formed mostly as a result of photoionization of atomic
oxygen, and therefore they are located mostly at more high altitudes compared to
molecular ions (Fig. 14.5). In the E-layer region of the ionosphere where molecu-
lar ions are found mostly, the number density of atomic oxygen ions is less than
that for molecular ions. Indeed, taking the number density of atomic oxygen to be
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Fig. 14.5 The altitude distribution of the number density of charged
atomic particles in an ionosphere.

[O] = 0.1N in regions, where photoionization takes place, and assuming the cross
sections of photoionization to be identical for oxygen atoms and nitrogen and oxy-
gen molecules, we obtain the rate of generation of O+ to be less by an order of
magnitude than the rate of generation of molecular ions.
At more high altitudes the number density of atomic oxygen ions becomes more

than that for molecular ions for two reasons. First, the number density of atomic
oxygen at these altitudes exceeds that for nitrogen and oxygen molecules. Second,
molecular ions decay as a result of dissociative recombination, while the loss of
atomic oxygen ions results from their chemical processes with nitrogen molecules,
and the rate of this process drops with an altitude inversely proportional to the
number density of nitrogen molecules. Therefore, the number density of atomic
oxygen ions in the ionosphere of F-layers exceeds that of molecular ions in E-layer
almost by an order of magnitude (see Fig. 14.5).
The character of formation and decay of atomic oxygen ions follows from the

balance equation, which in the stationary case has the form

M(z) +DiNi − wi
dNi

dz
− kchNiN = 0 , (14.12)

where Ni is the number density of atomic oxygen ions, z is altitude, M(z) is the
rate of the photoionization process at a given altitude, N is the number density of
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nitrogen molecules, and kch = 6 · 10−13 cm3/s is the rate constant of the process

O+ + N2 → NO+ +N ,

given in Table 14.4.
As it follows from the balance equation (14.12), the character of evolution of oxy-

gen atomic ions in the upper atmosphere is determined by three times, a typical
time of ion formation τi = M/Ni (Ni is a typical number density of atomic oxygen
ions), a typical drift time τdr for oxygen ions and a typical time τch ∼ (kchN)−1

of chemical transformation for atomic ions. The relation between these times de-
pends on the altitude, and we consider below the limiting cases for these times.
In particular, at lower edge of the ionosphere, F-layers where the transition

takes place from atomic oxygen ions to molecular ones, we have τdr ∼ τch. Tak-
ing the drift velocity of atomic ions by analogy with formula (14.10) as w = 2 ·
1012 cm−2s−1 , we find equalizing the drifting (τdr ≈ l/wi, L ∼ 10 km) and chemi-
cal times

N ∼ 2 · 1010 cm−3 ,

which corresponds to the lower boundary of F-layer at the altitudes 150–160 km,
and τdr ∼ 104 s for such altitudes.

� Problem 14.14 Atomic oxygen ions are generated in F-layers of the upper atmos-
phere at altitudes around 250 km as a result of photoionization of oxygen atoms.
Formed atomic oxygen ions are moving down and decay at the altitude of about
150 km. Determine the space distribution of the number density of atomic oxygen
ions in an intermediate region.

Within the framework of a simplified model we assume that atomic oxygen ions
are formed at the altitude of 250 km and then decay at the altitude of 150 km in
accordance with the previous problem. At intermediate altitudes the concentration
ci of atomic ions follows from the balance equation

j = −DiN
dci
dz

+wiNci = const .

Here N(z) is the total number density of molecules and atoms at a given atmos-
phere altitude z, i. e., Nci is the number density of atomic ions, and j is the flux
of atomic oxygen ions down that characterizes the rate of photoionization events
for atomic oxygen per unit square. The drift velocity of atomic oxygen ions down
wi in this equation and the diffusion coefficient Di of ions are connected by the
Einstein relation

wi

Di
=
mg
T

≡ 1
l
,

where m is the oxygen atom mass, g is the free fall acceleration, and T is the
temperature.
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The drift velocity of atomic oxygen ions depends both on the atmosphere temper-
ature and its content. In particular, if we assume the upper atmosphere consisting
of atomic oxygen, we obtain the reduced drift velocity atomic oxygen ions by anal-
ogy with formula (14.10) the value wiN = 1.2 · 1012/(cm2 s) at the temperature
T = 300 K and wiN = 7.0 · 1011/(cm2 s) at the temperature T = 1000 K. In the
same manner, assuming the atmosphere to be consisted of molecular nitrogen,
we obtain the reduced drift velocity of atomic ions wiN = 1.3 · 1012/(cm2 s) at
the temperature T = 300 K and wiN = 9.5 · 1011/(cm2 s) at the ions depends
weakly on the atmosphere content. Taking for the definiteness the temperature to
be T = 500 K, we find in this case

wiN = 1.0 · 1012 1
cm2 s

, Di = 2.6 · 1018 1
cm s

. (14.13)

Let us introduce a new variable

ξ =
z∫

zo

mgdz
T(z)

≡
z∫

zo

dz
l
,

so that ξ(zo) = 0. The balance equation for a new variable takes the form

dci
dξ

+ ci =
j

wiN
,

and its solution is

ci =
j

wiN

(
1 − e−ξ

)
. (14.14)

Let us analyze within the framework of this model the space distribution of
atomic oxygen ions. We assume that photoionization of atomic oxygen proceeds at
a certain altitude also, taking it to be 250–300 km, and decay of ions proceeds at
altitude of zo = 150 km. Then the variation of the ion concentration is described by
formula (14.14), that more or less corresponds to the data of Fig. 14.5. According to
this figure, the maximum number density of atomic ions is Ni ∼ 106 cm−3 or the
concentration of atomic ions at such altitudes to be ci ∼ 10−3. From formula (14.14)
we obtain a correct estimation for the total flux of photons whose absorption leads
to photoionization of atomic oxygen in F-layer j ∼ 109 (cm2 s)−1 . Thus, this simple
model gives understanding of the character processes in F-layer of the ionosphere
involving atomic oxygen ions.

� Problem 14.15 In the D-layer the negative charge of the atmosphere transfers from
electrons to negative ions. Estimate a typical altitude of this transition and typical
ion number density.

We assume that the formation of negative ions results from processes (5) and (6)
of Table 14.3. Taking the number density of oxygen molecules to be [O2] = N/5, we
obtain the equality of rates of ion loss by dissociative recombination and electron
attachment

Ni ∼ 6 · 10−25 cm−3 · N2 .
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From this according to formula (14.11) we find that the transition from electrons to
negative ions takes place at altitudes where the number density of air molecules is

N ∼ 1013 cm−3 ,

which corresponds according to Fig. 14.1 to the altitudes 80–100 km where the
D-layer of the ionosphere is located.

� Problem 14.16 Show that the ion drift to lower altitudes does not violate the ion-
ization equilibrium in the upper Earth atmosphere.

Atomic ions formed as a result of the photoionization process participate in ion-
molecular reactions given in Table 14.3. A typical time for these processes is τ ∼
(kN)−1 ∼ 0.01–10 s, and is small compared to a typical recombination time. This
explains the fact that ions of the ionosphere are molecular ions. In addition, it
shows the origin of molecular ions NO+. These ions cannot result from photoion-
ization because of the small number density of NO molecules.
At altitudes where photoionization occurs, the negative charge of the atmos-

pheric plasma comes from electrons. In the D-layer of the ionosphere, electrons
attach to oxygen molecules in accordance with processes 5, 6 of Table 14.3, and
it is negative ions that govern the negative charge of the atmosphere. At the alti-
tudes where this transition takes place, the balance equation wNe/L ∼ KNe[O2]2

is appropriate, where K ∼ 10−31 cm6/s is the rate constant of processes 5 and
6 of Table 14.3. From this it follows that the formation of negative ions occurs at
altitudes where N[O2]2 ∼ 3 · 1039 cm−9, or [O2] ∼ 1013 cm−3. We account for the
coefficient of ambipolar diffusion of ions being of the order of the diffusion coeffi-
cient of atoms. In the D-layer of the ionosphere, recombination proceeds according
to the scheme

A− + B+ → A + B ,

and is characterized by a rate constant of about α ∼ 10−9 cm3/s. This leads to the
relation

NiN ∼ 1017 cm−6 (14.15)

for the number density of ions Ni.
Thus the properties of the middle and upper atmosphere are established by

processes in an excited and dissociated air involving ions, excited atoms and ex-
cited molecules. Due to photoionization of atomic oxygen or molecular nitrogen
under the action of the hard ultraviolet Sun radiation, this atmosphere part con-
tains charged particles and is named the ionosphere. The ionosphere is divided
into a number of layers according to the character of processes involving charged
particles. The lowest D-layer at altitudes in the range of 50–90 km contains a nega-
tive charge in the form of negative ions, and charged particles penetrate the D-layer
from the higher E- and F-layers of the ionosphere. The E-layer of the ionosphere
at altitudes of 90–140 km contains molecular positive ions and electrons, and they
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are formed as a result of photoionization processes involving nitrogen and oxygen
molecules, and also by chemical reaction of the atomic oxygen ion and nitrogen
molecule. The F-layer of the ionosphere that is usually divided into the F1-layer
(140–200 km) and the F2-layer (200–400 km), contains atomic oxygen ions and
provides the maximum number density of charged particles of the order of 105–
106 cm−3. Some peculiarities of the atmospheric plasma at such altitudes were
considered above.

14.3
Processes in the Earth Magnetosphere

� Problem 14.17 The magnetic field of the Earth is determined by the Earth mag-
netic moment M that is created by an internal Earth current and is directed from
the north pole to the south one. Determine the position of magnetic lines of force
not far from the Earth.

Within the framework of this simply model, the magnetic field strength H is
expressed through the magnetic potential µ by the formula H = −∇µ, and the
magnetic potential is equal to

µ =
MR
R3

,

where R is the distance from the Earth center. This gives themagnetic field strength

H =
3(MR)R− MR2

R5
, (14.16)

and components of this vector are

HR = −2M sin θ

R3
, Hθ =

M cos θ

R3
,

where θ is the latitude of a given point. The total magnetic field strength is

H =
M
R3

√
5− 3 cos 2θ

2
.

Within the model under consideration the Earth is modeled by a ball of a radius
R⊕ = 6370 km with the magnetic moment of M = 7.80 · 1025 G s · cm3, and the
magnetic field strength near the equator is Ho = 0.31 G s. This model takes into
account the principal properties of the Earth magnetic field.
According to the definition, the magnetic lines of force which are given in Fig.

14.6, satisfy the equation

dR
HR

=
rdθ

Hθ
,

which gives

dR
R

= −2sin θdθ

cos θ
.
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Fig. 14.6 Magnetic lines of force near the Earth.

From this it follows

R = Re cos2 θ, (14.17)

where Re is the the distance between the Earth center and magnetic field of force
at the equator. Correspondingly, the latitude dependence for the magnetic field
strength at a given magnetic lines of force is

H =
M

R3e cos6 θ

√
5− 3 cos 2θ

2
.

� Problem 14.18 Find the distance from the Earth for the upper boundary of the
Earth magnetosphere. At this distance the pressure from the flux of the solar wind
becomes equal to the magnetic pressure of the Earth.

The solar wind is a plasma stream moving from the Sun to the Earth. This re-
sults from an instability in the Sun corona in the form of individual jets and we
assume the solar wind to be isotropic in average on large distances from the Sun.
Accounting for a strong fluctuation of solar wind parameters, we will consider the
following values on the Earth level: the number density of protons of the solar
wind plasma near the Earth is Np ≈ 10 cm−3, the average drift velocity of protons
is w = 3 · 107 cm/s that corresponds of the kinetic energy of protons approximately
0.5 keV, the temperature of electrons in the solar wind plasma is about 2 eV, and
the proton temperature is about 0.4 eV. The subsequent estimations will be based
on these parameters.
Interaction of the solar wind with the Earth magnetic field (Fig. 14.7) takes

place in the region where their pressures are comparable, and the region near
the Earth we call as the magnetosphere. In estimating the boundary of the mag-
netosphere where the above pressures are equalized, we note that electrons give
a small contribution to the kinematic pressure of the solar wind because of their
small momentum compared with that of protons. Hence, the pressure of the solar
wind according to formula (6.18)

p = NpMpw2 ∼ 1 · 10−6 Pa .
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Fig. 14.7 Interaction of the solar wind with the Earth magnetic field.
(1) the Earth; (2) solar wind; (3) magnetic lines of force; (4) shock
waves; (5) the magnetosphere boundary where the solar wind pressure
equals to the pressure of the Earth magnetic field.

This pressure is equalized by the Earth magnetic field that is estimated as

H = Ho

(
R⊕
R

)3

,

where Ho = 0.31 Gs is the magnetic field strength, R⊕ = 6370 km is the Earth
radius and R is the distance from the Earth. Therefore, the upper magnetosphere
boundary follows from the equality of the kinematic (6.18) and magnetic (12.40)
pressure and is equal to

R = R⊕

(
Ho√
8πp

)1/3

.

This formula gives R ≈ 8R⊕.
At such distances, a strong interaction occurs between the solar wind and the

Earth magnetic field. As a result, a plasma stream shifts magnetic lines of force,
and then the plasma stream flows around the Earth along the shifted magnetic
lines of force (see Fig. 14.6). Note that because the solar wind starts from a plasma
instability on the Sun surface, its parameters fluctuate significantly. Correspond-
ingly, the magnetosphere boundary oscillates in time remarkably.

� Problem 14.19 Estimate an altitude of the lower boundary of the magnetosphere
where the Larmor frequency for protons is equal to the rate of proton collision with
atmosphere molecules.

The Larmor frequency of protons in the magnetic field of the Earth near its surface
is equal to ωH = 3 · 103 Hz, and the rate of proton–molecule collisions is 1/τ =
Nvpσ, and we take the gas-kinetic cross section σ = 3 · 10−15 cm2 as the cross
section of proton–molecule collision. This equality is fulfilled at the altitude where
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the number density of molecules is

N ∼ 2 · 1010 cm−3 ,

which corresponds to the altitude of approximately 140 km. At this and lower alti-
tudes the magnetic field is not affected on motion of protons.

� Problem 14.20 Estimate an atmosphere altitude where aurora occurs as a result
of penetration of protons of the solar wind in the Earth atmosphere.

A solar wind can penetrate deeply inside the Earth atmosphere if protons are mov-
ing to the Earth near its poles. Because the Earth during its rotation does not turn
to the Sun by poles, it is possible only during magnetic storms when the plasma
flow from the Sun can deviate from a straightforward way. Then protons can go
close to the Earth surface and excite atoms and molecules of the atmosphere. As
a result, excited atoms and molecules are formed in a rare atmospheric gas and
because of a low density, they are quenched as a result of radiation. In particular,
Table 14.5 contains radiative parameters of metastable nitrogen and oxygen atoms
which can form as a result of proton collisions with nitrogen and oxygen molecules
and oxygen atoms. The transitions indicated in this table and also radiative tran-
sitions for excited nitrogen molecule and oxygen atom are determined by glowing
of the aurora that is characterized by a variety of colors.

Table 14.5 Radiation transitions for metastable nitrogen and oxygen atoms.

Transition ∆ε (eV) λ (µm) τ (s)

N(2D5/2 →4 S3/2) 2.38 0.5202 1.4 · 105
N(2D3/2 →4 S3/2) 2.38 0.5199 6.1 · 104
N(2P →2 D) 3.58 1.040, 1.041 12
O(1D →3 P) 1.97 0.630 140
O(1S →3 P) 4.19 0.5577 0.8

Taking a typical cross section of inelastic collision of protons with atmospheric
atoms and molecules to be σ ∼ 10−17–10−18 cm2, below we estimate the altitude
where such collisions occur. We find the altitude where polar glowing proceeds
from the relation

Nσl ∼ 1 ,

where N is the number density of atmospheric atoms and molecules, and l ∼ 10
km is a distance where atmospheric parameters vary remarkably. This gives the
number density of optimal excitation of atmospheric atoms and molecules to be
N ∼ 1011–1012 cm−3, and the altitude where this takes place is between 100 and
150 km.

� Problem 14.21 Estimate a portion of protons of the solar wind that is scattered
during motion of the solar wind near the Earth surface and can be captured by the
Earth magnetic field. As a result, these protons can form an Earth radiation belt.
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When the solar wind as a plasma flow encounters with the Earth magnetic field,
this plasma shifts partially toward the magnetic field and in turn the plasma flows
along the magnetic lines of force of the formed system. Note that this plasma is
magnetized, i. e., the inverse Larmor frequency 1/ωH is small compared to a time
τdr of passage of the magnetic field region by the plasma flow. In particular, for
protons of the solar wind we obtain the Larmor frequency ωH = eH/(mpc) ≈
3 kHz, and a time of plasma flow around the Earth is τdr ∼ 2Ro/vp ∼ 300 s,
i. e., ωHτdr ∼ 107. Hence, electrons and protons have a circular motion around
magnetic lines of force and flow along them around the Earth.
A part of electrons and protons can be captured by the Earth magnetic field, if

these charged particles are moving in a nonuniformmagnetic field in certain direc-
tions (Problem 7.24). These directions can result from collisions between plasma
particles. Because these collisions are determined by the Coulomb interaction be-
tween colliding particles, the cross section of this process can be estimated as
σ ∼ πe4/ε2, where ε is the energy of particle relative motion. Taking an estimation
for protons ε ∼ 1 keV, we obtain the scattering rate ν ∼ Nvpσ ∼ 10−10 s−1 , where
N = 5 cm−3 is the number density of protons in the solar wind. Hence, a part of
protons ντdr ∼ 3× 10−8 is scattered in the course of plasma passage around the
Earth. These scattered protons can be captured by the magnetic field and form a
Earth radiation belt.

� Problem 14.22 Estimate the period of oscillations for protons of the solar wind
which are captured by the Earth magnetic field in the equatorial plane.

Radiation belts, regions with captured charged particles, are located at a distance
of several Earth radii. Captured protons rotate around magnetic lines of force with
the Larmor frequency

ωH =
eH
mpc

=
eHo

mpc
R3⊕
R3

,

where R is the distance from the Earth center for proton location and R⊕ = 6370 km
is the Earth radius. Along with this motion, protons drift under the action of
nonuniformity of the magnetic field, and the drift velocity of this drift is given
by formula (7.58) and is equal to

w =
v2τ

ωH

∇H
H

,

where the nonuniformity of the magnetic field is

∂H
∂x

= 3Ho
R3⊕
R4

∂H
H∂x

=
3
R
.

This leads to the following drift velocity in the tangential direction to the axis:

w = wo
R2

R2⊕
wo =

3v2τ
ωHoR⊕

∼ 1 cm/s .

This corresponds to a time of rotation of a captured proton of order of years.
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� Problem 14.23 Determine the width of a region that separates a region of the
Earth magnetic field and the region of the solar wind.

The solar wind that flows around the Earth is separated from magnetic lines of
force by a shock wave. Therefore, a solar wind plasma and the Earth magnetic
field are not mixed. Nevertheless, one can consider the boundary between the Earth
magnetic field and solar wind plasma, and on this boundary magnetic lines of force
penetrates in the plasma. Let us find the width of such a boundary region.
The width of an intermediate region is narrower, the higher is the plasma con-

ductivity. The plasma conductivity is determined by the Spitzer formula (7.65), and
taking in this formula the electron temperature Te = 2 eV and the Coulomb loga-
rithm lnΛ = 10, we obtain the plasma conductivity Σ ≈ 1 · 1014 s−1 . From this, we
find for the diffusion coefficient DH of the plasma with respect to magnetic lines
of force according to formula (12.38)

DH =
c2

4πΣ
∼ ·103 cm2/s

Assuming the drift velocity of the solid wind to be v = 3 · 107 cm/s, we find a typical
time of its passage around the Earth τ ∼ 20R⊕/v ∼ 400 s, where R⊕ is the Earth
radius, we find the depth of magnetic field penetration in the plasma during its
motion ∆ =

√
2DHτ ∼ 20 m, that is small compared to typical plasma dimension.

14.4
Electromagnetic Waves in the Upper Atmosphere

� Problem 14.24 Find the boundary wavelength of electromagnetic waves which
cannot pass through the ionosphere and reflect from it.

According to formula (11.23), radiowaves of frequencies ω < ωp do not penetrate
in the ionosphere and reflect from it. Taking the maximum number density of
atomic oxygen ions and electrons in F-layer to be Ni ∼ 1 · 106 cm−3, we obtain
according to formula (11.6) for the plasma frequency ωp = 6 · 107 Hz at the number
density of electrons Ne = Ni. Therefore, radiowaves whose wavelengths exceed
λ = 2π/ωp = 30 m do not pass through the ionosphere and reflect from it.

� Problem 14.25 Determine which portion of the intensity of an electromagnetic
wave is absorbed in the ionosphere as a result of reflection from it. Assume that
propagation of an electromagnetic wave in the atmosphere proceeds according to
the laws of geometric optics.

According to the dispersion relation (11.23), an electromagnetic wave cannot prop-
agates in the atmosphere, where ω < ωp. Representing the wave frequency in
the form ω = Reω − iδ, we obtain the absorption coefficient from the dispersion
relation (11.26)

δ =
ω2
p

2ω2τ
,



14.4 Electromagnetic Waves in the Upper Atmosphere 477

and within the framework of geometric optics, the probability to survive for an
electromagnetic wave is equal to

P ≡ exp(−ζ) = exp
(

−
∫

δdt
4 cos θ

)
,

where the integral is taken over one half of a direct ray, and θ is the angle between
the ray direction and the normal to the atmosphere layer.
Taking into account dt = dx/vp, where the dispersion relation (11.23) gives the

wave phase velocity vp = c
√

ω2 − ω2
p/ω, we obtain the above damping

ζ =
2

cω cos θ

∫ ω2
pdx

τ
√

ω2 − ω2
p

.

Let us take the linear dependence of the number density of electrons on the
altitude z in some range of altitudes near the turning point

Ne(z) = No ·
(
1 − z− zo

L

)
= No(1 − ξ), ξ =

z− zo
L

. (14.18)

Taking a damping of an electromagnetic wave due to electron–molecule collisions,
we have the dependence of its rate 1/τ on an altitude z in the form

1
τ

∼ N ∼
(z
l

)
,

where N is the total number density of atoms and molecules. This leads to the
following expression for the absorption exponent:

ζ =
2L

cτ(zo) cos θ
J, J =

1∫
0

ξdξ√
1 − ξ

exp
(

− Lξ
l

)
. (14.19)

In the limiting cases, the integral in formula (14.19) is equal to

J =
(
l
L

)2

, L � l; J =
4
3
, L � l .

Thus, absorption of an electromagnetic wave proceeds in the region where elec-
trons are located and the number density of neutral particles is enough high, and
this takes place on the lower boundary of E-layer. In the above formulas ωp is
the plasma frequency on the upper boundary of E-layer. Though the absorption
coefficient depends on the character of growth of the electron number density in
E-layer, the considered example shows a strong absorption of an electromagnetic
wave if it is reflected in E-layer. Therefore, passage of electromagnetic waves on
long distances by reflection from the ionosphere is of importance in reality if this
reflection proceeds in F-layer with a more high electron number density. Then the
ratio ω2/ω2

p ∼ 10, and the electromagnetic wave is absorbed partially. The max-
imum electron number density in F-layer that is ∼ 106 cm−3 corresponds to a
reflected electromagnetic wave of the length λ ≈ 30 m.
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� Problem 14.26 Analyze absorption of radiowaves in E-layer of the atmosphere at
altitudes 90–140 km, approximating in average the number density of electrons by
the linear altitude dependence in E-layer.

As it follows from the dispersion relation (11.26), the imaginary part of an electro-
magnetic wave is

δ =
ω2
p

2ω2τ
,

where we represent the wave frequency in the form ω = Reω − iδ. According to
this formula, wave absorption takes place at altitudes where electrons are located.
Along with this, the absorption coefficient is proportional to the number density
of atmosphere molecules and atoms since it is determined by electron–molecule
and electron–atom collisions.
Within the framework of the above assumptions, we obtain the absorption ex-

ponent according to formula (14.19)

δ =
ζo

cos θ

ω2
o

ω2 ; ζo =
2l2

cLτ(zo)
,

where ωo = 25 MHz is the plasma frequency for the electron number density at
higher boundary of E-layer (h = 140 km), and absorption is determined by the
lower boundary of E-layer (h = 90 km). At this altitude we obtain the total number
of molecules N = 5 · 1013 cm−3 and temperature T = 200 K. Taking that the
cross section of electron-molecule cross section is equal to the gas-kinetic cross
section σ = 3 · 10−15 cm2, we obtain a typical time of electron–molecule collisions
τ(zo) = (Nveσ)−1 = 6 · 10−7 s (the electron thermal velocity is ve =

√
8T/(πme) =

9 · 106 cm/s). Next, the depth of E-layer is L = 50 km, and the distance of variation
of the molecule number density is l = (d lnN/dh)−1 = 7 km. This leads to the
following expression for the absorption exponent

δ =
10
cos θ

ω2
o

ω2 .

According to this result, under above assumptions any electromagnetic wave
that is reflected in E-layer is absorbed in this region. In addition, this absorption
is determined by parameters of the ionosphere near its edge where the electron
number density is small, but the molecule number density is not small. Therefore
absorption depends on the electron distribution in this region.
In reality, the electron number density distribution in E-layer varies with time. To

demonstrate this, we consider two examples. In the first case the linear distribution
of the electron number density (14.18) is valid, but the lower boundary of E-layer is
shifted and corresponds to the altitude ho = 100 km. Then the above formula for
the absorption exponent takes the form

δ =
5

cos θ

ω2
o

ω2 .
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In the second case we take the space distribution of the electron number density
to be

Ne(z) = No ·
(
z− zo
L

)2

instead of formula (14.18). In this case the absorption exponent is given by

δ =
3

cos θ

ω2
o

ω2 .

As is seen, the absorption coefficient for an electromagnetic wave passing through
E-layer of the ionosphere can vary by an order of magnitude under varying ionos-
phere parameters.

� Problem 14.27 Estimate typical altitudes at which whistlers as slow electromag-
netic waves in the Earth magnetic field can be generated.

Whistlers result from electric breakdown in the atmosphere when a plasma is
formed in an extent region and contains electrons of a not low density. According
to the dispersion relation (11.50), whistlers exist if the criterion

ωHτ � 1 ,

holds true. The Larmor frequency for electrons is ωH ∼ 107s−1 near the Earth
surface. Taking the cross section of electron-molecule cross section to be of the
order of gas-kinetic one (σ ∼ 3 · 10−15 cm2), and the electron thermal velocity
ve ∼ 107 cm/s, we obtain the above criterion that whistlers exist at altitudes where
the number density of atmosphere molecules

N � 1015 cm−3 .

This corresponds to altitudes above 50 km. Moving in lower regions where elec-
trons are absent, whistlers are transformed in simple electromagnetic waves.

� Problem 14.28 Whistlers are formed in the south Earth hemisphere as a result
of breakdown in the upper atmosphere, propagate along the magnetic lines of
force and is detected in north hemisphere. Taking the whistler frequency to be
ω ∼ 5 kHz and an altitude of its magnetic lines of force above the equator h ∼
1000 km, estimate a delay time for low-frequency waves.

According to the dispersion relation (11.39), the group velocity of whistlers vgr,
which are propagated along the magnetic lines of force, is equal to

vgr =
∂ω

∂k
= 2c

√
ωHω

ωp
.

A time of whistler propagation between two hemispheres is

τ =
∫ dl

vgr
,
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where dl is an element of the magnetic lines of force that according to formula
(14.17) is

dl =
√
R2dθ2 + dR2 = Re cos θdθ

√
1 + 3 sin2 θ .

In particular, taking an altitude of the magnetic lines of force near the equator
h ∼ 1000 km (ωH = 5 · 106 Hz) and an average number density of electrons on this
line of force Ne ∼ 104 cm−3 (ωp = 6 · 106 Hz), we have (ω = 5 kHz) for the group
whistler velocity vgr ≈ 2 · 109 cm/s, and a typical time of whistler propagation
τ ∼ 6 s. Correspondingly, a delay time for signals of different frequencies is of
seconds and exceeds a typical breakdown time.

14.5
Electric Phenomena in the Earth Atmosphere

� Problem 14.29 The Earth surface is charged as a result of secondary processes
of water evaporation and condensation. The Earth potential is U = 300 kV, the
average electric field strength near the Earth surface is approximately 130 V/cm.
Estimate a typical thickness of the atmosphere layer near the Earth surface that is
responsible for Earth charging.

The electric field strength E near the Earth surface is connected with the Earth sur-
face charge σ by the relation E = 4πσ, which leads to the total Earth charge under
these conditions Q = 4πR2⊕σ = R2⊕E = 5.8 · 105 C, where R⊕ = 6370 km is the
Earth’s radius, and the surface density of Earth charge is σ = E/4π = 7 · 107 e/cm2.
Let us consider the Earth as an electric system that is like a spherical capacitor with
a negative charge of its lower plate. Then assuming the electric field between capac-
itor plates to be uniform, we find the distance l between the plates of this capacitor
to be l = U/E = 2.3 km. This estimate gives a dimension of a region near the Earth
surface where electric processes proceed with charging of the Earth. From this we
find that if an unipolar plasma is located between these plates, positively charged
particles are characterized by the number density of Ni = 300 cm−3. We have from
this that the processes responsible for the Earth’s charge occur in the lower layers
of the Earth atmosphere at altitudes of several kilometers.

� Problem 14.30 Estimate a typical time of Earth charging.

We use the total average current of Earth discharging to be approximately
I = 1700A. Of course, a local current density is found in a wide range, and the
average current density over land amounts to 2.4 · 10−16 A/cm2, and over the
ocean it is 3.7 · 10−16 A/cm2. This gives an average time of Earth discharging
τ = Q/I = 6 min. Taking the average mobility of charged particles near the Earth
surface to be K = 2.3 cm2/(V · s), we find that charged particles pass a distance
s = KEτ = 50 m for a discharging time, i. e., the charging process proceeds close to
the Earth surface. One can connect it with charged water drops and dust particles
falling on the Earth surface.
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� Problem 14.31 Assuming that Earth charging results from falling of large nega-
tively charged drops, find the rate of drop falling that provides the charging current
(I = 1700 A). Compare it with the total rate of water in the Earth atmosphere.

Using formula (13.60) the velocity v of drop falling under the action of gravitational
forces and formula (13.41) for the charge Z of a large drop, we obtain the current
density of drops on the Earth surface

i = eZvN ,

where N is the number density of drops in the atmosphere.
It is essential that since the drop charge Z is proportional to a drop radius ac-

cording to formula (13.41), and according to formula (13.60) the velocity of drop
falling is proportional to the square of the drop radius, the current density is pro-
portional to the total mass of drops, i. e., the current density is proportional to the
total mass of water in the atmosphere. The above formula gives

i
ρ(H2O)

= 2 · 10−11 A/m
2

g/m3 , (14.20)

where ρ(H2O) is the water density in the form of charged drops in the atmosphere.

� Problem 14.32 Find the radius of charged water drops which fall down in spite of
the average electric field of the Earth surface.

Negatively charged droplets fall down under the action of gravitation forces, while
the electric field of the earth acts up. Evidently, a droplet is moving down if the
gravitation force P = mg exceeds the electric one eEZ

mg > eEZ ,

wherem is the dropmass, g is the free fall acceleration, E ≈ 130 V/m is the average
electric field strength near the Earth surface, and the particle charge Z is given by
formula (13.41). Note that the left-hand side of this inequality is proportional to
the radius cube, whereas the right-hand side of the inequality is proportional to
the drop radius. Taking the average ratio of the diffusion coefficients of positive
and negative ions for the drop charge to be 0.8, we find that the above criterion
holds true, if the drop radius r > 0.05 µm. Though the assumptions used for this
estimate are not valid at the low limit, this result indicates that the electric field of
the Earth is not of importance for fall of micron drops.

� Problem 14.33 Compare the total mass of water in the form of drops that provides
an observational charging of the Earth with the total water mass located in the
atmosphere.

Every year approximately 4 · 1014 tonnes (metric tons) of evaporated water pass
through the atmosphere, and atmospheric water is renewed 32 times per year in
average. If we take an effective height h ≈ 4 km of the atmosphere containing water
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the corresponding value of the water density will be 60 g/m−3 approximately (or
about 5% with respect to the air mass).
We now compare the total water mass in the atmosphere with that in the form

of water drops whose falling can provide an observational charging of the Earth.
Indeed, an observational current density over land is 2.4 · 10−12 A/m2, and over
the ocean it is 3.7 · 10−12 A/m2. This value will be about 3 · 10−12 A/m2, if the
total average current per Earth surface I = 1700 A will be divided per Earth surface
area S = 5.1 · 1014 m2. According to formula (14.20) this corresponds to the water
density ρ(H2O) fin the form of drops

ρ(H2O) = 1.5 · 10−2 g/m3 ,

which is significantly less than the total water density in the atmosphere.

� Problem 14.34 Taking electric phenomena in the Earth atmosphere as a secondary
phenomena of water circulation between the Earth surface and atmosphere, com-
pare the powers of these phenomena.

Thus, one can consider the Earth charging as the secondary phenomenon of water
circulation in the atmosphere. Then a part of water evaporated from the Earth sur-
face is condensed at altitudes of several kilometers, where water droplets–aerosols
are formed, and, in particular, small droplets form clouds. Large droplets which
are charged negatively due to different mobilities of positive and negative ions in
the atmosphere fall on the Earth surface under the action of the gravity force. This
leads to the Earth charging, whereas its discharging proceeds mostly as a result
of lightning discharges. Note the irregular character of these processes, so that
the rate of charging under optimal conditions exceeds its average value by several
orders of magnitude.
The water circulation in the atmosphere causes evaporation of 13 million tonnes

of water per second that requires a power of 4× 1013 kW. The power associated with
passage of electric current through the atmosphere by fall of negatively charged
drops isUI = 5 · 105 kW, whereU = 300 kV is the Earth’s potential and I = 1700 A
is the total average atmospheric current. Discharging of the Earth as a result of
thunderstorms associated with a more high cloud potential, roughly by a factor
of 103. This increases the power of electric phenomena in the atmosphere by the
indicated factor, but the result is less several orders of magnitudes in comparison
to the power that is consumed on water circulation. Hence the contribution of
electric processes to the total power of atmospheric process is very small.

� Problem 14.35 Consider the sources of atmosphere ionization from the stand-
point of the Earth charging processes.

For the Earth charging it is necessary in the beginning to form ions in the atmos-
phere and then separate these ions. There are two mechanisms of ion formation
in the Earth atmosphere, due to cosmic rays and due to radioactive decays on the
Earth surface.
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Maximum ionization by cosmic rays, mostly generated by the Sun, is observed at
altitudes of 11 to 15 km, and is characterized by ionization rates of 30–40 cm−3 s−1 .
This results in an ion number density of about 6 · 103 cm−3. (The recombination
coefficient is about 10−6 cm3/s at this altitude.) To explain the observed currents
of charged particles formed, it is necessary that the intensity of ionization in the
lower atmospheric layers should be smaller than this maximum by a factor of 100.
Another mechanism results from decay of the radioactive materials, and the rate
of these processes may be changed by several orders of magnitude depending on
a point of the Earth surface.
We can estimate time scales for the electric processes of the Earth. Positive and

negative ions recombine under atmospheric conditions by three-body collisions,
with an effective ion recombination coefficient of α = 2 · 10−6 cm3/s (see Table
14.3). This corresponds to a recombination time of about τ = (αNi)−1 = 0.5 h. This
contrasts with the much shorter characteristic time of q/I = 6 min for discharging
of the Earth, where q is the Earth’s charge and I is the average atmospheric current.
During their life time τ, ions travel a distance s = KEτ = 50 m, where K is the ion
mobility and E is the electric field strength near the Earth. Because this distance is
small compared to the size of the Earth’s layer where electrical phenomena develop,
there must be a mechanism for the generation of these ions. The intensity of this
process (i. e.„ the number of ions per unit time and per unit volume) is given by
αN2

i = 0.1 cm
−3 s−1 .

14.6
Radiation of the Solar Photosphere

� Problem 14.36 Find the relation between the number densities of electrons, neg-
ative ions and hydrogen atoms in the Sun photosphere.

Radiation of the Sun photosphere is governed by the process

e +H ←→ H− + h̄ω. (14.21)

Because this process is relatively weak, and a photosphere plasma is dense in order
to provide a high efficiency of this process, local thermodynamic equilibria are
supported in the solar photosphere on the basis of the processes

e +H ↔ 2e +H+; e +H− ↔ 2e +H (14.22)

From these equilibria the Saha relations (1.69) follow between the number densities
of the corresponding species, which are given by

Ne =
[
meT

2π h̄2

]3/4
N 1/2
H exp

(
− J
T

)
, N− =

1
4

[
meT

2π h̄2

]−3/4
N3/2
H exp

(
− εo
T

)
.

(14.23)

Here T is a local temperature; NH, Ne, and N− are the number densities of hydro-
gen atoms, electrons and negative ions, respectively; J = 13.605 eV is the ionization
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potential of the hydrogen atom; εo = J/2− EA = 6.048 eV, where EA = 0.754 eV
is the electron affinity of the hydrogen atom. We use the condition of plasma qua-
sineutrality Ne = Np, where Np is the number density of protons. The second
expression of formula (14.22) is the Saha distribution for the equilibrium between
negative ions, hydrogen atoms, and electrons. In formula (14.23) for the number
density of negative ions, the electron number density is taken from the Saha dis-
tribution corresponding to the equilibrium (14.22) between protons, electrons and
hydrogen atoms. In the problem being examined, NH � Ne � N−.

� Problem 14.37 Estimate the parameters of the layer of the solar photosphere that
is responsible for its radiation.

We employ a general formula (9.13) for emission of a hot gas layer with a varied
temperature writing it in the form

jω =
ω2

2π2c2

1∫
0

d (cos θ)
∞∫
0

duω exp(−uω/ cos θ)F(uω) ,

and F(uω) = [exp(h̄ω/T) − 1]−1 . Assuming the dependence F(uω) to be weak, we
expand this function over a small parameter in a series

F(uω) = F(uo) + (uω − uo)F′(uo) +
1
2
(uω − uo)2F′′(uo) ,

we choose the parameter uo such that the second term is zero after integration.
This yields uo = 2/3, and the radiation flux is

jω = j(o)ω

[
1 − 5F′′(uo)

18F(uo)

]
, (14.24)

where j(o)ω = ω2(4π2c2)−1 [exp(h̄ω/T) − 1]−1 is the radiation flux of a black body at
a temperature that corresponds to the point where the optical thickness is uω = 2/3.
The second term in the parentheses of formula (14.24) makes it possible to estimate
the accuracy of the operation employed.
We now apply formula (14.24) to the solar atmosphere. Approximating the height

dependence for the number density of negative ions by the dependence N−(z) =
N−(0) exp(−z/l), we obtain from the relation uo = 2/3 the expression

N− = (2lσω/3)−1 (14.25)

for the number density of negative ions, where σω is the cross section for H− pho-
todetachment. The effective radiative temperature for a given frequency is taken
to be the temperature of the solar atmosphere at the altitude that is defined by
formula (14.24).
The photodetachment cross section of the negative hydrogen ion has a thresh-

old at the photon energy h̄ω = EA, and has a maximum, σmax = 4 · 10−17 cm2, at
h̄ωmax = 2EA = 1.51 eV corresponding to the photon wavelength λ = 0.8 µm. Us-
ing parameters for the average quiet solar photosphere, we obtain formula (14.24)
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that the effective temperature for this wavelength is Tef = 6100 K. The layer of the
average solar atmosphere with this temperature contains plasma constituents with
number densities NH = 1 · 1017 cm−3,Ne = 4 · 1013 cm−3, and N− = 4 · 109 cm−3.

� Problem 14.38 Estimate a thickness of the solar photosphere that is responsible
for solar emission in a visible spectrum range.

The temperature of solar plasma varies with variation of the layer altitude, and
because of local thermodynamic equilibrium for plasma constituents, the num-
ber density of negative ions varies with the altitude according to their temperature
dependence N− ∼ exp(−εo/T). This gives the thickness of the layer that is respon-
sible for Sun radiation

l =
[

εo
T
d ln T
dz

]−1

= 40 km .

The effective radiation temperature Tω for radiation at a given frequencyω depends
on the photodetachment cross section σω for this frequency according to formula
(14.25). Taking the effective radiation temperature in the form Tω = ∆T + Tef, we
obtain from this formula

∆T = l
dT
dz

ln
σmax

σω
.

As an example, we consider radiation of the solar photosphere at a double fre-
quency with respect to the maximum for the absorption cross section of the hy-
drogen negative ion. This gives h̄ω = 2h̄ωmax(λ = 0.4 µm). Then σω = 0.65σmax,
and we have ∆T = 200 K. This corresponds to an increase in the radiation flux by
20% compared to that of the radiation temperature Tef.
To check the validity of the expansion used for the function F(uω), we take

F(uω) = exp(−h̄ω/T), that is valid when h̄ω � T . In this case the second term in
the parentheses of formula (14.24) is

5
18

F′′ (u0)
F (u0)

=
5
18

[
h̄ω

T
d ln T
du

]2
=

5
18

[
h̄ω

T
· 1
uo

· d lnT
dz

]2
=

5
18

[
h̄ω

εo

]2
,

where uo = 2/3. At the photon energy h̄ωmax the second term in the brackets of
formula (14.24) gives a correction of 7 % that justifies the method under consider-
ation.
Thus, in spite of variation of the temperature of the solar photosphere depend-

ing on its altitude, one can reduce emission of the photosphere to radiation of
a gas layer with a constant temperature. The method under consideration uses
two parameters of the photosphere, NH(To) and dT/dz, where the temperature To
corresponds to the temperature of the layer that gives the main contribution to
layer emission. In terms of this method, the effective temperature for each fre-
quency depends on the frequency dependence for the absorption cross section of
the negative hydrogen ion. The difference between the radiation flux from the solar
photosphere and that from black body at the temperature To can be determined
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within the framework of the above method and is relatively small because the value
dT/dz is relatively small. Of course, this operation my be done for any current val-
ues of To and dT/dz.
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15
Gas Discharge Plasmas

15.1
Conditions of Self-Sustaining Gas Discharge

� Problem 15.1 Compare with the Debye–Hückel radius, a distance between elec-
trodes of a dark discharge, where a plasma charge does not influence on the field
distribution in a gas gap.

Gas discharge is characterized by passage of electric currents through a gas when
the gas is located between two electrodes with some voltage between them. We
study the possibility of the self-sustaining regime if electrons and ions during
their motion to electrodes creates new charged particles, and an electric current
is maintained in this manner.
If a weakly ionized gas is located in a space between two alive electrodes, two

limiting distributions are possible in a gas as it is shown in Fig. 15.1. According to
the definition of the dark gas discharge, a plasma charge inside the gap is small
and does not affect the field distribution, i. e., the electric field strength E is equal
in this case, E = U/L, whereU is the voltage between electrodes, and L is a distance
between them. From the Poisson equation for the electric field strength inside a

Fig. 15.1 The electric field potential distribution in a gap between two
electrodes. (1) a small number density of charged particles; (2) a large
number density of charged particles.
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plane gap, we have

dE
dx

= 4πe(Ni − Ne) ,

where Ni, Ne are the number density of ions and electrons, respectively, we obtain
from the definition of dark gas discharge,

E � 4πeNo ,

where No is the average number density of charged particles.
On the other hand, each electron during its motion between electrodes must

create a new charged pair. Assume that a portion ξ of an energy obtained by an
electron from the field is consumed on ionization. Then from the condition of
current maintenance, we have

eEL ≥ J
ξ
,

where J is the atom ionization potential. Because it exceeds an average electron
energy, these two criteria give for a dark gas discharge

rD � L ,

and we use the definition of the Debye–Hückel radius.
Taking estimation L ∼ 1 cm and a typical electron energy of few eV, we obtain

No � 103 cm−3, which corresponds to a typical charge number density in a real
atmosphere. Hence, dark gas discharge is realized under specific conditions.

� Problem 15.2 Find the condition of ignition of gas discharge in the gaseous gap
where a constant electric field is supported.

Let us study evolution of an electron that is injected in a gas gap with a constant
electric field. The balance equation for the electron number density in the gap has
the form

dNe

dt
= αNe .

Here α(E) = Na 〈vσion〉 /we is the first Townsend coefficient, Na is the number
density of atoms, σion is the cross section for ionization of the atom by electron
impact, and we is the electron drift velocity. The solution of this equation is Ne =
N0 exp(

∫
αdx), where N0 is the electron number density near the cathode, the

integral is taken over the gap region, and the x-axis is perpendicular to electrodes.
The second Townsend coefficient γ is the probability for generation of an elec-

tron as a result of ion bombardment of a positively charged plate. The value of γ

depends both on the gas type and on the surface material. Table 15.1 gives the val-
ues of the second Townsend coefficient for a tungsten cathode and inert gas ions
at two collision energies.
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Table 15.1 The second Townsend coefficient for a tungsten surface.

Ion Ei = 1 eV Ei = 10 eV

He+ 0.30 0.27
Ne+ 0.21 0.25
Ar+ 0.095 0.11
Kr+ 0.048 0.06
Xe+ 0.019 0.019

If one electron is formed near the positively charged plate, eαL electrons are
formed near the second plate, where L is a distance between plates, and eαL − 1
electrons are formed additionally in the gap. Then after plate bombardment by
ions γ(eαL − 1) = 1, electrons are formed per initial electron. Hence, the condition
of a self-maintained gas discharge in a gap between two plates has the form

αL = ln(1 + 1/γ) . (15.1)

� Problem 15.3 Analyze the dependence of the first Townsend coefficient of gases
on the electric field strength.

We use a general expression for the first Townsend coefficient if electrons are
moving in a gas in an external electric field,

α =
Nakion

we
,

where kion is the rate constant of atom ionization by electron impact, and we is the
drift velocity of an electron in a gas. As it follows from this, a general dependence
of the first Townsend coefficient on the reduced electric field E/Na has the form

α = NaΦ
(
eE
Na

)
,

where Φ(x) is a universal function. We analyze this dependence if an average elec-
tron energy is small compared to the atom ionization potential, i. e., the ionization
rate constant is determined by the tail of the electron distribution function.
We note that the function Φ(x) is sensitive to gas properties. In particular, if the

number density of electrons is not small in accordance with criterion (7.18), the
strongest dependence for the function Φ(x) has the form

Φ ∼ exp
(

− J
Te

)
, Te � J .

The electron temperature Te is given by formula (7.26) and is proportional to
(E/Na)2 at large specific electric field strengths, if the rate constant of elastic
electron–atom collision is independent of the electron velocity. But even the
electron number density is small, the presence of excited atoms and a small
admixture of lightly ionized atoms can increase the Townsend coefficient. Below
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we consider the limiting case when a pure gas is not changed under the action of
electrons, and the corresponding Townsend coefficient relates to the breakdown
process or to other cases of a nonexcited gas.
Let us analyze the reduced electric field strength dependence for the Townsend

coefficient in a pure nonexcited gas at low electric field strengths, when ionization
corresponds to tail of the electron distribution function. Then it is proportional to
the distribution function of electrons at the energy of the atom ionization potential,
and the distribution function is a result of two factors. The first is the distribution
function at energies below the atom excitation energy, if the distribution function
is determined by elastic electron–atom collisions and is given by formula (7.9). The
second factor is determined by the electron energies above the atom excitation
energy and below its ionization potential and is given by formula (9.75). Taking
into account the electric field strength dependence for each factor, we obtain the
Townsend coefficient

ln α = ln αo − C1
(eE/Na)2

− C2
eE/Na

,

where αo, C1 , C2 are constants. Because according to formula (7.9) the constant
C1 ∼ me/M, i. e., is relatively small, we have a range of small, but not very small
reduced electric field strengths where the second term of this formula dominates.
Then the first Townsend coefficient is approximated by the dependence

α = ANa exp(−BNa/E) , (15.2)

and Table 15.2 gives values of this formula parameters, as well as the ranges of
reduced electric field strengths where this dependence holds true. These values
are obtained by Townsend and are suitable for study of breakdown phenomena in
a pure gas.

Table 15.2 Parameters for ionization in the cathode region
[1 Td (Townsend) = 10−17 V cm2]. The parameters A and (NaL)min
are given in units of 10−16 cm2.

Gas A B (Td) Region of E/Na (Td) (NaL)min Uc (V) Ec/Na (Td)

He 0.85 96 60–420 5.4 49 140
Ne 1.1 280 280–1100 5.0 130 390
Ar 4.0 510 280–1700 1.8 86 720
Kr 4.8 680 280–2800 2.0 130 980
Xe 7.3 990 280–2300 1.7 160 1400

At very low electric field strengths dependence (15.2) violates. Such examples are
demonstrated in Figs. 15.2 and 15.3, where the first Townsend coefficient for argon
and krypton is given in some range of electric fields.

� Problem 15.4 Analyze the character of variation of the first Townsend coefficient
of gases at low electric field strengths depending on the number density of elec-
trons.
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Fig. 15.2 The first Townsend coefficient for argon versus the reduced electric field strength.

Fig. 15.3 The first Townsend coefficient for krypton as a function of the reduced
electric field strength.

The first Townsend coefficient is determined by the character of ionization
processes involving electrons which are moving in a gas in an external electric
field. In turn, the ionization rate is connected with the tail part of the electron
distribution function, and a strong drop of the wave function at energies takes
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place if the electron energy exceeds the excitation atom energy because of atom
excitation processes. If some processes restore the electron distribution function,
the first Townsend coefficient will increase at a given electric field strength. In
particular, this takes at high electron number density when the tail of the distrib-
ution function is restored as a result of electron–electron collisions. In this case
the electron distribution function is given by formula (7.19) and does not depend
on excitation processes.
In particular, let us consider the case when electron–electron collisions dominate

in establishment of the tail of the electron distribution function and along with
that, the electron–atom diffusion cross section does not depend on the collision
velocity. Then in accordance with dependences (7.29) for the electron drift velocity
and temperature and also formula (4.45) for the ionization rate constant, we now
have the following dependence for the first Townsend coefficient α on the reduced
electric field strength x = E/Na:

ln α =
C1
x4

exp
(

−C2
x

)
,

where C1 , C2 are constants. We show in Fig. 15.4 this dependence for neon where
the diffusion cross section of electron–atom collision is σ∗

ea = (0.57 ± 0.03) Å2 in
the energy range under consideration. As is seen, a typical electric field strength
responsible for ionization is shifted by more than an order of magnitude due to
restoring of the tail of the electron distribution function in electron–electron colli-
sions.

Fig. 15.4 The neon first Townsend coefficient for low (solid curve) and
high (symbols) electron number densities.
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We above discussed criterion (7.18) when the trunk of the electron distribution
function is determined by electron–electron collisions. Note that for the tail of the
distribution function this criterion is stronger.

� Problem 15.5 Express the condition of ignition of gas discharge through the pa-
rameters of the Townsend coefficients.

On the basis of formula (15.1) for the first Townsend coefficient, it is convenient to
represent the condition of discharge ignition (15.2) in the form

Uc =
B(NaL)

ln [A/ ln(1 + 1/γ)] + ln(NaL)
, (15.3)

and the gap voltage is Uc = EL. This is the breakdown potential that provides
subsequent development of an electric field. The gap voltage Uc is minimum in
the following parameters:

(NaL)min =
e
A
ln

(
1 +

1
γ

)
, (15.4)

and the optimal conditions give

Umin = B(NaL)min =
eB
A
ln

(
1 +

1
γ

)
. (15.5)

We found that the electric potentialU in a gas-filled gap that provides gas break-
down depends on the combination NaL only. The dependence for the breakdown
potential Uc

Uc = f (NaL) , (15.6)

is called the Paschen law. This function (15.6) has a minimum and Fig. 15.5 rep-
resents this curve for air as an example of this curve. Note that the subsequent
development of an electric current in a gas-filled gap leads to charge separation,
when the charge density becomes significant. As a result, a region with a separated
charge shrinks and is transformed in the cathode region of gas discharge.

� Problem 15.6 Write the condition of discharge ignition if along the ionization
process, attachment of electrons to gas atoms or molecules may be essential.

The process of electron attachment to atoms or molecules changes the condition
of breakdown because of an additional channel of electron loss. In particular, this
relates to air where the process of attachment of electrons to the oxygen molecule
according to the scheme (e +O2 → O− + O) occurs. Correspondingly, the equation
of breakdown (15.1) takes the form

(α − η)L = ln(1 + 1/γ) , (15.7)
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Fig. 15.5 The Paschen curve for the breakdown potential of a gas
located between two parallel plates as a function of the reduced dis-
tance between plates.

where η is the rate constant for electron attachment per unit length of the electron
trajectory. In the limit of large values of the parameter NaL this relation takes the
form

α(E/Na) = η(E/Na) , (15.8)

which connects the breakdown electric field strength and the number density. For
air, this relation is E/Na ≈ 90 Td, corresponding to an electric field of 25 kV/cm at
atmospheric pressure.

� Problem 15.7 Gas discharge is maintained in a space between two coaxial cylin-
ders of radii ρ1 and ρ2, and a lightly ionized admixture through the Penning process
provides ionization in this system. Obtain the condition of maintenance consider-
ing the diffusion of metastable atoms.

For this coaxial system the condition of dischargemaintenance instead of condition
(15.1) is given by

ρ2∫
ρ1

αdρ = ln
(
1 +

1
γ

)
, (15.9)

where ρ1 , ρ2 are distances from the axis to electrodes, ρ is a distance from the axis
to a current point. The electric field strength at a given point is

E =
∆U

ln(ρ1/ρ2)
n
ρ
,
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where ∆U is the voltage between coaxial electrodes and n is the unit vector in the
radius direction.
The ionization process starts from excitation of an atom of a basic gas. This atom

displaced during its lifetime and then collides with an admixture atom that leads to
the Penning process with ionization of an admixture atom. Because the excitation
and ionization processes proceed in different points, this leads to a change of the
ionization condition, and below we determine a correction due to this process.
Indeed, if excitation proceeds at the point ρo and ionization at the point ρ, this
leads to variation of the potential electron energy ∆U that is given by

∆U =
dE
dρ

∫
(ρ − ρo)w(ρo, ρ)dρ = −E(ρo)

(ρ − ρo)2

ρo
,

where w(ρo, ρ) is the probability that ionization proceeds at ρ when excitation takes
place at ρo.
According to the definition of the first Townsend coefficient, the energy con-

sumed per pair is eE/α, so that the variation of the Townsend coefficient δα due to
this effect is given by

δα

α
=

α∆U
eE

.

This leads to the following condition of the discharge maintenance instead of for-
mula (15.9)

ρ2∫
ρ1

α

(
1 ± α(ρ − ρo)2

ρ

)
dρ = ln

(
1 +

1
γ

)
. (15.10)

Here the sign
“
plus” relates to the case when an internal cylinder is the cathode,

whereas the sign
“
minus” is used if the cathode is an external electrode.

According to formula (8.36) we have

(ρ − ρo)2 = 2Dmτ ,

where Dm is the diffusion coefficient of excited atoms, and 1/τ = NadkP, where Nad
is the number density of admixture atoms, kP is the rate constant of the Penning
process. As a result, the above condition of discharge maintenance (15.10) takes
the form

ρ2∫
ρ1

α

(
1 ± αDm

NadkPρ

)
dρ = ln

(
1 +

1
γ

)
. (15.11)

Thus, displacement of a point of atom ionization compared to the point of atom
excitation leads to a change of the effective Townsend coefficient that is taken into
account in the above formula.
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15.2
Cathode Region of Gas Discharge

� Problem 15.8 Find the current density in the cathode region of glow discharge,
which is characterized by the ionization process by electron impact and cathode
bombardment by an ion.

Threemain discharge regions are the cathode region that is responsible for electron
emission, the anode region, where electrons attach to the anode, and the positive
column for a long distance between electrodes, and gas ionization in the positive
column is independent of processes near electrodes. In fact, there are intermediate
regions, but since they are not of principle, we exclude them from consideration.
We now consider the cathode region of glow discharge where ions attach to the
cathode and electrons are generated by the cathode.
We first analyze the spatial distribution of ions and electrons in the cathode

region, and this is determined by the Poisson equation

dE
dx

= 4πe(Ni − Ne)

for the electric field strength, where Ni and Ne are the number densities of ions
and electrons, respectively. Assuming the mean free path of ions and electrons to
be small compared to a dimension L of the cathode region, the current densities
of ions ii and electrons ie are obtained in the following expressions:

ii = eKiNiE, ie = −eKeNeE ,

where Ki and Ke are respective mobilities of the ions and electrons, and for sim-
plicity we assume that the electric field strength is relatively small. We assume that
in the cathode region ii ∼ ie and Ke � Ki, which gives Ne � Ni in the cathode
region, where the Poisson equation takes the form

dE
dx

= 4πeNi = −4πii/(KiE) .

We take the sign of the electric field strength such that the electric field hinders
the approach of ions to the cathode.
Ignoring ionization processes in the cathode region, we found that the total elec-

tric current density i = ii + ie is conserved there. The boundary condition at the
cathode has the form ie(0) = γii(0), or ii(0) = i/(1 + γ), where γ is the second
Townsend coefficient. Since ions are formed outside the cathode region, this rela-
tion ii = i/(1 +γ) is valid in the entire cathode region. Correspondingly, the solution
of Poisson’s equation gives

E2 = E2c − 8πi
KiE(1 + γ)

x , (15.12)

where x is a distance from the cathode, and Ec = E(0). Taking the electric field
strength to be zero on the boundary of the cathode region (L is small compared to
the tube radius), we obtain

i = E2cKi(1 + γ)/(8πL) . (15.13)
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� Problem 15.9 Give the criterion of a normal glow discharge where a current oc-
cupies a part of the cathode.

According to formulas (15.12) and (15.13), the parameters of the cathode region fol-
low from the condition that the cathode voltageUc is minimal. Hence, according to
formula (15.13) the current density remains constant if the total discharge current
I varies. This means that variation of the discharge current leads to a change of
the cathode area occupied by the current. This area is I/i and as long as this value
is smaller than the cathode area πr2o (ro is the cathode radius), this corresponds
to the normal regime of glow discharge when the current occupies a part of the
cathode. Then such parameters of the cathode region, as its dimension L, and the
cathode voltage Uc do not vary on increasing the total discharge current.
When the discharge electric current exceeds the value iπr2o , the glow discharge

becomes abnormal. The subsequent increase of the discharge current that leads
to cathode heating will change the regime of the cathode current and give the
transition to arc discharge. When heating of the cathode becomes sufficient for
thermoemission of electrons, the cathode voltage drop decreases, and the transition
from a glow discharge to an arc takes place. The voltage drop of the cathode for
arc discharge is 20–30 V that is one order of magnitude lower than that in glow
discharge.

� Problem 15.10 Find the relation between the cathode voltage and parameters of
the cathode region.

We now give formulas for parameters of the cathode region using the first
Townsend coefficient formula (15.2). According to the Poisson equation, the
electric field strength is E = Ec

√
1 − x/L in the cathode region, and this value

drops remarkably at transition from the cathode region to the positive column
where the electric field strength is significantly low. Replacing equation (15.1)
by

∫
αdx = ln(1 + 1/γ) and substituting expression (15.2) for the first Townsend

coefficient in equation (15.12), we obtain the condition of discharge maintenance
in the form

Ay
1∫
0

exp(−b/z1/2)dz = ln(1 + 1/γ) ,

where y = NaL, z =
√
1 − x/L, and b = BNa/Ec. From formula for the cathode

voltage Uc = 2EcL/3, we have b = 2BNaL/(3Uc). The condition of the minimum
of the cathode voltage dUc/dy = 0 gives db/dy = b/y. Then expression (15.2) for the
first Townsend coefficient leads to the following condition taking into account the
minimum cathode voltage

J(b) + bdJ(b)/db = 0 ,
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where J(b)=
∫ ∞
0 exp(−b/z1/2)dz. The solution of the above equation yields b = 0.71,

which leads to the following expressions for parameters of the cathode region:

(NaL)min =
3.05
A

ln(1 +
1
γ

), Umin = 0.94B(NaL)min = 2.87
B
A
ln(1 +

1
γ

) .

(15.14)

These equations are similar to equations (15.4) and (15.5), which use the assump-
tion of a constant electric field strength.
Table 15.3 exhibits cathode region parameters calculated on the basis of formulas

(15.14). Table 15.3 gives the values of the cathode voltage drop for a few gases and
cathode materials used in glow discharges.

Table 15.3 The normal cathode drop Uc(V) of glow discharges for some
gases and cathode materials.

Al Ag Cu Fe Pt Zn

He 140 162 177 150 165 143
Ar 100 130 130 165 131 119
H2 170 216 214 250 276 184
N2 180 233 208 215 216 216
Air 229 280 370 269 277 277

� Problem 15.11 Construct the voltage–current characteristic for the cathode region
of gas discharge.

In the course of an increase of the discharge current, until this is a normal glow
discharge and only a cathode part is occupied by a current, the cathode voltage is
independent of the current. When the current fills all the cathode area, its subse-
quent increase leads to an increase of a charge in the cathode region. As a result,
the voltage of abnormal glow discharge increases with a current increase, as it is
shown in Fig. 15.6. But an increase of the discharge electric current leads to cath-
ode heating, and at high cathode temperatures the character of cathode processes
is changed. When the cathode temperature is enough high, thermoemission of
electrons on the cathode takes place. This mechanism of generation of electrons
leads to a low cathode drop that is of the order of the ionization potential of gas
atoms. Including the transition to this mechanism of electron generation in the
voltage–current characteristic of the voltage region, we obtain this dependence as
it is shown in Fig. 15.7.

15.3
Positive Column of Glowing Discharge of High Pressure

� Problem 15.12 Gas discharge is burnt in a cylindrical tube of the radius ro, and
the balance of electrons in the positive column of gas discharge is determined
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Fig. 15.6 The voltage-current characteristic for the cathode region in argon
at pressure of 1 Torr, γ = 0.1 and ro = 1 cm.

Fig. 15.7 A typical cathode voltage-current characteristic in a wide range of currents.

by direct ionization of atoms by electron impact and by attachment of electrons
to walls. Taking into account electrons and ions travel to the walls by ambipolar
diffusion, find the relation between the rates of processes involving electrons in
the limit of a small electron number density.

A positive column contains an uniform plasma because conditions of formation
of charged particles as a result of atom ionization by electron impact, as well as
conditions of loss of charged particles by their attachment to the walls are identical
for different cross sections of the discharge tube. From this it follows, in particular,
which an increase of the distance between electrodes leads to an increase of the
positive column, while dimensions of the cathode and anode regions are conserved
under this operation.
While considering a self-consistent plasma of the positive column, we assume

that electrons are formed by direct ionization of atoms by electron impact and
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decay as a result of ambipolar diffusion of electrons and ions to the walls, and the
balance equation for the electron number density Ne,

Da

ρ

d
dρ

(
ρ
dNe

dρ

)
+ kionNeNa = 0 . (15.15)

Here ρ is a distance for the axis center, Da is the ambipolar diffusion coefficient,
Na is the atom number density, and kion is the rate constant for atomic ionization
by electron impact. This equation is added by the boundary condition Ne(ro) ≡
No = 0, where ro is the tube radius.
We consider the regime of weak currents when plasma parameters and rates

of processes are independent of ρ, so that the solution of equation (15.15) has the
form of the Schottky distribution

Ne(ρ) = NoJ0


ρ

√
kionNa

Da


 , (15.16)

where J0(x) is the Bessel function. The boundary condition Ne(ro) = 0 gives

Nakionr2o
Da

= 5.78 . (15.17)

This relation equalizes the rate of the ionization process (∼ Nakion) and the rate of
electron and ion transport to the walls (∼ Da/r2o ). Figure 15.8 shows dependence
(15.16).
Note that these results relate to the positive column of glow discharge, where,

on the one hand, the radius of the discharge tube (in reality, ro ∼ 1 cm) is large

Fig. 15.8 The distribution of the electron number density over the cross
section of a discharge cylinder tube for the positive column and Schottky
regime of the ionization balance in accordance with formula (15.16).
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compared to the Debye–Hückel radius of this plasma, and, on the other hand,
the electron current does not heat remarkably the plasma and its parameters are
identical over the tube cross section. In reality this relates to the number density of
electrons Ne ∼ 108 − 1012 cm−3. This corresponds to the Debye–Hückel radius
in the range rD ∼ 1 to 100 µm. In addition, the mean free path of electrons and
ions in this plasma is large compared to the tube radius that corresponds to the
gas pressures p � 10−5 atm at room temperature.

� Problem 15.13 Find the average lifetime for electrons located in the positive col-
umn of gas discharge of low currents.

The average lifetime τe of an electron in the positive column plasma is given by

τD =
1

2πro j(ro)

r0∫
0

2πρdρNe(ρ) ,

where the integral is the average number of electrons per unit length of the dis-
charge tube, and j is the flux of electrons toward the walls. Let us represent formula
(15.16) in the form

Ne(ρ) = N0J0

(
2.405

ρ

ro

)
,

and in simplified evaluation one can use the approximation J0(2.405ρ/ro) ≈ 1 −
(ρ/ro)1.34 that is valid with the accuracy of 8%. The electron flux to the walls is

j = −Da
dNe(ro)

dρ
=
1.25DaN0

ro
,

and the total number of electrons per unit length of the discharge tube is equal to

ro∫
0

2πρdρNe(ρ) = 1.36N0r20 . (15.18)

This gives the average lifetime of electron traveling to the walls as

τD =
1.36N0r20
2πro j

=
0.173r2o
Da

=
1

Nakion
, (15.19)

which reflects the equality of the rates for electron generation in the positive col-
umn plasma and their recombination on the walls.

� Problem 15.14 Determine the electric field strength in the positive column of he-
lium in the Schottky regime of ionization processes.

The electric field strength is given by formula (15.19), and we use formula (7.16) the
rate constant of ionization of a helium atom by electron impact. This approximation
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corresponds to assumption that the transport cross section of elastic electron–atom
scattering is independent of the collision velocity, and we take it to be σ∗ = 6 ·
10−16 cm2. In this approximation, the electron distribution function is according
to formula (7.9)

f0(ε) =
1.63Ne

ε
3/2
o

exp
(

− ε2

ε2o

)

This distribution function is normalized to the electron number density, and a typi-
cal electron energy is large compared to the atom thermal energy T . The parameter
εo in this formula is expressed through the reduced electric field strength E/Na as

εo =

√
M
3me

eEλ ,

where M is the atom mass, and λ = (Naσ∗)−1 is the mean free path for electrons.
Expressing the reduced electric field strength E/Na in Townsend (1 Td = 10−17 V ·
cm2) and the parameter εo in eV, we obtain in the case of helium εo = 0.82E/Na.
Hence formula (15.19) gives in this case by using formula (7.16) for the ionization
rate constant

E
Na

=
1.22J√

ln
(
ko(Naro)2
5.78DaNa

) (15.20)

This formula gives the dependence of the reduced electric field strength E/Na on
the reduced tube radius roNa. Figure 15.9 represents this dependence if the reduced
tube radius roNa ranges from 1017 to 1019 cm−2. Then the average electron energy
0.74εo varies from 7.1 to 4.7 eV.

� Problem 15.15 Determine the voltage near the walls of a discharge tube for the
positive column of gas discharge of low currents if this voltage equalizes the elec-
tron and ion currents to the walls.

Electrons and ions travel to the walls in the positive column of the discharge tube
with identical drift velocities because of the mechanism of ambipolar diffusion that
is realized on large distances from the walls compared to the mean free path of
electrons and ions. Because of the difference of electron and ion masses, a field
arises that leads to a small violation of the plasma quasineutrality and equalizes the
electron and ion currents to the walls. But at the wall vicinity, where distance from
the walls is comparable to the mean free path of electrons and ions, the plasma
quasineutrality is violated because of equality of electron and ion currents to the
walls. We below find the plasma electric potential ϕW due to this effect, the plasma
sheath.
The electron je and ion ji fluxes to the walls are equal to

je = Ne

√
Te

2πme
, ji = Ni

√
Ti

2πmi
,
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Fig. 15.9 The reduced electric field strength in the positive column for pure
helium in the limit of low electron concentrations (the Schottky regime of
ionization equilibrium). 1 – formula (15.20), 2 – data of Table 15.2.

where Ne and Ni are the electron and ion number densities near the walls, and me

and mi are the electron and ion masses, respectively, and for simplicities we con-
sider the regime when one can introduce the electron temperature Te that differs
from the ion temperature Ti. Because the fluxes of electrons and ions on the walls
are identical, an electric field arises in the double layer near the walls that slows
the electrons. Assuming that the Boltzmann formula (1.12) is valid for the number
density of electrons in the double layer, we find a decrease of the electron number
density near the walls to be described by the factor ∼ exp(−eϕw/Te). Then the
equality of the electron and ion fluxes gives the difference of the electric potentials
between the plasma and the walls,

eϕw =
Te
2
ln

(
Temi

Time

)
. (15.21)

A double layer also arises on any plasma boundaries.

� Problem 15.16 An equilibrium in the plasma of the positive column of gas dis-
charge results from ionization of atoms by electron impact through the atom
metastable state and transport of charged particles to the walls by ambipolar dif-
fusion. Find the relations between the number density of metastable atoms and
parameters of these processes.

Taking into account the indicated processes and using the variable x = ρ2/r2o ,
we obtain instead of the balance equation (15.15) the following set of the balance
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equations:

4Da
d
dx

(
x
dNe

dx

)
+ kionNeNmr2o = 0, 4Dm

d
dx

(
x
dNm

dx

)
+ kexNeNar2o = 0 ,

(15.22)

where Nm is the number density of metastable atoms, kex is the rate constant for
excitation of the metastable state by electron impact, kion is the rate constant for
ionization of a metastable atom by electron impact, and Dm is the metastable atom
diffusion coefficient. The set of equations (15.22) is added by the boundary condi-
tions Ne(r0) = Nm(r0) = 0.
Let us approximate the number densities of electrons and metastable atoms in

the following form

Ne = C1(e−ax − e−a), Nm = C2(e−bx − e−b) ,

and the parameters of these dependences we obtain from the above balance equa-
tions at x = 0 and from these balance equations integrated over dx. In order to
estimate the accuracy of this operation, we apply it to equation (15.15). Then we
obtain a = 0.842 and

Nakionr2o
Da

=
4a

1 − e−a = 5.9 ,

instead of (5.78) according to formula (15.17).

The above procedure gives the set of equations (15.22),

a = 1.410, b = 0.951,
Nakexr2o
Dm

= 1.550,
Nm(0)kionr2o

Da
= 1.865 . (15.23)

Relations (15.23) that follow from the balance equations (15.22) account for the
balance of electrons and metastable atoms with respect to their formation and
decay in the positive column of gas discharge. These results give the fluxes of
metastable atoms jm and electrons je onto the walls,

jm = −Dm
dNm(ro)

dρ
=
1.2DmNm(0)

ro
, je = −Da

dNe(ro)
dρ

=
0.91DaNe(0)

ro
.

(15.24)

� Problem 15.17 Determine the boundary number density of electrons at which
metastable helium atoms He(23S) formed in the positive column give a contri-
bution to ionization processes in the positive column of a cylinder discharge tube
in helium. The lifetime of metastable atoms is determined by its collisions with
the walls.

For this goal one can use formula (15.17) in the form

k(o)
ionNo + k

(m)
ion Nm = 5.78

Da

r2o
, (15.25)
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where k(o)
ion, k

(m)
ion are the rate constants for ionization of an atom in the ground and

metastable states, respectively, and No, Nm are the number densities of atoms in
the ground and metastable states. In this formula we assume the number density
of metastable atoms is constant over the tube cross section as well as that for atoms
in the ground states. Though this assumption can violate, we ignore this because
of a strong dependence of the rate constants on the field strength.
We consider the electron–atom elastic cross section independent of the collision

energy in the helium case (we take it σ∗
ea = 6 Å2), and then the population of

metastable atoms is given by formula (7.17)

Nm = 1.53No
( εo

∆E

)3/2
exp

(
−∆E2

ε2o

)
,

where the characteristic electron energy εo is given by formula (7.15) and ∆E is the
excitation energy for the metastable state. This formula assumes that metastable
atoms are destroyed as a result of quenching by electron impact.
We consider below the case of a low electron number density when removal of

metastable atoms results from their traveling to the walls, so that the following
criterion holds true:

Nekqτ � 1 .

Here kq is the rate constant of quenching of a metastable atom by electron impact,
and for metastable helium atom we take it from Table 4.1 (kq = 3.1 · 10−9 cm3/s);
τ is the lifetime of a metastable atom due to its collision with a wall, and we take
this lifetime according to formula (15.19)

τm =
0.17r2o
Dm

.

Here Dm is the diffusion coefficient for metastable atoms, and we give in Table 15.4
its values for metastable atoms of inert gases in a parent gase at room temperature.

Table 15.4 The reduced diffusion coefficients DmNa for metastable atoms
of inert gases in a parent gas at room temperature (Dm is the diffusion
coefficient of metastable atoms, Na is the number density of atoms).

Metastable atom He(23S) He(21S) Ne(32P2) Ar(42P2) Kr(52P2) Xe(62P2)

DmNa (1018 (cm · s)−1) 16 14 5.0 2.0 1.0 0.60

In this limit, the number density of metastable atoms according to formula
(7.17) is

Nm =
0.17r2okqNe

Dm
1.53

( εo
∆E

)3/2
exp

(
−∆E2

ε2o

)
.

This allows us to determine the boundary electron number density Ne at which
both terms of the right-hand side of equation (15.25) are equal. Using formula (7.16)
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for the ionization rate constant, we find the boundary electron number density Ne,

Ne = No
3.8DmNo

kq(roNo)2

(
∆E
εo

)3/2 (
J∗
J

)4

exp
(
J2∗ +∆E2 − J2

ε2o

)
. (15.26)

Here J∗ = 4.77 eV, J = 24.59 eV are the ionization potentials in the metastable and
ground states, and ∆E = 19.82 eV is the excitation energy for the helium atom.
Figure 15.10 gives the boundary values for the electron number densities starting

fromwhich ionization of the metastable state gives a contribution to helium ioniza-
tion. The corresponding values of the electric field strengths and the corresponding
values of the parameter εo are taken from Fig. 15.8. If we express the parameter εo
in eV and Noro in cm−2, this formula for the relative boundary number density of
electrons takes the form

Ne

No
=

2.4 · 1027
ε
3/2
o (roNo)2

exp
(

− 189
ε2o

)
.

As it follows from Fig. 15.10, ionization of metastable or excited states becomes es-
sential at very low electron number densities and correspondingly at low discharge
currents. If the reduced tube radius roNo varies from 1 · 1017 cm2 to 1 · 1018 cm2,
the reduced electron number density roNe varies from 4.1 · 108 cm2 to 1.1 · 108 cm2.

� Problem 15.18 Construct the current–voltage characteristic for the positive col-
umn of a cylinder discharge tube in helium if the Schottky regime is realized
for the electron balance in this plasma and the ionization rate is determined by
metastable states of helium atoms.

Fig. 15.10 The boundary electron concentration in a discharge helium
plasma as reduced for the Schottky regime of ionization in helium
when ionization of metastable He(23S) atoms and atoms in the
ground states give an identical contribution to the ionization balance.
(1) Naro = 1 · 1017 cm−2, (2) Naro = 4 · 1017 cm−2.
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The analysis shows the role of excited states in ionization processes. Along with
this, it is necessary to have a large lifetime of excited atoms for their participation
in ionization processes. In the above formulas this results in a high value of the
quenching rate constant, as well as contribution of radiative processes in decay
of these states. Therefore, only metastable states with a large lifetimes may be
important in ionization processes, and we restrict by the metastable 23S state in
the helium analysis.
We use formula (15.17) that connect rates of electron formation and loss that has

the form now

Nmk
(m)
ion =

5.78Da

r2o
,

where Nm, the number density of metastable atoms, is taken from formulas of
the previous Problem, and the ionization rate constant for metastable atoms is
evaluated by formula (7.16). As a result, this balance equation takes the form

Nero · (Naro)3 = f (εo), (15.27)

and expressing εo in eV, the reduced electric field strength E/Na in Td, and f (εo)
in 1060 cm−8, we obtain in this approximation the following relations:

εo = 0.82
E
Na

, f (εo) =
1
ε3o
exp

(
416
ε2o

)
.

Equation (15.27) is the current–voltage characteristic of the positive column, if
we change the electron number density by the electric current, and we make it
in accordance with formula (15.18) I = 1.36wNer2o , where w is the electron drift
velocity. Expressing the latter in 105 cm/s and the reduced field strength E/Na in
Td, we take the relation between these values as w = C

√
E/Na, and C ≈ 6 in this

approximation. From this we obtain the reduced discharge current in the positive
column in helium, if ionization is realized through metastable atoms He(23S)

I
ro

=
1.6 · 1047
(Naro)3

1

ε
5/2
o

exp
(
416
ε2o

)
,

where the current I is expressed in A, the tube radius ro in cm, the number den-
sity of helium atoms Na in cm−3, and the parameter εo in eV. Figure 15.11 shows
the current–voltage characteristic of the helium positive column according to this
formula. One can see a strong current dependence on the electric field strength.

� Problem 15.19 A small admixture of neon is added to helium and this gives an
additional ionization channel due to the Penning process involving a metastable
helium atom. Find the boundary neon concentration at which this process becomes
important.

The Penning process proceeds according to the scheme

A∗ + B → A + B+
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Fig. 15.11 The current-voltage characteristic of the positive column
helium plasma for the Schottky regime of ionization as a function
of the reduced radius of the cylinder discharge tube if ionization pro-
ceeds through metastable He(23S) atoms. (1) Naro = 1 · 1017 cm−2,
(2) Naro = 4 · 1017 cm−2.

and may be responsible for generation of ions from metastable atoms if the ion-
ization potential of an atom B is lower than the excitation energy of a metastable
atom A∗. Table 15.5 gives the values of the rate constants of this process if it in-
volves metastable atoms of inert gases.

Table 15.5 The rate constants of the Penning processes (in cm3/s) at room
temperature with participation of metastable atoms of inert gases.

He(23S) He(21S) Ne(3P2) Ar(3P2) Kr(3P2) Xe(3P2)

Ne 4 · 10−12 4 · 10−11 — — — —
Ar 8 · 10−11 3 · 10−10 1 · 10−10 — — —
Kr 1 · 10−10 5 · 10−10 7 · 10−12 5 · 10−12 — —
Xe 1.5 · 10−10 6 · 10−10 1 · 10−10 2 · 10−10 2 · 10−10 —
H2 3 · 10−11 4 · 10−11 5 · 10−11 9 · 10−11 3 · 10−11 2 · 10−11

N2 9 · 10−11 2 · 10−10 8 · 10−11 2 · 10−10 4 · 10−12 2 · 10−11

O2 3 · 10−10 5 · 10−10 2 · 10−10 4 · 10−11 6 · 10−11 2 · 10−10

Evidently, the Penning process becomes important in ionization of a plasma of
the positive column if a loss of metastable atoms is determined by this process.
This criterion for the regime under consideration when quenching of metastable
atoms by electron impact dominates until an admixture is absent, has the form

Nekq < NadkP ,

where Nad is the number density of neon atoms, kq is the quenching rate constant,
kP is the rate constant of the Penning process. For the case under consideration
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this criterion has the form

Ne

Nad
< 10−3 .

Because of low electron number densities, this criterion usually may be attained.

� Problem 15.20 Obtain the criterion for the number density of atoms at which
molecular ions are not formed in the positive column contained in atomic gas
even at low currents.

While considering this problem, we are guided by inert gases when along with
atomic ions, molecular ions can be formed, and at low currents molecular ions are
thermodynamically profitable. If molecular ions are located in the positive column,
recombination proceeds as a result of dissociative recombination, and the Schottky
regime of ionization is violated. But initial ionization of atoms by electron impact
in the positive column leads to the formation of atomic ions, and subsequently
they can be converted into molecular ions as a result of the three-body process
(3.59). A typical time of this process is τ3 ∼ (KiaN2

a )−1 (Kia is the three-body rate
constant for the process (3.59) given in Table 3.4 for the inert gas case), and this
typical time must be less than the lifetime τ of electrons and ions in the positive
column (15.19) with respect to their traveling to the walls. Hence, the criterion that
atomic ions are located in the positive column τ3 � τ is realized at the following
atom number density:

Na �
kion
Kia

� Problem 15.21 Ionization equilibrium in inert gases starts from atom ionization
by electron impact that leads to the formation of atomic ions. Subsequently atomic
ions are converted into molecular ions if the gas temperature is not high. Analyze
the ionization equilibrium in the positive column of gas discharge in inert gases
if molecular ions formed during plasma evolution.

Assuming the rate of dissociative recombination of electrons and molecular ions
to be large compared to the rate of plasma diffusion to the walls, we obtain the
following balance equations for the number density of atomic Ni and molecular
N2i ions:

dNi

dt
= −Ni

τD
+ kionNeNa −KiaNiN2

a = 0,
dN2i

dt
= KiaNiN2

a − αrecN2iNe = 0 .

Here τD is the lifetime with respect to electron and ion traveling to the walls, Kia
is the rate constant of three-body process (3.59) that involves atoms and ions of
inert gases, and αrec is the coefficient of dissociative recombination that proceeds
according to the scheme

e + A+2 → A∗ + A .
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Assuming the portion of molecular ions to be small N2i � Ni, we obtain the fol-
lowing equilibrium relation by using the condition plasma quasineutrality Ne = Ni

Nakion =
5.78Da

r2o
+KiaN2

a . (15.28)

We include in the balance equation an effective time of ions and electrons τD
for their transport to the walls in accordance with formula (15.19) such that in the
limit of low number densities of atoms the balance equation (15.28) is transformed
into (15.17). As the atom number density increases, the electric field strength will
increase if the current occupies all the cross sections of the discharge tube. Note
that in this case with respect to a combination Naro is not fulfilled, as it takes place
in formula (15.17), so that the reduced electric field strength in the positive column
depends on Na and ro separately.
The balance equation (15.28) holds true under the condition N2i � Ni, which

gives

Ne �
KiaN2

a
αrec

.

Since typical values Kia ∼ 10−31 cm6/s, αrec ∼ 10−7 cm3/s, and Na is found
usually in a range 1016–1018 cm−3, this criterion is fulfilled if the electron concen-
tration Ne/Na exceeds 10−8–10−6. If the opposite criterion holds true, we have the
following equilibrium relation:

Nakion =
5.78Da

r2o
+ αrecNe (15.29)

instead of (15.28). The ambipolar diffusion coefficient Da in this formula relates to
molecular ions.

� Problem 15.22 Analyze the discharge current contraction for the positive column
with inert gases if molecular ions are formed from the atomic ones during plasma
evolution.

Under conditions of previous Problem, at large number densities of atoms the
second term of the right-hand side of the balance equation (15.28) dominates and
the electric field strength increases with an increase of Na. But the electric field
strength decreases if a plasma occupies a small part of the discharge tube such
that a radius Ro occupied by the current region follows from the relation,

6Da

R2o
∼ KN2

a .

Atomic ions formed in this region are transformed into molecular ions outside this
region.
Analyzing the stability of this current distribution, we consider the Schottky

regime of the ionization balance that relates to low currents when plasma heat-
ing may be ignored. In reality, heating of the central part of the positive column
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leads to an increase of its temperature, which in turn decreases the number density
of atoms because the pressure is constant over the tube cross section. This causes
a decrease of the electric field strength and provides the stability of this contracted
discharge.
In addition we note that this contraction mechanism exists in a restricted range

of discharge current. When the gas temperature reaches a limit when molecu-
lar ions become thermodynamically nonprofitable. The discharge currents expand
over all the cross section of the positive column.

� Problem 15.23 The Schottky regime of the ionization equilibrium is realized in
a buffer gas with a lightly ionized admixture, and a uniform distribution of an
admixture along the positive column results from gas pumping. Assuming that
ionization in the positive column proceeds due to direct ionization of admixture
atoms by electron impact, find the criterion when redistribution of admixture over
the cross section of a discharge tube due to electrophoresis may be ignored.

The redistribution of admixture atoms over the cross section results from the elec-
tron or ion flux je to the walls that for the Schottky regime of ionization equilibrium
is estimated as

je ∼ NeDa

Ro
,

where Da is the coefficient of the ambipolar diffusion, and Ro is a tube radius. The
opposite flux of admixture atoms jad is

jad ∼ NadDad

L
,

where Nad is the number density of admixture atoms, Dad is the diffusion coeffi-
cient of admixture atoms in a buffer gas, and L is a typical dimension on which
the number density of admixture atoms vary remarkably.
Evidently, the criterion that admixture atoms are distributed uniformly over the

cross section has the form jad � je, when L ∼ Ro. This gives

Ne

Nad
�

Dad

Da
. (15.30)

Note that Dad � Da because of a more strong interaction of ion–atom than atom–
atom. Since in the regime under consideration Nad � Ne, along with fulfilment of
criterion the case is possible when this criterion is violated.

� Problem 15.24 Analyze the Schottky regime of the ionization equilibrium in the
positive column when electron–electron collisions dominate. Assume the cross
section of electron–atom collisions to be independent of the collision velocity.

If criterion (7.8) is fulfilled for a plasma of the positive column, one can use the
electron temperature Te as the parameter of the electron distribution function that
is given by formula (7.28) in this case. Correspondingly, substituting the ionization
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rate constant (4.45), whose data are given in Table 4.3, in the balance equation
(15.17), one can find the relation between the reduced electric field strength and
the reduced tube radius. In particular, one can use for this the dependence of Fig.
15.4 for the first Townsend coefficient on the specific electric field strength.
We note that the Schottky regime relates to small currents when plasma heating

is weak. Hence, this relates to low number densities of atoms. But if criterion (7.18)
for the electron number density holds true and the Maxwell distribution function
(7.19) takes place for electrons, the electric field strength in the positive column
decreases significantly in comparison to the limit of low electron number densities.

� Problem 15.25 Find the condition when metastable atoms determine the ioniza-
tion balance in the positive column of the cylinder discharge tube for a pure gas if
the electron–atom rate constant is independent of the collision velocity.

As it follows from the above analysis, the ionization balance in the positive column
of gas discharge includes processes of elastic and inelastic electron–atom processes
as well as transport of electrons and excited atoms. In particular, the ionization
rate is determined by a tail of the electron distribution function and therefore is
connected in a complex manner with the character of these processes. The case
under consideration is the simplest one and corresponds to the simple distribution
function (7.9) of electrons

f0(ε) = A exp
(

− ε

Te

)
,

where the parameter Te is equal to

Te =
Mw2

3
,

and is large compared to the atom thermal energy. The electron drift velocity w
according to formula (7.11) is

w =
eE

meNakea
,

where kea is the rate constant of elastic electron–atom collision that is independent
of the electron energy.
Under the above conditions we obtain the boundary electron number density Ne

instead of formula (15.26),

Ne = Na
DmNa

(Naro)2
5.78g∗
kqgo

(
J
J∗

)2

.

Using the parameters of helium atoms, we obtain the boundary electron number
density Ne,

Ne =
A

Nar2o
, A = 2.4 · 1029 cm−4 .
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Thus, we have the same dependence of the boundary electron number density on
the parameter Naro as it takes place in formula (15.26), but in contrast to formula
(15.26), Ne is independent of the electric field strength. Next, we obtain now a more
large boundary electron number density, i. e., this value is sensitive to parameters
of kinetics of ionization processes in this system.

� Problem 15.26 Estimate a minimal length of the positive column for a cylinder
discharge tube and the Schottky regime of ionization equilibrium.

The average path l that electrons pass during their lifetime is

l = weτ =
we

Nakion
=
1
α
,

where we is the electron drift velocity in an electric field of the positive column,
τ is the electron lifetime in the positive column that is given by formula (15.19),
and α is the first Townsend coefficient for the electric field strength of the positive
column. From this we obtain the condition of existence of the positive column,

Lα > 1 ,

where L is a distance between electrodes. If this criterion holds true, ionization
processes inside the positive column do not depend on processes near electrodes.
Then an increase of a distance L between electrodes does not change electrode
regions, but leads to corresponding increase of the positive column.

� Problem 15.27 Analyze the criteria of realization of the Schottky regime of ion-
ization equilibrium in the positive column of gas discharge.

The Schottky regime of ionization equilibrium is characterized by small atom and
electron number densities in the positive column of gas discharge, i. e., with re-
spect to small discharge currents and pressures, though the gas pressure provides
the validity of the condition that the mean free path of charged particles is small
compared to a discharge tube radius. Therefore, collisions between electrons are
weak until the electron travels from the point of its formation to the walls. Hence
in this limit the electron drift time τdr is small compared to a typical time τrec of
three-body recombination of electrons

τdr � τrec ,

and this was used in the equilibrium relation (15.19) and its analogs.
A low current and pressure leads to a weak gas heating by a discharge current.

Hence, a gas is uniform over the cross section of the positive column, and this fact
is used for the Schottky regime of ionization equilibrium. As a result, the basic
processes for ionization equilibrium in the Schottky regime are ionization of gas
atoms by electron impact and recombination of electrons and ions on the walls.
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15.4
Heat Processes in Positive Column of High Pressure Discharge

� Problem 15.28 Determine the temperature difference between the center of a dis-
charge tube and its walls for the positive column of a weak gas discharge.

Let us analyze the heat balance of the positive column of weak gas discharge,
assuming the heat transfer will result from the thermal conductivity process. We
have then the heat balance equation in the form

1
ρ

d
dρ

[
ρκ(T)

dT
dρ

]
+ p(ρ) = 0 , (15.31)

where κ is the thermal conductivity coefficient, p(ρ) = iE is the specific power of
heat release, so that i is the current density, E is the electric field strength. One can
represent this in the form of the Elenbaas–Heller equation

1
ρ

d
dρ

[
ρκ(T)

dT
dρ

]
+ΣE2 = 0 , (15.32)

where Σ is the plasma conductivity. A simple solution of this equation within the
framework of the so-called parabolic model has the form

T = Tw +
ΣE2(r2o − ρ2)

4κ
= Tw + (To − Tw)

(
1 − ρ2

r2o

)
, (15.33)

where Tw is the wall temperature, To is the temperature at the axis, and we assume
the thermal conductivity to be constant over the cross section of the discharge tube.
We consider below the heat regime when the discharge electric current heats

the positive column plasma remarkably, and the temperature T0 is the tempera-
ture at the axis of the discharge tube exceeds remarkably the wall temperature Tw.
Then introducing the variable x = ρ2/r2o and the value Z =

∫ T0
T κ(T)dT , we obtain

equation (15.31) in the form

d
dx

(
x
dZ
dx

)
− p(ρ)r2o

4
= 0 . (15.34)

This gives the released power per unit tube length,

P =
ro∫
0

2πρdρp(ρ) = −4π
dZ(x = 1)

dx
.

We first solve equation (15.31) for the Schottky regime (15.16), assuming the
electric field strength to be constant and approximating the specific power by the
dependence p = p0(1 − x0.67). In this case equation (15.31) gives

Z =
T0∫

Tw

κ(T)dT = 0.13P .
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This relation expresses the difference between the temperatures of the axis and that
of the walls of the discharge tube through the discharge power per unit length.
The above heat regime is realized at low discharge currents. In a general case

of the electron distribution over the tube cross section, we will approximate the
specific heat release over the cross section by formula p = p0[1 − (ρ/r0)n]. Then
the power of heat release per unit tube length is

P = 2πro

[
−κ

dT(ro)
dρ

]
= 4π

dZ(x = 1)
dx

= πpor2o
n

n + 2
.

Let us introduce the function F(n) =
∫ T0
Tw

κ(T)dT/P. We find that F(n) lies within
the limits F(0) = 0.16 and F = 0.13 for the Schottky regime. This allows us to
establish a simple relation between the value Z and the specific discharge power
within the accuracy of 10% has the form

To∫
Tw

κ(T)dT =
Toκ(To) − Twκ(Tw)
1 + d ln κ/d ln T

= 0.14P . (15.35)

In particular, if the difference of the temperatures is small (∆T = To − Tw � T0),
this relation yields

∆T =
0.14P
κ(T0)

. (15.36)

We thus obtain that heating of a gas in a discharge tube with an electric current
is not sensitive to the distribution of this current over the tube cross section, and
is determined mostly by the total released power inside the tube.

� Problem 15.29 Formulate the character of the electron distribution in the positive
column of gas discharge of high pressure at high electric currents.

This regime is realized under the condition

τrec
τdr

� 1 ,

and transport of electrons to the walls is not of importance in this regime. Because
of a high electron number density, one can analyze this regime in terms of the elec-
tron temperature Te, when local thermodynamic equilibrium takes place at each
point of the positive column. Correspondingly, the relation between the number
density of electrons Ne and atoms Na is given by the Saha formula (1.69)

N2
e

Na
=
gegi
ga

(
meTe
2π h̄2

)3/2

exp
(

− J
Te

)
,

where ge, gi, and ga are the statistical weights of the electron, ion and atom, respec-
tively, and J is the atom ionization potential. The electron and gas temperatures are
also connected through the electric field strength by relation (7.26). In particular, in
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the case when the rate of electron–atom collisions does not depend on the electron
velocities, this relation has the form (7.27)

Te − T =
1
3
Mw2 ,

where M is the atom mass and w is the electron drift velocity.
The distribution of the electron temperature Te and gas temperature T over the

cross section is of importance in this regime, which is given by the Elenbaas–Heller
equation

1
ρ

d
dρ

[
ρκ(T)

dT
dρ

]
+
1
ρ

d
dρ

[
ρκe(Te)

dTe
dρ

]
+ p(ρ) = 0 , (15.37)

where κ(T) is the thermal conductivity coefficient of the gas, κe(Te) is the electron
thermal conductivity coefficient, and p(ρ) = iE is the specific power of heat release.
The role of electron and gas heat transfer, i. e., the contribution of the first and sec-
ond terms of this equation, depends on the electron number density. In addition,
the electron temperature under real conditions is relatively small

Te � J, (15.38)

where J is the atom ionization potential.

� Problem 15.30 Find the distribution of the electron number density over the cross
section of the positive column of high pressure gas discharge at high electron
currents if heat transfer is determined by the gas thermal conductivity.

This analysis is based on relation (15.38) that leads to a sharp dependence of the
electron number density on the electron temperature, which according to formula
(1.69) has the form Ne ∼ exp[−J/(2Te)]. One can conveniently use the variable

y =
[To − Te(ρ)] J

2T2e (0)
, (15.39)

where To = Te(0). This gives electron number density on the electron temperature
N(ρ) = N(0)e−y, which allows us to neglect the temperature dependence for other
discharge parameters as, for example, the thermal conductivity coefficient of the
gas. Then p(ρ) = p(0)e−y, κe ∼ Ne ∼ e−y, and, using the variable x = ρ2/r2o , one
can reduce equation (15.37) to the form

d
dx

[
x

(
e−y + ζ

) dy
dx

]
− Ae−y = 0 . (15.40)

Here the parameters ζ and A are given by

ζ =
Tκ(T)
κe(Te)

α; A =
por2oJ

8T2e κe(Te)
,
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where po = p(0), and the parameter α = dT(ρ)/dTe(ρ). Using the dependence of
the rate of electron–atom collisions ν on the electron velocity v as ν ∼ vβ, we obtain
the parameter α

α =
(1 + β − βT/Te)

2Te/T − 1
.

One can see that due to a sharp dependence of the electron number density on
the electron temperature we obtain the equation for the electron number density
whose parameters are defined at the discharge tube axis only.
While considering the case, when heat transfer is determined by gas thermal

conductivity ζ � 1, we ignore the first term of equation (15.40). Then the solution
of this equation has the form

y = 2 ln
(
1 +

Ax
2ζ

)
,

and returning the electron number, we obtain its distribution over the tube cross
section,

Ne(ρ) = Ne(0)e−y =
Noρ2o

(ρ2 + ρ2o)2
(15.41)

where No = Ne(0).
If the parameter ρo is small compared to the tube radius ro, then contraction of

the discharge current takes place, i. e., the electron current occupies a restricted
region near the center of the discharge tube. This is the peculiarity of this regime
of gas discharge of high pressure and at low currents. Then it is profitable for a
plasma to occupy a restricted region near the tube center and to have there a high
electron temperature that corresponds to the minimum of plasma resistance and
hence to optimal conditions of gas discharge.
These relations give the power P = IE per unit tube length (I is the total dis-

charge power, E is the electric field strength) of arc discharge in this heat regime

P = IE =
∫

p0e−y2πρdρ =
16T2e Tκ(T)α

J
, (15.42)

where po = joE is the power per unit volume at the tube center (jo is the current den-
sity at the axis of the discharge tube). According to equation (15.42), the discharge
power is expressed through plasma parameters at the center of the discharge tube.

� Problem 15.31 Find the distribution of the electron number density over the cross
section of the positive column of high pressure gas discharge at high electron
currents when heat transfer is determined by the electron thermal conductivity.

While considering the limiting case ζ � 1, when the electron thermal conductivity
determines the heat balance of the electron current, we find that in the region
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y < ln (1/ζ), where the plasma is concentrated, equation (15.40) by using the new
variable Y = Ne(ρ)/Ne(0) = e−y takes the form

d
dx

(
x
dY
dx

)
+ AY = 0 . (15.43)

The solution of this equation

Y = J0
(
2
√
Ax

)
,

gives for the power released per unit length of the positive column

P = IE =
∫

p0Y2πρdρ = 1.36p0ρ20 ,

and the current radius ρ0 is given by

ρ2o =
5.78r2o
A

=
12T2e κe(Te)

poJ
.

As a result, the total discharge power per unit length of the positive column in this
limiting case is

P = IE =
16T2e κe(Te)

J
. (15.44)

� Problem 15.32 Find the specific power and the radius of a region occupied by the
discharge current for the positive column of high pressure arc if both mechanisms
of heat transfer, due to the gas and electron thermal conductivity, are realized.

Combining formulas (15.42) and (15.44), i. e., taking into account both the gas and
electron thermal conductivity for heat transfer in the positive column of high pres-
sure arc, we obtain the discharge power per unit length of the discharge tube as

P = IE =
16T2e κe(Te)(1 + 3.2ζ)

J
. (15.45)

In the same manner one can introduce the plasma radius, defining it from expres-
sion (15.18) for the Schottky regime when the electric current occupies all the tube
cross section

ρ2o =
12T2e κe(Te)(1 + 3.2ζ)

poJ
. (15.46)

Find the scaling law with respect to the atom number density Na for plasma
parameters of the positive column of high pressure arc in the limiting cases of
different ratios between the gas and electron thermal conductivities.
In both cases of the heat transport regime we obtain the electric field strength,

E ∼ Na .
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Other dependences follow from the above formulas and give in the case ζ � 1,
when heat transport is determined by the thermal conductivity of the gas

po ∼ N3/2
a , ρo ∼ N−1

a , P ∼ N−1/2
a , I ∼ N−3/2

a .

In the other limiting case ζ � 1, when heat transport is determined by the electron
thermal conductivity, we obtain

po ∼ N3/2
a , ρo ∼ N−3/4

a , P ∼ const , I ∼ N−1
a .

� Problem 15.33 Analyze the conditions of contraction of the discharge current in
the positive column of high pressure arc.

As a result of contraction, a discharge current shrinks in a narrow tube whose ra-
dius is small compared to the discharge tube radius. We analyze this phenomenon
on the basis of the function

Z =
Te∫

κe(T ′
e)dT

′
e +

T∫
κ(T ′)dT ′ =

2T2e
J

κe(Te) +
Tκ(T)
1 + γ

,

that results from integration of the Elenbaas–Heller equation in the form (15.37).
Here γ = d ln κ(T)/dT , and we assume the electron Te and gas T temperatures at
the axis which are present in this expression, to be large compared their values at
the walls. Integrating equation (15.37) twice, we obtain

Z =
ro∫
0

p(ρ)ρdρ ln
ro
ρ

≈ P
2π

ln
2.3ro

ρo
.

Here P is the total power per unit tube length of the tube, and ρo is the current
radius. Below we compare this equation by expression (15.45) for the specific dis-
charge power that allows us to find a radius of a current region.
We first analyze the case ζ � 1, which is, when the electron thermal conductivity

is dominant. Then we have

Z =
2T2e
J

κe(Te) =
P
4π

. (15.47)

In the limit of high currents, we have, on the one hand, local thermodynamic
equilibrium and nearness of the electron and gas temperatures, and on the other
side, electrons are concentrated in a narrow region of a high temperature where
ionization and recombination processes proceed.
We derive below formula (15.47) from other consideration that allows us to un-

derstand the nature of arc contraction. The specific heat release in the heat balance
equation (15.37) is proportional to the number density of electrons p ∼ Ne, that in
turn, according to the Saha relation (1.69) depends on the electron temperature as
Ne ∼ exp(−J/(2Te)) (we take here the electron and gas temperature to be identical,
which is the parameter α = 1). From this we have near the axis

p = po exp(−βρ2) ,
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where po is the specific heat release at the tube axis and ρ is a distance from the
tube axis, and

β =
J
2Te

dTe
dρ2

.

Solving equation (15.37) with this distribution of the specific heat release, we find
the temperature distribution near the axis,

Te(ρ) = To − po
2βκ

ρ∫
0

(
1 − e−βρ2

) dρ

ρ
,

which gives

P =
ro∫
0

p · 2πρdρ =
πpo

α
=
8πT2e κ

J
,

that coincides with formula (15.47). From derivation of this formula it follows that
the current region decreases with an increase of the specific power po that in turn
is proportional to the electron number density at the axis, and a current region
radius is ρo ∼ p−1/2

o . We assume this dimension to be large compared to the
electron mean free path during its lifetime

ρo �

√
Da

KeiN2
e
,

where Da is the ambipolar diffusion coefficient at the axis, Kei is the three-body re-
combination coefficient of electrons and ions. As is seen, compression of a current
region increases with an increase of the temperature at the axis.
Let us consider the opposite limiting case ζ � 1, if gas thermal conductivity

dominates. Then according to the above formulas the current radius ρo that follows
from the heat equation satisfies to equation(

1 +
ρ2o
r2o

)
ln

(
1 +

r2o
ρ2o

)
=

JT
4T2e (1 + γ)

, (15.48)

and contraction is possible in this case.
Thus, the arc current contraction occurs at high currents when thermal con-

ductivity is not able to provide heat release due to electron–atom collisions. As a
result, a current occupies a small part of the discharge tube, and large temperature
gradients increase heat transport. Note that large temperature gradients at high
pressure may cause a convective instability, so that an effective mixing of a gas
results from gas convection.

15.5
Plasma of Positive Column of Low Pressure Discharge

� Problem 15.34 An equilibrium in the positive column of low pressure arc results
from formation of electrons by ionization of atoms by electron impact and from



15.5 Plasma of Positive Column of Low Pressure Discharge 521

travelling of electrons to the walls. Assuming that the positive column plasma
is almost quasineutral and electrons are locked in a self-consistent plasma field,
determine the plasma current to electrodes.

Plasma parameters of low-pressure gas discharge satisfy the criterion

rD � L � λ , (15.49)

where L is a characteristic dimension of the discharge, λ is the mean free path
for plasma particles, and rD is the Debye–Hückel radius of the plasma. In spite
of a large mean free path, electrons are locked in the plasma self-consistent field
that increases their lifetime in the plasma and allows us to introduce the electron
temperature. Below we will be guided by typical parameters of this plasma where
the electron number density is Ne ∼ 1014 cm−3, the atom number density is
Na ∼ 1015 cm−3, the electron temperature Te ∼ 1 eV, and the positive column
dimension is L ∼ 0.1 cm. These plasma parameters lead to the mean free path of
electrons λ ∼ 1 cm, and rD ∼ 5 · 10−5 cm, i. e., criterion (15.49) holds true. These
parameters are typical for a plasma of thermoemission converters.
The plasma under consideration is located between two infinite parallel elec-

trodes with a distance L between them. Because of the high number density of
charged particles, typical dimensions of cathode and anode regions are small, and
the positive column with its quasineutral plasma occupies almost all of the space
between the electrodes. This plasma is characterized by a certain self-consistent
field that equalized currents of electrons and ions outside this region. Our task
is to determine these electric currents. The electric potential distribution between
electrodes is given in Fig. 15.12.
Denoting the electric potential of the plasma by ϕ(x), where the x-axis is directed

perpendicular to the electrodes, and the origin of the x coordinate is taken to be
centered between the electrodes, we assume this field determines the currents of
ions and electrons to electrodes.

Fig. 15.12 The distribution of the electric potential in arc discharge of low pressure.



522 15 Gas Discharge Plasmas

This leads to the symmetry

ϕ(x) = ϕ(−x) , (15.50)

where the origin is taken in the middle of the positive column. Since electrons are
locked inside the positive column, they are found in thermodynamic equilibrium
that is characterized by the electron temperature Te. This gives the distribution for
the number density of electrons Ne inside the positive column

Ne = N0 exp
(

− eϕ
Te

)
. (15.51)

The number density of electrons almost equals to the number density of ions Ni
because of the quasineutrality of the plasma. Electrons and ions are formed in
the positive column in electron–atom collisions, and electrons are locked by a self-
consistent plasma field, whereas ions move freely to electrodes. Hence, an ion
generated at a point ξ reaches a point x with a velocity vx =

√
2e[ϕ(ξ) − ϕ(x)]/M,

where M is the ion mass. Denoting by Φ(ξ) a number of ions produced per unit
volume per unit time at the point ξ , we obtain the number density of ions Ni(x)
by summation over all the ions arriving to this point

Ni =
x∫
0

Φ(ξ)dξ√
2e[ϕ(ξ) − ϕ(x)]/M

.

Here we consider that ions arriving to a point x are formed at points 0 < ξ < x,
because x = 0 corresponds to the top of the potential hump of the self-consistent
plasma field for ions. Thus, the condition of plasma quasineutrality Ne = Ni gives

N0 exp
[
− eϕ(x)

Te

]
=

x∫
0

Φ(ξ)dξ√
2e[ϕ(x) − ϕ(ξ)]/M

,

where N0 is the electron number density at x = 0, and we define the self-consistent
field potential such that ϕ(0) = 0. It is convenient to rewrite this equation in terms
of variables η(x) = −eϕ(x)/Te (η > 0) and jo = N0

√
2Te/M

j0e−η =
x∫
0

Φ(ξ)dξ√
η(x) − η(ξ)

. (15.52)

Let us multiply this equation by dη/dx[η(y) − η(x)]−1/2 and integrate over dx be-
tween ξ and y. Let us use the relation

x∫
0

dη(x)
dx

dx
1√

[η(y) − η(x)][η(x) − η(ξ)]
=

η(y)∫
η(ξ)

dη√
[η(y) − η][η − η(ξ)]

= π ,
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and simplify the right-hand side of the equation

η(y)∫
0

dη(x)√
η(y) − η(x)

η(x)∫
0

Φ(ξ)dη(ξ)√
η(x) − η(ξ)

dξ
dη(ξ)

=

η(y)∫
0

Φ(ξ)dη(ξ)
dξ

dη(ξ)

η(y)∫
η(ξ)

dη(x)√
[η(y) − η(x)][η(x) − η(ξ)]

= π

y∫
0

Φ(ξ)dξ .

This gives for the ion flux ji(y) at a given point y

ji(y) =

y∫
0

Φ(ξ)dξ =
j0
π

η(y)∫
0

exp(−η)
dη√

η(y) − η
. (15.53)

The ion flux ji(y) toward the electrodes increases on removing from the middle
point x = 0 of the positive column and reaches the maximum at the electrodes
where the plasma quasineutrality is violated. This leads to the condition dji/dη = 0
at the electrode that corresponds to dη/dx = ∞, since dji/dη = (dji/dx) / (dx/dη).
Representing ji(η) in the form

ji(η) =
j0
π

η∫
0

exp(−η′)
dη′√
η − η′ =

2j0
π

√
η +

2j0
π

η∫
0

exp(−η′)
√

η − η′dη′ ,

we find that the condition at the electrode dji/dη = 0 leads to the equation

√
ηo

ηo∫
0

exp(−η)
dη√

ηo − η
= 1 ,

where ηo is the value of the reduced potential at the electrode. The solution of the
latter equation is ηo = 0.855. From this we find the ion flux to the electrodes.

ji =
j0

π
√

ηo
= 0.344jo = 0.344N0

√
2Te
M

. (15.54)

� Problem 15.35 Find conditions for a plasma of a low pressure positive column of
arc when criterion (15.49) holds true.

Let us give the criteria of validity of formula (15.54), which provide the above char-
acter of the processes in the positive column plasma. This plasma is quasineutral
that according to the Poisson equation leads to the criterion

|Ni − Ne| =
∣∣∣∣ 1
4πe

d2ϕ

dx2

∣∣∣∣ � N0, or
d2η

dx2
�

1
r2D

.

Because η ∼ 1 in the positive column, this condition corresponds to rD � L, i. e.,
it coincides with the first criterion (15.49).
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According to the second criterion (15.49) L � λ, ions pass the positive column
without collisions. Nevertheless, because of thermodynamic equilibrium for elec-
trons, each electron being captured by a self-consistent field of the positive column,
collide with other electrons many times before it leaves this region. Hence, the to-
tal electron path during its location in the positive column is much greater than
the mean free path λe for collisions with other electrons. This gives the criterion

λe �

√
M
me

L , (15.55)

that must be added to criteria (15.49).
Thus, the plasma of the low-pressure positive column of arc is characterized by

specific properties, so that it is transparent for positive ions, while its self-consistent
field creates a trap for electrons. Hence, collisions between trapped electrons es-
tablish thermodynamic equilibrium for electrons in the arc positive column, and
ionization collisions of electrons with atoms determine formation of electrons and
ions and influences the electron temperature of this plasma.

� Problem 15.36 Derive the balance equation for formation and decay of ions in
a plasma of a low-pressure positive column of arc located between two infinite
parallel electrodes in order to determine the electron temperature of this plasma.

We have this balance equation in the form

L/2∫
0

Φ(x)dx = 0.34N0

√
2Te
M

,

where the right-hand side of this equation is the ion flux in accordance with for-
mula (15.54), the left-hand side is the number of ions per unit time and unit area
which result from ionization of atoms by electron impact. Here x is a distance
from the center, and the rate of atom ionization by electron impact is

Φ(x) = Ne(x)Nakion(Te) .

Here we assume the number density of atoms Na to be constant through the
positive column, whereas the number density of electrons varies according to the
Boltzmann formula (15.51) Ne = N0 exp(−η). As a result we obtain from this bal-
ance equation

kion(Te) =
0.69
NaLI

(√
2Te
M

)
, (15.56)

where the numerical coefficient I is equal

I =
∫ 2dx

L
exp(−η) ,

and L is a distance between electrodes. Since kion ∼ exp(−Te/J), where J is the
atom ionization potential, equation (15.56) allows us to determine the electron
temperature.
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� Problem 15.37 Determine the minimum voltage between electrodes that can pro-
vide the balance of the positive column plasma according to the balance equation
(15.56).

While considering a self-consistent field in the low-pressure positive column be-
tween two infinite electrodes, when this plasma satisfies criterion (15.49), we as-
sume this field to be symmetric (15.50). But for operation of this system, an external
source of energy is required in order to realize continuous ionization of atoms.
The simplest external energy source is an additional voltage between electrodes
that creates gaseous discharge. As a result, the electrons arise at the cathode, and
under action of the voltage an electric current occurs. This current under the ac-
tion of an additional voltage causes an energy release in the positive column that
compensates energy losses due to ionization processes.

The electron flux je on the boundary of the positive column is

je = Ne

√
me

2πTe
, (15.57)

where Ne is the electron number density on the positive column boundary (Ne =
N0 exp(−ηo)). Note that the electron flux does not coincide with the ion flux (15.54),
and their equality for maintaining of a quasineutral plasma is attained in the anode
and cathode regions by additional voltages which lead to reflection of a part of
electrons.
Within the framework of this discharge scenario, we introduce an additional volt-

age ∆V between the left and right sides of the positive column that provides the
electron current to one side. Indeed, because of thermodynamic equilibrium, the
number density of electrons on the left positive column boundary is No exp[(−eϕo +
e∆V)/Te] instead of No exp(−eϕo/Te) in the absence of an additional voltage, where
(ϕo is the potential of a self-consistent field on the positive column boundary with
respect to this value in the middle of the positive column). Hence, a noncompen-
sated electric current density is

i = eje sinh
(
e∆V
2Te

)
,

where the electron flux je in absence of an additional voltage is given by formula
(15.57).
The voltage ∆V between two boundaries of the positive column follows from the

energy balance in the positive column. Taking the energy consumed on formation
of one pair electron–ion as cJ, where J is the atom ionization potential, c ≥ 1, we
obtain the power that is consumed per unit area of electrodes as P = 2ji cJ, where
the factor 2 accounts for propagation of ions in two directions. On the other hand,
this specific power is i∆V . Assuming ∆V � Te, we obtain from this

P = i∆V =
(e∆V)2

Te
je =

(e∆V)2

Te
N0e−ηo

√
me

2πTe
.
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Equalizing this to P = 2ji cJ, we find the additional voltage for the arc positive
column,

e∆V = 2.38
(me

M

)1/4 √
cJTe. (15.58)

According to this formula, the voltage drop in the positive column that provides
the energy balance is relatively small.

� Problem 15.38 Determine the anode voltage that equalizes currents of electrons
and ions from the positive column.

A self-consistent field of the arc positive column allows for ions leave the positive
column plasma freely, without collisions. Because the plasma remains to be qua-
sineutral, the electron and ion currents from the positive column region must be
identical, i. e., the electron current is ie = 2eji, and the ion flux is given by formula
(15.54). We assume the electron current to be directed towards to the anode, i. e.,
the electrons reflect from the cathode region. Next, the electron flux on the positive
column boundary is given by formula (15.57), and this exceeds remarkably the ion
flux. In order to equalize them, it is necessary an additional voltage drop ∆ϕ near
the anode that reflects a part of electrons with a low energy. Because it leads to a
decrease of the electron number density by a factor exp(−∆ϕ/Te), we find from
this the anode voltage

e∆ϕ = Te ln

(
5.67

√
M
me

)
= Te

(
1.7 +

1
2
ln

M
me

)
. (15.59)

� Problem 15.39 Determine the ion flux to the walls of a low-pressure positive col-
umn plasma located in a cylindrical tube.

This plasma satisfies to criterion (15.49) with respect to ion and electron travelling
to the walls, and we use for determination of the ion flux the same method as for
derivation of formula (15.53) for another geometry. Hence, we will use in this case
the same assumptions, namely, ions are moving to the walls without collisions
electrons are captured by the trap of a self-consistent field of the positive column
plasma and their distribution over the tube cross section is given by the Boltzmann
formula (15.51), and this plasma is quasineutral. Using these assumptions, we
obtain the following equation that is similar to (15.52), but uses the cylindrical
symmetry of this problem

joρ(η)e−η(�) =

�∫
0

Φ(r)rdr√
η(ρ) − η(r)

, (15.60)

where η = −eϕ(x)/Te, jo = N0
√

(2Te)/M, ρ, r are the distances from the tube axis,
and other notations are identical to those of formula (15.52). Next, the ion flux per
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unit tube length Ii and per unit walls area ji are equal to

Ii =
ro∫
0

Φ(r)2πrdr; ji =
Ii

2πro
=

ro∫
0

Φ(r)r
dr
ro

.

Let us multiply the both sides of equation (15.60) by ρ[η(R)− η(ρ)]−1/2dη/dρ and
integrate it over dρ from 0 to R. Since

ηR∫
ηr

dη√
(ηR − η)(η − ηr)

= π ,

we obtain

jo

ηR∫
0

ρ(η)dη√
ηR − η

exp(−η) = π

R∫
0

Φ(r)rdr .

From this we find the ion flux to the walls that is equal to

ji =
ro∫
0

Φ(r)r
dr
ro

=
jo

πro

ηo∫
0

ρ(η)dηe−η√
ηo − η

, (15.61)

where ηo = η(ro) is the reduced potential of the positive column at its boundary.
At the positive column boundary the positive and negative charges are separated,

and the plasma is not quasineutral. This means dη/dρ = ∞, and since dj/dρ is a
finite value, this means that dj/dη = 0 near the walls, where η(ro) = ηo. We use the
simple dependence η(ρ), such that η(0) = 0, η(ro) = ηo, and dη/dρ = ∞ at ρ = ro.
In addition, η(ρ) ∼ ρ2, if ρ → 0. This and inverse dependences have the form

η

ηo
= 1 −

√
1 −

(
ρ

ro

)2 ρ

ro
=

√
η(2ηo − η)

ηo
, (15.62)

which is given in Fig. 15.13. This dependence together with the condition dj/dη = 0
at ρ = ro give

ηo∫
0

[√
η(2ηo − η)

ηo − η
−

√
ηo − η

η(2ηo − η)

]
e−ηdη = 0 .

From the solution of this equation we find ηo = 1.145. Correspondingly, for the ion
flux to the walls we obtain

ji =
jo
√

ηo

π

1∫
0

√
t(2− t)
1 − t

e−tηodt = 0.854
jo
π
= 0.272N0

√
2Te
M

. (15.63)

This formula has the same dependence on the problem parameters as formula
(15.52).
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Fig. 15.13 The dependence of the reduced potential η(ρ)/ηo of the
positive column for arc of a low pressure on the reduced distance ρ/ro
from the axis according to formula (15.62).

� Problem 15.40 Determine the distribution function of ions on transversal ener-
gies in the positive column plasma of low pressure located in a cylindrical tube.

According to the definition, the distribution function on transversal ion energies ε

has the form

f (ρ, ε)dε = const
Φ(r′)r′dr′√
η(ρ) − η(r′)

We above used a single-valued relation between the ion energy at a given point and
a point r′ of its formation, which is ε/Te = η(ρ) − η(r′). Since Φ(r′) ∼ exp(−η′),
we obtain on the basis of formulas (15.62) which connect parameters η and ρ

f (ρ, ε)dε = C
(ε/Te + ηo − η) exp(ε/Te − η)√

ε/Te
dε ,

where C is the normalization constant.

� Problem 15.41 Determine the potential jump near the walls in the positive column
of low pressure located in a cylindrical tube.

In a small region, near the walls, the plasma quasineutrality is violated, and as a
result of arising of a charged layer, fluxes of ions and electrons to the walls become
identical. According to formula the electron flux je on the positive column boundary
is given by formula (15.57), and denoting the electric potential jump near the walls
by ∆U, we obtain the electron flux to the walls as je exp(−e∆U/Te). Equalizing
this to the ion flux that is given by formula (15.63), we find for the jump of the
electric potential near the walls for an arc plasma of low pressure located in a
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cylindrical tube

e∆U
Te

= ln

[
1
3
ln

√
M
me

]
. (15.64)

� Problem 15.42 Find the relation between the atom number density and the elec-
tron temperature for the positive column plasma of low pressure located in a
cylindrical tube.

We use the balance equation for ions formed and traveled to the walls of low-
pressure arc that is burnt in a cylindrical tube. This balance equation has the form

kion(Te)Na

ro∫
0

2πρdρNe(ρ) = 2πro · 0.272N0

√
2Te
M

,

where Na is the atom number density and kion is the rate constant of atom ioniza-
tion by electron impact. Using dependence (15.62) for η(rho), expression (15.51) for
the electron number density, and evaluating the integral, we reduce this balance
equation to the form

kion(Te)Na =
0.76
ro

√
2Te
M

. (15.65)

This relation gives the electron temperature at a given number density of atoms.
One can see the problem scaling, which is conservation of plasma parameters if
the tube radius varies such that Naro = const. Figure 15.14 shows this dependence
for argon.

Fig. 15.14 The electron temperature Te of the positive column plasma
in arc of low pressure as a function of the reduced number density of
argon atoms.
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16.1
Appendix 1: Physical Constants

Electron mass me = 9.10939× 10−28 g
Proton mass mp = 1.67262× 10−24 g
Atomic unit of mass mu = 1

12m(12C) = 1.66054× 10−24 g
Proton–electron mass ratio mp/me = 1836.15
Ratio of atomic and electron mu/me = 1822.89
masses
Electron charge e = 1.602177 × 10−19

C = 4.8032× 10−10 e.s.u.
e2 = 2.3071 × 10−19 erg cm

Planck constant h = 6.62619× 10−27 erg s
h̄ = 1.05457 × 10−27 erg s

Velocity of light c = 2.99792× 1010 cm/s
Inverse fine-structure constant 1/α = h̄c/e2 = 137.03599
Bohr radius ao = h̄2/(m2

ee) = 0.529177 Å
Rydberg constant m4

ee/(2h̄
2) = 13.6057 eV = 2.17987 × 10−18 J

Bohr magneton µB = eh̄/(2me) = 9.72402× 10−24 J/T
Avogadro number NA = 6.02214× 1023mol−1

Stephan–Boltzmann constant σ = π2/(60h̄3c2) = 5.669× 10−12W/(cm2K4)
Molar volume R = 22.414 l/mol
Loschmidt constant L = NA/R = 2.6867 × 1019cm−3
Faraday constant F = NAe = 96485.3 C/mol

16.2
Appendix 2: Conversation Factors for Some Units

1 K = 1.38066× 10−23 J = 8.6174× 10−5 eV = 0.69504 cm−1 = 1.9859 cal/mol

1 eV = 11 604.4 K = 1.602177 × 10−19 J = 8065.5 cm−1 = 23 045 cal/mol =
96.4853 kJ/mol

1 cm−1 = 1.2398× 10−4 eV = 1.4388 K= 1.98645× 10−23 J= 2.8573 cal/mol

1 J = 107 erg

1C = 2.997924× 109 esu

1 T = 104 G

1 atm = 760 Torr = 101325 Pa = 1.01325× 106 dyn/cm2

1 Torr = 133.322 Pa = 1.31579× 10−3 atm

1 Pa ≡ 1 N/m2 = 10 dyn/cm2 = 7.5007 × 10−3 Torr = 9.8693× 10−6 atm
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16.3
Appendix 3: Relations of Physics and Plasma Physics

16.3.1
Appendix 3a: Relations of General Physics

Number Formulaa) Factor C Units used

1 v = C
√

ε/m 5.931 × 107 cm/s ε in eV, m in emua)

1.389× 106 cm/s ε in eV, m in amua)

5.506× 105 cm/s ε in K, m in
1.289× 104 cm/s ε in K, m in amu

2 v = C
√
T/m 1.567 × 106 cm/s T in eV, m in amu

1.455× 104 cm/s ε in K, m in amu
3 ε = Cv2 3.299× 10−12 K v in cm/s, m in emu

6.014× 10−9 K v in cm/s, m in amu
2.843× 10−16 eV v in cm/s, m in emu
5.182× 10−13 eV v in cm/s, m in amu

4 ω = Cε 1.519× 1015s−1 ε in eV
1.309× 1011s−1 ε in K

5 ω = C/λ 1.884× 1015s−1 λ in µm
6 ε = C/λ 1.2398eV λ in µm
7 ωH = CH/m 1.759× 107s−1 H in Gs, m in emu

9655s−1 H in Gs, m in amu
8 rH = C

√
εm/H 3.372 cm ε in eV, m in emu, H in Gs

143.9 cm ε in eV, m in amu, H in Gs
3.128× 10−2 cm ε in K, m in emu, H in Gs
1.336 cm ε in K, m in amu, H in Gs

a) emu is the electron mass unit (me = 9.108× 10−28 g), amu is the atomic mass
unit (ma = 1.6605× 10−24 g).

1. The particle velocity is v =
√
2ε/m, where ε is the energy,m is the particle mass.

2. The average particle velocity is v =
√
8T/(πm) with the Maxwell distribution

function of particles on velocities; T is the temperature expressed in energetic
units, m is the particle mass.

3. The particle energy ε = mv2/2, m is the particle mass, v is the particle velocity.
4. The photon frequency ω = ε/h̄, ε is the photon energy.
5. The photon frequency ω = 2πc/λ, λ is the wavelength.
6. The photon energy ε = 2π h̄c/λ.
7. The Larmor frequency ωH = eH/(mc) for a charged particle of a mass m in a
magnetic field of a strength H.

8. The Larmor radius of a charged particle rH =
√
2ε/m/ωH , ε is the energy of a

charged particle, m is its mass, ωH is the Larmor frequency.
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16.3.2
Appendix 3b: Relations for Physics of Gases and Plasmas

Number Formula Factor C Units used

1 N = Cp/T 7.339× 1021 cm−3 p in atm, T in K
9.657 × 1018 cm−3 p in Torr, T in K

2 p = CNT 1.036× 10−19 Torr N in cm−3, T in K
3 α = CNe/T3 2.998× 10−21 Ne in cm−3, T in eV

4.685× 10−9 Ne in cm−3, T in K
4 f = Cm3/2T3/2 2.415× 1015 cm−3 T in K, m in emu

3.019× 1021 cm−3 T in eV, m in emu
1.879× 1020 cm−3 T in K, m in amu
2.349× 1026 cm−3 T in eV, m in amu

5 K = C/T9/2 2.406× 10−31 cm6/s Te in 1000 K
6 ωp = C

√
Ne/m 5.642× 104 s−1 Ne in cm−3, m in emu

1322 s−1 Ne in cm−3, m in amu
7 rD =

√
T/Ne 525.3 cm Ne in cm−3, T in eV

4.876 cm Ne in cm−3, T in K
8 p = CH2 4.000× 10−3 Pa = H in Gs

0.04 erg/cm3

1. The state equation for gases N = p/T , p is the pressure, N is the number density
of atomic particles.

2. The state equation for gases p = NT .
3. The parameter of an ideal plasma α = Nee6/T3, Ne is the electron number

density, T is the temperature.
4. Pre-exponent of the Saha formula f = [mT/(2π h̄2)]3/2, m is the mass of a

particle, T is the temperature.
5. The coefficient of three-body electron–ion recombinationK = 1.5e10/(m0.5

e T9/2e ).
6. The plasma frequency ωp =

√
4πNee2/me, Ne is the electron number density,

me is the electron mass.
7. The Debye–Hückel radius rD =

√
T/(8πNee2), Ne is the electron number den-

sity, T is the temperature.
8. The magnetic pressure pm = H2/(8π).
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16.3.3
Appendix 3c: Relations for Transport Coefficients
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1. The Einstein relation for the diffusion coefficient D = KT/e, D, K are the diffu-
sion coefficient and mobility of a charged particle, T is the temperature.

2. The Einstein relation for the mobility of a charged particle K = eD/T .
3. The diffusion coefficient in the Chapman–Enskog approximation

D = 3
√
2πT/µ/(16Nσ1), T is the temperature, N is the number density of gas

particles, µ is the reduced mass of colliding particles, σ1 is the average cross
section of collision.

4. The mobility of a charged particle in the Chapman–Enskog approximation
K = 3e

√
2π/(Tµ)/(16Nσ1), the notations are given in the previous item.

5. The thermal conductivity of a gas in the Chapman–Enskog approximation
κ = 25

√
πT/(32

√
mσ2), m is the mass of a gas particle, σ2 is the average cross

section of collision of gas particles, other notations are given above.
6. The viscosity of a gas in the Chapman–Enskog approximation η = 5

√
πTm/

(24 σ2), the notations are given above.
7. The parameter of ion drift in a gas in an electric field ξ = eE/(TNσ), E is the
electric field strength, T is the temperature, N is the number density of gas
particles, and σ is the cross section of ion scattering on gas particles.

8. The free fall velocity for a spherical bulk particle under the action of the gravi-
tation force v = 2ρgr2/(9η), where g is the free fall acceleration, ρ is the particle
density, η is the viscosity of a matter, where the particle is falling, and r is the
particle radius.
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16.3.4
Appendix 3d: Relations for Clusters and Nanoparticles in a Plasma
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1. The Wigner–Seitz radius rW = (3m/4πρ)1/3, where m is the mass of an individ-
ual atom and ρ is the density. The radius of a spherical cluster consisting of n
atoms is r = rWn1/3.

2. The characteristic rate constant for a cluster ko = πr2W
√
8T/(πm), where rW

is the Wigner–Seitz radius, T is the temperature, and m is the mass of a free
atom.

3. The falling velocity for a spherical bulk particle under the action of the gravita-
tion force v = 2ρgr2/(9η), where g is the free fall acceleration, ρ is the particle
density, η is the viscosity of a matter, where the particle is falling, and r is the
particle radius.

4. The diffusion coefficient of a large spherical cluster consisting of n atoms is
given by Dn = Do/n2/3, and in the Chapman–Enskog approximation we have
Do = 3

√
2T/πm/(16Nr2W), where T is the temperature, N is the number den-

sity of gas particles, m is the mass of an individual cluster atom, and rW is the
Wigner–Seitz radius.

5. Themobility of a charged cluster consisting of n atoms in the Chapman–Enskog
approximation is Kn = Ko/n2/3, where Ko = 3e/(8Nr2W

√
2πmT); the notations

are given in the previous item.

16.4
Appendix 4: Transport Parameters of Gases

16.4.1
Appendix 4a: Self-diffusion Coefficients of Gases

Diffusion coefficients of atoms or molecules in parent gases are reduced to the
number density N = 2.687 × 1019 cm−3 corresponding to the standard conditions
(T = 273 K, p = 1 atm).

Gas D (cm2/s) Gas D (cm2/s) Gas D (cm2/s)

He 1.6 H2 1.3 H2O 0.28
Ne 0.45 N2 0.18 CO2 0.096
Ar 0.16 O2 0.18 NH3 0.25
Kr 0.084 CO 0.18 CH4 0.20
Xe 0.048
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16.4.2
Appendix 4b: Gas-kinetic Cross Sections

The values of the gas-kinetic cross sections are obtained from the formula σg =
T/(µvTND), where D is the diffusion coefficient, T is the room temperature
expressed in energy units, N is the number density of atoms or molecules,
vT =

√
8T/(πµ) is the average velocity of particles, where µ is their reduced mass.

Gas-kinetic cross sections are expressed in 10−15 cm2.

Pair He Ne Ar Kr Xe H2 N2 O2 CO CO2

He 1.5 2.0 2.9 3.3 3.7 2.3 3.0 2.9 3.0 3.6
Ne 2.4 3.4 4.0 4.4 2.7 3.2 3.5 3.6 4.9
Ar 5.0 5.6 6.7 3.7 5.1 5.2 5.3 5.5
Kr 6.5 7.7 4.3 5.8 5.6 5.9 6.1
Xe 9.0 5.0 6.7 6.9 6.8 7.6
H2 2.7 3.8 3.7 3.9 4.5
N2 5.0 4.9 5.1 6.3
O2 4.9 4.9 5.9
CO 5.0 6.3
CO2 7.8

16.4.3
Appendix 4c: Thermal Conductivity Coefficients of Gases

The values of thermal conductivity coefficients relate to pressure of 1 atm and are
expressed in 10−4 W/(cm ·K).

T (K) 100 200 300 400 600 800 1000

H2 6.7 13.1 18.3 22.6 30.5 37.8 44.8
He 7.2 11.5 15.1 18.4 25.0 30.4 35.4
CH4 — 2.17 3.41 4.88 8.22 — —
NH3 — 1.53 2.47 6.70 6.70 — —
H2O — — — 2.63 4.59 7.03 9.74
Ne 2.23 3.67 4.89 6.01 7.97 9.71 11.3
CO 0.84 1.72 2.49 3.16 4.40 5.54 6.61
N2 0.96 1.83 2.59 3.27 4.46 5.48 6.47
Air 0.95 1.83 2.62 3.28 4.69 5.73 6.67
O2 0.92 1.83 2.66 3.30 4.73 5.89 7.10
Ar 0.66 1.26 1.77 2.22 3.07 3.74 4.36
CO2 — 0.94 1.66 2.43 4.07 5.51 6.82
Kr — 0.65 1.00 1.26 1.75 2.21 2.62
Xe — 0.39 0.58 0.74 1.05 1.35 1.64
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16.4.4
Appendix 4d: Viscosity Coefficients of Gases

The values of viscosity coefficients correspond to pressure of 1 atm and are
expressed in 10−5 g/(cm · s).

T (K) 100 200 300 400 600 800 1000

H2 4.21 6.81 8.96 10.8 14.2 17.3 20.1
He 9.77 15.4 19.6 23.8 31.4 38.2 44.5
CH4 — 7.75 11.1 14.1 19.3 — —
H2O — — — 13.2 21.4 29.5 37.6
Ne 14.8 24.1 31.8 38.8 50.6 60.8 70.2
CO — 12.7 17.7 21.8 28.6 34.3 39.2
N2 6.88 12.9 17.8 22.0 29.1 34.9 40.0
Air 7.11 13.2 18.5 23.0 30.6 37.0 42.4
O2 7.64 14.8 20.7 25.8 34.4 41.5 47.7
Ar 8.30 16.0 22.7 28.9 38.9 47.4 55.1
CO2 — 9.4 14.9 19.4 27.3 33.8 39.5
Kr — — 25.6 33.1 45.7 54.7 64.6
Xe — — 23.3 30.8 43.6 54.7 64.6
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16.5
Appendix 5: Atomic Parameters in the Form of Periodical Tables

16.5.1 Ionization Potentials of Atoms and Their Ions
16.5.2 Electron Affinities of Atoms
16.5.3 Lowest Excited States of Atoms
16.5.4 Splitting of Lowest Atom Levels
16.5.5 Resonantly Excited Atom States
16.5.6 Polarizabilities of Atoms and Diatomics
16.5.7 Affinity to Hydrogen and Oxygen Atoms
16.5.8 Diatomic Molecules
16.5.9 Positive Ions of Diatomics
16.5.10 Negative Ions of Diatomics
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16.5.1
Ionization Potentials of Atoms and Their Ions
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16.5.2
Electron Affinities of Atoms
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16.5.3
Lowest Excited States of Atoms
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16.5.4
Splitting of Lowest Atom Levels
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16.5.5
Resonantly Excited Atom States
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