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Preface to the first edition

This book is an advanced text for first or second year graduate students who have
had an introductory plasma course at some level. While largely self-contained,
so that it could precede a general introductory course, the full background of
kinetic theory and collisions is incomplete in this text, and the mathematical skills
required in the later chapters go beyond what is usually expected in a senior level
course. It may also be used as an adjunct to a more general text for those who
choose to emphasize plasma waves in a first year graduate course.

Despite the presumptuous title, this book is not the last word in plasma
waves, as there are many topics upon which entire books have been written,
several of which were partial sources for this book. It is comprehensive, however,
in the sense that few wave topics are not at least introduced, and it does not treat
every subject in an introductory manner. The general philosophy has been to
include the basic development and formulas for as many aspects of plasma waves
as possible, and develop more fully those topics which have not been treated
in other texts. This leads to nonuniform depth of coverage, but other texts are
presumably available for the instructor to expand on favorite topics. Because of
the uneven coverage, some may find their favorite topic treated either in a cavalier
fashion or not at all. In order to produce the book at a reasonable length and
price, however, I have attempted to include only a few examples after the general
development of each topic, leaving the instructor to develop other examples.
Some additional topics are included in the problems, but probably not enough to
indicate the breadth of possible applications. Answers to some of the problems are
included in appendix D, and an instructor may obtain a solutions manual directly
from the author.

Since my own background has been almost exclusively in laboratory plasma
physics, both theoretical and experimental, a large part of which has been fusion
related, the book is primarily addressed to this audience. As such, the original
ambition of making a book that ionospheric and astrophysical scientists could also
use is unsatisfied, but I believe there is much here from which the latter audience
may benefit, since not all of these topics are well covered in their literature.

This book has many beginnings1, starting from notes on a course by
1 Since my own career has largely been devoted to wave heating for fusion applications, and hence
to the heating of deuterium, it could be said that the Genesis of this book is Deuteronomy.
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R W Gould, following through notes on a course I taught at the University of
Texas from Stix’s book (which is undoubtedly the book to which I am most
indebted), and culminating with a review article I wrote on mode conversion and
ion wave heating. But the determination to actually write the book came from
conversations with D Q Hwang, with whom I originally began to write the book.
We had determined the time was right for a general book on plasma waves, and I
took a six months sabbatical in 1987 at U C Davis, Livermore, so I could write it
with him. Unfortunately, the Livermore Laboratory did not permit him the time
to pursue this adventure, so he had to withdraw from the project, extending the
time an extra six months while I learned and wrote what was to have been his
contribution.

In addition to D Q Hwang, I would like to acknowledge the patience and
helpfulness of my colleagues, J-M Wersinger, J D Hanson and R F Gandy, who
have had to carry the major responsibility for our mutual projects during the
preparation of this book, and to my former student, Suwon Cho, who assisted
me and helped keep some of my research alive during this period. I would also
like to thank Walter Sadowski for stimulating and supporting the earlier review,
and for his patience and support during the preparation of this book. Finally, I
would like to thank Leslie Lamport and Donald Knuth for their development of
LATEXand TEX, respectively, without which I would never have attempted to write
this book, much less prepare it camera ready.

D Gary Swanson
Department of Physics

Auburn University, AL 36849-5311
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Preface to the second edition

In this second edition, a large number of errors have been corrected, most of
which were typos in the original edition, but some of which were actual errors or
very poor representations. In addition, absorption is included as a new section in
inhomogeneous plasmas. In nearly all cases, the figures are improved so that they
are real plots whereas some of the originals were merely topologically correct.
Many more figures are included where parameter ranges may be so broad that
a single figure fails to build intuition adequately. The appendices are expanded,
especially for the relativistic plasma dispersion functions.

D Gary Swanson
Department of Physics

Auburn University, AL 36849-5311
16 September 2002
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Chapter 1

Introduction

1.1 Properties of plasmas

The plasma state is a characterization of matter where long range electromagnetic
interactions dominate the short range interatomic or intermolecular forces among
a large number of particles. Plasmas are generally high temperature entities, and
some of the properties of a plasma are connected with thermal effects, and among
the wave types we shall discuss are sound waves. We define the thermal speed to
be the most probable speed in a Maxwellian distribution,

v j =
√
2KTj

m j
j = e, i (1.1)

for electrons or ions.1 In addition to the thermal speeds for electrons and ions,
however, there are two other fundamental parameters which characterize a plasma
in the absence of a magnetic field, and these are the plasma frequency and the
Debye length. The plasma frequency is the oscillation frequency of a simple
unmagnetized plasma when the charge distribution is locally perturbed from its
equilibrium, and is given for electrons by

ωpe =
√

nee2

meε0
. (1.2)

The Debye length is the distance a thermal particle travels during a plasma period.
Its definition is

λDe ≡
√
ε0KTe
nee2

= ve√
2ωpe

. (1.3)

In fact, unless an assembly of charged particles is large enough that it is many
Debye lengths in size, and of such a density that there are many particles in a
1 Many authors delete the factor of two in their definition of thermal speed. The definition here differs
from vrms by only 13% instead of the 60% difference without the factor of two.
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Debye sphere, we do not call the assembly a plasma. It is thus apparent that
plasma waves are fundamental to the very definition of a plasma.

1.1.1 Unmagnetized plasmas

Unmagnetized plasmas are generally the first to be studied because they are
isotropic, i.e. the properties are the same in all directions. The waves that such a
plasma will support are either high frequency electromagnetic waves which see
the plasma as a simple dielectric due to the response of the electrons to the wave
(by comparison the ions are generally immobile), or sound-type waves. In a cold
plasma, these latter waves become a simple oscillation at the plasma frequency,
below which the electromagnetic waves do not propagate. In a thermal plasma,
however, there are sound-like waves near this frequency, and in a plasma with
disparate electron and ion temperatures with Te � Ti , there is even a kind of
hybrid sound wave that depends on the electron temperature and the ion mass.
These waves even damp through a non-dissipative process. While these several
kinds of behavior are already much more complicated than waves in ordinary
fluids, they are very simple compared to the complexities added by a magnetic
field. Even the kinds of nonlinearities in this simple plasma are richer in both
diversity and complexity than in fluid dynamics where only averages over the
velocity distribution are analyzed. Compared to ordinary fluids, plasmas even
have an additional kind of turbulence, called microturbulence, which has many
kinds of sources.

1.1.2 Magnetized plasmas

The addition of magnetic field effects to the subject of plasma waves adds a host
of new phenomena, among which are: anisotropy, since there is now a preferred
direction; new kinds of transverse waves existing only in magnetized plasmas,
which we call Alfvén waves; finite Larmor orbit effects due to thermal motions
about the magnetic field lines; and many other kinds of waves which are either
totally new or greatly modified. Because of the anisotropy, the description of
these effects is inevitably complicated algebraically, and this tends sometimes
to obscure the physics. We shall, however, try to give the general descriptions,
which are formidable, and show enough special cases to illustrate the richness
of wave phenomena which are found in a magnetized plasma. Even in a cold
plasma where thermal effects are absent, the number of wave types added by
the inclusion of the magnetic field is large, and wave types vary greatly with the
angle of propagation with respect to the magnetic field. We find waves which
are guided by the magnetic field in certain frequency ranges, and cases where
the phase and group velocities are nearly normal to one another. Whereas in a
cold unmagnetized plasma, the only parameter that may lead to inhomogeneities
is the plasma density, the magnetic field not only adds a possible new source
of inhomogeneity, but the gradients may appear in different directions. Since
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nearly all of the realistic plasmas, both in the laboratory and in ionospheric and
astrophysical plasmas, have a magnetic field, we shall expend considerable effort
studying these effects and attempt to sort out the somewhat bewildering array of
phenomena.

1.1.3 Thermal plasmas

When thermal effects are added to the cold plasma effects, the new phenomena
can be grouped into two general categories: acoustic wave phenomena due to
various kinds of sound waves; and kinetic phenomena due to the fact that in a
thermal or near thermal distribution, there are some particles moving at or near
the phase velocity. These particles have resonant interactions with the waves due
to their long interaction time with the wave. These interactions can lead to either
collisionless wave damping or to instabilities and wave growth. When coupled
with magnetic field effects, finite Larmor orbit effects lead to even more new
wave types and instabilities.

We shall first examine the wave types in a cold, magnetized plasma
in chapter 2, and then introduce the thermal effects, analyzing the acoustic
phenomena through the fluid model of a plasma in chapter 3, and the kinetic
effects in chapter 4. In the subsequent chapters, we shall examine the effects of
adding sharp boundaries, slowly varying inhomogeneities, and nonlinearities at
several levels, but will stop short of fully turbulent plasmas.

1.2 Plasma wave applications

Some of the earliest applications of plasma physics were related to gaseous
electronics and the study of positive columns for device applications. While
these investigations contributed significantly to the early development of plasma
physics, most of those applications have either been superseded by solid state
devices or involve no wave phenomena, and are hence of no interest in the
context of this book. We thus turn our attention to several applications which
both contributed to the development of the field, helping us to understand that
plasmas indeed form the ‘fourth state of matter’ and which are the active areas of
research today.

1.2.1 Plasma waves in ionospheric physics

It was apparent from the very early days of radio that some poorly understood
phenomenon was occurring in the upper atmosphere which was affecting radio
propagation in a nontrivial manner. By 1932, when Appleton published what
came to be known as the ‘Appleton–Hartree Dispersion Relation’ (which we
will henceforth refer to as the ‘Altar–Appleton Dispersion Relation’ for reasons
discussed in section 2.1), there was a significant amount of data indicating the
location and nature of the ionospheric plasma and many of the observed effects
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on radio wave propagation were understood. Those studies have continued to
uncover new phenomena and refine the picture of the ionosphere, and continue
to influence our communications through the ionosphere. Beginning with passive
characterization of the wave propagation characteristics of the ionosphere, we
have moved on to active modification of the ionosphere through nonlinear
plasma wave interactions, and we attempt to model the potential modifications
to the propagation characteristics which might follow a major disruption of the
ionosphere due either to a large solar flare or to human intervention.

1.2.2 Plasma waves in astrophysics

In astrophysics, plasma waves are ubiquitous, providing the basis for
understandingmany types of energy transport and plasma instabilities, both linear
and nonlinear. Wave transport of both energy and momentum leads to plasma
heating and modification of the velocity distribution. Conversely, nonequilibrium
velocity distributions lead to plasma instabilities which convert particle energy
to wave energy then back to particle energy. While wave–particle interactions
may dominate the interest in astrophysical plasma waves, the propagation and
characterization of linear waves lie at the root of all nonlinear interactions, and
the various competing mechanisms for wave dissipation and wave generation or
growth must be thoroughly understood first. While the scale of astrophysical
plasmas is large, suggesting that uniform plasma theory might suffice, it is
the weakly inhomogeneous effects which transport waves through propagating
regions to a resonance region where the wave–particle effects lead to energy
exchange between the particles and waves, or else block the propagation through
a caustic or reflection layer.

1.2.3 Plasma waves in magnetized fusion plasmas

A major impetus for research in plasma waves has been the international effort
to realize controlled thermonuclear fusion. Since plasma waves determine the
magnetohydrodynamic (MHD) instability time scale, and fusion plasmas are
perennially fraught with micro-instabilities and the ensuing microturbulence,
understanding both linear and nonlinear instabilities has always been a driving
force in the development of wave theory. Plasma wave heating has also recently
come to the forefront, leading to even more refinement in wave theory as one tries
to model successfully the scenarios for using plasma waves to raise the plasma
temperature to ignition levels. This effort includes more detailed descriptions of
propagation in inhomogeneous plasmas as the wave energy must travel from the
edge to the center, and then more sophisticated models of the wave absorption
processes which finally transfer the wave energy to the plasma particles. The
emission of waves from hot plasmas is also used to measure the temperature
of thermal plasmas; and the use of the generalized Kirchhoff law (GKL) to
describe this phenomenon appears here for the first time in a textbook. The
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use of waves to generate a plasma current, where wave momentum is converted
to particle momentum through nonlinear wave–particle interactions, has led to
further developments in nonlinear theory. Many of the examples in this book
have potential magnetic fusion applications, but they are certainly not limited to
such a narrow scope.

1.2.4 Plasma waves in laser-produced plasmas

Another area where wave–plasma interactions drive the physics is the realm of
laser-produced plasmas, principally those related to inertial confinement fusion.
In this application, the electromagnetic waves are so intense that the plasma
response is not only nonlinear, but relativistic, as electrons can gain a reasonable
fraction of their rest energy in one cycle of the incident wave. In addition,
there are other kinds of nonlinearities which produce sideband waves and shock
waves. While these plasmas have no intrinsic magnetic field, wave-driven currents
sometimes produce one. In these plasmas, the steep gradients in the plasma
parameters stretch the weakly inhomogeneous models, and the strong fields lead
to strong nonlinearities, both areas which go beyond the scope of this book. While
some of the examples herein may give a qualitative guide to the kinds of behavior
to expect in such plasmas, the parameters are sufficiently extreme in many cases
that qualitatively different phenomena can and do occur.

1.3 Review of electromagnetic wave propagation

1.3.1 The Maxwell equations

The propagation of electromagnetic waves in all physical media for all frequency
ranges from zero frequency to gamma rays are governed by the Maxwell
equations. Moreover, we are particularly interested in wave propagation in a
material medium, namely a plasma, which is usually treated in a slightly different
manner from general dielectric media such as insulating materials. Throughout
this text, SI units will be employed so the field equations are:

∇ × E = − ∂B
∂ t

(1.4)

∇ × H = J + ∂D
∂ t

(1.5)

∇ · B = 0 (1.6)

∇ · D = ρ (1.7)

where all quantities are functions of space and time, e.g. J = J(r, t). These
quantities are the standard electromagnetic fields plus the current and charge
density.

(i) E is the electric field intensity in Volt/m or Newton/Coulomb.
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(ii) D is the electric displacement vector or D = εE in a standard isotropic
dielectric medium characterized by a scalar dielectric permittivity. If the
medium is anisotropic, the medium is characterized by a tensor dielectric
permittivity, ε, and D = ε · E.

(iii) B is the magnetic induction in Tesla.
(iv) H is the magnetic intensity, and B and H are related by B = µH where

µ is the magnetic permeability of the medium. For plasmas, we shall take
µ = µ0 where µ0 is the permeability of free space.

(v) ρ is the electrical charge density in Coulomb/m3.
(vi) J is the electrical current density in Ampere/m2.

As a consequence of these equations, the charge density ρ and the current
density J are related through the continuity equation:

∇ · J + ∂ρ

∂ t
= 0. (1.8)

Another relation which is very important in dealing with conductive media
such as plasmas (as we will show in subsequent chapters) is the conductivity σ

which is defined such that
J = σ · E (1.9)

where the dot product indicates that in general σ is a tensor which we shall
characterize either by a 3× 3 matrix or as the scalar σ . As will be demonstrated
in chapter 3, the physical properties of the medium are manifested through the
quantities ε, µ, and σ . In an isotropic medium, these are all scalar quantities,
denoted by ε, µ, σ , while in an anisotropic medium they may all become tensors
denoted by ε, µ, σ .

In an insulating dielectric medium, another vector field is usually used to
relate the properties of the medium to the electric intensity, namely the electric
polarization P , where

P = ε0χ · E (1.10)

where χ is the susceptibility tensor of the material. The convenience of defining
the electric susceptibility is to obtain a divergence-free electric displacement in
the medium or

∇ · D = 0. (1.11)

Since the charges in the medium are bound, it is possible to write

ρ = −∇ · P (1.12)

or from equation (1.7), we have

∇ · (ε0E) = ρ = −∇ · P (1.13)

∇ · (ε0E + P) = 0. (1.14)
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Now let D = ε0E + P , and since D = ε · E, we have

ε = ε0(I+ χ) (1.15)

where χ is in general a 3× 3 matrix and I is the unit 3× 3 matrix.
For a plasma, the currents are related to the various physical properties

of the medium and can be used to define an effective dielectric constant (or
tensor). External currents, however, must be dealt with explicitly, and may not be
incorporated into a characterization of the medium through an effective dielectric
constant. For a homogeneous plasma, we may Fourier transform in both time and
space so that the fields vary as exp(ik · r − iωt), so that we may define

D = εE = ε0E − J/iω = (ε0 − σ/iω)E (1.16)

where we have used equation (1.9) (scalar form) with the result

ε = ε0 − σ/iω scalar dielectric permittivity
ε = ε0I− σ/iω effective dielectric permittivity tensor

(1.17)

and in terms of the dimensionless dielectric constant, where ε = ε0K ,

K = 1− σ

iωε0
the effective dielectric constant (1.18)

K = I− σ

iωε0
the effective dielectric tensor. (1.19)

Thus a good conducting medium at low frequency, such as a plasma, or water
with an electrolyte, will have a very high dielectric constant as well. Hence the
dielectric constant of a medium is related to the polarizability of an insulator, as
in equation (1.15), or the mobility of the charges in a plasma, as will be shown in
chapter 2.

Problem 1.3.1. Incorporating the current into the dielectric constant. Show
that equation (1.16) comes from equation (1.5) where the current has been
incorporated into ε.

1.3.2 Properties of the Helmholtz equation

Again let us consider electromagnetic waves in free space where µ0 ≡ 4π×10−7
Henry/m and ε0 = 8.854×10−12 Farad/m, or in a dielectric medium characterized
by a dielectric constant K . The speed of light may be written in terms of the
free space constants as 1/c2 = µ0ε0. We can combine equation (1.4) and
equation (1.5) for free space and obtain the general Helmholtz equation for free
space or use D = ε0K E to represent the homogeneous, isotropic medium. We
use the various quantities used in section 1.3.1 to obtain

∇ × (∇ × E)+ µ0
∂

∂ t
J + K

c2
∂2

∂ t2
E = 0 (1.20)
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where now J represents external currents, so with no external currents, we have
the Helmholtz or wave equation:

∇ × (∇ × E) + K

c2
∂2

∂ t2
E = 0. (1.21)

This result is valid either for free space, where K = 1 or in an insulating medium
or in a plasma which is represented by an effective dielectric constant.

If we use the vector identity

∇ × (∇ × A) = ∇(∇ · A)− ∇2 A

and take the case ∇ · E = 0 so that there is no net free charge, we have the
simplified wave equation

∇2E − K

c2
∂2

∂ t2
E = 0. (1.22)

These same basic techniques can be used to write a wave equation for H as

∇ × (∇ × H)+ K

c2
∂2

∂ t2
H = ∇ × J (1.23)

where again J represents external currents, since internal currents have been
incorporated into K . Thus with no external currents, equation (1.23) is equivalent
to equation (1.22) so that E and H satisfy the same equation.

Let us first consider some simple cases of the wave equation. For simplicity,
consider only the scalar wave equation, equation (1.22), in a homogeneous,
isotropic, nondispersive medium. The most common solution of the scalar
equation

∇2 f − K

c2
∂2

∂ t2
f = 0

is the plane wave solution, or

f = Aeiθ = Aei(k·r−ωt) (1.24)

since any other solution can be constructed by Fourier synthesis, so the solution
is a complex function with a scalar amplitude A and phase θ , where

θ = k · r − ωt . (1.25)

Here, k is known as the wavevector, and ω is the angular frequency, measured in
radians per second. The homogeneous assumption implies that k is not a function
of r , the isotropic assumption implies that it is not a function of direction, and
the nondispersive assumption implies that it is not a function of ω. The surface
where θ is a constant is known as the surface of constant phase, or if an observer
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moves with the wave in the k-direction, the phase is constant. Taking differentials
of equation (1.25), we have

δθ = k · δr − ωδt

and for constant phase we demand δθ = 0, so

0 = k · δr − ωδt

which leads to
dr
dt
= ω

|k| êk = vp. (1.26)

The quantity vp is known as the phase velocity of the wave and points in the k-
direction, and its magnitude vp is the phase speed. The other physical quantities
of interest in the study of waves are the wavelength λ and the period τ . The
wavelength is the distance traveled by the wave when the phase has increased by
2π with t constant, so that

λ = 2π

|k| (1.27)

and the period is the time elapsed for a 2π phase shift at constant r , or

τ = 2π

ω
. (1.28)

The wave frequency is simply the inverse of τ or

f = 1

τ
= ω

2π
. (1.29)

Another quantity that can be used to simplify the form of the wave equation is the
vector index of refraction n given by

n = kc
ω
. (1.30)

The physical meaning of n = |n| is that it represents the ratio of the speed of light
in free space to the phase speed of the wave. Hence if n > 1, it means that the
phase speed of the wave is slower than the speed of light, and if n < 1, it means
it is faster. Using n, equation (1.22) becomes

n × (n × E)− K E = 0 (1.31)

and if ∇ · E = 0 (which is typically true for transverse waves but not for
longitudinal waves), then this leads to

n2 − K = 0⇒ n = ±√K . (1.32)
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The index of refraction for free space is thus n = ±1 since K = 1 for free space,
and differs from unity for general media.

It is clear from the nature of the vector equations that whenever the medium
is not isotropic, the tensor character of the effective dielectric tensor will require
the index of refraction to be different in different directions, and the algebra will
be more formidable than shown here. Nevertheless, the Helmholtz equation may
be written for stationary (∂K/∂ t = 0), homogeneous (∂K/∂ r = 0), anisotropic
media as

n × (n × E)− K · E = 0. (1.33)

In addition to the phase velocity, we will often need to know the velocity of
a wave packet which is called the group velocity. This velocity gives information
about the movement of energy and information, and may be either faster or
slower than the phase velocity, and frequently travels in a different direction. In a
homogeneous, isotropic plasma, the group velocity is given by

vg = dω

dk
(1.34)

and travels either parallel or antiparallel to the phase velocity. In more general
plasmas, the vector expression is

vg = dω

dk
= ∇kω. (1.35)

This phenomenon will be examined more thoroughly in chapter 2.

1.3.3 Conservation laws for electromagnetic fields

The flow of electromagnetic energy is a balance between the power leaving
a bounded volume through its surface, the power dissipated in the volume
(transferred to mechanical or other non-electromagnetic energy), and the energy
stored in the electromagnetic fields (E and H). It is this energy balance that is
the content of Poynting’s theorem. We begin with the definition of the Poynting
vector which describes the electromagnetic energy flux,

P = E × H (1.36)

along with equations (1.4) and (1.5). Taking the divergence of P and using the
vector identity,

∇ · (A× B) = −A · (∇ × B)+ B · (∇ × A)

then

∇ · P = H · (∇ × E)− E · (∇ × H)

= − H
∂B
∂ t
− E · J − E · ∂D

∂ t
. (1.37)
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If we take the magnetic permeability µ to be constant and the dielectric
permittivity ε to be time independent, we may write this result as

∇ · P = −∂U

∂ t
− J · E (1.38)

where U is an energy density given by

U = 1
2 E · D + 1

2 B · H (1.39)

and where D includes the loss-free portion of the dielectric tensor (the Hermitian
part of K) and J = −iωε0KA (where KA is the anti-Hermitian part of K).
The various terms in (1.38) and (1.39) simply reflect the different components
of the energy balance. The total energy balance can be found by integrating
equation (1.38) over a volume V bounded by a surface S so that by using the
divergence theorem ∫

V
∇ · P dV =

∮
S

P · dA

we obtain ∮
S

P · dA = − ∂

∂ t

∫
V
U dV −

∫
V

J · E dV . (1.40)

From this equation, we identify the stored electromagnetic energy as being
comprised of an electric and a magnetic term, given in terms of the energy
densities (in Joule/m3)

UE = 1
2 E · D (1.41)

UM = 1
2 B · H (1.42)

and the volume-averaged power dissipation term is

D =
∫
V

J · E dV . (1.43)

Integrating over the volume, the total field energy is

W =
∫
V
UE dV +

∫
V
UM dV (1.44)

so the energy balance equation may be written as∮
S

P · dA = −∂W

∂ t
−D. (1.45)

This conservation law, which is called Poynting’s theorem, indicates that the
energy flux through the surface, represented by the first term in equation (1.45), is
equal to the rate at which energy is lost in the volume, either by a decrease in the
stored energy or by dissipation. It is important to note that both UE and UM are
nonlinear functions of the fields and thus for energy balance with material media
throughwave interactions, the conservation laws will be nonlinear (see chapter 7).
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1.3.4 Conservation laws with Fourier amplitudes

In studying wave physics, the wave fields and other variables are generally
harmonic in both time and space, or very nearly so. For this reason it is common
to represent the wave fields in terms of the Fourier amplitudes which are complex
quantities. For a harmonic time dependence, for example, we let the electric field
be represented by

E(t) = Re[ Ê(ω)e−iωt ]
where the hat reminds us that Ê is a complex number and is the Fourier amplitude
for E. Throughout the book we use Re to denote the real part and Im to denote the
imaginary part of whatever follows. While this recipe is rather obvious for linear
equations (multiply by e−iωt and take the real part), it is less obvious for products
of two complex amplitudes. If we represent the product of any two functions of
time by [A][B]where this could represent the product of two scalars, a scalar and
a vector, or a scalar or vector product of two vectors, then we have

[A][B] = Re[ Âe−iωt ]Re[ B̂e−iωt ]
= 1

2 [ Âe−iωt + Â∗eiωt ] 12 [ B̂e−iωt + B̂∗eiωt ]
= 1

4 ([ Â][ B̂]e−2iωt + [ Â][ B̂∗] + [ Â∗][ B̂] + [ Â∗][ B̂∗]e2iωt ).
While this time dependence is very cumbersome, if we ask for the time average
over a period rather than the instantaneous time behavior, then for real ω this
reduces to

1

τ

∫ τ

0
[A][B] dt = 1

4 ([ Â][ B̂∗] + [ Â∗][ B̂])
= 1

2 Re([ Â][ B̂∗]) (1.46)

where τ = 2π/ω. The complex Poynting vector is obtained from the set of curl
equations:

∇ × Ê = iωµ0 Ĥ ∇ × Ê∗ = −iωµ0 Ĥ∗
∇ × Ĥ = Ĵ − iωε0 Ê ∇ × Ĥ∗ = Ĵ∗ + iωε0 Ê∗

(1.47)

with the result

∇ · (Ê × Ĥ∗ + Ê∗ × Ĥ) = −(Ê · Ĵ∗ + Ê∗ · Ĵ). (1.48)

If we integrate this over the volume, then the result may be expressed as

−
∮
S

P · dS = D (1.49)

where

P = 1
2 Re(Ê × Ĥ∗) (1.50)

D = 1
2 Re

∫
V
(Ê · Ĵ∗) dV (1.51)
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so we can identify P as the Poynting vector and D as the volume averaged
dissipation. Equation (1.49) tells us that the power flowing in through the surface
is equal to the rate of loss of power inside through dissipation. In the lossless
plasma, we shall find that Re(Ê · Ĵ∗) = 0, so there is no dissipation and no net
power flow averaged over a cycle.

When ω is complex, with ω = ωr + iωi , then equation (1.48) has an
additional term such that

∇ · (Ê× Ĥ∗ + Ê∗ × Ĥ) = −(Ê · Ĵ∗ + Ê∗ · Ĵ)− 2ωi(µ0|Ĥ |2+ ε0|Ê|2) (1.52)

and this additional term represents the energy stored in the electromagnetic fields,
which can decay if the plasma is lossy or grow if the plasma is unstable.

1.3.5 Methods of geometric optics fromWKB theory

In a stationary, infinite, homogeneous, isotropic medium, the wave equation,
equation (1.22), may be written as a scalar wave equation of the form,

d2y

dx2
+ k2y = 0 (1.53)

where k is the wavenumber, and n = kc/ω is the index of refraction in the x-
direction. In an anisotropic medium, k depends on the direction, and there may
be more than one value of k to describe the propagation. The solutions are simple
plane waves, described by equation (1.24).

For an inhomogeneous (but still isotropic) plasma, however, the simple plane
wave solutions are only approximations to the actual solutions. If the medium
is sufficiently slowly varying, however, they represent a good starting point. If
we restrict our inhomogeneity to one dimension, then equation (1.53) can be
generalized to

d2y

dx2
+ k2(x)y = 0 (1.54)

where now k(x) is determined by the properties of the medium and we require
k(x) to vary little over a wavelength. If we assume that the solution is nearly a
plane wave, then we can choose to represent the solution as an eikonal of the form

y(x) = A(x)eiS(x) (1.55)

where A(x) is assumed to vary slowly while S(x) varies rapidly (S(x) = kx in
homogeneous media). If we insert this solution into equation (1.54), we find

[A′′ + 2iA′S′ + A(k2 − S′2 + iS′′)]eiS = 0

so the dominant terms (with no derivatives of A and neglecting S′′) give

S′ = dS

dx
= ±k(x) so S(x) = ±

∫ x

k(x ′) dx ′. (1.56)
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To the next order, we keep A′ and S′′ but neglect A′′ to obtain

2iS′A′ + iS′′A = 0 with solution A = A0√
k(x)

. (1.57)

The eikonal solution of this simple wave equation is thus (through first order)

y(x) = A0√
k(x)

exp

[
± i

∫ x

k(x ′) dx ′
]
. (1.58)

This method of dealing with wave equations of the type equation (1.54)
was introduced by Jeffreys [1] and developed for quantum mechanics and the
Schrödinger equation by Wentzel, Kramers, and Brillouin [2] and is commonly
called the WKB or WKBJ method. The method is sometimes taken to include
only this eikonal solution where the variation is slow, and sometimes taken to refer
to the matching of these solutions to solutions valid near a local cutoff (k(xc) = 0)
where the matching is done far enough from the cutoff that the eikonal solutions
are valid, but near enough that the local solution is still valid.

We shall find occasion to use solutions of this type in both one dimension and
in three dimensions where the waves are still nearly plane waves, but the direction
of the waves changes continuously in space as the wave propagates. The trajectory
of the group velocity is called a ray and the solution of the equations governing
the trajectory is called ray tracing. We will also need to find local solutions near
both cutoffs (k(xc) = 0) and resonances (k(xr) → ∞) and back-to-back cutoffs
and resonances, since examples of all these types of behavior are encountered in
plasmas. These methods and their conditions for validity, along with numerous
examples, are described in chapter 6, but we shall occasionally refer to the eikonal
solutions in the intervening chapters.

1.4 Statistical mechanics of plasmas

A plasma is a collection of ionized gas particles such that the overall charge of
the system is zero and whose principal interactions between the particles are due
to the Coulomb interaction. We refer to the condition on the overall charge as the
quasineutrality condition, since we allow local or periodic deviations from exact
neutrality. The condition may be written

N∑
j=1

n j q j = nee (1.59)

where n j is the ion charge density for species j and q j is the charge for that
species and the sum is over the N ionic species. We assume that the only
negatively charged particles are electrons, so that ne is the electron density. We
recognize that in some weakly ionized plasmas the possibility of negative ions
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would require changes in this and other conditions, since we always take the
electron mass to be much smaller than the ion mass and this would be violated if
negative ions constituted a nontrivial portion of the negative charge in the plasma.
In dusty plasmas, the right-hand side of equation (1.59) must be replaced by a
sum over the dust particles species that are typically highly charged.

Usually, plasmas are not in true thermal equilibrium, so that some standard
statistical mechanical methods cannot be applied. However, each particle species,
such as electrons and ions, closely approximates a local equilibrium state, so the
usual treatment of the plasma involves several species with independent thermal
equilibria. The conventional description of a thermal dynamic system is in terms
of its particle distribution function, f (r, v, t), where r is the configuration space
coordinate, v is the velocity space coordinate, and the combination is called the
phase space which is a space with six dimensions plus time. The distribution
function is an averaged quantity and is hence interpreted as a probability density
of finding a particle in a prescribed volume of the phase space.

The starting point of the statistical description of the plasma in phase space
is the Boltzmann equation with the interactions dominated by electromagnetic
forces. The statistical approach deals either with the description of a collection
of individual particles (a microscopic distribution) or with a description of
an average over a collection of particles (a macroscopic distribution). The
microscopic description of the particles involves a set of point charges located
at a point in phase space (r j , v j ) so that the density of particles in this case can
be written as a function of the instantaneous location of each particle or

N(r1, r2, . . . , rN , v1, v2, . . . , vN , t) =
N∏
j=1

δ[r − r j (t)]δ[v − v j (t)].

This description is complete but of little use since it requires knowledge of the
position and velocity of each particle in the phase space which may involve the
solution of 1020 equations.

A more tractable description is the macroscopic distribution method where
a physical quantity is averaged over the microscopic distribution function
f (r, v, t). For example, the particle density in configuration space, n(r, t), is

n(r, t) =
∫

f (r, v, t) d3v (1.60)

where we frequently use the abbreviated notation, d3v = dvxdvydvz . The
averaging in velocity space is sometimes called the fluid model approach since the
various macroscopic moments of the distribution function correspond to treating
the plasma as a fluid and the various quantities as fluid elements. The first few
moments after equation (1.60) (the zeroth moment) are the momentum density
(the first moment)

mu = m
∫

v f d3v (1.61)
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and the energy density (the second moment)

E = 1
2m

∫
v2 f d3v. (1.62)

The evolution of the distribution function in phase space is governed by the
Boltzmann equation

∂ f

∂ t
+ v · ∇ f + F

m
· ∇v f =

(
∂ f

∂ t

)
coll.

(1.63)

where F is the force due to electric and magnetic fields and ∇v is the gradient
in velocity space. This is essentially a conservation law describing a trajectory
in phase space, and the collision term amounts to the annihilation of a particle
at one point and its corresponding creation at another point because the actual
trajectory appears discontinuous in phase space due to the (assumed) short range
of the collision. These collisions tend to relax the distribution function to thermal
equilibrium, but the collisions between different species which tend to bring the
entire plasma to thermal equilibrium are not included here. The collisional term
can be approximated in various ways, the simplest of which is to assume that it
vanishes in the collisionless model. The collisionless Boltzmann equation,

∂ f

∂ t
+ v · ∇ f + q

m
(E + v × B) · ∇v f = 0 (1.64)

along with the Maxwell equations are called the Vlasov equations, although
occasionally equation (1.64) alone is referred to as the Vlasov equation. We shall
generally refer to equation (1.64) as the kinetic equation. Without any collisions,
of course, every phenomenon described by the Vlasov equations is reversible, so
no loss of information can occur within this simplest approximation. The simplest
nontrivial approximation to the collision term is the Krook model where(

∂ f

∂ t

)
coll.

= −ν( f − f0) (1.65)

where ν is the collision frequency and f0 is the steady-state equilibrium
distribution function. In order to conserve particles in this model, we demand∫

f1 d3v d3x = 0, where f1 = f − f0, since f1 will eventually decay away,
and any particles associated with f1 will disappear. However, it will relax the
distribution towards equilibrium with an increase in entropy, so it does allow
irreversible processes and loss of information. If we speak of a true equilibrium
distribution function, then we necessarily must take f0 to be a Maxwellian,
described by

f0(r, v) = Ae−E/KT

where E is the sum of the kinetic energy and the potential energy, E = 1
2mv

2 +
qϕ(r), A is a normalization constant, K is Boltzmann’s constant, and T is the
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thermodynamic temperature. We will occasionally refer to other functions f0(v)
in later chapters, but the concept of temperature is unique to the Maxwellian
distribution and the alternative functions are used either to simplify a calculation
to demonstrate a point or represent a nonthermal distribution which may still be
stationary on the wave time scale. Moreover, the value of A is obtained by the
conservation of particles. If N is the total number of particles of the particular
species, then we have

N = A
∫

d3x
∫

d3v e−E/KT

or

A = N∫
d3x

∫
d3v e−E/KT

.

Since, as we noted earlier, the various plasma species are not in thermal
equilibrium with one another, it is usually necessary to define a temperature
for each plasma species. It is quite common, for example, for the electron
temperature to be much higher than the ion temperature in an electron–ion plasma.
We occasionally will even refer to two temperatures for a single species, since
thermal effects for motion parallel to a magnetic field are very different from
motions perpendicular to the field, so a parallel temperature distinct from a
perpendicular temperature can be defined, but these only rarely are substantially
different from one another or else the plasma becomes unstable.

1.5 Overview of the plasma wave zoo

In the chapters ahead, the general trend is from simple to complex, but even in
the next chapter on cold plasmas, the anisotropy introduced by the magnetic field
will introduce great complexity. The general development begins with a cold,
infinite, homogeneous, and linear plasma, and then these constraints are relaxed
one by one. The anisotropy due to the magnetic field is so fundamental to so
many applications that it will be included throughout the linear development, but
few examples are given in the more complicated nonlinear chapters.

Chapter 2 introduces the basic dielectric tensor formalism with which we
deal with cold plasma waves propagating in a magnetized plasma. With no
thermal motions to complicate the picture, we discover the kinds of waves
which may propagate in different regions of parameter space, and their different
properties in different directions are so numerous we appear to be in a plasma
wave ‘zoo’, where we must identify and classify the various wave types carefully.
This is largely done through the Clemmon–Mullaly–Allis (CMA) diagram (you
may wish to turn to figure 2.8 while you read the remainder of this paragraph)
where boundaries or ‘fences’ keep each wave ‘animal’ in its own ‘cage’, so that
we can analyze one (or two since sometimes two waves share the same cage) at
a time. Without a magnetic field, there is a single ‘fence’ (the vertical line in
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figure 2.8) and on one side it is empty and on the other side there is only one
‘animal’ characterized by a sphere. With a magnetic field, there are suddenly 13
‘cages’, some with subregions inside! In these numerous regions, we may study
the taxonomy where the waves may be characterized as spheroids or lemniscoids
(two types), so that we may see relationships among the various subspecies in
our zoo. One ‘cage’ is still empty, some have only one inhabitant (spheroid
or lemniscoid), some have two spheroids while others have one of each (two
lemniscoids cannot occur simultaneously). The ‘fences’ have peculiar properties
also, since for some places one of the inhabitants can pass through one of the
fences while the other cannot.

We discover that phase and group velocities are more complicated in three-
dimensions with a magnetic field, and resonances which occur at specific angles
with respect to the magnetic field lead to resonance cones and interesting particle
motions. We also discover that some cages are so large that a wave near one
boundary appears so different from its twin at the other boundary that it merits a
new name. Thus it is not surprising that the nomenclature is a ‘zoo’ in its own
right, there being separate histories from different communities with their own
naming conventions which are quite incompatible, sometimes resulting in the
same name describing different waves and different names describing the same
wave.

In chapter 3, we introduce the first thermal corrections, where effectively we
allow the plasma to have a finite pressure and, later, drift velocities. These are
described through the fluid equations which require the phase velocity to be large
compared to the thermal velocity. This addition adds new animals to each cage,
the acoustic or sound waves, which are sometimes unique new wave types and
sometimes serve only to modify one of the cold plasma waves. Sometimes they
provide a coupling between different cold plasma waves, and these couplings are
generally found to be very dependent on angle. We try to organize these waves
through Stringer diagrams, since they refuse to be bound by the fences of the
cold plasma wave zoo. We also introduce collisions, though they could have been
introduced to cold plasmas. Finally, the introduction of drift velocities leads to a
variety of instabilities, so the classification of the types of instabilities is studied
here along with several examples.

The restriction on the phase velocity is removed in chapter 4 through the
use of kinetic theory, where we allow the effects of particles traveling near the
phase velocity to influence wave propagation and damping. The kinetic theory
treatment of plasma waves is the most comprehensive description, but also the
most complex. The fences of the CMA diagram may become fuzzy, and many
of the couplings in the Stringer diagrams are found to be effectively eliminated
through collisionless damping. Here we discover the effects of Landau damping,
where the slope of the distribution function at the phase velocity can lead either to
collisionless damping or instability. We explore the nature of this new damping
without collisions, since it may cause the wave to damp away, but without any
loss of information, characteristics which at first appear contradictory. The
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same basic phenomenon in a magnetized plasma leads to cyclotron damping,
and the effects of finite Larmor radii (usually but not always small compared
to the wavelength) lead to cyclotron harmonic effects and an entirely new set
of waves propagating nearly normally to the field which we call the Bernstein
modes after their discoverer. By now, we have expanded the zoo and modified
each of its species to such an extent that we can only look closely at the new
arrivals and a few representative cases. Although the development from kinetic
theory can treat any distribution function, the analysis is generally restricted to
Maxwellian distributions except for illustrative examples and for the relativistic
case. The general analysis for the relativistic case is included, with yet more new
phenomena, but we examine only a few examples where the relativistic effects
make a qualitative difference in the wave behavior, namely the appearance of
collisionless damping exactly normal to the field. Because of the relativistic mass
increase, even the fences move if the relativistic effects are strong enough, and
these effects have been observed in high intensity laser irradiation.

The addition of physical boundaries in chapter 5 restricts the spectrum of
wavevectors which was unbounded in the infinite plasma. We treat only uniform
plasmas within these boundaries, but point out an example where inhomogeneity
affects the result significantly. In the bounded plasma we find waveguide-type
cutoffs, discrete eigenmodes, geometry-dependent scattering resonances, and
surface waves that propagate in one dimension but decay in the radial direction.
While each wave type arises from one of the original animals in our zoo, it
takes on a new look in the bounded plasma. This chapter also includes a
discussion of mode orthogonality in a plasma-filled waveguide and the only
antenna calculation.

While we could consider chapter 5 to deal with plasmas with a step function
inhomogeneity (rapid change in plasma parameters over a wavelength), chapter 6
deals with weak inhomogeneities (small change in plasma parameters over a
wavelength). Following a wave through a slowly varying inhomogeneous plasma
amounts to following a trajectory through the plasma zoo, often crossing fences
(mode conversion) and occasionally passing through empty cages (tunneling).
Away from these boundaries, not all of which are CMA boundaries since many
of the transitions are from cold to hot plasma waves which did not appear in
the cold plasma, the description of waves by WKB theory is relatively easy in
one dimension. Most of the effort is then directed at the transitional coupling,
where there may be transmission (tunneling through a resonance to a wave of
the same type), reflection, mode conversion (to a wave of a different type), and
absorption. An inevitable companion of absorption is radiation, since the two are
coupled by Kirchhoff’s law, and in this edition, emission is discussed in detail
after generalizing Kirchhoff’s law to include the variety of plasma wave types
that are coupled in absorption and radiation zones. Beyond the one-dimensional
inhomogeneities, we examine the nontrivial extension of WKB theory to three
dimensions where the trajectory of the wave energy (following the group velocity)
is influenced by gradients of plasma parameters in arbitrary directions. Finally,
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we examine a class of instabilities called drift waves which arise from the fact that
an inhomogeneous plasma is not in equilibrium, and hence has a source of free
energy.

In the last two chapters, we finally relax the last restriction of linearity, and
first examine weakly nonlinear effects (chapter 7) that include the effects of waves
on the distribution function through quasilinear theory, and the resonant effects of
waves coupling with other waves to produce a third wave. Chapter 8 goes on to
treat stronger nonlinear effects, where we deal with solitary waves and solitons,
the effects of trapped particles, and finally the parametric instabilities. This
latter topic couples animals from the same or different cages through a variety
of possible nonlinear mechanisms, and is another zoo of its own because of the
many possible combinations. Here we only lay out some of the general framework
and examine a small (unmagnetized) corner of this zoo.
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Chapter 2

Waves in a cold uniform plasma

The ABCs of plasma waves are linear cold plasma waves in an infinite,
homogeneous plasma. The plasma is not isotropic, however, since the presence
of a magnetic field provides one preferred direction. Without the magnetic field,
the plasma may be represented by a simple dielectric constant and the only
wave solution is a simple electromagnetic wave that propagates above the plasma
frequency, ωpe. This virtually trivial result will be included as a special case in
our treatment of the finite magnetic field case, but we begin immediately with
the more general and nontrivial case. By cold plasma, we mean a collection
of charged particles without any net charge, and the particles are at rest except
when they are induced to move through the action of the self-consistent electric
and magnetic fields of the wave or, in other words, the particles have no kinetic
thermal motion of their own.

In this chapter, we will examine several forms of the dispersion relation,
the function that relates the frequency and the wavevector, that characterizes each
wave type and leads to the labels for the various types. We will then examine
some of the general properties of these various types of waves and examine a
few special cases in more detail in order to illustrate the features of the various
categories.

The labeling may be the most confusing part of this chapter, and indeed
throughout the book, since there is virtually no overlap in the nomenclature used
by laboratory plasma physicists and that used in ionospheric and astrophysical
plasma waves. Even within these two major groups, there are sometimes several
distinct names for exactly the same wave, depending on the history of the wave
or the wave feature to be emphasized. For example, the fast Alfvén wave is the
compressional Alfvén wave is the magnetoacoustic wave is the whistler wave is
the . . . (and the list goes on). Throughout the body of the text, the variety of names
for a single wave will be severely restricted, but as each wave is introduced,
or as a new aspect of the wave is unveiled, the multiplicity of names will be
noted, although exhaustive lists are both unlikely and unhelpful. Whenever one is
uncertain about which wave is referenced in the literature, it is best to determine
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which wave it is by noting its characteristics, since it even happens that different
groups use exactly the same names to mean totally different waves.

2.1 The cold plasma dispersion relation

The cold plasma dispersion relation (CPDR) was first published by Appleton
in two stages: the result in 1927 [3] and the derivation in 1932 [4]. Because
Hartree influenced the publication of the 1932 derivation, although he added
nothing to the result, it is sometimes called the Appleton–Hartree dispersion
relation. Following the historical study by Gillmor [5], however, where it was
discovered among Appleton’s own personal papers that Wilhelm Altar, while
working with Appleton, first calculated the dispersion relation in 1926, it would
be more appropriate to call it the Altar–Appleton dispersion relation. These early
forms neglected ion motions but did include electron–neutral collisions.

2.1.1 Equations of motion

The calculation begins with the equation of motion for a single particle of species
j in an electromagnetic field,

m j
dv j

dt
= q j (E + v j × B) (2.1)

along with the Maxwell equations,

∇ × E = −∂B
∂ t

∇ × B = µ0

(
j + ε0

∂E
∂ t

) (2.2)

and the expression for the total current,

j =
∑
j

n j q jv j

where the sum is over the species. Since the plasma has been presumed to be
uniform and homogeneous in both space and time, we may Fourier transform
these equations or what is equivalent, assume that

E = E1ei(k·r−ωt)
B = B0 + B1ei(k·r−ωt)
v = v1ei(k·r−ωt)

(2.3)

and B0 is the static magnetic field and is taken to be in the z-direction, and
|B1| � |B0|. With these inserted into equation (2.1), we may rewrite that
equation in linear form as

−iωm jv1 j = q j (E1 + v1 j × B0) (2.4)
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where the second order terms have been neglected because we have assumed the
waves are of sufficiently low amplitude that the linear approximation is valid. The
solution of equation (2.4) for the velocity is

vx j = iq j

m j (ω2 − ω2
cj )

(ωEx + iε jωcj Ey)

vy j = iq j

m j (ω2 − ω2
cj )

(−iε jωcj Ex + ωEy)

vz j = iq j

m jω
Ez .

(2.5)

Here we have introduced the definitions ε j ≡ q j/|q j | to denote the sign of the
charge for species j and ωcj ≡ |q j |B0/m j is the cyclotron frequency for species
j .1 The first two of these may be simplified by introducing rotating coordinates
such that v± = vx ± ivy and E± = Ex ± iEy . Then we may write both of these
components as

v± = iq j

m j (ω ∓ ε jωcj )
E±. (2.6)

Similarly, the current density may be written as

J± = iε0
∑
j

ω2
pj

(ω ∓ ε jωcj )
E±

Jz = iε0
∑
j

ω2
pj

ω
Ez

(2.7)

where ωpj is the plasma frequency for species j , given by

ω2
pj =

n j q2j
m jε0

. (2.8)

2.1.1.1 Particle motions

In Fourier transform space, integrating the velocity equations to obtain the
coordinates is done by simply dividing by −iω. For a simple case where
Ey = Ez = 0 so that E has only an x-component, we find

x j = − q j Ex

m j (ω2 − ω2
cj )

y j = ε jωcj

iω
x j

(2.9)

so that in general, the trajectory is elliptical. For ω � ωcj , we find x j � y j ,
so the motion is principally across both the E and B0 directions. However, for
1 Some authors define ωcj ≡ q j B0/m j so that it is negative for electrons.
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ω � ωcj , x j � y j and the motion is principally parallel to the electric field.
In this latter case, we would call the particles unmagnetized, since the magnetic
influence is small. Since it is possible for the wave frequency to be well above the
ion cyclotron frequency at the same time it is well below the electron cyclotron
frequency, it is possible for ions to be effectively unmagnetized while electrons
are magnetized.

When ω � ωcj , then the linear solutions exhibit resonance effects with
large amplitudes, and at resonance, the radius increases uniformly in time and
no steady-state solution exists. In this vicinity, we expect the cold plasma
approximation to fail and either thermal, inhomogeneous, or nonlinear effects
to dominate the dynamics.

Problem 2.1.1. Cold plasma conductivity tensor.

(i) Derive the elements of the conductivity tensor σ where j = σ · E.
(ii) Show that there is no dissipation associated with this conductivity. (Hint:
Show that Re(E∗ · j) = 0, and then note how this result demonstrates the
absence of dissipation, where E∗ is the complex conjugate of E.)

2.1.2 Cold plasma dielectric tensor

If we now combine the plasma current and the displacement current such that

j − iωε0E ≡ −iωε0K · E

then the resulting equivalent dielectric tensor is given by

K =

 S −iD 0

iD S 0
0 0 P


 =


 K1 K2 0
−K2 K1 0
0 0 K3


 (2.10)

where the dielectric tensor elements are defined by

K1 ≡ S ≡ 1
2 (R + L) = 1−

∑
j

ω2
pj

ω2 − ω2
cj

(2.11)

iK2 ≡ D ≡ 1
2 (R − L) =

∑
j

ε jωcjω
2
pj

ω(ω2 − ω2
cj )

(2.12)

K3 ≡ P = 1−
∑
j

ω2
pj

ω2
(2.13)

K1 + iK2 ≡ R ≡ S + D = 1−
∑
j

ω2
pj

ω(ω + ε jωcj )
(2.14)

K1 − iK2 ≡ L ≡ S − D = 1−
∑
j

ω2
pj

ω(ω − ε jωcj )
. (2.15)
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The two equivalent sets of tensor elements in equations (2.11) through (2.15)
are the familiar S, D, R, L, and P notation of Stix [6] and the cold plasma limit
of the more general dielectric tensor to be developed in later chapters. The Stix
labels are mnemonics for the Sum, Difference, Right, Left, and Plasma terms,
respectively. In the subsequent sections, we will occasionally use the Stix notation
to refer explicitly to the cold plasma terms only, while the more general notation
may refer either to the cold plasma limit or include warm or hot plasma terms.
The original Altar–Appleton dispersion relation neglected the ion terms, and the
simplified dielectric tensor elements were then given by

K1 = 1− X

1− Y 2

K2 = iXY

1− Y 2

K3 = 1− X

(2.16)

where X = ω2
pe/ω

2 and Y = ωce/ω, except that collisions were included in
the original work. The discussion of collisions is deferred until chapter 3. This
particular notation is common in discussing ionospheric phenomena, but is rarely
used to discuss laboratory plasma waves.

Problem 2.1.2. Zeros of D.

(i) Show that D cannot vanish at any frequency in a plasma with only one ion
species (only one q j/m j ratio) and electrons with finite density and magnetic
field.
(ii) Show that there is one zero in D for each additional ion species (different
q j/m j ) added and that the zeros lie between each adjacent pair of ion
cyclotron frequencies. (Hint: Do not try to find these frequencies, only prove
that they exist.)

2.1.3 Forms of the dispersion relation

The Maxwell equations of equation (2.2) are now written as

ik × E = iωB
ik × B = −iωε0µ0K · E

(2.17)

with the resulting wave equation

n × (n × E)+ K · E = 0 (2.18)

where

n = kc
ω

(2.19)

is the index of refraction vector whose direction is the direction of the wavevector
k and whose magnitude is the index of refraction. If we now choose n to lie in
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the x–z plane, and since we have already chosen B0 to be in the z-direction, then
equation (2.18) becomes

 S − n2 cos2 θ −iD n2 cos θ sin θ
iD S − n2 0

n2 cos θ sin θ 0 P − n2 sin2 θ




 Ex

Ey

Ez


 = 0 (2.20)

where θ is the angle between k and the z-axis. In order to have a nontrivial
solution, one requires that the determinant of coefficients vanish. This condition
gives the cold plasma dispersion relation (CPDR),

An4 − Bn2 + C = 0 (2.21)

where
A = S sin2 θ + P cos2 θ
B = RL sin2 θ + PS(1 + cos2 θ)
C = PRL .

(2.22)

The solutions of equation (2.21) may be written in either of two forms, first
as a quadratic in n2,

n2 = B ± F

2A
F2 = B2 − 4AC (2.23)

where F2 may be written in the form,

F2 = (RL − PS)2 sin4 θ + 4P2D2 cos2 θ (2.24)

or alternatively in terms of the angle,

tan2 θ = − P(n2 − R)(n2 − L)

(Sn2 − RL)(n2 − P)
. (2.25)

The general condition for a resonance, where n2 →∞, or where A→ 0, is given
by equation (2.23) or equation (2.25) as

tan2 θ = −P/S general resonance condition (2.26)

and the general cutoff condition, where n = 0, is given by equation (2.21) as

C = PRL = 0 general cutoff condition. (2.27)

We note some special cases at this point which we will take up in more detail in
the following sections.

(i) Propagation parallel to B0, θ = 0. (The numerator of equation (2.25) must
vanish.)

(a) P = K3 = 0 plasma oscillations.
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(b) n2 = R = K1 + iK2 wave with right-handed polarization.
(c) n2 = L = K1 − iK2 wave with left-handed polarization.

(ii) Propagation perpendicular to B0, θ = π/2. (The denominator of
equation (2.25) must vanish.)

(a) n2 = P = K3 ordinary wave.
(b) n2 = RL/S = (K 2

1 + K 2
2 )/K1 extraordinary wave.

Problem 2.1.3. Show that F2 is positive definite, i.e. show that F2 may be written
in the form of equation (2.24).

2.2 The CMA diagram

Because of the number of different solutions and their behavior at various angles
and in different frequency bands, this simplest of plasma wave problems (cold
plasma only) has become significantly complicated. There are various ways of
tabulating the characteristics of the waves in various regions of parameter space,
and we shall include several. The starting point is the Clemmow–Mullaly–Allis
(CMA) diagram and the associated wave normal surface (WNS) topology. This
method of tabulating shows at a glance whether one or two waves (or none)
propagate, whether a resonance occurs, which wave is fast or slow, and shows
the connections between the right- and left-handed waves and the ordinary and
extraordinary waves as the angle changes from 0 to π/2.

As we establish conditions for the boundaries and determine the topology of
the WNSs for each region of the CMA diagram, we will also show dispersion
curves that represent selected slices through the CMA diagram, and offer
interpretations of the topological features.

2.2.1 Principal solutions—parallel propagation

We first define the principal resonances to be those which occur at θ = 0 and
θ = π/2. The general condition for a resonance (n2 → ∞) is evident from
equation (2.25) which becomes

tan2 θ = −P/S. (2.28)

Hence, for θ → 0, we require S → ∞ since P = 0 is a cutoff. Since
S = 1

2 (R + L), this can be satisfied for either

R →∞ (electron cyclotron resonance)

or
L →∞ (ion cyclotron resonance).
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2.2.1.1 The right-handed wave

For a simple plasma of electrons and one ion species, the dispersion relation for
the right-handed wave, n2R = R, which propagates parallel to B0 is given by
equation (2.14) as

n2R = R = 1− ω2
pi

ω(ω + ωci )
− ω2

pe

ω(ω − ωce)
(2.29)

so the resonance is clearly at ω = ωce. The cutoff frequency, where n2 = R = 0,
is given by

ωR = ωce − ωci

2
+
[(

ωce + ωci

2

)2
+ ω2

p

]1/2

(2.30)

where we have defined the composite quantity

ω2
p ≡ ω2

pe + ω2
pi .

For low and high density limits, the cutoff frequency may be approximated by

ωR �




ωce

(
1+ ω2

pe

ω2
ce

)
R-wave cutoff—low density

ωpe + 1
2ωce R-wave cutoff—high density

(2.31)

where we have assumed me � mi , which is always valid except in electron–hole
or electron–positron plasmas (except that in partially ionized plasmas, electron
attachment may lead to negative ions with m− ∼ m+).

For low and high frequencies, the index of refraction approaches the limits

n2R �




1+ ω2
pi

ω2
ci

≡ c2

V 2
A

as ω→ 0

1− ω2
pe

ω2
as ω→∞.

(2.32)

where VA is the Alfvén speed. The dispersion relation for the right-handed wave
is plotted for high and low density cases in figure 2.1.

2.2.1.2 The left-handed wave

The dispersion relation for the left-handed wave, n2L = L, is also given by
equation (2.15) as

n2L = L = 1− ω2
pi

ω(ω − ωci )
− ω2

pe

ω(ω + ωce)
(2.33)
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Figure 2.1. Dispersion relation for R-wave: (a) high density case, ω2pe/ω
2
ce = 3; (b) low

density case, ω2
pe/ω

2
ce = 0.3 (mi/me = 5).

so the resonance in this case is clearly at ω = ωci . The cutoff frequency, where
n2 = L = 0 is given by

ωL = ωci − ωce

2
+
[(

ωci + ωce

2

)2
+ ω2

p

]1/2

. (2.34)

For low and high densities, the cutoff frequency may be approximated by

ωL �




ωci +
ω2
pi

ωci
L-wave cutoff—low density

ωpe − 1
2ωce L-wave cutoff—high density

(2.35)

where we have again assumed me � mi .
For low and high frequencies, the index of refraction approaches the limits

n2L �




1+ ω2
pi

ω2
ci

≡ c2

V 2
A

as ω→ 0

1− ω2
pe

ω2
as ω→∞.

(2.36)

The dispersion relation for the left-handedwave is plotted for high and low density
cases in figure 2.2. Except for the large difference between the two cyclotron
frequencies, it is apparent that the propagation characteristics are very similar
to the R-wave dispersion relation with identical asymptotes at low and high
frequency.

2.2.2 Principal solutions—perpendicular propagation

As θ → π/2, P/S →∞, and since P →∞ is a trivial solution (either ω→ 0,
so no wave at all, or ωp → ∞, which is impossible), we require S → 0. These
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Figure 2.2. Dispersion relation for L-wave: (a) high density case, ω2pe/ω
2
ce = 3; (b) low

density case, ω2
pe/ω

2
ce = 0.3 (mi/me = 5).

resonances are called hybrid resonances because they generally involve some
combination of ωc and ωp . The solutions for perpendicular propagation are the
ordinary and extraordinary waves.2

2.2.2.1 The ordinary wave

The dispersion relation for the ordinary wave is the same as in an unmagnetized
plasma, and is given simply by

n2O = P = 1− ω2
pe

ω2 −
ω2
pi

ω2 = 1− ω2
p

ω2 (2.37)

for a single-ion species plasma, and it is immediately apparent that this wave has
no dependence on the magnetic field at all. As will be shown later as we look at
the polarization of the various solutions, this wave has E parallel to B0, so the
particles do not experience any effects of the magnetic field. It is clear that there
is no resonance and that the cutoff is at ω = ωp . There is no propagation below
ωp and n2 → 1 as ω → ∞, so the dispersion relation is very simple in a cold
plasma.

Problem 2.2.1. The ordinary wave. Show that for the ordinary wave (O-wave),
vpvg = c2, or that the product of the phase velocity and the group velocity is equal
to the square of the velocity of light. What does this imply about the relationship
between the phase velocity and the velocity of light for the O-wave?

Problem 2.2.2. Reflection from the ionosphere. Since AM broadcast (and ham
band) waves reflect from the ionosphere (ωp > ω), permitting long range

2 For space and ionospheric applications, their ordinary wave is our R-wave and our X-wave is their
Z -mode.
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communication, whereas FM waves propagate through the ionosphere, limiting
the range to line-of-sight, estimate the electron density in the ionosphere.

2.2.2.2 The extraordinary wave

The dispersion relation for the extraordinary wave, given by

n2X =
RL

S
= [(ω + ωci )(ω − ωce)− ω2

p][(ω − ωci )(ω + ωce)− ω2
p]

(ω2 − ω2
ci )(ω

2 − ω2
ce)+ ω2

p(ωceωci − ω2)
(2.38)

is the most complicated of these simplified dispersion relations, since neither the
resonances nor the cutoffs have simple expressions. The resonances are given by
the zeros of the denominator, which lead to the quadratic roots

ω2 = ω2
e + ω2

i

2
±

(ω2

e − ω2
i

2

)2

+ ω2peω
2
pi



1/2

(2.39)

where we have defined the composite frequencies

ω2
j ≡ ω2

pj + ω2
cj j = e, i.

One of the roots is simply given (neglecting me/mi ) by ωe, the Pythagorean sum
of the electron cyclotron frequency and the electron plasma frequency, namely

ω2
UH = ω2

pe + ω2
ce [upper hybrid resonance]. (2.40)

The extraordinary wave is sometimes called the Z -mode, especially in space
applications.

The other root is more complicated, but again neglecting terms of order
me/mi ,

ω2
LH = ωceωci

(
ω2
pe + ωceωci

ω2
pe + ω2

ce

)
[lower hybrid resonance] (2.41)

so the lower hybrid resonance occurs at the geometric mean of the two cyclotron
frequencies in the high density limit and at ωi , the Pythagorean sum of the ion
cyclotron frequency and the ion plasma frequency in the low density limit.

Problem 2.2.3. The hybrid resonances.

(i) Show that equations (2.38) and (2.39) are exact.
(ii) Show that the given hybrid resonance frequencies are accurate to order
me/mi . (Hint: After factoring out (ω2

e − ω2
i )/2 from the radical of

equation (2.39), expand the radical and show that all terms after the first
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Figure 2.3. Dispersion relation for the extraordinary wave (X-mode): (a) low density case,
ω2
pe/ω

2
ce = 0.3; (b) high density case, ω2pe/ω

2
ce = 3 (mi/me = 5).

order term are higher order in me/mi . Then show how the zero and first
order terms lead to the listed results.)
(iii) Show that the low density expression for the lower hybrid resonance is
the Pythagorean sum indicated.

The cutoffs for the extraordinarywave are given by the roots of the numerator
of equation (2.38), again leading to quadratic roots of the form

ωX =
[(

ωce + ωci

2

)2
+ ω2

p

]1/2

± ωce − ωci

2
(2.42)

where two negative roots have been discarded. For the high density limit, the two
cutoffs are at

ωX � ωpe ± 1
2ωce X–wave cutoff—high density. (2.43)

For the low density limit, the two cutoffs are located at

ωX �




ωce +
ω2
pe

ωce

ωci +
ω2
pe

ωce

X–wave cutoff—low density. (2.44)

The low frequency limit (ω→ 0) again leads us to the case

n2 → 1+ ω2
pi

ω2
ci

= c2

V 2
A

as ω→ 0 (2.45)

as in the R- and L-wave cases. In the high frequency limit, n2 → 1 as ω →∞.
With these features established, the dispersion relation for the extraordinary wave
is plotted in figure 2.3 for the low and high density cases.
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Figure 2.4. Principal axes and boundaries of the CMA diagram (to scale withmi/me = 5).

2.2.3 CMA boundaries—cutoffs and resonances

Having established some of the features of the principal waves, we wish now to
plot the principal resonances and cutoffs as a function of density and magnetic
field. We use as the coordinates for this plot the normalized magnetic field,
ωce/ω = Y , versus the density, ω2

p/ω
2 ≡ X , where X and Y are the variables

in the Altar–Appleton dispersion relation. These axes are linear in density to the
right and linear in the magnetic field in the vertical direction. Noting first just the
principal boundaries, the electron and ion cyclotron frequencies and the plasma
frequency are the horizontal and vertical lines in figure 2.4.

It is clear from the spacing that this figure is not to scale for a real plasma
since the ratio, ωce/ωci � 1, is so large for realistic plasma parameters that the
two cyclotron resonances could not be shown in a reasonable fashion. Using
this distorted scale (mi = 5me), we then add all of the principal resonances
and cutoffs. With the axes chosen to vary inversely with ω, the high frequency
region is in the lower left corner, approaching the origin as ω→∞, and the low
frequency region is in the upper right section.

We note that the R = 0 boundary is a straight line with this choice of axes
(S = 0 would be a straight line if we used ω2

ce/ω
2 for the vertical axis, but it

lies above R = 0 in either case). It is easily shown that near the bottom of the
figure, L = 0 and R = 0 are described by X = 1 ± Y , so both converge to
X = 1 at the bottom. At ω = ωce, it may be shown that the L = 0 boundary
crosses the R → ∞ boundary at X = 2(mi − me)/mi → 2 as me/mi → 0.
The two cutoffs have already been shown to approach their respective cyclotron
frequencies as ωp → 0, so the paths of R = 0 and L = 0 are defined. The
upper hybrid resonance (the lower S = 0 curve) has the same end points as the
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R = 0 curve, and lies above it, so its character is determined. The lower hybrid
resonance (the upper S = 0 curve) approaches the ion cyclotron resonance in the
low density limit (the left edge), and the geometric mean

√
ωceωci in the high

density limit, so it asymptotes to a value between the cyclotron resonances to
the right. It always lies above the L = 0 curve, so its character is determined.
The boundaries between propagating and nonpropagating waves for the principal
solutions are thus shown in figure 2.4. The significance of the RL = PS boundary
is that the distinction between the ordinarywave and the extraordinarywave is lost
since both have n2 = P on this boundary where the solutions cross.

Problem 2.2.4. RL = PS and S = 0 boundary crossings.

(i) Prove that the RL = PS boundary crosses the P = 0 axis at ωce/ω =
mi/me − 1(exact).
(ii) Prove that ωce/ω→ mi/me − 1

2 for the RL = PS boundary as ωp → 0
for mi � me.
(iii) Prove that the S = 0 curve crosses the P = 0 boundary at ωce/ω =
mi/me − 1

2 for mi � me.

2.2.4 Wave normal surface topology—spheroids and lemniscoids

The wave normal surfaces (WNSs) are plots of the phase velocity in each domain
of the CMA diagram. Their topological features are invariant inside each region
and change as each boundary is crossed. In order to establish the WNS topology
in each region and to establish the significance of the boundaries of the CMA
diagram, since they have been drawn only for θ = 0, π/2 while the dispersion
relation involves general angles, we will first prove some properties of the
solutions and the CMA diagram boundaries.

2.2.4.1 Theorems on WNS topology and CMA diagram boundaries

CMA Theorem 1. Inside any bounded volume of the CMA diagram, n �= 0.

Proof. The condition for n = 0 is PRL = 0 from equation (2.27) so this occurs
only for P = 0, R = 0, or L = 0, and these are all bounding surfaces.

CMA Theorem 2. If n → ∞ at any point inside a bounded volume, then there
exist angles θres and π − θres at every point inside the volume where n →∞.

Proof. The condition for resonance, tan2 θ = −P/S, is given by equation (2.26).
Since P and S are real and single-valued, if P/S is negative anywhere in a
volume, it is negative everywhere in the volume since both P and S can change
sign only at one of the boundaries (P is bounded for finite plasma density, so it
can only change sign at P = 0. S = 1

2 (R + L) can change sign at S = 0 and
where R → ∞ or L → ∞). For each value of P/S < 0, there exists an angle
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θres and its supplement π − θres where n2 → ∞. We note that this angle cannot
equal 0 or π/2 except on the boundary.

CMA Theorem 3. For any real angle within an interval where n �= 0 and bounded,
a single branch of n will be either real or imaginary throughout the interval.

Proof. From Problem 2.1.3, F2 ≥ 0, so n2 is real everywhere, and hence n is
either purely real or imaginary, and can only change over the interval in θ when
n2 passes through 0 or∞.

CMA Theorem 4. When n is real, it is symmetric about the z-axis (θ = 0) and
about the midplane (θ = π/2).

Proof. The symmetry derives from the physics of the wave problem, since the
dispersion relation does not depend on the sign of B0. The symmetry is apparent
from equation (2.22) where the coefficients in the dispersion relation depend only
on sin2 θ and cos2 θ , both of which are symmetric about 0 and π/2.

CMA Theorem 5. Two solutions can coincide only at θ = 0 or θ = π/2, except
where RL = PS and PD = 0.

Proof. Solutions coincide only when F = 0, from equation (2.23), which requires
PD = 0 and RL = PS since each term in equation (2.24) is individually positive
definite. At this point they coincide at all angles.

With only one ion species, it may be noted that D �= 0 (except for the
trivial case where ne → 0 or B0 → 0). For a multiple species CMA diagram,
an additional boundary should be added for each additional ion species to show
D = 0, particularly at the intersection with the RL = PS surface.

2.2.4.2 The wave normal surfaces (WNSs)

We form the WNSs by plotting the phase velocity, u = ω/k = c/n, versus
θ . The surfaces are of three types: spheroids, dumbbell lemniscoids, and wheel
lemniscoids.

Spheroids. If P and S have the same sign, then by theorem 2, u �= 0
everywhere in the volume. By theorem 1, u cannot go to∞ in the volume. Then
by theorem 3, if u is real anywhere, it is real everywhere. Topologically, then, this
is a spheroid. We do not distinguish between prolate and oblate spheroids.

Lemniscoids. If P/S < 0, then by theorem 2, at least one branch has u → 0
at θres and its supplement everywhere in the volume. The cross generated near
u = 0 by these angles rotated about the vertical axis forms a pair of cones
touching vertex to vertex. By theorem 1, u cannot go to ∞, and by theorem 2
cannot go to 0 at any other angle. Thus u is finite everywhere except at the vertex
of the cones. By theorem 3, u must be real inside the cones and imaginary outside
or vice versa. If it is real inside the cone, we have a dumbbell lemniscoid, and if
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Figure 2.5. The three topological varieties of wave normal surfaces.

it is real outside the cone, we have a wheel lemniscoid. These are illustrated in
figure 2.5.

In general, there are two solutions for u, and we must consider the
possibilities for the second solution. Clearly, if P/S > 0, there can only be
spheroids. From theorem 3, there can be either one, two, or none in this case.
From theorem 5, they cannot touch inside a region, so if there are two, they
are nested in the same order throughout the volume (except along the surface
RL = PS where they cross and the labels change).

For the case when P/S < 0, the second solution, if it has real u, is a spheroid.
This may be demonstrated by examining the dispersion relation in the vicinity of
θres where A = 0 in equation (2.21). Using this condition to eliminate the n4 term,
the remaining solution is given by

u2 � B

C
� S2 + D2 cos2 θ

RLS
(2.46)

where we have used sin2 θ � −(P/S) cos2 θ . This solution is nonzero within any
volume, so it represents a spheroid. We also note that if there is both a lemniscoid
and a spheroid in the same volume, the spheroid must enclose the lemniscoid by
theorem 5.

2.2.5 Labeling—left and right, ordinary and extraordinary

One of the most confusing aspects of reading the plasma literature is the
nomenclature used to describe the various waves. Some of the confusion arose
when E Astrom [7] called the two low-frequency waves (upper right in the CMA
diagram) the ordinary and extraordinary waves because the former is a spheroid
(spherical as ω → 0). Later W P Allis [8] decided to call the solution n2 = P
at θ = π/2 the ‘ordinary’ wave because it was unaffected by the magnetic field.
These two definitions remain in conflict and both are in present use. Without
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Figure 2.6. Clockwise rotation of the electric field.

the additional RL = PS boundary, the Allis notation even had the disadvantage
that the labels could change within a bounded volume, since X changes to O as
this boundary is crossed, but that difficulty has been removed with this additional
surface. Because the character of these various waves changes so much as one
goes from θ = 0 to θ = π/2, it is difficult to choose a labeling system which
adequately describes a good physical property of the solutions over the entire
range of parameters within a bounded volume except for the fast and slow labels.
We thus will label the waves first in terms of their behavior at θ = 0 and then at
θ = π/2 as a separate label. Then we will discuss other possible schemes.

2.2.5.1 Polarization for propagation at θ = 0

We define the terms right-handed and left-handed in terms of the rotation of the
electric field vector as a wave propagates parallel to the magnetic field. If the
electric vector rotates clockwise as we look along the B-field direction, then this
is a right-handedwave, and the left-handedwave rotates counterclockwise. To see
what this implies, we consider a wave with complex Ex and Ey that represents a
circularly polarized R-wave by requiring

Re(Ex) = a cos(−ωt) = Re(ae−iωt)
Re(Ey) = −a sin(−ωt) = Re(iae−iωt) (2.47)

and from figure 2.6, it is clear that the measurable fields represented by
equation (2.47) with real a rotate clockwise. Thus it follows that the phases of
the waves are given by

iEx = Ey R-wave
iEx = −Ey L-wave.

(2.48)

In order to connect this result with the plasma waves, we note that the middle
equation of equation (2.20) leads to

iEx

Ey
= n2 − S

D
= ±1 (2.49)
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by letting n2 = R, L. This verifies our labeling of the waves as being right- or
left-handed. Even this labeling is not consistent as the angle varies, since if the
angle given by sin2 θc = P/S is a real angle, then n2 = S at that angle and the
polarization changes direction (see problem 2.2.5). Thus the polarization labels
apply only at θ = 0.

The ordinary and extraordinary labels have no physical significance except
that the ordinary wave, with n2 = P , is independent of the magnetic field, as
noted by Allis, and has no resonance. The extraordinary wave, in contrast, has
two resonances and depends strongly on both the magnetic field and the density.

The final label, which is the most useful topological designation since it
applies everywhere inside a volume and at all angles, is the fast (F) or slow (S)
label, which simply means that the fast wave has a higher phase velocity than
the slow wave. From theorem 5, this labeling is valid throughout the volume and
independent of the angle.

We can now establish which regions have which kinds of waves by noting
whether these principal solutions exist in the various regions and whether there is
a resonance (lemniscoid) in the region. Referring to figure 2.7, the shaded regions
show where the various quantities are negative, hence there can be no O-wave to
the right of the P = 0 boundary, no L-wave to the right of the L = 0 boundary
and below the L → ∞ line, and no R wave to the right of the R = 0 boundary
and below the R → ∞ line. In figure 2.7(d), the shaded regions must have a
lemniscoid, while the unshaded regions may have spheroids only, but need not
have any.

Problem 2.2.5. Change of polarization. Show that if the angle defined by
sin2 θc = P/S is a real angle, then the polarization changes at that angle from
right to left or vice versa.

2.2.6 The CMA diagram for a one-ion species plasma

In order to fill in the regions of the CMA diagram with the appropriate WNSs,
and at the same time get a fuller appreciation of their structure, we will take a
tour through the diagram, filling in the surfaces and labels, using the properties
at the boundaries to enable us to resolve which is the appropriate label for which
surface.

2.2.6.1 Transitions across boundaries

We first establish the character of a boundary crossing, where by definition,
some wave either ceases to propagate or begins to propagate, or at least changes
labels. From the property that the phase velocity u = c/n, it follows that every
cutoff means the phase velocity for the wave experiencing the cutoff tends toward
infinity. For the same reasons, a wave experiencing a resonance has the phase
velocity approach zero, at least at the appropriate angle.
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Figure 2.7. (a) O-waves propagate in P+ regions. (b) L-waves propagate in L+ regions.
(c) R-waves propagate in R+ regions. (d) Spheroids only in (P/S)+ regions. One
lemniscoid in (P/S)− regions.

2.2.6.2 Touring the CMA diagram

We begin with the high frequency limit, which is the lower left-hand corner of
the CMA diagram, and we call this region 1. From figure 2.7(a), The O-wave
propagates in this region, and from figures 2.7(b) and 2.7(c), both the R- and L-
waves propagate. In fact, since in the extreme high frequency limit the plasma
does not respond at all, it is clear that two waves propagate in both directions, so
we must have the X-wave also. Using figure 2.7(d) establishes that S > 0, so
we can determine the same result from RL/S > 0. This same figure establishes
that there are spheroids only, and since both the R- and L-waves propagate, there
must be two spheroids, so the result may be established in many ways. We now
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use that fact that both the R- and X-waves have a cutoff at the R = 0 boundary,
sending the phase velocity to infinity, so the R–X spheroid must be the fast wave
and the L–O spheroid the slow wave, as in figure 2.8.

Crossing the R = 0 boundary to region 2, the R–X spheroid disappears as
both are cutoff, while the L–O spheroid is topologically unchanged.

Crossing the S = 0 boundary into region 3, there is now a lemniscoid from
figure 2.7(d), and since we passed through the extraordinary wave resonance, the
lemniscoid introduces an X-wave on the inside of the L–O spheroid, which is
again topologically unchanged. Because it is an X-wave lemniscoid, it is a wheel
lemniscoid, propagating at θ = π/2.

The transition as we cross the P = 0 boundary to region 4 is less
obvious, except that of course the O-wave disappears and the L-wave survives.
Figure 2.7(d) indicates that there is no lemniscoid, so a single L–X spheroid is
the only possibility.

Crossing the L = 0 boundary into region 5a, this is a cutoff for both the
L- and X-waves, so both disappear. There is no O- or R-wave either from
figures 2.7(a) and (b), so this region is empty and nothing propagates. Region
5b is distinct because we have crossed the RL = PS boundary, but still nothing
propagates.

Crossing the R → ∞ boundary from region 3 to region 6a, the R-wave
begins to propagate, and is the slow wave. The X-wave continues to propagate
as this boundary is crossed, since the resonance is both in the numerator and
denominator, so the two spheroids have opposite labels from those in region 1.

Crossing the P = 0 boundary into region 7, there is now a lemniscoid from
figure 2.7(d), but both the R- and L-waves are unaffected. There is no O-wave
from figure 2.7(a), so the surviving spheroid must be an L–X spheroid.

Moving across the L = 0 boundary into region 8a, both the L- and X-waves
pass a cutoff, so the L–X spheroid has moved off to infinity and the dumbbell
lemniscoid of the R-wave is unchanged. The transition across the RL = PS
boundary into region 8b means nothing here, since there is neither an X- nor an
O-wave.

Moving from region 6a to 6b across the RL = PS boundary, however, does
make a nontrivial difference, since both an O- and X-wave are present. In this
case the O-wave is the fast wave in region 6a, and the X-wave is the fast wave in
region 6b.

Crossing the L = 0 boundary into region 9, the L–X spheroid moves off
to infinity, leaving the R–O spheroid only. We could also have reached this
conclusion by crossing the P = 0 boundary from region 8b, where the crossing
removes the lemniscoid and introduces the O-wave.

Crossing the S = 0 boundary into region 10, the R–O spheroid is unaffected,
but a lemniscoid is added from figure 2.7(d). The S = 0 boundary is a resonance
for the X-wave, so the X-wave now propagates as a wheel lemniscoid.

Moving up across the L → ∞ boundary into region 12, the R–O spheroid
is unaffected, while the L-wave is added, opening up the lemniscoid into the L–X
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Figure 2.8. CMA diagram with all boundaries and wave normal surfaces (to scale with
mi/me = 3).
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spheroid which is the slow wave.
Moving now across the P = 0 boundary, the O-wave disappears and a

lemniscoid appears. Since the R-wave is still the fast wave compared to the L-
wave, the spheroid must be an R–X spheroid, and the L-wave is the dumbbell
lemniscoid.

Finally, crossing the L → ∞ boundary again into region 11, the R–X
spheroid is unchanged, but the L-wave lemniscoid shrinks and disappears.

An examination of figure 2.8, where all the WNSs are sketched, shows that
there are no two regions that have identical labeling except the trivial ones where
nothing propagates (5a and 5b) or where neither the O- nor X-wave is present (8a
and 8b).

2.2.6.3 Interpreting WNSs

In order to interpret these WNSs, the CMA diagram is sometimes likened to a
‘plasma pond’ where a pebble sends out ripples from a center. In such a case, the
WNSs represent the phase fronts or the patterns of the individual waves as they
radiate out from the disturbance. The outer perimeter of the waves propagates at
the group velocity, and the CMA diagram does not directly give information on
that part of the picture.

While figure 2.8 shows which regions have spheroids and lemniscoids, there
are usually significant changes in these spheroids and lemniscoids as one moves
around in a region, especially as one approaches a boundary. Some of this type
of variation is illustrated for a few regions in figure 2.9. In region 12, there
are only spheroids, but near the bottom of the region, approaching region 10,
the inner spheroid collapses to a lemniscoid as it crosses the lower boundary in
figure 2.9(a). Moving to the right toward region 13, however, the outer spheroid
tends toward infinity as the boundary is approached. After the crossing into region
13, a lemniscoid appears inside the surviving spheroid, and as one moves to the
upper right (MHD region), the pair of surfaces approaches the limiting form of
figure 2.25.

In the lower half of figure 2.9, we see the variations as we move around in
regions 1 through 4 (region 5 is empty). The scales for the phase velocity surfaces
differ only by a factor of two between the upper and lower sections, but the factor
would be much larger if the mass ratio (here only a factor of three) were more
realistic.

2.3 Phase and group velocity in three-dimensions

The concept of group velocity arises from the notion of a wave packet made
of a group of waves with a range of phase velocities but the amplitudes of the
components are grouped about a particular phase velocity. In the continuous

Copyright © 2003 IOP Publishing Ltd.



Figure 2.9. Variation of the wave normal surfaces as they move around in various regions
of the CMA diagram with mi/me = 3. (a) Spheroids in region 12 and combination
spheroids and lemniscoids in region 13, all to the same arbitrary scale. (b) Various wave
normal surfaces in regions 1, 2, 3 and 4 to the same scale (but half the scale of (a)). The
velocity of light circles are shown for reference.

spectrum case, this wave packet is represented by the integral,

f (r, t) =
∫

A(k)ei(k·r−ωt) d3k

(2π)3
(2.50)

where we require |A(k)| → 0 as |k − k0| becomes large with k0 being the value
of k where the wave group is centered in k-space. If |�k|max is a measure of
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the spread in k about k0, then 1/|�k|max is a measure of the size of the packet.
Introducing�k ≡ k − k0, then at time t = 0, the integral becomes

f (r, 0) = eik0·r
∫

A(k)ei�k·r d3k

(2π)3
= eik0·r F(r)

so the wave packet is some function of space localized about the origin with a
phase factor.

For the propagation in time, since we may expand

ω(k) = ω(k0)+�k · ∂ω
∂k

∣∣∣∣
k0

+O(�k2)

where ∂ω/∂k|k0 is equivalent to ∇k ω(k) evaluated at k0, then for t > 0, we
obtain through first order in �k,

f (r, t) = ei(k0·r−ωt)
∫

A(k) exp

[
i�k ·

(
r − ∂ω

∂k

∣∣∣∣
k0

t

)]
d3k

(2π)3
. (2.51)

The structure of equation (2.51) is that of a phase factor and an amplitude
function. The leading phase factor determines the phase velocity to be

vp = ω

|k0| (2.52)

in the direction of k0. The principal contribution of the integral will occur near
where the quantity in parentheses vanishes since the remainder will phase mix
away. The position in space where this maximum occurs will move at the group
velocity which is defined as the velocity of the amplitude envelope maximum.
Hence,

vg = ∂ω

∂k

∣∣∣∣
k0

= ∇kω(k)|k0 (2.53)

so vgx = ∂ω/∂kx , etc. The higher order terms principally change the shape of the
wave packet, rather than its location.

2.3.1 The one-dimensional case

In one dimension, the group velocity becomes simply vg = ∂ω/∂k and both
the phase velocity and the group velocity may be determined graphically from a
simple plot of the dispersion relation as shown in figure 2.10 which is plotted for
the simple dispersion relation

n2 = 1− ω2
p

ω2

that may also be written in the form

ω2 = ω2
p + k2c2.
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Figure 2.10. Phase and group velocity in one-dimension.

In this plot, the slope of the line from the origin to a point on the curve is the phase
velocity, and the slope of a line tangent to the curve at that point of intersection
is the group velocity. For this example, it is apparent that vp > c and vg < c.
In fact, for this simple dispersion relation, vpvg = c2, so the inequalities apply
everywhere the wave propagates. For ω < ωp , the wave is not propagating, k is
purely imaginary, and neither the phase velocity nor the group velocity is defined.

2.3.2 The three-dimensional case

For the more complicated case of 3-dimensional propagation, we can use the
symmetries of the spheroids and lemniscoids about the z-axis to represent the
phase and group velocity in terms of a polar plot. The coordinates and angles
are shown in figure 2.11(a) where θ is the previously defined angle between the
magnetic axis and the k vector and α is the angle between the group velocity
and the phase velocity. The angle α may be determined by writing the frequency
in terms of the polar variables such that ω = ω(k, θ) where the group velocity
becomes

vg = ∇kω = ∂ω

∂k

∣∣∣∣
θ

êk + 1

k

∂ω

∂θ

∣∣∣∣
k
êθ (2.54)
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Figure 2.11. Phase and group velocity in three-dimensions: (a) definition of coordinates;
(b) polar plot of k(ω, θ) versus θ ; and (c) detail of (b) showing the directions of k, vg , êk ,
and êθ .

where êk = k/|k| and êθ is everywhere normal to êk . In view of this, the angle α
is given by

tanα = θ component

k component
=

1
k
∂ω
∂θ

∣∣∣
k

∂ω
∂k

∣∣
θ

= −1

k

∂k

∂θ

∣∣∣∣
ω

. (2.55)

From this last equality, we draw a sketch of k versus θ in figure 2.11(b)
and note the direction of the phase velocity relative to the surface. From the
detailed construction of figure 2.11(c), it is apparent that traveling a distance k dθ
in the êθ direction from an arbitrary point on the surface, and then a distance
dk in the êk direction returns one to the surface. Thus the êθ direction is at an
angle α below the surface. With both dk and k dθ positive, α is negative from
equation (2.55), so the group velocity angle is less than the phase velocity angle
in this example. Furthermore, since the phase velocity surface is at an angle α
from the êθ direction, and vg is also at the angle α from the êk direction, it follows
that the group velocity is normal to the k-surface as noted in figure 2.11(c).

Problem 2.3.1. Group velocity angle. Show that equation (2.55) may be written
as

tan α = 1

vp

∂vp

∂θ

∣∣∣∣
ω

= − 1

2n2
∂n2

∂θ

∣∣∣∣∣
ω

. (2.56)

2.3.3 Group velocity surfaces

It is possible to construct group velocity surfaces that are analogous to the wave
normal surfaces. Topologically, the group velocity surfaces are the same as the
WNSs, consisting of the same number of spheroids and lemniscoids in each
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region, since a spheroidal WNS will correspond to a spheroidal group velocity
surface, and similarly with a lemniscoidal surface. In order to better envision
the way a WNS may translate to a group velocity surface, however, figure 2.12
shows the group velocity surfaces that correspond to the wave normal surfaces in
figure 2.9. The expression for the group velocity surfaces may be obtained by first
writing the CPDR as

D[k, ω(k, θ), θ ] = An4 − Bn2 + C = 0 (2.57)

from equations (2.21) and (2.22). We may then write

∂D

∂k
+ ∂D

∂ω

∂ω

∂k
= 0 and

∂D

∂θ
+ ∂D

∂ω

∂ω

∂θ
= 0 (2.58)

so that
∂ω

∂k
= −∂D

∂k

(
∂D

∂ω

)−1
(2.59)

and
∂ω

∂θ
= −∂D

∂θ

(
∂D

∂ω

)−1
. (2.60)

The magnitude of the group velocity may then be obtained from
equation (2.54) as

v2g =
(
∂ω

∂k

)2
+
(
1

k

∂ω

∂θ

)2
=
[(

∂D

∂k

)2
+
(
1

k

∂D

∂θ

)2](
∂D

∂ω

)−2
. (2.61)

Problem 2.3.2. Group velocity surfaces. Show that using equation (2.57),
equation (2.61) may be written as

v2g

c2
=

{[
16A2+

(
∂A

∂θ

)2]
n4−

(
16AB + ∂A

∂θ

∂B

∂θ

)
n2 + 4B2+

(
∂B

∂θ

)2}
n2

[(
ω
∂A

∂ω
− 4A

)
n4 +

(
2B − ω

∂B

∂ω

)
n2 + ω

∂C

∂ω

]2 .

(2.62)

Problem 2.3.3. Group velocity surface components.

(i) Find expressions for all of the partial derivatives in equation (2.62) in
terms of θ , R, L, P , S, and their derivatives.
(ii) Defining X ≡ ω2

p/ω
2 and Y ≡ ωce/ω with µ = mi/me (remembering

that ω2
p = ω2

pe + ω2
pi ), find expressions for ω∂P/∂ω, ω∂R/∂ω, ω∂L/∂ω,

and ω∂S/∂ω (using S = 1
2 (R + L)) in terms of X , Y , and µ.

(iii) Calculate and plot both the WNSs and the group velocity surfaces in
region 7 of the CMA diagram for X = 1.1, Y = 1.2 with µ = 3.
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Figure 2.12. Variation of the group velocity surfaces as they move around in various
regions of the CMA diagram with mi/me = 3. Each surface represents the group velocity
counterpart to the corresponding wave normal surface in figure 2.9. (a) Spheroids in region
12 and combination spheroids and lemniscoids in region 13, all to the same arbitrary scale.
(b) Various group velocity surfaces in regions 1, 2, 3 and 4 to the same scale (twice the
scale of (a)). Speed of light circles are shown for reference.

2.4 ω(k, θ) dispersion surfaces

Another way of representing the dispersion relation is to plot ω as a function of
k and θ . This is traditionally done with either θ = 0, so the plot is of ω versus
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Figure 2.13. Surface plot of wi = ω/ωci versus zi = kzc/ωci to the left and for
xi = kxc/ωci to the right. This surface corresponds to the lemniscoid in region 13 of
the CMA diagram for an underdense plasma (ωp/ωce = 0.32).

k‖, or with θ = π/2, so the plot is of ω versus k⊥. Written as a polynomial for
ω(k, θ), the polynomial is fifth order in ω2, and may be written:

ω10 − ω8(2k2c2 + ω2
ce + ω2

ci + 3ω2
p)

+ ω6[k4c4 + (2k2c2 + ω2
p)(ω

2
ce + ω2

ci + 2ω2
p)+ (ω2

p + ωceωci )
2]

− ω4[k4c4(ω2
ce + ω2

ci + ω2
p)+ 2k2c2(ω2

p + ωceωci )
2

+ k2c2ω2
p(ω

2
ce + ω2

ci − ωceωci )(1+ cos2 θ)+ ω2
p(ω

2
p + ωceωci )

2]
+ ω2{k4c4[ω2

p(ω
2
ce + ω2

ci − ωceωci ) cos2 θ + ωceωci (ω
2
p + ωceωci )]

+ k2c2ω2
pωceωci (ω

2
p + ωceωci )(1+ cos2 θ)}

− k4c4ω2
ceω

2
ciω

2
p cos

2 θ = 0. (2.63)

2.4.1 Underdense case, ω p/ωce = 0.32

The fact that the CPDR is quadratic in n2, from equation (2.21), while quintic in
ω2 from equation (2.63) means that if a cut were made horizontally in a figure
such as figure 2.13, only two crossings would be encountered, while a vertical
cut would have five crossings. Figure 2.13 shows the surface for the slow or left-
handed Alfvén wave which is the lowest surface. In contrast, figure 2.14 shows
the opposite limit and corresponds to the spheroid from region 1 of figure 2.8
and on the left-hand face is the high frequency branch of the R-wave while
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Figure 2.14. Surface plot of we = ω/ωce versus ze = kzc/ωce to the left and for
xe = kxc/ωce to the right. This surface corresponds to the spheroid in region 1 of the
CMA diagram.

on the right-hand face it is the high frequency branch of the X-wave. The
rise at the back of the surface asymptotes to a cone that represents the velocity
of light. The value at the origin corresponds to the upper cutoff frequencies
ωR/ωce = ωX/ωce = 1.094 with ωp/ωce = 0.32 and mi/me = 1836.

In between these two limits are three surfaces that represent the R- and L-
waves (along with plasma oscillations with P = 0) on the left-hand edge and the
X- and O-waves along the right-hand edge. The three surfaces are shown together
in figure 2.15 where the lowest surface begins as an R-wave on the left and an
X-wave on the right near the origin and then saturates at the plasma frequency
on the left. Exactly on the left-hand edge corresponds to kx = 0 so that the
R-wave is uncoupled to any other wave, but as soon as one moves to finite kx ,
there is coupling near the plasma frequency. In order to illustrate this coupling,
we examine a simple plot near this edge in figure 2.16 that shows both the R-
and L-waves with boxes highlighting the regions where these cross the plasma
frequency. In figures 2.17 and 2.18 the boxes in figure 2.16 are magnified so one
can see the coupling as xi ≡ kxc/ωce is varied from 0 (uncoupled case) to 0.002
(weakly coupled) to 0.02 where the coupling is evident. For kx > 0, then, the
branch that begins as an L-wave flattens and follows the plasma frequency for a
short distance and then follows the R-wave branch for higher frequencies. This
implies rapid changes in polarization from a left-handed wave to a longitudinal
wave to a right-handed wave where the changes become increasingly rapid as
kx → 0.

There is no corresponding coupling on the other edge where kz = 0. This is
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Figure 2.15. Surface plot of we = ω/ωce versus ze = kzc/ωce to the left and
xe = kxc/ωce to the right. These surfaces have two apparent confluences on the left
face where the R- and L-wave surfaces cross the P = 0 (plasma oscillations at ω = ωp)
surface.

Figure 2.16. Coupling of the P-, R- and L-waves near kx = 0. In this case, plasma
oscillations couple to the R- and L-waves with kz > 0. The coupling in the boxed areas
that is barely perceptible with kxc/ωce = 0.02 is shown with the − · ·− pattern. These
boxes are magnified in figures 2.17 and 2.18.

illustrated in figure 2.19 where the range of xe ≡ kxc/ωce is extended relative to
figure 2.16. In this case, the lower curve is simply the lower X-wave, the middle
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Figure 2.17. Magnified area of first box in figure 2.16. The full lines are the L-wave
and the plasma frequency, the dashed line is with kxc/ωce = 0.002, and − · ·− is with
kxc/ωce = 0.02.

Figure 2.18. Magnified area of second box in figure 2.16. The full lines are the R-wave
and the plasma frequency, the dashed line is with kxc/ωce = 0.002, and − · ·− is with
kxc/ωce = 0.02.

curve is the O-wave, and the upper curve is the upper X-wave. The O- and upper
X-waves merge as kx → ∞ and the phase velocity approaches the velocity of
light. The lower X-wave asymptotes to the upper hybrid resonance. The lowest
surface of figure 2.16 asymptotes to the lower hybrid resonance on the right edge,
and is not shown in figure 2.19.

Copyright © 2003 IOP Publishing Ltd.



Figure 2.19. The right-hand edge of figure 2.15 shows the behavior of the O- and X-waves
with kz = 0 in an underdense plasma. On this edge, the X-waves and the O-wave remain
uncoupled.

2.4.2 Overdense case, ω p/ωce = 3.2

For the overdense case, some of the surfaces remain similar while others change
significantly. One of the coupling regions on the left-hand edge of figure 2.15
disappears, since the R-wave has a resonance below the plasma frequency and
hence never crosses the plasma frequency. The coupling of the L-wave at the
plasma frequency is similar, however, and is illustrated in figures 2.20(a) and (b),
where the latter figure expands the coupling region in the former.

The two lowest surfaces in the overdense case correspond to the lemniscoid
(figure 2.21) and the spheroid (figure 2.22) of region 13 of the CMA diagram.
The intermediate and higher frequencies of figure 2.22 correspond to the whistler
region while the low frequency section is the fast Alfvén wave.

The second lowest surface in figure 2.23, which begins near the origin as the
L-wave on the left, is remarkably flat over the entire surface, ranging from 2.74
to 3.29 over the range shown. The portion of the L-wave that continues above
the plasma frequency couples to the O-wave on the right. The top surface is the
R-wave on the left and the high frequency X-wave on the right, both of which
asymptote to the speed of light.
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Figure 2.20. (a) Coupling of the P- and L-waves near kx = 0 for an overdense plasma.
In this case, plasma oscillations couple to the L-wave only with kz > 0. The coupling
in the boxed area is imperceptible even with kxc/ωce = 0.02. This box is magnified
in (b) where the lines are the L-wave and the plasma frequency, the dashed line is with
kxc/ωce = 0.002, and − · ·− is with kxc/ωce = 0.02.

2.5 Examples of propagation at arbitrary θ

2.5.1 Low frequency waves

In the very low frequency limit, which corresponds to the upper right corner
of the CMA diagram, the dielectric tensor is simple enough that we can
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Figure 2.21. Surface plot of wi = ω/ωci versus ze = kzc/ωce to the left and
xe = kxc/ωce to the right for the overdense case. This surface is similar to figure 2.13
except that the approach to the ion cyclotron frequency is much slower (note that kx and kz
are scaled to ωce in this case). It corresponds to the lemniscoid in region 13 of the CMA
diagram.
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Figure 2.22. Surface plot of we = ω/ωce versus ze = kzc/ωce to the left and
xe = kx c/ωce to the right for the overdense case. This surface is the right-handed wave
on the left-hand face and the low frequency branch of the X-wave on the right-hand face.
It corresponds to the spheroid in region 13 of the CMA diagram.
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Figure 2.23. Surface plot of we = ω/ωce versus ze = kzc/ωce to the left and
xe = kx c/ωce to the right for the overdense case. The lowest surface is the same surface
as in figure 2.22 The next two surfaces show the coupling of the L-wave with the plasma
frequency for kx > 0 on the left face that is illustrated in more detail in figures 2.20(a) and
(b).

examine propagation at an arbitrary angle in order to gain further insight
into the propagation characteristics of a region which has one spheroid and
one lemniscoid. The approximation is that ω � ωci , which is the MHD
approximation, since the waves are characteristic of a perfectly conducting fluid
in a magnetic field and are often called magnetohydrodynamic (MHD) waves.
Neglecting terms of order me/mi , the dielectric tensor elements are:

Kxx = S = 1+ ω2
pi

ω2
ci − ω2

+ ω2
pe

ω2
ce − ω2

� 1+ ω2
pi

ω2
ci

= 1+ c2

V 2
A

≡ KA (2.64)

Kxy = −iD = iωciω
2
pi

ω(ω2
ci − ω2)

− iωceω
2
pe

ω(ω2
ce − ω2)

� iω

ωci

c2

V 2
A

� 0 (2.65)

Kzz = P = 1− ω2
pi + ω2

pe

ω2 � 1− c2

V 2
A

ωciωce

ω2

→∞ (2.66)
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so equation (2.20) reduces to the set of equations

(−n2 cos2 θ + KA)Ex = 0

(−n2 + KA)Ey = 0 (2.67)

(∞)Ez = 0.

The last equation is trivial, leading to Ez = 0 (Ez is of order me/mi compared to
the other fields, and hence neglected). The other two solutions we will investigate
individually.

2.5.1.1 Torsional Alfvén waves

The first solution, with Ex �= 0 and Ey = 0, has the dispersion relation,

n2 cos2 θ = KA (2.68)

leading to

v2p =
c2 cos2 θ

KA
� V 2

A cos
2 θ (2.69)

if VA � c. Using equation (2.56) with this result, we have

tanα = 1

vp

∂vp

∂θ
= − tan θ

so α = −θ and the group velocity is parallel to B0. We can obtain this result
another way by noting from the Maxwell equations (2.17),

B = k × E
ω

= Byêy

for the wave magnetic field so the Poynting vector is

P = E × B
µ0

= Pzêz . (2.70)

The respective directions are illustrated in figure 2.24(a).
From the equation of motion, since ω � ωci , we have E = −v × B so that

v = vy êy = − Ex

B0
êy .

Using this result in the continuity equation, we discover that

k · v = iωρ

Nq
= 0 (2.71)

where ρ is the charge density, so there is no fluctuating charge with this wave. For
this reason we call it the shear Alfvén wave or the torsional Alfvén wave since the
magnetic field lines twist relative to one another but do not compress.
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Figure 2.24. Relative directions for the phase velocity, group velocity, and particle
velocities for low-frequency Alfvén waves: (a) shear or torsional Alfvén wave; and (b)
compressional Alfvén wave.

For these very low frequencies, another intuitive derivation leads to this same
result [9]. If we imagine that the charged particles are ‘tied’ to a local magnetic
field line, in the sense that they can move along the field line but not across it, and
this is a good approximation for ω � ωci , then the field lines have an effective
mass density. From theMaxwell stress tensor, the field lines are under tension/unit
area of B2

0/µ0, so by analogy with waves on a stretched string,

v =
√

T

ρ�
=
√

B2
0

µ0ρm
≡ VA (2.72)

where ρ� is the mass/length of the string and ρm � nimi is the mass density of the
plasma. The analogy with waves on a stretched string also indicates the transverse
nature of the perturbation.

2.5.1.2 Compressional Alfvén waves

The second solution of equation (2.68) has Ey �= 0, Ex = 0, and the dispersion
relation,

n2 = KA (2.73)

so the phase velocity is given by

v2p =
c2

KA
� V 2

A. (2.74)

Since there is no dependence on angle, α = 0 and the phase and group velocities
always point in the same direction. As in the torsional wave case, the result may
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Figure 2.25. Wave normal surfaces for low-frequency Alfvén waves. The dumbbell
lemniscoid is the shear or slow Alfvén wave and the outer sphere is the compressional
or fast Alfvén wave.

also be seen from the wave field,

B = k × E
ω

→ B is in the x–z plane,

and hence the Poynting vector,

P = E × B
µ0

= Pk êk

is parallel to the phase velocity as in figure 2.24(a) so the wave energy flows in
the direction of k.

Looking again at the particle motions, we find E = Eyêy = −v × B0 so

v = vx êx = Ey

B0
êx (v is normal to B0, E)

so in this case k · v �= 0 since k has a component along v. This means the
particles bunch so the magnetic field lines (tied to the particles) are compressed,
hence the name of compressional Alfvén waves. This wave is also called the fast
Alfvén wave, since the phase velocity is higher than the phase velocity for the
torsional wave. This is illustrated in the plot of the WNSs for the two waves in
figure 2.25 where all surfaces are spheres, but the slow or torsional wave dumbbell
lemniscoid is formed by two adjacent spheres and the fast or compressional wave
sphere surrounds both.

Just as the analogy between the torsional Alfvén wave and waves on a
stretched string gave a simple interpretation of the slow wave, a similar analogy
for the fast wave exists and gives some insight into its character. For this case we
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use the result from the Maxwell stress tensor that a magnetic field has an effective
pressure given by pm = B2

0/2µ0. With the mass density again tied to the field
lines, the analogy with sound waves gives

vs =
√
γ p

ρm
=
√

γ B2
0

2µ0ρm
= VA (2.75)

where we have taken γ = 2. This analogy gives the same Alfvén speed and
indicates both a longitudinal component to the motion and a possible connection
to ordinary sound waves, a connection that will be made explicit in the next
chapter. Also we see that while the pressure is isotropic, leading to the spherical
WNS, tension is highly directional so that the torsional wave energy propagates
along the magnetic field. Exciting a torsional wave is like ‘plucking’ a magnetic
field line, while exciting the compressional wave is like ‘squeezing’ a group of
field lines.

2.5.2 Intermediate frequency waves—whistlers

Ionospheric whistlers were discovered during the first World War while German
radio monitors were trying to intercept Allied radio transmissions [10]. Without
narrow band tuners, the whistlers occurred as declining tones in the audio
band. They were later traced to lightning and propagation in the ionosphere
and the magnetosphere [11]. In order to see the characteristics of this mode of
propagation, we first note that it occurs in regions 8a,b of the CMA diagram, and
to simplify the analysis, we assume that ωci � ω � ωce ∼ ωpe, so we are above
the lower hybrid resonance but well below the electron cyclotron resonance.

2.5.2.1 Propagation parallel to the magnetic field

Looking first at propagation along the field, the dispersion relation is

n2 = R = 1− ω2
pi

ω(ω + ωci )
− ω2

pe

ω(ω − ωce)
� 1− ω2

pi

ω2
+ ω2

pe

ωωce

� ω2
pe

ωωce
(2.76)

so that k = ωn/c = (ωpe/c)
√
ω/ωce or ω = k2c2ωce/ω

2
pe and the phase and

group velocities are

vp = c

n
= c

√
ωωce

ω2
pe
= kc2ωce

ω2
pe

vg = dω

dk
= 2kc2ωce

ω2
pe

= 2vp = 2c

√
ωωce

ω2
pe

. (2.77)
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This wave is very dispersive because both the phase and group velocities
vary as

√
ω which causes high frequencies to propagate faster along the magnetic

field lines. The whistlers in the audio range in the northern hemisphere are
most commonly caused by lightning strokes in the southern hemisphere (and vice
versa) which are guided by the earth’s magnetic field, and the dispersion led to
the detection of a declining tone which was heard as a whistle. Occasionally,
lightning strokes in the northern hemisphere which reflected from the conjugate
point in the southern hemisphere were detected, but were much fainter and had
slower declining tones in the whistle.

2.5.2.2 The guidance of whistler waves

In order to see that the waves are indeed guided by the earth’s field, we must
examine the direction of the group velocity. For this we need the approximate
dispersion relation for arbitrary angle. For this we first examine the ordering of
the dielectric tensor elements. For Kxx , we may approximate

Kxx = 1− ω2
pi

ω2 − ω2
ci

− ω2
pe

ω2 − ω2
ce
� 1− ω2

pi

ω2
+ ω2

pe

ω2
ce

so Kxx is of the order of ω2
pe/ω

2
ce or less. For Kxy ,

Kxy =
iω2

piωci

ω(ω2
ci − ω2)

− iω2
peωce

ω(ω2
ce − ω2)

� − iω2
pe

ωωce
.

Then for Kzz we have

Kzz = 1− ω2
pi + ω2

pe

ω2 � −ω2
pe

ω2

so we may order these such that |Kzz| � |Kxy| � |Kxx |. Looking at
equation (2.20), we let Ez → 0 because Kzz = P is so much larger than the
other elements. Then the remaining determinant,∣∣∣∣ Kxx − n2 cos2 θ Kxy

−Kxy Kxx − n2

∣∣∣∣ = 0

reduces to
n4 cos2 θ = −K 2

xy = D2 (unless θ � π/2)

from which we obtain

ω = k2c2ωce cos θ

ω2
pe

. (2.78)

From this result and equation (2.55), we can obtain the angle for the group’s
velocity angle as

tanα =
1
k
∂ω
∂θ
|k

∂ω
∂k |θ

= −kc2ωce sin θ/ω2
pe

2kc2ωce cos θ/ω2
pe
= − 1

2 tan θ (2.79)

Copyright © 2003 IOP Publishing Ltd.



so vg always lies between B0 and vp . The angle between B0 and vg is then given
by

tan(θ + α) = tan θ

2+ tan2 θ
(2.80)

which has a maximum since for small θ , tan(θ + α) ∼ tan θ/2 while for larger θ ,
tan(θ + α) ∼ 1/ tan θ → 0. Setting the derivative of tan(θ + α) with respect to θ
to 0, the maximum angle occurs for tan2 θ = 2 so

tan(θ + α)max = tan θ

2+ tan2 θ
=

√
2

2+ 2
= 1√

8

with the result,

(θ + α)max = tan−1
1√
8
= 19.5◦. (2.81)

In words, this means that the energy flows within a cone of 19.5◦ around B0. In
the earth’s magnetosphere, the energy flow is not precisely along the magnetic
field due to the magnetic curvature, so the source of a whistler is not exactly at the
conjugate magnetic field point, but these points have been found to be relatively
close to the magnetic conjugate points, so the wave is strongly guided by the field.

Problem 2.5.1. The whistler wave.

(i) Fill in the steps leading to equation (2.81).
(ii) Show that |vg| = (kc2ωce/ω

2
pe)
√
1+ 3 cos2 θ .

(iii) Sketch the WNS lemniscoid and the corresponding polar plot of vg(θ +
α).
(iv) These approximate expressions are not valid as θ → π/2. What happens
in this limit?

2.6 Faraday rotation

An important feature of magnetoactivemedia is that they lead to Faraday rotation.
In order to analyze this feature of wave propagation, we shall limit the analysis to
θ = 0 where the Maxwell equations become:

−kz Ey = ωBx

kz Ex = ωBy

−kz By = − ω

c2
(Kxx Ex + Kxy Ey)

kz Bx = − ω

c2
(−Kxy Ex + Kxx Ey).

(2.82)

We then define the rotating coordinates variables,

E± = Ex ± iEy

B± = Bx ± iBy

K± = Kxx ± iKxy = R, L
(2.83)
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so that equation (2.82) can be reduced to

kz E± = ∓iωB±
kz B± = ±(iω/c2)E±K∓. (2.84)

These may be solved to obtain the result

(n2 − K∓)E± = 0 (2.85)

which has two solutions.

(i) Suppose E+ �= 0. Then n2 = L and E− = 0 so Ex = iEy , which
confirms our identification of this as the L-wave. The E+ field may then
be represented by

E+ = Ê+ exp
[
i
(ω
c
nLz − ωt

)]

where Ê+ is the complex amplitude.
(ii) Suppose E− �= 0. Then n2 = R and E+ = 0 so Ex = −iEy , which

confirms our identification of this as the R-wave. The E− field may then be
represented by

E− = Ê− exp
[
i
(ω
c
nRz − ωt

)]
where again Ê− is the complex amplitude.

Constructing the measurable fields, Ex and Ey , from these, we obtain

Re(Ex) = Re
(
E++E−

2

)
= 1

2 Re{Ê+e[i(ωnL z/c−ωt)] + Ê−e[i(ωnRz/c−ωt)]}

Re(Ey) = Re
(
E+−E−

2i

)
= 1

2 Re{−iÊ+e[i(ωnL z/c−ωt)] + iÊ−e[i(ωnRz/c−ωt)]}.
(2.86)

If we now take Re[Ey(0, t)] = 0 so that the electric field is aligned with the x-
axis at z = 0, then this demands that Ê+ = Ê− = E0 which we take to be real.
We may then factor out a common term and write the result as

Re(Ex) = E0 cos

(
�n

2

ω

c
z

)
Re

[
ei(ωnz/c−ωt)

]

Re(Ey) = E0 sin

(
�n

2

ω

c
z

)
Re

[
ei(ωnz/c−ωt)

]
(2.87)

where
n = 1

2 (nL + nR)

�n = nL − nR > 0.
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Figure 2.26. Faraday rotation of the electric field.

From this it is apparent that Ex and Ey are being modulated by the sine and
cosine terms while the phase velocity of the composite wave is determined from
the exponential term which yields a phase velocity of vp = c/n. Choosing a point
of constant phase, the total electric field rotates in space as the wave propagates,
as shown in figure 2.26. If we take the angle of rotation to be φ, then the rate of
rotation of the E-field vector is given by

dφ

dz
= d

dz

(
�n

2

ω

c
z

)
= ω

2c
(nL − nR). (2.88)

2.6.1 High frequency limit—region 1

In order to estimate the amount of Faraday rotation for frequencies ω � ωce �
ωci , we begin with the dispersion relations for the R-wave from equation (2.29)
and the L-wave from equation (2.33),

n2R,L = 1− ω2
pi

ω(ω ± ωci )
− ω2

pe

ω(ω ∓ ωce)
� 1− ω2

pe

ω2
∓ ω2

pe

ω2

ωce

ω
. (2.89)

This dispersion relation is compared with the definitions

n2R,L ≡ (n ∓ 1
2�n)2 � n2 ∓ n�n (2.90)

where the comparison yields the results

n2 = 1− ω2
pe

ω2
� 1 (approximately free space propagation)

n�n � �n = ω2
pe

ω2

ωce

ω
.

(2.91)

These results, along with equation (2.88), then give the rate of rotation as

dφ

dz
= �n

2

ω

c
= ω2

peωce

2ω2c
∝ λ2neB0 (2.92)
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where λ is the free space wavelength. The total rotation angle then is given by

φ ∝ λ2
∫ L

0
ne(z)B0(z) dz. (2.93)

If the Faraday rotation is used as a diagnostic for estimating the magnetic
field in a plasma, it is preferable to use long wavelengths (since φ ∝ λ2), but one
must still keep ω � ωce ∼ ωpe in order to get a significant rotation. Since the
rotation is proportional to both density and magnetic field strength, one must be
known to determine the other, and some idea of the variation along the path is
necessary.

Simultaneous measurement of the phase can give some additional
information, since n differs some from unity. The phase is given by

φ = ω

c

∫ L

0
(1− n) dz � ω

c

∫ L

0

ω2
pe

2ω2 dz ∝ λ

∫ L

0
ne(z) dz (2.94)

since n � 1 − ω2
pe/2ω

2. Thus measurement of both the phase and rotation can
give estimates of both the mean density and mean magnetic field along the path
of integration.

Problem 2.6.1. Faraday rotation. Estimate the electron density required to
produce 1 radian of Faraday rotation for a wave passing through the Crab nebula
if the path length is estimated to be L = 3×1019 m, the magnetic field is assumed
to be B = 10−9 T and the observation is made with λ = 21 cm radiation.

2.6.2 Low frequency limit—region 13

Following a similar analysis to that used in the high frequency case, except that
now we assume ω � ωci � ωce ∼ ωpe, the dispersion relations for the R- and
L-waves can be approximated by

n2R,L � 1+ ω2
pe

ωceωci

(
1∓ ω

ωci

)
. (2.95)

Hence, from our definition of n and�n with |�n| � n, we can compare terms in

n2 ∓ n�n � 1+ ω2
pe

ωceωci
± ω

ωci

ω2
pe

ωceωci

and find

n2 = 1+ ω2
pe

ωceωci
= 1+ c2

V 2
A

= KA. (2.96)
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If VA � c, as is often the case, then the 1 may be neglected in equation (2.96) so
that

n = c

VA

n�n = ω

ωci

ω2
pe

ωceωci
� ω

ωci
n2

�n = n
ω

ωci
.

(2.97)

The rotation is then given by combining equations (2.88) and (2.97) to obtain

dφ

dz
= �n

2

ω

c
� 1

2

ω

ωci

ω

VA

= (constant)

(√
neω2

B2
0

)
.

(2.98)

For the low frequency limit, then, the angle of rotation decreases as the
frequency or density gets small, and increases as B0 gets small, but one must
maintain ω � ωci .

2.7 Plasma interferometry

The O-wave is often used as a plasma diagnostic to measure the plasma density,
either by itself or in conjunctionwith a Faraday rotation measurement so that both
the density and magnetic field may be determined.

By using a comparison between a wave traveling through a plasma and a
reference wave which does not travel through the plasma, the phase difference
can be used as a measure of the plasma density. We assume the signal through the
plasma may be represented by

Sp = Apeiφp−iωt

and the reference wave may be represented by

Sr = Are
iφr−iωt

and we measure the sum of these signals,

S = Sr + Si = (Apeiφp + Areiφr )e−iωt . (2.99)

If we adjust the phase and amplitude of the reference signal so that S = 0 when
there is no plasma, then we require

Ap = −Ar = A φ0 = φr
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where φ0 is the phase of the plasma path in vacuum. In general, the phase in the
plasma will depend on time as the density varies according to

φ(t) =
∫ L/2

−L/2
kz(z, t) dz −

∫ L/2

−L/2
k0 dz

= ω

c

∫ L/2

−L/2
[n(z, t)− 1] dz (2.100)

= ω

c

∫ L/2

−L/2



√
1− ω2

p(z, t)

ω2
− 1


 dz.

2.7.1 Detecting the signal

If there is no attenuation in the plasma, then the detected signal may be expressed
as

S = A(eiφ − 1)eiφ0−iωt

= Aei
1
2φ(ei

1
2φ − e−i

1
2φ)eiφ0−iωt

= 2iA sin 1
2φe

i 12φeiφ0−iωt .

For microwave signals, the simplest detectors are generally square-law detectors,
so the received signal is

|S|2 = 4A2 sin2 1
2φ. (2.101)

An example of a plasma whose density rises in time from zero density to a
maximum where ωp > ω and then falls again to zero is shown in figure 2.27.

2.7.2 Interpreting the signal when ω � ω p

When the wave frequency is much greater than the maximum plasma frequency,
such as is the usual case when either optical or far infrared waves are employed,
then we may expand the root in equation (2.100) to obtain

φ = −ω2
p0

2ωc

∫ L/2

−L/2
f (z) dz = −ω2

pL

2ωc
∝ nLλ0 (2.102)

where λ0 is the free space wavelength, n is the average plasma density, and
ω2
p(z) = ω2

p0 f (z). It is clear that to find the peak density, one must know the
profile f (z) and the column width L. If the column is cylindrical, one may
measure the phase shift at a series of chords and then use an Abel inversion to
obtain the profile (the frequency must be far enough above the maximum plasma
frequency that refractive effects do not distort the path along the various chords).
Otherwise one must make an independent measurement of the profile.
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Figure 2.27. Plasma density microwave interferometer: (a) plasma density (ω2pe/ω
2)

versus t ; (b) phase signal versus time; and (c) detected signal versus time.

2.7.3 Interpreting the signal when ω ∼ ω p0

When the plasma frequency approaches, or even surpasses, the wave frequency,
then the expansion of the square root is a poor approximation and equation (2.102)
is inappropriate. Then the general expression from equation (2.100),

φ = ω

c

∫ L/2

−L/2



√
1− ω2

p0

ω2 f (z)− 1


 dz (2.103)

is appropriate. This is trivial when f (z) = 1, −L/2 < z < L/2, but nontrivial
otherwise. It is sometimes possible to use the cutoff condition when ω = ωp0 to
determine the column width L. At cutoff, the phase is

φ = ω

c

∫ L/2

−L/2

[√
1− f (z)− 1

]
dz. (2.104)

For the trivial case (square plasma profile), we have φ = −ωL/c, so if m =
|φ|/2π is the number of cycles (the example in figure 2.27(c) has φ = −6.3π at
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cutoff so m � 3.2) in the detected signal, then L = λ0m. If, however, we assume
the density profile is parabolic, with f (z) = 1 − (2z/L)2, then L = 2λ0m. Thus
we see that the interpretation of the width depends on the profile and knowledge
of the width and phase shift can help to estimate the profile.

Problem 2.7.1. Phase shift with nonuniform density profile.

(i) Find an expression for the phase shift as a function of α = ωp0/ω ≤ 1 for
a parabolic profile f (z) = 1− (2z/L)2.
(ii) Find an expression for the phase shift as a function of α = ωp0/ω ≤ 1
for a cosine profile, f (z) = cos2(πz/L).

2.8 Electrostatic waves

Electrostatic waves form a special subset of plasma waves where the wavelength
is short and the phase velocity is low. For these cases, the waves are longitudinal
and we may represent the electric field by a scalar potential so that

E = −∇φ = −ikφ. (2.105)

When the plasma charge and current are incorporated into the effective dielectric
tensor, then Gauss’ law inside the plasma gives from equation (1.11),

∇ · D = 0

which reduces to the electrostatic dispersion relation (ESDR),

k · K · k = 0. (2.106)

In cold plasmas, this dispersion relation reduces further to

k2⊥K1 + k2‖K3 = 0 (2.107)

which is sufficiently simplified that many exact results may be readily obtained.
We recognize at once that for parallel propagation, this leads to K3 = P = 0 so
the plasma wave is clearly an electrostatic wave. For k2 →∞, we previously had
the resonance condition of equation (2.26), but for electrostatic waves, we see that
this relationship is always true, and we can understand this as taking the large-k
limit of the dispersion relation. After examining the conditions for the validity
of this approximation, we examine a special case which will be treated now for a
cold uniform plasma but will be visited again in later chapters as other effects are
added.
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2.8.1 Validity conditions for the electrostatic approximation

Following Stix’ [6] general development we break the electric field vector into
parallel and perpendicular componentswith respect to k so that we may determine
how nearly longitudinal the wave is, such that

E = E‖ + E⊥

where

E‖ = n(n · E)
n2

E⊥ = − n × (n × E)
n2

which we insert into the wave equation, equation (2.18), in the form

n × (n × E)+ K · E = 0. (2.108)

If we take the scalar product of equation (2.108) with n, we obtain the result that

n · K · (E‖ + E⊥) = 0

which reduces to the ESDR of equation (2.106) if |E‖| � |E⊥|, which means
the electric field is dominantly longitudinal. Equation (2.105) indicates the wave
is exactly longitudinal, but we broaden the definition here to include the nearly
longitudinal field case. If we now take the scalar product of equation (2.108) with
E, then we may write the result as

(n2 − K · )E⊥ = K · E‖. (2.109)

We can see that for large enough n, |E⊥|/|E‖| can be made as small as one
chooses. From this comparison, we can give a sufficient condition for the validity
of the electrostatic approximation as

n2 � |Kij | (2.110)

or that the index of refraction should be large compared to all of the dielectric
tensor elements. Thus the cyclotron resonances, where n2 → ∞ because the
dielectric tensor elements tend toward infinity, are not necessarily electrostatic.
However, this is not a necessary condition, since plasma oscillations are
electrostatic, and n2 is not even defined in the cold plasma approximation for
this case.

Problem 2.8.1. Cold electrostatic waves. Show that near either hybrid resonance,
the waves are electrostatic.
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2.8.2 Lower hybrid waves

One example of electrostatic waves occurs when a wave is propagating close to
the lower hybrid resonance, since in this case k is large because of a zero in a
dielectric tensor element (K1 = S � 0). We shall assume for this case that
ωci � ω � ωce, ωpe so the dispersion relation, which we write as

k2⊥ = −k2‖K3/K1

where

K1 � 1− ω2
pi

ω2
+ ω2

pe

ω2
ce

K3 � − ω2
pe

ω2

becomes

k2⊥ �
k2‖ω2

peω
2
ce

(ω2
pe + ω2

ce)(ω
2 − ω2

LH )
(2.111)

where
ω2
LH = ωceωci/(1+ ω2

ce/ω
2
pe).

Here we see that for fixed k‖, k⊥ grows arbitrarily large as we approach the hybrid
resonance, so the electrostatic approximation is validated.

This case has interesting behavior with respect to its phase and group
velocity. If we solve for ω(k, θ), we find

ω2 = ω2
LH +

k2‖ω2
peω

2
ce

k2⊥(ω2
pe + ω2

ce)
= ω2

LH +
ω2
peω

2
ce

(ω2
pe + ω2

ce)
cot2 θ (2.112)

so ω does not depend explicitly on k. If we consider ω(k‖, k⊥), however, then we
find that

∂ω

∂k‖

∣∣∣∣
k⊥
= 1

k‖

(
ω2 − ω2

LH

ω

)

∂ω

∂k⊥

∣∣∣∣
k‖
= − 1

k⊥

(
ω2 − ω2

LH

ω

)
.

(2.113)

With the group velocity angle φ with respect to the magnetic field defined in this
case as

tanφ = ∂ω

∂k⊥

∣∣∣∣
k‖

(
∂ω

∂k‖

∣∣∣∣
k⊥

)−1
= − ∂k‖

∂k⊥

∣∣∣∣
ω

(2.114)

then the group velocity is found to be precisely perpendicular to the phase
velocity.
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Another feature which will be important later is that if we consider k‖ to
be fixed, then the wave is a backward wave, in the sense that the phase velocity
and the group velocity are in opposite directions. If, however, k⊥ is taken as fixed,
then it is a forwardwave. This wave is frequently launched across a magnetic field
into a plasma of varying magnetic field and density in the perpendicular direction
but with no variation in the parallel direction, so k‖ is determined by the launch
structure only and the wave is taken to propagate nearly in the perpendicular
direction (but at a finite angle from perpendicular, since it does not propagate
at all with k‖ = 0) where it is a backward wave. The effects of the variation of
plasma parameters will be taken up in chapter 6.

2.8.3 Resonance cones

If one excites a wave in an anisotropic plasma from a point source, then the
radiation pattern is generally not symmetric in space, especially in those regions
of parameter space where the wave normal surfaces are lemniscoids, since waves
do not even propagate in all directions. In fact, in regions of the CMA diagram
which have resonance angles, the propagation is strongly influenced by the
resonance and has been shown both theoretically [12] and experimentally [13]
to give rise to resonance cones, so-called because virtually all of the wave energy
is propagated from the point source in cones with a fixed angle with respect to
the magnetic field. To see how this occurs, we again consider electrostatic waves
near the lower hybrid resonance.

We first represent the source as an oscillating point source described by
ρ(r, t) = δ(r)e−iωt so the spatial Fourier transform of the source is given by
ρ(k) = 1. This may be considered to be a Green function from which we
construct a distributed source, but as long as the source extent is small compared
to the distances where measurements are to be made, this provides an adequate
description of the source. The Fourier transform of the resulting potential is given
by Poisson’s equation so that

�(k) = ρ(k)/ε0D(k2⊥, kz) (2.115)

where D(k2⊥, kz) = k · K · k. In cylindrical coordinates in k-space with the axis
aligned with the magnetic field, the inverse Fourier transform gives

ϕ(r) = 1

(2π)3

∫ ∞

−∞
d3k�(k)eik·r

= 1

4π2ε0

∫ ∞

−∞
dkzeikz z

∫ ∞

0
dk⊥ k⊥

J0(k⊥ρ)
D(k2⊥, kz)

(2.116)

where we have used the identity,

∫ 2π

0
dψ eik⊥ρ cos(ψ−θ) = 2π J0(k⊥ρ)
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to do the integral over the angle ψ in k-space and where the coordinates in
configuration space are ρ, θ , and z. Using the Bessel identity

J0(x) = 1
2 [H (1)

0 (x)+ H (2)
0 (x)]

where H (1)
0 (x) and H (2)

0 (x) are Hankel functions of order zero of the first and
second kind, we may make the further change in the perpendicular integral such
that ∫ ∞

0
dk

k J0(kρ)

D(k2)
= 1

2

∫ ∞

0
dk

kH (1)
0 (kρ)

D(k2)
+ 1

2

∫ ∞

0
dk

kH (2)
0 (kρ)

D(k2)

= 1

2

∫ ∞

−∞
dk

kH (1)
0 (kρ)

D(k2)
(2.117)

where we have used the reflection symmetry that H (2)
0 (ze−iπ) = −H (1)

0 (z) to
extend the range of the integral to [−∞,∞]. In terms of the original variables,
the potential is then given by

ϕ(r) = 1

8π2ε0

∫ ∞

−∞
dkz eikz z

∫ ∞

−∞
dk⊥ k⊥

H (1)
0 (k⊥ρ)

D(k2⊥, kz)
. (2.118)

Having extended the range of integration, we can now evaluate the second integral
by contour integration, closing in the upper half-plane where H (1)

0 is small.
In general, this contour will pick up contributions from all of the zeros of the
dispersion relation which lie in the upper half-plane, but for electrostatic waves in
a cold plasma, there are only two poles. These are located at

k⊥ = ±k⊥0 k⊥0 = kz
√−K3/K1 (2.119)

only one of which can be above the real axis. If we assume Im(k⊥0) > 0, then the
pole corresponding to the upper sign gives

ϕ(r) = i

8πε0K1

∫ ∞

−∞
dkz e

ikz z H (1)
0 (k⊥0ρ). (2.120)

Now for general values of ρ, this is difficult to evaluate but for large |ρ|, we
may use the asymptotic form, H (1)

0 (x) ∼ √
2/πxei(x−π/4), so the exponent in

equation (2.120) is approximately

i(kzz + ρk⊥0) = i

(
kzz + kz

∂k⊥0
∂kz

ρ

)
= ikz(z − ρ cotφ)

where the middle step has used the expansion

k⊥0(kz) = k⊥0(0)+ ∂k⊥0
∂kz

∣∣∣∣
kz=0

kz + · · ·
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Figure 2.28. Geometry of resonance cones for a lower hybrid wave showing cone angle θc
for a point source at the origin. The z-axis is in the direction of B0. (from reference [14]).

which is trivial for a cold plasma but important for warm plasmas, and the last
step has used equation (2.114). The integral is then a delta function, evaluating
the integrand at z = ρ cotφ or at ρ = z tan φ. From the analysis leading to
equation (2.114), φ is the angle of the group velocity at resonance, so the only
disturbance far from the source occurs at this particular cone angle. The pole we
did not use earlier leads to a complementary cone in the negative z-direction, so
it yields no new information.

The conclusion of this section is that in frequency ranges where electrostatic
waves propagatewith K1/K3 < 0, and we used lower hybridwaves as an example
of this, then the radiated energy far from the source is found only on cones whose
angle is given by

φc = tan−1
√−K1/K3. (2.121)

This conclusion will of course be modified by real plasma effects, such as finite
temperature effects and weak inhomogeneities, but the resonance cone effect has
been observed where the response of a localized source peaks on these cones.
The thermal effects, among other things, tend to broaden the cone and even give
thermal interference fringes just inside of the cone angle [12,13]. These cones are
illustrated in figure 2.28 where the geometry is evident.

Problem 2.8.2. Resonance cones.

(i) Fill in the missing steps leading to equations (2.118) and (2.121).
(ii) What if K1/K3 > 0? Show why this case has no resonance cones.

2.9 Particle motions near resonance

The motions of the electrons and ions for general cases are complicated and give
insight into the wave motion only in special cases. We have already treated
the particle motions for low-frequency Alfvén waves in section 2.5.1. In this
section we examine the particle motions near resonance, because the concept of
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resonance invariably suggests that something is singular and requires more careful
examination in order to understand the physics of the phenomenon. We will
examine this notion in more detail in chapter 6 where resonances are approached
in space in an inhomogeneous plasma but we look first at the principal resonances
in a cold, uniform plasma.

2.9.1 Lower hybrid resonance (high density case)

If we examine again the X-wave near the lower hybrid resonance, looking in
particular at the electric fields, currents, and particle motions, we note first from
the first equation of the set equation (2.20) that at θ = π/2,

SEx − iDEy = 0 (2.122)

and since at resonance S = 0, and D �= 0, we find that Ey = 0, while Ex �= 0.
Then since the conductivity tensor component σxx = iωε0(S − 1)→−iωε0, and
since except at resonance, |S| � 1 in the high density limit, then we can take
|σxx | to be negligible compared to |σxy|. This leads to

Jx = σxx Ex + σxy Ey � 0 (2.123)

Jy = − σxy Ex + σxx Ey �= 0 (2.124)

since both σxx � 0 and Ey = 0 in equation (2.123) lead to Jx � 0 and σxy �= 0
and Ex �= 0 in equation (2.124) lead to Jy �= 0. We note at once from the charge
continuity equation that

k · j = ωρ = 0 (2.125)

since k is perpendicular to j , with the result that there is no charge fluctuation in
this electrostatic (E = Ex êx , k = kx êx ) wave.

The electron equation of motion for this wave is

−iωLHve = − e

me
(E + ve × B0) = − e

me
E − ωceve × êz . (2.126)

The left-hand side of equation (2.126) is
√
me/mi smaller than the second term

on the right, so we neglect it, with the result that

E + ve × B0 = 0

so that ve is perpendicular to both E and B0. Solving for the velocity, we obtain

ve = − Ex

B0
êy = e

mi

Ex

ωci
êy . (2.127)

For ions, we have

−iωLHvi = e

mi
(E + vi × B0) = e

mi
E + ωcivi × êz . (2.128)
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Figure 2.29. Electron and ion motions near the lower hybrid frequency.

In this equation, we can neglect the term involving ωci since it is small compared
to ωLH � √ωceωci . Then,

vi = e

mi

iE
ωLH

= e

mi

iEx

ωLH
êx . (2.129)

From these velocity estimates, it is apparent that the electrons have a much
larger velocity than the ions but in a different direction. The orbits are found by
dividing the velocities by−iωLH , which does not change the ratio, so the electron
orbit is much larger than the ion orbit. We sketch these orbits in figure 2.29 where
it is apparent that the orbits are ellipses due to the terms of order

√
me/mi which

were previously neglected.
From the figure it is apparent that the electron and ion currents cancel in

the x-direction and add in the y-direction. It is this absence of Jx with finite Ex

simultaneously with the production of finite Jy with no Ey component which is
unique to the hybrid resonances.

The energy of the electrons and the ions can be calculated from the
expressions for their respective velocities, with the result that 1

2mev
2
e =

1
2miv

2
i . This equivalence of kinetic energy between the two species is another

characteristic of the lower hybrid resonance, and demonstrates in yet another way
its hybrid character.

In summary, we have seen that the lower hybrid resonance may lead to a
resonance in the index of refraction or the wavevector but no singularities have
been encountered in the particle motions.

Problem 2.9.1. Particle Orbits near the lower hybrid resonance. For a wave
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propagating at θ = π/2 near the lower hybrid resonance:

(i) Show that the particle orbits are ellipses and find the ratio of their major
and minor axes (in the high density limit).
(ii) Show that Jx = iωε0Ex (not only at resonance).
(iii) Show that the kinetic energies of the electrons and ions are equal.

Problem 2.9.2. Particle orbits near the two-ion hybrid resonance. For a wave
propagating at θ = π/2 near the two-ion hybrid resonance (ωc1 < ωii < ωc2) in
a high density plasma of 50% hydrogen and 50% deuterium:

(i) Find the major and minor axes of the ion orbits.
(ii) Sketch the particle orbits.
(iii) Find the kinetic energies of each species.

2.9.2 Upper hybrid resonance

The particle motions near the upper hybrid resonance are even easier to analyze
than near the lower hybrid resonance, because we can neglect the ion motions
completely. The relation between the electric field components given by
equation (2.122) still applies to the upper hybrid resonance, and we still have
S → 0, so we also have Ex �= 0 and Ey = 0 for this case. Looking then at the
electron equation of motion,

−iωUHve = − e

me
(Ex êx + ve × B0)

leads to the velocity component expressions,

vx = eωUH Ex

imeω2
pe

vy = eωceEx

meω2
pe

(2.130)

where we have used ω2
UH − ω2

ce = ω2
pe. From these we obtain the current

components,

Jx = iωUH ε0Ex

Jy = − ωceε0Ex . (2.131)

It now becomes apparent from equation (2.131) that when we add the plasma
current to the displacement current, the x-component cancels and there will be no
source term for the x-component, a result similar to the lower hybrid case. We
again find no singularity in any of the particle motions, and we find relationships
between the currents and fields that are similar to those in the lower hybrid case.
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2.9.3 Cyclotron resonances

The particle motions at the cyclotron resonances are different from those at the
hybrid resonances, and must be treated differently. As an example of this kind of
resonance, we will examine the electron cyclotron resonance for the R-wave but
we will not take Fourier transforms. Looking only at the transverse motions of
the electrons, the components of the equations of motion give

dvx
dt

= − e

me
(Ex + vy B0) (2.132)

dvy
dt

= − e

me
(Ey − vx B0). (2.133)

By taking the derivative of equation (2.132) and using equation (2.133)
to eliminate dvy/dt , we may write the single second-order inhomogeneous
differential equation for vx ,

d2vx
dt2

+ ω2
cevx = −

e

me

(
dEx

dt
− ωce Ey

)
. (2.134)

For the R-wave polarization, we take the electric field to be circularly polarized
such that

Ex = E0 cosωcet
Ey = E0 sinωcet

(2.135)

so equation (2.134) becomes

d2vx
dt2

+ ω2
cevx =

2eE0ωce

me
sinωcet . (2.136)

The homogeneous solution of equation (2.136) and the corresponding solution for
vy are given by

vx = v0 cos(ωcet + φ)

vy = v0 sin(ωcet + φ) (2.137)

where v0 and φ are arbitrary amplitude and phase constants, but the
inhomogeneous solutions are given by

vx = − E0

B0
ωcet cosωcet (2.138)

vy = − E0

B0
ωcet sinωcet (2.139)

so the magnitude of the velocity increases linearly in time. The kinetic energy is
given by

1

2
mev

2 = 1

2
mev

2
0 +

(eE0t)2

2me
− v0eE0t cosφ (2.140)
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so the energy increases without bound in time and there is no steady-state solution.
This is why we avoided using the Fourier transform, since that method assumes
that steady-state amplitudes exist.

The conclusion from this section, then, is that cyclotron motions are truly
singular in uniform cold plasma theory without collisions, and we must look
either to collisions, thermal effects, inhomogeneity effects, or nonlinear effects
to resolve these singularities, since truly unbounded motions are unacceptable
physical solutions. We can easily imagine how an inhomogeneity in the magnetic
field might affect our result, since with a finite velocity in the z-direction, a
particle will spend only a finite time in the resonance region if the magnetic field
also varies in the z-direction.

Problem 2.9.3. Ion cyclotron resonance. Fill in the steps leading to the result of
equation (2.140) corresponding to the ion cyclotron resonance driven by an L-
wave.

Problem 2.9.4. Localized resonance. Suppose an electron drifts through the
resonance zone with a fixed vz where B(z) = B0(1 − z/L) = B0(1 − vz t/L) =
B0(t).

(i) Show that equations (2.132) and (2.133) may be written in dimensionless
coordinates as

dvx
dτ

= − v0 cos τ − vy

(
1− τ

α

)
dvy
dτ

= − v0 sin τ + vx

(
1− τ

α

)
where v0 = E0/B0 and τ = ωcet .
(ii) Use the Mathematica program

a=110;
v0=1;
eqone=vx’[t]==-v0 Cos[t]-vy[t] (1-t/a);
eqtwo=vy’[t]==-v0 Sin[t]+vx[t] (1-t/a);
sol=NDSolve[{eqone,eqtwo,vx[-40]==vy[-40]==.1},
{vx[t],vy[t]},{t,100}]
Plot[vx[t]ˆ2+vy[t]ˆ2 /. sol,{t,-40,100}]

to estimate the gain in the energy by finding the ratio of 〈v2〉/v20 by trying
several values of v0.

This calculation is only illustrative of the energy gain, since the wave
amplitude should decay exponentially in z as it does not propagate above the
resonance. The assumption of constant vz is also a crude approximation since
there are forces due to the gradient in B . The real problem is highly nonlinear.
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Chapter 3

Waves in fluid plasmas

The analysis of cold plasma waves, although very complicated already, leaves out
all of the physics that relates to finite temperature effects. These effects may be
included in varying degrees of approximation, and it is instructive to include at
this stage only the simplest thermal correction terms through the inclusion of a
finite pressure term. This term appears in the fluid equations, which come from a
moment expansion of equation (1.63), the Boltzmann equation,

∂ f

∂ t
+ v · ∇ f + A · ∇v f = d f

dt

∣∣∣∣
coll.

(3.1)

where A is the acceleration due to electric andmagnetic fields through the Lorentz
force. Introduced in chapter 1, this basic equation and its interpretation will be
discussed further in chapter 4.

Whereas in the cold plasma we talked about motions of individual particles
and then added up the motions of all of them to find the currents, in the
fluid plasma we describe the motion of a fluid element which is an average
over many particles of the same species and we assume that the separate fluid
elements for each species move freely among one another, except as collisions
exchange momentum between them. The averaging process we shall use here
is to expand the Boltzmann equation for each species in a velocity moment
expansion, truncating the expansion at some suitable level, depending on the
particular problem. Collisions, which were neglected in the cold plasma, will
be discussed in section 3.4. Instabilities which may arise from counterstreaming
fluid elements and their classification are included in section 3.5.

3.1 Moments of the distribution function

3.1.1 The moment equations

If we neglect collisions for the moment, then equation (3.1) can also be written as

∂ f

∂ t
+∇ · (v f )+∇v · (A f ) = 0 (3.2)
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since f∇ · v = 0 and f∇v · A = 0 since r and v are independent variables. We
then introduce a scalar function of velocity, Q(v), and define the moment process
by an average over the velocity as

〈Q(v)〉 = Q(v) averaged over velocity

=
∫
Q f d3v∫
f d3v

= 1

n

∫
Q f d3v (3.3)

where n(r) = ∫
f (r, v) d3v is the density in configuration space.

If we now multiply equation (3.2) by Q and integrate over velocity, we have∫
Q
∂ f

∂ t
d3v +

∫
Q∇ · v f d3v +

∫
Q∇v · A f d3v = 0.

Since Q is a function of v only, this becomes

∂

∂ t

∫
Q f d3v +∇ ·

∫
Qv f d3v +

∫
Q∇v · A f d3v = 0. (3.4)

The first term of equation (3.4) is simply ∂(n〈Q〉)/∂ t while the second is
∇ · (n〈Qv〉). The third term expands to∫

Q∇v · A f d3v =
∫
[∇v · (QA f )− f A · ∇vQ] d3v

=
∮
Sv
(QA f ) · dSv −

∫
f A · ∇vQ d3v

and the surface integral in velocity space vanishes because we assume the
distribution vanishes for v→∞. We can then write equation (3.4) as

∂

∂ t
(n〈Q〉) +∇ · (n〈Qv〉)− n〈A · ∇vQ〉 = 0. (3.5)

3.1.1.1 Zeroth moment

Let Q = 1. Then 〈Q〉 = 1 and 〈Qv〉 = 〈v〉 ≡ u where u is the mean or average
velocity of the fluid element. Then equation (3.5) leads to

∂n

∂ t
+∇ · (nu) = 0 the continuity equation. (3.6)

3.1.1.2 First moment

Let Q = mvx . Then 〈Q〉 = mux and ∇vQ = mêvx so 〈A · ∇vQ〉 = m〈ax 〉. This
leads to

∂

∂ t
(nmux )+∇ · (nm〈vvx 〉)− nm〈ax〉 = 0.
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Now we let v = u + w, where w measures the perturbation from the average
velocity (〈w〉 = 0). Then

〈vvx 〉 = 〈(u + w)(ux +wx)〉 = uux + 〈wwx 〉.
We then call nm〈ww〉 the stress tensor �. The last term is

nm〈ax 〉 = q
∫
(E + v × B)x f d3v

= nq(E + u × B)x

so that by taking all three such component equations from letting Q =
mvx , mvy, mvz , we obtain the first moment equation

∂

∂ t
(nmu)+∇ · (nmuu)+ ∇ ·� − nq(E + u × B) = 0. (3.7)

This equation is generally written, using equation (3.6) and the identity

∇ · (nmuu) = nm(u · ∇)u + mu∇ · (nu)

as

nm

[
∂u
∂ t
+ (u · ∇)u

]
+ ∇ ·� − nq(E + u × B) = 0. (3.8)

This is the first moment of the Boltzmann equation, and represents the
conservation of momentum in the plasma:

∂

∂ t
(momentum density)+ flux of momentum density = force density.

3.1.1.3 Higher moments

Equation (3.6) gave the evolution of n as a function of u, equation (3.8) gave
the evolution of u as a function of �, and to find the evolution of �, one needs
the next higher moment, etc. This process must be truncated in order to use the
moment equations. If we assume the higher rank tensor (which would appear in
the second moment equation) vanishes, then we may represent the stress tensor
by a scalar pressure so that ∇ ·� = ∇ p = ∇(nKT ).

3.1.2 Longitudinal plasma oscillations from the moment equations

In order to both illustrate the moment expansion method and to resolve an
ambiguity in cold plasma waves, we shall investigate plasma oscillations in an
unmagnetized plasma. The ambiguity came about from the fact that P = 0 was
both a cutoff (PRL = 0 defined the cutoffs where n2 = 0) and a resonance
(tan2 θ = −P/S is the resonance condition, and θ = 0 leads to P = 0). Part of
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this difficulty was that P = 0 leads to ω = ωp and no phase or group velocity
was defined since k was not involved.

For this case, we assume k is parallel to E, E = Eêx so that k = kêx , and
B0 = 0. The moment expansion for the αth moment is obtained by multiplying
the Boltzmann equation by vα and integrating:

∂

∂ t

∫ ∞

−∞
vα f dv + ∂

∂x

∫ ∞

−∞
vα+1 f dv + q

m
E
∫ ∞

−∞
vα

∂ f

∂v
dv = 0.

Integrating the last term by parts leads to

∂

∂ t

∫ ∞

−∞
vα f dv + ∂

∂x

∫ ∞

−∞
vα+1 f dv − αqE

m

∫ ∞

−∞
vα−1 f dv = 0. (3.9)

We then define the various integral terms by

F (α) =
∫

vα f (v) dv (3.10)

where the velocity v = u + w is comprised of the average velocity, 〈v〉 ≡ u, and
the random part, w. If we look at the first few moments, we find

F (0) = n

F (1) = nu

F (2) = nu2 + M(2)

F (3) = nu3 + 3uM(2) + M(3)

F (4) = nu4 + 6u2M(2) + 4uM(3) + M(4)

where we have introduced modified moments depending only on the random part
of v,

M(α) ≡
∫

wα f (v) dv. (3.11)

The first few of these moments are M(0) = n, M(1) = 0, and mM(2) = p. Since
we wish to linearize the moment equations, and since u is a first order quantity,
we may write the linearized moments as

F (2k) = M̄(2k) + M̃(2k)

= (2k − 1)!!n̄v2kt
2k

+ M̃(2k) (3.12)

F (2k+1) = (2k + 1)M̄(2k)ũ + M̃(2k+1)

= (2k + 1)!!n̄v2kt
2k

ũ + M̃(2k+1) (3.13)

where ũ = ũei(kz−ωt), etc and we have used a Maxwellian distribution to obtain

M̄(α) = n̄√
πvt

∫ ∞

−∞
wαe−w2/v2t dw = n̄vαt (α − 1)!!

2α/2
(3.14)
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for even α with vt = √2kT/m and (−1)!! = 1. It is evident from equations (3.12)
and (3.13) that for α even, there is a zero order and a first order term, while for α
odd, there are only first order terms.

We then write equation (3.9) in terms of the F (α) with the result

∂

∂ t
F (α) + ∂

∂z
F (α+1) − αq

m
EzF

(α−1) = 0. (3.15)

Assuming E is first order and that n has both zero and first order terms, the
linearized moment equations for α = 0 through α = 4 are (with ∂/∂z → ik
and ∂/∂ t → −iω)

−iωñ + ikn̄ũ = 0 α = 0 (3.16)

−iωn̄ũ + ikM̃(2) − q

m
n̄ Ẽ = 0 α = 1 (3.17)

−iωM̃(2) +
(
3n̄v2t
2

ũ + M̃(3)

)
= 0 α = 2 (3.18)

−iω
(
3n̄v2t
2

ũ + M̃(3)

)
+ ikM̃(4) − 3qn̄v2t

2m
Ẽ = 0 α = 3 (3.19)

−iωM̃(4) + ik

(
5!!n̄v4t

4
ũ + M̃(5)

)
= 0 α = 4. (3.20)

The subsequent terms can be obtained from the two general expressions for α
even and α odd:

−iωM̃(α) + ik

[
(α + 1)!!n̄vαt

2α/2
ũ + M̃(α+1)

]
= 0 α even (3.21)

−iω
[
α!!n̄vα−1t

2(α−1)/2
ũ + M̃(α)

]
+ ikM̃(α+1) − qα!!n̄vα−1t

m2(α−1)/2
Ẽ = 0 α odd. (3.22)

We may then use equation (3.16), written as ũ = (ω/k)ñ/n̄, to eliminate ũ in
equation (3.21) so that the pair may be written as

−iω
[
M̃(α) − (α + 1)!!vαt

2α/2
ñ

]
+ ikM̃(α+1) = 0 α even (3.23)

−iωM̃(α) + ikM̃(α+1) + α!!n̄vα−1t

2(α−1)/2
(
−iωũ − q

m
Ẽ
)
= 0 α odd. (3.24)

By taking these equations two at a time, we may generate higher and higher
order approximations in a systematic manner. Defining

f̃ ≡ −iωũ − q

m
Ẽ (3.25)
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and using equation (3.24) with α = 1, we first obtain

f̃ = − ik

n̄
M̃(2). (3.26)

Then taking the α = 2 and α = 3 cases together,

−iωM̃(2) + ikM̃(3) + iω
3!!v2t
2

ñ = 0

−iωM̃(3) + ikM̃(4) + 3!!n̄v2t
2

f̃ = 0

and eliminating M̃(3) between them, we find

f̃

(
1+ 3!!

2θ2

)
= − ik

n̄

(
3!!v2t
2

ñ + k2

ω2
M̃(4)

)
. (3.27)

Continuing with two at a time, the result may be written as

Sm f̃ = − ik

n̄

[
v2t θ

2(Sm − 1)ñ +
(
k

ω

)2m
M̃(2m+2)

]
(3.28)

where equation (3.26) is the result for m = 0, equation (3.27) is the result for
m = 1, and

Sm(θ) =
m∑
j=0

(2 j + 1)!!
2 jθ2 j

θ � 1 (3.29)

where θ ≡ ω/kvt . This equation of motion must now be solved along with
Poisson’s equation,

ik Ẽ = qñ

ε0
. (3.30)

Using equation (3.30), we may write f̃ as

f̃ = − i

kn̄
(ω2 − ω2

p)ñ.

Using this result along with equation (3.28) results in

ω2 = ω2
pSm(θ)+ k2

(
k

ω

)2m M̃(2m+2)

ñ
. (3.31)

This is an asymptotic series in θ with the remainder term set to zero for some m.
No matter how many terms are kept, there will never be any imaginary part. As
more terms are kept, θ must be larger and larger since each term must be smaller
than the previous term.

Copyright © 2003 IOP Publishing Ltd.



The lowest nontrivial approximation is to let M̃(4) = 0 to obtain

ω2 = ω2
pe

[
1+ 3

2

(
ve

vp

)2]
(3.32)

which is called the Bohm–Gross dispersion relation1 [15] (BGDR) where we have
defined the electron thermal speed as v2e ≡ 2KTe/me. Keeping M̃(4) but setting
M̃(6) = 0, the result is

ω2 = ω2
pe

[
1+ 3

2

(
ve

vp

)2

+ 15

4

(
ve

vp

)4]
(3.33)

so it is apparent that the moment expansion is an expansion in the ratio of the
thermal velocity to the phase velocity. The BGDR now resolves the ambiguity in
cold plasma theory and supports the notion that P = 0 in cold plasma is a cutoff
rather than a resonance, since this dispersion relation describes a wave with a
cutoff at ωpe that propagates near the electron thermal speed for high frequencies.

We have thus learned from this example that the fluid equations which are
based on moment expansions are valid as long as the phase velocity is large
compared to the thermal speed. When this approximation fails, then we must
solve the equations without expansion, and techniques for this approach will be
discussed in the next chapter.

Problem 3.1.1. Moment expansions.

(i) Zeroth order moments. Verify equation (3.14).
(ii) Moment pairs. Fill in the steps leading to equations (3.23) and (3.24).
(iii) Fifth moment. Continue with the α = 4 and α = 5 terms beyond
equation (3.27) and verify that equation (3.28) is valid for m = 2.
(iv) Using Poisson’s equation, complete the steps from equation (3.28) to
equation (3.31).

3.2 The fluid equations

Having used the notation in the previous section that v is an independent variable
and that u is the velocity of a fluid element, we now switch definitions to the more
traditional notation where the fluid velocity is denoted by v j since now it relates
to a specific species j . We shall also use the definition of the mass density as
ρ j = n jm j which is the mass per unit volume for a fluid element of species j .
With these definitions, the fluid equations are:

∂ρ j

∂ t
+∇ · (ρ jv j ) = Z j (continuity equation) (3.34)

1 Technically, the BGDR is equation (3.32) with ω = ωpe in the correction term. This leads to

ω2 = ω2
pe(1+ 3k2λ2De) for the BGDR.
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where Z j is the ionization rate for species j and

ρ j

[
∂v j

∂ t
+ (v j · ∇)v j

]
= q jn j (E + v j × B)−∇ p j (momentum equation)

(3.35)
where collisions have been neglected for now. For particle conservation, the
ionization rates among the various species (including neutrals) must satisfy∑

j

Z j = 0.

The linearized fluid equations are:

∂ρ1 j

∂ t
+ ρ0 j∇ · v1 j = 0 (continuity equation) (3.36)

where ionization has been neglected and

ρ0 j
∂v1 j

∂ t
= q jn0 j (E1 + v1 j × B0)−∇ p1 j (momentum equation) (3.37)

since all zero order quantities are assumed to be constant in space and time and
we are taking E0 = v0 j = 0 for the moment. We shall consider the effects due
to collisions and v0 j �= 0 later in this chapter, and consider E0 �= 0 in chapter 6
when we deal with drift waves in inhomogeneous plasmas.

Problem 3.2.1. Fluid equations with zero order drifts and fields. Write the zeroth
and first order continuity and momentum equations when v0 j �= 0 and E0 �= 0.

3.3 Low frequency waves

The waves from the fluid equations conveniently break up into two regions when
me � mi . For the high frequency waves, ion motions are completely neglected,
while in the low frequency region, we neglect terms of order me/mi .

3.3.1 The low-frequency dispersion relation

Beginning with the linearized fluid equations for electrons and one species only
of singly charged ions, following Stringer’s development [16], we write for each
species the continuity equation

∂ρ1 j

∂ t
+ ρ0 j∇ · v1 j = 0 (3.38)

and the momentum equation

ρ0 j
∂v1 j

∂ t
= q jn0 j (E + v1 j × B0)− ∇ p1 j . (3.39)
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By adding the momentum equations for electrons and ions, we obtain the
result

ρ0
∂v

∂ t
= j × B0 − ∇ p (3.40)

where ρ0 = ρ0i + ρ0e, p = pi + pe, and

v = ρ0iv1i + ρ0ev1e

ρ0i + ρ0e
j = n0e(v1i − v1e).

The other fluid equation is obtained by multiplying each of the momentum
equations by q j/m j with qi = e, qe = −e, and adding, whereby the result may
be expressed as

me

n0e2
∂ j
∂ t
= E + v × B0 − mi

e

∂v

∂ t
− 1

n0e
∇ pi (3.41)

where terms of order me/mi have been neglected.
We next assume that all first order quantities vary as exp(ik · r − iωt) so that

the Maxwell equations lead to the wave equation

k2
(
1− ω2

k2c2

)
E − k(k · E) = iωµ0 j . (3.42)

Introducing the thermal speeds, defined by c2j ≡ γ jKTj/m j , where γ j is the ratio
of specific heats for species j and comes from the equation of state (an alternative
to truncating the moment equations), we may relate the pressure and density as
p j = c2jρ1 j so the continuity equations give

pi = n0mic2i (k · vi )
ω

= gn0mic2s (k · vi )
ω

� gn0mic2s
ω

k · v (3.43)

p = n0c2s (mi + me)

ω
k · v − (1− g)c2smi

ωe

(
1− c2i

c2e

)
k · j

� n0c2s mi

ω
k · v − (1− g)c2smi

ωe
k · j (3.44)

where

g ≡ γi Ti
γi Ti + γeTe

c2s ≡
γeKTe + γiKTi

me + mi
(3.45)

and cs is called the ion acoustic speed.
If we now solve equation (3.40) for v, using equation (3.44) to eliminate p

we obtain

v = 1

ω2µ0ρ0

[
k2

(
1− ω2

k2c2

)
(E × B0)− (k · E)(k × B0)

]

+ c2s
ω2

(k · v)k − iε0(1− g)c2s
n0eω

(k · E)k
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but if v = u+α(k ·v)k, where u is any vector, then v ≡ u+α(k ·u)k/(1−αk2),
so we may write

v = 1

ω2µ0ρ0

[
k2

(
1+ c2s kk·

ω2 − k2c2s

)
(E × B0)− (k · E)(k × B0)

]

− iωε0(1− g)c2s
n0e(ω2 − k2c2s )

(k · E)k (3.46)

where we have neglected ω2/k2c2 compared to unity. If we make this same
approximation in equation (3.42), then k · j = 0 and the last term in
equation (3.46) disappears, with the result

v = 1

ω2µ0ρ0

[
k2

(
1+ c2s kk·

ω2 − k2c2s

)
(E × B0)− (k · E)(k × B0)

]
. (3.47)

We then use this equation for v and equation (3.42) for j and equation (3.43) for
pi in equation (3.41) to obtain

(
1+ k2c2

ω2
pe
− k2V 2

A

ω2

)
E + iV 2

A

ωωci
[k2(E × êz)− (k · E)(k × êz)]

+
(
V 2
A

ω2
− c2

ω2
pe

)
(k · E)k + V 2

A

ω2
[k2Ez − (k · E)kz]êz

− k2c2s
ω2 − k2c2s

[
V 2
A

ω2
E · (k × êz)(k × êz)+ iV 2

A(1− g)

ωωci
E · (k × êz)k

]
= 0

(3.48)

where VA is the Alfvén speed and where we have chosen B0 = B0êz . We can
now multiply equation (3.48) successively by k, êz , and k × êz to form the set of
equations which if its determinant of coefficients is set to zero,

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

k2V 2
A

ω2
kz − ik2V 2

A(ω
2 − gk2c2s )

ωωci (ω2 − k2c2s )
1− k2z V

2
A

ω2

1+ k2c2

ω2
pe

− ikzV 2
A(1− g)k2c2s

ωωci (ω2 − k2c2s )
−kzc2

ω2
pe

− ik2V 2
A

ωωci
kz 1+ k2c2

ω2
pe
− k2V 2

A

ω2 − k2c2s

(
1− k2z c

2
s

ω2

)
ik2z V

2
A

ωωci

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
= 0 (3.49)

Copyright © 2003 IOP Publishing Ltd.



leads to the low frequency dispersion relation (LFDR),(
1− ω2

k2V 2
A

− ω2

ωceωci
+ k2c2s sin

2 θ

ω2 − k2c2s

)(
cos2 θ − ω2

k2V 2
A

− ω2

ωceωci

)

= ω2 cos2 θ

ω2
ci

(3.50)

where θ is the angle between the direction of propagation and the static magnetic
field. This dispersion relation is equivalent to that given by Stringer [16] and
Braginskii [17].

Problem 3.3.1. Fluid equations. Show that equation (3.41)may be written exactly
as

me

n0e2(1+ ε)

∂ j
∂ t
= E + v × B0 − mi

e
(1− ε)

∂v

∂ t
− 1

n0e(1+ ε)
∇(pi + εpe)

where ε = me/mi , so the approximation includes neglecting εpe compared to pi
as well as neglecting ε compared to unity.

Problem 3.3.2. Derivation of the low frequency dispersion relation. Show that
equation (3.49) leads to equation (3.50).

3.3.2 Stringer diagrams of the LFDR

Plots of the LFDR which exhibit the character of the various waves in the low
frequency region have been given by Stringer [16]. In these plots, ω/ωci is plotted
against kcs/ωci on logarithmic scales so that regions of constant phase velocity
appear as straight lines.

3.3.2.1 Overdense case

Figure 3.1 shows the three roots of the LFDR (full curves) in a low β hydrogen
plasma (c2s/V

2
A = β = 0.01, mi/me = 1836) which is overdense (ωpe > ωce)

such that c/VA = 103. The general character for a broad range of angles is
represented by this plot at θ = π/4. Since equation (3.50) is cubic in ω2, there
are only three branches. In the following sections, we shall investigate some of
the special cases and transitions as well as the limits as θ → 0 or θ → π/2.

We can identify the R–X wave as the branch beginning at O1 where it is
a compressional Alfvén wave until A, after which it gradually changes slope
until B where it enters the whistler wave region until it reaches C where it has
a resonance. There is an apparent crossing of an ion acoustic branch at D. In
the original Stringer diagrams, these branches do not cross, since the ion acoustic
mode bends over and tends toward L while the first branch turns upward toward
E, but they are not resolvable from equation (3.50).
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Figure 3.1. Dispersion curves for an overdense plasma. Full curves are from the low
frequency dispersion relation, equation (3.50), while the dot-dash lines are from the warm
plasma dispersion relation, equation (3.78).

The torsional Alfvén wave runs from O2 to F where it approaches the ion
cyclotron resonance at G, but for these parameters, it quickly couples to the ion-
acoustic branch at H and is a simple ion-acoustic wave from I to D where it
apparently crosses the first branch. The third branch that starts at O3 does not
occur in a cold plasma and is an ion sound wave below M and approaches a
resonance beyond P.

The warm plasma dispersion relation (WPDR), given by equation (3.78)with
both electron and ion terms, is shown in figures 3.1 and 3.2 by the dot-dash lines.
The corresponding roots of the WPDR generally follow those of the LFDR, but
several additional roots are shown (theWPDR with both ions and electrons is 15th
order in ω2, but many roots are virtual double roots, so only seven are distinct in
this case). One additional root begins near O3 as a magnetized ion sound wave
that experiences the resonance at the ion cyclotron resonance. Another begins at
the ion cyclotron frequency and then becomes an unmagnetized ion sound wave.
Yet another is a magnetized electron sound wave until it experiences the electron
cyclotron resonance. The highest frequency branch shown begins at the electron
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Figure 3.2. Dispersion curves for an underdense plasma. Full curves are from the low
frequency dispersion relation, equation (3.50), while the dot-dash lines are from the warm
plasma dispersion relation, equation (3.78). The box is magnified in figure 3.3.

cyclotron frequency and then follows the electron sound wave. Three more higher
modes are beyond the range of the figure.

One important difference between the LFDR and the WPDR is evident as
one follows the LFDR (full curve) above I. As this root approaches J, the WPDR
indicates a gradual transition from an ion acoustic wave to an ion sound wave, so
the LFDR is unreliable in describing this high frequency region.

3.3.2.2 Underdense case

For an underdense plasma (ωpe < ωce), the roots of both the LFDR and
the WPDR are shown in figure 3.2 where now we have cs/VA = 10−3 and
c/VA = 10. For this case, the first branch is little changed except that above
B the LFDR indicates that the phase velocity exceeds c so the neglect of those
terms of order ω/kc is not valid in this region. Here the LFDR continues to
the electron cyclotron resonance while the WPDR indicates that this root bends
over near C to follow the electron plasma frequency until it makes an additional
pair of transitions, first to the magnetized electron sound wave and finally to the
electron cyclotron frequency. The other significant deviation from the LFDR
is the transition from an ion acoustic wave to an ion sound wave in the region
between J and K which occurred at a much higher frequency in the overdense
case of figure 3.1. The figure is somewhat confusing near D, where it shows a
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Figure 3.3. Magnified area near N from the warm plasma dispersion relation in figure 3.2.

crossing of two LFDR roots, but as noted earlier, the rising branch has already
moved over to the ion sound root, so no crossing occurs near D. The crossing
does occur just to the right of D, and even the WPDR cannot distinguish between
a crossing and a transition (there are five separate roots in this vicinity, and some
are barely distinct, but no transition is evident even at high precision).

The third branch of the LFDR is basically unchanged from the overdense
case, since the acoustic waves are relatively insensitive to changes in the density.
The three additional high-frequency branches of the WPDR which were off scale
for the overdense case are seen here. The highest frequency branch makes a
transition to vp = c at N which is seen more clearly in figure 3.3 which is a
magnification of the box in figure 3.2.

Two distinct roots are barely resolvable in the figure, the lower of which was
also present in the overdense case. The two lower branches begin to asymptote to
the velocity of light, but the upper one crosses the electron cyclotron resonance
while the lower one experiences the resonance, finally making a transition to the
electron sound wave.

Both figures 3.1 and 3.2 are similar to figures given by Stringer [16], but
differ in some important ways. Some transitions which occur slowly in the
original diagrams occur much more rapidly here or not at all, so the nature of
the transitions is less evident. Several transitions in the original figures are not
due to the equations given here.

The significance of a crossing of two roots as opposed to a transition with
roots avoiding one another is that a crossing indicates there is no coupling
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between the waves in that region, while a transition indicates there is coupling.
A purely longitudinal wave has no coupling to a purely transverse wave, so the
corresponding roots may cross, but even with a little mixture, a transition will
normally occur. The distinction is sharp in a uniform plasma, but with even
small inhomogeneities, the distinction becomes fuzzy, since partial transmission
(crossing or tunneling, see section 6.3) and partial conversion (transition or mode
conversion) is possible unless strong absorption occurs in the coupling region. For
the indicated crossings and transitions, however, one should recall that when the
phase velocity is near a thermal velocity, absorption is likely and kinetic theory is
required.

3.3.2.3 Electrostatic limit

When kλDe ≥ 1, equation (3.50) is inaccurate because of the neglect of space
charge effects through the neglect of the k · j term. We could include this term
through the charge continuity equation, whereby k · j = ωρ = ωe(n1i −n1e), but
it is easier to use the electrostatic dispersion relation (ESDR) where the electric
field is derived from a scalar potential. The large-k limit, or low phase velocity
limit, leads us to the sufficient condition for the electrostatic approximation of
equation (2.110) which we found in chapter 2.

For this analysis, we may write the momentum equation for each species as

−iωm jv j = q j

[
−ik

(
p j

n0q j
+ ϕ

)
+ v j × B0

]
(3.51)

where ϕ is the scalar potential. This may be solved for the velocity components
with B0 = B0êz such that

k · v j = 1

ωm j

(
p j

n0
+ q jϕ

)[
k2x + k2y

1− ω2
cj/ω

2
+ k2z

]
. (3.52)

Then using the continuity equation and gas law (p j = c2jρ1 j ) for each species,
this may be written as

k · v j

[
1− c2j

(
k2⊥

ω2 − ω2
cj

+ k2z
ω2

)]
= ωq jϕ

m j

(
k2⊥

ω2 − ω2
cj

+ k2z
ω2

)
. (3.53)

We may combine these expressions for each species through Poisson’s equation

k2ϕ = n0e

ωε0
(k · vi − k · ve)

and the result may be written as

1+ 1

k2λ2Di

+ 1

k2λ2De

= 1

k2λ2Di

[
1− k2c2i

(
sin2 θ
ω2−ω2

ci
+ cos2 θ

ω2

)]
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+ 1

k2λ2De

[
1− k2c2e

(
sin2 θ
ω2−ω2

ce
+ cos2 θ

ω2

)] (3.54)

where λDj = c j/ωpj . This dispersion relation is quartic in ω2, but one root is the
electron plasma wave and not a low frequency wave, so as long as ω � kce, we
may neglect the last term and reduce the dispersion relation to a quadratic in ω2.
This reduced dispersion relation may be used to plot the regions beyond D and H
in both figure 3.1 and figure 3.2, but only the LFDR and the WPDR are actually
plotted.

Problem 3.3.3. Electrostatic dispersion relation. Fill in the steps leading to
equation (3.54).

3.3.3 Approximate dispersion relations and transitions

The LFDR, equation (3.50), is cubic in ω2, but by dividing up the parameter
space into several regions, one root can be eliminated or factored in each region,
reducing it to a quadratic, where we can more easily identify the properties of the
solutions.

3.3.3.1 MHD Region

For the very low frequency case, where ω � ωci , the right-hand side of
equation (3.50) may be neglected along with ω2/ωceωci , so it reduces to(

1− ω2

k2V 2
A

+ k2c2s sin
2 θ

ω2 − k2c2s

)(
cos2 θ − ω2

k2V 2
A

)
= 0. (3.55)

The second factor gives the cold torsional wave root

ω2 = k2V 2
A cos

2 θ (3.56)

which is unaffected by the finite temperature terms. This branch is plotted from
O2 to F in figures 3.1 and 3.2 where it reaches a transition at ωci .

The remaining factor leads to the quadratic

ω4 − k2(V 2
A + c2s )ω

2 + k4V 2
Ac

2
s cos

2 θ = 0

with approximate roots (for cs � VA)

ω2 = k2(V 2
A + c2s sin

2 θ) (3.57)

and
ω2 = k2c2s cos

2 θ. (3.58)

This last root is a sound wave whose phase velocity is equal to the ion thermal
speed as it propagates along the magnetic field and does not propagate across the
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magnetic field (a dumbbell lemniscoid). It follows path O3 to M in figure 3.1 and
then approaches the resonance.

The first root, from equation (3.57), is more interesting, since now the cold
compressional wave is coupled to the ion acoustic wave. For this reason, this wave
that begins at O1 is often called the magnetoacoustic wave or the magnetosonic
wave since it is coupled to acoustic modes in the low frequency limit. It is clear
from the dispersion relation that the magnetoacoustic wave is equivalent to the
cold plasma compressional Alfvén wave when VA � cs , and that the phase
and group velocities are parallel in that limit, but when VA is comparable to
cs , then the phase and group velocities are no longer parallel, since the acoustic
wave component of the dispersion relation tends to guide the wave away from
the direction of the magnetic field. This same branch is thus partially guided
across the field at very low frequencies if acoustic effects are important, isotropic
if acoustic effects are negligible, and then at intermediate frequencies is guided
along the field as the whistler wave beyond B, and carries a variety of names,
depending on the approximation (VA � cs or VA � cs), the frequency (ω � ωci

or ωci � ω � ωce), and the angle (R-wave for θ = 0, X-wave for θ = π/2 up
to ωLH ).

Problem 3.3.4. Magnetoacoustic wave.

(i) Find an expression for tanα where α is the angle between the phase
velocity and the group velocity for the magnetoacoustic wave described by
equation (3.57).
(ii) Show that tan(θ + α) = (1+ c2s /V

2
A) tan θ .

(iii) Sketch α versus θ for 0 ≤ θ ≤ π/2 for cs = 2VA.
(iv) For what angle θm is the ratio of the group velocity to the phase velocity
maximum (as a function of cs/VA). Evaluate this angle for cs = 2VA.

3.3.3.2 High phase velocity region

In this region, we assume vp >
√
VAcs so we may neglect the k2c2s /ω

2 terms
compared to unity, with the resulting simpler quadratic dispersion relation,(

1− ω2

k2V 2
A

− ω2

ωceωci

)(
cos2 θ − ω2

k2V 2
A

− ω2

ωceωci

)
= ω2

ω2
ci

cos2 θ. (3.59)

If we introduce the quantity,

1

R
= ω2

ci

k2V 2
A

(
1+ k2c2

ω2
pe

)
= ω2

ci

k2V 2
A

+ me

mi

then the roots of equation (3.59) may be expressed as

ω2 = 1
2 Rω

2
ci

[
1+ cos2 θ(1+ R)±

√
[1+ cos2 θ(1+ R)]2 − 4 cos2 θ

]
(3.60)

Copyright © 2003 IOP Publishing Ltd.



so the A–B transition occurs near where R cos2 θ � 1, or approximating R by
k2V 2

A/ω
2
ci , it is near

kVA � ωci sec θ.

Since R becomes large as we move up the curve beyond B, we may approximate
one root by

ω � ωci

√
R(1+ R cos2 θ) (3.61)

that for k � ωpe/c leads to

ω � Rωci cos θ � k2V 2
A

ωci
cos θ (3.62)

which is the same as equation (2.78), the whistler dispersion relation. The limits
of validity for this case are that ωci sec θ/VA � k � ωpe/c, where the first
ensures that we are above the lower transition, and the second validates our
approximation for R. For the limit where k � ωpe/c, then R � mi/me, and
the dispersion relation simplifies to

ω � ωce cos θ (3.63)

for cos2 θ > me/mi . This dispersion relation is independent of k, and represents
a resonance as k → ∞. Of course, as k gets very large, we leave the region of
validity of equation (3.59) as we move beyond C. Just as the LFDR failed in the
underdense case of figure 3.2, so this approximate analysis of the transition fails
in the underdense case.

The second root in this region is ω � ωci , which is the ion cyclotron
resonance for the torsional branch and is plotted from G to H in the diagrams.

3.3.3.3 Low phase velocity, low frequency region

In this region, we take vp <
√
VAcs but also choose ω <

√
ωceωci cos θ so

that we may neglect both ω2/k2V 2
A and ω2/ωceωci (R → ∞ approx.) in

equation (3.50) to obtain

ω4 − (k2c2s + ω2
ci )ω

2 + k2c2sω
2
ci cos

2 θ = 0. (3.64)

The roots are given by

ω2 = 1
2

[
k2c2s + ω2

ci ±
√
(k2c2s + ω2

ci )
2 − 4k2c2sω

2
ci cos

2 θ

]

and the lower root, which we designate the electron-acoustic branch, may be
represented by

ω � kcs cos θ√
1+ k2ρ2s

�
{

kcs cos θ kρs � 1
ωci cos θ kρs � 1

(3.65)
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where ρs = cs/ωci is almost the ion Larmor radius, and where the first expression
is valid between O3 and M and the second beyond M in figure 3.1 and the
transition occurs near kρs ∼ 1. The phase velocity below M is numerically equal
to ci , but this is an accident, since ci and cs cos θ (the proper expression for the
phase velocity of this lower curve) are equivalent when θ = 45◦ and Te = Ti
as assumed here. For different temperatures or a different angle, the two phase
velocities would not coincide.

The upper root is
ω2 = ω2

ci + k2c2s (3.66)

which gives the ion cyclotron resonance for kcs � ωci , the region between G
and H for kcs ∼ ωci , and the transition to the ion-acoustic branch near H which it
follows from I to D, where kcs � ωci and vp = cs .

3.3.3.4 Low phase velocity, high frequency region

In this region, we also take vp <
√
VAcs but now choose ω >

√
ωceωci cos θ so

that we may neglect the cos2 θ term in the second factor of equation (3.50). Then
we may write the quadratic as

ω4 − [k2c2s + ω2
ci R(1 + R cos2 θ)]ω2 + k2c2sω

2
ci R(1 + R) cos2 θ = 0 (3.67)

with roots

ω2 = 1

2
ω2
ci R

2 cos2 θ

{
1+ k2ρ2s sec

2 θ

R2
+ sec2 θ

R

±

(1− k2ρ2s sec

2 θ

R2
+ sec2 θ

R

)2
+ 4k2ρ2s sec

2 θ tan2 θ

R3



1/2


 .(3.68)

The higher root of equation (3.68) is either the whistler dispersion relation
of equation (3.62) with kc � ωpe or the cyclotron resonance of equation (3.63)
with kc � ωpe. In order to find the higher frequency transitions for this branch,
we need the ESDR, equation (3.54).

The lower root gives ω = kcs to lowest order unless kcs � ωce cos θ , where
again we need to examine the ESDR for large k.

3.3.3.5 Electrostatic region

For the region which has both high frequency and large k, we may neglect ωci

compared to ω and also take ω � kce (except where ω � ωce cos θ ). In this case
equation (3.54) reduces to

ω2

k2λ2Di (ω
2 − k2c2i )

= 1+ 1

k2(λ2Di + λ2De)
(3.69)
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with solution

ω2 = k2c2i

[
1+ Te

Ti (1+ k2λ2De)

]
. (3.70)

This gives ω = kcs for kλDe � 1 and ω = kci for kλDe � 1. The transition
occurs when kρs ∼ c/VA which is equivalent to kλDe = 1. This transition
is evident in both figure 3.1 with kρs = c/VA = 103 and figure 3.2 with
kρs = c/VA = 10. This transition is missing from the LFDR, but evident from
either the ESDR or the WPDR.

The other root behaves as ω = ωce cos θ as k → ∞, which is the K to
L→∞ branch in figure 3.1. This may be seen by multiplying equation (3.54) by
k2λ2De and letting k2 →∞ (holding ω fixed) whereupon the left-hand side tends
towards infinity as k2λ2De, the first term on the right tends toward zero, and the
second term also tends towards zero unless the denominator vanishes, so we have

ω2 � ω2
ce cos

2 θ − ω2(ω2
ce − ω2)

k2c2e
� ω2

ce cos
2 θ

[
1− ω2

ce sin
2 θ

k2c2e

]
. (3.71)

3.3.4 Parallel and perpendicular propagation

The general character of the waves does not change greatly from our previous
results until θ → 0 or θ → π/2. As the angle of propagation approaches zero,
the only significant change is that the transition regions become more localized
and the transitions become sharper so that the coupling between the cold plasma
waves and the thermal waves occurs only when the phase velocity is very close
to one of the acoustic speeds. At θ = 0, the R- and L-waves are decoupled from
thermal motions, but the plasma wave (a high frequency mode) remains coupled.

As the angle θ → π/2, the lowest frequency branch is essentially unchanged
except that the resonant frequency ω = ωci cos θ → 0 as cos θ → 0.

The intermediate frequency branch, however, which is the shear Alfvén
wave at the low frequency end with ω/k = VA cos θ never experiences the ion
cyclotron resonance when VA cos θ < cs and propagates relatively smoothly up
to its resonance at ω = ωce cos θ � ωce where it makes a transition to resonance.

The higher frequency branch, which is the magnetoacoustic branch at low
frequencies, propagates at the Alfvén speed until it reaches the greater of ωce cos θ
or the lower hybrid frequency where it makes a transition over to the ion acoustic
wave with vp = cs , or in the extreme case, to ci .

3.3.5 High frequency waves

While some of the branches in the dispersion relations of the preceding section
were followed to higher frequency, there are several more branches which were
excluded in the LFDR of equation (3.50). The ESDR of equation (3.54) did not
use any low frequency approximation, however, so it continues to be valid at high
frequencies whenever the electrostatic approximation is appropriate.
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3.3.5.1 The warm plasma dispersion relation

For high frequencies, we may use the warm plasma dispersion relation (WPDR)
neglecting ion motions entirely. We do this by effectively lettingmi →∞, which
is usually called the neglect of electron inertia. Using only the fluid equations
for electrons and deleting the subscript denoting the species (except for ce), the
linearized time and space harmonic fluid equations are

−iωρ1 + ρ0ik · v1 = 0 (3.72)

and
−iωρ0v1 = −en0(E + v1 × B0)− ikp1 (3.73)

along with the equation of state, p1 = c2eρ1. These may be combined to give an
expression for the velocity as

v1 = e

iωm
(E + v1 × B0)+ c2e

ω2
(k · v1)k. (3.74)

Solving for the components of v1, we find, after some tedious algebra,

v1x = e

imD
[(ωEx − iωce Ey)(ω

2 − k2c2e cos
2 θ)+ ωEzk

2c2e cos θ sin θ ]
v1y = e

imD
[ωEy(ω

2 − k2c2e)+ iωce Ex (ω
2 − k2c2e cos

2 θ)

+ iωce Ezk
2c2e cos θ sin θ ]

v1z = e

imD
[ωEz(ω

2 − ω2
ce − k2c2e sin

2 θ)+ k2c2e cos θ sin θ(ωEx − iωce Ey)]

where D = ω2(ω2− k2c2e)−ω2
ce(ω

2− k2c2e cos
2 θ). Using j = −n0ev1 = σ · E

and K = I− σ/iωε0, the dielectric tensor has the form

K =

 Kxx Kxy Kxz

−Kxy Kyy Kyz

Kxz −Kyz Kzz


 (3.75)

where

Kxx = 1− ω2
pe(ω

2 − k2c2e cos
2 θ)

D

Kxy =
iωceω

2
pe(ω

2 − k2c2e cos
2 θ)

ωD

Kxz = − ω2
pek

2c2e cos θ sin θ

D

Kyy = 1− ω2
pe(ω

2 − k2c2e)

D
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Kyz = − iωceω
2
pek

2c2e cos θ sin θ

ωD

Kzz = − ω2
pe(ω

2 − ω2
ce − k2c2e sin

2 θ)

D
. (3.76)

These dielectric tensor elements may easily be extended to include ions
(letting ωce →−ωci ) by making a sum over species, but are very complicated for
general use, except that they are valid in both electrostatic and electromagnetic
regions. For cases where more than one ion species is involved, however, both
the one-fluid model and the WPDR are very complicated with simple dispersion
relations difficult to obtain, but the straightforwardness of the dielectric tensor
method may be preferred for numerical work. In figure 3.1, both ion and
electron terms are included for comparison with the LFDR using the WPDR,
equation (3.78), indicated by the dot-dash lines.

With this dielectric tensor, which has all nine components (although only six
are independent), the wave equation of equation (2.20) generalizes to
 Kxx − n2 cos2 θ Kxy n2 cos θ sin θ + Kxz

−Kxy Kyy − n2 Kyz

n2 cos θ sin θ + Kxz −Kyz Kzz − n2 sin2 θ




 Ex

Ey

Ez


 = 0

(3.77)
where n = kc/ω. The determinant of coefficients of equation (3.77) gives the
WPDR, which is considerably more complicated than the CPDR, but may be
written as

[(Kxx − n2 cos2 θ)(Kyy − n2)+ K 2
xy]Kzz − n2 sin2 θ [Kxx(Kyy − n2)+K 2

xy]
+ (2n2 cos θ sin θ + Kxz)[KxyKyz − Kxz(Kyy − n2)]
+ KxyKyzKxz + K 2

yz(Kxx − n2 cos2 θ) = 0. (3.78)

This WPDR is very formidable, but simplifies in certain limits. Its general form
is identical to that of the hot plasma dispersion relation (HPDR) which includes
finite temperature effects through kinetic theory and is the subject of chapter 4.

Problem 3.3.5. Derivation of the HFDR. Fill in the steps from equation (3.72) to
equations (3.76) and (3.78).

3.3.5.2 Parallel propagation

When θ = 0, the tensor elements simplify greatly, such that Kxx = Kyy = S,
Kxy = −iD, Kxz = Kyz = 0, so the L- and R-waves are unchanged from the
cold plasma results (with mi → ∞ for the high frequency cases described here)
by the fluid pressure terms. There is only one change, namely that

Kzz = 1− ω2
pe

ω2 − k2c2e
(3.79)
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so the P = 0 root leads now to

ω2 = ω2
pe + k2c2e (3.80)

which is equivalent to the BGDR for plasma waves if we take γe = 3 and the
thermal speed is small compared to the phase velocity.

3.3.5.3 Perpendicular propagation

When θ → π/2, we have Kxz = Kyz = 0 and now Kzz = P so the ordinary
wave is unchanged, but

Kxx = 1− ω2
pe

ω2 − ω2
ce − k2c2e

Kyy = 1− ω2
pe(ω

2 − k2c2e)

ω(ω2 − ω2
ce − k2c2e)

(3.81)

Kxy =
iωceω

2
pe

ω(ω2 − ω2
ce − k2c2e)

so that the extraordinary wave (X-wave) is now given by

n2X =
Kxx Kyy + K 2

xy

Kxx
= (ω2 − ω2

pe)(ω
2 − ω2

e − k2c2e)− ω2
peω

2
ce

ω2(ω2 − ω2
e − k2c2e )

(3.82)

where the upper hybrid resonance has been eliminated by the thermal term. The
cutoff is unaffected by the thermal terms, so equations (2.42)–(2.44) are still valid
(for the higher frequency cutoff). The upper branch of the extraordinary wave
then propagates from its cutoff up to the upper hybrid resonance as in the cold
plasma X-wave, but when it reaches vp ∼ kce, it couples to the electron sound
wave.

3.3.5.4 Arbitrary angle

The general WPDR is very complicated, but it may be approximated in certain
regions. The cutoffs, of course, do not depend on the angle. Away from the
cutoffs, we may approximate the high frequency branch of the R–X wave by

ω2 � ω2
ce

(
1+ ω2

pe(1+ cos2 θ)

ω2
ce − ω2

pe − k2c2

)
+ k2c2e sin

2 θ (3.83)

provided the denominator is not too small. The O–P wave branch may be
approximated by a similar expression

ω2 � ω2
pe

(
1+ ω2

ce sin
2 θ

ω2
pe − ω2

ce + k2c2 sin2 θ

)
+ k2c2 sin2 θ + k2c2e cos

2 θ. (3.84)

These are sketched for an overdense plasma in figure 3.1 and for an underdense
plasma in figure 3.2.
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3.3.6 Summary of fluid waves

The differences between the cold plasma waves and the fluid plasma waves may
now be seen to be due to the coupling of acoustic branches with the cold plasma
waves. The L, R, and X waves simply tend towards infinity as they approach
resonance, and the new feature is an acoustic wave with much lower phase
velocity than the Alfvén wave which would cross these resonances if there were
no coupling. The coupling, however, prevents a simple crossing and instead takes
each resonant cold wave and converts it to an acoustic wave, and the original
acoustic wave then converts to the resonant wave. Whether the acoustic wave
propagates at the ion acoustic speed cs or the ion thermal speed (or for the high
frequency branches, the electron thermal speed) is less obvious, and depends on
the details of the dispersion relation.

In a homogeneous plasma, these waves are all linearly independent and
energy does not couple from one branch to another in the transition regions.
In inhomogeneous plasmas, however, where a transition region is approached
in space, the waves are no longer independent and energy is coupled from one
branch to another. For example, wave energy originating on branch O3, the
low-frequency ion acoustic branch, may couple some energy across from L to
I by tunneling across the transition zone, and the remaining energy proceeds
along the normal branch towards M. We will discuss this kind of coupling in
chapter 6 where it is called linear mode conversion. One should not presume
that because the homogeneous solutions are no longer linearly independent that
linearly independent solutions no longer occur, but that the linearly independent
solutions are now composed of more than one branch, and the branching ratios
depend on which way the wave propagates.

We also note that each of the transition regions violates the conditions for the
validity of the fluid equations, except for the ion-acoustic-wave transitions with
Te � Ti , since the moment expansion depended on the phase velocity being large
compared to the thermal speed. Thus we would expect significant modifications
of the dispersion relation near these regions from a full kinetic analysis, and we
shall see in chapter 4 that both collisionless damping and modification of the
dispersion do indeed occur when thermal effects are kept to higher order. The
value of the fluid equations thus lies more in their ability to indicate the kinds
of cold plasma wave–acoustic wave couplings that do occur than in an accurate
description of all the thermal effects.

3.4 Partially ionized plasmas and collisions

For partially ionized plasmas, two things must be considered in addition to those
things characteristic of the fully ionized, collisionless plasmas. First, in a partially
ionized plasma, ionizing collisions and charge-transfer collisions give rise to
creation and annihilation processes for individual species, so we need the creation
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rate Z j for each species, noting that conservation of particles requires∑
j

Z j = 0. (3.85)

Secondly, the neutral particles are neither influenced by the electric and magnetic
fields, nor do they contribute to them, so they only interact through collisions
among themselves and with other species of the plasma. This means we must
include a collision frequency for each species with every other species, and as they
exchange momentum among themselves, we must conserve the total momentum.
Thus we require ∑

j,i

ρ j 〈ν j i (vi − v j )〉 = 0 (3.86)

where ν j i is the collision frequency for particles of species j with particles of
species i (the reciprocal of the mean time for a particle of species j to make a
collision with a particle of species i ). These depend on velocity and in general,
ν j i �= νi j .

3.4.1 Neutral collisions

3.4.1.1 Ion neutral charge exchange collisions

If we consider a case where the principal collisions are between ions and neutrals,
and consider only charge exchange collisions, which act like a head-on collision
between particles of equal mass, then the average in equation (3.86) is trivial and
the brackets may be dropped. We need the equation of motion for the neutrals,
which we take as the linearized momentum equation (neglecting neutral pressure
gradients) with collisional momentum transfer as

ρn0
∂vn

∂ t
= ρn0(vi − vn)νni . (3.87)

For harmonic time dependence, this may be solved for vn as

vn = vi/(1− iωτni ) (3.88)

where τni is the reciprocal of νni . Then using the equation of motion for the ions
with its collision term (again with harmonic time dependence)

−iωρi0vi = eni0(E + vi × B0)−∇ pi + ρi0(vn − vi )νin (3.89)

where νin �= νni , but ρnνni = ρiνin to conserve momentum. Using this
relationship and equation (3.88), and assuming mn = mi , the collision term may
be combined with the left-hand term of equation (3.89) with the result written as

−iωρ∗i0vi = eni0(E + vi × B0)−∇ pi (3.90)
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where

ρ∗i0 = ρi0

[
1+ nn0

ni0(1− iωτni )

]
. (3.91)

We can see from equation (3.91) that this pseudo-ion mass density reduces to the
usual ion mass density as νni → 0 (τni →∞), but becomes equal to the total ion
density plus neutral density either at low frequency or high collisionality. This
is due to the fact that when collisions are very frequent, the neutrals are dragged
along with the ions. In between, the pseudo-ionmass density is complex and leads
to damping of the wave motion. The form of the dispersion relation is unchanged
if one simply uses a pseudo-ion cyclotron frequency and a pseudo-ion plasma
frequency.

3.4.1.2 Electron–neutral collisions

For electron–neutral collisions, the neutral velocities may always be neglected, so
the electron momentum equation uses the Krook model of equation (1.65) with
the momentum equation becoming

ρe

[
∂ve

∂ t
+ ve · ∇ve

]
= −ene(E + ve × B)−∇ pe − ρeveνen . (3.92)

Using harmonic time dependence in the linearized equation, this may be written
as

(ν − iω)ρeve = −ene(E + ve × B)− ∇ pe (3.93)

where we have dropped the subscript on the collision frequency as there is only
one involved. It would appear that one could simply replace ω → ω + iν in
the cold plasma equations to include collisions, but there is an ω that comes
from the Maxwell equations which should not include the collision term, so the
replacement is rather for the mass term such that

me → me(1+ iν/ω).

Using this kind of Krookmodel for both ions and electrons for a cold plasma,
the dielectric tensor elements which are the analogs of equations (2.11) through
(2.15) are:

K1 ≡ S ≡ 1

2
(R + L) = 1−

∑
j

ω2
pj (ω + iν j )

ω[(ω + iν j )2 − ω2
cj ]

(3.94)

iK2 ≡ D ≡ 1

2
(R − L) =

∑
j

ε jωcjω
2
pj

ω[(ω + iν j )2 − ω2
cj ]

(3.95)

K3 ≡ P ≡ 1−
∑
j

ω2
pj

ω(ω + iν j )
(3.96)
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K1 + iK2 ≡ R ≡ 1−
∑
j

ω2
pj

ω(ω + iν j + ε jωcj )
(3.97)

K1 − iK2 ≡ L ≡ 1−
∑
j

ω2
pj

ω(ω + iν j − ε jωcj )
. (3.98)

We can also keep the ionospheric notation of equation (2.16) for electrons only if
we let

X = ω2
pe

ω(ω + iνe)
and Y = ωce

ω + iνe
. (3.99)

These collisional corrections invariably contribute a negative imaginary part
to ω, so they lead to decay in time, and since the plasma is passive (no free energy
in the previous models), the proper root for k leads to decay in space away from
a source.

Problem 3.4.1. Collisional damping of the L-wave. Neglecting electron
collisions and using the Krook model for the ions,

(i) Show that the dispersion relation for the L-wave for frequencies ω ∼
ωci < νe � ωce is given by

n2L � 1− ω2
pi (ω + iνi )

ωωci (ω + iνi − ωci )
.

(ii) Assuming c2/V 2
A � 1, νi � ωci , and νi � |ω − ωci |, find the damping

length for the L-wave (real ω).
(iii) For the same assumptions, find the approximate decay time for the L-
wave (real k).

3.4.2 Electron–ion collisions

For electron–ion collisions, the simple Krook model is less adequate, since the
effective collision frequency is not an isotropic scalar quantity. For the basic
collision frequencies, Braginskii finds [18]

τe = 3(2π)3/2
√
meε

2
0(KTe)

3/2

ln!e4Zne
= 3.4× 1011T 3/2

e

ln!Zn0
(3.100)

τi = 12(π)3/2
√
miε

2
0(KTi )

3/2

ln!e4Z4ni
= 2.1× 1013

√
AT 3/2

i

ln!Z3n0
(3.101)

where SI units are used in the first expressions, and the temperatures are expressed
in eV in the simplified expressions with ne = n0 = Zni and A is the atomic mass
number of the ion. The quantity ! is approximately given by ! � 9ND where
ND is the number of particles in a Debye sphere (some authors have slightly
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different coefficients, but since the dependence is only logarithmic, it matters
little).

In terms of these collision frequencies, the frictional drag for Z = 1 and
ωceτe � 1 is expressed in terms of u = ve − vi by the quantity

ru = −mene
τe

(0.51u‖ + u⊥) = −ne
(

j‖
σ‖
+ j⊥

σ⊥

)
(3.102)

where the perpendicular and parallel conductivities are given by

σ⊥ = nee2τe
me

σ‖ = 1.96σ⊥. (3.103)

For Z = 2 the coefficients 0.51(= 1/1.96) → 0.44(= 1/2.27), etc. Whenever
ωceτe � 1, σ⊥ increases to the value of σ‖.

These expressions may be incorporated into the fluid equations either
by adding or subtracting the drag term of equation (3.102) to the individual
species terms, since the momentum gained by the ions from collisions with
electrons is equal and opposite the momentum gained by the electrons. Thus
equation (3.40) is unchanged since the drag term cancels, while equation (3.41)
becomes (neglecting me/mi as before)

me

n0e2
∂ j
∂ t
= E + v × B0 − mi

e

∂v

∂ t
− 1

n0e
∇ pi − j‖

σ‖
− j⊥
σ⊥

. (3.104)

Incorporating these into the LFDR, equation (3.50) becomes(
1− ω2

k2V 2
A

− ω(ω + iν⊥)
ωceωci

+ k2c2s sin
2 θ

ω2 − k2c2s

)

×
(
cos2 θ − ω2

k2V 2
A

− ω(ω + iν‖ sin2 θ + iν⊥ cos2 θ)

ωceωci

)
= ω2

ω2
ci

cos2 θ

(3.105)

where we have defined

ν⊥ ≡ ne2

meσ⊥
= τ−1e ν‖ ≡ ne2

meσ‖
= 0.51τ−1e .

Problem 3.4.2. LFDR with collisions.

(i) Show that the changes in equation (3.104) lead to the result of
equation (3.105).
(ii) Assuming ν⊥, ν‖ � ω, find the corrections to equations (3.56), (3.57),
and (3.58).
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3.5 Amplifying waves and instabilities

3.5.1 Classification of instabilities

The literature of plasma physics includes innumerable examples of instabilities,
some of which involve gross motion of the plasma, such as MHD instabilities,
but for waves in plasmas, there are generally two classes of instabilities.
We shall restrict the discussion to these two classes and analyze the criteria
for distinguishing between them. The history of this problem is long, the
distinction between the two classes having been noted by Twiss [19], Landau
and Lifshitz [20], Sturrock [21], and by Briggs [22], whose development we shall
follow most closely.

3.5.1.1 Convective and absolute instabilities

Whenever we have a

D(k, ω) = 0 (3.106)

which has either complex k for real ω, or complex ω for real k, then the wave
may be described as either stable or unstable depending on whether the wave
grows or decays in space or time. Unfortunately, however, the distinction is not
always that simple, for there exist classes where a wave may grow in space but
decay in time at a fixed point. We shall use the nomenclature that a wave is
unstable if for some real k, with ω = ωr + iωi ω has a positive imaginary
part, or ωi > 0. We shall call a wave with complex k = kr + iki for real ω
an amplifying wave if the wave grows in space in the direction of energy flow
and evanescent if the wave decays in space in the direction of energy flow. It
is not sufficient to find only the sign of the imaginary part of k, since growth in
the direction of the phase velocity may be decay in the direction of the group
velocity, as for a backward wave. A further distinction is that if a finite source
(in space and time) leads to growth in time at every point in space, we call this
an absolute instability. A different kind of instability occurs when a growing
disturbance propagates in space (‘convects’) such that at a fixed point in space,
the wave eventually decays in time, and we call this a convective instability. This
distinction is clearly not observer independent, since an observer moving along
with the growing disturbancewould see it growing everywhere, so it would appear
to him to be an absolute instability, while a stationary observer would call it a
convective instability. Examples of these two types of instabilities are illustrated
in figure 3.4 by showing snapshots at successive times for some hypothetical
unstable system with a pulsed local source.

Sturrock [21] concluded that the convective instability is essentially the same
type as the amplifying wave, so that spatial amplification is due to a form of
‘spatial instability’ of the system. We will see that this interpretation is borne out
in the following discussion.
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Figure 3.4. Evolution of a pulse disturbance in (a) an absolutely unstable system and (b) a
convectively unstable system.

3.5.1.2 Green’s function representation of localized sources

The analysis of the types of instability described in the previous section will
be implemented by the introduction of a localized source so that the physical
interpretation may be explicit. We shall assume the system is infinite and uniform
in the z-direction, but that the source is bounded so that g(z) = 1 for−a ≤ z ≤ a
and zero otherwise. Using Fourier transforms in space, a unit amplitude source in
this region can be represented by

g(k) =
∫ ∞

−∞
g(z)e−ikz dz = 2 sin ka

k
. (3.107)

In time, we shall use Laplace transforms so that we may represent a source
which vanishes for t < 0. The Laplace transforms will be described by

f (t) =
∫ ∞+iσ

−∞+iσ
f (ω)e−iωt dω

2π
(3.108)

f (ω) =
∫ ∞

0
f (t)eiωt dt (3.109)

where the path of integration in equation (3.108) must lie above all the
singularities of f (ω) in order to guarantee that f (t) = 0 for t < 0.

In order to distinguish between amplifying and evanescent waves at some
real frequency ω0, we will assume a steady state source of the form

f (t) = e−iω0t (3.110)

so that

f (ω) = i

ω − ω0
. (3.111)

The response of the plasma to the source, denoted by ψ(z, t), may be
represented in terms of a Green’s function of the form

ψ(z, t) =
∫

G(z − z′, t − t ′)g(z′) f (t ′) dz′ dt ′ (3.112)
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Figure 3.5. Analytic region of F(z, ω).

or in terms of the transform of the Green’s function, G(k, ω),

ψ(z, t) =
∫ ∞

−∞
dk

2π

∫ ∞+iσ

−∞+iσ
dω

2π
G(k, ω)g(k) f (ω)ei(kz−ωt). (3.113)

This analysis can be generalized to include transverse effects, but these effects
do not influence the criteria we are trying to establish about the nature of the
instability.

3.5.1.3 Establishment of instability criteria

Treating the time and space problems separately for the moment, we may write
equation (3.113) as

ψ(z, t) =
∫ ∞+iσ

−∞+iσ
F(z, ω) f (ω)e−iωt dω

2π
(3.114)

with

F(z, ω) =
∫ ∞

−∞
G(k, ω)g(k)eikz

dk

2π
(3.115)

where f (ω) and g(k) are given by equations 3.111 and 3.107, respectively.
In order to establish causality, we require that F(z, ω) be analytic in the

shaded region of figure 3.5, since we chose σ to extend the path above all
singularities.
Interpretation of F(z, ω). The z-dependence of the response is contained in the
function F(z, ω). Since the system is source free for |z| > a, the responsemust be
given in terms of the normal modes of the system or the undriven modes. These
are just the roots of the dispersion relation of equation (3.106), and the roots
represent poles in the Green function G(k, ω) since G(k, ω) ∝ 1/D(k, ω). By
inspection of equation (3.107), we can easily see that g(k)eikz → 0 as k → i∞
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for z > a, so it is possible to close the Fourier contour above and evaluate the
response as a sum of the residues, each one representing one of the normal modes.
In some cases, the poles may be replaced by singularities with a branch line,
representing a continuum of modes, and methods of treating these are discussed
by Briggs [22]. We can now express F(z, ω) in terms of a sum:

F(z, ω) =
∑
np

ig[knp(ω)][
∂
∂k G

−1(k, ω)
]
k=kn p

eikn p z (3.116)

where the sum is over the roots of the dispersion relation which lie in the upper-
half k-plane for some frequencyω which lies on the Laplace contour of figure 3.5
(ωi = σ ).
Analytic continuation. While the execution of the inverse Laplace integral along
the path prescribed will give the response in detail, it will be advantageous to
deform the contour since we only require asymptotic expressions. This may move
the contour into a region where F(z, ω) is not defined, so we wish to define its
analytic continuation. If we imagine the deformation of the Laplace contour to
occur by letting the real part of ω stay fixed and varying only the imaginary part
ωi , then the poles of the dispersion relation will describe a trajectory in the k-
plane. Providing these poles do not cross the real axis, then F(z, ω) is still the
sum given in equation (3.116), with just slightly different values. When one of
these poles does cross the real k-axis, however, then we must define the analytic
continuation of F(z, ω) in terms of the integral

F̃(z, ω) =
∫
C
G(k, ω)g(k)eikz

dk

2π
(3.117)

where now the contour C is deformed so that all poles which were originally
below the contour remain below by deforming the contour over these poles, and
all poles which were originally above the contour remain above the contour by
deforming the contour to go under these poles. This means that the sum of
equation (3.116) is over those roots which were originally above the real k-axis
when ωi = σ , whether or not they remain above the axis when the Laplace
contour is deformed.
Criteria for amplifying and evanescent waves. When the Laplace contour is
deformed to just below the real axis, then we pick up the pole at ω0 so the time
asymptotic form of the response is

lim
t→∞ψ(z, t)→ F̃(z, ω0)e−iω0t (3.118)

and the spatial behavior is determined by F̃(z, ω) for a real frequency. Since all
of the knp in the sum of equation (3.116) had a positive imaginary part (ki > 0),
these were evanescent, and providing they do not cross the real k-axis, they remain
evanescent. If, however, one of the roots does move below the real k-axis, as root
A does in figure 3.6, then we have an amplifying wave in space. Any root which
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Figure 3.6. (a) Contour C for analytic continuation and motion of the poles of G(k, ω).
(b) Movement of the Laplace contour which results in the motion of the poles of G(k, ω).

was originally below the axis was excluded from the sum for z > a and hence
does not lead to amplification. For the case when z < −a, however, the k-plane
contour closes below to enclose evanescent roots, so only those roots which move
above the real k-axis, such as root B in figure 3.6, are amplifying for z < −a.
The criterion for amplifying roots is then that a root of the dispersion relation
must cross the real k-axis as ωi is reduced from σ to zero. If it crosses from
above to below, it is amplifying for positive z, and if it crosses from below to
above, it is amplifying for negative z.
Absolute instabilities. There is one case where this simple prescription necessarily
fails, since if two poles merge, one coming from below and one coming from
above, the C contour can no longer pass between the poles. This merging would,
in general, occur with ωi = σs > 0, and corresponds to a saddle point of the
dispersion relation so that ∂ω/∂k = 0 at ω = ωs . Expanding about this saddle
point, we may approximate

G−1(k, ω) � ∂G−1

∂ω

∣∣∣∣∣
ωs

(ω − ωs)+ 1

2

∂2G−1

∂k2

∣∣∣∣∣
ks

(k − ks)
2. (3.119)

If we use this result in equation (3.115), near ω ∼ ωs we obtain

F̃(z, ω) = ±ig(k±)eik±z
q2(k± − k∓)

� g(ks)eiks z

2pq
√
ω − ωs

(3.120)

where one choice is for z > a and the other for z < −a and where

k± = ks ± ip

q

√
ω − ωs
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Figure 3.7. Laplace contour with absolute instability.

p2 = ∂G−1

∂ω

∣∣∣∣∣
ωs

(3.121)

q2 = 1

2

∂2G−1

∂k2

∣∣∣∣∣
ks

.

Since the group velocity vanishes at the saddle point, the direction is immaterial.
We now note from equation (3.120) that F̃(z, ω) has a branch point at ω = ωs .
This branch point is not due simply to the existence of a saddle point, but due to
the convergence of the paths at the branch point from above and below, since if
both the merging roots came either from above or below, the contourC would not
include them.

This branch point must be carefully treated as we do the inverse Laplace
transform, since the contour must remain above the branch point as we deform
the contour down to the real ω-axis. The deformed contour thus goes over the
branch point at ωs and the pole at ω0 as in figure 3.7.

We note that the entire upper-half ω-plane must be explored for the highest
such singularity, since it is the fastest growing mode which will dominate. The
time asymptotic response can now be evaluated as

ψ(z, t) � g(ks) f (ωs)ei(ks z−ωs t)

pq

∫ ∞

−∞
ei(ωs−ω)t
√
ω − ωs

dω

2π

� g(ks) f (ωs)

2pq

ei(ks z−ωs t)

√
π i t

. (3.122)

Although this expression has possible spatial growth or decay due to the
fact that ks is in general complex, the absolute instability is characterized by the
positive imaginary part of ωs which leads to growth everywhere in time.

Other kinds of unusual behavior, such as a triple pole at ωs , ks , or p = 0,
or an essential singularity in the dispersion relation could occur, and have been
considered by Briggs [22], but these pathological cases do not effectively change
the criteria for stability or instability for reasonable plasma models.
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The close connection between convective instabilities and amplifying waves
has also been investigated by Sturrock [21] and Briggs [22] by considering the
propagation of a pulse disturbance at a finite velocity and it has been shown that a
system which supports convective but not absolute instabilities must have at least
one amplifying root of the dispersion relation.

Problem 3.5.1. Absolute instability. Verify the steps leading to equation (3.122)
when there is a saddle point in the dispersion relation.

3.5.1.4 Application of the criteria

Amplifying waves. The criteria established here for amplifying waves can be
summarized as follows [22].

To decide whether a given wave with a complex k = kr + iki for
some real ω is amplifying or evanescent, determine whether or not
ki has a different sign when the frequency takes on a large positive
imaginary part.2 If it does, then the wave is amplifying; otherwise, it is
an evanescent wave.

The physical picture of the change in sign comes from considering a source
which is localized in space, but growing exponentially in time. From causality,
we expect waves to decay away from the source, so that the effective ‘growth rate’
must eventually change sign for sufficiently rapid growth in time.

Since a source is rarely monochromatic in wavenumber (a bounded source
must have an infinite spectrum), it is generally necessary to find the maximum
growth rate, since even though the source amplitude for this most rapidly growing
component is small, it will eventually dominate. This phenomenon also modifies
our concept of group velocity in an amplifying medium, for although the group
velocity may be determined initially from the dominant wavenumber k in the
source, it eventually will be determined by the wavenumber with maximum
growth as it becomes the dominant component in the wave. In some cases,
this maximum growth may be obtained analytically, but in general one needs to
consider a mapping of a whole family of curves representing ω(k) where each
member has constant ωr and the imaginary part is reduced to zero, and the k-
plane mapping then shows not only which members cross the axis, but which has
the maximum growth rate, as in figure 3.8. We also note that each root of the
dispersion relation must be mapped separately, so that figure 3.8 represents only
one sheet of the complex plane mapping if the dispersion relation is higher order
than linear in ω and k.
Absolute instabilities. This same mapping procedure also indicates the presence
of any absolute instabilities, except that the figure then appears as in figure 3.9,
and the criterion is summarized as [22]
2 Negative imaginary part in Briggs, since he uses j = −i, (electrical engineering notation)
everywhere.
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Figure 3.8. Mapping of ω(k) for an amplifying wave for paths in (a) the k-plane and (b)
the ω-plane.

Figure 3.9. Mapping of ω(k) for an absolute instability for paths in (a) the k-plane and (b)
the ω-plane with the saddle point located at the •.

An absolute instability is obtained whenever there is a double root of
k for some complex ω in the upper-half ω-plane3 for which the two
merging roots come from different halves of the complex k-plane (upper
and lower) when ω has a large positive imaginary part.

Since this criterion for merging roots is the same as for the existence of a
saddle point, the saddle point should be apparent from the mapping.

A physical picture of the restriction that the merging roots come from
opposite half-planes may be seen from considering a point source of a
3 Lower-half plane in Briggs, same reason as before.
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disturbance. If we consider the source to be growing in time at some complex
ω whose growth rate is sufficiently large that all waves must decay away from the
source in space, as discussed earlier, then some of the roots will contribute to the
waves for z > 0 (k+) and some to the waves for z < 0 (k−). For the point source,
there will be some discontinuity at the origin in the wave amplitude in general, but
if it should happen that k+ = k−, there would be no discontinuity, and no source
required. Hence, if an ω exists where wavenumbers k+ and k−, each having come
from different half-planes, should merge, then this is a natural mode of the system
and needs no source, and the instability grows everywhere.

3.5.1.5 Cautions in using the criteria

These criteria are based on consideration of models of infinite systems, and some
kinds of boundary reflections may affect the conclusions. Two warnings are in
order:

(i) It is not true that any system which supports an absolute instability is always
unstable. It is usually required that the system exceed some minimum length
(ks may be excluded by boundary conditions), as is the case for the backward
wave oscillator [23].

(ii) It is also not true that a bounded system which supports only convective
instabilities (amplifying waves) is stable. In the absence of reflections, this is
true, but with sufficient reflections, for example, an amplifier may be turned
into an oscillator, and grow everywhere.

3.5.2 Streaming instabilities

The simplest kind of plasma model which includes effects of zero-order particle
velocities is to include a drift velocity v0, or a whole series of separate fluid
components, each with its own drift velocity v0i , which may approximate a zero-
order velocity distribution. When we model the plasma by a cold plasma as the
principal fluid and then add another component with a finite drift velocity, we
generally refer to the drifting component as a streaming component or as a beam.
In this section we shall consider several possibilities of streaming components
interacting with a cold or fluid plasma, and examine their stability characteristics.
In this chapter, we shall assume that both the plasma and beam are infinite in
extent, and include either boundaries in chapter 5 or inhomogeneous plasmas and
drift waves in chapter 6.

3.5.2.1 One-dimensional beam–plasma system

For our first example, we consider the cold electrostatic plasma wave with a
beam component as the source of free energy and neglect ion inertia. Using
equation (3.35) with a drift velocity v0 for the beam component, the linearized
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momentum equation with B = p = 0 becomes

ρ0b

(
∂v1b

∂ t
+ v0 · ∇v1b

)
= −en0bE (3.123)

or using the electrostatic potential E = −∇ϕ = −ikϕ for harmonic dependence,
equation (3.123) may be expressed as

ρ0bv1b = − en0bkϕ

ω − kv0
. (3.124)

Then using equation (3.34), the continuity equation,

∂ρ1b

∂ t
+∇ · (ρ1bv0 + ρ0bv1b) = 0

becomes
ρ0bv1b = (ω − kv0)ρ1b/k. (3.125)

Using this result along with equation (3.124), we solve for ρ1b as

ρ1b = − en0bk2ϕ

(ω − kv0)2
. (3.126)

We combine this with a corresponding cold plasma background term (with v0 =
0) through Poisson’s equation,

∇2ϕ = −k2ϕ = e

ε0
(n1p + n1b)

where n1p represents the first-order density perturbation for the cold plasma
background. The resulting dispersion relation is

D(ω, k) = 1− ω2
p

ω2
− ω2

pb

(ω − kv0)2
= 0 (3.127)

where ωp is the plasma frequency for the cold background plasma component,
and ωpb is the plasma frequency for the beam component.

This dispersion relation is quadratic in k, with roots

kv0 = ω


1± ωpb√

ω2 − ω2
p


 (3.128)

so there are complex roots for ω < ωp , one above the real k-axis and the other
below for real ω. Letting ω have a large positive imaginary part (|ω| → ∞) leads
to the roots

k � (ω ± ωpb)/v0 (3.129)
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so both roots are in the upper half-plane. Thus one root must have crossed the
axis and we have the condition for an amplifying wave. Both roots came from
the ‘downstream’ side (z → +∞), so the wave grows in the direction the beam
travels, as we might expect.

We note in passing that there is an essential singularity in F(z, ω) at ω = ωp

since ω→ ωp as k →∞. This implies that there will be undamped oscillations
at ωp as well as at the driven frequency, but since the phase velocity approaches
zero, the inadequacy of the cold plasma model and the fluid equations makes this
result unreliable.

3.5.2.2 The two-stream instability

It is easy to generalize the dispersion relation of equation (3.127) to the case with
two interpenetrating beams by adding another beam component, denoting the two
beam velocities as v1 and v2 and the two beam plasma frequencies as ωp1 and
ωp2, with the result

D(ω, k) = 1− ω2
p

ω2
− ω2

p1

(ω − kv1)2
− ω2

p2

(ω + kv2)2
. (3.130)

One special case where we can get analytic results is to let ωp1 = ωp2 = ω0
and v1 = v2 = v0. If we use the cold plasma notation that

P = 1− ω2
p

ω2

then the solutions of equation (3.130) are

(k±v0)2 = ω2 + ω2
0

P
± ω0

P

√
ω2
0 + 4Pω2 (3.131)

so there is a double root or saddle point where ω2
0 = −4Pω2 or ω2 = ω2

p−ω2
0/4.

For ωp < ω0/2, this leads to complex roots and an absolute instability. If we plot
the locus of k2 for pure imaginary ω in the complex k2-plane with ωp = 0, the
saddle point lies on the real k2-axis and branches off above and below the axis for
largeωi and branches out along the real k2-axis for small ωi , ending with one root
at the origin, and the other beyond the saddle point. In the k-plane, this means
there are two symmetric saddle points, one with kr > 0 and one with kr < 0, and
the branches for variable ωi go either along the real k-axis or above and below the
axis, which is the sufficient condition for the absolute instability. Examples of the
trajectories for ωp = 0.4ω0 for both k2 and k are shown in figure 3.10 where the
two branches from above and below merge on the real axis at krv0/ω0 = 0.52,
indicating an absolute instability.

If, however, ωp > ω0/2, then there is no saddle point in the upper-half ω-
plane, so there cannot be an absolute instability. There are generally complex
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Figure 3.10. Locus of (a) k2(ωi ) in the complex k2-plane and (b) k(ωi ) in the complex
k-plane from equation (3.131) for ωp = .4ω0.

Figure 3.11. Absolute instability case with ωp/ω0 = 0.6: (a) k−i v0/ω0 versus ωr/ω0;
and (b) k+i v0/ω0 versus ωr/ω0. There is a discontinuity in slope where the radical of

equation (3.131) vanishes at ωr = (ω2
p − ω2

0/4)
1/2. k+i has a pole at ωr = 0.6ω0 and

vanishes beyond, while k−i vanishes beyond ωr = (2ω2
0 + ω2

p)
1/2.

roots of k for real ω, however, from equation (3.130), so there is generally
a convective instability as illustrated in figure 3.11. The two complex roots
behave differently, since for k+i in figure 3.11(a), there is a pole when ωr = ωp

(P = 0). The other root has no pole, but the imaginary part extends over the range
0 ≤ ωr ≤ (2ω2

0 + ω2
p)

1/2. Although only positive imaginary parts are illustrated,
the negative roots are also present and equivalent in magnitude.

Another special case where we can get analytic results is the case where
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ωp = 0 so equation (3.130) simplifies to

1 = ω2
p1

(ω − kv1)2
+ ω2

p2

(ω + kv2)2
(3.132)

with the densities and velocities not equal but related by

ω2
p1

v21

= ω2
p2

v22

≡ ω2
0

v20

. (3.133)

Then we define a mean velocity given by

1

v0
≡ 1

2

(
1

v1
− 1

v2

)
(3.134)

and introduce the normalized variables x and y such that

x = ω

ω0

(
v2 + v1

v2 − v1

)
k = ω

v0
+ y

ω0

v0
(3.135)

so that equation (3.132) reduces to

1 = 1

(x − y)2
+ 1

(x + y)2
. (3.136)

This equation is fourth order, but quadratic in either x2 or y2, so that

y2 = x2 + 1±
√
1+ 4x2. (3.137)

There is a double root at x = ±i/2, and from the discussion of the previous case,
this corresponds to an absolute instability. For 0 ≤ x2 ≤ 2, the lower branch has
complex y for real x , so we have amplifying waves in this region. For the upper
branch and for x2 > 2, the system is stable.

The interpretation of this result may be made more evident by plotting the
right-hand side of equation (3.132) versus k. In figure 3.12, the roots occur where
the curves cross the line at unity and the curves are drawn for v2 = 2v1 so that
ω = ω0x/3 and kv0/ω0 = x/3+ y. For a low frequency case with x = 1, shown
in figure 3.12(a), there are two real roots and two complex roots, one of which
corresponds to an amplifying wave and one to a decaying wave. In figure 3.12(b),
we have reached the critical frequency, x = √2, where the two inner roots have
coalesced to form a double root, but no instability since this occurs for real ω and
k, and the merging roots do not come from opposite sides of the real k-axis. For
the high frequency case in figure 3.12(c), x = 2 and all four roots are real, the
two outer roots corresponding to the upper branch of equation (3.137) and the
two inner roots corresponding to the lower branch. This figure does not show the
absolute instability at x = i/2 or ωi = ω0/6, since it is plotted for real ω. In
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Figure 3.12. Plots of the right-hand side of equation (3.136) with v2 = 2v1 for (a) x = 1
(two real roots and two complex roots, one amplifying), (b) x = √

2 (three stable roots),
and (c) x = 2 (four stable roots).

figure 3.12(b), the double root corresponds to ∂ωr/∂kr = 0 and is at the bottom
of a sloping valley in complex ω–k space, but the saddle point does not lie in the
real ω–k plane.

The maximum growth rate for the amplifying wave occurs when y2 is most
negative, or when x = √3/2 and y = −i/2, so for the growing wave

ki,max = −ω0/2v0. (3.138)

Problem 3.5.2. Two-stream absolute instability.

(i) For ωp = 0, sketch the locus of k2 as a function of ωi with ωr = 0,
showing the end points where ωi = 0.
(ii) For the same case, sketch the loci in the complex k-plane, and hence prove
that this is an absolute instability.
(iii) For ωp = ω0/4, draw similar sketches as a function of ωi , and note any
significant differences.

Problem 3.5.3. Two-stream amplifying wave growth rate. For ωp = ω0, find the
maximum growth rate in terms of ω0 and v0.

Problem 3.5.4. Unequal beams with ωp = 0. When equation (3.133) is satisfied,
show that the transformations of equation (3.134) and equation (3.135) lead to
equations (3.136) and (3.137).

Problem 3.5.5. Unequal beams with ωp �= 0. The condition ωp = 0 is
not necessary for the transformations of equations (3.134) and (3.135) when
equation (3.133) is true.

(i) If we define α = (ωp/ω0)(v2 + v1)/(v2 − v1), show that the dispersion
relation is quadratic in y2 with solution

y2 = x2
[
1+

(
1±

√
1+ 4x2 − 4α2

)
/(x2 − α2)

]
.
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(ii) Find the condition for an absolute instability.
(iii) Plot the maximum growth rate as a function of α, and find the maximum
value of α for which growth occurs (numerical problem).

3.6 Power and energy flow in fluid plasmas

When we have a warm plasma, the power and energy conservation theorems have
temperature-dependent terms, so we must examine these expressions anew. We
begin with the basic linearized fluid equations from section 3.2 and the Maxwell
equations. If we now multiply equation (3.36) by p1/ρ0 and sum over species,
take the scalar product of equation (3.37) with v1 and sum over species, the scalar
product of equation (1.4) with H , the scalar product of equation (1.5) with −E
and then add all four, we obtain the result

∇ ·

E × H +

∑
j

KTjn1 jv1 j




= − ∂

∂ t


∑

j

n0 j
m jv

2
1 j

2
+
∑
j

KTj

n0 j

n21 j
2
+ µ0H 2

2
+ ε0E2

2


 .

(3.139)

In this expression, we can interpret the terms on the left as energy flux and
the terms on the right as stored energy. In each case, some of the energy and
flux is in the fields and some in the particles. In this case the kinetic flux (or the
acoustic power flow) is given by

T =
∑
j

KTjn1 jv1 j (3.140)

and represents the energy flux carried by the particles, and the Poynting flux
represents the energy flux carried by the electromagnetic field. In longitudinal
or electrostatic waves, the Poynting flux vanishes, so the energy is carried by the
particle flux alone.

In equation (3.139) we have used the exact fields and fluid elements, whereas
in waves, we generally use Fourier amplitudes to represent these quantities. In
terms of the Fourier amplitudes (in time only, ∂/∂ t → −iω), where each of the
first order quantities is, in general, complex, the equations become

n0∇ · v1 = iωn1 (3.141)

KT∇n1 = iωmn0v1 + qn0E + qn0v1 × B0 (3.142)

∇ × E = iωµ0H (3.143)

∇ × H = j − iωε0E. (3.144)
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We wish now to examine the time-averaged power and energy flow, so we
consider ω to be real. Then by taking the sum of the scalar product of
equation (3.141) with v∗1 summed over species, the product of KTn1/n0
multiplied by the complex conjugate of equation (3.142) summed over species,
the scalar product of H∗ with equation (3.143), less the scalar product of E with
the complex conjugate of equation (3.144), the result is

∇ ·

E × H∗ +

∑
j

p1 jv
∗
1 j




= iω


∑

j

n0 jm j |v1 j |2 −
∑
j

|p1 j |2
p0 j

+ µ0|H |2 − ε0|E |2



+
∑
j

q j n0 j (v
∗
1x jv1y j − v∗1y jv1x j )B0. (3.145)

If we add equation (3.145) to its complex conjugate, the result may be
expressed by

∇ · (P + T) = 0 (3.146)

where

P = 1
4 (E × H∗ + E∗ × H) (3.147)

T =
∑
j

1

4
(p1 jv

∗
j + p∗1 jv j ) (3.148)

and hence we have from Gauss’ law that P = −T when averaged over time if
there are no losses (ω real).

When ω is complex, or full thermal corrections are included, the simple
phasor analysis given here must be modified, and we treat these cases in
section 4.6. These results, however, already demonstrate that both particles and
fields contribute to the energy flux and the stored energy.
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Chapter 4

Kinetic theory of plasma waves

4.1 The basic equations

Unfortunately, the detailed derivation of the basic equations of the kinetic theory
of plasma waves is so complicated that it is beyond the scope of this book. For
a more detailed account, one should consult a specialized text such as that by
Montgomery and Tidman [24] or a more general plasma physics textbook. What
follows is rather a description of the basic equations rather than a derivation. The
point of the description is to indicate the content of the physics and mathematical
methods so that the limits of the validity of the zero order theory may be grasped
along with the directions one would go to include higher order terms and what
physics is contained in those terms.

4.1.1 The Boltzmann equation

When including thermal effects and other motions of the particles in a plasma, it
would seem that the usual Boltzmann equation,

d f j (r, t)

dt
= ∂ f j

∂ t
+ v · ∇ f j = d f j

dt

∣∣∣∣
c

(4.1)

where f j (r, t) is the distribution function, would be a suitable starting point.
This equation is just the conservation of particles or probability density, where
the left-hand side gives the rate of change following the trajectory of a particle
in space and the right-hand side represents the rate at which trajectories are
terminated through collisions with corresponding new trajectories started so that
particles are conserved. These collisions are generally understood to be binary
collisions where particles make discontinuous jumps in velocity due to short-
range molecular forces. While in one sense this is not incorrect for plasmas, it
is not fruitful to use the Boltzmann equation in this form, since for long range
forces such as gravity and electromagnetism, the leading term on the right due to
long range forces needs to be separated out and treated differently. This was first
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shown for a collection of massive objects (stars in a galaxy), where the cumulative
effect of weak gravitational forces from a large number of distant masses is
generally more important than the infrequent close encounter with an individual
mass, providing the masses are dense enough. This same treatment extended to
plasmas [25] also shows that the cumulative effect of weak electromagnetic forces
due to many particles, represented by both the external electric andmagnetic fields
and the self-consistent internal electric and magnetic fields is more important than
the occasional close collision resulting in a large deflection, providing there are
many particles in a Debye sphere. In fact, for plasmas, the discussion of collisions
leads to the conclusion that a 90◦ deflection is rarely due to a single encounter,
but rather an accumulation of many small deflections, and a collision time must
be interpreted not as the actual mean time between collisions, as in a gas, but as
the mean time required to accumulate a specified deflection, usually defined to be
90◦ [26]. In view of these considerations, we rewrite the Boltzmann equation as

d f j (r, v, t)
dt

= ∂ f j
∂ t
+ v · ∇ f j + q j

m j
(E + v × B) · ∇v f j = d f j

dt

∣∣∣∣
c

(4.2)

where now the term on the right is a nontrivial collision operator due to
correlations between nearby particles and the conservation law follows particles
in six-dimensional phase space. To this must be added the Maxwell equations, of
course, since the particles are sources for the internal fields.

4.1.2 Collisions and the Fokker–Planck equation

Whenever a plasma deviates from equilibrium, there are generally relaxation
processes which govern the return to equilibrium. The most common of these
processes is binary collisions, and the relaxation rate of a test particle distribution
toward the background distribution due to collisions with the various component
species of a plasma is given by Krall and Trivelpiece [27] as

∂ fT
∂ t

∣∣∣∣
c
=
∑
j

n jγ j

[
−∇v · ( fT∇vh j )+ 1

2
∇v · ∂

∂vi

(
fT

∂

∂vi
∇vg j

)]
(4.3)

where the repeated subscript i is summed over vx , vy , and vz , and

h j = mT

µ j

∫
f j (v′)
|v − v′| d

3v′ g j =
∫

f j (v
′)|v − v′| d3v′

γ j =
q2T q

2
j ln!

4πε20m
2
T

µ j = mTm j

mT + m j

and T refers to the test particles and ! = 9ND where ND is the number of
particles in a Debye sphere. The first term primarily leads to a drag on a moving
particle, tending to slow it down to the backgroundmean velocity, and the second
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describes velocity space diffusion, which spreads the velocities throughout the
distribution. This form of the Fokker–Planck equation can be used to estimate
thermalization times, slowing down times of streaming particles, spreading of a
beam of particles, plasma conductivity, and diffusion rates. A more sophisticated
form of this equation, such as the Lenard–Balescu [28] equation, also includes
the dielectric properties of the plasma and shielding. The effects of collisions
and velocity space diffusion on plasma transport is reviewed by Hinton [29], but
these effects are beyond the scope of this book. Other versions of this basic
equation describe the evolution of a distribution function in the presence of a
driving radiofrequency field, whereby both resonant and nonresonant absorption
of wave energy will cause the distribution to evolve away from an equilibrium
distribution through quasilinear diffusion, discussed in chapter 7, unless the drag
forces are much stronger than the driving forces. It also describes the eventual
relaxation of an unstable distribution, initially through quasilinear diffusion, and
eventually through collisions, as in the bump-on-the-tail instability described in
section 7.2.5.

We summarize here several important effects of the collisions that we will
note again from time to time as the subject arises.

4.1.2.1 Relaxation

Clearly, collisions tend to relax a perturbed distribution function back toward
equilibrium (the existence of an equilibrium is assumed here, although a true
equilibrium is rare in a plasma) at some finite rate. In an anisotropic plasma,
the relaxation rates parallel and perpendicular to an external magnetic field may
differ.

4.1.2.2 Thermalization

This same process leads to thermalization of wave energy, or at least a tendency to
thermalize, since a steady-state finite amplitude wave may maintain a nonthermal
distribution indefinitely. Collisions add a dissipative term to the conductivity
tensor so that in general 〈 j · E〉, averaged over a cycle, no longer vanishes as it
did in the cold collisionless plasma of chapter 3, with the dissipated wave energy
going into thermal energy.

4.1.2.3 Validity of linear theory

The interactions between the particles and fields in a plasma are generally
nonlinear, but linear descriptions have a bounded region of validity, usually
governed by collision processes. In this chapter, we will describe collisionless
damping processes, both Landau damping and cyclotron damping, the finite
Larmor orbit (FLR) analog of Landau damping, and these will be analyzed
with linear theory. Were it not for collisions, however, any finite amplitude
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would produce deviations from the linear damping, since particles get trapped in
traveling potential wells and eventually cease to exchange energy with the wave
on the average, and the wave damping ceases. If collisions remove particles from
these shallow potential wells before they ‘thermalize’ in the wells, then the linear
analysis gives an accurate representation of the waves. This topic will be analyzed
in more detail in chapters 7 and 8 where we treat nonlinear processes, but except
for these comments, collisions will be included explicitly for only one case in this
chapter, but it is understood that they implicitly underlie the linear theory.

4.1.3 BBGKY theory

The most suitable way of treating the effects of correlations is to begin with
an exact description and then proceed in a series of well defined steps to an
approximate representation of the general form of equation (4.2). The details
of this process are long and involved and beyond the scope of this book [30], but
an outline of the process with an indication of the type of approximations and
results is presented in order to give a clearer idea of the context in which the
kinetic theory of plasma waves is developed.

4.1.3.1 Exact microscopic theory for a many-body system

A complete and exact description of a plasma must describe the coordinate and
velocity of each particle of each species, where the total number of particles may
exceed 1020 particles. Describing each of these particles individually is called a
microscopic theory, and the function,

n j (r, v, t) =
Nj∑
i=1

δ[r − ri (t)]δ[v − vi (t)] (4.4)

is the microscopic distribution function for species j which has the property that

lim
�r�v→0

∫
n j (r, v, t) dr dv

is either equal to unity if a particle is located at the point r , v, at time t , or zero
otherwise. These particles are sources for the microscopic electric and magnetic
fields, given by the Maxwell equations,

∇ · ε0Eµ =
∑
j

q j

∫
n j (R, t) dv (4.5)

∇ · Bµ = 0 (4.6)

∇ × Eµ = − ∂Bµ

∂ t
(4.7)

∇ × Bµ = µ0

∑
j

q j

∫
vn j (R, t) dv + 1

c2
∂Eµ

∂ t
(4.8)
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where R is the abbreviation for the six-dimensional variable R = (r, v). The
subscript µ reminds us that these are the microscopic fields.

To these equations describing the microscopic fields we add the equation of
motion for the individual particles

dri
dt
= vi

dvi
dt
= qi

mi
(E′µ + vi × B′µ) (4.9)

where the prime denotes that the fields experienced by particle i are due to all the
other particles so the sum in equation (4.4) is over all except particle i . Using
these equations of motion, we can then obtain the time evolution equation for the
microscopic distribution function as

∂n j (R, t)

∂ t
+ v · ∇n j (R, t)+ q j

m j
(E′µ + v × B′µ) · ∇vn j (R, t) = 0. (4.10)

This expression is a statement of the conservation of particles in phase space,
since it implies dn j (R, t)/dt = 0.

While these equations provide an exact description of the particle motions,
they are impractical and serve only as a suitable starting point for the averaging
process which leads us to the macroscopic distributions and fields.

Problem 4.1.1. The microscopic distribution function. Prove that the microscopic
distribution function evolves according to equation (4.10) using only the
equations of motion of equation (4.9) and the definitions.

4.1.3.2 Statistical theory for many-body systems—reduced distributions

Switching to the statistical approach, the system is described by a continuous
distribution function which enables one to calculate the probability that a particle
is to be found inside a specified volume of phase space, or within a specified
volume in configuration space traveling at a velocity within a specified volume
of velocity space, all at time t . This distribution function satisfies the Liouville
equation for the probability density function in 6N dimensional phase space,

dFN

dt
= ∂FN

∂ t
+
∑
i

vi
∂FN

∂xi
+
∑
i

ai
∂FN

∂vi
= 0

which is a statement of the conservation of probability. Since FN is a probability
density, it can be normalized to unity as∫

FN dr j1 dr j2 . . . dr j N j drk1 drk2 . . . drkNk =
∫

FN drN = 1 (4.11)

where all species j, k, . . . are included and drN represents the entire volume
for all particles. This distribution contains essentially the same information and
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complexity as the microscopic distribution function, except that it is generally
regarded as a continuous function of the variables whereas the microscopic
distribution is composed of delta functions.

Reduced functions, as the name implies, have less information and are
correspondingly easier to manipulate. The general construction of reduced
functions is implemented by integrating over the coordinates of all but one, two, or
n particles to produce one-body, two-body, or n-body functions of the coordinates.

Clearly, a one-body distribution function, depending on only six coordinates
plus time, is the simplest nontrivial description of the particles, giving the
probability of finding a particle of species � in a phase space volume of dr� as
(1/V

∫
f�(r, v, t)dr where f� is obtained from

f�(r�1, v�1, t) = V
∫

FN dr�2 dr�3 . . . dr�N�
∏
j �=�

dr j1 . . . dr j N j . (4.12)

It is also clear that this has a reduced amount of information because it gives the
same probability of finding a particle of species � at a particular point in phase
space regardless of the distance and sign of the nearest neighbor. In other words,
correlations between particles are completely ignored in the one-body functions.
In order to include such correlations, we need at least a two-body function. A two-
body function, where the two particles are of different species, would be defined
by

f�m(r�1, rm1, t) = V 2
∫

FN dr�2 dr�3 . . . dr�N� drm2 drm3

. . . drmNm

∏
j �=�,m

dr j1 . . . dr j N j . (4.13)

With this two-body distribution function, we have the joint or conditional
probability of finding one particle of species � in one volume given that there
is another particle of species m in another specific volume. It still ignores the
specific locations of all the other particles, but does give a conditional probability
and hence includes some correlations. If the correlations were ignored, then we
would have f�,m = f� fm . If higher order correlations were to be included, these
could be treated with three-body or n-body distributions, which have increasingly
more information, but become increasingly more complex.

The connection between the microscopic and the n-body distributions comes
from recognizing that the trajectories for the microscopic distribution depend
on initial conditions, and by taking an ensemble average, or by averaging
over possible initial conditions, the bumpiness of the microscopic distribution
function is smoothed out and we obtain the FN probability distribution function.
Integrating this over all but one, two, or n particles then leads to the reduced one-
body, two-body, or n-body distributions above. This is still a formidable task,
and were it not for the fact that there is a convenient smallness parameter due to
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Debye shielding of individual particles, namely the reciprocal of the number of
particles in a Debye sphere,

g ≡ 1

ND
= 3

4πnλ3D
(4.14)

there would be little hope of finding any tractable results. Indeed, when the
opposite is true, namely when there are few particles in a Debye sphere, this
is called a strongly coupled plasma, and relatively few properties of this type of
plasma are known, especially the wave properties.

The method of solving for the distribution function when g � 1 invariably
involves f�m in solving for f�, and involves f�mn in solving for f�m , etc. The
coupling may be written in terms of a correlation function which becomes more
complicated at each step and involves the next higher-order reduced distribution
function. This chain of equations is called the BBGKY hierarchy [30] of
equations, and the smallness of g provides the basis for truncating this hierarchy
since if the two-body correlation function is represented by the function g�m and
the three-body correlation function by g�mn , then the ordering in g is such that

f� = O(1)
g�m = O(g) (4.15)

g�mn = O(g2)
so that higher order correlations become smaller and smaller as g becomes small.
If we neglect all correlations, we arrive at what is often called the collisionless
Boltzmann equation, which is identical to equation (4.2) without the right-hand
side. We recognize from this discussion that it should rather be called the
correlationless Boltzmann equation, since it is correlations that are neglected,
the collisionless nomenclature being more historical than functional.

One way to picture the difference between a collision and a deflection or
correlation is to imagine a trajectory in phase space of a neutral particle when it
encounters another neutral particle or a charged particle. Since it is not a Coulomb
collision, we take the trajectory to be discontinuous so that it ends abruptly at one
point in phase space (it is annihilated) and instantaneously appears at another
point in phase space (it is created). Although it is continuous in ordinary space, it
is discontinuous in velocity space and hence in phase space. A Coulomb collision,
however, is always continuous, as a charged particle makes a multitude of distant
encounters and a few close encounters as it is deflected. The trajectory may then
have numerous small bends and a few relatively sharp bends, but it is continuous.
The encounters between charged particles are accounted for by the correlations
between the particle locations and no collisions (discontinuous trajectories) occur.

4.1.4 The Vlasov equations

The first and simplest approximation is to keep only the zero order terms in g
by neglecting any effects due to correlations. This zero order equation, along
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with the Maxwell equations, are called the Vlasov equations, although frequently
this collisionless Boltzmann equation alone is referred to as the Vlasov equation.
In the singular, we prefer to reference this fundamental equation either as the
collisionless Boltzmann equation or as the kinetic equation, and refer to the
system of equations as the Vlasov equations.

The Vlasov equations, then, are comprised of the set,

∂ f j
∂ t
+ v · ∇ f j + q j

m j
(E + v × B) · ∇v f j = 0 (4.16)

for each species along with the Maxwell equations, with

ρ =
∑
j

q j

∫
d3v f j

j =
∑
j

q j

∫
d3v v f j

(4.17)

as the sources. This set of equations is nonlinear and its solutions in the
linear, quasilinear, and nonlinear approximation will comprise the majority of the
remainder of this book. We note that the microscopic equations, equation (4.8)
and equation (4.10), are linear but intractable because of the number of particles
that must be considered separately. The averaging process has introduced the
nonlinearity, but with suitable approximations, the reduced equations may be
solved.

4.2 Waves in a thermal, unmagnetized plasma

Using the Vlasov–Maxwell equations, both the limitations of cold plasma (no
finite temperature effects) and fluid plasma (phase velocity� thermal velocity)
may finally be removed. In the unmagnetized plasma, the preferred direction
is the k direction, and motions of particles parallel and perpendicular to that
direction will have different effects. We will examine first the general propagation
problem in the unmagnetized plasma, but will focus particular attention on the
classic problem that serves to illustrate the most important effects of thermal
plasmas on waves. This classic case is the Kzz = P = 0 solution of cold
plasma, or the Bohm–Gross solution of section 3.1.2 in the fluid plasma, namely
an electrostatic wave near the plasma frequency.

In order to pave the way for more complicated cases later, we are first going
to try a simple way to find the solution which will lead us to a dilemma because
the method is not well posed. We will then back up and start again with a more
carefully posed problem that will provide a recipe to be used with the simpler
method so that it may be used subsequently.
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4.2.1 Vlasov method

We first linearize the Vlasov equations by separating out zero and first order terms
that are assumed to vary as

f j = f0 j (v) + f1 j (v)ei(k·r−ωt)

E = + E1ei(k·r−ωt)

B = + B1ei(k·r−ωt)
(4.18)

and v is now an independent variable so is not linearized. We choose the
normalization of the velocity distribution function so that

∫
d3v f j = n j . Using

these results in equations (4.16) and (4.17) along with the Maxwell equations,
and assuming only a single species of singly charged ions plus electrons so that
charge neutrality requires ni = ne = n0, the equations to be solved are

−i(ω − k · v) f1 j + q j

m j
(E1 + v × B1) · ∇v f0 j = 0 j = e, i (4.19)

ρ = e
∫

d3v ( f1i − f1e)

j = e
∫

d3v v( f1i − f1e) (4.20)

ik × E1 = iωB1

ik × B1 = µ0 j − iω

c2
E1. (4.21)

Solving equation (4.19) for f1 j (v), the current is given by

j = e2
∫

d3v v
(E1 + v × B1) · (∇v f0i/mi +∇v f0e/me)

i(ω − k · v) . (4.22)

Assuming that the zero-order velocity distribution functions are isotropic
(depending only on (v2x + v2y + v2z )), then ∇v f0 is in the direction of v so that
(v × B1) · ∇v f0 = 0 and the current simplifies to

j = (σi + σe) · E1 (4.23)

where σi and σe are diagonal for k = kêz and

σ j x x = σ j yy = σ j t = e2

im j

∫
d3v

vx
∂ f0 j
∂vx

ω − kvz
(4.24)

σ j zz = σ j� = e2

im j

∫
d3v

vz
∂ f0 j
∂vz

ω − kvz
. (4.25)

Choosing f0 j (v) to be Maxwellian, we find for σet after integrating over vx and
vy ,

σet = −n0e2

ime

( me

2πKT

)1
2
∫ ∞

−∞
e−mev

2
z /KT

ω − kvz
dvz . (4.26)
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Figure 4.1. Real (full curve) and imaginary (dashed curve) parts of the plasma dispersion
function for real ζ .

Now the difficulties begin. It is clear that the integral over vz has a pole
along the path of integration, at vz = ω/k, and is hence undefined unless we
specify that the path should always go above or below the pole. At this point in
the problem, Vlasov chose to take the principal part of the integral, or the average
of the two paths above and below the pole [25]. This provides symmetry in time,
but ignores some of the physics. We shall examine one of the two paths, and try
to determine the implications of making one choice or the other after we see the
effects of our choice. Let us assume that Im(ω) > 0, so that ω has a small positive
imaginary part which puts the pole just above the path of integration. This choice
corresponds to ‘turning on’ the perturbation slowly from t → −∞, and happens
to coincide with the definition of the plasma dispersion function (PDF) which is
a tabulated function [31] defined by

Z(ζ ) ≡ 1√
π

∫ ∞

−∞
e−ξ2

ξ − ζ
dξ Im(ζ ) > 0 (4.27)

and whose properties are listed in appendix B. It is a complex analytic function
even for real argument and its behavior for real argument is shown in figure 4.1.
If we define v2j ≡ 2KT/m j , then we find

σ j t = n0e2

im jkv j
Z

(
ω

kv j

)
. (4.28)

For σ j�, integrating by parts in the integral over vz and comparing with the
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derivative of the PDF (under the integral sign), leads to

σ j� = − n0e2ω

im jk2v2j
Z ′
(

ω

kv j

)
. (4.29)

From the conductivity tensor, we construct the dielectric tensor,

K = I− σ

iωε0

such that

Kt = 1+ ω2
pi

ωkvi
Z

(
ω

kvi

)
+ ω2

pe

ωkve
Z

(
ω

kve

)
(4.30)

K� = 1− ω2
pi

k2v2i
Z ′
(
ω

kvi

)
− ω2

pe

k2v2e
Z ′
(

ω

kve

)
. (4.31)

Problem 4.2.1. Properties of the plasma dispersion function (PDF).

(i) Prove from the definition of equation (4.27) that the PDF satisfies the
differential equation

Z ′(ζ ) = −2[1+ ζ Z(ζ )]. (4.32)

(ii) Expand the denominator of equation (4.27) to obtain the asymptotic
expansion of the PDF (ζ → ∞). Compare with the result in appendix B
and discuss why this simple expansion fails to get the imaginary part right.
(iii) Derive the power series expansion for the PDF from its definition and
its differential equation, and show that the series may be grouped into two
series, one of which may be summed to get an analytic expression.
(iv) If you were to make a numerical subroutine to evaluate the PDF for real
argument, using only the power series and the asymptotic series:

(a) show how to pick the crossover between the power series and asymptotic
series for optimum accuracy; and

(b) find the optimum crossover point for an eight-digit computer and for a
14-digit computer, and estimate the relative accuracy obtainable on the
two machines.

Problem 4.2.2. Cold plasma limit. Show that in the cold plasma limit (ve, vi →
0), both Kt and K� approach the same limit and that it is the cold plasma dielectric
constant.

4.2.1.1 Electrostatic wave

The dispersion relation for longitudinal electrostatic oscillations is simply P =
Kzz = K� = 0. The cold plasma limit is for vi → ve → 0, in which case the
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arguments of the Z -functions tend toward infinity. The asymptotic forms of the
PDF, listed in appendix B, vary for real argument as

Z(ζ ) = i
√
πe−ζ 2 − 1

ζ

(
1+ 1

2ζ 2
+ 3

4ζ 4
+ · · ·

)

Z ′(ζ ) = −2i√πζ e−ζ 2 + 1

ζ 2

(
1+ 3

2ζ 2
+ 15

4ζ 4
+ · · ·

)
.

(4.33)

Using the expansion for Z ′ for the electron term (the ion terms are of orderme/mi

unless Te � Ti , a case we will treat in section 4.2.5), the dispersion relation
becomes

K� � 1− ω2
pe

ω2

[
1+ 3

2

(
ve

vp

)2]
+ 2i

√
π
ω2
pe

k2v2e

vp

ve
exp

[
−
(
vp

ve

)2]
= 0 (4.34)

or since ve/vp � 1,

ω � ωpe

{
1+ 3

4

(
ve

vp

)2
− i
√
π

(
vp

ve

)3
exp

[
−
(
vp

ve

)2]}
(4.35)

where we see that ω ∼ ωpe and Im(ω) < 0! Unfortunately, our assumption about
the imaginary part of ω being positive has led to the conclusion that the imaginary
part is negative. It is not difficult to show that if we had chosen the imaginary
part to be negative, then the analysis would have led to a positive imaginary part!
There is no consistent solution, because the problem is ill-posed. While this seems
to justify the approach of Vlasov in keeping only the principal part, so that there
would be no imaginary part to ω, the question of whether there is or is not any
damping of the wave was left unresolved. It did not stay unresolved for long,
however, since the solution was provided within a year by Landau, although the
result was disputed for over 20 years until unequivocally verified by experiment.

Although the relatively simple expressions for the real and imaginary parts
of ω given by equation (4.35) are indicative of the behavior of the dispersion
relation for the electrostatic plasma wave, they are not highly accurate, and
even give the solution on the left in terms of vp = ω/k, so they are not
complete. A procedure for making the solution more direct is to make successive
approximations. Writing ω/ωpe ≡ w and kλDe ≡ κ (where λ2De = v2e/2ω

2
pe),

we may write v2e/2v
2
p = κ2/w2 so that for the real part of w, we have

w2
n =

n∑
�=0

(2�+ 1)!!
(

κ

wn−1

)2�
(4.36)

where each denominator is expanded and each successive approximant is
truncated to order 2n. The first few are w0 = 1, w2

1 = 1 + 3κ2 (the BGDR),
etc, leading to the explicit dispersion relation for the real part of ω:

ωr = ωpe[1+ 3κ2 + 6κ4 + 24κ6 + 180κ8 +O(κ10)]1/2. (4.37)
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Figure 4.2. Real (a) and imaginary (b) parts of ω in the dispersion relation for the
electrostatic plasma wave. In each case, the exact curve is the full curve, the dotted curve
is the simplest approximation from equation (4.35), and the dashed curves are higher order
approximations (see text).

Even this procedure is flawed, however, since the imaginary part of ω has been
ignored. Even using the expression in equation (4.37) through eighth order, the
error reaches 1% at κ = 0.333 and then rises rapidly. A comparison is shown
in figure 4.2(a) between the exact expression for ωr/ωpe (full curve) and w1 (the
Bohm–Gross dispersion relation) (dotted curve) and w4 from equation (4.37). An
empirical formula for the real part of ω,

ωr = ωpe

[
1+ 1.37κ2 + 10.4κ4

1+ 11.1κ3

]
(4.38)

is accurate to 0.2% for κ ≤ 0.6. This solution is not shown in figure 4.2(a)
because it is within a linewidth of the accurate solution over the entire range.

More accurate expressions for the imaginary part of ω are more difficult
to obtain. A much improved expression for ωi is given by Stubbe and
Sukhorukov [32]:

ωi = −
√
π

8

ωpe

κ3(1+ 3κ2)
exp

[
−1+ 3κ2

2κ2

]
. (4.39)

Figure 4.2(b) shows the exact behavior for ωi (full curve), the simple expression
from equation (4.35) with vp/ve → 1/

√
2κ (dotted curve) and the more accurate

expression from equation (4.39) (dashed curve).

4.2.2 Landau solution

In 1946, Landau [33] recognized that the difficulty could be resolved by treating
the problem as an initial value problem rather than using the Fourier transform
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of Vlasov. Because of the importance of this and other related problems, we
follow the Landau development closely, but restrict our attention to longitudinal
plasma oscillations only and consider only the initial value problem in time rather
than include the time harmonic antenna problem (which is treated, however, in
Landau’s original paper). We will also neglect ion motions, since they play little
role (unless Te � Ti as noted earlier), and since the ion terms are so similar in
form to the electron terms.

For the electrostatic case, k ‖ E, so k × E = 0 and E = −∇ϕ. The
equations to be solved are then

∂ f1
∂ t
+ v · ∇ f1 − e

me
E · ∇v f0 = 0 (4.40)

∇ · E = −∇2ϕ = − e

ε0

∫
d3v f1 = − ρ

ε0
. (4.41)

Taking the Fourier transform in space,

f1(r, v, t) = f̃ (v, t)eik·r

ϕ(r, t) = ϕ̃(t)eik·r

the equations become, with k = kêz ,

∂ f̃

∂ t
+ ikvz f̃ + e

me
ikϕ̃

∂ f0
∂vz

= 0 (4.42)

k2ϕ̃ = − e

ε0

∫
d3v f̃ (4.43)

where f0(v) is given and f̃ (v, 0) ≡ g(v) is the given initial perturbation.
For the initial value problem in time, it is convenient to use the Laplace

transform of the time variable,

X p(v, p) =
∫ ∞

0
e−pt X (v, t) dt (4.44)

and its inverse

X (v, t) =
∫ σ+i∞

σ−i∞
ept X p(v, p)

dp

2π i
(4.45)

where σ (σ > 0) is to the right of all singularities of X p . The Laplace transform
of the time derivative is(

dX

dt

)
p
= pX p +

[
Xe−pt ]t→∞

t=0 .

The condition on σ comes from the assumption that | f̃ (v, t)| < |Meγ t |, i.e. that
the growth of f̃ is bounded, and that Re(p) > |γ |. The Laplace transforms of
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equations (4.42) and (4.43) are:

(p + ikvz) f̃ p + e

me
ikϕ̃p

∂ f0
∂vz

= f̃ (v, 0) ≡ g(v) (4.46)

k2ϕ̃p = − e

ε0

∫
d3v f̃ p (4.47)

from which we deduce that

f̃ p(v, k, p) =
g(v)− e

me
ikϕ̃p

∂ f0
∂vz

(p + ikvz)
(4.48)

ϕ̃p = − e

ε0k2

∫
d3v

g(v)− e
me

ikϕ̃p
∂ f0
∂vz

(p + ikvz)

=
− e

ε0

∫
d3v g(v)

(p+ikvz)

k2
[
1+ e2

meε0ik

∫
d3v

∂ f0
∂vz

(p+ikvz)
] . (4.49)

We integrate first over vx and vy , using the notation,

g(u) =
∫ ∞

−∞

∫ ∞

−∞
g(v) dvx dvy

d f0(u)

du
=

∫ ∞

−∞

∫ ∞

−∞
∂ f0(v)

∂vz
dvx dvy

and we let vz → u. The remaining pair of equations is now one-dimensional,

f̃ p(u, k, p) =
g(u)− e

me
ikϕ̃p

d f0(u)
du

(p + iku)
(4.50)

ϕ̃p(k, p) =
− e

ε0

∫∞
−∞

g(u) du
(p+iku)

k2
[
1+ e2

meε0ik

∫∞
−∞

d f0(u)
du du

(p+iku)
] . (4.51)

The inverse transformation is

ϕ(z, t) =
∫ σ+i∞

σ−i∞
dp

2π i

∫ ∞

−∞
dk

2π
eikz+pt ϕ̃p(k, p). (4.52)

The normal path of integration as defined in the complex p-plane is to the
right of all singularities as shown by the dashed line in figure 4.3. If, however,
we deform the contour far enough to the left, the large negative real part of
p eliminates the contribution from the vertical portion of the contour. Landau
proposed moving the path to the left, but keeping to the right of all singularities
and around all branch cuts as shown by the full path in figure 4.3. Since
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Figure 4.3. The Landau contour is moved to the left but remains to the right of all
singularities and branch points.

the vertical portion of the contour no longer contributes, only the singularities
(residues) and branch cuts need be evaluated. Consider the contribution from
singularities, assuming there are no branch cuts. Then,

ϕ̃(k, t) =
∫
deformed
contour

dp

2π i
ept ϕ̃p(k, p)

=
∑
n

epnt [(p − pn)ϕ̃p(k, p)]p=pn . (4.53)

Due to the epnt factor, after a short time only the rightmost pole in the p-plane
will contribute to ϕ̃(k, t), so the sum collapses to a single term.

In order to evaluate this remaining expression, we need to know ϕ̃p in a
region where it was not defined, since it was defined for Re(p) > |γ |, and we
need to know ϕ̃p for Re(p) < |γ |. It is this point which led to the difficulties in
the Vlasov method. Here, however, we can study the analytic continuation (see
appendix A.2) of ϕ̃p as we deform the contour. Since ϕ̃p is the ratio of two terms,
we must investigate the numerator and denominator separately.

In the numerator of the expression for ϕ̃p in equation (4.51), we may take
g(u) to be an entire function of u (no poles in the complex u-plane), so that the
integral,

G

(
ip

k

)
= − iek

ε0

∫ ∞

−∞
g(u) du

u − ip/k
(4.54)
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Figure 4.4. Paths above and below the singularity. Path (1) is the prescribed path.

can be evaluated by the residue theorem,

G

(
ip

k

)
(1)
= G

(
ip

k

)
(2)
+ 2π i[g(u)]u=ip/k

where the paths (1) and (2) are shown in figure 4.4.
The contour (1) is the prescribed contour, but note that it is equal to the

contour (2) plus a contribution from the pole. As Re(p) goes to negative values,
contour (2) remains analytic, and since g was assumed analytic, G(ip/k)(1) is
also always analytic provided we integrate under the pole (sometimes called the
Nautilus convention) as in figure 4.5. With this convention, the numerator is
always an entire function of p, or analytic everywhere.

Similar arguments apply to the denominator of ϕ̃p since f (u) is also assumed
to be an entire function of u, or analytic. Thus the only poles of ϕ̃p occur at the
zeros of the denominator, and there are no branch cuts.

The value of p that makes the denominator vanish is the value such that

1+ e2

meε0ik

∫ ∞

−∞ (1)

d f0(u)
du

p + iku
du = 0 Re(p) > 0

1+ e2

meε0ik

∫ ∞

−∞ (2)

d f0(u)
du

p + iku
du + e22π i

meε0(ik)2
d f0(u)

du

∣∣∣∣
u=ip/k

= 0 Re(p) < 0

where both integrals are along the real axis.
The principal value of an integral through an isolated singular point is the

average of the two integrals along paths just to either side of the point. We can
use the concept to combine these two equations into one that is valid for all values
of p:

1+ e2

meε0ik
℘

∫ ∞

−∞

d f0(u)
du

p + iku
du − π ie2

meε0k2
d f0(u)

du

∣∣∣∣
u=ip/k

= 0. (4.55)
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Figure 4.5. Analytic continuation by deforming the path to remain below the pole when
Re(p) < 0.

If we now let ip = ω and use equation (4.34) to approximate the principal
part, we may write this as

1− ω2
pe

ω2

[
1+ 3

2

(
ve

vp

)2
+ · · ·

]
− iεi � 0 (4.56)

where

εi =
πω2

pe

k2
d f0(u)

du

∣∣∣∣
u=ω/k

= 0 (4.57)

if we normalize
∫

f0 du = 1 (instead of
∫

f0 du = n0). Then, breaking ω into
real and imaginary parts, equation (4.56) becomes

(ωr + iγ )2 � ω2
pe[1+O(ve/vp)2] + iω2εi

so if γ � ωr , then the imaginary part is given by

γ = 1

2
ωrεi = ωr

πω2
pe

2k2
d f0(u)

du

∣∣∣∣
u=ωr /k

(4.58)

and the sign of the imaginary part depends on the slope of the distribution function
at the phase velocity.

If we take f0 to be Maxwellian, then equation (4.55) becomes

1+ ω2
pe

k2ve
℘

1√
π

∫ ∞

−∞

d
du [exp(−u2/v2e )] du

ω/k − u
+2
√
π i
ω2
peω

k3v3e
e−(ω/kve)2 = 0. (4.59)
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Integrating by parts, this becomes

1− ω2
pe

k2v2e
℘

1√
π

∫ ∞

−∞
exp(−u2/v2e ) du
(u − ω/k)2

+ 2
√
π i
ω2
peω

k3v3e
e−(ω/kve)2 = 0. (4.60)

For this case, the imaginary part of ω is given (to lowest order) by

γ = −√π ω
2
peω

2
r

k3v3e
e−(ωr /kve)2 (4.61)

and the dispersion relation is equivalent to

1− ω2
pe

k2v2e
Z ′
(

ω

kve

)
= 0 (4.62)

which is the same result we got by the Vlasov method.
Throughout this discussion, we have assumed that k > 0. If this is not the

case, then we must change our prescription. If k < 0, then the pole lies below the
path of integration, so we must integrate over the pole (Byrd convention1). Only
the sign of the imaginary part changes, so that sometimes the PDF is written

Z

(
ω

kve

)
= 1√

π
℘

∫ ∞

−∞
e−ξ2 dξ(
ξ − ω

kve

) + (
k

|k|
)
i
√
πe−(ω/kve)2 . (4.63)

It may seem surprising that the same result is obtained by both the Vlasov
and Landau methods, but actually the Landau solution serves to justify the
assumption we made that ω should have a small positive imaginary part in
the Vlasov method. The initial value problem and the assumption that the
perturbation was ‘turned on slowly’ from infinitely long ago both result in the
recipe that the velocity integral should go under the pole. The fact that ω has a
negative imaginary part is now seen as resulting from the initial value problem,
guaranteeing that disturbances decay away if there are no sources of free energy,
and is called Landau damping. Having done this problem both ways, we can now
choose whichever is most convenient in the future as the meaning of the recipe is
now clear. When magnetic field effects are included, it will be much simpler to
use the Vlasov method with Fourier transforms in both time and space than to do
the initial value problem.

Problem 4.2.3. Landau damping with a Lorentzian distribution.

(i) Find the normalization constant A for the Lorentzian velocity distribution
function f0(u) = A/(v2e + u2).

1 Just as the Nautilus submarine first sailed under the North Pole, Admiral Byrd first flew over the
pole!
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(ii) Find closed form expressions for both f̃ p(u, k, p) and ϕ̃p(k, p) with
g(u) = f0(u)�u with � a constant.
(iii) Do the inverse Laplace transform for both f̃ (u, k, t) and ϕ̃(k, t) and
show that the potential ϕ̃ decays in time but that f̃ has a term that does
not decay in time.

4.2.3 A Physical picture of Landau damping

The physical interpretation of Landau damping, where information seems to be
lost without any collisions or other apparent randomizing interactions, requires
careful analysis at more than one level. While the treatment has been strictly
linear, it will become apparent that nonlinear effects must be brought in to fully
understand the nature of Landau damping, but that linear calculations can be used
to calculate the damping rate.

The history of this problem is long and surprising in many ways. Landau’s
1946 calculation was followed by years of active debate about the correctness
of the result. Although generally accepted, there were holdouts challenging the
validity of the result until unequivocal experimental results settled the accuracy
of Landau damping [34]. The acceptance of the mathematical result did not end
discussions about the interpretation of the collisionless damping, however, as
many physically appealing but technically incorrect explanations were given by
many, including this author. The following sections explore a recent analysis by
Stubbe and Sukhorukov [32] who give a critical look at the physics. The analysis
begins with a variation on the usual method of taking moments that includes the
kinetic effects.

4.2.3.1 Kinetic transport equations

The development of fluid-like moment equations that maintain the kinetic
information has been implemented by Stubbe [35]. The development begins in
the usual manner with the collisionless kinetic equation in one dimension,

∂ f

∂ t
+ u

∂ f

∂z
+ q

m
E
∂ f0
∂u

= 0

where the zero-order velocity distribution is

f0(u) = N0√
πvt

e−(u−v0)2/v2t .

Writing this in terms of the random component,w = u − v0, this becomes

(
∂

∂ t
+w

∂

∂z
+ v0

∂

∂z

)
f1 = 2q

mv2t
Ew f0
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where f1 = f − f0. Fourier transforming in space and time, so that ∂/∂ t →−iω,
∂/∂z → ik, f1 → f̃ , and E → Ẽ , we find

f̃ = 2iq f0
mv2t

w Ẽ

ω′ − kw

where ω′ = ω − kv0.
We then take moments such that

ñ =
∫

f̃ dw (4.64)

ṽ = 1

N0

∫
f̃w dw (4.65)

and find

ñ

N0
= − 2iq Ẽ

mv2t k
Z1(ζ

′) (4.66)

ṽ = − 2iq Ẽ

mkvt
Z2(ζ

′) = iq Ẽ

mω′
[1− 2Z3(ζ

′)] (4.67)

where ζ ′ = ω′/kvt and the Zn(ζ ) are generalized dispersion functions, defined
by

Zn(ζ ) = 1√
π
P

∫
C

zne−z2

z − ζ
dz + i

√
π

k

|k|ζ
ne−ζ 2 (4.68)

so that Z0(ζ ) = Z(ζ ). The properties of the Zn are described in appendix B
where it is shown that 2Z3(ζ ) = 2ζ Z2(ζ )+ 1.

It is now desired to extend our idea of moment equations so that they have
the information of fluid equations and reduce to them as ζ → ∞, but retain the
kinetic information as well. To this end, we write the first two moment equations
as

∂N

∂ t
+ N

∂v

∂z
= R1 (4.69)

∂v

∂ t
− q

m
E = R2 (4.70)

where N = N(z, t), v = v(z, t) and E = E(z, t). Equation (4.69) is
the continuity equation, and exact, so that R1 = 0 (as may be shown from
equations (4.66) and (4.67)). In order to determine R2, however, we must first
write v from equation (4.67) as

v(z, t) = 1

(2π)2

∫
dω dk ṽei(kz−ωt) (4.71)

= iq

m(2π)2

∫
dω dk Ẽ[1− 2Z3(ζ

′)]ei(kz−ωt). (4.72)
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Taking z = v0t , the exponent becomes kz − ωt → (kv0 − ω)t = −ω′t , so that
we have

∂v

∂ t
= − i

(2π)2

∫
dω dk ω′ṽe−iω′t (4.73)

= q

m(2π)2

∫
dω dk Ẽ[1− 2Z3(ζ

′)]e−iω′t (4.74)

so that

R2 = ∂v

∂ t
− q

m
E = q

m(2π)2

∫
dω dk e−iω′t [Ẽ(1− 2Z3)− Ẽ] (4.75)

= − q

2mπ2

∫
dω dk e−iω′t Z3(ζ

′)Ẽ. (4.76)

Since all Zn(ζ ) → 0 as ζ → ∞, it is apparent that R2 is a kinetic term that
vanishes asymptotically in the cold plasma limit. We can also use equation (4.66)
to eliminate Ẽ and write R2 as

R2 = − iv2t
(2π)2

∫
dω dke−iω′t kñ

N0

Z3(ζ
′)

Z1(ζ ′)
.

Noting that
1

N0

∂N

∂z
= i

(2π)2

∫
dω dk e−iω′t

kñ

N0

the kinetic transport equations may be written in the form

∂N

∂ t
+ N

∂v

∂z
= 0 (4.77)

∂v

∂ t
− q

m
E = γ v2t

2

1

N0

∂N

∂z
(4.78)

where

γ =
∫
dω dk e−iω′t kñ2Z3(ζ

′)/Z1(ζ
′)∫

dω dk e−iω′t kñ
.

In this form, it is clear that all of the kinetic effects are contained in the factor γ
which has the limit γ → 3 as ζ ′ → ∞ which is the fluid limit and in the opposite
limit, γ → 1 as ζ ′ → 0, which is the subsonic limit. It is important to note that
this set of equations is an exact moment representation of the kinetic equation.
All of the kinetic effects are contained in the expression for γ .

If we move back into the Fourier-transformed variables, the kinetic transport
equations become

−iω ñ

n̄
+ ikṽ = 0 (4.79)

−iωṽ − q

m
Ẽ = − ikv2t

2

p̃

p
= − ikv2t

2
γ
ñ

n̄
(4.80)
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with γ (ζ ) = 2G3(ζ )/G1(ζ ) so that M̃(2) = v2t γ ñ/2 from section 3.1.2. This
is now exact and includes both real and imaginary parts for the second moment
term. The fact that kinetic effects occur exclusively in γ indicates that they are
independent of charge, and indeed such collisionless damping has been observed
in sound waves in a dilute gas (where collisions may be neglected) [36].

If we break up the frequency into real and imaginary parts so that ω =
ωR + i
 and the damping is weak, the damping rate may be written as




ωR
= √πζ 3R

(
1− 3

ζ 2R

+O(ζ−4R )

)
e−ζ 2R (4.81)

for large ζR . It is apparent that this expression is again independent of charge and
only dependent on thermal effects. The fact that Landau damping does not depend
on the existence of charge has also been noted by Hammett and Perkins [37].
Their treatment obtained the result when ζ is small but not the result when ζ is
large.

4.2.3.2 Energy considerations for Landau damping

One point about the physics of Landau damping has already been made,
namely that it does not depend on charge and therefore is not a purely plasma
phenomenon. Since our most common explanations of the physics are in terms of
charges and electric fields, they are evidently deficient. In our search for a proper
description, we need to examine some of the energy balances involved. For this,
we will use the first three moment equations written as

dN

dt
+ N

∂v

∂z
= 0 (4.82)

∂v

∂ t
+ 1

2

∂v2

∂z
− q

m
E = − 1

mN

∂p

∂z
(4.83)

∂p

∂ t
+ 2p

∂v

∂z
= − ∂

∂z
(vp + q) (4.84)

where the pressure p and heat flow q are related to the moments M(n) of
section 3.1.2 such that p = mM(2) and q = M(3). For this analysis, these
equations are not fluid equations, but exact moments of the kinetic equation.
Along with these moment equations, we have the energy densities

wE = 1
2ε0E

2 (4.85)

wK = 1
2 n̄mv

2 (4.86)

where wE is the electrostatic energy density and wK is the kinetic energy
density. We need to add a third energy density related to the compressional
energy density, wC . If we consider a gas with a constant number of particles
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N0 in a container of volume V , then reducing the volume in the z-direction
requires work done on the gas dw = −pdV . Since dV/V = −dN/N , the
work may also be expressed as dW = −p(V/N)dN . Doing this work on
the gas increases its compressional energy by the amount dEC = dW . The
corresponding change in the compressional energy density, wC = EC/V , is
dwC = (1/V )dEC − wCdV/V = (wC + p)dN/N . Then using the continuity
equation of equation (4.82),

dwC

dt
= ∂wC

∂ t
+ v

∂wC

∂z
= −(p +wC )

∂v

∂z

we obtain
∂wC

∂ t
= −p

∂v

∂z
− ∂

∂z
(vwC ). (4.87)

For the electrostatic energy density, the Maxwell equations give

∂wE

∂ t
= − j E (4.88)

where j = Nqv. For thewK term, we multiply equation (4.83) by Nmv to obtain

∂wK

∂ t
= (p +wK )

∂v

∂z
+ j E − ∂

∂z

(
pv + Nmv3

2

)
. (4.89)

If we now average each of these terms over a wavelength, so that

w(t) ≡ 1

λ

∫ z+λ

z
w(z, t) dz

the last terms in equations (4.87) and (4.89) vanish and the sum of equations (4.87)
through (4.89) is

dwK

dt
+ dwE

dt
+ dwC

dt
= 0. (4.90)

Extending now to second order, with

N = N0 + N1 + N2 (4.91)

v = v1 + v2 (4.92)

E = E1 + E2 (4.93)

p = p0 + p1 + p2 (4.94)

the rates of change of the energy densities are given by

dwK

dt
= dwK2

dt
= N0m

2

dv21
dt

(4.95)

dwE

dt
= dwE2

dt
= ε0

2

dE2
1

dt
(4.96)

dwC

dt
= dwC2

dt
= −p1

∂v1

∂ t
= 1

N0
p1
∂N1

∂ t
. (4.97)
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Two important observations follow from these equations: (1) the spatially
averaged energy densities contain no first-order contributions so that the physics
of Landau damping cannot be discovered from energy considerations; and (2) the
second-order energy terms are obtained from products of first order terms, so the
linear damping rate may be determined from a linear analysis.

4.2.3.3 A special case

A surprising result may be obtained from a special case where we set

N1(z, t) = N0n1(t) cos(kz − ωRt) (4.98)

and assume weak damping, indicated by (1/n1)(dn1/dt)� ωR . We then proceed
to calculate the various energy densities. First, from equations (4.85) and (4.96)
and Poisson’s equation given here by

ε0
∂E

∂z
= qN1

we find
dwE

dt
= N0mω2

p

4k2
dn21
dt2

which may also be written as

1

wE

dwE

dt
= 1

n21

dn21
dt

. (4.99)

Then, from equations (4.86), (4.95), and (4.82), written as

dN1

dt
= −N0

dv

dz

we find (assuming weak damping as noted earlier)

dwK

dt
= N0mω2

R

4k2
dn21
dt2

or alternatively,
1

wK

dwK

dt
= 1

n21

dn21
dt

. (4.100)

Together, equations (4.99) and (4.100) show that both the electrostatic energy and
the kinetic energy have the same relative damping rates, and therefore they decay
together. A corresponding expression can be obtained from equations (4.97) and
(4.83) where the latter is used to express p in terms of v and E , with the result

dwC

dt
= −N0m

4k2
(ω2

p + ω2
R)

dn21
dt

(4.101)

but the result could just as easily have been obtained from equations (4.99) and
(4.100) along with equation (4.90), since it is not independent.
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4.2.3.4 Polytropic and nonpolytropic gases

We now consider a case where p and N1 are proportional and in phase (the
previous example has both in phase and out-of-phase terms), which is called a
polytropic gas. The polytropic coefficient, γ , is defined by

dp

p
≡ γ

dN

N
(4.102)

where γ is complex in general, but may be real. For our first example, we choose
the relation to be

p = αmv2t N1

where α is real. Then equation (4.97) becomes

dwC

dt
= mv2t

N0
αN1

∂N1

∂ t
.

Carrying on one step further with equation (4.98), we may write

dwC

dt
= N0mv2t

4
α
dn21
dt

.

This result may be combined with equation (4.101) to find

(ω2
R + ω2

p + αk2v2t )
dn21
dt

= 0.

The three wave energy terms represent the kinetic energy (ω2
R), the electrostatic

energy (ω2
p), and the compressional energy (αk2v2t ), and the perhaps surprising

result is that a (one constituent) polytropic gas is undamped.
If we generalize to a case where there is also an out-of-phase component,

making the gas nonpolytropic, such as

p = mv2t

(
αN1 + β

∂N1

∂ t

)
(4.103)

then the results go over to

dwC

dt
= mv2t

N0

[
αN1

∂N1

∂ t
+ β

(
∂N1

∂ t

)2]
(4.104)

= N0m

4k2

(
αk2v2t

dn21
dt

+ 2βk2v2t ω
2
Rn

2
1

)
(4.105)

and

(ω2
R + ω2

p + αk2v2t )
dn21
dt

= −2βk2v2t ω2
Rn

2
1. (4.106)
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We may identify the constants α and β from equation (4.80) as α =
Re(Z3/Z1) and β = −(1/ω) Im(Z3/Z1). Assuming weak damping, where
ζ → ζR , we have

α = Re

(
Z3(ζR)

Z1(ζR)

)
β = 1

ωR
Im

(
Z3(ζR)

Z1(ζR)

)
. (4.107)

With our definitions of α and β, γ = 2Z3(ζR)/Z1(ζR) = 2(α + iβ) is the
polytropic coefficient (since p = Nmv2t /2). These relations lead us to the
damping rate of

1

n1

dn1
dt

= −ωR
√
πζ 3R

(
1− 3

ζ 2R

+O(ζ−4R )

)
e−ζ 2R (4.108)

which is the asymptotic form for Landau damping, but is equally valid for a gas as
well as a plasma. This result shows that the energy lost through Landau damping
goes into the nonpolytropic part of the compressional energy. In conventional
discussions of Landau damping, compressional energy is traditionally ignored,
and so these discussions are unable to properly describe the physics of Landau
damping.

4.2.4 Conventional descriptions of Landau damping

The traditional description of the physics of Landau damping describes it as
being due to a transfer of energy between the kinetic energy of particles and the
electrostatic energy of the wave, making Landau damping a process unique to
a plasma. To the first approximation, the resulting damping rate is the classical
Landau rate, so this description has been propagated widely in textbooks. Since
we have noted earlier in several places that the phenomenon also occurs in neutral
gases and since we have concluded at the end of section 4.2.3.2 that second
order terms are required for energy balance and these must include compressional
energy as well as kinetic and electrostatic energy, we need to examine this matter
more closely. This section will conclude with a more nearly accurate picture of
the physics of Landau damping.

4.2.4.1 Electrostatic picture of Landau damping

The conventional analysis begins with a calculation of the kinetic energy of
particles in the wave frame, where the electric field E(x, t) = E0 sin(kx − ωt)
may be represented by

E = E0 sin kx .

We note already that the wave amplitude is taken to be constant even though the
point of the calculation is to find the decay rate of the amplitude, so there is an
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inconsistency already at the start. With this field, the rate of change of kinetic
energy can then be expressed by

dwK

dt
= n0

∫ λ/2

−λ/2
dx

λ

∫ ∞

−∞
dv

1

2
m
(
v + ω

k

)2 ∂ f
∂ t
. (4.109)

The integration over space just gives the spatial average of the distribution
function, so equation (4.109) becomes

dwK

dt
= n0m

2

∫ ∞

−∞
dv

(
v + ω

k

)2 ∂ f
∂ t

. (4.110)

This time derivative of f is obtained from the kinetic equation so that

∂ f

∂ t
= e

m
E0sin kx

∂ f

∂v
. (4.111)

In order to solve this, we will linearize, taking f = f0 + f1 with f0 being the
unperturbed part of the distribution function that is uniform and hence makes no
contribution to equation (4.111). The linearized kinetic equation is

∂ f1
∂ t
+ v

∂ f1
∂x

= e

m
E0 sin kx

∂ f0
∂v

(4.112)

with solution

f1(x, v, t) = f1(v, 0) cos(kx−kvt)− eE0

mkv

∂ f0
∂v
[cos kx−cos(kx−kvt)] (4.113)

for initial condition f1(x, v, 0) ≡ f1(v, 0) cos kx . This result may be used in
equation (4.111) to find

∂ f

∂ t
= ∂

∂v

[
eE0

2m
f1(v, 0) sin kvt + 1

2

(
eE0

m

)2
∂ f0
∂v

sin kvt

kv

]
. (4.114)

We now use equation (4.114) in equation (4.110), and integrate by parts to obtain
the rate of change of the kinetic energy density as

dwK

dt
= − neE0

2

∫ ∞

−∞
dv f1(v, 0)

(
v + ω

k

)
sin kvt

− ne2E2
0

2m

∫ ∞

−∞
dv

∂ f0
∂v

(
v + ω

k

) sin kvt

kv
. (4.115)

After several cycles, the first integral phase mixes away, decaying
exponentially in time (see problem 4.2.4), and the second integral is peaked
about v = 0 (in the wave frame). We can see here that the initial perturbation
is being carried away by streaming particles, dispersing the spatial coherence that
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supported the electric field. The second integral of equation (4.115) approaches a
delta function, of width �v ∼ 1/kt so only those particles that are moving very
slowly in the wave frame contribute to the change in energy density. If we let the
peaked function sin kvt/kv → πδ(kv), then the integral becomes

dwK

dt
= −πωω

2
p

k2
∂ f0
∂v

∣∣∣∣
v=0

wE (4.116)

where wE = 1
2ε0E

2
0 is the wave energy density. By balancing the wave and

particle energy by setting dwK /dt = −∂wE/∂ t = −2
wE , we establish the
linear damping rate as


L = π

2
ω
ω2
p

k2
∂ f0
∂v

∣∣∣∣
v=ω/k

(4.117)

where now the distribution function is back in the laboratory frame so it is
evaluated at the phase velocity. This is the Landau formula, and yet it is based
on energy balance considerations that ignore the compressional energy and the
analysis is fundamentally nonlinear. What this calculation does provide is an
alternate insight into the process which includes an estimate of the time over
which linear Landau damping is valid, since the nonlinear analysis limits the
validity of the linear analysis. In the linear analysis, the particles are assumed to
be undeflected by the wave, but it is clear that there will be some trapped particles
for any finite E0, and when particles begin to bounce in the potential well, this
analysis clearly fails. The bounce time, estimated from the small amplitude limit
of the equation of motion,

mẍ = −eE0 sin kx (4.118)

leads to a bounce time of τB = (m/eE0k)1/2, so linear theory can only be valid
for times t � τB . For longer times and larger amplitudes, the analysis of the
trapped particles must be followed carefully, and this is found in section 8.3.

Problem 4.2.4. The electrostatic picture of landau damping.

(i) Show that equation (4.113) is a solution of equation (4.112).
(ii) Fill in the steps leading to equation (4.115).
(iii) Evaluate the first integral in equation (4.115) with f1(v, 0) a Maxwellian
distribution, showing that it vanishes as exp(−κ t2) (find κ).
(iv) Evaluate the first integral in equation (4.115) with f1(v, 0) a Lorentzian
distribution, f1(v, 0) = A/(v2 + v2e ), and show that it vanishes as
exp(−kvet). (Use contour methods.)

Problem 4.2.5. The ordinary wave in a hot unmagnetized plasma. For the cold
O-wave, problem 2.2.1, it was deduced that vpvg = c2 so that the phase velocity
always exceeds the velocity of light. In terms of the physical picture of Landau
damping, what does this imply about the Landau damping of the O-wave from
this electrostatic picture?
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4.2.4.2 Electrostatic picture revisited

Looking at the problem in a slightly different way, we calculate the total kinetic
energy density from

WK = m

2

∫
u2 f (u) du = wK + 1

2 p

and we know from equation (4.90) that it obeys the energy relation

dWK

dt
= dwK

dt
+ dwC

dt
= −dwE

dt
. (4.119)

With a constant amplitude E0, this leads to the same result as in equation (4.116),
which we may write as

dWK

dt
= 2

√
πω2

p

ωR
ζ 3Re

−ζ 2RwE . (4.120)

We then postulate that the gain in total kinetic energy is balanced by a loss of total
wave energy w = wK +wE + wC , so that

dWK

dt
= −dw

dt
. (4.121)

Then, taking 
 = −(1/w)dw/dt , we have



ωR
� F

√
πζ 3Re

−ζ 2R (4.122)

where F = (ω2
p/ω

2
R)2wE/w. This gives the correct Landau rate in the limit

ζR � 1 and for simple plasma waves where we have w � 2wE and ωR � ωp .
This answer is consistent with equation (4.117) for a thermal plasma.

Unfortunately, the derivation of equation (4.122) is based on two mistakes.
The first, as noted previously, is based on the assumption that the amplitude is
constant, whereas the result indicates it is not, so it is inconsistent. If we were to
go back and let it vary slowly, so that E0 → E1(t), then equation (4.120) becomes

dWK

dt
= 2

√
πω2

p

ωR
ζ 3Re

−ζ 2RwE + 2(wK +wC )
1

E1

dE1

dt
(4.123)

where now wE = 1
2ε0E

2
1 . The second mistake is that equation (4.121) was

used instead of equation (4.119). Correcting this error, however, leads us back to
equation (4.122). We thus have the unexpected result that we get the same answer
whether we do it right or wrong. The interpretation of these two approaches
is very different, however, since the incorrect equation (4.121) implies that the
total wave energy w has been converted into particle kinetic energy WK , while
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the correct equation (4.119) gives a connection between the electrostatic energy
density and the kinetic energy density, but not much insight.

Our focus on the electrostatic wave energy density has left us with a false
impression that it is the principal element in the damping mechanism. In the case
of longitudinal plasma waves, it is a substantial part, but this is not always true for
related cases. Because the components of w all decay together, a correct estimate
of the decay rate of one component will always give a correct estimate of the
overall rate. If, however, the electrostatic component were an insignificant part of
the overall energy density, we would not imagine that a description of the physics
of that small component gives us an accurate picture of the physics of the overall
process.

Such a case occurs with ion acoustic waves described in the next section.
This example always has Te/Ti � 1 and the pertinent plasma frequency is
ωpi . The quasineutral limit requires k2λ2D � 1 and we have the relations (see
equation (4.141))

ω2
R = k2v2i

Te
2Ti

= ω2
pi k

2λ2D (4.124)

wE

w
= 1

2k
2λ2D . (4.125)

We still have F � 1 in this case, but now the electrostatic energy density is
negligibly small in the energy balance. This means that the energy balance
is principally between the kinetic energy density and the compressional energy
density. If the electrostatic component is negligible in this case, then it cannot
be the basis upon which our understanding of Landau damping rests. We must
therefore look elsewhere for our explanation, and we must keep in mind that the
correct description must be viable for gases as well as plasmas.

4.2.4.3 Thermal spreading picture of Landau damping

A term that is often used but rarely defined for the explanation of Landau
damping is phase mixing. One use of the word appeared after equation (4.115).
Problem 4.2.4 shows that for this kind of phase mixing, the decay is exponential as
the square of the time, which is much faster than Landau damping and unrelated
to it. For this reason, we eschew this term in our discussion. Another process
deals with the free-streaming of particles after an initial perturbation. While the
perturbation is remembered by the particles (until collisions eventually destroy
that memory), the particles travel in all three directions at close to their original
velocities, and in the process carry their information away so that the original
coherence of the wave is lost. This process is described as thermal spreading.

In order to show that the thermal spreading description gives an adequate
representation of the damping rate, we must embark on another lengthy analysis.
Here again, we generally follow the development of Stubbe and Sukhorukov [32].
We start with a linear one-dimensional perturbation and consider the quantities
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n1(z, t), v1(z, t), and p1(z, t), and choose a perturbed distribution function
f1(z, u, t) that produces these quantities through moments of the distribution
function, and let the density be perturbed by an undamped monochromatic plane
wave. The key point is that we construct a distribution at time t by assuming
that free-streaming of the particles began at time t − τ and average over τ .
The resulting n′1 and p′1 will be used to define a polytropic coefficient through
equation (4.102). The zero-order velocity distribution function is Maxwellian,

f0(u) = n0√
πvt

e−u2/v2t

and the first order distribution function is

f1(z, u, t) = f0(u)

[
n1(z, t)

n0
+
(
u2

v2t
− 1

2

)

×
(
p1(z, t)

p0
− n1(z, t)

n0

)
+ 2uv1(z, t)

v2t

]
. (4.126)

It may be verified that integrating over u using the weight factors 1, u/n0, and
mu2, reproduces the moments n1(z, t), v1(z, t), and p1(z, t). We introduce the
plane wave by letting

n1(z, t) = n̄ei(kz−ωt)

where n̄ is a constant density. If the wave is to be undamped, we will need a real
polytropic coefficient γ (see equation (4.102)). We also use the fact that v1 and
n1 are connected by the continuity equation. With these last two assumptions,
equation (4.126) becomes

f1(z, u, t) = f0(u)
n̄

n0

[
1+ (γ − 1)

(
u2

v2t
− 1

2

)
+ 2uω

kv2t

]
ei(kz−ωt). (4.127)

We now reinterpret equation (4.127) as the result of the free spreading that
began at an earlier time t − τ , so that

f ′1(z, u, t) = f1(z − uτ, u, t − τ ) (4.128)

so that we have

f ′1(z, u, t) = f0(u)
n̄

n0

[
1+ (γ − 1)

(
u2

v2t
− 1

2

)
+ 2uω

kv2t

]
ei(kz−ωt)ei(ω−ku)τ

(4.129)
and we note that u now appears in the additional exponential term. Now we need
to take the moments with this distribution function to find n′1(z, t) and p′(z, t).
The integrals are of the form

Qn(τ ) = 1√
πvt

∫ ∞

−∞
une−u2/v2t −ikuτ du

= vnt e
−τ ′2/4
√
π

∫ ∞

−∞

(
x − iτ ′

2

)n
e−x2 dx (4.130)
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where τ ′ = kvtτ . The two moments may then be written as

n′1(z, t, τ
′) = n̄ei(kz−ωt)

[
1− (γ − 1)

4
τ ′2 − iζ τ ′

]
eiζτ

′−τ ′2/4 (4.131)

p′1(z, t, τ ′) = p̄ei(kz−ωt)
[
γ −

(
1

2
+ 5

4
(γ − 1)

)
τ ′2 + γ − 1

8
τ ′4

−iζ
(
3τ ′ − τ ′3

2

)]
eiζτ

′−τ ′2/4. (4.132)

We can now obtain a new polytropic coefficient γ ′(τ ′) using n′1(z, t, τ ′) and
p′1(z, t, τ ′), but we really want the average over all τ ′, so we define γ ′ as

γ ′ =
∫∞
0

[
γ − 5γ−3

4 τ ′2 + γ−1
8 τ ′4 − iζ

(
3τ ′ − τ ′3

2

)]
eiζτ

′−τ ′2/4 dτ ′∫∞
0

[
1− (γ−1)

4 τ ′2 − iζ τ ′
]
eiζτ ′−τ ′2/4 dτ ′

(4.133)

which can be written in terms of generalized Gordeyev integrals as

γ ′ =
γ iI0(ζ )− 5γ−3

4 iI2(ζ )+ γ−1
8 iI4(ζ )+ ζ

(
3I1(ζ )− I3(ζ )

2

)
iI0(ζ )− (γ−1)

4 iI2(ζ )+ ζ I1(ζ )
(4.134)

where

In(ζ ) ≡ −i
∫ ∞

0
τ neiζτ−τ 2/4 dτ. (4.135)

The Gordeyev integrals can in turn be written in terms of the generalized
dispersion functions, Zn(ζ ) (see appendix B.1.2). Writing γ ′ in terms of the
Zn(ζ ), we have the exact result

γ ′(ζ ) = 2(3− γ )Z2(ζ )+ 4(γ − 1)Z4(ζ )+ 8ζ Z3(ζ )

2(γ − 1)Z2(ζ )+ 4ζ Z1(ζ )+ (3− γ )Z0(ζ )
.

Using the recursion relations Z4(ζ ) = ζ Z3(ζ ) and Z2(ζ ) = ζ Z1(ζ ) from
section B.1.2 to eliminate the Z4 and Z2 terms, this simplifies somewhat to

γ ′(ζ ) = 4(γ + 1)ζ Z3(ζ )+ 2(3− γ )ζ Z1(ζ )

2(γ + 1)ζ Z1(ζ )+ (3− γ )Z0(ζ )
. (4.136)

For the final step, we are reminded that for ζ � 1, γ → 3, so in this limit,
γ ′ takes the simple form

γ ′(ζ ) � 2Z3(ζ )

Z1(ζ )
(4.137)

and this reproduces the damping of equation (4.81). We conclude this section
by noting that the thermal spreading picture provides a conceptual picture for
Landau damping for all ζ , is equally valid for both gases and plasmas, and for
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large ζ , gives a quantitative value for the damping rate. The analysis is also
manifestly linear, and thus must replace previous discussions for linear Landau
damping. The electrostatic arguments are pertinent as the wave amplitude gets
larger, however, and dominate the analysis for nonlinear Landau damping which
is treated in section 8.3.1

Problem 4.2.6. Thermal spreading.

(i) Verify that taking the first three moments of equation (4.126) with the
weights indicated produces n1(z, t), v1(z, t), and p1(z, t) as claimed.
(ii) Fill in the steps between equations (4.127) and (4.132).
(iii) Use equations (4.131) and (4.132) and the Gordeyev integrals to obtain
equation (4.136).

4.2.5 Ion acoustic waves and ion Landau damping

For the previous examples, the ion motions have been neglected, since they
are usually unimportant. In the cold plasma limit this is due to the fact that
me/mi � 1. If we were to consider plasma oscillations near the electron plasma
frequency, the ions again only appear to the same order. Near the ion plasma
frequency, however, we must re-examine the case, since it is possible to consider a
case where the ions are cold (vi � vp), but the electrons are hot (ve � vp). When
the electron and ion temperatures are comparable, there is generally no oscillation,
since when one moves some of the ions to form a slight charge imbalance which
would induce the ions to oscillate, the period is so slow that electrons, being
so much more mobile, rush in to fill the charge imbalance before the ions can
respond. When the electron temperature is much higher than the ion temperature,
however, the electrons have too much momentum to slow down and fill in the
potential depressions, so some ion oscillations may occur.

4.2.5.1 Electron versus ion Landau damping

The dispersion relation for this case is the same as equation (4.62) except that we
now include the ion term:

1− ω2
pi

k2v2i
Z ′
(
ω

kvi

)
− ω2

pe

k2v2e
Z ′
(

ω

kve

)
= 0. (4.138)

The cold ion approximation means that we assume ζi = ω/kvi � 1, so we use
the large argument expansion for the Z ′(ζi ) term given by equation (4.33). For
the electron term, we assume ζe = ω/kve � 1, so we need the power series
expansion from appendix B,

Z ′(ζ ) = −2(1− 2ζ 2 + · · ·)− 2i
√
πζ(1− ζ 2 + · · ·). (4.139)
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Using these approximate expressions, the dispersion relation becomes

1+ ω2
pe

k2v2e
(2+ 2i

√
πζe)−

ω2
pi

ω2

(
1+ 3

2ζ 2i
− 2i

√
πζ 3i e

−ζ 2i
)
� 0. (4.140)

Setting the real and imaginary parts to zero separately and using λ2Dj = v2j /2ω
2
pj ,

we obtain

1+ k2λ2De
k2c2s
ω2
r

(
1+ 3

ζ 2i

)

or solving for ωr ,

ω2
r =

k2c2s
1+ k2λ2De

[
1+ 3Ti

Te
(1+ k2λ2De)

]
(4.141)

and
ωi

ωr
= −

√
πζ 3ir

1+ 3/ζ 2ir

(
e−ζ 2ir + Tivi

Teve

)
(4.142)

where ω = ωr + iωi and cs = √
KTe/mi is the ion acoustic speed. We note

that if kλDe � 1, then the wave will travel at the ion acoustic speed, but then the
correction term for ωr allows us to redefine cs so that

c2s →
γeKTe + γiKTi

mi

with γe = 1 and γi = 3 and ωr = kcs . This limit agrees with the ion acoustic
speed of equation (3.45) since me � mi . A comparison of the exact real and
imaginary parts of ω with the approximate formulas of equations (4.141) and
(4.142) are shown in figure 4.6. It is evident that ωr given by equation (4.141) is
a good approximation, agreeing within 10% up to kλDe ∼ 0.5. It is also apparent
that the imaginary part is much less accurate, deviating by a factor of two over the
range illustrated. In this example, ion Landau damping is dominant. Doubling the
electron temperature so that Te/Ti = 20 increases the accuracy of both parts, the
real part reaching 7% difference at kλDe ∼ 0.5 while the imaginary part ranges
from a factor of 1.15 to 1.65 above the exact result over the range illustrated. For
this temperature ratio, electron Landau damping dominates for kλDe < 0.4 while
ion Landau damping dominates for kλDe > 0.4.

Now if we define weak damping as less than 10% decrease in amplitude
per period, then this requires |ωi | < ωr/60. If we further look for ion Landau
damping to be dominant, such that the electron term in equation (4.142) is less
than 10% of the ion term, then ζi ≥ 2.7. These together require Te/Ti ≥ 70A−1/3,
where A is the atomic mass number, so generally ion acoustic waves require
Te � Ti .
Instability of the ion acoustic wave. As shown in section 3.5, electrostatic waves
are subject to current driven instabilities. For the ion acoustic wave, we may add
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Figure 4.6. Real (a) and imaginary (b) parts of ω for the ion-acoustic wave. The full curves
are exact solutions of equation (4.138) while the dashed curves are from equations (4.141)
and (4.142) with Te/Ti = 10, n0 = 1015 /m3, A = 39, and Ti = 300 K.

a small drift velocity to the electrons, so that ζe → (ω − kv0)/kve and from
equation (4.140), the imaginary part now may be solved as

ωi

ωr
= −

√
π

1+ 3/ζ 2ir

(
ζ 3ire

−ζ 2ir + ζeω
2
r

2k2c2s

)
(4.143)

and if we set the right-hand side to zero for the instability threshold, we find

v0

ve
= ωr

kve
+ Te

Ti

ωr

kvi
e−ζ 2ir (4.144)

= 2(1+ k2λ2De)ζ
3
ire
−ζ 2ir +

(
me

2mi(1+ k2λ2De)

)1/2
. (4.145)

For the case with Te/Ti = 20, this result agrees with the exact results within
4% for kλDe ≤ 0.2 and the electron Landau damping term is comparable to
the ion Landau damping term. The sensitivity to drifts is evident from the
fact that v0/ve ∼ 0.0036 with kλDe ≤ 0.2 for this case. For the case with
Te/Ti = 10, equation (4.144) agrees with the exact results within about 40% for
kλDe ≤ 0.2. With this smaller temperature ratio, ion Landau damping dominates
and v0/ve ∼ 0.034 so the threshold is strongly dependent on the temperature
ratio.

Problem 4.2.7. Current-driven instability. From the previous two examples,
estimate the current density required to drive the ion acoustic wave unstable (in
A/m2) for both Te/Ti = 10 and Te/Ti = 20.
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4.2.6 Effects of collisions on Landau damping

The analytic treatment of collisions in the context of Landau damping has been
problematical because of the difficulty of representing the collision frequency in
a kinetic treatment. Coulomb collisions have a significant range of velocities
where the cross section varies as v−3, and such behavior is generally intractable
in solving the kinetic equation. If one considers electron–neutral collisions,
however, an analytic collision operator can be formed, and even solved. For this
analysis, we assume at the outset that we are looking for waves that have the
dependence exp[i(kx − ωt)], and our equations to be solved are the linearized
kinetic equation and Poisson’s equation,

∂ f

∂ t
+ v

∂ f

∂x
− e

me

∂ f0
∂v

E = ν
∂

∂v

(
v f + KTe

me

∂ f

∂v

)
(4.146)

∂E

∂x
= − e

ε0

∫ ∞

−∞
f dv. (4.147)

The collision term comes from Lenard and Bernstein [38] and has the properties
that it conserves particles and derives from a Fokker–Planck treatment of
collisions. The development that follows is due to Short and Simon [39], but
the notation is changed to be consistent with previous calculations.

We first change to dimensionless variables such that u ≡ v/vt , ζ ≡ ω/kvt ,
g ≡ vt f/n0, g0 ≡ π−1/2e−u2 , η ≡ α(∂g0/∂u), α ≡ ω2

pe/k
2v2t , and µ = ν/kvt .

With these changes of variable, equations (4.146) and (4.147) become

(u − ζ )g(u)− η(u)
∫ ∞

−∞
g(u′) du′ = −iµ ∂

∂u

(
ug + 1

2

∂g

∂u

)
. (4.148)

We next Fourier transform in velocity so that

G(w) = 1√
2π

∫ ∞

−∞
eiwug(u) du

so that equation (4.148) becomes

i(1+ µw)
dG

dw
+
(
ζ + iµ

2
w2

)
G = iα

2
we−w2/4G(0). (4.149)

Changing variables so that x ≡ 1 + µw, equation (4.149) may be written (with
G(w)→ H (x)) as

dH

dx
+
[

1

2x

(
x − 1

µ

)2
− iζ

µx

]
H = dH

dx
+
[
b(µ)(x − 2)+ a(ζ, µ)

x

]
H

= αb(µ)

(
1− 1

x

)
e−(x−1)2/4µ2

H (1)

(4.150)
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where

b(µ) = 1

2µ2
and a(ζ, µ) = 1

2µ2
− iζ

µ
.

Equation (4.150) is a first-order ordinary differential equation with solution

H (x) = eb(2x−x2/2)x−a
[
C+αbe−b/2H (1)

∫ x

0
x ′a

(
1− 1

x ′

)
e−bx ′ dx ′

]
(4.151)

where C is a constant of integration. We find g(u) from the inverse Fourier
transformation,

g(u) = 1√
2π

∫ ∞

−∞
e−iwuG(w) dw = 1√

2πµ
eiu/µ

∫ ∞

−∞
e−iux/µH (x) dx .

Note that the first term in H (x) blows up as x → 0 as 1/xb with b > 0. This
means that for small µ (large b), the inverse Fourier transform will not converge,
requiring that we set C = 0. Evaluating the remaining expression for H (x) at
x = 1 and dividing by H (1), we have the consistency relation

1 = αbeb
∫ 1

0
(xa − xa−1)e−bx dx (4.152)

which is our dispersion relation. The integrals may be expressed in terms of the
incomplete gamma function γ (a, x) = ∫ x

0 e−t ta−1 dt , such that

∫ 1

0
(xa − xa−1)e−bx dx = [b−a(a − b)γ (a, b)− e−b]/b

where the recursion formula from appendix B has been used. The dispersion
relation may then be written as

1+ α

[
1+ iζ

µ
(2µ2)a(ζ,µ)eb(µ)γ [a(ζ, µ), b(µ)]

]
= 0 (4.153)

where the dependence of a and b on ζ and µ are again displayed. A form
more amenable to calculation my be obtained from the relation γ (a, x) =

(a) − 
(a, x), where 
(a, x) = ∫∞

x e−t ta−1 dt and may be evaluated by the
continued fraction given in appendix B.

For very weak collisions, µ is very small, and the numerical evaluation of
the roots becomes more and more difficult. It is possible to expand the dispersion
relation in a power series in µ of the form

1+ α

[
1+

∞∑
n=0

µn fn(ζ )

]
= 0 (4.154)
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Table 4.1. Roots of the dispersion relation as a function of µ, the collisions term. Both
exact and approximate roots are shown for α = 9, where the approximate roots keep only
the first order term in µ. The bottom root is the Landau root.

µ ζ (exact) ζ (approx.)

0.1 2.5177324 − 0.1270101i 2.5160641 − 0.1381947i
0.01 2.5428465 − 0.0622458i 2.5428231 − 0.0623408i
0.001 2.5455167 − 0.0556237i 2.5455164 − 0.0556246i
0.0001 2.5457849 − 0.0549602i 2.5457855 − 0.0549601i
0.00001 2.5458124 − 0.0548937i 2.5458124 − 0.0548937i
0 2.5458154 − 0.0548864i 2.5458154 − 0.0548864i

where Short and Simon [39] find

f0(ζ ) = ζ Z(ζ ) (4.155)

f1(ζ ) = iζ [2(1− ζ 2)+ iζ Z(ζ )(3− 2ζ 2)]/3. (4.156)

A table of roots for α = 9 for several values of µ is given in table 4.1, where the
last entry with µ = 0 is the Landau result. It is apparent that the damping rate for
the electric field increases as collisions increase. These values agree with those of
Ng et al [40] who used a different numerical scheme, except for the real part of ζ
for µ = 0.01, which has a typographical error.

In problem 4.2.3, it was shown that the potential decays at the Landau rate
but that the distribution function has a component that does not decay away. In the
collisional environment, the perturbation to the distribution function will decay,
but at a slower rate than the potential. The calculation of this rate is beyond the
scope of this book, but an analysis of the decay rate in space away from a localized
antenna has been investigated by Short and Simon [39]. The differential decay
rates are crucial for the observation of plasma wave echoes where the potential of
one antenna decays away and the potential from a second antenna at a different
frequency and location also decays away, after which an echo is observed at yet
another frequency. This phenomenon is nonlinear, and discussed in section 7.3.1.

Problem 4.2.8. Collisional dispersion relation.

(i) Show that H (x) in equation (4.151) represents a solution to
equation (4.149).
(ii) Fill in the steps leading from equation (4.151) to equation (4.153).

4.3 Waves in a magnetized hot plasma

The calculation of the response of a hot plasma in a magnetic field to a wave
is considerably more formidable than the unmagnetized case. As was seen in
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section 3.3.5, all nine of the dielectric tensor components are nonzero when
thermal effects are included, and we shall find the symmetries of the tensor will
be even more involved when the full kinetic effects are included. This difficulty
relates to the additional effect that the zero order motions of electrons and ions
in a uniform magnetic field are spirals, drifting uniformly parallel to the field
while they execute circular motion at the cyclotron frequencywith their individual
Larmor radii around a field line.

The technique we shall use was introduced in 1958 by J E Drummond [41],
R Z Sagdeev and V D Shafranov [42], and M N Rosenbluth and N Rostoker [43],
but we will follow the development of Stix [6] most closely. The idea of
the method is to find the perturbation of the distribution function due to the
wave by integrating along the unperturbed orbits. This is called the method of
characteristics, and we have effectively used it already, except in a trivial fashion,
since up to this point the unperturbed orbits were straight lines.

4.3.1 The evolution of the distribution function

We begin by describing a zero order trajectory by

r(t) = r[r(t), v(t), t]

and calculate the rate of change of the distribution function along this trajectory
by

d f

dt

∣∣∣∣
R
= ∂ f

∂ t
+ ∂ f

∂ r
· dr
dt
+ ∂ f

∂v
· dv
dt

(4.157)

where dr/dt = v and dv/dt = a where a is the acceleration along the zero-order
trajectory

a = dv

dt
= q

m
v × B0. (4.158)

We then write equation (4.157) as

d f

dt

∣∣∣∣
R
= ∂ f

∂ t
+ v · ∇ f + q

m
v × B0 · ∇v f. (4.159)

The zero-order distribution function, f0, is, of course, independent of r and t , so

d f0
dt

= d f0
dt

∣∣∣∣
R
= q

m
v × B0 · ∇v f0 = 0. (4.160)

The most general form of f0 that satisfies equation (4.160) is

f0(v) = f0(v⊥, vz) (4.161)
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where v2⊥ = v2x + v2y . Adding and subtracting the wave field terms in
equation (4.159) leads to

d f

dt

∣∣∣∣
R
=

{
∂ f

∂ t
+ v · ∇ f + q

m
[E1 + v × (B0 + B1)] · ∇v f

}

− q

m
(E1 + v × B1) · ∇v f (4.162)

and the term in curly brackets vanishes due to the collisionless Boltzmann
equation. If we now separate the distribution function into f = f0 + f1, then

d f

dt

∣∣∣∣
R
= d f0

dt

∣∣∣∣
R
+ d f1

dt

∣∣∣∣
R
= − q

m
(E1 + v × B1) · ∇v f (4.163)

where the zero-order term vanishes by equation (4.160). This leaves us with a
total derivative of f1, so if we integrate equation (4.163) along r , we obtain

f1(r, v, t) = − q

m

∫ t

t0
[E1(r ′, t ′)+ v′ × B1(r ′, t ′)] · ∇v′ f0(v′) dt ′ + f1(r, v, t0).

(4.164)
The recipe we developed from the Vlasov–Landau analysis that ω should have a
positive imaginary part corresponds to growing waves in time, but it guarantees
that the waves vanish as t0 → −∞, so if we change the lower limit in
equation (4.164) to −∞, we may neglect the effects of the initial conditions. This
is effectively equivalent to the Landau prescription of the initial value problem,
but will be easier to manipulate. The perturbed distribution function is then
described by

f1(r, v, t) = − q

m

∫ t

−∞
[E1(r ′, t ′)+ v′ × B1(r ′, t ′)] · ∇v′ f0(v′) dt ′ (4.165)

where we are to integrate along the trajectories, r(r ′, v′, t ′), that end at r(r, v, t)
when t ′ → t .

Problem 4.3.1. Zero-order distribution function. Prove that any zero-order
distribution function having the form of equation (4.161) will satisfy
equation (4.160) as long as it is differentiable.

4.3.2 Integrating along the unperturbed orbits

In order to evaluate the integral of equation (4.165), we shall assume that the wave
electric and magnetic fields are of the form

E1 = Eei(k·r ′−ωt ′) (4.166)

B1 = Bei(k·r ′−ωt ′) (4.167)
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so we may use the Maxwell equations to obtain

B1 = k × E1

ω
= k × E

ω
ei(k·r ′−ωt ′) (4.168)

so that equation (4.165) may be written as

f1(r, v, t) = − q

m

∫ t

−∞
dt ′E

(
1+ · v′ k − v′ · k

ω

)
· ∇v′ f0(v′)ei(k·r ′−ωt ′).

(4.169)
The trajectory that reaches r ′ = r when t ′ = t is governed by the equation

of motion from equation (4.158)

dv′

dt ′
= εv′ × ωcêz (4.170)

where ε = q/|q| and we suppress all other species-specific notation until we
begin to combine each species’ contribution to the total current. The solution of
equation (4.170) that reaches v′ = v at t ′ = t is

v′x = vx cosωcτ − εvy sinωcτ

v′y = εvx sinωcτ + vy cosωcτ (4.171)

v′z = vz

where τ = t − t ′. Integrating these to find the zero order trajectory that ends at
r ′ = r at t ′ = t , we find that

x ′ = x − vx

ωc
sinωcτ + εvy

ωc
(1− cosωcτ )

y ′ = y − εvx

ωc
(1− cosωcτ )− vy

ωc
sinωcτ (4.172)

z′ = z − vzτ.

The phase factor in equation (4.169) becomes

ik · r ′ − iωt ′ = ik · r − iωt + ivx
ωc
[−kx sinωcτ − εky(1− cosωcτ )]

+ ivy
ωc
[−ky sinωcτ + εkx(1− cosωcτ )] + i(ω − kzvz)τ.

(4.173)

Because v⊥ and vz are constants of the motion, we know that f0(v′⊥, v′z) =
f0(v⊥, vz). If we now define

∂ f0
∂v⊥

≡ f0⊥ (4.174)

∂ f0
∂vz

≡ f0z (4.175)

Copyright © 2003 IOP Publishing Ltd.



then
∂ f0
∂vx

= vx

v⊥
f0⊥

∂ f0
∂vy

= vy

v⊥
f0⊥.

Using these definitions, the remaining factor in equation (4.169) may be written
as

E
(
1+ · v′ k − v′ · k

ω

)
· ∇v′ f0(v′)

= (Exv
′
x + Eyv

′
y)

[
f0⊥
v⊥

+ kz
ω

(
f0z − v′z

v⊥
f0⊥

)]

+ Ez

[
f0z −

kxv′x + kyv′y
ω

(
f0z − v′z

v⊥
f0⊥

)]

= (vx cosωcτ − εvy sinωcτ )

[
Ex f0⊥
v⊥

+ Exkz − Ezkx
ω

(
f0z − vz

v⊥
f0⊥

)]

+ (εvx sinωcτ + vy cosωcτ )

[
Ey f0⊥
v⊥

+ Eykz − Ezky
ω

(
f0z − vz

v⊥
f0⊥

)]
+ Ez f0z . (4.176)

We complete the variable change by writing the integral in the form

f1(r, v, t) =
∫ t

−∞
dt ′ . . . = ei(k·r−ωt)

∫ ∞

0
dτ . . .

where we have factored out the leading terms of the phase factor and will
subsequently suppress this factor, interpreting the remaining integral as the
Fourier amplitude of the distribution function.

We conclude this section by noting that we need only integrate over τ and
average the current density over velocity for some particular f0(v⊥, vz) to obtain
the mean current density from

j = q
∫

d3v v f1. (4.177)

From this current density, we can construct the effective dielectric tensor and
obtain the dispersion relation as in previous chapters.

4.3.3 General f0(v⊥, vz)

It is possible to execute the integral over τ without specifying the zero-order
distribution function, f0(v⊥, vz). This is done most conveniently by using polar
coordinates for the velocity and wavevector such that

vx = v⊥ cosφ kx = k⊥ cosψ

vy = v⊥ sin φ ky = k⊥ sinψ
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so that the phase factor of equation (4.173) may be written as

ei(k·r ′−ωt ′) = ei(k·r−ωt)e−ib[sin(φ−ψ+εωcτ )−sin(φ−ψ)]+iaτ

= ei(k·r−ωt)
∞∑

m,n=−∞
Jm(b)Jn(b)e

i(m−n)(φ−ψ)ei(ω−nεωc−kzvz)τ

(4.178)

where a = (ω − kzvz), b = εk⊥v⊥/ωc, and we have used the Bessel identity

eib sin θ =
∞∑

n=−∞
Jn(b)e

inθ . (4.179)

Assuming thatω has a positive imaginary part, the integral over τ can now be done
immediately with the result (again suppressing the ei(k·r−ωt) so that the result is
the Fourier amplitude)

f1(k, v, ω) = − iq

m

∞∑
m=−∞

∞∑
n=−∞

Jm(b)ei(m−n)(φ−ψ)

(ω − nεωc − kzvz)

×
{
nJn(b)

b

[
f0⊥ + kz

ω
(v⊥ f0z − vz f0⊥)

]
(Ex cosψ + Ey sinψ)

+ iJ ′n(b)
[
f0⊥ + kz

ω
(v⊥ f0z − vz f0⊥)

]
(−Ex sinψ + Ey cosψ)

+Jn(b)

[
f0z − nεωc

ω

(
f0z − vz

v⊥
f0⊥

)]
Ez

}
. (4.180)

In obtaining equation (4.180), we have used the Bessel identities

J�−1(b)+ J�+1(b) = 2�

b
J�(b)

J�−1(b)− J�+1(b) = 2J ′�(b)

and let n ± 1→ � so that, for example, with ψ = 0,

∞∑
n=−∞

Jn(b)e
i(m−n)φ−inεωcτ cos(φ + εωcτ )

=
∞∑

n=−∞

Jn(b)

2

[
ei(m+1−n)φ−i(n−1)εωcτ + ei(m−1−n)φ−i(n+1)εωcτ

]

=
∞∑

�=−∞

[
J�+1(b)+ J�−1(b)

2

]
ei(m−�)φ−i�εωcτ

=
∞∑

�=−∞

�

b
J�(b)ei(m−�)φ−i�εωcτ .

Copyright © 2003 IOP Publishing Ltd.



Then for ψ �= 0,

cos(φ − ψ + εωcτ )→ n

b
Jn(b)

cos(φ + εωcτ )→ n

b
Jn(b) cosψ − iJ ′n(b) sinψ (4.181)

sin(φ + εωcτ )→ n

b
Jn(b) sinψ + iJ ′n(b) cosψ.

In order to complete the integrals over velocity to obtain the mean current density,
we note that the volume element of the integral is∫

d3v =
∫ 2π

0
dφ

∫ ∞

0
v⊥ dv⊥

∫ ∞

−∞
dvz

and it is convenient to use the orthogonality integral over φ which takes the form
(for 〈vx 〉, 〈vy〉, and 〈vz〉, respectively)

∞∑
m=−∞

Jm(b)
∫ 2π

0
dφei(m−n)(φ−ψ)

{ cosφ
sin φ
1

}

= 2π




nJn(b)
b cosψ + iJ ′n(b) sinψ

nJn(b)
b sinψ − iJ ′n(b) cosψ

Jn(b)


 . (4.182)

Using these elements, the effective dielectric tensor may be expressed as

K =

 K1 + sin2 ψK0 K2 − cosψ sinψK0 cosψK4 + sinψK5

−K2 − cosψ sinψK0 K1 + cos2ψK0 sinψK4 − cosψK5
cosψK6 − sinψK7 sinψK6 + cosψK7 K3




(4.183)
where

K0 =
∑
j

ω2
pj

ω

∞∑
n=−∞

∫
d2v

[b j J ′n(b j )]2 − n2 J 2n (b j )

b2j (ω − nε jωcj − kzvz)
F⊥ (4.184)

K1 = 1+
∑
j

ω2
pj

ω

∞∑
n=−∞

∫
d2v

n2 J 2n (b j )

b2j (ω − nε jωcj − kzvz)
F⊥ (4.185)

K2 = i
∑
j

ω2
pj

ω

∞∑
n=−∞

∫
d2v

nJn(b j )J ′n(b j )

b j (ω − nε jωcj − kzvz)
F⊥ (4.186)

K3 = 1+
∑
j

ω2
pj

ω

∞∑
n=−∞

∫
d2v

J 2n (b j )

(ω − nε jωcj − kzvz)
Fz (4.187)

K4 =
∑
j

ω2
pj

ω

∞∑
n=−∞

∫
d2v

nJ 2n (b j )

b j (ω − nε jωcj − kzvz)

v⊥
vz

Fz (4.188)
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K5 = i
∑
j

ω2
pj

ω

∞∑
n=−∞

∫
d2v

Jn(b j )J ′n(b j )

(ω − nε jωcj − kzvz)

v⊥
vz

Fz (4.189)

K6 =
∑
j

ω2
pj

ω

∞∑
n=−∞

∫
d2v

nJ 2n (b j )

b j (ω − nε jωcj − kzvz)

vz

v⊥
F⊥ (4.190)

K7 = i
∑
j

ω2
pj

ω

∞∑
n=−∞

∫
d2v

Jn(b j )J ′n(b j )

(ω − nε jωcj − kzvz)

vz

v⊥
F⊥ (4.191)

where
∫
d2v = 2π

∫∞
−∞ dvz

∫∞
0 v⊥ dv⊥ and

F⊥ = v⊥
[
∂ f0 j
∂v⊥

(
1− kzvz

ω

)
+ kzv⊥

ω

∂ f0 j
∂vz

]

Fz = vz

[
∂ f0 j
∂vz

+ nε jωcj

ω

(
vz

v⊥
∂ f0 j
∂v⊥

− ∂ f0 j
∂vz

)]
.

When the distribution function is isotropic (v⊥∂F/∂vz = vz∂F/∂v⊥), then
K6 = K4 and K7 = K5. Also, only the K1, K2, and K3 components survive in the
cold plasma limit, so all of the others are first order or higher in the temperature.

Problem 4.3.2. Polar coordinates in velocity space. Fill in the steps leading to
equations (4.178) and (4.181).

Problem 4.3.3. General tensor elements. Fill in the steps leading to any (except
Kzz = K3) of the composite tensor elements Kij in equation (4.183).

Problem 4.3.4. Sum rules.

(i) Using the Newberger sum rule [44],

∞∑
n=−∞

Jn(z)Jn−m(z)
a − n

= (−1)mπ
sinπa

Jm−a(z)Ja(z) m ≥ 0 (4.192)

prove the identities

∞∑
n=−∞

n2 J 2n (z)

a − n
= πa2

sinπa
Ja(z)J−a(z)− a (4.193)

∞∑
n=−∞

[J ′n(z)]2
a − n

= π

sinπa
J ′a(z)J ′−a(z)+

a

z2
(4.194)

∞∑
n=−∞

nJn(z)J ′n(z)
a − n

= πa

sinπa
Ja(z)J

′−a(z)+
a

z
(4.195)

∞∑
n=−∞

Jn(z)J ′n(z)
a − n

= π

sinπa
Ja(z)J

′−a(z)+
1

z
(4.196)
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∞∑
n=−∞

nJ 2n (z)

a − n
= πa

sinπa
Ja(z)J−a(z)− 1 (4.197)

∞∑
n=−∞

J 2n (z)

a − n
= π

sinπa
Ja(z)J−a(z). (4.198)

(ii) Show that the dielectric tensor elements of equations (4.184)–(4.191) can
be written in terms of eight alternative integrals without any Bessel function
sums by use of equations (4.193)–(4.198), the first four of which are:

A0 =
∑
j

ε jω
2
pj

ωωcj

∫
d2v

π J ′a j
(b j )J ′−a j

(b j )

sinπa j
F⊥ (4.199)

A1 =
∑
j

ε jω
2
pj

ωωcj

∫
d2v

πa2j Ja j (b j )J−a j (b j )

b2j sinπa j
F⊥ (4.200)

A2 =
∑
j

ε jω
2
pj

ωωcj

∫
d2v

πa j Ja j (b j )J ′−a j
(b j )

b j sinπa j
F⊥ (4.201)

A⊥ =
∑
j

ε jω
2
pj

ωωcj

∫
d2v

a j

b2j
F⊥ (4.202)

with a j = (ω − kzvz)/ε jωcj .
(iii) Show that four of the dielectric tensor elements may be alternatively
represented by

Kxx = 1+ A0 sin2ψ + A1 cos2ψ − A⊥ cos 2ψ (4.203)

Kyy = 1+ A0 cos2ψ + A1 sin2ψ + A⊥ cos 2ψ (4.204)

Kxy = iA2 + 1
2 (A1 − A0) sin 2ψ + A⊥(i− sin 2ψ) (4.205)

Kyx = − iA2 + 1
2 (A1 − A0) sin 2ψ − A⊥(i+ sin 2ψ). (4.206)

Problem 4.3.5. Isotropic distribution function. Prove that K4 = K6 and K5 = K7
if the distribution function is isotropic.

4.3.4 Maxwellian distributions

When the distribution function is Maxwellian, the integrals over the perpendicular
and parallel velocities can be done in closed form (although an infinite sum
remains). We shall treat first only the perpendicular form of the distribution
function, leaving the parallel distribution function until later, so that

f0(v⊥, vz) = F(vz)

πv2t
e−v2⊥/v2t (4.207)
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where v2t = 2KT⊥/m denotes the transverse thermal speed (we shall introduce
v�, the longitudinal thermal speed later), and T⊥ is the perpendicular temperature.
It is unlikely that a plasma will ever be truly Maxwellian with different
perpendicular and parallel temperatures, but it is not so unlikely that the
perpendicular and parallel distributions will differ, especially if a wave is
preferentially heating one or the other, as is often the case. The deviation
from equilibrium will occasionally lead to instabilities, as we shall show in a
subsequent section.

4.3.4.1 Integrating over perpendicular velocities

It is possible to evaluate the integrals of equation (4.184) through
equation (4.191), but the preferred method is to return to an earlier step and
integrate over the perpendicular velocities before we integrate over τ . With the
distribution function of equation (4.207), the Fourier amplitude of f1 may be
expressed as

f1(k, v, ω) = − q

mπv2t

∫ ∞

0
dτ (Axvx + Ayvy + αz)

× exp

[
−iaxvx − v2x

v2t
− iayvy −

v2y

v2t
+ i(ω − kzvz)τ

]

(4.208)

where

ax = 1

ωc
[kx sinωcτ + εky(1− cosωcτ )] (4.209)

ay = 1

ωc
[ky sinωcτ − εkx(1− cosωcτ )] (4.210)

Ax = αx cosωcτ + εαy sinωcτ (4.211)

Ay = αy cosωcτ − εαx sinωcτ (4.212)

αx = − 2F

v2t
Ex +

(
F ′ + 2vz

v2t
F

)(
kz Ex − kx Ez

ω

)
(4.213)

αy = − 2F

v2t
Ey +

(
F ′ + 2vz

v2t
F

)(
kz Ey − ky Ez

ω

)
(4.214)

αz = F ′Ez. (4.215)

Since we need to calculate the mean current density from equation (4.177), we
will require integrals over the perpendicular velocities of the type

Gn(a) = 1√
πvt

∫ ∞

−∞
vne−iav−v2/v2t dv (4.216)
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which by completing the square are

G0(a) = e−a2v2t /4 (4.217)

G1(a) = e−a2v2t /4
(
− iav2t

2

)
(4.218)

G2(a) = e−a2v2t /4
(
v2t

2
− a2v4t

4

)
. (4.219)

Now each integral is of the form Gn(ax)Gm(ay), so they all have the common
exponential factor exp[−(a2x + a2y)v

2
t /4], which may be written as

(a2x + a2y)
v2t

4
= λ(1− cosωcτ ) (4.220)

where λ = 1
2k

2⊥ρ2L and ρL = vt/ωc is the Larmor radius.
The pertinent integrals then lead to

〈 f1〉⊥ = q

m

∫ ∞

0
dτeφ

[
iv2t
2
(Axax + Ayay)− αz

]
(4.221)

〈vx f1〉⊥ = q

m

∫ ∞

0
dτeφ

[
v4t

4
(Axax + Ayay)ax + v2t

2
(iaxαz − Ax)

]

(4.222)

〈vy f1〉⊥ = q

m

∫ ∞

0
dτeφ

[
v4t

4
(Axax + Ayay)ay + v2t

2
(iayαz − Ay)

]

(4.223)

where now, φ = i(ω − kzvz)τ − λ(1− cosωcτ ), and

Axax + Ayay = 1

ωc
[(αxkx + αyky) sinωcτ + ε(αykx − αx ky)(1− cosωcτ )].

Problem 4.3.6. Maxwellian distribution.

(i) Fill in the steps leading to equation (4.208).
(ii) Fill in the steps leading to equation (4.209) through equation (4.215).

Problem 4.3.7. Integrating over the perpendicular velocities.

(i) Verify equation (4.217) through equation (4.219).
(ii) Verify equation (4.220).
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4.3.4.2 Integrating over time.

In order to integrate over τ , it will be convenient to introduce another Bessel
identity,

eλ cosωcτ =
∞∑

n=−∞
In(λ)einωcτ (4.224)

where In(λ) is the modified Bessel function of the first kind. We may use
this identity in a similar fashion to the other Bessel identity and its use in the
orthogonality relation of equation (4.182) to obtain

∞∑
n=−∞

∫ ∞

0
dτ In(λ)ei(ω+nωc−kzvz)τ




1
cosωcτ

sinωcτ

sinωcτ cosωcτ

sin2 ωcτ




=
∞∑

n=−∞




iIn(λ)
iI ′n(λ)
n
λ
In(λ)

n
λ2
[λI ′n(λ)− In(λ)]

i
λ2
[λI ′n(λ)− n2 In(λ)]




1

(ω + nωc − kzvz)
. (4.225)

Using these relations in equation (4.221) through equation (4.223) accomplishes
the integral over time, and the results may be summarized as follows.

〈 f1〉⊥ = iv2t q e
−λ

2ωcm

∞∑
n=−∞

κ+nIn/λ+ iεκ−(In − I ′n)− 2αzωc In/v2t
ω + nωc − kzvz

(4.226)

〈vx f1〉⊥ = iv2t q e
−λ

2ωcm

∞∑
n=−∞

κxn In + (iεκy − κ−kyv2t /ωc)λ(In − I ′n)
λ(ω + nωc − kzvz)

(4.227)

〈vy f1〉⊥ = iv2t q e
−λ

2ωcm

∞∑
n=−∞

κyn In − (iεκx − κ−kxv2t /ωc)λ(In − I ′n)
λ(ω + nωc − kzvz)

(4.228)

where κ+ = αx kx + αyky , κ− = αykx − αx ky , κx = αxnωc − αzkx , and
κy = αynωc − αzky .

4.3.4.3 Integrating over the parallel velocity

In order to integrate over the parallel velocity distribution, we must specify
the form of the distribution, and we shall choose a shifted Maxwellian, or
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equivalently, a Maxwellian with a drift velocity such that

F(vz) = 1√
πv�

exp

[
− (vz − v0)

2

v2�

]
(4.229)

where v� is the longitudinal thermal speed given by v2� ≡ 2KT‖/m. Since αx , αy
and αz may be expressed in terms of F and F ′, and since

F ′(vz) = −2(vz − v0)

v2�

F(vz)

the required integrals are all of the form

Fm = 1√
πv�

∫ ∞

−∞
dvz

vmz F(vz)

ω + nωc − kzvz
m = 0, 1, 2. (4.230)

Changing variables to u = (vz − v0)/v�, these moments of F may be expressed
as

Fm(ζn) = − 1

kzv�
√
π

∫ ∞

−∞
(v0 + uv�)me−u

2
du

u − ζn
(4.231)

where

ζn = ω + nωc − kzv0
kzv�

. (4.232)

Using the definition of the plasma dispersion function of equation (4.27), the
required moments are

F0(ζn) = − 1

kzv�
Z(ζn) (4.233)

F1(ζn) = 1

kz

[
1

2
Z ′(ζn)− v0

v�
Z(ζn)

]
(4.234)

F2(ζn) = v�

kz

[(
ζn

2
+ v0

v�

)
Z ′(ζn)− v20

v2�

Z(ζn)

]
(4.235)

and using these, the integrals involving F ′ are∫ ∞

−∞
dvz

F ′(vz)
ω + nωc − kzvz

= − 1

kzv2�
Z ′(ζn) (4.236)

∫ ∞

−∞
dvz

vz F ′(vz)
ω + nωc − kzvz

= − 1

kzv�

(
ζn + v0

v�

)
Z ′(ζn). (4.237)

The total current density is finally constructed from

j =
∑
j

n j q j

∫ ∞

−∞
dvz[〈vx f1 j 〉⊥êx + 〈vy f1 j 〉⊥êy + vz〈 f1 j 〉⊥êz]. (4.238)

Copyright © 2003 IOP Publishing Ltd.



Problem 4.3.8. Parallel velocity integrals. Verify equations (4.234)–(4.237).

Problem 4.3.9. Lorentzian distribution. Evaluate the integrals corresponding to
equations (4.233)–(4.237) for the Lorentzian distribution function:

F(vz) = A/[(vz − v0)
2 + v2� ].

4.3.5 The dielectric tensor

From the current density of equation (4.238), all of the dielectric tensor elements
may be constructed from the mobility tensor, M, where 〈v j 〉 = M j · E by

K = I+
∑
j

n j q j

−iωε0 M j . (4.239)

The final forms are not unique, since

∞∑
n=−∞

nIn =
∞∑

n=−∞
(In − I ′n) = 0 (4.240)

so certain terms can be added or subtracted. The general components may be
expressed as

K0 = 2
∑
j

ω2
pje

−λ j

ωkzv�j

∞∑
n=−∞

λ j (In − I ′n)
[(

1− kzv0 j
ω

)
Z(ζnj )

+kzv�j
ω

(
1− T⊥ j

T‖ j

)
Z ′(ζnj )

2

]
(4.241)

K1 = 1+
∑
j

ω2
pje

−λ j

ωkzv�j

∞∑
n=−∞

n2 In
λ j

[(
1− kzv0 j

ω

)
Z(ζnj )

+kzv�j
ω

(
1− T⊥ j

T‖ j

)
Z ′(ζnj )

2

]
(4.242)

K2 = i
∑
j

ε jω
2
pje

−λ j

ωkzv�j

∞∑
n=−∞

n(In − I ′n)
[(

1− kzv0 j
ω

)
Z(ζnj )

+kzv�j
ω

(
1− T⊥ j

T‖ j

)
Z ′(ζnj )

2

]
(4.243)

K3 = 1−
∑
j

ω2
pje

−λ j

ωkzv�j

∞∑
n=−∞

In

(
ω + nωcj

kzv�j

)

×
{[

1+ nωcj

ω

(
1− T‖ j

T⊥ j

)]
Z ′(ζnj )
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+2nωcj T‖ jv0 j
ωT⊥ jv�j

[
Z(ζnj )+ kzv�j

ω + nωcj

]}
(4.244)

K4 =
∑
j

k⊥ω2
pje

−λ j

kzωωcj

∞∑
n=−∞

nIn
λ j

{
nωcjv0 j

ωv�j
Z(ζnj )

+
[
T⊥ j

T‖ j
− nωcj

ω

(
1− T⊥ j

T‖ j

)]
Z ′(ζnj )

2

}
(4.245)

K5 = i
∑
j

k⊥ε jω2
pje

−λ j

kzωωcj

∞∑
n=−∞

(In − I ′n)
{
nωcjv0 j

ωv�j
Z(ζnj )

+
[
T⊥ j

T‖ j
− nωcj

ω

(
1− T⊥ j

T‖ j

)]
Z ′(ζnj )

2

}
(4.246)

and K6 = K4 and K7 = K5, so the hot plasma dielectric tensor of
equation (4.183) reduces to the form

K =

 K1 + sin2 ψK0 K2 − cosψ sinψK0 cosψK4 + sinψK5

−K2 − cosψ sinψK0 K1 + cos2ψK0 sinψK4 − cosψK5
cosψK4 − sinψK5 sinψK4 + cosψK5 K3




(4.247)
where kx = k⊥ cosψ and ky = k⊥ sinψ . The proof that K6 = K4 and K7 = K5,
where K6 and K7 come from 〈vz〉 and K4 and K5 come from either 〈vx 〉 or 〈vy〉
is only apparent when the Bessel identities of equation (4.240) are used.

The dielectric tensor, which is not, in general, Hermitian, does have the
symmetry property that Kij (B0) = K ji(−B0) (ωcj → −ωcj ), since K2(−B0) =
−K2(B0) and K5(−B0) = −K5(B0) while the other components are invariant,
and this is a general result from the Onsager relations.

It is customary to set ψ = 0 so kx = k⊥ and ky = 0, which can be
accomplished by merely rotating the coordinate system, but the full symmetry
is more apparent in this presentation.
Special Case: Isotropic Maxwellian without Drifts. When v0 j = 0 and T⊥ j =
T‖ j , then the tensor components simplify significantly, and may be represented
by

K0 = 2
∑
j

ω2
pje

−λ j

ωkzv j

∞∑
n=−∞

λ j (In − I ′n)Z(ζnj ) (4.248)

K1 = 1+
∑
j

ω2
pje

−λ j

ωkzv j

∞∑
n=−∞

n2 In
λ j

Z(ζnj ) (4.249)

K2 = i
∑
j

ε jω
2
pje

−λ j

ωkzv j

∞∑
n=−∞

n(In − I ′n)Z(ζnj ) (4.250)
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K3 = 1−
∑
j

ω2
pje

−λ j

ωkzv j

∞∑
n=−∞

Inζnj Z
′(ζnj ) (4.251)

K4 =
∑
j

k⊥ω2
pje

−λ j

2kzωωcj

∞∑
n=−∞

nIn
λ j

Z ′(ζnj ) (4.252)

K5 = i
∑
j

k⊥ε jω2
pje

−λ j

2kzωωcj

∞∑
n=−∞

(In − I ′n)Z ′(ζnj ). (4.253)

Problem 4.3.10. Cold plasma limits. For v0 j = 0,

(i) Calculate the six dielectric tensor elements as T⊥ → 0, T‖ �= 0.
(ii) Calculate the six dielectric tensor elements as T‖ → 0, T⊥ �= 0.
(iii) Calculate the six dielectric tensor elements as T‖, T⊥ → 0. Show that
this reduces to the cold plasma dielectric tensor. Does the order in which
these limits are taken matter?

4.3.6 The hot plasma dispersion relation

The vector wave equation of equation (2.18), when ky �= 0 takes the form


 κxx − k2z − k2y κxy + kxky κxz + kxkz

κyx + kykx κyy − k2z − k2x κyz + kykz
κzx + kzkx κzy + kzky κzz − k2⊥




 Ex

Ey

Ez


 = 0 (4.254)

where the various tensor elements are given in equation (4.247) and we define
κ j ≡ (ω2/c2)K j . The dispersion relation is given by setting the determinant of
coefficients to zero, and it may be written either in terms of Kij , nx , ny , and nz
(dimensionless quantities), or in terms of κi j , kx , ky , and kz as written here.

While it is apparent that the components of the wave equation depend on ψ ,
the hot plasma dispersion relation (HPDR) does not, and may be written as

[γ (γ − κ0 + k2⊥)+ κ22 ]κ3 + k2⊥[(γ − κ0 + k2⊥)κ1 − κ22 ]
+ κ4(γ − κ0 + k2⊥)(2k⊥kz + κ4)− κ5[γ κ5 + 2κ2(k⊥kz + κ4)] = 0

(4.255)

where we have introduced γ ≡ k2z − κ1.

Problem 4.3.11. HPDR. Show that the determinant of coefficients of equa-
tion (4.254) results in the hot plasma dispersion relation given by equa-
tion (4.255).
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4.3.7 Examples of hot plasma wave effects

4.3.7.1 Parallel propagation

For parallel propagation, k⊥ = λ = 0 and the tensor elements simplify since the
infinite sums reduce to either one or two terms. In addition, we find K0 = K4 =
K5 = 0, so the dispersion relation reduces to

(γ 2 + κ22 )κ3 = 0 (4.256)

so the roots are κ3 = 0, and k2z = κ1 ± iκ2. The first root is the plasma wave
which is unaffected by the magnetic field, so it is the case treated in section 4.2.5
with the dispersion relation of equation (4.138). The other two roots are the R-
and L-waves, whose dispersion relations reduce to

n2R,L = K1 ± iK2

= 1+
∑
j

ω2
pj

ωkzv�j

[
Z1 j

(
1± ε j

2

)
+ Z−1 j

(
1∓ ε j

2

)]
(4.257)

where

Z±1 =
(
1− kzv0

ω

)
Z(ζ±1)+ kzv�

2ω

(
1− T⊥

T‖

)
Z ′(ζ±1). (4.258)

The structure of this dispersion relation confirms the general character we
had observed with the cold plasma waves except that now resonance has a
different meaning. The R-wave is here seen to be a function of Z(ζ1i) and
Z(ζ−1e), and assuming that ω � kzv�j , then there is virtually no ion damping
associated with the R-wave since |ζ1i | � 1 and the ion damping is exponentially
small. Near the electron cyclotron resonance, however, |ζ−1e| � 0, and in this
limit Z(ζ−1e) � i

√
π so there is no longer any resonance at the electron cyclotron

frequency, but now there is strong damping. If we neglect drifts and anisotropic
temperature effects, and assume that |ζ−1e| is large, but not too large, then the
R-wave dispersion relation reduces to

k2z c
2

ω2
= 1− ω2

pe

ω(ω − ωce)
+ i
√
πω2

pe

ωkzve
exp

[
−
(
ω − ωce

kzve

)2]
. (4.259)

Assuming weak damping such that ωi � ωr , the damping is approximately

ωi

ωr
∼ −

√
πω2

pe

ωr kzve[2+ ω2
peωce/ωr (ωr − ωce)2] exp

[
−
(
ωr − ωce

kzve

)2]
(4.260)

which indicates the damping is exponentially small far from resonance, but as
resonance approaches, the exponential term grows but the denominator also
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grows, suggesting a maximum value of the damping rate before resonance is
reached. This is misleading, however, since the growing denominator depended
on the weak damping assumption and this is no longer valid where this growing
term dominates. In fact, it may be shown that for ωr = ωce that ωi � ωr . Except
near this resonance, the damping is weak, so the cold plasma dispersion relation
is relevant except near resonance.

The transition to an electron acoustic wave is much more questionable,
however, since the transition does not occur until the influence of the resonance
has slowed the phase velocity to the neighborhood of the thermal velocity. In
order to see the difficulty more clearly, we write the dispersion relation including
the next higher order term in the expansion of the PDF. This leads to

k2z c
2

ω2
= 1− ω2

pe

ω(ω − ωce)

[
1+ k2z v

2
e

2(ω − ωce)2

]
+ i
√
πω2

pe

ωkzve
exp

[
−
(
ω − ωce

kzve

)2]
(4.261)

where now we can see that for the thermal term to become important, which is
a necessary condition for the acoustic branch, we require kzve/(ω − ωce) > 1
and before this happens we have entered or passed through the strong cyclotron
damping region. For waves dominated by the derivative of the PDF, Z ′(ζ ), rather
than Z(ζ ), as was the case for the ion acoustic wave in section 4.2.5, there is a
weakly damped wave on the other side when |ζ | � 1, but such is not the case for
the R- or L-wave with T⊥ = T‖.

Problem 4.3.12. Damping rate at resonance. Show that ωi � ωr for the R-wave
at ωr = ωce.

4.3.7.2 Finite Larmor orbit effects

Considering the influence of a magnetic field on the hot plasma adds another
effect that is entirely independent of the Landau or cyclotron damping we have
discovered in the unmagnetized plasma or, in the case of parallel propagation,
in a magnetized plasma. These effects are generally called finite Larmor orbit
(FLR) effects and introduce two new general kinds of effects, one of which is
the addition of higher cyclotron harmonic effects, indicated by the infinite sums
in each of the dielectric tensor components, and the other a class of electrostatic
waves that have no counterpart in the cold plasma, and differ dramatically from
the warm plasma electrostatic waves we have already encountered. These latter
waves, which are commonly called Bernstein modes after I Bernstein because of
his analysis of the hot plasma electrostatic dispersion relation as kz → 0 [45],
will be treated in the next section. In this section, we investigate the lowest-order
FLR effects by treating λ j = 1

2k
2⊥ρ2L j as a small parameter.

Before expanding the tensor elements in λ j , we first discuss the physics of
this new phenomenon. When the wavelength perpendicular to the magnetic field
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Figure 4.7. L-wave electric fields on an ion as it follows its orbit counterclockwise with
ω = 2ωci : (a) with k⊥ = 0; (b) with k⊥ρLi = π/2.

is infinite (k⊥ = 0), then as each particle executes its circular orbit, it maintains
the same phase relation relative to the driving wave since the driving wave has no
spatial dependence across the orbit. If we consider a case where ω = 2ωc and
k⊥ = 0, and follow an ion making a counterclockwise orbit beginning at point
a in figure 4.7(a) where the vectors indicate the direction of the wave’s electric
field at various points along the orbit, it is clear that the particle gains energy from
the wave at a where the motion and the field are parallel. Following it around,
it is moving perpendicular to the wave field at b, so it is neither accelerated nor
decelerated there. It is moving antiparallel to the wave field at c so it is being
slowed down there, and the point d is essentially equivalent to b, where there is
no effect on the orbit. We can see that for this case, on the average, there is no
net effect at this frequency, so the particles and wave show no special effects. If,
however, we consider a case where the wavelength across the orbit is twice the
orbit diameter, the situation is as shown in figure 4.7(b) (with the wave traveling
to the right).

For this case, the phase is chosen so that the electric field is again parallel
to the motion at a, but now it is antiparallel at b, and parallel again at both c
and d . From the indicated directions for the wave field at the intermediate points,
it may be seen that the interaction nearly cancels on the upper half of the orbit,
while the ion is being accelerated continuously on the lower half of the orbit.
This difference is due to the fact that in the upper half of the orbit, the particle
is moving to the left and the wave is moving to the right, so the phase changes
rapidly, while in the lower half, the particle is moving in the same direction as
the wave and the particle nearly stays in phase with the wave field. For any finite
k⊥ there is a nonvanishing contribution at every harmonic when averaged over
the distribution, but for small k⊥ρL , the interaction is progressively weaker as the
harmonic number increases.

Keeping only first order terms in the expansion parameter λ j (not to be
confused with the perpendicular wavelength λ⊥ in figure 4.7), the isotropic
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temperature tensor components of equation (4.248) through equation (4.253) are:

K0 =
∑
j

2ω2
pjλ j

ωkzv j
{Z(ζ0)− 1

2 [Z(ζ1)+ Z(ζ−1)]} j (4.262)

K1 = 1+
∑
j

ω2
pj

2ωkzv j
{[Z(ζ−1)+ Z(ζ1)](1− λ)+ λ[Z(ζ−2)+ Z(ζ2)]} j

(4.263)

K2 = i
∑
j

ε jω
2
pj

2ωkzv j
{[Z(ζ−1)− Z(ζ1)](1− 2λ)+ λ[Z(ζ−2)− Z(ζ2)]} j

(4.264)

K3 = 1−
∑
j

ω2
pj

ωkzv j
{ζ0Z ′(ζ0)(1− λ)+ λ

2
[ζ−1Z ′(ζ−1)+ ζ1Z

′(ζ1)]} j

(4.265)

K4 =
∑
j

ω2
pj

√
λ j

2
√
2ωkzv j

[Z ′(ζ1)− Z ′(ζ−1)] j (4.266)

K5 = i
∑
j

ε jω
2
pj

√
λ j√

2ωkzv j
{Z ′(ζ0)− 1

2 [Z ′(ζ1)+ Z ′(ζ−1)]} j . (4.267)

From these expressions, several things are immediately evident. To zero
order in λ j , it is apparent that only K1, K2, and K3 are nonzero, and they have no
cyclotron interactions above the fundamental resonance (which we shall call the
first harmonic so that n = 1 is the first harmonic, n = 2 is the second harmonic,
etc. Other authors sometimes use n = 1 as the fundamental, n = 2 as the first
harmonic, etc). From these it is easy to recover the cold plasma dielectric tensor
by using the large argument expansion of the PDF. It is also apparent that through
first order, only K1 and K2 have an interaction at the second harmonic (n = ±2).
Thus if one wanted to examine effects near the second harmonic, it would be
appropriate to neglect all other first-order terms in λ j except the harmonic terms,
because the harmonic resonant terms can be taken to be large near their resonance
(a large term multiplied by a small term could be considered zero order, while all
other first-order terms would be small by comparison). It follows that near these
harmonics, we only need K1, K2, and K3.

Some comments about the order of K4 and K5 are in order since they
appear to be of order

√
λ j in equations (4.266) and (4.267). That these are

properly considered as first order in λ j is evident first by noting from the HPDR,
equation (4.255), that both K4 and K5 appear multiplied by kzk⊥ or one another,
so their terms appear in the dispersion relation as first order in λ j . If we use the
large argument expansion for Z(ζ ) in equation (4.266) for K4, for example, we
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find

K4 � −
∑
j

ω2
pj kzk⊥v2j

(ω2 − ω2
cj )

2

and the expression for K5 is similar. This means that multiplying either by kzk⊥
or by one another produces a term of the order of λ j in the HPDR. Hence we have
not included any higher-order terms for these components.

Problem 4.3.13. Third harmonic. Find the tensor elements corresponding to
equations (4.262) through (4.267) near the third harmonic. (Neglect n ± 2 terms,
but go to order λ2 for n ± 3.)

4.4 Electrostatic waves

For hot plasmas, where the tensor elements are so formidable individually and the
dispersion relation virtually defies any analytic analysis for any but the simplest
cases, the simplifications of the electrostatic approximation make it even more
attractive than it was in either the cold or warm plasma approximations. The
general hot plasma electrostatic dispersion relation from equation (2.106) results
in

k2⊥κ1 + 2k⊥kzκ4 + k2z κ3 = 0. (4.268)

While it is possible to combine the terms in the expressions for K1, K3,
and K4 to simplify this dispersion relation, it will be useful for a large k⊥
approximation to begin again with the integrals over the unperturbed orbits.
We start with the electrostatic restriction that ωB1 = k × E1 = 0 so the
Fourier transform of the electric field may be represented by E = −ikϕ. Then
equation (4.221) reduces to

〈 f1〉⊥ = −qϕ

m

∫ ∞

0
dτ eφ

(
Fk2⊥
ωc

sinωcτ − ikz F
′
)
. (4.269)

Integrating over time, this becomes

〈 f1〉⊥ = −qϕe−λ

m

∞∑
n=−∞

(
nFk2⊥
λωc

+ kz F
′
)

In(λ)

ω + nωc − kzvz
(4.270)

and finally, integrating over the parallel velocity distribution, this becomes

〈 f1〉 = 2qϕe−λ

mv2�

∞∑
n=−∞

[
1+ ω + nωc(1− T‖/T⊥)− kzv0

kzv�
Z(ζn)

]
In(λ).

(4.271)
Then we use Poisson’s equation,

∇2ϕ = −k2ϕ = − ρ

ε0
= − 1

ε0

∑
j

n0 j q j 〈 f1 j 〉
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to obtain the hot plasma electrostatic dispersion relation

k2 +
∑
j

2ω2
pje

−λ j

v2�j

∞∑
n=−∞

[
1+ ω + nωcj (1− T‖ j/T⊥ j )− kzv0 j

kzv�j
Z(ζnj )

]

× In(λ j ) = 0. (4.272)

Problem 4.4.1. The hot plasma electrostatic dispersion relation. Show that the
hot plasma electrostatic dispersion relation of equation (4.272) (with T⊥ = T‖ and
v0 j = 0) can be obtained from the general hot plasma dielectric tensor elements.
First show that k·K·k = 0 leads to equation (4.268). Then use the tensor elements
from equations (4.248) through (4.253) for T⊥ = T‖ and v0 j = 0. (Hint: A Bessel
identity is required.)

4.4.1 Perpendicular propagation–Bernstein modes

We have seen a variety of hot plasma effects due to Landau and cyclotron
damping, but another important result has no damping associated with it at all, and
this is the case for perpendicularly propagating electrostatic waves. As kz → 0,
the dispersion relation reduces to

k2⊥ =
∑
j

2k2Dje
−λ j

∞∑
n=1

In
n2

ν2j − n2
(4.273)

where again k2Dj = 2ω2
pj/v

2
j is the Debye wavenumber and ν j = ω/ωcj .

This dispersion relation has a resonance at every harmonic of both cyclotron
frequencies but the ‘strength’ of the resonance indicated by In(λ j ) becomes small
for large n. We also note that there is no absorption here to damp out the wave
at resonance. Within the framework of the collisionless theory outlined in this
chapter, these resonances remain unresolved.

Examining equation (4.273) for small λi (which means λe � 1 since
λe/λi = Teme/Timi � 1), we shall approximate In(λ) � (λ/2)n/n! and
consider cold electrons. In this case, the dispersion relation can be approximated
by

V 2
A

c2
= 1

ν2 − 1
+ λi

ν2 − 4
+ 3λ2i

8(ν2 − 9)
+ · · · (4.274)

where we have neglected me/mi and taken e−λi = 1. If we investigate the
behavior near ν � 2, letting ν = 2 in the nonresonant terms, then to lowest
order,

ν = 2− 3λi
4(1− 3V 2

A/c
2)

(4.275)

so the wave propagates below the second harmonic, and for large λi , the
dispersion relation approaches the fundamental. This is shown in figure 4.8(a)
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Figure 4.8. Ion Bernstein wave dispersion relations: (a) the first few modes with
ω� ωLH (ω2

pe/ω
2
ce = 10); (b) higher order modes near ωLH (ωpe/ωce = 0.1).

where the dispersion relation falls away from ν = 2 with linear slope for small
λi .

Using the same technique near ν � 3, the result to lowest order is

ν = 3− λ2i

2(1− 8V 2
A/c

2)
(4.276)

so this wave begins with zero slope in figure 4.8(a) and then falls toward ν = 2
as λi gets large. We can generalize this analysis to

ν = n − (n2 − 1)λn−1i

2n(n − 1)![1− (n2 − 1)V 2
A/c

2] (4.277)

so for the higher harmonics, ν deviates less and less from the resonance for fixed
λi , but eventually approaches the next lower harmonic.

For sufficiently high harmonics, or for sufficiently low density, however, the
character of these dispersion curves changes, since for λi = 0, equation (4.273)
reduces to

1 = ω2
pe

ω2 − ω2
ce
+ ω2

pi

ω2 − ω2
ci

(4.278)

which is the condition for the hybrid resonances. Hence one curve begins at
ν = ωLH/ωci for λi = 0 and then falls to the next lower harmonic as λi → ∞.
The wave whose dispersion curve starts at the next higher resonance then lies
above the resonance, rising to a maximum at some finite λi (but below the next
higher resonance) and then falls back to the same resonance as λi → ∞. This
behavior is illustrated in figure 4.8(b).
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4.4.2 High-order Bernstein modes

Whenever the perpendicular wavelength gets very short (or k⊥ gets large), the
Bessel function sum is a tedious representation since many terms are required for
large λ. This situation occurs for lower hybrid waves, where the approach to the
hybrid resonance leads to large values of λi . There are two ways of treating this
case, and it is instructive to examine both.

4.4.2.1 Unmagnetized ions

First, if k⊥ρi � 1, then an individual particle follows a nearly straight line over
a single perpendicular wavelength, and during that portion of its orbit when it is
traveling parallel to the wave, it may interact resonantly with the wave and one
might expect Landau damping of the wave. This approximation is equivalent to
ignoring the magnetic field entirely, but we still speak of the electrons as being
magnetized with only the ions being unmagnetized. The electrostatic dispersion
relation for this case, with cold electrons (λe � 1, ω/kzve � 1), becomes

k2z

(
1− ω2

pe

ω2

)
+ k2⊥

(
1+ ω2

pe

ω2
ce

)
− k2Di

2
Z ′
(
ω

kvi

)
= 0 (4.279)

where we note that the electron terms distinguish between parallel and
perpendicular directions, but the ion term does not. If we then take the limit
as kz → 0, there is still Landau damping through the ion term, depending on the
argument ζ⊥ = ω/k⊥vi . This conflicts with the general electrostatic dispersion
relation, equation (4.272), where there were no imaginary parts with kz = 0, and
hence no damping of any kind. Obviously, there is some transition between these
two cases, since if we let the magnetic field approach zero, Landau damping must
eventually occur at any angle, but if we allow particles to execute their full Larmor
orbits, the damping disappears. From the physical picture of Landau damping,
where thermal spreading leads to the disappearance of the wave, this would
imply that if the wave is completely damped before the particle orbit deviates
significantly from a straight line, we would expect to observe Landau damping.
However, it may be shown that as particles execute the remainder of their orbits,
however slowly, the wave is reconstructed and there is no net damping. In order
to observe this Landau damping, then, it is necessary that the usually neglected
collisions be frequent enough that the particles lose their phase information before
completing their Larmor orbits, or ωciτi < 1 where τi is the mean ion collision
time (this limit is overly stringent, since phase information is generally lost before
particles make 90◦ deflections, on the average).

Problem 4.4.2. The unmagnetized ion dispersion relation.

(i) Show that in the cold ion limit of equation (4.279) that ω = ωLH .
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(ii) Show that in keeping the first warm ion term in equation (4.279), there
are two branches of the dispersion relation, and sketch them (ω versus k⊥,
kz as a parameter).

4.4.2.2 The large-λ dispersion relation

The other way to understand this problem, without assuming the ions are
unmagnetized, is to find another way to treat the Bessel sum so that some analytic
function can guide us in this limit. For this analysis, we shall assume the electrons
are again cold and separate out the cold electron terms with the result,

k2z

(
1− ω2

pe

ω2

)
+ k2⊥

(
1+ ω2

pe

ω2
ce

)

+ k2Di

∞∑
m=−∞

e−λ Im(λ)
[
1+ ω

kzvi
Z

(
ω + mωci

kzvi

)]
= 0. (4.280)

By adding and subtracting the leading asymptotic term for Z (Z(ζ ) → Z(ζ ) +
1/ζ − 1/ζ ) and regrouping the terms, the ion sum can be written exactly as

∞∑
m=−∞

Im

[
1+ ω

kzvi
Z(ζm)

]
= −2

∞∑
m=1

m2 Im
ν2 − m2

−
∞∑

m=−∞

ν Im Z ′(ζm)
2(ν + m)

where ν = ω/ωci .
The single-ended sum has most of the dispersive information, and the sum

involving the PDF is important only near each harmonic. We may thus make the
approximation that the absorption is due to only a single resonant term and reduce
that sum over m to the one term at m = −n where n is the integer closest to ν.
The other sum we define by

F(ν, λ) ≡ −2e−λ
∞∑

m=1
Im

m2

ν2 − m2
= 1+ iν

∫ ∞

0
e−λ(1−cos z)+iνz dz (4.281)

where we have used the identity
∑∞

m=−∞ e−λ Im(λ) = 1 and equation (4.224)
and Im(ν) > 0 in establishing the second equality. At this point, we have simply
backed up from the Bessel sum to the integral over time, but now we wish to
evaluate F(ν, λ) by asymptotic methods instead of using the Bessel sums. To this
end, we define our largeness parameter κ = √ν2 + λ2 so that

F(ν, λ) = 1+ iνe−λ
∫ ∞

0
eκh(z) dz (4.282)

where

h(z) = λ

κ
cos z + i

ν

κ
z.
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Figure 4.9. Saddle points and modified contour for evaluating F(ν, λ).

The saddle points occur where h′(z) = 0, or at

z0 = nπ +




i log

(
ν + κ

λ

)
n even

−i log
(
ν + κ

λ

)
n odd

so an infinite number of saddle points are located above and below the real z-axis
as shown in figure 4.9 for real λ and ν.

The lower saddle points can be shown to be exponentially small for large
real κ , so we will deform the path from along the real axis to go up along the
imaginary axis to the first saddle point, and then turn and go to infinity, crossing
half of the first saddle point and all of the remaining saddle points above the axis.
Each saddle point of the integral of equation (4.282) contributes a term

Tn =
√
2π

κ
exp

[
κ − ν log

(
ν + κ

λ

)]
e2π inν = 2π Iν(λ)e2π inν (4.283)

where the latter equality comes from the large order expression for Bessel
functions of fractional order. The total contribution from the saddle points is
then

∑
Tn = 2π Iν(λ)

(
1

2
+

∞∑
n=1

e2π inν
)
= iπ Iν (λ) cotπν (4.284)

where the geometric series has been summed. The factor of 1/2 in the sum comes
from crossing only the right-hand half of the first saddle point.

For the integral from the origin to the first saddle point along the imaginary
axis, we note that at the end point η ≡ log[(ν + κ)/λ] � ν/λ � 1 since we take
both ν and λ large but λ� ν, but with a2 ≡ ν2/2λ, we take a to be of order unity
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(1 < a < 10). Then we may approximate cos z � 1 − z2/2 so that the integral
becomes

iν
∫ iη

0
eλ(cos z−1)+iνzdz � −

∫ νη

0
exp

(
y2

4a2
− y

)
dy

= − 2ae−a2
∫ a

b
eξ

2
dξ

= a[℘Z(a)− eb
2−a2℘Z(b)] (4.285)

= a[Z(a)− eb
2−a2 Z(b)] (4.286)

where νz = iy, ξ = a − y/2a, and b = a(1 − λη/ν) � ν2/6λ2 � 1. The
expressions in equation (4.285) came from equation (B.26), and we note that they
represent the principal part of each Z -function, so there is no imaginary part (for
real a and b). Each term in equation (4.286) has an imaginary part, but the sum
does not. Since b � 1, it is convenient to discard that term and use the principal
part notation, ℘Z(a), for the remaining term.

We can finally combine the vertical segment with the saddle point
contributions with the result

F(ν, λ) = − 1
2℘Z ′(a)− πν cotπνe−λ Iν(λ). (4.287)

The dispersion relation then may be written without any sums as

k2z

(
1− ω2

pe

ω2

)
+ k2⊥

(
1+ ω2

pe

ω2
ce

)
− k2Di

2
℘Z ′

(
ω

kvi

)

= k2Di

[
πν cotπνe−λ Iν(λ)+ νe−λ In(λ)

2(ν − n)
Z ′(ζ−n)

]
(4.288)

since a = ω/k⊥vi .
We note several things about this large-λ dispersion relation. First, if we

neglect the resonant terms (the terms involving the Bessel functions), then there is
no damping, but the dispersion relation is precisely the same as the unmagnetized
dispersion relation except for the damping. This illustrates that there is no
damping due to unmagnetized effects, although the dispersive behavior away from
the resonances is well described by this simpler dispersion relation. Any damping
comes only from the resonant term, and that only when kz �= 0. Second, there
appears to be a singularity as ν → n, but both harmonic terms are resonant and the
singularity cancels, so the dispersion relation is well behaved at the singularity.
This may be seen by letting ν = n + δ with δ small so that πν cotπν ∼ 1+ n/δ
and expanding Iν about In so that the last two terms reduce to

−πν cotπνe−λ Iν(λ)− νe−λ In(λ)
2(ν − n)

Z ′(ζ−n) � e−λ In(λ)ζ0Z(ζ−n) (4.289)
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which is nonsingular. Thirdly, numerical solutions of this dispersion relation show
that the cold lower hybrid wave is uncoupled to these harmonic resonances, but
the upper, warm branch, does couple to these ion Bernstein modes, with a region
of nonpropagation at each harmonic resonance. Finally, if we were to imagine a
wave propagating through a plasma with a very slowly varying magnetic field, so
that the propagating wave passed through a series of these harmonic resonances,
the warm wave would have to tunnel through a layer at each resonance, losing
energy at each harmonic, and the net effect of this loss over a series of harmonics
is equivalent to unmagnetized ion Landau damping. For this case, however, when
kz → 0, there is no true damping, but the wave energy is mode converted out of
the warm lower hybrid wave into the several ion Bernstein modes. The process of
mode conversion is discussed in chapter 6.

Problem 4.4.3. The large-λ dispersion relation.

(i) Prove equation (4.281).
(ii) Do the saddle point integrals to establish equation (4.283). (Fill in the
steps from equation (4.282) to equation (4.283).)
(iii) Do the integral along the imaginary axis to establish equation (4.286).
(iv) For ν = 40, λ = 100, evaluate a, b, η, eb

2−a2 Z(b)/Z(a)(principal part),
and discuss the validity of the various approximations made earlier.

Problem 4.4.4. Extensions for λ < 0 or complex. Evaluate the contribution from
the sum over the saddle points that lie below the axis, and show that these may be
represented by the additional term in F(ν, λ):

F(ν, λ) = · · · − iν cscπνe−λKν(λ).

With this additional term, the dispersion relation may be extended to complex and
negative values of λ (where this term dominates).

Problem 4.4.5. Resonant damping term. Fill in the missing steps leading to
equation (4.289).

4.5 Velocity space instabilities

4.5.1 Anisotropic temperature

While it is often difficult to do anythingmore than estimate the damping or growth
rate when the imaginary part of ω is much smaller than the real part, there is
one case where we can calculate exactly the threshold condition, or the marginal
stability condition. For either the R- or L-wave, only one species contributes any
damping or growth, and the condition that ω be exactly real is that Z−1 from
equation (4.258) have no imaginary part. The imaginary part of Z−1 may be
written as[

1− kzv0
ω

−
(
1− T⊥

T‖

)
ω − kzv0 − ωc

ω

]
i
√
πe−ζ

2−1 = 0. (4.290)
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With v0 = 0, since we are considering only the anisotropic temperature effects
here, this leads to the marginal stability condition

ωm =
(
1− T‖

T⊥

)
ωc. (4.291)

Instability occurs when Im(Z−1) < 0 or whenever ω < ωm , provided that kz is
real. To check this, we note that for ω = ωm ,

Z−1 = kzv�
ωc

T⊥
T‖

(4.292)

which is purely real, and the dispersion relation for the R-wave, from
equation (4.257) (neglecting the ion term), is

k2z c
2 = ω2

ce

(
1− T‖

T⊥

)2
+ ω2

pe

(
T⊥
T‖
− 1

)
. (4.293)

Thus, with T⊥ > T‖, the wave is propagating and it does become unstable beyond
the marginal condition. This implies that for any T⊥ > T‖, the plasma is unstable,
but unless ω ∼ ωc, the growth rate is very small as the exponent is very large.
In practical terms, the anisotropy must be very large, in which case the marginal
frequencymay approach the cyclotron frequency closely enough to get significant
effects.

Another way in which this effect of marginal stability may be perceived is
the occurrence of a transition from strong absorption to transparency in plasma
heating experiments using either electron or ion cyclotron waves. In this scenario,
we imagine, for example, an L-wave propagating toward resonance in a very
slowly decreasing magnetic field that is termed a ‘magnetic beach’ [46]. If we
imagine that any wave energy absorbed leads to increasing T⊥ only, then the wave
is absorbed very weakly far from resonance, but more strongly as resonance is
approached. This stronger absorption increases T⊥, raising ωm to ω whereupon
the plasma absorbs no further wave energy. Of course, as ω approaches ωc,
the transparency condition requires T⊥ → ∞, so some absorption must always
occur. It is clear from this example that this type of wave heating could never
lead to an instability unless the plasma with higher T⊥ drifted back towards the
source at higher magnetic field, a result that is unlikely due to the magnetic
mirror effect which would confine the higher T⊥ plasma particles to the lower
field region. In an interesting experiment on the Model C Stellarator, an L-wave
was launched in a predominantly hydrogen plasma with a deuteriumminority that
was locally resonant in a narrow depression in the magnetic field (ω � ωcH/2
so no significant hydrogen absorption occurred). Since the mirror was only a
few percent deep, it was possible to raise the TD⊥ to nearly a hundred times the
average temperature, trapping this small population in the mirror in the process
[47].
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Problem 4.5.1. Anisotropic temperature instability.

(i) Fill in the steps leading to equations (4.291) and (4.293).
(ii) Estimate the maximum kzi/kzr with ωce/kzrve = 3, ωpe/ωce = 2, for
T⊥/T‖ = 2 and T⊥/T‖ = 10.

4.6 Conservation of energy and power flow

In vacuum, we saw in chapter 1 that energy conservation and power flow
were related by the Maxwell equations, and that the energy was stored in the
electromagnetic wave fields, and the power flow given by the Poynting vector
was dependent only on the fields. Then in chapter 3 we discovered that the
plasma particles contributed both to the power flow and to the stored energy.
In this section, we use a more general formalism to include the effects of the
plasma and the effects of dissipation through an anti-Hermitian component of
the dielectric tensor and/or the effects of a complex frequency. We treat first the
temporal problem, where we obtain the stored energy density and the effects of
dissipation. We then examine in more detail the concept of group velocity, and
obtain the kinetic flux component of the power flow.

4.6.1 Poynting’s theorem for kinetic waves

When the angular frequency ω is assumed to have an imaginary part, especially
in the case where this imaginary part may vary slowly in time to represent the
slow turning on of the wave, the steady-state results of chapter 1 are not the most
fruitful for understanding energy density and power flow. Using the more general
representation of a wave field amplitude by

A(t) = Re
[

Â(ω)e−iφ(t)
]

φ(t) =
∫ t

−∞
ω(t ′) dt ′ (4.294)

the general product of two vectors may be represented by

[A][B] = 1
4 {[ Â][ B̂]e−2iφ(t)+([ Â][ B̂∗]+[ Â∗][ B̂])e2φi (t)+[ Â∗][ B̂∗]e2iφ

∗(t)}.
(4.295)

If we now take ωi � ωr and integrate over a period T = 2π/ωr , then

1

T

∫ T

0
exp

[
− 2i

∫ t

−∞
ω(t ′) dt ′

]
dt � −iωi (0)

ωr (0)
e−2iφ(0).

This means both the first and last terms in equation (4.295) may be neglected so
that a general product of this type reduces to

[A][B] = 1
4 ([ Â][ B̂∗] + [ Â∗][ B̂])e2φi (t). (4.296)
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Using these expressions, the complex Poynting vector is represented by

P = 1
4 (Ê × Ĥ∗ + Ê∗ × Ĥ)e2φi (t) (4.297)

and the conservation law from the Maxwell equations,

∇ · (E × H) = −
(

H · ∂B
∂ t
+ E · ∂D

∂ t

)

becomes

∇ · P = −∂W

∂ t
(4.298)

where

∂W

∂ t
= 1

4 [Ĥ · (−iω B̂)∗ + Ĥ∗ · (−iω B̂)+ Ê · (−iωε0K · Ê)∗

+ Ê∗ · (−iωε0K · Ê)]e2φi (t)
= 1

4 [2ωiµ0 Ĥ · Ĥ∗ + ωiε0 Ê∗ · (K+ K†) · Ê + ωrε0 Ê∗ · (iK† − iK) · Ê]
× e2φi (t) (4.299)

where we have used Ê · (K · Ê)∗ = Ê∗ · K† · Ê and K† is the Hermitian adjoint
of K given by K† = K̃∗. We define the Hermitian and anti-Hermitian portions of
K by

Kh = 1

2
(K+ K†) and Ka = 1

2i
(K− K†).

It is apparent from equation (4.299) that if ω is real and K is Hermitian, there
is no loss, so any dissipation must arise from the anti-Hermitian portion of the
dielectric tensor or the imaginary part of ω.

If we now expand the dielectric tensor about the real part of ω, we find that

K(ω) = K(ωr )+ ∂K
∂ω

∣∣∣∣
ωr

iωi + · · ·

so that

Kh(ω) = Kh(ωr )+ ∂Kh

∂ω

∣∣∣∣
ωr

iωi + · · · (4.300)

−iK(ω)+ iK†(ω∗) = 2Ka(ωr )+ 2ωi
∂Kh

∂ω

∣∣∣∣
ωr

+ · · · (4.301)

and the energy term of equation (4.299) becomes

∂W

∂ t
= 1

4

[
2ωi

(
µ0 Ĥ · Ĥ∗ + ε0 Ê∗ · ∂

∂ω
(ωKh)

∣∣∣∣
ωr

· Ê
)

+ 2ωrε0 Ê∗ · Ka(ωr ) · Ê
]
e2φi (t) (4.302)
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and we can identify the total energy as being comprised of the stored energy,

W0 = 1

4

[
µ0 Ĥ · Ĥ∗ + ε0 Ê∗ · ∂

∂ω
(ωKh)

∣∣∣∣
ωr

· Ê

]
(4.303)

and a dissipative term associated with the anti-Hermitian part of K. We can also
see that some of the stored energy is electromagnetic or electrostatic, and some is
in the particle kinetic energy, even in the cold plasma.

It is often useful to relate these two terms through the quality factor, which
is given by the ratio of the stored energy to the energy lost per cycle, or

Q = ωrW0

∂W/∂ t (loss)
= µ0 Ĥ · Ĥ∗ + ε0 Ê∗ · ∂(ωKh)/∂ω|ωr · Ê

2ε0 Ê∗ · Ka(ωr ) · Ê
(4.304)

so that a high Q indicates that the stored energy lasts many cycles and a low Q
may mean that there is very little energy circulating, as if it were all absorbed
on a single pass, or nearly so. Since in subsequent discussions, we deal nearly
universally with the amplitudes, we will delete the hat from now on, but recall the
recipe when questions about power or energy are desired.

Problem 4.6.1. Power and energy.

(i) Fill in the steps leading to equation (4.296).
(ii) Fill in the steps leading to equation (4.302) and justify equation (4.303).

Problem 4.6.2. Stored energy. Show that for simple cold plasma oscillations
(ω = ωp) that the electrostatic stored energy is equal to the particle kinetic energy.

4.6.2 Group velocity and kinetic flux

We have already discussed group velocity in the cold plasma in section 2.3,
but now in the context of a hot plasma, we need to re-examine and extend the
discussion to include the power flow due the particles, which we call the kinetic
flux. For this discussion, we restrict ourselves to a lossfree plasma and introduce
the Maxwell operator, M, which represents the Maxwell wave equation, such that

M · E = 1

4µ0ω
k × (k × E)+ ωε0

4
Kh · E (4.305)

and the wave equation is then simply

M · E = 0. (4.306)

The Hermitian adjoint of equation (4.306) is

E∗ ·M† = E∗ ·M = 0 (4.307)
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where the last equality holds for real ω and real k in which case M is Hermitian.
The idea at this point is to make small displacements in ω, k, and in

the plasma parameters, or what is essentially a variational calculation, and the
extremum will yield the group velocity. The perturbed wave equation is

M′ · E′ = 0 (4.308)

but if the perturbations are small, then we can expand

M′ = M+ δω
∂M
∂ω

+ δk · ∂M
∂k

+ δM.

We now take the scalar product of E∗ with equation (4.308) and use
equation (4.307) to obtain

E∗ ·
(
δω

∂M
∂ω

+ δk · ∂M
∂k

+ δM
)
· E′ = 0

where ∂/∂k = ∇k . Since the perturbation is small, the differences between E and
E′ lead to second order corrections, so we may write, to first order,

E∗ ·
(
δω

∂M
∂ω

+ δk · ∂M
∂k

+ δM
)
· E = 0. (4.309)

Examining each of the terms in equation (4.309) separately, we find

E∗ · ∂M
∂ω

· E = E∗ · −1
4ω2µ0

k × (k × E)+ ε0

4
E∗ · ∂

∂ω
(ωKh) · E

= 1

4

[
µ0H∗ · H + ε0E∗ · ∂

∂ω
(ωKh) · E

]
= W0 (4.310)

E∗ · ∂M
∂k

· E = − 1

4
(E∗ × H + E × H∗)+ E∗ · ωε0

4

∂

∂k
(Kh) · E

= − P − T (4.311)

where

T ≡ − ωε0

4
E∗ · ∂

∂k
(Kh) · E. (4.312)

The vector T is the kinetic flux for the hot plasma, and represents the
generalization of the kinetic flux of equation (3.148). From the form of
equation (4.312), it is apparent that T = 0 in a cold plasma or any other case
where K does not depend on k. In the thermal or streaming plasma, this term
represents the power flow carried by the particles themselves, and is essential for
the conservation of energy.

The final term in equation (4.309) is given by

E∗ · δM · E = E∗ · ω
4
δKh · E

= E∗ · ωε0
8
[δKh − (δKh)

†] · E + E∗ · ωε0
8
[δKh + (δKh)

†] · E
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where we have broken the right-hand side into anti-Hermitian and Hermitian
components. Referring back to equation (4.299), we have

E∗ · δM · E = i

2
δ

(
∂W

∂ t

)
loss
+ Hermitian terms (4.313)

and for this term the changes are due only to variations in the plasma parameters.
Since the Hermitian terms represent reactive or oscillating terms, and not energy
flow, we will neglect them and write equation (4.309) as

W0δω − (P + T) · δk + i

2
δ

(
∂W

∂ t

)
loss
= 0. (4.314)

For the discussion of group velocity, we are not concerned with losses,
provided they are small, in which case the last term in equation (4.314) may be
ignored and the result written as

vg = δω

δk
= P + T

W0
= energy flux

energy density
. (4.315)

If, however, one wishes to consider losses, then another relationship can be
derived from equation (4.314) for the temporal decay of the wave (δk = 0) where

δω = − i

2

1

W0
δ

(
∂W

∂ t

)
loss

(4.316)

and for the spatial decay, we have the corresponding relationship (δω = 0)

(P + T) · δk = i

2
δ

(
∂W

∂ t

)
loss

. (4.317)

We find then from equation (4.314) the three basic components involved in
energy conservation, namely the transport of energy in the direction of the group
velocity, given in equation (4.315), and the temporal and spatial decay of wave
energy through dissipation, indicated by equations (4.316) and (4.317). Together,
these give a good picture of the transport of energy, and the expressions for W0,
P , and T give the balance between electromagnetic stored energy and power flow
and the kinetic components of each.

Problem 4.6.3. Ion-acoustic-wave energy balance. For the ion acoustic wave
whose dispersion relation is given in equation (4.140),

(i) find the electromagnetic and kinetic components of the energy density;
(ii) find the electromagnetic and kinetic components of the power flow;
(iii) find the temporal decay rate; and
(iv) find the spatial decay rate.
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4.7 Relativistic plasma effects

While some plasmas are relatively hot, in that thermal effects beyond those
included through the pressure term are important, few plasmas are truly
relativistic such that the mean thermal speed begins to approach the speed of light.
However, some relativistic effects occur at relatively low temperatures when one
encounters cyclotron fundamental and harmonic resonances and k‖ → 0. In fact,
the typical argument of the PDF, ζn = (ω − nωc)/k‖v‖ is indeterminate as both
the numerator and denominator may approach zero at cyclotron harmonics with
k‖ = 0. Since the behavior of the PDF is dramatically different as ζn → 0 or
ζn →∞, we need to consider the physics more carefully, since the mathematics
suggests some discontinuous behavior in this region of parameter space, and we
suspect there is no such discontinuity in the physical world.

The fundamental weakness in our model is that we have taken the cyclotron
frequency to be a simple constant, independent of velocity, whereas from
special relativity, we know that this is not so, since we should write ωc =
qB0/γm. In the integral over velocity, then, the singularity in the denominator is
significantly changed, and the numerator of ζn effectively never vanishes. Thus
the indeterminate nature of the appropriate limit to take as k‖ → 0 is resolved,
since it is possible to impose k‖ = 0 externally, but the cyclotron harmonic
resonances are broadened to some finite (though frequently small) extent and
prevent the argument of the PDF from vanishing.

It would seem from the previous discussion that since hot plasma theory has
already indicated that k‖ = 0 implies no absorption, even at cyclotron harmonics,
and the relativistic corrections appear to lead to large arguments for the PDF in
this limit, that there is still no absorption. This, however, is not the case, and in
fact the absorption at k‖ = 0 is considerably stronger than one might guess, since
nontrivial absorption is encountered at the electron cyclotron fundamental and
harmonics at temperatures of only a few keV. In order to see how this comes about,
we will review the development of the relativistic dielectric tensor, including only
electrons, and eventually pay particular attention to the k‖ = 0 case.

4.7.1 The relativistic dielectric tensor

In this section, we follow the development of Trubnikov [48] for the general
development of the dielectric tensor, and present an outline of the derivation,
noting the similarities to and differences from the hot plasma derivation.

We begin with the relativistic collisionless Boltzmann equation, and shall
assume again that we may Fourier transform in both time and space, taking ω to
have a small positive imaginary part when it becomes necessary to resolve the
singularity in the momentum integrals and guarantee convergence. The kinetic
equation is

∂ f

∂ t
+ v · ∇ f + q[E1 + v × (B0 + B1)] · ∇p f = 0 (4.318)
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where the zero-order distribution is an equilibrium distribution given by

f0 = Ae−E/KT
∫

f0(p) d3p = n0 E =
√
p2c2 + m2c4. (4.319)

We note that the Boltzmann equation is unchanged except that now the
distribution function is a function of momentum rather than velocity. The
distribution function is of the standard form, except that now the energy is the
relativistic total energy (or relativistic kinetic energy by redefining the constant
A).

At this point, we take the usual coordinate system, with B0 = B0êz , and
choose k⊥ = kx (ky = 0) and use cylindrical coordinates in momentum space
such that px ≡ p⊥ cosφ, py ≡ p⊥ sin φ. We then choose to write the first-order
distribution function in terms of another function, defined by

f1(r, p, t) ≡ ei(k·r−ωt) f0(p)�( p) (4.320)

so that with p = γmv, the first-order Boltzmann equation becomes

−iω f1 + i(k‖ p‖ + k⊥ p⊥ cosφ)

γm
f1 + q(E1 + v × B1) · ∇p f0

+ q

γm
( p× B0) · ∇p f1 = 0 (4.321)

since ( p× B0) · ∇p f0 = 0 along the unperturbed orbit. Then we note that

∇p f0 = − f0c2 p
KTE

so (v × B1) · ∇p f0 = 0

and

∇p f1 = − c2 p
KTE

f1 + f1
�
∇p�

so
q

γm
( p× B0) · ∇p f1 = −εωc

γ
f0e

i(k·r−ωt) ∂�
∂φ

(where ε = −1 for electrons as before) and

qE1 · ∇p f0 = − f0qE · p
γmKT

since E = γmc2 (and we have dropped the subscript on E). Using these relations,
equation (4.321) may be written as

i

(
γω

εωc
− k‖ p‖ + k⊥ p⊥ cosφ

mεωc

)
�+ ∂�

∂φ
= − p · E

B0KT
. (4.322)
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This is a first-order differential equation whose solution may be written as

�( p) = − 1

B0KT
ei(aφ−b sinφ)

∫ φ0

φ

e−i(aψ−b sinψ)( p · E)ψ dψ (4.323)

with a = γω/εωc − k‖ p‖/mεωc, b = k⊥ p⊥/εmωc, and ( p · E)ψ ≡ p‖Ez +
p⊥(Ex cosψ + Ey sinψ). We may now let φ0 → −∞ and be guaranteed of
convergence since we have assumed that ω has a positive imaginary part. Using
the variable change ψ = φ − ξ , this result may also be written as

�( p) = 1

B0KT

∫ ∞

0
eiaξ−ib[sin(ξ−φ)+sinφ]( p · E)φ−ξ dξ. (4.324)

The current is then given by

J(k, ω) =
∑
j

q j

∫
v f1 j (k, ω) d3 p =

∑
j

q j

m j

∫
f0(p)� j ( p)

γ j
p d3 p. (4.325)

We may now proceed in either of the two directions we discussed in
section 4.3.3, where we integrated over τ first, or in section 4.3.4 where we did
some of the velocity integrals first. In this case we integrate over ξ first and find
that �( p) may be written as

�( p) = 1

B0KT
(p⊥ Ix (φ)Ex + p⊥ Iy(φ)Ey + p‖ Iz(φ)Ez) (4.326)

with

Ix (φ) =
∞∑

m,n=−∞

iJm(b)nJn(b)

b(a − n)
ei(n−m)φ (4.327)

Iy(φ) =
∞∑

m,n=−∞

Jm(b)J ′n(b)
(a − n)

ei(n−m)φ (4.328)

Iz(φ) =
∞∑

m,n=−∞

iJm(b)Jn(b)

a − n
ei(n−m)φ (4.329)

where b = p̄⊥ν⊥ and p̄ = p/m jc so that γ j = (1+ p̄2)1/2 and ν⊥ = n⊥ω/εωc.
We next integrate over φ, but because of the complexity of the several dielectric
tensor components, we will calculate only Kxx and then list the results for the
complete tensor. From equation (1.19), this component is given by

Kxx = 1+ iσxx
ωε0

= 1+
∑
j

iq jn0 j
ε0m jω4πm2

j c(KTj )2K2(µ j )B0

∫ ∞

−∞
dp‖

∫ ∞

0
p⊥ dp⊥

∫ 2π

0
dφ
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×
∞∑

m,n=−∞

e−µ j γ j

γ j
p2⊥ cosφ

iJm(b)nJn(b)

b(a − n)
ei(m−n)φ

= 1+
∑
j

ω2
pj

ωε jωcj

µ2
j

4πK2(µ j )

∫ ∞

−∞
d p̄‖

∫ ∞

0
p̄⊥ d p̄⊥

e−µ j γ j

γ j

×
∞∑

n=−∞

p̄2⊥nJn(b)
b(n − a)

∞∑
m=−∞

Jm(b)
∫ 2π

0
ei(m−n)φ cosφ dφ

= 1+
∑
j

ω2
pj

ωε jωcj

µ2
j

2K2(µ j )

∫ ∞

−∞
d p̄‖

∫ ∞

0
p̄⊥ d p̄⊥

e−µ jγ j

γ j

×
∞∑

n=−∞

(
p̄⊥nJn(b)

b

)2 1

n − a
(4.330)

where µ j = m jc2/KTj and we have used

∞∑
m=−∞

Jm(b)
∫ 2π

0
ei(m−n)φ cosφ dφ = π[Jn−1(b)+ Jn+1(b)] = 2πnJn(b)

b
.

(4.331)

The remaining components may be obtained with the integrals

∞∑
m=−∞

Jm(b)
∫ 2π

0
ei(m−n)φ sin φ dφ = − iπ[Jn−1(b)− Jn+1(b)] = −2π iJ ′n(b)

(4.332)
∞∑

m=−∞
Jm(b)

∫ 2π

0
ei(m−n)φ dφ = 2π Jn(b) (4.333)

so that including only the electron component of the dielectric tensor (only
electrons are assumed to be relativistic), we may write

Kij = δi j −
ω2
pe

ω2

µ2
e

2K2(µe)

∫ ∞

−∞
d p̄‖

∫ ∞

0
d p̄⊥ p̄⊥

e−µeγe

γe

×
∞∑

n=−∞

Pn
i j

γe − n‖ p̄‖ + nωce/ω
(4.334)

where

Pn
xx =

n2

ν2⊥
J 2n (ν⊥ p̄⊥) (4.335)

Pn
xy = − Pn

yx =
i p̄⊥n
ν⊥

Jn(ν⊥ p̄⊥)J ′n(ν⊥ p̄⊥) (4.336)
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Pn
xz = Pn

zx = −
p̄‖n
ν⊥

J 2n (ν⊥ p̄⊥) (4.337)

Pn
yy = p̄2⊥ J ′n

2
(ν⊥ p̄⊥) (4.338)

Pn
yz = − Pn

zy = i p̄‖ p̄⊥ Jn(ν⊥ p̄⊥)J ′n(ν⊥ p̄⊥) (4.339)

Pn
zz = p̄2‖ J 2n (ν⊥ p̄⊥). (4.340)

This representation is equivalent to that of Brambilla [49], except for notation
such that his &c = εωc = −ωce for electrons. If we change the definition of ν⊥
to be positive so that ν⊥ = n⊥ω/ωce, then we must change the signs of Pn

xz and
Pn
yz in equations (4.337) and (4.339), respectively.

Problem 4.7.1. Normalization constant. Find the normalization constant A for
f0(p). (Answer. A = n0µ/4π(mc)3K2(µ).)

Problem 4.7.2. Calculating �(φ). Integrate equation (4.324) over ξ using the
Bessel identity (4.179) and show that the result is given by equation (4.326) along
with equations (4.327) through (4.329).

4.7.2 The relativistic dielectric tensor without sums

Wemay use the Newberger sum rules from equation (4.192) and equations (4.193)
through (4.198) to eliminate the sums and cast the sums of the Pn

i j into the
following form:

∞∑
n=−∞

Pn
xx

a + n
= 1

ν2⊥

[
πa2

sinπa
Ja(ν⊥ p̄⊥)J−a(ν⊥ p̄⊥)− a

]
(4.341)

∞∑
n=−∞

Pn
xy

a + n
= − i p̄⊥

ν⊥

[
πa

sinπa
Ja(ν⊥ p̄⊥)J ′−a(ν⊥ p̄⊥)+ a

ν⊥ p̄⊥

]
(4.342)

∞∑
n=−∞

Pn
xz

a + n
= p̄‖

ν⊥

[ πa

sinπa
Ja(ν⊥ p̄⊥)J−a(ν⊥ p̄⊥)− 1

]
(4.343)

∞∑
n=−∞

Pn
yy

a + n
= p̄2⊥

[
π

sinπa
J ′a(ν⊥ p̄⊥)J ′−a(ν⊥ p̄⊥)+ a

ν2⊥ p̄2⊥

]
(4.344)

∞∑
n=−∞

Pn
yz

a + n
= i p̄‖ p̄⊥

[
π

sinπa
Ja(ν⊥ p̄⊥)J ′−a(ν⊥ p̄⊥)+

1

ν⊥ p̄⊥

]
(4.345)

∞∑
n=−∞

Pn
zz

a + n
= p̄2‖

π

sinπa
Ja(ν⊥ p̄⊥)J−a(ν⊥ p̄⊥) (4.346)
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where now a = (ω/ωce)(γe − n‖ p̄‖) and ν⊥ = n⊥ω/ωce. The dielectric tensor
then assumes the form

Kij = δi j −
ω2
pe

ω2

µ2
e

2K2(µe)

∫ ∞

−∞
d p̄‖

∫ ∞

0
d p̄⊥ p̄⊥e−µeγe'i j + ion term (4.347)

where

'xx = a

n2⊥(a + n‖ p̄‖ω/ωce)

[ πa

sinπa
Ja(b)J−a(b)− 1

]
(4.348)

'xy = −'yx = − ia

n2⊥(a + n‖ p̄‖ω/ωce)

[
πb

sinπa
Ja(b)J

′−a(b)+ 1

]
(4.349)

'xz = 'zx = − ω p̄‖
ωcen⊥(a + n‖ p̄‖ω/ωce)

[ πa

sinπa
Ja(b)J−a(b)− 1

]
(4.350)

'yy = 1

n2⊥(a + n‖ p̄‖ω/ωce)

[
πb2

sinπa
J ′a(b)J ′−a(b)+ a

]
(4.351)

'yz = −'zy = − iω p̄‖
ωcen⊥(a + n‖ p̄‖ω/ωce)

[
πb

sinπa
Ja(b)J

′−a(b)+ 1

]
(4.352)

'zz =
ω2 p̄2‖

ω2
ce(a + n‖ p̄‖ω/ωce)

π

sinπa
Ja(b)J−a(b) (4.353)

where now b = ν⊥ p̄⊥.

Problem 4.7.3. Off-diagonal tensor elements. Pick one of the off-diagonal
dielectric tensor elements, and verify it is given by equation (4.347) along with
either (4.349), (4.350), or (4.352), starting from equation (4.325).

4.7.3 The weakly relativistic dielectric tensor

In this section, we return to equation (4.325) and integrate over the momenta first
instead of the phase. We can obtain another expression via the identity,

I (s, r) = 1

4π

∫
dp√
1+ p2

e−s
√

1+p2−ir · p = K1(
√
s2 + r2)√

s2 + r2
(4.354)

and its derivative where Kn is the modified Bessel function of the second kind of
order n. The dielectric tensor is then given by

K = I+
∑
j

iω2
pj

ε jωωcj

µ2

K2(µ)

∫ ∞

0
dξ

[
K2(

√
R)

R
T1 − K3(

√
R)

R3/2
T2

]
(4.355)

where

R =
(
µ− iξ

ω

ε jωcj

)2
+ 2ν2⊥(1− cos ξ)+ ν2‖ξ2
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where ν‖ = n‖ω/ε jωcj , and

T1 =

 cos ξ − sin ξ 0

sin ξ cos ξ 0
0 0 1


 (4.356)

and

T2 =

 ν2⊥ sin2 ξ −ν2⊥ sin ξ(1− cos ξ) ν⊥ν‖ξ sin ξ

ν2⊥ sin ξ(1− cos ξ) −ν2⊥(1− cos ξ)2 ν⊥ν‖ξ(1− cos ξ)
ν⊥ν‖ξ sin ξ −ν⊥ν‖ξ(1− cos ξ) ν2‖ξ2


 .

(4.357)
Up to this point, the analysis is exact, but it is valuable only for numerical

integration of the tensor components. In the weakly relativistic limit, we follow
the development of Shkarofsky [51] and take µe � 1 (µi is generally so large
that relativistic effects are negligible, so that the ion contributions will be ignored
from this point on and and we shall delete the subscript on µ). Since this
quantity appears in the argument of the modified Bessel function, we can use
the asymptotic limit so that Kn(x) � √

π/2xe−x . If we also take the limit of
small λ = 1

2k
2⊥ρ2L = ν2⊥/µ, then we can simplify the expression for R such that

R
1
2 = µ

[(
1+ iξω

µωce

)2
+
(
ν‖
µ

)2
ξ2

] 1
2

+!(1− cos ξ)

where

! ≡ λ

[(
1+ iξω

µωce

)2
+
(
ν‖
µ

)2
ξ2

]− 1
2

.

Now we will need to keep the !(1 − cos ξ) term in the exponential of the
Kn terms, because the oscillating phase in the exponent is important, but it
is safe to neglect it otherwise since µ � !. This approximation leads to
k2⊥c2/R1/2ω2

ce = ! except in the exponent. For the oscillating exponential term,
we will use equation (4.224) to write

e! cos ξ =
∞∑

n=−∞
In(!)e

−inξ (4.358)

cos ξe! cos ξ =
∞∑

n=−∞
I ′n(!)e−inξ (4.359)

and other similar results as in equation (4.225). Then by changing variables to
t = −ξω/µωce so that

√
R becomes

√
R = µ[(1− it)2 + n2‖t2]

1
2 +!(1− cos ξ)
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and exp(−inξ) → exp(inνnt) with νn = nµωce/ω, then the weakly relativistic
dielectric tensor may be written as

K = I+ i
ω2
p

ω2
µ

∞∑
n=−∞

∫ ∞

0
T3

e−! exp{µ− µ[(1− it)2 + n2‖t2]
1
2 + iνnt}

[(1− it)2 + n2‖t2]
7
4

dt

(4.360)
where

T3 = [(1− it)2 + n2‖t2]
1
2 T(a)

3 + k⊥k‖c2

ωωc
T(b)
3

∂

∂νn
(4.361)

with

T(a)
3 =




n2 In
!

−in(I ′n − In) 0

in(I ′n − In)
n2 In
!
+ 2!(In − I ′n) 0

0 0 In
(
1+ k‖ ∂

∂k‖

)

 (4.362)

T(b)
3 =


 0 0 nIn

!
0 0 i(I ′n − In)
nIn
!

−i(I ′n − In) 0


 . (4.363)

For small !, we can write this in terms of the Fq function that is defined by

Fq(νn, n‖) ≡ −i
∫ ∞

0
dt
exp{µ− µ[(1− it)2 + n2‖t2]

1
2 + iνnt}

[(1− it)2 + n2‖t2]
q
2

(4.364)

although the most common definition is a further approximation in the smallness
of n2‖ given by

Fq(zn, a) ≡ −i
∫ ∞

0
dt
exp[iznt − at2/(1− it)]

(1− it)q
(4.365)

where zn = µ + νn = µ(ω + nωce)/ω and a = 1
2µn

2‖. This generalized weakly
relativistic dispersion function is real for zn ≥ a and complex for zn < a. Some
of its characteristics are shown in figure 4.10 for a = 1 and in figure 4.11 for
a = 5. Its mathematical properties are given in appendix B in section B.3.

Then for the case for small !, assuming the same dispersion function for
each power of λ, the dielectric tensor elements are given by

Kxx � 1− ω2
p

ω2
µe−λ

∞∑
n=1

n2 In
λ

[
Fn+3/2(zn, a)+ Fn+3/2(z−n, a)

]
(4.366)

Kxy � i
ω2
p

ω2
µe−λ

∞∑
n=1

n(In − I ′n)
[
Fn+3/2(zn, a)− Fn+3/2(z−n, a)

]
(4.367)
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Figure 4.10. Generalized weakly relativistic dispersion function, Fq (z, a) for half-integral
q and a = 1, showing both real (full curves) and imaginary (dashed curves) parts.

Figure 4.11. Generalized weakly relativistic dispersion function, Fq (z, a) for half-integral
q and a = 5, showing both real (full curves) and imaginary (dashed curves) parts.
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Kzz � 1− ω2
p

ω2 µe
−λ

∞∑
n=−∞

In
{
(1− 4a)Fn+5/2(zn, a)

+2a[Fn+3/2(zn, a)+ Fn+7/2(zn, a)]
}

(4.368)

Kyy � Kxx +
ω2
p

ω2 µe
−λ2λ

{
(I0 − I1)F5/2(µ, a)

+
∞∑
n=1

(In − I ′n)
[
Fn+5/2(zn, a)+ Fn+5/2(z−n, a)

]}
(4.369)

Kxz � − ω2
p

ωωc
µe−λn‖n⊥

∞∑
n=1

nIn
λ

[
Fn+5/2(zn, a)− Fn+3/2(zn, a)

− Fn+5/2(z−n, a)+ Fn+3/2(z−n, a)
]

(4.370)

Kyz � − i
ω2
p

ωωc
µn‖n⊥e−λ

{
(I1 − I0)F7/2(µ, a)

+
∞∑
n=1

(I ′n − In)
[
Fn+5/2(zn, a)+ Fn+5/2(z−n, a)

]}
(4.371)

where Kyx = −Kxy , Kzx = Kxz , Kzy = −Kyz , and z± = µ(ω ± nωce)/ω and
now the argument of In is λ (which is independent of t) instead of ! (which is a
function of t).

4.7.4 Moderately relativistic expressions

When one keeps higher order terms in the Bessel function expansions, higher-
order dispersion functions should be used for those terms since! appeared inside
the integral of equation (4.360). In fact, if we define the function of λ associated
with Kxx as fxx(n, λ) such that

fxx (n, λ) = n2e−λ In(λ)
λ

=
∞∑
k=0

a(k)xx,nλ
k (4.372)

then we could write a more nearly precise expression for Kxx as

Kxx = 1− ω2
p

ω2
µ

∞∑
n=1

∞∑
k=0

a(k)xx,nλ
k [Fk+5/2(zn, a)+ Fk+5/2(z−n, a)]. (4.373)

Although this is a doubly infinite sum, usually only an n = 1 and perhaps one
other n needs to be included, and k = 0 through k = 3 will usually suffice unless
λ is approaching unity, in which case an exact treatment is needed. Extending this
same type of expansion to the other dielectric tensor terms leads to themoderately
relativistic approximation.
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As an example of the moderately relativistic expressions, the expression for
Kxx through order λ3 is given by

Kxx = 1− ω2
p

ω2
µ

{
1

2
[F 5

2
(z1, a)+ F 5

2
(z−1, a)] − λ

2
[F 7

2
(z1, a)+ F 7

2
(z−1, a)]

+ 5λ2

16
[F 9

2
(z1, a)+ F 9

2
(z−1, a)] − 7λ3

48
[F 11

2
(z1, a)+ F 11

2
(z−1, a)]

+ λ

2
[F 7

2
(z2, a)+ F 7

2
(z−2, a)] − λ2

2
[F 9

2
(z2, a)+ F 9

2
(z−2, a)]

+ 7λ3

24
[F 11

2
(z2, a)+ F 11

2
(z−2, a)] + 3λ2

16
[F 9

2
(z3, a)+ F 9

2
(z−3, a)]

− 3λ3

16
[F 11

2
(z3, a)+ F 11

2
(z−3, a)] + λ3

24
[F 11

2
(z4, a)+ F 11

2
(z−4, a)]

}
.

(4.374)

This expression is better than the weakly relativistic approximation, but not exact.
This approximation still uses the asymptotic form of K2(µ) and is still based on
the smallness of n2‖ for the Fq(zn, a).

Problem 4.7.4. Moderately relativistic Kxy and Kyy. Work out the moderately
relativistic expression for Kxy and Kyy corresponding to equation (4.374)
(through order λ3).

A further simplification we examine for both the weakly relativistic and the
moderately relativistic approximations is the n‖ → 0 limit (or the a → 0 limit),
where

Fq(z, 0) = Fq(z) ≡ −i
∫ ∞

0

eizt

(1− it)q
dt (4.375)

and for q = 1
2 , we have the relationship to the PDF (see equation (B.40))

iF1
2
=
∫ ∞

0

eizt

(1− it)
1
2

dt = 1√
z
Z(i
√
z). (4.376)

This weakly relativistic dispersion function, often referred to as the Dnestrovskii
function, is illustrated in figure 4.12. Other properties are listed in section B.2.

The higher order functions may be obtained from the recursion formula,

(q − 1)Fq(z) = 1− zFq−1(z) (4.377)

and the analytic continuation for Imω < 0 is given by the properties of the PDF.
Also, in this limit, Kxz = Kzx = Kyz = Kzy = 0, so the leading terms here are
the only terms, not merely the dominant terms.
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Figure 4.12. Weakly relativistic dispersion function, Fq (z) for half-integral q, showing
both real (full curves) and imaginary (dashed curves) parts.

4.7.5 Exact expressions with n‖ = 0

It is possible to obtain the exact dielectric tensor expressions in terms of a few
relatively simple integrals when n‖ = 0. For this analysis, we return to the
dielectric tensor elements without sums given in section 4.7.2. Although the
dielectric tensor terms are complicated, since the order of the Bessel functions is
not integral in the general case, by changing into polar coordinates in momentum
space, the integrals over the angle can be done analytically, leaving us with either
a single integral for each n or even with a single integral for the sum over n. The
derivation for Kxx will be worked out in detail, while the others will be left as an
exercise.

With n‖ = 0, we may write an exact expression for Kxx as

Kxx = 1− ω2
p

ω2

∞∑
n=1

F (n)
xx

where each term in the sum is given by

F (n)
xx =

2µ2

K2(µ)

n2

ν2⊥

∫ π

0
dθ sin θ

∫ ∞

0
d p̄ p̄2e−µγ

J 2n (ν⊥ p̄ sin θ)
γ 2 − n2ω2

c/ω
2 . (4.378)

After integrating over the angle using equation (B.68), equation (4.378) may be
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expressed as

F (n)
xx =

µ2

K2(µ)

2n2

ν2⊥(2n + 1)!
∫ ∞

0
d p̄

p̄2e−µγ

p̄2 − p2n
b2n1F2(n + 1

2 ; n + 3
2 , 2n + 1; −b2)

(4.379)
where γ ( p̄) = √

1+ p̄2, p2n = n2ω2
c/ω

2 − 1, and b2 = µλ p̄2, since ν⊥ =
n⊥ω/ωc = √µλ. Alternatively, using the Newberger sum rule, we have a single
expression for the sum as

Fxx = µ2

2K2(µ)

∫ π

0
dθ sin θ

∫ ∞

0
d p̄ p̄2

e−µγ

γ

ωa

ωcν
2⊥

×
[ πa

sinπa
Ja(ν⊥ p̄ sin θ)J−a(ν⊥ p̄ sin θ)− 1

]
(4.380)

where a = ωγ/ωc. Integrating this expression over the angle (see equation (B.73)
in appendix B), the result may be expressed as

Kxx = 1− ω2
p

ω2

µ

n2⊥
[I1(z, λ, µ)− 1] (4.381)

where I1 is the integral (not a Bessel function)

I1(z, λ, µ) = µ

K2(µ)

∫ ∞

0
dp p2e−µγ 2F3( 12 , 1; 32 , 1 − a, 1+ a; −λµp2).

(4.382)
The dependence on z = z−n ≡ µ(1 − nωc/ω) is through a(z) = nγ /(1 −
z/µ). The integrands utilize the hypergeometric functions that are defined by
equations (B.66) and (B.67).

Problem 4.7.5. Remaining exact tensor elements. Show that the remaining
dielectric tensor elements with n‖ = 0 may be written as

Kxy = i
ω2
p

ω2

µ

2n2⊥
[I2(z, λ, µ)− I3(z, λ, µ)+ 1] (4.383)

Kzz = 1− ω2
p

ω2
µI4(z, λ, µ) (4.384)

Kyy = Kxx −
ω2
p

ω2

2µ

n2⊥
[1+ I5(z, λ, µ)− I2(z, λ, µ)] (4.385)

where

I2(z, λ, µ) = µ

K2(µ)

∫ ∞

0
dp p2e−µγ 2F3( 12 , 1; 32 , 1− a, a; −λµp2) (4.386)

I3(z, λ, µ) = µ

K2(µ)

∫ ∞

0
dp p2e−µγ 2F3( 12 , 1; 32 ,−a, 1+ a; −λµp2) (4.387)
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I4(z, λ, µ) = µ

K2(µ)

∫ ∞

0
dp

p4e−µγ

3(1+ p2)
2F3(

1
2 , 1; 52 , 1 − a, 1+ a; −λµp2)

(4.388)

I5(z, λ, µ) = λµ2

K2(µ)

∫ ∞

0
dp

p4e−µγ

3a(a − 1)
2F3( 12 , 2; 52 , 2 − a, a; −λµp2).

(4.389)

Problem 4.7.6. Hypergeometric function identity. Prove that I6 = I2 − 1 where

I6(z, λ, µ) = λµ2

K2(µ)

∫ ∞

0
dp

p4e−µγ

3a(a − 1)
2F3( 32 , 1; 52 , 2− a, 1+ a; −λµp2).

The imaginary parts of the tensor elements may be obtained rather directly
by examining the poles of the integrands. In this section, we simplify the notation
by dropping the electron subscript, and note that the pole in equation (4.379) is at
p̄ = p̄n. Evaluating the integral at this pole yields

Im[F (n)
xx ] = −

µ2

K2(µ)

πn2e−µnωc/ωb2n+1n

(2n + 1)!(µλ)3/2 1F2(n+ 1
2 ; n+ 3

2 , 2n+1; −b2n) (4.390)

where b2n = µλ(n2ω2
c/ω

2 − 1). This expression is exact, but in order to compare
it with the weakly relativistic approximation, we take eµK2(µ) ∼ √

π/2µ, so
that the exponential term becomes ezn . If we write the corresponding weakly
relativistic expression as W (n)

xx , and examine the imaginary part, we find, using
equation (B.48),

Im[W (n)
xx ] = −

µn2e−λ In(λ)
λ

π(−z)q−1ez

(q)

where q = n + 1
2 , then expanding both the Bessel function terms and

the hypergeometric function, the ratio of the exact to the weakly relativistic
expression may be written as

Im[F (n)
xx ]

Im[W (n)
xx ]

= 1+ λz/q + · · ·
1− λ+ qλ2/(2q − 1)+ · · · . (4.391)

From this ratio, we observe first that the exact expression is a function of the
product, λz, not a function of λ multiplied by a function of z as the weakly
relativistic expression indicates. Secondly, we see that the higher order terms
in the Bessel function expansion do not improve the accuracy, so this justifies the
truncation of the Bessel functions to the lowest order terms in equations (4.366)
through (4.371). There is another interesting feature observable in comparing
these imaginary parts in figure 4.13 for two different values of lambda. After
factoring out some leading factors, it is apparent that the peak of the exact
expressions always exceeds the peak of the weak expression, but for large negative
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Figure 4.13. Im(−Fxx ) versus z with µ = 50 for the exact (full curves), moderately
relativistic (dashed curves), and weakly relativistic case (dotted curves) with n‖ = 0 for
(a) λ = 1.0 and (b) λ = 0.2.

z, the weak expression exceeds the exact expression. In fact, if one approximates
b2n = −λz(2− z/µ) � −2λz, then the integral∫ ∞

0
dx e−x x1/2

∫ π

0
dθ J 2ν

(√
2λx sin θ

)
sin θ = √πe−λ Iν(λ) (4.392)

guarantees that each curve has equal area. Similar identities exist for the other
dielectric terms. It is also apparent that the moderately relativistic approximation
(with terms through λ5) is much better than the weakly relativistic case with
λ = 1, but the difference is small for small λ.

Problem 4.7.7. Weakly relativistic identities.

(i) Use equation (4.392) to prove that the integrals over z for Im[Kxx(z)] for
the exact result and the weakly relativistic result are identical.
(ii) Use the identity

2
∫ ∞

0
dx e−x x3/2

∫ π

0
dθ J 2ν (

√
2λx sin θ) cos2 θ sin θ = √πe−λ Iν(λ)

(4.393)
to prove that the integrals over z for Im[Kzz(z)] for the exact result and the
weakly relativistic result are identical.

When µ is not so large and λ is of order unity or greater, the deviations
from the weakly relativistic approximation are significant and the differences
between Kxx and Kxy are no longer ignorable. A strongly relativistic case where
µ = 20 and λ = 1 is illustrated in figure 4.14(a) for Fxx in the exact and two
approximations and in figure 4.14(b) for Fxx and Fyy for the exact case only. It is
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Figure 4.14. Plots of (a) the real and imaginary parts of Fxx for the exact, moderately
relativistic, and weakly relativistic approximations for µ = 20 and λ = 1 and (b) the exact
real and imaginary parts of Fxx and Fyy .

apparent that the exact and moderately relativistic cases are still close, but that the
weakly relativistic approximation is no longer reliable. Figure 4.14(a) also shows
the effects from the third and fourth harmonics which occur at z = µ/3 = 6.67
for n = 3 and at z = µ/2 = 10 for n = 4.

4.7.6 The relativistic X-wave

The exact X-wave dispersion relation with n‖ = 0 is

n2⊥ =
Kxx Kyy + K 2

xy

Kxx
. (4.394)
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Figure 4.15. Variation of λ with z for the X-mode with µ = 50 and ω2/ω2
p = 4

(from [52]).

This case leads to no damping at all in the nonrelativistic theory, so the relativistic
effects are especially apparent. Figure 4.15 shows an example dispersion relation
with µ = 50 (Te ∼ 10 keV) illustrating the differences between using the
exact relativistic tensor components and the weakly and moderately relativistic
expressions.

For this comparison, we let ω2/ω2
p = 4 and solve for λ in the neighborhood

of the second harmonic (z = 0 corresponds to ω = 2ωc), assuming that the
variation in z is due to changes in the magnetic field only. The dispersion is
plotted for five separate cases. The cold plasma result is a simple curve showing
no significant features near the second harmonic, while the nonrelativistic hot
plasma case shows no absorption, but it does indicate a mode conversion region
(see section 6.3.3). The exact result and the moderately relativistic cases nearly
overlay one another while the weakly relativistic case shows that even with µ

large and λ small, the differences are significant in the dispersion relation. The
peak of the imaginary part of λ for the weakly relativistic case is approximately
half the value for the exact case while the peak imaginary parts of Fxx , Fyy , and
Fxy are about 3.7% low for λ = 0.05. For the moderately relativistic case, the
peak imaginary part of λ is only 5.5% below the exact value while the individual
component differences are less than 2.5% low for λ = 0.05.

Copyright © 2003 IOP Publishing Ltd.



Chapter 5

Bounded homogeneous plasmas

5.1 Introduction

The principal effect of boundaries on plasma waves is to restrict the spectrum of
k to a discrete spectrum as in a waveguide problem instead of the continuous
spectrum of the infinite, homogeneous plasma. Boundaries also introduce
excitation or scattering resonances that are not present in the unbounded plasma.
The oldest of these effects was described by Tonks [53] as he scattered
electromagnetic waves from a plasma column, discovering a scattering resonance
near the plasma frequency. Later studies were made of space charge waves and
surface waves on plasma columns [54] and plasma-filled waveguides [55–57].
Numerous other examples have been described and demonstrated, but these
examples will be used to demonstrate the method of approach and some of the
fundamental characteristics of waves in bounded plasmas.

5.2 Boundary conditions

The usual boundary conditions we shall encounter are either a conducting wall
or a boundary between the plasma and either vacuum or a dielectric (such as
glass). These boundary conditions are generally taken as abrupt, and we use
jump conditions to relate the fields on opposite sides of the discontinuity. This
is never precise, since real plasmas do not have sharp boundaries. In general, as
the plasma approaches either a conductor or a dielectric, the density falls either
gradually, dominated by a variety of transport phenomena such as electron and
ion diffusion, ionization, and recombination, or it falls off rather abruptly, so
that a large change occurs in a few Debye lengths. Even in this latter case,
the Debye length is ill-defined in this transition layer, since it is dependent on
both density and temperature, both of which are changing rapidly. The use of
any kind of refined model of the boundary generally requires either an arbitrary
assumption about the profile and/or considerable numerical work. In this book,
we shall treat only the sharp boundary cases because they illustrate the principal
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effects of boundaries, offer analytic solutions, and generally agree well with
most experiments, although we shall note one case where the inhomogeneity was
crucial to the understanding of the phenomena. We thus restrict our attention to
waves whose wavelength is long compared to the thickness of the boundary layer.
Whenever the wavelength is short compared to the layer thickness, we treat these
cases as an inhomogeneous plasma, and discuss them in the next chapter. For the
in-between cases, the typical recourse is to solve the equations numerically.

5.2.1 Conducting boundary

The simplest case, by far, is the conducting boundary because the condition in
a cold plasma is simply that the tangential electric field must vanish at a perfect
conductor. This may be written as

Et (a) = 0 (5.1)

where the conducting wall is at a. This case is simplest because this condition
is usually easy to apply and eliminates matching to any other fields beyond the
boundary.

For hot plasmas, however, this is not so simple, because we must also
prescribe boundary conditions on the velocity. The most straightforward
condition for either a metallic or dielectric boundary is specular reflection, where
the particle bounces off the wall with equal angles of incidence and reflection.
One way to deal with this kind of boundary is to imagine a virtual plasma on the
other side of the boundary such that for every particle crossing the boundary,
one emerges from the virtual plasma as if the original particle had reflected,
conserving particles and requiring Jpn(a) = 0 where Jpn is the particle current
normal to the boundary. Then one needs only to imagine an infinite number of
such slabs that are periodic in the slab width, and one has an infinite, uniform
plasma which is simply periodic. The advantages of this kind of approach,
however, are more than offset by their unreality, since specular reflection is
probably an event of low likelihood, and nontrivial electric fields in the sheath
region (a few Debye lengths wide) distort the particle motions, not to mention
the fact that this assumes the temperature is uniform all the way to the wall. One
other way to treat this problem is to assume that the magnetic field is parallel to the
boundary and infinite in magnitude (or effectively so), in which case the particles
move only parallel to the boundary, and only wave fields must be matched at the
boundary. When the magnetic field is oblique to the boundary, there are no simple
recipes.

5.2.2 Plasma–vacuum (or dielectric) interface

The boundary conditions used at the plasma–vacuum interface, or at an interface
between a plasma and an isotropic, insulating dielectric (such as glass), are
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derived from the integral form of the Maxwell equations, and using Ên as a unit
vector normal to the surface, pointing away from the plasma, are:

Ên × (Ev − Ep) = 0 (5.2)

Ên · (Bv − Bp) = 0 (5.3)

Ên × (Hv − Hp) = js (5.4)

Ên · (Dv − Dp) = ρs (5.5)

where we denote either vacuum or an isotropic dielectric by the subscript v, and
js is the surface current density and ρs is the surface charge density. Now
equation (5.3) is not independent of equation (5.2), as one may see from the
component of the Maxwell equation,

Ên · (∇ × E) = iω Ên · B

which involves only the tangential components of E. Usually neither the
surface charge density nor the surface current density are specified, so neither
equation (5.4) nor equation (5.5) are of much use alone, but the surface continuity
equation,

∇s · js + ∂ρs

∂ t
= 0 (5.6)

where ∇s has only those components that lie in the surface, may be used to
combine these two into an alternative condition,

Ên · [ω(Dv − Dp)+ k × (Hv − Hp)] = 0. (5.7)

This is an identity (the vacuum and the plasma terms vanish independently at any
radius), so there is no condition at the boundary to apply.

One might try a rigid wall boundary condition, where the normal component
of the velocity must vanish at the boundary, but for a cold plasma this requires the
tangential component of E that is perpendicular to the magnetic field to vanish,
which we have already specified as continuous, and requiring it to vanish at the
plasma–vacuumboundary again leads to an indeterminate expression (the plasma-
dependent coefficients vanish, leaving the wave amplitudes unspecified).

In order to close the set of equations, the usual boundary condition added is
the ideal dielectric boundary condition, which is to demand that both the surface
currents and surface charge density vanish identically. We write this as

Ên × (Bv − Bp) = 0. (5.8)

Equations (5.2) and (5.8) then form the boundary conditions for the ideal
dielectric model. This is not a trivial boundary condition, since for a single wave
in the plasma (incident plus reflected, or standing wave normal to the surface,
characterized by a single value of k⊥), the condition of equation (5.2) requires
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ρs �= 0 (see problem 5.2.2). This condition thus implies that there must be two
waves and that they are coupled. The second wave is characterized by the same
wavenumber parallel to the surface, but distinct in k⊥. The second value, which
we shall denote k⊥2, is derived from the cold plasma dispersion relation, which is
quadratic in k2⊥, so choosing k⊥1 or kz determines the value of k⊥2. If k2⊥1 > 0
(propagating radially), the second root is frequently evanescent radially, so it is
localized near the surface, in which case a surface wave is required to satisfy the
ideal dielectric boundary condition.

For electrostatic waves, we take the potential to be continuous, and Ên ·
(Dv − Dp) = 0. Equation (5.3) is not appropriate for electrostatic waves since
they are assumed to have no wave magnetic field at all, and hence neither surface
currents nor surface charges.

We note that in calculating the normal component of the displacement vector,
the dielectric tensor elements are the ones given previously only if the magnetic
field is parallel to the interface and oriented in the z-direction. When the
magnetic field direction is oblique to the interface, then the usual dielectric tensor
must be rotated, but this is rarely necessary, since plasma–vacuum interfaces are
frequently magnetic surfaces.

Problem 5.2.1. Surfaces charges and currents. Show that equation (5.7) may be
derived from equations (5.4)–(5.6).

Problem 5.2.2. Surface charge density at plasma–vacuum interface. Show that
equation (5.2) leads to a discontinuity in Dn and hence to a surface charge density
for a single wave. Find an expression for ρs if ny = 0 where the z-direction is the
direction of the magnetic field and lies in the surface and the x-direction is normal
to the surface. Express ρs in terms of Ez , nx , nz , and the cold plasma dielectric
tensor elements.

Problem 5.2.3. Second value of k⊥. Find an expression for k2⊥2 in terms of k2⊥1,
the cold plasma dielectric tensor elements, and k2z . (Hint: Look either for their
sum or their product.) Assume the magnetic field is parallel to the boundary.

5.3 Unmagnetized plasmas

5.3.1 Scattering from a plasma column

When an electromagnetic wave scatters from a plasma column, it will generally
excite plasma waves in the column, and whenever those plasma waves fit the
plasma column so as to represent standing waves, the scattering amplitude
exhibits a plasma column resonance. These resonances in the absence of a
magnetic field are called the Tonks–Dattner resonances, and were first described
by Tonks [53] and later described in more detail by Dattner [58] who showed
they had a dipole character (dominantly linear rather than radial). In addition
to verifying the general representation of a plasma by a dielectric constant, the
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Figure 5.1. Schematic diagram of waveguide and mercury discharge plasma column used
in the experiment to measure plasma column resonances.

Figure 5.2. Wave fields for idealized experiment: λ� a.

rather widely separated series of resonances also led to the verification of the
Bohm–Gross dispersion relation (BGDR) [15], which included the lowest-order
thermal corrections to the cold unmagnetized plasma. The final understanding
of these resonances required the inclusion of inhomogeneous plasma effects [59]
and Landau damping [60].

The experimental arrangement is depicted in figure 5.1 where it is assumed
that an electromagnetic wave is incident from the left and whose wavelength is
large compared to the size of the plasma column. The wave coordinates for the
idealized experiment are represented by figure 5.2 and the column coordinates by
figure 5.3 where the glass envelope is ignored.

5.3.1.1 Cold plasma dielectric constant model

We use the electrostatic approximation, E = −∇ϕ, where the potential must
satisfy Poisson’s equation,

∇ · ε∇ϕ = −ρext. (5.9)
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Figure 5.3. Coordinates for plasma column.

Here, ε is the uniform plasma dielectric constant and the plasma is assumed to
have no external charge, so ϕ must satisfy Laplace’s equation inside and outside
the plasma column. Assuming no z-dependence, the solution in cylindrical
coordinates is

ϕ =
∞∑

m=0
(Amr

m + Bmr
−m)(Cm cosmθ + Dm sinmθ).

The condition that the potential inside the plasma be regular at the origin demands
that Bm = 0. Because the incident wave has only an Ey component, θ = 0 must
be equivalent to θ = π so Cm = 0. Thus inside the plasma, we have

ϕi =
∞∑

m=1
Amr

m sinmθ. (5.10)

Outside the plasma, the potential must reduce to the potential of the incident and
scattered waves as r →∞ so we require the outside potential to be of the form

ϕo =
∞∑

m=1
Bmr

−m sinmθ + Eincr sin θ. (5.11)

The values of Am and Bm must be obtained by matching boundary conditions at
the plasma surface at r = a where the boundary conditions are that the normal
component of D = εE and the tangential component of E be continuous. These
requirements at r = a lead to the relations

K
∂ϕi

∂r

∣∣∣∣
a
= ∂ϕo

∂r

∣∣∣∣
a

(5.12)

ϕi (a) = ϕo(a) (5.13)
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where ε = ε0K . Using the orthogonality of the trigonometric functions, these
lead to the relations

A1 = 2Einc

1+ K

(1+ K )Am = 0 m ≥ 2

(5.14)

where K = 1 − ω2
p/ω

2. The dominant mode (A1) becomes large (resonant) as
1+ K → 0 so that the resonant frequency is given by

ω = ωp√
2
. (5.15)

The fact that the resonance occurs at ωp/
√
2 rather than at the plasma frequency

is a consequence of the finite geometry and the cylindrical coordinate system. For
a spherical plasma, the resonance occurs at ω = ωp/

√
3.

The existence of such a resonance in the column leads to several conclusions.
First, near the resonance, the amplitude of the electric field in the plasma will be
large and hence the motions of the plasma particles will be correspondingly large.
Secondly, these moving charges will radiate, or scatter the incident radiation.
Finally, this scattering of radiation will lead to reflection, so the reflection peak
will correspond to the column resonance. It is generally the peak in the reflected
power that is measured in the experiments.

While this simple analysis was sufficient to describe the main resonance, or
that resonance which has the largest reflection coefficient, there appeared in the
experiments a series of resonances that remained unexplained for many years.
The multiplicity of resonances is evident in figure 5.4 where as the current in the
discharge tube was varied, varying the plasma frequency, the absorption spectrum
(from transmission measurements) shows several resonances in addition to the
main resonance.

Problem 5.3.1. Spherical Tonks–Dattner resonances. Show that in spherical
coordinates, the cold plasma resonance occurs at ω = ωp/

√
3.

Problem 5.3.2. Glass boundary effect. If the plasma column of radius a is
surrounded by a glass tube of dielectric constant Kg from radius a to radius b and
then there is a split conducting cylinder at radius c with potential ±V0 applied to
the halves, show that the resonance occurs at ω = ωp/

√
1+ Keff and find the

expression for Keff in terms of a, b, c, and Kg .

5.3.1.2 Warm plasma model

Efforts to explain the multiple resonances with a dielectric model with only
a density profile were unsuccessful, generally leading to the conclusion that
scattering would occur at all frequencies and no multiple resonances would occur.
Gould [61] first suggested that finite temperature effects might lead to multiple
resonances.
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Figure 5.4. Typical absorption spectrum. The frequency is held constant and the electron
density is varied by varying the discharge current. (From [59].)

For this analysis, we begin with the fluid equations from chapter 3, using
equations (3.34) and (3.35) for electrons with a scalar pressure,

∂ne
∂ t

+∇ · (nev) = 0 (5.16)

∂v

∂ t
+ (v · ∇)v = 1

mene
(−neeE −∇ p). (5.17)

Then using Poisson’s equation,

∇ · E = ρ/ε0 (5.18)

with E = −∇ϕ, we proceed to separate out the zero and first order quantities
with the assumption that the zero order density is constant. Thus

ne = n0 + n1e−iωt
v = v1e−iωt
E = E0 + E1e−iωt
p = p0 + p1e−iωt

where p0 = n0KT and p1 = γ n1KT and we take γ = 3. The zero order equation
gives

∇ p0 = −en0E0

so E0 = 0. The first order equations are:

− iωn1 + n0∇ · v1 = 0 (5.19)

− iωmen0v1 = −n0eE1 − ∇ p1 (5.20)

∇ · E1 = − e

ε0
n1. (5.21)
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Taking the divergence of equation (5.20), eliminating ∇ · v with equation (5.19)
and using equation (5.21) and writing the result in terms of the potential ϕ1, the
result may be expressed as

(∇2 + k2)∇2ϕ1 = 0 (5.22)

where k2 is given by

k2 = 1

γ λ2D

(
ω2

ω2
p
− 1

)
. (5.23)

Equation (5.23) is the usual BGDR, where λD is the Debye length.
Solutions to equation (5.22) are easily seen to be solutions of the second

order equations
∇2ϕ1 = 0 (5.24)

and
(∇2 + k2)ϕ1 = 0. (5.25)

Equation (5.24) describes the transverse waves (with infinite wavelength) while
equation (5.25) describes the longitudinal (plasma) waves.

Two of the four solutions of these equations are singular at the origin and
must be discarded. One of the arbitrary constants is simply an amplitude which
we shall leave arbitrary. For the potential, then, we take

ϕ1 =
∞∑

m=1
�m(r) sinmθ (5.26)

where

�m = Am

( r
a

)m + Bm
Jm(kr)

Jm(ka)
. (5.27)

The boundary condition here is that the radial current must vanish at the edge of
the plasma which, from equation (5.20), leads to

∇�m |r=a = γ λ2D∇∇2�m |r=a
which, in turn, leads to

mAm = −ω2

ω2
p
Bmka

J ′m(ka)
Jm(ka)

.

For boundary conditions at the plasma edge, we require the normal displacement
and the potential to be continuous (mode by mode), and to make the effect
of a dielectric more apparent, we shall assume the region surrounding the
plasma column to be entirely glass of dielectric constant Keff (a glass wall of
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finite thickness and constant Kg may be represented by an effective Keff—see
problem 5.3.2). The potential outside is given by equation (5.11), written as

ϕo =
∞∑

m=1
Cm

(a
r

)m
sinmθ + Eincr sin θ. (5.28)

Then the boundary conditions require

�′m(a) =
mAm

a
+ Bmk

J ′m(ka)
Jm(ka)

= Bm

a

ka J ′m(ka)
Jm(ka)

(
1− ω2

ω2
p

)

= Keff

(
−m

a
Cm + Eincδ1m

)
(5.29)

where δi j is the Kronecker delta and

�m(a) = Am + Bm = Bm

(
1− ω2

ω2
p

ka J ′m(ka)
mJm(ka)

)

= Cm + Eincaδ1m (5.30)

so we may eliminate Cm and solve for Bm with the result

Bm =
Einca

(
1+ 1

m

)
δ1m

ka
Keff

J ′m(ka)
mJm(ka)

(
1− ω2

ω2
p

)
+ 1− ω2

ω2
p

ka J ′m(ka)
mJm(ka)

. (5.31)

The condition for resonance is, of course, that the denominator vanish, resulting
in the resonance condition

mJm(ka)

ka J ′m(ka)
= ω2

ω2
p
+ 1

Keff

(
ω2

ω2
p
− 1

)
(5.32)

which must be solved simultaneously with the BGDR. To show the relationship
to the cold plasma result, this may be rearranged as

ω2 = ω2
p

1+ Keff

[
1+ KeffmJm(ka)

ka J ′m(ka)

]
(5.33)

where m = 1 for the dipole resonances. It may be seen from this form of the
dispersion relation that all resonances are higher than the cold plasma case. In
fact, the lowest frequency solution is for k → 0, which leads to ω = ωp . All
other solutions for k > 0 lead to ω > ωp so the main resonance needs a different
analysis.
The Main resonance. For the main dipole resonance (m = 1), where we expect
ω < ωp , equation (5.23) indicates that k2 < 0 so we define τ 2 = −k2 so that the
potential in the plasma is described by

�1 = A1
r

a
+ B1

I1(τr)

I1(τa)
. (5.34)
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Following the same procedures as before, this leads to a similar dispersion
relation,

ω2 = ω2
p

1+ Keff

[
1+ Keff I1(τa)

τa I ′1(τa)

]
(5.35)

which must be solved simultaneously with

ω2 = ω2
p

[
1− 3

λ2D

a2
(τa)2

]

so we expect τa to be large since λD/a is assumed to be very small. In the large
argument limit, I1(x) � I ′1(x), so the transcendental terms approximately cancel,
leading to a cubic equation in τa. For some typical experimental parameters with
a2/λ2D = 103, Keff = 2.1, this leads to τa � 14.5 and ω2 = 0.37ω2

p, which

is only slightly above the cold plasma result of ω2 = 0.32ω2
p, and close to the

experimental result of ω2 = 0.42〈ω2
p〉.

The Higher resonances. The first root is k → 0 with ω = ωp . When k �= 0, the
resonance condition is transcendental, but approximate solutions may be found
for larger values of x = ka near the roots of J ′1(x). If we take x = x0 − ε, with
J ′1(x0) = 0, then the BGDR may be written as

ω2 � ω2
p

(
1+ 3

λ2D

a2
x20

)

and the resonance condition, using J ′1(x0 − ε) � ε(1− 1/x20)J1(x0), is

ω2 � ω2
p

1+ Keff

[
1+ Keff

x0ε(1− 1/x20)

]

so

ε � Keff

x0(1− 1/x20)[Keff + (1+ Keff)3λ2D/a
2x20 ]

.

This leads to x = 0, 5.2, 8.4, . . . and frequencies ω2/ω2
p =

1.0, 1.08, 1.21, . . . , which are more closely spaced than experiment shows
(ω2/〈ω2

p〉 = 1.0, 1.5, . . .). Combining these uniform warm plasma results, the

estimated frequencies are ω2/ω2
p = 0.37, 1.00, 1.08, . . . , while the experiment

shows ω2/〈ω2
p〉 = 0.42, 1.0, 1.5, . . . , and the higher resonances are even more

widely spread. Thus, although the finite temperature model does lead to the
multiplicity of resonances, it does not give a quantitative result.

The discrepancy is resolved when one finally includes radial density
gradients as well as the temperature effects. In order to understand this additional
effect, we can examine the local wavenumber, given by

k2(r) = [ω2 − ω2
p(r)]/(3KT/m). (5.36)

Copyright © 2003 IOP Publishing Ltd.



Figure 5.5. Comparison of theoretical and experimental results for dipole resonances on a
plasma column. (From [59].)

In the low density regions, ω > ωp and the wave is propagating, but when
ω < ωp , the wave is nonpropagating, so the wave is confined to the outer
portion of the plasma in a varying density profile, reflecting at the radius rc where
ω = ωp(rc). An approximate way of expressing the new resonance condition is∫ a

rc
k(r) dr = θn n = 1, 2, 3, . . . (5.37)

where the θn differ by approximately π . This is closer to agreement with
experiment and indicates that this is an important effect. Numerical calculations
by Parker et al [59] achieved good agreement with experiment for both dipole
and quadrupole resonances over a relatively wide range of a2/λ2D using the finite
temperature and density variations with an analysis substantially the same as that
given here except for the density variation. This agreement is shown in figure 5.5
for the main resonance and the first two thermal modes.

The final chapter was added by Baldwin [60] who showed another effect,
namely that strong Landau damping of the wave would occur near the plasma
boundary due to thermal effects, seeming to imply that the waves would be
absorbed rather than resonate. This effect is due to the fact that the fluid equations
require the phase velocity to greatly exceed the thermal speed, and while well
satisfied near the turning point as k → 0, the phase velocity approaches the
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Figure 5.6. Schematic diagram of waveguide partially filled with cold plasma.

thermal speed at the plasma edge as the density approaches zero, and the wave
damps through Landau damping. The fact that resonances still occur is due
entirely to the fact that the wave energy is transferred to particles that reflect
at the static potential barrier at the wall and reconstruct the wave as they re-
enter the plasma. This effect was dramatically demonstrated in studies with
a weak magnetic field where it was expected that the resonances would split
by the gyrofrequency, but in fact by the time the two peaks could barely be
resolved on the main resonance, the higher resonances were washed away and
the main resonance was greatly broadened, as if strongly damped. This can
easily be understood when one realizes that the small amount of curvature in the
Larmor orbits of the electrons would dramatically affect the efficiency of the wave
reconstruction due to the spread in phase. This interpretation also gives strong
evidence that Landau damping is reversible (see chapters 4 and 7), indicating that
even though the waves may completely damp out, the information remains in the
particles until collisions or some other randomizing process is able to destroy it.

Problem 5.3.3. Estimates of the Tonks–Dattner Resonances. Estimate the
frequencies of the three lowest resonances for Keff = 2.1 and a2/λ2D = 500
and compare these with the data in figure 5.5.

5.3.2 Surface waves in a partially-filled plasma waveguide

For the case where B0 = 0, the dielectric tensor reduces to a scalar and the
electrostatic approximation is no longer necessary to simplify the problem. We
consider a case where the plasma is cold and uniform out to radius a and vacuum
from radius a to radius b where there is a conducting waveguide. This geometry
is sketched in figure 5.6.

In this case, the wave equation with dielectric constant 1 − ω2
p/ω

2 in the
plasma is the same for both B1z and E1z , and is given by{

∇2⊥ +
[
ω2

c2

(
1− ω2

p

ω2

)
− k2

]}(
E1z
B1z

)
= 0 0 < r < a (5.38)
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and in the vacuum region the wave equation is[
∇2⊥ +

(
ω2

c2
− k2

)](
E1z
B1z

)
= 0 a < r < b. (5.39)

Since the wave fields may be derived from either E1z or B1z , we refer to
the corresponding wave fields as E-modes or B-modes, respectively. In the case
of circular symmetry, they are uncoupled, but for the more general case, a linear
combination of the two modes is necessary to satisfy boundary conditions. The
two uncoupled solutions are distinct because the boundary conditions at the wall
are different. We shall investigate only the cylindrically symmetric solutions in
this example.

For waves with vp < c (k > ω/c), the cylindrically symmetric solution for
the E-mode that is regular at the origin may be written as

E1z =

 A

I0(τr)

I0(τa)
ei(kz−ωt) 0 < r ≤ a

(B I0(τ0r)+ CK0(τ0r))ei(kz−ωt) a ≤ r ≤ b
(5.40)

where

τ 2 = k2 − ω2

c2
+ ω2

p

c2
(5.41)

τ 20 = k2 − ω2

c2
(5.42)

and B and C may be obtained by the boundary conditions which require the
tangential E to be continuous at a and to vanish at b. This results in

E1z = A
I0(τ0r)K0(τ0b)− I0(τ0b)K0(τ0r)

I0(τ0a)K0(τ0b)− I0(τ0b)K0(τ0a)
ei(kz−ωt) a ≤ r ≤ b. (5.43)

In these expressions, I0 and K0 are the modified Bessel functions of the first and
second kind, and K0(x) is singular at the origin. Imposing the final boundary
condition that tangential B given by

Bθ =



− iω(1− ω2

p/ω
2)

τ 2c2
dE1z

dr
0 ≤ r ≤ a

− iω

τ 20 c
2

dE1z

dr
a ≤ r ≤ b

(5.44)

be continuous at the boundary leads to the dispersion relation(
1− ω2

p

ω2

)
1

τa

I1(τa)

I0(τa)
= 1

τ0a

I1(τ0a)K0(τ0b)+ I0(τ0b)K1(τ0a)

I0(τ0a)K0(τ0b)− I0(τ0b)K0(τ0a)
. (5.45)
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One approximate solution of equation (5.45) may be obtained by allowing
b/a → ∞. In this case, since I0(x) ∝ ex and K0(x) ∝ e−x as x → ∞, we
require B = 0 in equation (5.40), and the dispersion relation simplifies to

1− ω2
p

ω2
= − τa

τ0a

K1(τ0a)

K0(τ0a)

I0(τa)

I1(τa)
(5.46)

and it is plotted in figure 5.7 for various values of ωpa/c. The saturation for
large k may be obtained by assuming τ0a to be large in which case the dispersion
relation may be simplified even further to

1− ω2
p

ω2 � −
τ

τ0

which may be expressed as

k2 = ω2

c2


1+

(
ω2
p

ω2 − 2

)−1 . (5.47)

In this form, it may be seen that k → ∞ as ω → ωp/
√
2 so that these surface

waves represent traveling waves on the plasma column and the Tonks–Dattner
resonances represent the vp = ω/k → 0 limit. In the opposite limit, vp → c
as k becomes small. In the high density limit, as ωpa/c becomes large, vp → c,
but in this case it was shown by Trivelpiece and Gould [54] that the wave energy
becomes highly localized near the plasma boundary and the plasma behaves much
like a conductor. These surface waves are commonly referred to as Trivelpiece–
Gould modes.

There are no corresponding B-modes with vp < c, but there are B-modes

with vp > c such that ω >
√
k2c2 + ω2

p . For this case,

B1z =
{

AJ0(k⊥r)ei(kz−ωt) r ≤ a

[B J0(k⊥0r)+ CY0(k⊥0r)]ei(kz−ωt) a ≤ r ≤ b
(5.48)

E1θ =




iωA

k⊥
J1(k⊥r)ei(kz−ωt) r ≤ a

iω

k⊥0
[B J1(k⊥0r)+ CY1(k⊥0r)]ei(kz−ωt) a ≤ r ≤ b

(5.49)

where

k2⊥ =
ω2 − ω2

p

c2
− k2 > 0

k2⊥0 =
ω2

c2
− k2 > 0.
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Figure 5.7. Dispersion relation for surface waves on an unmagnetized plasma column of
radius a. Full curves are for b/a →∞ (from [54]), while dashed curves are for b/a = 1.5.

Problem 5.3.4. Wave equations in plasma and vacuum. Verify equations (5.38)
and (5.39).

Problem 5.3.5. Surface wave dispersion relation. Fill in the steps leading to
equation (5.47).

Problem 5.3.6. B-mode dispersion relation. Find the dispersion relation for the
B-mode with vp > c starting with equations (5.48) and (5.49).

Problem 5.3.7. The unbounded finite column. For ωpa/c = 1 and τ0a = 2, find
ω/ωp and ka and sketch Ez(r)/Ez(0) as a function of r/a for the case b/a→∞.

5.4 Electrostatic waves on a plasma column in a magnetic
field

Before launching into the general plasma-filled waveguide problem, we first
consider electrostatic waves, also called slow waves because their phase velocity
is low, or space charge waves since the charge density fluctuates. This
simplification is unnecessary as B →∞ or B → 0, but is useful for intermediate
cases. Assuming charge neutrality in a cold plasma, Poisson’s equation becomes

∇ · ε0K · ∇ϕ1 = 0 (5.50)
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with a cold magnetized plasma dielectric tensor of the form of equation (2.10):

K =

 K1 K2 0
−K2 K1 0
0 0 K3


 . (5.51)

Assuming a wavelike potential, i.e. ϕ1 = ϕ1(r)ei(kz z−ωt), then equation (5.50)
becomes

(K1∇2⊥ − K3k
2
z )ϕ1 = 0 (5.52)

where ∇2⊥ = ∇2 − ∂2/∂z2. Solutions in cylindrical coordinates are

ϕ1 =
∞∑

m=0
[Am Jm(k⊥r)+ BmYm(k⊥r)]ei(kz z+mθ−ωt) (5.53)

with

k2⊥ = −k2z
K3

K1
(5.54)

and since we wish to have regular solutions at r = 0, we must have Bm = 0. For
a conducting waveguide, we require the tangential field to vanish at the wall at
r = a, so we must have

Jm(k⊥a) = 0 so k⊥a = pmν (5.55)

where pmν is the νth zero of the Bessel function of order m.
The electrostatic approximation is valid near the electron plasma frequency

and the electron cyclotron frequency for sufficiently small a, so we will neglect
the ion motion in K1 and K3. The dispersion relation for the space charge waves
is then given by (

pmν
kza

)2
= − 1− ω2

p/ω
2

1+ ω2
pe/(ω

2
ce − ω2)

. (5.56)

The dispersion relation for these electrostatic waves is shown in figure 5.8
for ωp > ωce and ωp < ωce. It is apparent that the higher frequency branch
begins at the upper hybrid resonance and ends at the higher of ωp or ωce. This
upper branch is a backward wave, since ω decreases with increasing k. The lower
branch propagates down to zero frequency, but in that limit, the ion motion must
be included.

It is interesting to note that as B0 → 0, the higher frequency branch reduces
to the plasma resonance, ω = ωp , and the lower branch collapses, so that no
propagation can occur in an unmagnetized plasma column in a waveguide. With a
vacuum layer between the plasma and the conducting wall, however, propagation
again becomes possible in this limit. The waves in this case are called surface
waves because they carry most of the wave energy in the vacuum region and
may only penetrate a short distance into the plasma. The characteristics of these
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Figure 5.8. Dispersion relations for electrostatic waves for the cases (a) ωce > ωp and (b)
ωp > ωce with k⊥a = 3.83.

surface waves were demonstrated by Trivelpiece and Gould [54] on a plasma
column similar to that used in the scattering resonance experiments.

Problem 5.4.1. The effects of ion motions. Derive and sketch the dispersion
relation for low frequencies where ion motions are important. Label any new
resonances or cutoffs on the sketch.

Problem 5.4.2. Effects of a vacuum layer. Consider a vacuum layer between the
plasma radius a and the conducting wall radius b.

(i) Derive the dispersion relation for this case.
(ii) Show that propagation can occur for the case B0 → 0.
(iii) Sketch the dispersion relations for B0 �= 0 and for B0 = 0.
(iv) Derive an expression for the power flow in this problem and sketch the
power flow as a function of radius.
(v) Note any cases where the electrostatic approximation fails.

5.5 Cold plasma-filled waveguide

5.5.1 The dispersion relation

For our most general example, the plasma model is a uniform cold magnetized
plasma in a cylindrical conducting waveguide and the restrictions of the previous
cases are removed. In this case, the plasma is represented by a dielectric tensor of
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the form of equation (5.51),

K =

 K1 K2 0
−K2 K1 0
0 0 K3


 (5.57)

and for convenience we again define the related tensor

ω2

c2
K =


 κ1 κ2 0
−κ2 κ1 0
0 0 κ3


 . (5.58)

The electric fields are assumed to propagate down the waveguide in the z-
direction, so the wave fields may be represented by the expression

E = E(r)ei(kz z+mθ−ωt). (5.59)

With this dependence, ∂/∂θ → im, ∂/∂z → ikz , and ∂/∂ t → −iω so that the
components of the Maxwell equations

∇ × E = iωB

∇ × B = − iω

c2
K · E

may be written as

(∇ × E)r = im

r
Ez − ikz Eθ = iωBr (5.60)

(∇ × E)θ = ikz Er − d

dr
Ez = iωBθ (5.61)

(∇ × E)z = 1

r

d

dr
(r Eθ )− im

r
Er = iωBz (5.62)

(∇ × B)r = im

r
Bz − ikz Bθ = − i

ω
(κ1Er + κ2Eθ ) (5.63)

(∇ × B)θ = ikz Br − d

dr
Bz = − i

ω
(−κ2Er + κ1Eθ ) (5.64)

(∇ × B)z = 1

r

d

dr
(r Bθ )− im

r
Br = − i

ω
(κ3Ez). (5.65)

We will solve this set of equations by solving first for the transverse
components in terms of Ez and Bz . For example, solving equation (5.60) for
iBr and using this in equation (5.64) and rearranging, we obtain

κ2Er + γ Eθ = mkz
r

Ez + iω
d

dr
Bz (5.66)

where γ = k2z −κ1. Similarly, solving equation (5.61) for iBθ and using the result
in equation (5.63), the result may be expressed as

γ Er − κ2Eθ = mω

r
Bz − ikz

d

dr
Ez . (5.67)
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These two equations may then be solved for Er and Eθ with the result expressed
as

E⊥ = a∇⊥Ez + b∇⊥Bz + cêz ×∇⊥Ez + dêz × ∇⊥Bz (5.68)

where ∇⊥ ≡ ∇ − êz∂/∂z, E⊥ = E − êz Ez , and the coefficients are given by

a = − ikzγ

γ 2 + κ22

c = ikzκ2
γ 2 + κ22

b = iωκ2
γ 2 + κ22

d = iωγ

γ 2 + κ22

. (5.69)

Similar methods lead to the expression for the transverse B:

B⊥ = p∇⊥Ez + a∇⊥Bz + qêz ×∇⊥Ez + cêz ×∇⊥Bz (5.70)

where

p = − ik2z κ2

ω(γ 2 + κ22 )
q = − i(κ1γ − κ22 )

ω(γ 2 + κ22 )
. (5.71)

These expressions for the transverse components may now be substituted
into equation (5.62) with the result

c∇2⊥Ez + d∇2⊥Bz − iωBz = 0 (5.72)

and into equation (5.65) with the result

c∇2⊥Bz + q∇2⊥Ez + iκ3
ω

Ez = 0. (5.73)

These two equations are coupled, and lead to a fourth order equation in either
Bz or Ez . The fourth order equations are obtained by taking the ∇2⊥ of both
equations (5.72) and (5.73), eliminating∇4⊥Bz between them (to find the equation
for Ez) and eliminating ∇2⊥Bz from the result from equation (5.73) so that the
equation for Ez may be written as

(c2 − qd)∇4⊥Ez +
(
iωq − idκ3

ω

)
∇2⊥Ez − κ3Ez = 0. (5.74)

The equation for Bz is obtained similarly, with the result

(c2 − qd)∇4⊥Bz +
(
iωq − idκ3

ω

)
∇2⊥Bz − κ3Bz = 0 (5.75)

so the two equations are identical.
Because the coefficients are constants, the fourth order equations can also be

written as

(∇2⊥ + k2⊥1)(∇2⊥ + k2⊥2)
(

Ez

Bz

)
= 0 (5.76)

where k2⊥1 and k2⊥2 are the two solutions of the quadratic equation

(c2 − qd)k4⊥ −
(
iωq − idκ3

ω

)
k2⊥ − κ3 = 0. (5.77)
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Since the two factors commute in a uniform plasma, it must be that each factor
has solutions which are regular at the origin of the form

�(r, θ) =
∞∑

m=−∞
Am Jm(k⊥r)eimθ

so that Bz must be simply proportional to Ez such that Bz = � and Ez = α�

with α a constant. Then the general solutions are of the form

Bz(r, θ, z, t) =
∞∑

m=−∞
Am[Jm(k⊥1r)+ τm Jm(k⊥2r)]ei(kzz+mθ−ωt) (5.78)

Ez(r, θ, z, t) =
∞∑

m=−∞
Am[α1m Jm(k⊥1r)+ α2mτm Jm(k⊥2r)]ei(kz z+mθ−ωt)

(5.79)

where α1 and α2 are the roots of the quadratic equation for α which may be
obtained by using Bz = � and Ez = α� in equation (5.72) and equation (5.73)
and letting the determinant of coefficients of� and∇2⊥� vanish. The relationship
between α and k⊥ may be obtained from equation (5.72) by noting from
equation (5.76) that ∇2⊥� = −k2⊥�, with the result

k2⊥ j = −
iω

d + α j c
j = 1, 2. (5.80)

The quadratic is written most conveniently from equation (5.77) in terms of
k⊥ as

(γ 2 + κ22 )

[
γ 2 + κ22 + γ k2⊥ +

κ1k2⊥
κ3

(
γ − κ22

κ1
+ k2⊥

)]
= 0 (5.81)

which must be solved simultaneously with the boundary value problem.
The first factor in equation (5.81) does not vanish by assumption, since it

was in the denominator of all the factors of equation (5.69) and equation (5.71).
If it should vanish, then we must rederive the subsequent expressions, and it may
be shown that it leads to a transverse electro magnetic (TEM) mode (no Ez or
Bz) that requires a central conductor in order to satisfy the boundary conditions.
These effectively represent the coaxial cable modes, and do not exist in a simply
connected waveguide.

The remaining factor,

(γ 2 + κ22 + γ k2⊥)κ3 + k2⊥[κ1(γ + k2⊥)− κ22 ] = 0 (5.82)

is the dispersion relation for a cold uniform plasma and is identical to the infinite
cold plasma dispersion relation of equation (2.21) except that now k⊥ is subject
to boundary conditions.
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Problem 5.5.1. Derive the expressions for a, b, c, d , p, and q of equations (5.69)
and (5.71) and prove that pd − ac = 0 and ab + cd = 0.

5.5.2 Wave fields and boundary conditions

The fully coupled electric and magnetic field components for the plasma-filled
waveguide are given by

E =
∑
m

∑
ν

Emν(r)e
i(kz z+mθ−ωt) (5.83)

B =
∑
m

∑
ν

Bmν(r)e
i(kzz+mθ−ωt) (5.84)

where the summation over ν is over the various roots of the transcendental
dispersion relation–boundary condition pair for fixed azimuthal mode number m.
In the following expressions, the ν subscript is suppressed, but it would normally
appear with the quantities k⊥1 and k⊥2 and all quantities which involve these. The
components of the fields then are given by

Bzm = Am [Jm(k⊥1r)+ τm Jm(k⊥2r)] (5.85)

Brm = ikz Am

[
J ′m(k⊥1r)

k⊥1
+ τm

J ′m(k⊥2r)
k⊥2

]

+ mκ1Am

rkzκ2

[
β1

Jm(k⊥1r)
k2⊥1

+ τmβ2
Jm(k⊥2r)

k2⊥2

]
(5.86)

Bθm = iκ1Am

kzκ2

[
β1

J ′m(k⊥1r)
k⊥1

+ τmβ2
J ′m(k⊥2r)

k⊥2

]

− mkz Am

r

[
Jm(k⊥1r)

k2⊥1
+ τm

Jm(k⊥2r)
k2⊥2

]
(5.87)

Ezm = ωκ1Am

kzκ2κ3
[β1 Jm(k⊥1r)+ τmβ2 Jm(k⊥2r)] (5.88)

Erm = iωAm

κ2

[
δ1

J ′m(k⊥1r)
k⊥1

+ τmδ2
J ′m(k⊥2r)

k⊥2

]

− mωAm

r

[
Jm(k⊥1r)

k2⊥1
+ τm

Jm(k⊥2r)
k2⊥2

]
(5.89)

Eθm = − mωAm

rκ2

[
δ1

Jm(k⊥1r)
k2⊥1

+ τmδ2
Jm(k⊥2r)

k2⊥2

]

− iωAm

[
J ′m(k⊥1r)

k⊥1
+ τm

J ′m(k⊥2r)
k⊥2

]
(5.90)
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where

β j = γ − κ22

κ1
+ k2⊥ j and δ j = γ + k2⊥ j j = 1, 2,

and γ = k2z − κ1.
The boundary conditions in this case are very simple when the plasma

completely fills the waveguide, since the tangential E must vanish at the wall
at radius a. This leads to the two conditions

β1 Jm(k⊥1a)+ τmβ2 Jm(k⊥2a) = 0 (5.91)

J ′m(k⊥1a)
k⊥1

+ τm
J ′m(k⊥2a)

k⊥2
= im

aκ2

[
δ1

Jm(k⊥1a)
k2⊥1

+ τmδ2
Jm(k⊥2a)

k2⊥2

]
.

(5.92)

Eliminating τm between these two conditions, the result may be written as

imδ1
k2⊥1aκ2β1

− 1

k⊥1β1
J ′m(k⊥1a)
Jm(k⊥1a)

= imδ2
k2⊥2aκ2β2

− 1

k⊥2β2
J ′m(k⊥2a)
Jm(k⊥2a)

. (5.93)

Equations (5.93) and (5.82) represent a transcendental pair of equations which
must be solved numerically where the values of k⊥1 and k⊥2 are determined from
the quadratic roots of equation (5.82). Before examining some of the cases that
exhibit the transcendental character, we will again look at some special cases.

Problem 5.5.2. Field components in cylindrical coordinates. Using the various
definitions and the dispersion relation equation (5.82), show that the field
components are of the form given in equations (5.85) through (5.90).

Problem 5.5.3. Waveguide cutoff frequencies. For the waveguide cutoff problem,
the coupled modes simplify and there are two separate cutoff frequencies.

(i) Show that at cutoff, the dispersion relation can be factored as

(κ21 + κ22 − κ1k
2⊥)(κ3 − k2⊥) = 0.

(ii) Show that for the circularly symmetric modes, the fields are uncoupled,
i.e. that the first factor (case 1) is associated with Bz , Eθ , and Er and the
second factor (case 2) is associated with Ez and Bθ .
(iii) Find the boundary condition and the values of k⊥ for each case (m = 0).
(iv) Find expressions for the cutoff frequency for each case and show that
one is equivalent to the infinite magnetic field case. For case 1, find explicit
expressions for the cutoff frequency for

(a) low frequency, ω ∼ ωci , c2 � V 2
A; and

(b) high frequency, ω ∼ ωce ∼ ωpe.
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5.5.3 MHD approximation—ω � ωci

For frequencies well below the ion cyclotron frequency, K1 and K2 are
approximately related as

K2 � ω

ωci
K1 → 0 as

ω

ωci
→ 0

so we can neglect κ2. In this case, the dispersion relation can be factored into

(γ + k2⊥)
(
γ + k2⊥κ1

κ3

)
. (5.94)

The fact that the dispersion relation may be factored is an indication that equations
(5.72) and (5.73) are uncoupled. In this case it is due to the fact that c → 0 as
κ2 → 0, so they become

d∇2⊥Bz − iωBz = 0 (5.95)

q∇2⊥Ez + iκ3
ω

Ez = 0. (5.96)

The transverse wavenumber from equation (5.95) is

k2⊥ = −
iω

d
= −γ (with κ2 → 0)

so that
γ + k2⊥ = 0 (5.97)

is the dispersion relation for this case. The wave is a TE mode, since there is no
Ez component. The boundary condition is only on Eθ , namely

Eθ (a) ∝ J ′m(k⊥a) = 0 so k⊥a = p′mν (5.98)

and the dispersion relation can then be written in the form

(kza)
2 =

(
ωa

VA

)2
− p′mν

2 (5.99)

where the approximation,

K1 �
ω2
pi

ω2
ci

= c2

V 2
A

has been used. This dispersion relation is identical to that of electromagnetic
waves in an empty cylindrical waveguide except that the effective dielectric
constant is Keff = c2/V 2

A.
The cutoff frequencies are given by

ωco = k⊥VA = p′mνVA/a. (5.100)
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For circularly symmetric modes, J ′0(x) = −J1(x), so p′0ν = p1ν =
3.83, 7.01, 10.17, . . . , etc. For the lowest cutoff frequency, however, one must
choose m = ±1, since the lowest root of J ′1(x) = 0 is p′11 = 1.84.

The second factor of equation (5.94) corresponds to equation (5.96) so the
waves are transverse magnetic (TM) modes (no Bz component) and the boundary
condition is on Ez which is given by

Ez(a) ∝ Jm(k⊥a) = 0 so k⊥a = pmν (5.101)

and the dispersion relation is

γ = −κ1

κ3
k2⊥ so k2z �

ω2

V 2
A

[
1+

(
pmνc

ωpea

)2]
(5.102)

if ωpi � ωci . The dispersion relation is the same as the electrostatic dispersion
relation except that the electrostatic case demands |k2⊥/κ3| � 1 which is
always satisfied for sufficiently small a. The electrostatic case leads to k2z �
(ω2/ωceωci )k2⊥ at low frequency. It should be noted that equation (5.102) has
no cutoff, so TM modes propagate down to zero frequency. These waves are the
slow Alfvén waves that exhibit the ion cyclotron resonance. Their absence of any
waveguide cutoff is due to their torsional character and the fact that the group
velocity is parallel to the waveguide, minimizing any wall interactions.

Problem 5.5.4. TE and TM modes in the MHD limit. Find expressions for all
the field components for these two MHD cases, and show that the TE modes are
compressional and the TM modes are torsional (i.e. that the static magnetic field
is either compressed or twisted). Sketch the field patterns for the lowest m = 1
mode for each case.

5.5.4 Intermediate frequency case—ω � ωci � ω p

When ω � ωci , another approximation can be made by assuming that |k2⊥/κ3| �
1. We also note that in this frequency range, κ3 � −ω2

p/c
2 and κ1 � κ2 � ω2/V 2

A
unless ω is too close to ωci . Then κ1/κ3 � me/mi so the approximation is called
the neglect of electron inertia and we take κ3 → ∞. In this case the dispersion
relation simplifies to

γ 2 + κ22 + γ k2⊥ = 0 (5.103)

or writing this another way,

k2z = κ1 − 1
2k

2⊥ ± [( 12k2⊥)2 − κ22 ]1/2 (5.104)

so there are two branches for the same k⊥. From equation (5.88), κ3 →∞means
Ez → 0, so the boundary condition is only on Eθ and both solutions are TE
modes. For circularly symmetric modes, we have

Eθ (a) ∝ J1(k⊥a) = 0 so k⊥ = p1ν/a. (5.105)
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Figure 5.9. The transition from TM to TE for the torsional Alfvén wave in a conducting
waveguide. (From [55].)

When we compare the results with the MHD approximation ω/ωci → 0, we get
disagreement as both here are TE modes and the MHD approximation yielded
one TE mode and one TM mode, and one of the values of k⊥ appears to change
from 3.83/a to 2.405/a as ω/ωci → 0. This can be understood by observing that∣∣∣∣ Ez

Eθ

∣∣∣∣ ∼ κ1β1k⊥
κ2κ3kz

� ωci

ω

k⊥VA

ω

(
k⊥c
ωpe

)2
(5.106)

so for sufficiently low frequency, Ez � Eθ , so that the boundary condition is
dominated by Ez . However, for k⊥c/ωpe � 1, there is a range of frequencies
below the ion cyclotron frequency where Eθ � Ez , so the Eθ component
dominates the boundary condition. Thus the transition does occur at some
intermediate (but low) frequency, and the full transcendental set of equations
must be solved to find the crossover. An example of the transition is shown in
figure 5.9. In order to get a better picture of the dispersion characteristics in
this frequency range, we first let ω→ ωci so that κ1 and κ2 become large. Since
κ1 → ω2/V 2

A(1−ω2/ω2
ci ) and κ2 → i(ω/ωci )κ1, κ21+κ22 → ω4/V 4

A(1−ω2/ω2
ci )

so the dominant terms in the dispersion relation all have the same resonant
denominator, and the approximate solutions are

k2z →
1

2

(
ω2

V 2
A

− k2⊥

)
fast wave (5.107)

k2z →
ω2

V 2
A(1− ω/ωci )

slow wave. (5.108)

These dispersion relations are plotted in figure 5.10, and show the resonance for
the slow Alfvén wave and the breaking away of the fast Alfvén wave from the
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Figure 5.10. The dispersion relation for the fast and slow Alfvén waves in a conducting
waveguide.

Alfvén distribution function speed at higher frequency. In this approximation, the
cutoff frequency is still given by equation (5.100) if c2/V 2

A � 1.

5.5.5 Mode orthogonality and power flow

In this section, the plasma is assumed to be cold as before, but it may be lossy,
so that the dielectric tensor may not be Hermitian. We then choose to solve the
Maxwell equations for E, B, Ẽ and B̃ where the tilde fields satisfy the Maxwell
equations with K̃, the transpose of K (for the lossless case, (K̃)i j = (K)∗j i ). Then
for each individual mode that satisfies the appropriate dispersion relation and
boundary conditions, we have

∇ × Eµ = iωBµ ∇ × Ẽν = iω B̃ν

∇ × Bµ = − iω

c2
K · Eµ ∇ × B̃ν = − iω

c2
K̃ · Ẽν

(5.109)

where the subscripts µ and ν each indicate the combination of a radial and an
azimuthal mode. We now examine the vector identity,

∇ · (Eµ × B̃ν) = B̃ν · ∇ × Eµ − Eµ · ∇ × B̃ν

= iω B̃ν · Bµ + iω

c2
Eµ · K̃ · Ẽν . (5.110)

Similarly,

∇ · (Ẽν × Bµ) = Bµ · ∇ × Ẽν − Ẽν · ∇ × Bµ
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= iωBµ · B̃ν + iω

c2
Ẽν · K · Eµ (5.111)

and subtracting equation (5.111) from equation (5.110), we obtain

∇ · (Eµ × B̃ν − Ẽν × Bµ) = iω

c2
(Eµ · K̃ · Ẽν − Ẽν · K · Eµ) ≡ 0. (5.112)

The quantity in the last parentheses is identically zero for any two vectors and any
tensor, so it is a tensor identity. Now from Gauss’ theorem,∫

Vol
∇ ·(Eµ× B̃ν− Ẽν×Bµ) dV =

∮
Surf

(Eµ× B̃ν− Ẽν×Bµ) ·dS = 0 (5.113)

where we choose the surface of the volume as the cylindrical waveguide boundary
and two circular ends, one at z1 and one at z2. We note that (E × B) · êr involves
either Ez Bθ or Eθ Bz , but since both Eθ and Ez vanish at the conducting boundary,
the waveguide surface contribution to the integral vanishes. The contribution at
each end involves (E × B) · êz which has Eθ Br and Er Bθ or only transverse (⊥)
components of the fields. Factoring the z-dependence out of the integral, we have[

ei(kzµ+k̃zν )z1 − ei(kzµ+k̃zν )z2
] ∫

Area
(E⊥µ × B̃⊥ν − Ẽ⊥ν × B⊥µ) · êz dS = 0.

(5.114)
Assuming z1 �= z2, we find that the integral over a cross section is zero unless
kzµ = −k̃zν, so∫

Area
(E⊥µ × B̃⊥ν − Ẽ⊥ν × B⊥µ) · êz dS = P�δkzµ,−k̃zν (5.115)

which is the basic orthogonality integral.
Now the Maxwell equations are invariant under a reflection (kz →−kz) if

E⊥(−kz) = − E⊥(kz)
B⊥(−kz) = B⊥(kz)
Ez(−kz) = Ez(kz)

Bz(−kz) = − Bz(kz)

Kzx(−kz) = − Kzx(kz) (= 0 in the cold plasma)

and we can use these reflection symmetries to write the orthogonality integral in
a different way, letting k̃zν →−k̃zν , so that∫

Area
(E⊥µ × B̃⊥ν − (−Ẽ⊥ν)× B⊥µ) · êz dS = Qµδkzµ,k̃zν

. (5.116)

Adding the two integrals leads to the simpler result

2
∫
Area

(E⊥µ × B̃⊥ν) · êz dS = Pµδkzµ,−k̃zν + Qµδkzµ,k̃zν . (5.117)
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We note at this point that K̃ can be obtained from K by changing the sign of the
static magnetic field (B0 → −B0), which in a cold plasma changes K2 → −K2.
Therefore the dispersion relation, which is a function of K 2

2 only, is unchanged

for K → K̃, and its solutions must be unchanged, so kzν = k̃zν . Thus we can
again simplify equation (5.117) as

2
∫
Area

(E⊥µ × B̃⊥ν) · êz dS = Pµδkzµ,−kzν + Qµδkzµ,kzν . (5.118)

Then we note from equations (5.86) and (5.87) that (using double subscripts to
denote both the azimuthal mode number m and the radial mode numbers µ and
ν)

B̃rmν = Br(−m)ν and B̃θmν = −Bθ(−m)ν (5.119)

so the orthogonality integral,

2
∫ 2π

0

∫ a

0
(Ermµ B̃θmν − Eθmµ B̃rmν)r dr dθ = Pµδkzµ,−kzν + Qµδkzµ,kzν

using equation (5.119), becomes

4π
∫ a

0
(ErmµBθ(−m)ν + EθmµBr(−m)ν)r dr = −(Pµδkzµ,−kzν + Qµδkzµ,kzν ).

(5.120)
When µ = ν, the orthogonality relation yields the power flow down the
waveguide. When the plasma is lossless, then K̃ = K∗, and the tilde is replaced
everywhere by the complex conjugate operator.

5.5.6 Antenna problems

5.5.6.1 Excitation coefficient for a current loop

Here we consider a loop of radius b inside a waveguide of radius a, with b < a,
carrying a current I in the z = 0 plane. See figure 5.11 for the geometry of the
loop and figure 5.12 for the field it produces in its immediate vicinity.

If the loop is circularly symmetric, it will excite only circularly symmetric
modes, and we will treat only this case although the extension to arbitrary θ -
dependence is not greatly different.

If we now examine the symmetries as z → 0, then any field component of
the form F(k, z) = A(k)eikz has the symmetries represented by

F(k,−z) = A(k)e−ikz = A(−k)eikz = F(−k, z) (5.121)

and since we will be letting z → 0, we will denote the fields by F(±k) instead of
F(±z). We now define the jump condition which is defined by

[ B̃⊥] ≡ lim
z→0

[ B̃⊥(z)− B⊥(−z)] (5.122)

Copyright © 2003 IOP Publishing Ltd.



Figure 5.11. Geometry of a loop in cylindrical waveguide.

Figure 5.12. Magnetic fields produced by a current loop.

so that using equation (5.121) this may be written as

[ B̃⊥] = [B̃r (k)− Br (−k)]êr + [B̃θ (k)− Bθ (−k)]êθ
= [Br (k)− Br (−k)]êr + [−Bθ (k)+ Bθ (k)]êθ (5.123)

= µ0 Iδ(r − b)êr

where we have used B̃r = Br , B̃θ = −Bθ , and B⊥(−k) = −B⊥(k) in the second
line and Ampère’s law in the third line. We also examine the quantity

B̃⊥(k)+ B⊥(−k) = [B̃r (k)+ Br (−k)]êr + [B̃θ (k)+ Bθ (−k)]êθ
= [Br (k)− Br (k)]êr − [Bθ (k)− Bθ (−k)]êθ
= 0 (5.124)

where we have used the same symmetries as before for the vanishing of the Br

component, and again used Ampère’s law for the vanishing of the Bθ component.
It is presumed here that each field component is a sum over all the radial modes
in order to completely describe the fields of the loop.

Now we can construct the products needed for the orthogonality integral:

(E⊥µ + Ẽ⊥µ)× [ B̃⊥(k)− B⊥(−k)] = (E⊥µ + Ẽ⊥µ)× µ0 Iδ(r − b)êr

(E⊥µ − Ẽ⊥µ)× [ B̃⊥(k)+ B⊥(−k)] = 0
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and adding these we obtain

(E⊥µ + Ẽ⊥µ)× [ B̃⊥(k)− B⊥(−k)] + (E⊥µ − Ẽ⊥µ)× [ B̃⊥(k)+ B⊥(−k)]
= 2(E⊥µ × B̃⊥ + Ẽ⊥µ × B⊥) = −2µ0 I Eθµδ(r − b)êz

(5.125)

providing Ãµ = Aµ. Integrating over the cross section, then, we obtain∫
Area

(E⊥µ × B̃⊥ + Ẽ⊥µ × B⊥) · êz dS = −
∫
Area

µ0 I Eθµδ(r − b) dS (5.126)

and using the orthogonality relation and the delta function, this reduces to

−4π
∫ a

0
(ErµBθµ + EθµBrµ)r dr = −µ0bEθµ(b)

∫ 2π

0
I (θ) dθ. (5.127)

If the loop current is independent of θ , then the integral on the right is
∫ 2π
0 I dθ =

2πδm0 and only circularly symmetric modes are excited. Introducing the notation
that Erµ = AµErµ and Brµ = AµBrµ, equation (5.127) allows us to find the
amplitude for each mode Aµ as

Aµ = µ0 IbEθµ(b)

2
∫ a
0 (ErµBθµ + EθµBrµ)r dr

. (5.128)

The impedance of the loop antenna is then directly obtained from Vθ =
2πbEθ = IZ where the resistance R = Re(Z) and the inductance L = Im(Z).
This leads to the expression

Z =
∑
µ

µ0πb2E2θµ∫ a
0 (ErµBθµ + EθµBrµ)r dr

. (5.129)

Problem 5.5.5. Excitation coefficient symmetry. Show that if Ãµ �= Aµ the
integral in equation (5.128) is equal to 2Aµ Ãµ/(Aµ + Ãµ). Then show that in
fact, Ãµ = Aµ.

5.5.6.2 Low frequency, compressional mode excitation

In order to avoid the complexity of the coupled mode expressions, we assume
ω � ωci (the MHD approximation) so that the simpler orthogonality relations of
Bessel functions can be used. In this case, for the compressional mode, Bθ → 0,
so [Bθ ] is not needed. We still have

[Br ] = µ0 Iδ(r − b)
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from the general treatment. The dispersion relation from equations (5.97) and
(5.99) may be written as

k2zν =
ω2

V 2
A

− k2⊥ν

with the boundary condition from equation (5.98) for circularly symmetric modes
being given by

k⊥νa = 3.83, 7, 01, . . . .

The principal fields are Br , Bz , and Eθ . In particular,

Brν = − ikzν
k⊥ν

Aν J1(k⊥νr)

so

Br (±z) = ∓
∑
ν

ikzνAν
k⊥ν

J1(k⊥νr)eikzν |z|

for kzν > 0. Then the jump condition gives

[Br ] = −2
∑
ν

ikzνAν
k⊥ν

J1(k⊥νr) = µ0 Iδ(r − b).

In order to use the orthogonality properties of J1(k⊥νr), we multiply by J1(k⊥µr)
and integrate:

µ0 I
∫ a

0
J1(k⊥µr)δ(r − b)r dr = −2

∑
ν

∫ a

0

ikzνAν
k⊥ν

J1(k⊥µr)J1(k⊥νr)r dr

which reduces to

µ0 I J1(k⊥µb)b = − ikzµAµa2

k⊥µ
J 20 (k⊥µa)

due to the Bessel function orthogonality relations,

∫ a

0
Jm(k⊥µr)Jm(k⊥νr)r dr =

{
a2

2
[J ′m(k⊥µa)]2 µ = ν

0 µ �= ν

if Jm(k⊥µa) = Jm(k⊥νa) = 0. The excitation coefficient is then given by

Aµ = iµ0 Ibk⊥µ
kzµa2

J1(k⊥µb)
J 20 (k⊥µa)

. (5.130)

The Bz component of the field can then be written as

Bz(r, z, ω) = iµ0 Ib

a2

∑
ν

k⊥ν J1(k⊥νb)
kzν J 20 (k⊥νa)

J0(k⊥νr)ei(kzν z−ωt) (5.131)
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where k2zν = (ω2 −ω2
ν)/V

2
A where ων = k⊥νVA is the cutoff frequency for radial

mode ν. It is possible to adjust b to eliminate one radial mode, but in general there
are an infinite number of modes.

Problem 5.5.6. Compressional mode excitation coefficients. Find the ratio b/a
which will eliminate the second radial mode, and then calculate the relative
amplitudes of the next three radial modes (ν = 3, 4, 5) relative to the lowest
mode. Assume ω = 6ω1.

5.5.6.3 Impulse response

For this same MHD case, it is instructive to examine the time dependence of the
response for a given input instead of looking only at the steady state response
of equation (5.131). Since kzν depends on ω, a nonsinusoidal disturbance will
be distorted as it propagates down the waveguide. For a specific example, we
consider the response to an impulse so that we assume the current has the time
dependence

I (t) = Iδ(t) =
∫ ∞

−∞
Ie−iωt dω

2π
.

We then construct Bz(r, z, t) by superposition and do the inverse Fourier
transform,

Bz(r, z, t) = µ0 Ib

a2

∑
ν

k⊥ν J1(k⊥νb)
J 20 (k⊥νa)

J0(k⊥νr)
∫ ∞

−∞
ei(kzν z−ωt)

−ikzν
dω

2π

and using the dispersion relation for kzν(ω), the integral is tabulated with the
result

∫ ∞

−∞
ei(kzν z−ωt)

−ikzν
dω

2π
=
{

J0(ων
√
t2 − z2/V 2

A) t > z/VA

0 t < z/VA.
(5.132)

Each radial mode has a similar time dependence, each of which is of the form
shown in figure 5.13, and the total Bz is the sum of such terms. We can understand
the response by noting first that vg ≤ VA always, so nothing can appear before
the Alfvén transit time t = z/VA. Then the high frequencies appear first and give
the sharp initial rise, and then, since vg → 0 as the frequency nears the cutoff
frequency, the long time behavior exhibits an oscillation which approaches the
cutoff frequency since for large arguments,

J0(ων t) ∼ ei(ων t+φ)]/ων t .

For realistic waveguides where there is some loss going down the guide, the
higher modes damp more quickly and round off the sharp rise, and the long time
behavior is dominated by the cutoff frequency of the lowest mode.
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Figure 5.13. Impulse response for a single radial mode for the compressional Alfvén wave
(MHD approximation).

Figure 5.14. Schematic diagram of an experiment for Alfvén wave measurements. The
electrodes at each end launch and detect the m = 0 torsional Alfvén wave since Er is
dominant while the loop antenna and Bz probe launch and detect the m = 0 compressional
Alfvén wave where Bz is dominant.

5.5.7 Experiments in plasma-filled waveguides

5.5.7.1 Torsional wave experiments

Although some early measurements of the Alfvén wave were made by Lehnert
in liquid sodium [62], the damping was so strong that the results were marginal
at best in demonstrating the wave characteristics. Definitive measurements were
made by Wilcox et al [63], who measured the propagation in a copper tube filled
with cold (�1 eV) plasma immersed in a magnetic field. The configuration was
similar to the one shown in figure 5.14 where the wave was launched by applying
a voltage between the central electrode and the wall, producing an Er and a Bθ .
Wilcox et al measured the propagation speed and observed reflections from the
far end of the tube, which in their case had a matching electrode at both ends.
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Figure 5.15. Impulse response for the fast wave in a plasma-filled waveguide; full
curve, experimental results (from photograph, where the upper trace is the driving signal);
dot-dashed curve, theoretical response (from ‘best fit’ parameters). The horizontal scale is
0.2 µs/division. (From [55].)

5.5.7.2 Compressional wave experiments

Using a similar device to the one used by Wilcox et al, the more dramatic effects
of the waveguide on fast wave propagation was observed by Swanson et al [55],
and Jephcott and Malein [56]. In these experiments, the source was either a
near impulse (a critically damped sine wave) [55] or a pulsed oscillator [56].
Because these measurements were done near the ion cyclotron frequency, the
impulse response deviated from figure 5.13 because the higher frequencies arrived
faster than VA (see figure 5.10), and because the damping was strong enough
that the long time amplitude was exponentially decaying rather than varying as
t−1/2. This is evident in equation (5.15) where the peak amplitude arrived near
the Alfvén transit time (tA = z/VA) and the final observed frequency was very
nearly the waveguide cutoff frequency.

One great advantage of finding the impulse response is that the Fourier
transform of the impulse response is the dispersion relation. The Fourier
transform of figure 5.15 is shown in figure 5.16 where both the phase (ω versus
kz) and amplitude are shown. The dispersion relation is shown compared with
an analytical model including electron–ion collisions and ion–neutral collisions
and the full transcendental boundary conditions. The collisions prevent a sharp
cutoff, but there is general agreement with the theoretical model which is based on
‘best fit’ parameters for the percentage ionization, electron temperature, and the
ion–neutral cross section. Using these parameters, an expected impulse response
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Figure 5.16. Fourier transform of the measured impulse response where kz = β′ + iα′: (a)
dispersion relation for the fast wave; (b) attenuation factor versus frequency. (From [55].)

was calculated and is shown in the dot-dash pattern of figure 5.15. The amplitude
plot (figure 5.16(b) shows that the largest amplitude was observed near the cutoff
frequency, as can be seen in the excitation coefficient in equation (5.131) which
is inversely proportional to kz so that the amplitude peaks at cutoff. The radius
of the antenna loop in the experiment was designed to eliminate the second radial
mode, but due to plasma nonuniformities, the amplitude measurements show a
small amount of the second mode and a significant amount of the third radial
mode as evidenced by the absorption minima at each cutoff frequency.

5.5.7.3 Cavity modes

When the length of the waveguide is bounded, then boundary conditions on kz
also exist, and restrict the solutions to eigenfrequencies where the waves are
standing waves in all directions. While all plasma-filled waveguides have finite
dimensions, most linear devices have sufficiently strong damping that cavity
modes are not observed. In a tokamak, however, the wave damping may be very
low, and cavity modes have been observed [64]. In this case, the waveguide
is bent around to close on itself, and though this requires a nonuniform B0
and nonuniform density, the cylindrical waveguide analysis is quite pertinent to
these experiments, except that the antennas are invariably outside the plasma
in a vacuum sheath region, and the excitation coefficients are more difficult to
calculate. Both high order azimuthal modes (toroidal direction, so 2πR0kz = �,
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� = 0, 1, 2, . . .) and radial modes have been observed, many with very high Q
(very low loss).

5.6 Conducting wall with vacuum layer, m = 0, ±1

For this case, we need to match the fields in the plasma to the vacuum fields,
which are derived from an equation like equation (5.76) except that now there is
only one factor, and the dispersion relation is simple. Thus we have

(∇2⊥ + k2⊥)
(

Ez

Bz

)
= 0 (5.133)

and

k2⊥ + k2z =
ω2

c2
. (5.134)

Since kz is the same inside and outside the plasma, then unless kz → 0, we usually
will have k2⊥ < 0 in the vacuum region. Thus we define

T 2 = −k2⊥ = k2z −
ω2

c2
(5.135)

so that solutions of equation (5.133) will be of the form

Ez(r, z, t) =
∞∑

m=−∞
[Bm Im(Tr)+ CmKm(Tr)]eikz z+imθ−iωt (5.136)

Bz(r, z, t) =
∞∑

m=−∞
[Dm Im(Tr)+ FmKm(Tr)]eikz z+imθ−iωt (5.137)

where Im(Tr) and Km(Tr) are the modified Bessel functions of the first and
second kind, respectively, of order m. The TE modes, whose transverse fields
are derived from equation (5.137), are independent of the TM modes, whose
transverse fields are derived from equation (5.136), except when they are coupled
through the boundary conditions to the plasma modes. The transverse fields are
given by (suppressing the common phase factor)

Eθ = mkz
T 2r

[Bm Im(Tr)+ CmKm(Tr)] + iω

T
[Dm I ′m(Tr)+ FmK

′
m(Tr)]

Bθ = − iω

T c2
[Bm I

′
m(Tr)+ CmK

′
m(Tr)] +

mkz
T 2r

[Dm Im(Tr)+ FmKm(Tr)].

If we set the plasma radius at a, where we require Eθ , Bθ , Ez , and Bz to be
continuous (B = µ0H , so Ht is continuous in the ideal dielectric model), and the
conducting wall to be at radius b, where Ez and Eθ must vanish, then we have six
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conditions with six unknowns (Am , τm , Bm , Cm , Dm , and Fm). Although we can
immediately obtain

Cm = −Bm
Im(Tb)

Km(Tb)
Fm = −Dm

I ′m(Tb)
K ′m(Tb)

from the condition at the conducting wall, this is still a formidable set, and
effectively requires numerical analysis to investigate the implications of adding
the vacuum layer.

Because of the complexity of the results possible for this case, we only
summarize the findings of Paoloni [65], who first investigated the character of
the m = +1, 0,−1 modes in the intermediate frequency range, i.e. in the vicinity
of the ion cyclotron frequency and below. If we define the cutoff frequency for
the fast wave to be

ωco ≡ k⊥VA k⊥ ≡ qmν
a

(5.138)

then for the lowest radial mode, he found that

p01 < q01 < p11 (5.139)

p11 < q−11 < p02 (5.140)

but q11 → 0 for relatively small vacuum layers. This means that the m = +1 fast
wave has no cutoff frequency when the vacuum layer exceeds a few centimeters.
The other azimuthal modes behave as one might expect, with only slight effects
due to the vacuum layer, but this onemode is very different. He also found that the
slow wave was essentially insensitive to boundary conditions, with the dispersion
relation being indistinguishable for the three cases m = 0,±1.

Generally, radial dependences of the m = 0 transverse fields for the fast
waves are the same as for the slow waves, but the fast wave is everywhere right-
handed and the slow wave is everywhere left-handed. For the slow wave, the
m = −1 wave is left-hand polarized at low frequencies, while the m = +1 wave
is right-hand polarized on axis, switching polarization about midway to the outer
radius, but both cases become totally left-handed as ω → ωci . At resonance, the
m = −1 slow wave peaks on the axis, while the m = +1 slow wave has a null on
the axis.

Problem 5.6.1. Boundary condition for vacuum layer in a conducting waveguide.
Find the boundary condition for the case with a uniform plasma out to radius
a and vacuum from a to b where there is a conducting waveguide. This may
be accomplished by first eliminating the vacuum field coefficients from the
conditions on Bθ (a) and Eθ (a), then writing each of these expressions with Am

factored out as B(k⊥1) = τm B(k⊥2) and E(k⊥1) = τmE(k⊥2), then eliminating
τm to find an expression of the form U(k⊥1) − U(k⊥2) = 0. The problem then
is to find a suitable form for U(k⊥). The actual numerical solution then can be
found by finding a root of this transcendental function of k⊥1, since the choice of
k⊥1 → kz → k⊥2 through equation (5.82). (Nontrivial problem.)
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5.7 Infinite magnetic field approximation

5.7.1 Cold plasma-filled waveguide in an infinite magnetic field

The approximation of an infinite magnetic field simplifies the problem of wave
propagation to essentially a one-dimensional problem and allows the application
of simple boundary conditions. Experimentally, Landau damping has been
measured in magnetized plasmas because the desired plasma properties were
easier to obtain, but with ωce � ωpe, which we approximate by considering
the field to be infinite. In this case the Maxwell equations for the wave fields are

∇ × E1 = iωB1 (5.141)

∇ × B1 = − iω

c2
K · E1 (5.142)

∇ · B1 = 0 (5.143)

∇ · ε0K · E1 = 0. (5.144)

In this special case, as B0 →∞, the dielectric tensor is especially simple,

K =




1 0 0
0 1 0

0 0 1− ω2
p

ω2


 (5.145)

since there are no transverse motions across the field. Taking the curl of
equation (5.141) and substituting in equation (5.142), we obtain

∇(∇ · E1)−∇2E1 = ω2

c2
K · E1. (5.146)

Using equation (5.145) in equation (5.144), we find

∇ · K · E1 = ∇ ·
[
êr Er + êθ Eθ + êz Ez

(
1− ω2

p

ω2

)]

= ∇ · E1 −
ω2
p

ω2

∂Ez

∂z
= 0 (5.147)

so that the z-component of equation (5.146) is

∇2Ez + ω2

c2

(
1− ω2

p

ω2

)
Ez −

ω2
p

ω2

∂2Ez

∂z2
. (5.148)

Assuming now a wave field of the form

Ez(r, θ, z, t) = Ez(r, θ, kz, ω)ei(kz z−ωt) (5.149)
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equation (5.148) becomes[
∇2⊥ +

(
ω2

c2
− k2z

)(
1− ω2

p

ω2

)]
Ez = 0 (5.150)

with solutions that are regular at the origin given by

Ez =
∞∑

m=0
Am Jm(k⊥r)ei(kz z+mθ−ωt) (5.151)

where

k2⊥ =
(
ω2

c2
− k2z

)(
1− ω2

p

ω2

)
. (5.152)

The boundary condition at the vacuum wall, which is taken to be a perfectly
conducting waveguide, is that the tangential electric field vanish at r = a, so
the boundary condition requires

Jm(k⊥a) = 0 so k⊥a = pmν . (5.153)

Using this result, the dispersion relation may be conveniently written as

(kza)
2 = ω2a2

c2
− p2mν

1− ω2
p/ω

2 . (5.154)

The dispersion relation of equation (5.154) is plotted in figure 5.17 where
a number of things should be noted. The upper propagating branch of the
dispersion relation represents ordinary waveguide modes which are altered only
slightly by the presence of the plasma by raising the waveguide cutoff frequency
for each mode from the empty waveguide cutoff frequency ω0 = pmνc/a to
ω = (ω2

0 + ω2
p)

1/2. The lower propagating branch represents plasma waves
in the finite waveguide. The cold plasma dispersion relation for plasma waves
in an infinite medium is nondispersive with ω = ωp , but the boundaries have
introduced the dispersive effects.

Problem 5.7.1. The Poynting vector profile. Find an expression for the Poynting
vector in this problem, and sketch the power flow as a function of radius for
m = 0, ν = 1, 2.

Problem 5.7.2. Thermal corrections. Find the dispersion relation corresponding
to equation (5.154) for a warm fluid plasma where p1 = γ n1KT with γ = 3.
Sketch this dispersion relation for a � λD .
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Figure 5.17. Dispersion relation for a cylindrical waveguide as B0 →∞.

5.7.2 Hot plasma-filled waveguide

Our last example of bounded plasmas adds the effects of a hot plasma, but
in the limit of an infinite magnetic field. This reduces the problem to one
dimension in velocity space, since only parallel particle motions are possible,
while remaining three-dimensional in configuration space subject to boundary
conditions. Because the boundary puts no restriction on the parallel motion,
only electromagnetic boundary conditions are appropriate, and considering only
a plasma-filled waveguide, we will require the tangential E fields to vanish at the
wall radius.

We shall consider the Landau-type problem with an initial value problem in
time. We shall ignore the initial conditions at the beginning, matching the normal
mode fields to an actual perturbation later. While the electric field may have
other components, only the Ez component will be of interest since the motion
of the particles is one-dimensional. We will follow the general development of
Kuehl [66], but use the notation of chapter 4. Taking the Fourier transforms in
space, such that

f1(r, v, t)⇒ f̃ (r, θ, k, v, t)eikz

E(r, t)⇒ Ẽ(r, θ, k, t)eikz
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the kinetic equation becomes

∂ f̃

∂ t
+ ikvz f̃ − e

me
Ẽz

∂ f0
∂vz

= 0. (5.155)

The Maxwell wave equation,

∇(∇ · E)−∇2E = −µ0
∂ j
∂ t
− 1

c2
∂2E
∂ t2

along with

ε0∇ · E = ρ and ∇ · j + ∂ρ

∂ t
= 0

can be used to write a relation in terms of E and j only. After taking the Laplace
transform in time as in equation (4.44), the z-component of the wave equation
becomes (

∇2⊥ − k2 − p2

c2

)
Ẽ p =

(
k2 + p2

c2

)
J̃p
pε0

(5.156)

where Ẽ p is the Laplace transform of Ẽz and J̃p is the corresponding transform
of the z-component of the current density. The transformed kinetic equation
becomes

(p + ikvz) f̃ p − e

m
Ẽ p

∂ f0
∂vz

= 0. (5.157)

From equation (5.157), the transformed current density is given by

J̃p = − en0

∫ ∞

−∞
vz f̃ p dvz

= − ε0ω
2
p Ẽ p

∫ ∞

−∞

vz
∂ f0
∂vz

p + ikvz
dvz (5.158)

which may be written in the form

J̃p
pε0

= −Ẽ p
ω2
p

k2

∫ ∞

−∞

∂ f0
∂vz

vz − ip/k
dvz . (5.159)

Using this result in equation (5.156), we may write the resulting equation as[
∇2⊥ −

(
k2 + p2

c2

)
K

]
Ẽ p = 0 (5.160)

where

K = 1− ω2
p

k2

∫ ∞

−∞

∂ f0
∂vz

vz − ip/k
dvz . (5.161)

Copyright © 2003 IOP Publishing Ltd.



The solution of equation (5.160) that is regular at the origin is

Ẽ p =
∑
m

Am Jm(k⊥mr)eimθ (5.162)

where k⊥m is related to K , k, and p by the dispersion relation

k2⊥m +
(
k2 + p2

c2

)
K = 0. (5.163)

We now take for an initial condition a z-directed azimuthally symmetric
electric field that is localized in the vicinity of z = 0 and is impressed on the
plasma at the waveguide wall radius r = b. It is turned on at t = 0 and is
harmonic in time subsequently with angular frequency ω so that the perturbation
can be represented by

Ez(r, θ, z, t) = E0(z)δ(r − b)e−iωt t ≥ 0. (5.164)

Then the transformed initial condition is

Ẽ p(b, k, p) = E0(k)

p + iω
. (5.165)

Since there is no θ dependence, we know already that only the m = 0 term,
J0(k⊥r), will contribute, so we drop the subscript on k⊥. Then matching the field
at r = b determines the constant so that

Ẽ p(r, k, p) = E0(k)J0(k⊥r)
(p + iω)J0(k⊥b)

. (5.166)

At long times after the perturbation is turned on, the Laplace transform is
easily done, since only the contribution near the pole at p = −iω will survive as
the other contributions will damp away in time, leaving

Ẽ p(r, k, t) = E0(k)J0(k⊥r)
J0(k⊥b)

e−iωt (5.167)

where now K and k are determined at p = −iω. The inverse Fourier transform
is much more difficult now, however, since with ω having a positive imaginary
part (since p had a positive real part), the pole in the velocity integral of
equation (5.159) is either above the vz axis for k > 0 or below the axis for k < 0.
Hence we must break the inverse Fourier transform into two pieces, such that

Ez(r, z, t) = e−iωt√
2π

[∫ 0

−∞
E0(k)

J0(k
−
⊥r)

J0(k
−
⊥b)

eikz dk

+
∫ ∞

0
E0(k)

J0(k
+
⊥r)

J0(k
+
⊥b)

eikz dk

]
(5.168)
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where k±⊥ represents the cases where the pole lies above or below the vz axis. The
dispersion relation then becomes

k±⊥
2 +

(
k2 − ω2

c2

)
K± = 0 (5.169)

where

K+ = 1− ω2
pe

k2v2e
Z ′
(

ω

kve

)
(5.170)

K− = 1− ω2
pe

k2v2e
Z̃ ′
(

ω

kve

)
. (5.171)

Since both Z ′ and Z̃ ′ are entire functions, we can now let ω be purely real, and it
will be taken as such in the remaining discussion.

For large z, the principal contributions to the response will come from the
poles of the integrands, or where k±⊥b = p0ν and p0ν is the νth root of the zero-
order Bessel function. An additional contribution comes from a saddle point of
the integrals, and was included in the discussion by Landau [33], but is generally
not the dominant term. We also note that in this case, the root of equation (5.169)
with K− is just the negative of the root with K+, so we will not need to investigate
the two cases separately. Thus equation (5.169) becomes

( p0ν
b

)2 +
(
k2 − ω2

c2

)[
1− ω2

pe

k2v2e
Z ′
(

ω

kve

)]
= 0. (5.172)

There are two general classes of solutions for equation (5.172); those with
ω/kve � 1, where K � 1 − ω2

p/ω
2 and we have the cold plasma result of

equation (5.154), and the case with (ω/kve) � 1, where we can neglect (ω/c)2

compared to k2. For this latter case, there are no weakly damped solutions. The
only simple root is for ω = 0 where from equation (5.172),

( p0ν
b

)2 + k2 + 2ω2
pe

v2e
= 0

with a purely imaginary solution

(ki/kD) = [1+ (p0ν/kDb)
2]1/2. (5.173)

Problem 5.7.3. Lorentzian plasma in an infinite field waveguide. Find the roots
of equation (5.172) for the Lorentzian distribution, f0(v) = ve/π(v

2
z + v2e ).

Problem 5.7.4. Approximate solution. For k⊥/kD = 0.1 and k⊥/kD = 0.3,
estimate k/kD at ω = ωp (real and imaginary parts) and compare these with
the cold plasma result.
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Chapter 6

Waves in inhomogeneous plasmas

6.1 Introduction

The uniform plasmas of the previous chapters are idealizations which are rarely
realized, although in some bounded regions, the approximationmay be very good.
We can generally assume a plasma is uniform if the plasma parameters vary little
over a wavelength. In most laboratory plasmas, however, and over the vast regions
of space, densities and magnetic fields vary to such an extent that it is sometimes
difficult to estimate from uniform plasma theory where the wave energy will go
and whether it will reach specified regions. It is very common to cross boundaries
in the CMA diagram in inhomogeneous plasmas, either traveling up or down due
to changes in the magnetic field, or laterally due to changes in density, or both.
The questions to be addressed in this chapter relate to where the wave energy
goes in a slowly varying medium, and what happens in those regions where
geometric optics or WKB theory breaks down. The analysis of these special
regions includes the effects of reflection at cutoffs, and absorption and mode
conversion at resonances. Finite density gradients also give rise to electric fields
and drift waves, along with new drift and gradient-driven instabilities. In many
instances, these various effects can be separated and dealt with one at a time, but
there are important cases where a combination of effects occur, several of which
are simultaneously important, and each individual technique breaks down. We
will generally discuss these effects in isolation, although the analysis of a cutoff
resonance pair usually includes both mode conversion and absorption and will be
treated as a single problem.

6.2 WKB method for one-dimensional inhomogeneities

As an illustration of the method used in treating one-dimensional inhomo-
geneities, we consider an unmagnetized plasma with only a density variation.
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The wave equation,

∇(∇ · E)−∇2E + 1

c2
∂2E
∂ t2

= −µ0
∂ J
∂ t

(6.1)

depends only on variations in the plasma density through the plasma current, so
we let n0 = n0(x). Since all equilibrium quantities are independent of y and z, we
can Fourier transform in those directions and assume harmonic time dependence.
Then

∇ → êx
d

dx
+ êy iky + êz ikz and

∂

∂ t
→ −iω

but another simplification is possible since the plasma is isotropic, since then
one can rotate the coordinate system about the x-axis until the wave has no kz
component. Then the current may be derived from the equations of motion for
ions and electrons

m j
∂v j

∂ t
= q j E j = i, e

and
j = en0(x)(vi − ve)

with the result that

j � in0(x)e2

ωme
E = iε0

ω
ω2
pe(x)E

where ω2
pe(x) ≡ n0(x)e2/meε0. Then the z-component of equation (6.1), which

is not coupled to the other components, is

−
(

d2

dx2
− k2y

)
Ez +

[
ω2
pe(x)

c2
− ω2

c2

]
Ez = 0.

This can then be cast into the WKB form of equation (1.54):

d2y

dx2
+ k2(x)y = 0 (6.2)

where y(x) = Ez(x) and

k2(x) ≡ ω2 − ω2
pe(x)

c2
− k2y . (6.3)

If it is assumed that k2(x) is slowly varying, then the eikonal or WKB method
(see section 1.3.5) allows us to find good approximations to the exact solutions in
rather general form.

For k(x) = constant, the solution is trivial and of the form

y = A1eikx + A2e−ikx
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and represents waves traveling to the left and to the right. Looking for solutions
which are similar to the uniform result, we assume an eikonal solution of the form

y(x) = A(x)eiψ(x) (6.4)

where A(x) is assumed to be a slowly varying amplitude and ψ(x) is the eikonal,
a rapidly varying phase such that ψ ′(x) = ±k(x). In order to determine the limits
of validity of this method, we choose the upper sign and insert equation (6.4) into
equation (6.2), first noting the derivatives

y ′ = ik Aeiψ + A′eiψ

y ′′ = − k2Aeiψ + 2ik A′eiψ + ik ′Aeiψ + A′′eiψ

so that equation (6.2) becomes

A′′ + 2ik A′ + ik ′A = 0. (6.5)

If A′′ is assumed small, then to lowest order, A(x) = 1/
√
k(x), and the complete

solution is written (for either sign) as

y(x) = A0√
k(x)

exp

[
± i

∫ x

k(x ′) dx ′
]
. (6.6)

Taking this as the zero order result, we assume the solution is modified by
the correction term,

A(x) = [1+ η(x)]/√k(x)

where again we assume that η is slowly varying so that we neglect η′′ when this
is inserted into equation (6.5). The result may be expressed as

η′

1+ η
= 1

4i

k′′
k2
− 3

2
k′′2
k3

1+ 1
2i

k′
k2

so that

η � 1

4i

k ′

k2
. (6.7)

The condition for validity may thus be written as |η| � 1 or as∣∣∣∣1k dk

dx

∣∣∣∣� k (6.8)

which means that the change of wavelength over a wavelength should be small.
This approximation fails when k → 0 or when k ′ → ∞, or whenever the wave
approaches either a cutoff or a resonance.

Problem 6.2.1. WKB approximation. Show what approximations must be made
to establish equation (6.7) and show that equation (6.8) is equivalent to saying the
amplitude must vary little over a wavelength.
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6.2.1 Behavior near a cutoff

The behavior near a cutoff is important enough to justify further analysis, and
was analyzed so long ago that it is considered by many to be part of the
WKB formalism rather than restricted to the condition of equation (6.8). In the
neighborhood of the cutoff, we expand k2(x) about the cutoff,

k2(x) = k2(x0)+ d

dx
k2(x)

∣∣∣∣
x0

(x − x0)+O(x − x0)
2

where k2(x0) = 0 defines x0 and we define the coefficient such that k2(x) =
β2(x− x0). Then the result of equation (6.6) is valid whenever |x− x0| � β−2/3.
The behavior near the cutoff must come from the solution of the differential
equation, however, since the approximations always fail sufficiently close to
cutoff. The differential equation may be written as

d2y

dx2
+ β2(x − x0)y = 0

which by means of the variable change z ≡ −β2/3(x − x0) can be written

y ′′ − zy = 0 (6.9)

which is the Airy equation.
The solutions of the Airy equation are well known [67] and may be

represented by the two independent solutions

y(z) = C1 Ai(z)+ C2 Bi(z)

which have the asymptotic forms

Ai(z) = 1

2
√
πz1/4

e−ζ (6.10)

Ai(−z) = 1√
πz1/4

[
sin

(
ζ + π

4

)
− cos

(
ζ + π

4

)]
(6.11)

Bi(z) = 1√
πz1/4

eζ (6.12)

Bi(−z) = 1√
πz1/4

[
sin

(
ζ + π

4

)
+ cos

(
ζ + π

4

)]
(6.13)

where ζ = 2
3 z

3/2. These asymptotic solutions must be matched to the
approximate eikonal solutions which represent incoming and outgoing waves,
which are given by equation (6.6) as

y(x) = A1

(x − x0)1/4
ei

2
3β(x−x0)3/2 + A2

(x − x0)1/4
e−i

2
3β(x−x0)3/2 x > x0 (6.14)

y(x) = B1

|x − x0|1/4 e
2
3β|x−x0|3/2 + B2

|x − x0|1/4 e
− 2

3β|x−x0|3/2 x < x0. (6.15)
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Now as z → ∞ (x → −∞), Bi(z) → ∞, so in an unbounded plasma, we
must require C2 = 0. Then simplifying the expression for Ai(−z) and writing the
result in terms of x , using ζ = − 2

3β(x − x0)3/2,

Ai(−z) �
(

2

π
√
z

)1/2
sin ζ = −

√
2/π e−iπ/4

(x − x0)1/4β3/8 sin

[
2

3
β(x − x0)

3/2
]

(6.16)

so we require A2 = −A1. This principal result indicates that there is total
reflection, since the amplitudes of the incoming and outgoing waves are the same.
The asymptotic expressions, once far from the cutoff, can be matched onto more
realistic expressions for k(x) than the linear ones, and the phase of the reflected
wave at a distant point estimated.

The matching implied here between the asymptotic forms of the Airy
function solutions and the WKB solutions requires that there be a finite region
of overlap where both approximations are simultaneously valid. The conditions
for validity are shown in figure 6.1. When the exact expression for k2(x) is linear,
the overlapping region is unbounded, of course, but for any other variation, there
is some limit when the linear approximation fails. If the real variation of k2(x)
deviates substantially from linear before the WKB expressions are valid, then
there may be no overlap, so that accurate matching may not always be possible.

Whenever the plasma is bounded, either due to the fact that there is a definite
plasma edge, or due to the density or field not changing monotonically so that
another cutoff is nearby, both the Ai(z) and Bi(z) functions must be used to
satisfy the boundary conditions or connection formulas. The back-to-back cutoff
problem, where two cutoffs occur a finite distance apart and the wave is not
propagating between the cutoffs, is treated in the following section. This situation
leads to tunneling and only partial reflection.

Problem 6.2.2. Validity of linear matching to WKB solutions. Suppose the density
variation in equation (6.3) is such that

k2(x) = k20

(
1

1+ e−αx
− 1

2

)
.

(i) Find the linear form of k2(x) near the cutoff and find the value of u =
αx/2 where the linear expression deviates from the exact expression by 10%.
(ii) Assuming |ζ | = 3 is large enough for the asymptotic forms of the Airy
function to be valid, find an expression for u at this point.
(iii) Show that

1

k2
dk

dx
= α

2k0(2 cosh u)1/2(sinh u)3/2
.

(iv) If this last quantity must be less than 0.1 for the validity of the WKB
approximation, show that for sufficiently small α/k0, valid matching may
always be obtained (i.e. that |ζ | ≥ 3, that the linear expression is within 10%
and |k ′/k2| ≤ 0.1, all for the same u).
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Figure 6.1. Validity conditions for matching the asymptotic forms of the inner functions
and the outer WKB approximants. The cross-hatched regions indicate the range of validity
of the linear approximation (between −xL and xL ) and the circles indicate the region of
validity of WKB. (a) Finite overlap case, so the matching is valid. (b) No overlap case, so
the matching is inaccurate.

(v) As α/k0 decreases, the accuracy of the matching increases. Using the
value of u from part (i) where the linear expression is within 10%, find the
value of α/k0 where both ζ ≥ 3 and |k ′/k2| ≤ 0.1. Repeat for the linear
variation within 5% and |k ′/k2| ≤ 0.05.

6.2.2 Tunneling between back-to-back cutoffs

For our first example of tunneling, we consider a case where a cold
electromagnetic wave in an unmagnetized plasma is propagating in the low
density portions of a plasma column where ω > ωp but near the center of the
column, the density rises so that ωp > ω in the center. A schematic diagram of
the situation is shown in figure 6.2 where cutoff occurs at both a and b.

In order to analyze this situation, we need the coupling formulas for the Airy
functions where k(x) = k1(x) in the propagating region where k2(x) > 0 and
k(x) = ik2(x) in the nonpropagating region where k2(x) < 0. For large x , these
are given by the two following cases.
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Figure 6.2. Plots of density variation and k2(x) showing where the wave propagates
(k(x) = k1(x) for x ≤ a and x ≥ b) and where it is evanescent (Im[k(x)] = k2(x)
for a < x < b).

Case I, barrier on the right:

2√
k1(x)

cos

(∫ a

x
k1(x

′) dx ′ − π

4

)
←→ 1√

k2(x)
exp

(
−
∫ x

a
k2(x

′) dx ′
)

1√
k1(x)

sin

(∫ a

x
k1(x

′) dx ′ − π

4

)
←→ − 1√

k2(x)
exp

(∫ x

a
k2(x

′) dx ′
)
.

Case II, barrier on the left:

1√
k2(x)

exp

(
−
∫ b

x
k2(x

′) dx ′
)
←→ 2√

k1(x)
cos

(∫ x

b
k1(x

′) dx ′ − π

4

)
1√
k2(x)

exp

(∫ b

x
k2(x

′) dx ′
)
←→ − 1√

k1(x)
sin

(∫ x

b
k1(x

′) dx ′ − π

4

)
.

We then use these connection formulas to construct a solution that represents
an incoming wave from the left, such that

yI = A√
k1

cos

(∫ a

x
k1(x

′) dx ′ − π

4

)
+ B√

k1
sin

(∫ a

x
k1(x

′) dx ′ − π

4

)

yI I = A

2
√
k2

exp

(
−
∫ x

a
k2(x

′) dx ′
)
− B√

k2
exp

(∫ x

a
k2(x

′) dx ′
)

= A

2
√
k2

exp

(
−
∫ b

a
k2(x

′) dx ′ +
∫ b

x
k2(x

′) dx ′
)

− B√
k2

exp

(∫ b

a
k2(x

′) dx ′ −
∫ b

x
k2(x

′) dx ′
)

yI I I = − Ae−
∫ b
a k2(x ′) dx ′

2
√
k1

sin

(∫ x

b
k1(x

′) dx ′ − π

4

)
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− 2Be
∫ b
a k2(x ′) dx ′
√
k1

cos

(∫ x

b
k1(x

′) dx ′ − π

4

)

= i

(
Ae−η

4
+ iBeη

)
eiφ√
k1
− i

(
Ae−η

4
− iBeη

)
e−iφ√
k1

where φ(x) = ∫ x
b k1(x ′) dx ′ − π/4, η ≡ ∫ b

a k2(x) dx , and
∫ x
a =

∫ b
a −

∫ b
x . For an

outgoing wave only in region III, we require Ae−η = 4iBeη to eliminate the e−iφ
term. The result in region III is therefore

yI I I = iAe−η

2
√
k1

eiφ. (6.17)

In order to relate the solution in region III to the solution in region I, we note that
φ(x) increases with increasing x , while

∫ a
x k(x ′) dx ′ decreases with increasing

x . This means that
∫ a
x k(x ′) dx ′ ∼ −φ + �φ (although there is no phase shift

between a and b, k(−x) may differ from k(x) so there may be an accumulated
phase shift for large x). Then eliminating B in region I leads to

yI = A

2
√
k1
(e−iφ+i�φ + eiφ−i�φ)+ B

2i
√
k1
(e−iφ+i�φ − eiφ−i�φ)

= A + iB

2
√
k1

eiφ−i�φ + A − iB

2
√
k1

e−iφ+i�φ

= Ae−i�φ

2
√
k1

(
1+ e−2η

4

)
eiφ + Aei�φ

2
√
k1

(
1− e−2η

4

)
e−iφ (6.18)

so the transmission and reflection coefficients may be written as

T = 1

(eη + 1
4 e
−η)2

(6.19)

R = (eη − 1
4 e
−η)2

(eη + 1
4 e
−η)2

. (6.20)

This leads to R = 1−T , and for thick enough barriers that e−2η � 1, T simplifies
to T = e−2η.

Problem 6.2.3. Transmission and reflection coefficients.

(i) Show that equations (6.17) and (6.18) lead to equations (6.19) and (6.20).
(ii) Show that R + T = 1 for any η.

6.2.3 Behavior near an isolated resonance

The analysis of resonances is intrinsically more difficult than the analysis of
cutoffs, because the physics of what resolves the resonance must be included
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Figure 6.3. Dispersion relation for a wave approaching the lower hybrid resonance in a
finite temperature plasma. (From [68].)

in order to obtain physically meaningful results. While effects of losses are
invariably important near resonances, the effects of collisions in high temperature
plasmas frequently are so weak as to be insignificant if any other effects are
involved. While collisions may be the only effect in cold plasmas which could
resolve resonances, thermal effects are frequently more important than collisions.
This was demonstrated by Stix [68] when he investigated the nature of the lower
hybrid resonance in a finite temperature plasma. He discovered that rather than
approach a true pole as the wave approached the resonance, the k2(x) for the
wave doubled back and continued on a warm backward wave branch, illustrated
in figure 6.3, leading to the phenomenon ofmode conversionwhere a wave of one
type (mode) is linearly coupled to a wave of another type (mode). The example
shown actually has a second mode-conversion point where it mode converts into
a forward wave once again. The phenomenon can be understood in terms of
Huygen’s principle, where the wave can be thought of as shaking the plasma at a
particular frequency and wavenumber at each point. If there are two waves that
have the same wavenumber and matching phase velocity at that point, the excited
plasma will excite both waves and transfer some energy between the waves. It
is even possible for oppositely directed group velocities to be coupled, provided
the phase velocities are in the same direction, and for all of the wave energy to be
transferred from one mode to the other so that the wave energy flow turns around
without reflecting where we define reflection as being due to wave energy coming
back on the incident branch or mode.
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Figure 6.4. Dispersion relation for the Wasow equation when λ2 > 0.

The simplest model which can represent two types of coupled waves
traveling in either direction is a fourth-order wave equation (since there are two
kinds of waves with each having two components traveling in opposite directions),
and the isolated resonance may be modeled by the Wasow equation,

yiv + λ2(zy ′′ + βy) = 0 (6.21)

which was first analyzed by Wasow [69] and generalized by Rabenstein [70] to
include a first derivative term and complex coefficients. The eikonal analysis of
this equation yields a quadratic for k2(z),

k4 − λ2zk2 + λ2β = 0 (6.22)

with asymptotic solutions k2(z) � λ2z, β/z. This approximate dispersion relation
is shown in figure 6.4 where the same general features of the turning point
connecting the incoming and outgoing solutions are evident as in the numerical
dispersion relation, but the linear asymptotes allow analytic solutions. The WKB
type of analysis leads to asymptotic expressions of the form z1/4 exp(±2i√βz)
and z−5/4 exp(±2iλz3/2/3). The difficulty is that the connections between these
is not obvious until the differential equation has been solved exactly and the
coupling established by the asymptotic forms of the exact solutions.
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The solutions for this problem are tabulated [71], and the pertinent
connection formula is

−(βz)1/4e−2
√−βz ←→ β

λ3/2z5/4
e−i(

2
3λz

3/2+ π
4 ) + i

√
πβzH (2)

1

(
2
√
βz

)
(6.23)

where the Hankel function term varies as exp(−2i√βz). The general techniques
for solving this kind of problem are developed in section 6.3.2. The conclusion
from this connection formula is that the incident cold wave, represented by
the Hankel function term, is coupled to the warm wave, represented by the
exp(−2iλz3/2/3) term, both on the right-hand side, and that there is no reflection.
The fact that both phase terms are negative is indicative of the fact that the phase
velocities match at the turning point, but in this case, the group velocities do not
as they travel in opposite directions. The scenario is that the wave energy on the
cold branch is totally mode converted to the warm branch which propagates back
away from the hybrid resonance layer. The exponentially decaying term for x < 0
carries no energy on that side unless a boundary is nearby.

6.2.4 Behavior near a resonance–cutoff pair

The nonuniform plasma medium allows a wide variety of possibilities for cutoffs,
resonances, back-to-back cutoffs, and resonance–cutoff pairs. The tunneling
through the nonpropagating region between back-to-back cutoffs can be estimated
by connecting solutions of the Airy type, but the tunneling through the region
between a cutoff and a resonance requires considerably more analysis. The
simplest model for k2(x) of such a cutoff–resonance pair is shown in figure 6.5
along with the amplitude reflection and tunneling coefficients from the analysis
of Budden [72] who analyzed the wave equation, equation (6.2), with

k2(x) = k20

(
1+ a

x

)
(6.24)

where η = πk0a/2. This is commonly called the Budden equation. The arrows
in the figure indicate the direction of an incident wave with its corresponding
amplitude transmission and reflection coefficients.

The results by Budden established that there was no reflection when the
wave approached the tunneling layer from the resonance side, but that there
was reflection when the cutoff was encountered first. It also established that
the tunneling coefficient was symmetric, i.e. the same from both sides. The
difficulties with the Budden results are evident when one tries to establish power
balance, since in both cases, R2 + T 2 < 1. This indicates that not all the energy
is accounted for in the outgoing waves, and since there is no physical absorption
mechanism, the failure to conserve energy is problematical.
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Figure 6.5. Spatial variation of k2(x) for a tunneling problem with a resonance at x = 0
and a cutoff at x = −a.

6.3 Mode conversion theory

Mode conversion theory was developed to deal with resonances in inhomoge-
neous plasmas, taking into account the influence of the merging of two different
types of wave modes along with tunneling, reflection, conversion, and absorption.
The method is nontrivial in its mathematical sophistication, but it incorporates a
substantial amount of physics and is involved in virtually every type of plasma
wave energy absorption except Landau damping and collisional damping.

6.3.1 The mode conversion theorem

It may appear that the necessity of using these mode conversion equations is
relatively rare, and that simpler models might be able to adequately represent
the physics of resonances, but except for certain order-reduction schemes, it is
easily proved this is not so in the Mode Conversion Theorem [73].

Theorem 1. In an inhomogeneous plasma, linear mode conversion is always
involved to some extent in resolving every plasma resonance.

Proof. Consider a general dispersion relation of the form D(k, z) = 0. Expand
this about kc, the turning point, and obtain the result

D(k, z) = D[kc(z), z] + ∂D

∂k

∣∣∣∣
kc

(k − kc)+ 1

2

∂2D

∂k2

∣∣∣∣∣
kc

(k − kc)
2 +O(k − kc)

3.

(6.25)
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The turning point is where the group velocity vanishes, or where vg = ∂ω/∂k =
(∂D/∂k)/(∂D/∂ω) = 0, so the first order term vanishes because of the choice of
kc. Then if we neglect the higher order terms, the result can be written in the form

D(k, z) = P(z)+ Q(z)(k − kc)
2 = 0

so by defining a shifted k by k − kc = ks , the dispersion relation is

k2s = −P(z)/Q(z)

and P(z0) = 0 is a cutoff and Q(zR) = 0 is a resonance. In the event that Q(z)
vanishes, however, it does not represent a true resonance since then the neglected
higher order terms in equation (6.25) dominate the expression for ks . Even if zR
is not on the real axis, implying that Q(z) never truly vanishes for any real z, the
magnitude of the second order term must still be compared with the higher order
terms before the relative importance of the various terms can be established. The
next higher order term is commonly a fourth order term (since all the odd order
terms may vanish if the first order term vanishes), and any such equation with a
higher order term is a mode conversion equation. �

An important qualifier in the theorem is the statement ‘to some extent’, since
absorption may decrease the coupling to the mode converted wave. Essentially,
if zR is close to the real axis, then mode conversion is significant, while just the
opposite is true as zR moves far from the real axis.

6.3.2 Solution of the tunneling equation

The additional physics which is required to resolve this problem is to be found
in mode conversion, the same general kind of process which occurred in the
isolated resonance. The appropriate wave equation in this case is also a fourth
order equation similar to equation (6.21) with the addition of only one term

yiv + λ2zy ′′ + (λ2z + γ )y = 0 (6.26)

which we call the tunneling equation. This equationwas first analyzed by Erokhin
[74] and later by Ngan and Swanson [75] in applying it to the tunneling problem at
the ion cyclotron harmonic, both for the case γ > −1. The solution for γ < −1
was analyzed by Faulconer [76]. This is a very general equation, since every
fourth order equation with only constant and linear coefficients of the form,

yiv + (a2 + b2x)y
′′ + (a0 + b0x)y = 0 (6.27)

can be cast into the form of equation (6.26) if b0 �= 0 or into the form of
equation (6.21) if b0 = 0.

Equations of the form of equation (6.26) or equation (6.27) along with
equation (6.21) are special cases of a class of nth-order differential equations that
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have constant and linear coefficients and which represent coupled waves. The
general analysis of these equations is tedious [77], but relatively straightforward.
The following example demonstrates the various arguments and calculations in
the process and allows one to see the interaction back and forth between the
mathematics and the physics in solving the problem.

Problem 6.3.1. Changing to dimensionless variables. Assume x = α(z − z0) in
the previous equation and find expressions for α, z0, λ, and γ for the case b0 �= 0.
If b0 = 0, find the corresponding expressions for equation (6.21) (find β instead
of γ ).

Problem 6.3.2. The case for λ2 < 0.

(i) Plot the dispersion curve corresponding to figure 6.4 for λ2 = −λ20 where
λ20 > 0 in equation (6.22).
(ii) Plot the dispersion curve for the tunneling equation when λ2 < 0 and
γ < −1 in equation (6.34) by also letting z → −x so that λ2z → λ20x .
Sketch on the curves which are incoming and outgoing waves (i.e. is eix

incoming or outgoing on the left, etc). Is this slow wave a backward or a
forward wave?

6.3.2.1 The exact solution

Equation (6.26) can be solved exactly by using Laplace’s method, namely
assuming the solution can be written as a Laplace integral of the form,

y(z) =
∫
C
e−ikz f (k) dk (6.28)

where C represents some contour in the complex k-plane. Inserting this into
equation (6.26) and integrating by parts, the result may be written as∫

C
[(k4 + 2ikλ2 + γ ) f (k)+ iλ2(k2 − 1) f ′(k)]e−ikz dk

+ iλ2(1− k2) f (k)e−ikz |C = 0 (6.29)

so if the integrand vanishes everywhere and the quantity (1 − k2) f (k)e−ikz
vanishes at the end points of the contour, then this satisfies the original equation.
This demands that f (k) be a solution of the first order differential equation,

f ′(k)
f (k)

= i(k4 + 2ikλ2 + γ )

λ2(k2 − 1)

so the solution for y(z) is given by

y(z) =
∫
C
exp

[
−ikz + ik3

3λ2
+ ik

λ2

−
(
1+ iη

π

)
ln(k + 1)−

(
1− iη

π

)
ln(k − 1)

]
dk (6.30)
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Figure 6.6. General contours for the tunneling equation: (a) k-plane contours; (b) u-plane
contours.

where

η = π(1+ γ )

2λ2
(6.31)

and η is called the tunneling factor. Using f (k) in the end point expression, it
is clear that the k3 term dominates and that the end points must approach infinity
along the directions π/6, 5π/6, and −π/2. It is also apparent that there are
branch points at k = ±1, so we draw a branch cut between these branch points
as indicated in figure 6.6(a). Since this is a fourth order equation, there must
be four linearly independent solutions represented by four independent contours
and a possible basis set is also shown in figure 6.6(a). This technique has been
extended to nth order equations where the highest order coefficient is constant
and all subsequent coefficients are constant plus linear by Gambier et al [77] and
is sometimes referred to as the GSS theory.

In order to eliminate the difficulties of dealing with the branch points and the
branch cut, it is possible to make a variable change from k → i tan u. The exact
solution in this case is

y(z) =
∫
C
exp

[(
z − 1

λ2

)
tan u + tan3 u

3λ2
+ 1+ γ

λ2
u

]
du (6.32)

so the end points in this case are located where tan3 u →−∞ which places them
at u = (2n + 1)π/2, n = 0,±1,±2, . . . and these points must be approached
along the angles 0, ±2π/3. A set of possible contours for this case is illustrated
in figure 6.6(b), where not all the contours are independent (e.g.C1+C0 = C3). It
is worth noting that since tan u is periodic with period π that the effect of shifting
from u to u ± π is equivalent to simply multiplying the integral by e±2η so that
the various Riemannian sheets in the complex k-plane have been laid out along
the real axis of the u-plane. The amplitude transmission coefficient will turn out
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to be simply e−η, so the connection from one sheet to another in the k-plane, or
from one node to another in the u-plane, is the dominant feature in establishing
the various transmission, reflection, and conversion coefficients.

6.3.2.2 Saddle point approximations

The task at this point is to establish the asymptotic forms of the solutions for the
various contours, and this is done by using the method of steepest descents or the
saddle point method. For this analysis, it is convenient to cast the integral into the
form,

y(z) =
∫

ezh(u) du (6.33)

where z is the asymptotic parameter, and expand h(u) = (1 − 1/λ2z) tan u +
tan3 u/3λ2z + (2η/πz)u about the various saddle points. These are located
wherever h′(u0) = 0. Writing this condition in terms of k2 = − tan2 u0 we
obtain the familiar result,

k4 − λ2zk2 + λ2z + γ = 0 (6.34)

which is the same result as that which would be obtained from WKB analysis.
This dispersion curve, shown in figure 6.7, should be compared with figure 6.5,
where the cutoff is still apparent, but the resonance is now evidently a turning
point where mode conversion takes place. Evaluating this for large |z|, the
asymptotic roots are located where

ks � ±(λ2z − 1)1/2 us � (2n + 1)
π

2
±



i/λ
√
z z > 0

tan−1(λ
√−z) z < 0

k f � ±
(
1+ 1+ γ

λ2z

)1/2
u f �




(2n + 1)
π

2
± i

2
ln

(
4λ2z

1+ γ

)
z > 0

nπ ± i

2
ln

∣∣∣∣∣ 4λ
2z

1+ γ

∣∣∣∣∣ z < 0

with n = 0,±1,±2, . . . , and where ks and us refer to the slow wave solutions
and k f and u f refer to the fast wave solutions. In this context, fast and slow are
purely relative to one another, such that ks > k f , as it could be that the fast wave
here could be an electrostatic wave that is a slow wave in some other context.

The individual saddle-point contributions are calculated by factoring out
the leading constant factor exp[zh(u0)] from the integral, keeping only the
second order term, and integrating over the saddle point in such a direction that
zh′′(u0)u2 < 0 and the resulting integral yields

yi =
[

2π

|zh′′(ui )|
]1/2

ezh(ui )+iφ i = f, s (6.35)
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Figure 6.7. Dispersion relation for tunneling equation when γ > −1.

where φ is the crossing angle. This method gives a good approximation for the
slow wave, where the contribution comes only from the immediate neighborhood
of the saddle point as |z| → ∞, with the result

s± =
√
π

λ3/2z5/4
exp

[
±i

(
2

3
λz3/2 + π

4

)]
z →∞ (6.36)

where s± is multiplied by e±η if the real part of us is ±π/2. For z → −∞, the
results are

σ+ =
√
π

λ3/2|z|5/4 exp
(
2

3
λ|z|3/2

)

σ− = i
√
π

λ3/2|z|5/4 exp
(
−2

3
λ|z|3/2

)



z →−∞. (6.37)

6.3.2.3 The fast-wave approximate solution

For the fast-wave saddle point, the use of equation (6.35) is inaccurate because
even as |z| → ∞, the contribution to this integral is spread and many higher
order terms are necessary to represent the integral. For this integral, it is better to
go back into the k representation and expand about the singular points. Letting

Copyright © 2003 IOP Publishing Ltd.



k + 1 = αt in equation (6.30) and expanding about t = 0, keeping zero and first
order terms, the solution can be cast into the form

y(z) = exp

[
iz − 4i

3λ2
−
(
1− iη

π

)
ln(−2)

]

×
∫
C
(αt)(1+iη/π) exp

[
αt

(
−iz + 2i

λ2
+ 1

2
− iη

2π

)]
α dt (6.38)

where the contour starts where z → −i∞, circles the origin counterclockwise,
and returns (on a different Riemannian sheet). This is equivalent to the Hankel
integral (see appendix B),

1


(ζ )
= i

2π

∫
C
(−t)−ζ e−t dt (6.39)

where the contour begins as t →∞+ iε, circles the origin counterclockwise and
ends as t →∞− iε. By letting

α =
[
iz − 2i

λ2
− 1

2
+ iη

2π

]−1

and ζ = 1+ iη/π , this leads to the result

f+ = π ie−η/2


(1+ iη/π)
exp

[
iz + iη

π
ln

∣∣∣∣2z − 4

λ2
+ η

π
+ i

∣∣∣∣− 4i

3λ2

]
(6.40)

and f− = f ∗+ and each must be multiplied by the same e±η if the real part of u f

is ±π/2.
Except for the constants associated with these solutions, we could obtain the

same asymptotic forms from the WKB formulas, but now we are in a position
to find all the coupling coefficients, because all of the relative amplitudes can be
determined exactly by using the appropriate contours and picking up the relevant
saddle point contributions from each saddle we cross. This is facilitated by
examining the location, orientation, and labeling of all the saddle points for both
positive and negative z. These are shown in figure 6.8(a) for z → ∞ and in
figure 6.8(b) for z → −∞.

6.3.2.4 Incoming and outgoing wave identification

The final step before constructing the solutions is to establish which waves are
traveling in which direction. The fast waves are simple enough, with the f+ � eiz

so that it represents a wave traveling in the positive z direction, or from left to right
in figure 6.7. Similarly, the f− solution represents a wave traveling from right to
left, or in the negative z direction. The slow wave solutions are less obvious,
and, in general, one must return to the physical model and introduce a small
amount of damping to establish the direction of energy flow, or do an analysis
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Figure 6.8. Saddle points and contours in the u-plane: (a) for z → ∞ and (b) for
z →−∞.

of the relative directions of the phase and group velocities. For this example, it
may be established that the slow wave is a backward wave, in that its phase and
group velocities are in opposite directions. Thus, the s− solution has a phase
velocity from right to left, but the group velocity is from left to right, so it is
an outgoing wave in the sense of energy flow. Similarly, s+ is an incoming wave.
For negative z, σ− is exponentially decaying away from the tunneling layer, while
σ+ is exponentially growing, and must be avoided for any physically meaningful
solution in an unbounded medium.

6.3.2.5 Solution y1, fast wave incident from the right

With these numerous preliminaries out of the way, we now can construct the
contours for a physically relevant problem. We consider first a fast wave incident
from the right, so the incident wave is an f− term. This means the solution
must cross an f− saddle point and we choose one at +π/2 so the contribution
is eη f−. Now we must terminate the contour at either ±π/2 on the real axis,
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and the steepest descent paths require that terminating at angles ±π/3 demands
a crossing of the s± saddle points, respectively. We must avoid the s+ crossing
since that is an incoming wave, so we choose an s− crossing. It might be imagined
from looking only at figure 6.8(a) that one could also choose to terminate along
the real axis, but the contour must have the same topology for negative z and the
contour terminating along the real axis must cross the σ+ in figure 6.8(b). Thus
we are restricted to the −π/3 approach angle, and the contour then terminates at
both −π/2 and at π/2, crossing two slow wave saddle points along the way, the
one on the left multiplied by e−η and the one on the right by eη. This contour is
labeled C1 in figure 6.8(a) and must have the same topology (start and end at the
same points and same number of axis crossings) in figure 6.8(b). This requires the
simple C1 contour with only an f− crossing for negative z, so we can immediately
establish the connection formula

f− ← y1 → eη f− − eη(1− e−2η)s−. (6.41)

The f− term on the left is clearly the transmitted wave and hence the transmission
coefficient is given by T = e−η. We label the coefficient of the s− term as
the conversion coefficient relative to the incident term having unit amplitude
(e.g. multiplying equation (6.41) by e−η so the incident term is simply f−.) so
C1 = −(1 − e−2η). Because the contour never crossed an f+ saddle in either
figure, the reflection coefficient is identically zero.

Except for the addition of the conversion coefficient, we recognize that this
result is identical with the Budden result except that the Budden tunneling factor
was ηB = πγ/2λ2 so the tunneling factors agree only if γ � 1. The relationship
to the Budden equation may be noted by observing that if one drops the fourth
derivative term in equation (6.26) and divides by λ2z, we obtain the Budden
equation except that we have let z = k0x .

An approximationwhich reduces the problem to a second order equation that
still successfully obtains the proper tunneling factor has been found [78], but the
wave solutions fail to exhibit the proper asymptotic form for the slow wave and it
is not easily generalized to include absorption.

6.3.2.6 Solution y2, fast wave incident from the left

The second solution, representing a fast wave incident from the left, is more
complicated because the contour must cross an incident wave f+ saddle in
figure 6.8(b) but still end at angle −π/3 in order to avoid an incoming slow
wave or a growing wave. The crossing points are the σ− saddle points, but it
is ambiguous from figure 6.8(b) which way to turn after crossing the axis. If we
were to terminate the contour which crosses the real axis between−π/2 and π/2
by turning immediately to the right into the nearest end point in figure 6.8(b),
the implication of this termination in figure 6.8(a) is that the contour must first
cross the eη f− saddle point which represents an incoming wave on that side.
Thus this contour must rather turn to the left and cross the f− saddle point before
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terminating at−π/2. The other end of the contour, which must cross the real axis
to the left of −π/2 in figure 6.8(b), must also bear to the left after crossing the
axis and cross the e−2η f− saddle point before terminating at −3π/2 for the same
reasons. The contour C2, then, with the starting point chosen at −π/2, crosses
the f− saddle point in figure 6.8(b) in the positive sense, then the eησ− saddle in
the positive sense, the f+ saddle in the negative sense (the positive directions are
all taken to lie in the first or fourth quadrants), the e−ησ− saddle in the negative
sense and finally the e−2η f− saddle in the negative sense. Starting from the same
point in figure 6.8(a), we first cross the e−ηs− saddle in the positive sense, then
the real axis (the steepest descent path would end at −π/2 along the real axis,
but we immediately reverse direction and head back out and up, thus avoiding
any difficulty with the exponentially growing solutions), then the e−η f+ saddle
in the negative sense, then the real axis again between −π/2 and −3π/2 and
finally cross the e−3ηs− saddle in the negative sense before terminating at−3π/2.
Collecting these components, the connection formula is given by

− f+ + (1− e−2η)( f− + eησ−)← y2 →−e−η f+ + e−η(1− e−2η)s−. (6.42)

Comparing the incident f+ term on the left with the transmitted f+ term on
the right, the transmission coefficient is again T = e−η. The f− term on the left
is the reflected term, so R2 = −(1 − e−2η), and the s− term on the right is the
converted term, so C2 = −e−η(1 − e−2η). Except for the conversion term again,
this result is the same as the result from the Budden equation. The important
difference between the Budden result and the results of the tunneling equation is
that now it is possible to conserve energy since the energy neither reflected nor
transmitted is converted.

To demonstrate this, we note that the tunneling equation has the conserved
quantity

P = ψ ′′′ψ ′′∗ + ψ ′′′ψ∗ − ψ ′′ψ ′∗ + γψ ′ψ∗ − c.c. (6.43)

from which can be obtained the asymptotic expressions for each wave type,

P(s±)
2π iλ2

= ±1 P( f±)
2π iλ2

= ∓(1− e−2η)

so that the connection formula for solution y2,

f+ + R2 f− ← −y2 → T2 f+ + C2s−

becomes
P( f+)+ R2

2P( f−) = T 2
2 P( f+)+ C2

2 P(s−).
Using the asymptotic expressions and dividing by P( f+), this becomes the power
conservation law,

R2 + T 2 + ρC2 = 1 (6.44)

with ρ = (1 − e−2η)−1, and this expression is valid for either solution. This
conservation law is a property of the tunneling equation, and its relevance to
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Table 6.1. Tunneling equation connection formulas between asymptotic forms for large
|z| with 1+ γ > 0.

z →−∞ yn z →∞
eησ− y0 eη( f+ − s+ − f− + s−)
f− y1 eη f− − eη(1− e−2η)s−
(1− e−2η)( f− + eησ−)− f+ y2 −e−η f+ + e−η(1− e−2η)s−
f− + eησ− y3 eη f+ − eηs+ + e−ηs−
f− − e−ησ+ y4 e−ηs−

power conservationmust be independently shown by relatingψ and its derivatives
to P (fast wave) and T (slow wave). Within the limits of the approximationsmade
that led to the tunneling equation, it does correspond to power conservation.

A similar conserved quantity exists for equation (6.21) of the form

P = ψ ′′′ψ ′′∗ − λ2βψ ′ψ∗ − c.c. (6.45)

but without any reflection or transmission, the results are trivial, indicating total
mode conversion.

Problem 6.3.3. Conservation laws.

(i) Prove that the quantities P in equations (6.43) and (6.45) are conserved
(i.e. show that P ′ = 0 for each case).
(ii) Evaluate the asymptotic forms of P( f±) and P(s±) from the expressions
given by equations (6.40) and (6.36).
(iii) Prove ρ is the same for solution y1.

6.3.2.7 Tunneling equation summary

Using similar methods, a third solution, y3, that represents an incident slow wave
can be constructed which has a reflected slow-wave component and converted
fast-wave components on both sides. The fourth solution, y4, includes an
exponentially growing term to form a complete set of solutions. The connection
formulas are summarized in table 6.1 and the reflection, transmission, and
conversion coefficients for both amplitude and power are summarized in table 6.2.
A fifth solution that is not independent, since it is given by y0 = y3− y1, is added
for convenience.

Problem 6.3.4. Connection formulas for the case γ < −1. Find the tables
corresponding to tables 6.1 and 6.2 for the case with γ < −1. Note for this
case that it generally occurs from the case where λ2 = −λ20 so that z → −z
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Table 6.2. Amplitude and energy coefficients for the tunneling equation with 1 + γ > 0.
For this case, ρ = (1− e−2η)−1.

Transmission Reflection Conversion

T1 = e−η R1 = 0 C1 = −(1− e−2η)
|T1|2 = e−2η |R1|2 = 0 ρ|C1|2 = 1− e−2η

T2 = e−η R2 = −(1− e−2η) C2 = −e−η(1− e−2η)
|T2|2 = e−2η |R2|2 = (1− e−2η)2 ρ|C2|2 = e−2η(1− e−2η)|
T3 = 0 R3 = −e−2η C+3 = −1

C−3 = −e−η
|T3|2 = 0 |R3|2 = e−4η |C+3 |2/ρ = 1− e−2η

|C−3 |2/ρ = e−2η(1− e−2η)

brings us back to the basic form but now the phase and group velocities of the fast
waves are in opposite directions.

Problem 6.3.5. The Wasow equation, equation (6.21) for λ2 > 0.

(i) Find the exact integral solution corresponding to equation (6.30).
(ii) Find the end points in the k-plane and sketch four independent contours.
(iii) Find the saddle points as z →∞ and as z → −∞.
(iv) Find the saddle point contribution for each saddle point, then locate and
label each saddle point on the k-planes for large positive z and large negative
z, and indicate the crossing angles.
(v) Determine which are incoming, outgoing, fast, slow, growing, decaying,
etc.
(vi) Find the contour that leads to equation (6.23).

6.3.3 Mode conversion examples

6.3.3.1 The second harmonic of the ion cyclotron frequency

In cold plasma theory, there is no interaction at the various cyclotron harmonics
above the fundamental, and for k⊥ = 0 this interaction vanishes even in a hot
plasma, but FLR effects do lead to interactions at each of the harmonics when
k⊥ �= 0. From chapter 4, the relevant dielectric tensor components are:

K1 = 1+ ω2
pie

−λi

ωkzvi

∞∑
n=−∞

n2 In(λi )

λi
Z(ζn) (6.46)

K2 =
iω2

pie
−λi

ωkzvi

∞∑
n=−∞

n[In(λi )− I ′n(λi )]Z(ζn)−
iω2

pi

ωωci
(6.47)
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K0 =
ω2
pie

−λi

ωkzvi

∞∑
n=−∞

λi [In(λi )− I ′n(λi )]Z(ζn) (6.48)

where we have taken ωce � 2ωci ∼ ω, λe � λi � 1 so the electrons are taken
to be cold, λi = 1

2k
2⊥ρ2Li , and ζn = (ω + nωci )/kzvi . To simplify the dispersion

relation, we neglect electron inertia (and neglect electron Landau damping in the
process), assuming κ3 → ∞, so the dispersion relation for the hot plasma from
equation (4.255) is

(k2z − κ1)(k
2
z − κ1 − 2κ0 + k2⊥)+ κ22 = 0. (6.49)

Expanding about ω = 2ωci0, assuming that |ζn| � 1 for all n except n = −2,
and keeping only first order terms in λi , these tensor elements simplify to

κ1 � ω2

V 2
A

[
1

1− ω2/ω2
ci

+ λi

8

ω

kzvi
Z(ζ−2)

]
(6.50)

κ2 � i
ω2

V 2
A

[
ω

ωci (1− ω2/ω2
ci )
+ λi

8

ω

kzvi
Z(ζ−2)

]
(6.51)

κ0 � − ω2

V 2
A

λi

[
ω2

ω2
ci

+ 1

1− ω2/ω2
ci

]
. (6.52)

We now let the magnetic field vary with x so that the resonance is localized
and can be approached in space. Assuming that ωci = ωci0(1 + x/L) where
L is the scale length for the variation (L=R0 in a toroidal field), then ζ−2 =
−2(ω/kzvi )x/L. We keep only zero order terms, but assume that λi L/x is of
zero order as the ratio of two small terms. Making the further definition that
F ≡ −ζ Z(ζ ), so that asymptotically F → 1, the dispersion relation can be put
into the form,(
p2 + 1

3
− βi LF

4x
D2

)(
p2 + 1

3
− βi LF

4x
D2 + D2

)
−
(
2

3
− βi LF

4x
D2

)2
= 0

(6.53)
where βi = v2i /V

2
A is the ratio of the ion thermal pressure to the magnetic pressure

and we have defined the wavenumbers normalized to the Alfvén speed by the
relations p = kzVA/ω and D = k⊥VA/ω. Rearranging equation (6.53) as a
quadratic in D2, we find

D4 −
[
2

(
1

3
− p2

)
+
(
1

3
+ p2

)
4x

βi LF

]
D2 +

(
1

3
− p2

)
(1+ p2)

4x

βi LF
= 0.

(6.54)
At this point we identify the algebraic equation in k⊥ with a differential

equation in x , the inverse of the previous analyses where we have identified an
algebraic expression as resulting from a differential equation using the WKB

Copyright © 2003 IOP Publishing Ltd.



method. This introduces ambiguities, of course, since it is not immediately
apparent (nor is it in fact true) that the differential operator associated with D
operates only the field quantity Ey (if the magnetic field is taken to be in the z
direction) since here D commutes with everything but a differential operator does
not. Ignoring this detail for the moment, however, we let k⊥ → −i d/dx along
with the variable change into dimensionless variables z − z0 = µxω/VA, so

yiv +
[
2( 13 − p2)

µ2
+ ( 13 + p2)4(z − z0)VA

βi LFωµ3

]
y ′′

+ ( 13 − p2)(1+ p2)4(z − z0)VA

βi LFωµ5
y = 0 (6.55)

and this is identical to equation (6.26) if we assume F = 1 and define

λ2 = 2c( 13 + p2)

ωpi Lβiµ3 µ2 = ( 13 − p2)(1+ p2)
1
3 + p2

γ = −λ2z0 = −2( 13 + p2)/(1+ p2) ζ−2 = (z0 − z)/κ

(6.56)

where κ = µ
√
βi kz L. The tunneling factor is

η = π

4

ωpi L

c

µ5

(1+ p2)2
βi → π

4

ωpi L

c
βi as p→ 0. (6.57)

Strictly speaking, this analysis is valid only in the limit p → 0 since then
F → 1 and the ambiguities disappear. When p �= 0, however, the tunneling
equation with absorption may be written as

ψ iv + λ2zψ ′′ + (λ2z + γ )ψ = λ2(z − z0)(1− 1/F)(ψ ′′ + ψ) (6.58)

and although the right-hand side does vanish as z−1 asymptotically, it vanishes
identically only for p = 0. The localized absorption term on the right is
thus connected to cyclotron absorption and gives a prescription for the modified
coupling. This equation is only tractable numerically, but it has been proved
analytically [79, 80] that the transmission is unaffected by absorption, so that
equation (6.57) is valid for all p such that µ2 > 0, and that the reflection
coefficient R1 = 0 still and that R2 = −(1 − e−2η)e−κ2 to high accuracy for
the pure second harmonic case [73]. No analytic forms are apparent for C1 and
C2 with absorption, but both approach zero exponentially as κ gets large.

Whenever mode conversion occurs, it is useful to identify the converted
wave, and in this case it is the ion Bernstein wave described in section 4.4. There
are Bernstein modes between all harmonics of both the electron and ion cyclotron
frequencies, but these are typically heavily Landau damped unless kz is small,
meaning the wave must propagate nearly perpendicular to the direction of the
magnetic field. Although the phase velocity is nearly across the field, the group
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velocity for these waves is nearly parallel to the magnetic field. In most realistic
plasmas, even the small deviations from the one-dimensional approximationmade
here are sufficient to couple kz and k⊥ so that as k⊥ grows on the mode converted
branch, the wave is typically electron Landau damped.

Problem 6.3.6. Tunneling equation with absorption. Beginning with the
expressions in chapter 4, fill in the missing steps leading to equation (6.58).

6.3.3.2 The two-ion hybrid resonance

Since the concept of a pure single-ion species plasma is only an idealization
of the real world, and since many interesting plasmas have more than one ion
species, it is important to examine the effects of multiple ion species. The two-
ion hybrid resonance (where in cold plasma, S = 0 between the two ion cyclotron
frequencies) is the principal new effect, in addition of course to the new cyclotron
resonance for each new species and its harmonics.

Since the inclusion of absorption effects prevents any analytical results
anyway, we will ignore the effects of absorption by assuming kz = 0. This is,
in fact, consistent with the definition of the hybrid resonance, but there is still a
resonance with kz �= 0 except that it is slightly shifted. This assumption allows
us to always take the asymptotic forms of the plasma dispersion function, so that
the plasma is effectively cold in the direction parallel to the magnetic field. We
include FLR effects, however, through the inclusion of terms in λi and let λe → 0.
We also neglect electron inertia, so κ3 →∞.

With these assumptions and approximations, and assuming that neither
fundamental is at the harmonic of the other ion species (nondegenerate case),
the relevant dielectric tensor elements may be written to first order in λi , i = 1, 2,

κ1 = ω2

c2

[
1+ ω2

p1(1− λ1)

ω2
c1 − ω2

+ ω2
p2(1− λ2)

ω2
c2 − ω2

+ ω2
p1λ1

4ω2
c1 − ω2

+ ω2
p2λ2

4ω2
c2 − ω2

]

(6.59)

κ2 = i
ω2

c2

[
ωω2

p1

ωc1(ω
2
c1 − ω2)

+ ωω2
p2

ωc2(ω
2
c2 − ω2

)

]
(6.60)

where the electron term has been incorporated into the expression for κ2 and
neglected in κ1. The majority species is species 1, and the minority species is
species 2 such that α ≡ ω2

p2/ω
2
p1 < 1 which is effectively the density ratio. We

choose x = 0 at the minority fundamental, so that ω = ωc20, and the hybrid
resonance occurs where κ1(xR) = 0. The variation of the magnetic field is given
by ωci = ωci0/(1+ x/L)with the gradient normal to the field direction. The FLR
terms are required to resolve the resonance since κ1 is already a first order quantity
in λi . For κ2, however, the first order terms in λi are unimportant, but the first
order terms in x/L determine the cutoff, so they will be kept. Since the location
of the two-ion hybrid resonance depends on both the concentration of each ion
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species and on their charge-to-mass ratio, we define µ = ωc2/ωc1 = q2m1/q1m2
for the mass ratio. Defining the temperature ratio by θ = T2/T1, the dielectric
tensor elements may be approximated by

κ1 �
ω2
p1

c2

[
(1− λ1)

1/µ2(1+ x/L)2 − 1
+ α(1 − λ2)

1/(1+ x/L)2 − 1

+ λ1

4/µ2(1+ x/L)2 − 1
+ αλ2

4/(1+ x/L)2 − 1

]
(6.61)

iκ2 =
ω2
p1

c2

[
µ(1+ x/L)

1/µ2(1+ x/L)2 − 1
+ α(1 + x/L)

1/(1+ x/L)2 − 1

]
(6.62)

where λ1 = k2⊥KT1/m1ω
2
c2 and λ2 = (q1θ/q2µ)λ1. The two-ion hybrid

resonance occurs at x = xR where κ1 = 0 with λ1 = λ2 = 0 (cold plasma),
so we find first that (

1+ xR
L

)2 = 1+ α/µ2

1+ α
≡ ε

with the result that the resonance is located at

xR/L = √ε − 1. (6.63)

It follows from equation (6.63) that if µ > 1 so that ε < 1 that xR < 0, while
for µ < 1 so that ε > 1, xR > 0 so that the resonance may occur on either side
of the minority fundamental, and switches sides if the minority and majority are
interchanged.

If we now linearize in x/L, expanding about the resonance location so that

(1+ x/L)2 ∼ ε(1+ δ)

then δ = 2(x − xR)/
√
εL. The linearized dielectric tensor elements may then be

expressed as

κ1 =
ω2
p1

c2

[
Aδ − k2⊥c2

ω2
p1

B

]
(6.64)

iκ2 =
ω2
p1

c2
(C + Dδ) (6.65)

where

A = χ1 + αχ2

B = 3β1µ2ε2

2(1− µ2ε)(4− µ2ε)
+ 3β2ε2

2(1− ε)(4− ε)

C = ε3/2

[
µ3

1− µ2ε
+ α

1− ε

]
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D = µχ1 + αχ2 + C/2

χ1 = µ2ε/(1− µ2ε)2

χ2 = ε/(1 − ε)2

where βi = 2µ0nikTi/B2
0 are the ratios of the plasma pressures to the magnetic

pressure.
The dispersion relation with κ3 →∞ and kz = 0 is

κ1(κ1 − k2⊥)+ κ22 = 0

which leads to a quadratic in k2p ≡ k2⊥c2/ω2
p1,

B k4p − δAk2p − C(C + 2Dδ) = 0 (6.66)

where only the dominant terms have been kept. The character of the solutions of
this quadratic equation changes dramatically when B = 0, which occurs when
θ = θc ≡ m2(4 − ε)/m1(4/µ2 − ε). Whenever θ is in the vicinity of θc,
some of the previous approximations become suspect. An example is given in
figure 6.9 where the first two cases have minority 3He in D with θ < θc in
figure 6.9(a) and θ > θc in figure 6.9(b). In each case, the majority density is
n1 = 1020/m3, n2/n1 = 0.1, the magnetic field is 1.0 T, and T1 = 1.0 keV. The
last two cases reverse minority and majority, with θ < θc in figure 6.9(c) and
θ > θc in figure 6.9(d). Along with the solutions of equation (6.66), which are
dashed, solutions with exact Bessel function expressions through n = 3 without
linearization are shown by the full curves. It is evident that in addition to the
shift of the resonance by reversing the minority/majority ratio and the change
of topology from the change in θ , there are significant deviations between the
linearized and nearly exact expressions, especially when θ is close to θc. For
example, with θ = 4 (θ/θc = 1.16), the upper branch of figure 6.9(b) still curves
back in the nearly exact case, as in figure 6.9(a), while the lower branch does not.
It is interesting to note that if one were to use minority rf heating, where most of
the wave energy goes to the minority species, the increasing minority temperature
may change the topology of the mode conversion process as θ ranges from below
θc to above θc in the µ > 1 case (figures 6.9(a) and (b)), but not for the µ < 1
case since θc < 1.

Equation (6.66) is transformed into a differential equation by letting k⊥ →
−i(d/dx), becoming the tunneling equation with the substitution z − z0 = κx/L
(where κ has the same sign as B which is positive for (µ− 1)(θ/θc − 1) > 0 and
negative for (µ− 1)(θ/θc − 1) < 0) and

λ2 = c

ωp1L

A5/2

√
2ε|B|(CD)3/2

(6.67)

γ = − A2/4BD2 (6.68)

κ2 = − ω2
p1L

2

c2
2CD

A
> 0. (6.69)
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Figure 6.9. Two-ion hybrid, with (a) minority 3He in D with θ = 2, (b) minority 3He in
D with θ = 5, (c) minority D in 3He with θ = 0.25, (d) minority D in 3He with θ = 0.5.
The full curves include higher order terms in x and λi while the dashed curves are linear
in x and first order in λi . (From [81].)
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Since typically |γ | � 1 for the two-ion hybrid resonance, the tunneling factor is
given by

η = πγ

2λ2
� πωp1L

4c

[
(−C)3ε
2AD

]1/2

. (6.70)

We note that the transmission coefficient is independent of the temperature ratio,
θ , so the topological change does not affect the transmission. With γ large in this
problem, varying as 1/β1, the Budden tunneling factor is accurate in this example,
while it failed badly in the previous example where γ < 0.

Whereas the tunneling factor for the second harmonic of the ion cyclotron
is frequently small, being proportional to βi , so that little energy is absorbed or
converted for low to moderate temperature plasmas, the two-ion hybrid resonance
tunneling factor is typically large. Furthermore, except for the minority species
case where the resonance is close to the fundamental of the minority species, there
is little absorption, so the mode-converted wave is strongly excited. Because of
the difficulty of detecting the mode converted wave in high temperature plasmas,
the experimental verification of this aspect of mode conversion theory went
unresolved for many years, but wave scattering experiments eventually detected
the slow wave and from the measured dispersion relation were even able to
determine the ion temperature [82].

Problem 6.3.7. Two-ion hybrid resonance tunneling—budden equation. Since
the Budden equation is appropriate for the two-ion hybrid tunneling problem,
one may use cold plasma equations in a general form to estimate the tunneling.
Show that the tunneling factor from the Budden equation may be represented by
η = πk0a/2 where the mean wavenumber k0 and layer width a are given by

k20 =
ω2

c2

d
dx [(L − n2‖)(R − n2‖)]|0

d
dx (S − n2‖)|0

a = −(L − n2‖)(R − n2‖)|0
d
dx [(L − n2‖)(R − n2‖)]0

where the resonance is defined to occur at x = 0. (See [83] for applications.)

6.3.3.3 The electron cyclotron fundamental and harmonic

For the cold plasma, the ordinary wave does not have any dependence on the
magnetic field and the extraordinarywave experiences the upper hybrid resonance
but no cyclotron resonances. For the hot plasma, however, the ordinary wave does
experience a resonance at the cyclotron fundamental and the extraordinary wave
experiences a resonance at the electron cyclotron harmonic through the finite
Larmor orbit terms of equations (4.184)–(4.187). We shall examine these two
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examples of mode conversion and tunneling separately, but both originate from
the hot plasma dispersion relation with kz = 0 which may be factored as

(k2⊥ − κ3)(κ
2
1 + κ22 + 2κ0κ1 − κ1k

2⊥) = 0. (6.71)

The first factor is the O-mode dispersion relation and the second factor gives the
X-mode dispersion relation.

6.3.3.4 The ordinary mode at the electron cyclotron fundamental

For this case, we assume ω � ωce > ωpe with a variation in magnetic
field characterized by ωce = ω(1 + x/L). With kz = 0, then the quantity
ζn Z ′(ζn)/kzve = 1/(ω + nωce). The x-variation leads to ω − ωce = −ωx/L
so through second order in λe, the dispersion relation κ3 = k2⊥ is given by

κ3 � ω2

c2
− ω2

pe

c2
e−λe

[
I0(λe)+ I1(λe)

(
1

2
− L

x

)
− 2

3
I2(λe)

]

� ω2 − ω2
pe

c2
+ ω2

pe

c2

(
λeL

2x
− λ2e L

2x

)
= k2⊥

where the ions are neglected, λe � 1 and L/x � 1. If we multiply by x/L and
use λe = 1

2k
2⊥ρ2Le, this becomes a quadratic in k2⊥, namely,

ω2
peρ

4
Le

8c2
k4⊥ +

(
x

L
− ω2

peρ
2
Le

4c2

)
k2⊥ −

(
ω2 − ω2

pe

c2

)
x

L
= 0

which we convert to a differential equation by letting k⊥ → −i(d/dx),

yiv +
(

2

ρ2Le

− 8c2

ω2
peρ

4
Le

x

L

)
y ′′ − 8(ω2 − ω2

pe)

ω2
peρ

4
Le

x

L
y = 0. (6.72)

If we make the usual variable change here to cast this into the form of the
tunneling equation, then we find λ2 < 0, so we instead let k0x = z0 − z so
the positive and negative axes are reversed. Then we obtain the usual tunneling
equation with

λ2 = 8c2

ω2
peρ

4
LeLk

3
0

= 8(ω2 − ω2
pe)

ω2
peρ

4
LeLk

5
0

so k20 =
ω2 − ω2

pe

c2
(6.73)

γ = − λ2z0 = − 2

k20ρ
2
Le

(6.74)

and thus the tunneling factor is given by

η = π

2

∣∣∣∣1+ γ

λ2

∣∣∣∣ � π

8

ω2
peρ

2
Le

c2
k0L (6.75)
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Figure 6.10. Dispersion relation for tunneling equation when 1+ γ < 0.

since 1 + γ < 0 as γ ∼ −1/λe. In this case, the converted wave propagates
through the resonance layer rather than back from it. The dispersion curve is
illustrated in figure 6.10 and the connection formulas are given in table 6.3 (where
y0 = e−2ηy3 − y2 in this case) and the coupling coefficients in table 6.4. For this
case, we note that there is still no reflection from the resonance side, and that the
group velocity directions have changed since x ∝ −z. It may appear that there
is no turning point in this problem since the group velocity does not appear to
vanish anywhere, but mathematically the turning point is off the real axis and all
the same couplings still occur.

6.3.3.5 The extraordinary mode at the electron cyclotron harmonic

In the hot plasma dispersion relation for the X-mode, we need expressions for
κ0, κ1 and κ2, but the first order terms in λe are not resonant at ω = 2ωce in
κ0 so we will examine only the two dominant components. Again using kz = 0
so that Z(ζn)/kzve = −1/(ω + nωce), and letting 2ωce = ω(1 + x/L) so that
ω − 2ωce = −ωx/L, the tensor components may be represented by

κ1 � ω2

c2

[
1− α

(
4

3
− λeL

2x

)]
(6.76)
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Table 6.3. Tunneling equation connection formulas between asymptotic forms for large
|z| and 1+ γ < 0.

z →−∞ yn z →∞
e−ησ− y0 f+ − f− + e−η(s− − s+)
eη f+ y1 f+ + eη(1− e−2η)s+
e−η f− − e−η(1− e−2η)σ− y2 f− − (1− e−2η)( f+ − e−ηs+)
eη f− + e−ησ− y3 f+ + eηs− − e−ηs+
eη( f+ − σ+) y4 eηs+

Table 6.4. Amplitude and energy coefficients for the tunneling equation with 1 + γ < 0.
For this case, ρ = (1− e−2η)−1.

Transmission Reflection Conversion

T1 = e−η R1 = 0 C1 = 1− e−2η
|T1|2 = e−2η |R1|2 = 0 ρ|C1|2 = 1− e−2η

T2 = e−η R2 = −(1− e−2η) C2 = e−η(1− e−2η)
|T2|2 = e−2η |R2|2 = (1− e−2η)2 ρ|C2|2 = e−2η(1− e−2η)|
T3 = 0 R3 = −e−2η C+3 = e−η

C−3 = 1
|T3|2 = 0 |R3|2 = e−4η |C+3 |2/ρ = e−2η(1− e−2η)

|C−3 |2/ρ = 1− e−2η

κ2 = iα
ω2

c2

(
2

3
− λeL

2x

)
(6.77)

where α = ω2
pe/ω

2 and ωce = ω/2 except in the resonant second harmonic term.
The dispersion relation is then

k2⊥ =
ω2

c2
RL

S
= ω2

c2
[1− α(2− λeL/x)](1− 2α/3)

1− α( 43 − λeL/2x)
(6.78)

which can be rearranged into a quadratic in k2⊥ as

k4⊥ −
[
2
ω2

c2

(
1− 2α

3

)
−
(
4α

3

)
4x

αρ2LeL

]
k2⊥

− (1− 2α)

(
1− 2α

3

)
4ω2x

αρ2Lec
2L
= 0. (6.79)
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This can be converted into a fourth-order differential equation in the usual way
and with variable change k0x = z0 − z, into the tunneling equation with

λ2 = 4(3− 4α)

3αρ2LeLk
3
0

= (1− 2α)(3− 2α)4ω2

3αρ2Lec
2Lk50

so

k20 =
ω2(1− 2α)(3− 2α)

c2(3− 4α)

λ2z0 = 2(3− 4α)

3(1− 2α)
= −γ (6.80)

where 1+γ < 0 for α < 1/2 (α = 1/2 is the R = 0 cutoff), so that the tunneling
factor is given by

η = π

2

∣∣∣∣1+ γ

λ2

∣∣∣∣ = π

2

[
(3− 2α)ωpeρLe

(3− 4α)2c

]2
k0L . (6.81)

This dispersion relation is qualitatively the same as for the O-mode at
fundamental resonance, since the convertedwave again converts through the layer
rather than convert back from the resonance layer.

Problem 6.3.8. X-mode tunneling. When 3/4 < α < 3/2 between the S = 0
upper hybrid resonance and the L = 0 cutoff, show that this corresponds to the
γ > −1 case for the X-mode at the harmonic resonance.

6.3.4 Conservation of energy

The conservation of energy in inhomogeneous plasmas is much more difficult
to establish than it is for uniform plasmas. While the various mode conversion
equations suggest that energy is conserved and that all incident wave energywhich
is neither transmitted nor reflected is converted, it cannot be proved for any of the
previous examples since the conserved quantities of equations (6.43) and (6.45)
are not identical to the conservation of energy. This is due to the fact that for
the slow waves, their primary energy content is in their kinetic flux rather than
their Poynting flux, although the fast-wave energy flux terms can be related to
Poynting’s vector.

In order to get the kinetic flux correct for the slow wave, Kuehl [84]
demonstrated that the relevant fourth order equation had to include the odd
order derivatives in the coupled wave equation which was derived directly from
the Vlasov equations without first taking the Fourier transform. This method
eliminates the problem we identified earlier where the inverse Fourier transform
left ambiguous whether the derivatives acted only on the field variables or also
on the equilibrium variables. In order to get the energy content correct, it was
demonstrated that the derivatives of the equilibrium quantities are crucial. We
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will show first a specific example where the correct form of the coupled wave
equation is derived for tunneling at the ion cyclotron harmonic [85], and then
calculate the appropriate expression for the kinetic and electromagnetic flux as a
special case of a more general method due to Colestock and Kashuba [86].

6.3.4.1 Direct integration of the Vlasov equations

For this problem, we break the distribution function into zero and first order
quantities, assuming the zero order distribution function is isotropic (which means
we neglect drift velocities), and we assume all equilibrium quantities are uniform
in the z-direction, which is the direction of B0, and in the y-direction which
is perpendicular both to the magnetic field and its gradient, which is in the
x-direction. In this case, the zero order equation,

vx
∂ f0
∂x

+ ωciv × êz · ∇v f0 = 0

is satisfied identically. The first order equation, assuming exp(ikz − ωt)
dependence, is given by

−i(ω−kvz) f1+vx ∂ f1
∂x
+ωci

(
vy

∂ f1
∂vx

− vx
∂ f1
∂vy

)
= 2q f0

miv
2
i

(vx Ex+vy Ey) (6.82)

where v2i = 2KTi/mi and f0 is Maxwellian. Changing variables to vx = v⊥ cosφ
and vy = v⊥ sin φ, equation (6.82) becomes

∂ f1
∂φ

+ i

(
ω − kvz
ωci

)
f1 − v⊥ cosφ

ωci

∂ f1
∂x

= −2v⊥ f0
v2i

(
cosφEx + sin φEy

B0

)
(6.83)

which may be integrated at once to

f1 = e−i&φ
∫ φ

ei&φ
′
[
v⊥ cosφ′

ωci

∂ f1
∂x

− 2v⊥ f0
v2i

(
cosφ′Ex + sin φ′Ey

B0

)]
dφ′

(6.84)
with & = (ω − kvz)/ωci . This is an integral equation, and we will solve it by
successive approximation, expanding f1 in the series,

f1 = f (0)1 + v⊥
ωci

f (1)1 +
(
v⊥
ωci

)2
f (2)1 + · · ·

and we will keep only through second order. Formally, the expansion appears
divergent, since v⊥ is an unbounded variable of integration, but we shall only
consider integrals over a Maxwellian velocity distribution as in section 4.3.4,
so the real expansion parameter is the mean Larmor radius, 〈v⊥〉/ωci , which is
presumed to be small.
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Inside the integrand, the ∂ f1/∂x term is already first order, so this term is
represented adequately by zero and first order terms as

∂ f1
∂x

� ∂ f (0)1

∂x
+ v⊥

∂

∂x

(
f (1)1

ωci

)
.

Doing the various integrals, the results are:

f (0)1 = iqv⊥ f0
miv

2
i

[
(Ex − iEy)eiφ

ω + ωci − kvz
+ (Ex + iEy)e−iφ

ω − ωci − kvz

]
(6.85)

f (1)1 = ωci qv⊥ f0
2miv

2
i

[(
e2iφ

ω + 2ωci − kvz
+ 1

ω − kvz

)
∂

∂x

(
Ex − iEy

ω + ωci − kvz

)

+
(

e−2iφ

ω − 2ωci − kvz
+ 1

ω − kvz

)
∂

∂x

(
Ex + iEy

ω − ωci − kvz

)]
(6.86)

f (2)1 = ω3
ci qv⊥ f0

4imiv
2
i

(
e−iφ

ω − ωci − kvz
+ e−3iφ

ω − 3ωci − kvz

)

× ∂

∂x

[
1

ωci (ω − 2ωci − kvz)

∂

∂x

(
Ex + iEy

ω − ωci − kvz

)]
(6.87)

where only the resonant terms (ω � 2ωci ) are kept in f (1)1 in going to second
order.

The average velocities are obtained by integrating over φ, v⊥, and vz
according to

{ 〈vx 〉
〈vy〉

}
=
∫ 2π

0
dφ

∫ ∞

0
v⊥ dv⊥

∫ ∞

−∞
dvz f1

{
cosφ
sin φ

}
.

The velocity expansion is similar to the expansion of f1, namely

〈v〉 = 〈v(0)〉 + ρL〈v(1)〉 + ρ2L〈v(2)〉 + · · ·
with ρL = vi/ωci , so that to zero order,{

i〈v(0)x 〉
〈v(0)y 〉

}
= nq

2mkvi

[
Z(ζ1)(Ex − iEy)+

{
1
−1

}
Z(ζ−1)(Ex + iEy)

]
(6.88)

where ζn = (ω+nωci )/kvi and Z(ζn) is the plasma dispersion function. The first
order terms do not contribute to the final result, and for the second order terms,
only the resonant terms are kept and the kvz terms will be dropped except for
the ω − 2ωci − kvz term, since only harmonic damping will be significant. With
these restrictions, the second order term in equation (6.87) can be integrated over
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velocities to obtain

−i〈v(2)x 〉 = 〈v(2)y 〉 =
nq

4mkvi

(
ω2
ci

ω − ωci

)
∂

∂x

[
Z(ζ )

ωci

∂

∂x

(
Ex + iEy

ω − ωci

)]

where now we have replaced ζ−2 → ζ since it is the only remaining argument
of the plasma dispersion function. Using the magnetic field variation 2ωci =
ω(1 + x/L), then ζ = −ωx/Lkvi and the second order average becomes

−i〈v(2)x 〉 = 〈v(2)y 〉 =
nq

4mkvi

×
[
Z(ζ )(E ′′x + iE ′′y )−

ω

kvi
Z ′(ζ )

(
E ′x + iE ′y

L
+ Ex + iEy

L2

)]

where at this final stage, terms of order x/L have been neglected after the
derivatives were taken.

The results of this expansion can be represented either as a current or as an
equivalent dielectric tensor. Writing the result as dielectric tensor components,
the result is

K1 = 1+ ω2
pi

ω2
ci − ω2

+ ω2
pi

4ω2
ci

Z ′(ζ )
k2L2

− ω2
piρ

2
L

4ωkvi

d

dx
Z(ζ )

d

dx
(6.89)

K2 =
iωω2

pi

ωci (ω
2
ci − ω2)

+ iω2
pi

4ω2
ci

Z ′(ζ )
k2L2

− iω2
piρ

2
L

4ωkvi

d

dx
Z(ζ )

d

dx
(6.90)

where now the dielectric tensor elements are operators due to the nonlocal nature
of the dielectric tensor. The wave equation then may be written as

(
K1 − k2c2

ω2

)
Ex + K2Ey = 0 (6.91)

−K2Ex +
(
K1 − k2c2

ω2 + c2

ω2

d2

dx2

)
Ey = 0. (6.92)

If K1 and K2 commute, then this may be written as an equation in Ey only as(
K1 − k2c2

ω2

)(
K1 − k2c2

ω2
+ c2

ω2

d2

dx2

)
Ey + K 2

2 Ey = 0. (6.93)

Since the commutator is proportional to the quantity (d/dx)(K2 − iK1)

which involves taking only the cold plasma terms to be constant, we assume
equation (6.93) to be the relevant equation. Using the previous definitions, the
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energy-conserving tunneling equation becomes

d

dx

[
Z(ζ )

d3Ey

dx3

]
+
[
16( 13 + p2)

ρ2L

kvi
ω
+ 1

L

dZ(ζ )

dx

]
d2Ey

dx2
+ 2ω2( 13 − p2)

V 2
A

×
{

d

dx

[
Z(ζ )

dEy

dx

]
+
[
8(1+ p2)

ρ2L

kvi
ω
+ 1

L

dZ(ζ )

dx

]
Ey

}
= 0 (6.94)

where p = kVA/ω as before. This equation now has odd order terms, and it is
clear that even as k → 0 it does not reduce to the standard tunneling equation.
The fields associated with this equation, however, can be shown to conserve
energy, as shown in the next section. If Z(ζ ) were treated as a constant, as is
effectively assumed in the Fourier transforms which led to the tunneling equation
with only even order terms, this would reduce to that case and the standard
tunneling equation as k → 0. This more complicated equation can only be treated
numerically, however, even as k → 0, with the conclusion that the results are
substantially identical to those obtained from the corresponding equation with
only even order terms in the transmission, reflection, and conversion coefficients,
but that the asymptotic electric fields are significantly different for the slow wave
and the total wave fields and absorption profiles change in the coupling region.

Problem 6.3.9. The energy-conserving tunneling equation. Let k → 0 in
equation (6.94) and then:

(i) Show that the odd order terms persist.
(ii) Change to the dimensionless variables of equation (6.56) and use the
normalized scale length � = µωL/VA.
(iii) Eliminate the third derivative term by letting Ey = u� and choosing u
so that the third derivative term vanishes.
(iv) Find the asymptotic form of the equation for � (neglect terms now with
coefficients that vanish asymptotically), and show that one odd order term
persists.
(v) Find the asymptotic forms of Ey for both the fast and the slow wave
solutions. (Hint: Reference [71] may be useful for this generalized tunneling
equation for�.)

6.3.4.2 Energy flux and energy conservation

In this section, we develop the expressions for the Poynting flux, the kinetic flux,
and the loss terms by using Poynting’s theorem. We begin by writing down the
Maxwell equations for harmonic time dependence,

∇ × E = iωB ∇ × E∗ = −iωB∗

∇ × B = µ0( j − iωε0E) ∇ × B∗ = µ0( j∗ + iωε0E∗).
(6.95)
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We then examine the divergence of the complex Poynting vector,

∇ ·
(

E × B∗

µ0

)
= 1

µ0
B∗ · ∇ × E − E ·

(∇ × B∗

µ0

)

= iω

µ0
B∗ · B − E · j∗ − iωε0E · E∗

and since the time average over a cycle of the real part of the Poynting vector is
given by

S = 1

2
Re

(
E × B∗

µ0

)
(6.96)

then it follows that
∇ · S = − 1

2 Re(E · j∗) (6.97)

with j = σ · E and σ ∗ = iωε0(K∗ − I) is the conductivity tensor. Then if we
define

Q ≡ 1
2 Re(E · j∗) = P(x)+∇ · T(x)

we may write our conservation law in the form

∇ · (S + T) = −P.

From the form of this expression, it is clear that since S is the electromagnetic
flux, then T is also a flux which we designate the kinetic flux and represents
the power carried by the coherent motions of the particles in the plasma. From
Poynting’s theorem, P represents the loss term.

In order to evaluate these expressions, we write out

Q = ωε0

2
Re[iE · (K∗ − I) · E∗] = iωε0

4
(E · K∗ · E∗ − c.c.)

where c.c. stands for the complex conjugate of the preceding function. Now the
dielectric tensor of equation (6.90) can be represented by

K = K0 + 1

L
K′H +

d

dx
KH

d

dx
(6.98)

where K0 is the cold plasma dielectric tensor and KH is the hot plasma correction
given by

KH =
(

1 i
−i 1

)
KH

where KH = −ω2
piρ

2
L Z(ζ )/4ωkvi andK′H = dKH/dx . Then E·K0·E∗−c.c = 0,

and since

(E∗x E∗y)
(

1 i
−i 1

)(
Ex

Ey

)
= E∗+E+
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then we may write

E · K∗ · E∗ − c.c. = (K ∗H ′ − K ′H )
L

|E+|2 + (KH − K ∗H )|E ′+|2

+ d

dx
(E+K ∗H E ′+

∗ − c.c.)

so that finally we can identify terms and obtain

Tx = iωε0
4

(E+K ∗H E ′+
∗ − c.c.)

= ωε

2
Im(E∗+KH E ′+) (6.99)

P = iωε0
4

[
1

L
(K ∗H ′ − K ′H )|E+|2 + (KH − K ∗H )|E ′+|2

]

= ωε

2
Im(K ′H |E+|2 − KH |E ′+|2) (6.100)

S = 1

2µ0
Re(E × B∗)

= 1

2µ0ω
Im(E∗y E ′y êx − E∗x E ′y êy)+

k

2µ0ω
(|Ex |2 + |Ey|2)êz (6.101)

where the last result was obtained by expanding equation (6.95).
From these results, it is evident that the principal electromagnetic flux is due

to the Ey component while the kinetic flux due to the E+ component. Since
KH ∼ 1/z as z → ∞, the fast wave kinetic flux vanishes asymptotically
since it is dominated by Ey whose amplitude is asymptotically constant. Thus
we have shown that the fast wave is an electromagnetic wave, dominated by
the electromagnetic flux. The slow wave solutions of equation (6.94) vary as
E+ ∼ z1/4 exp(−2iλz3/2/3) so that for the slow wave solutions the kinetic flux
is asymptotically constant while the electromagnetic flux vanishes. The slow
wave solutions of equation (6.26), however, do satisfy the conservation law of
equation (6.43) without the odd order terms, but fail to conserve the kinetic flux
which falls off as 1/z in that case. Thus we have shown that the existence of a
conservation law is not equivalent to the conservation of energy unless a direct
connection between the two can be established. From numerical solutions of
both equation (6.55), which is the generalization of the tunneling equation to
include absorption but not the odd order terms, and equation (6.94)which includes
both, the reflection coefficients are found to be equivalent and the conversion
coefficients are close but not exactly the same.

Problem 6.3.10. Kinetic flux and power conservation.

(i) Derive an exact expression for E+ in terms of Ey and its derivatives from
equation (6.92).
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(ii) From the results of problem 6.3.9 for Ey , show that the slow wave kinetic
flux is asymptotically constant.
(iii) If the solution of equation (6.26) is used for Ey , show that the kinetic
flux vanishes asymptotically.

6.4 Absorption and emission

Radiation from a plasma, by which we mean electromagnetic radiation, is
necessarily from an inhomogeneous (or at least bounded) plasma since in the
uniform plasma, there is nowhere for the radiation to go which is ‘outside’. The
most important reasons for examining radiation or emission theory is to either
measure the radiation for diagnostic purposes or to estimate the energy loss rate
for power balance purposes. There are sources of radiation in many plasmas
from atomic processes, especially from highly stripped atoms, but in this section
we will deal only with the emission due to the thermal character of the plasma,
and since the plasma is inhomogeneous, the source will be localized into a layer
within which the plasma is assumed to be slowly varying. The fundamental
approach is to calculate the absorption and then extract the emission from an
application of Kirchhoff’s law. Although this topic is not new, and textbooks exist
on this topic (e.g. see Bekefi [87]), the proper treatment of Kirchhoff’s law as it
relates to emission from cyclotron resonance layers is relatively recent [80, 88].
This is because the mode conversion phenomenon changes our picture of the
absorption process such that absorption affects only the reflected and converted
branches while the transmission coefficient is independent of absorption. It is
surprising that traditional estimates of emission have been based exclusively on
calculations of the transmission coefficient, the only parameter that is independent
of absorption.

6.4.1 Generalized Kirchhoff’s law

Emission and absorption are intimately related through the fluctuation–dissipation
theorem. Therefore, it is to be expected that the emission along any of the
principal branches will be related to the absorption along the corresponding
branch.

For an example problem, we choose an ion harmonic resonance where
1 + γ > 0. From the dispersion relation illustrated in figure 6.7, we let power
densities I1, I2, and I3 be incident along the corresponding branches (incidence
on branch 1 is from the right, incidence on branch 2 is from the left and incidence
on branch 3 is from above) and let the power emitted along each branch be
E1, E2, and E3, respectively. Then an assumption of equilibrium requires that
the incoming and outgoing power must balance branch by branch (asymptotic
independence), such that

I1 = E1 + |R1|2 I1 + |T2|2 I2 + ε|C31|2 I3 (6.102)

Copyright © 2003 IOP Publishing Ltd.



I2 = E2 + |T1|2 I1 + |R2|2 I2 + ε|C32|2 I3 (6.103)

I3 = E3 + |R3|2 I3 + |C13|2 I1/ε + |C23|2 I2/ε (6.104)

where ε ≡ 1− e−2η.
If it is further assumed that the system is in thermal equilibrium with

perfectly absorbing walls, where both the plasma and walls are at the same
temperature, then it is required by equipartition that

I1 = I2 = I3 = IBB (6.105)

where IBB is the blackbody radiation intensity. We may solve for the emitted
power on each branch to obtain

E1 = (1− |T1|2 − |R1|2 − ε|C31|2)IBB (6.106)

E2 = (1− |T2|2 − |R2|2 − ε|C32|2)IBB (6.107)

E3 = (1− |R3|2 − |C13|2/ε − |C23|2/ε)IBB . (6.108)

Using the reciprocity relations that state that the fractional power between any
two branches is the same in either direction, these equations reduce to the general
result

Ek = Ak IBB (6.109)

where the absorption is given by

A1 = 1− |T1|2 − |R1|2 − |C13|2/ε
A2 = 1− |T2|2 − |R2|2 − |C23|2/ε
A3 = 1− |R3|2 − ε|C31|2 − ε|C32|2.

Equation (6.109) is called the generalized Kirchhoff’s law (GKL) since it
relates emission and absorption on each branch.

The proof may be extended from a local proof, requiring walls of the same
temperature as the plasma, to a global proof by removing the walls to infinity so
that there are only outgoing waves. In this case, the emission must be unchanged
provided there is some nonradiative source of energy to maintain equilibrium,
such as collisions, because the individual solutions representing incoming waves
and the solution representing the radiation are linearly independent.

6.4.2 Absorption and mode conversion

In order to evaluate the emission from equation (6.109), it is necessary to know
the effects of absorption on the scattering coefficients which up to this point are
known only without absorption. Generally speaking, these coefficients can only
be obtained numerically, but a few are known analytically. In this section we
outline the procedures that have proven effective in determining these coefficients,
but the details are found elsewhere [80].
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6.4.2.1 Green’s function method

While the GKL applies to all cases where there is both mode conversion and
tunneling, there are subtle differences in the methods with 1 + γ > 0 and with
1 + γ < 0, so the development that follows is for a pure ion second harmonic
case. The objective then is to solve equation (6.58) by using a Green function
such that

ψ(z) =
∫ z

−∞
G−(z, x)g(x, ψ) dx +

∫ ∞

z
G+(z, x)g(x, ψ) dx (6.110)

where the G±(z, x) form the Green function that is constructed from the adjoint
solutions of the tunneling equation which satisfy Y = y ′′ + y and the sink term is

g(x, ψ) = λ2(x − x0)[1− 1/F(x)](ψ ′′ + ψ). (6.111)

The adjoint functions satisfy the adjoint tunneling equation,

Y iv + λ2zY ′′ + 2λ2Y ′ + (λ2z + γ )Y = 0 (6.112)

which was obtained by integrating equation (6.110) by parts. G+(z, x) and
G−(z, x) are linear functions of Yk(x) of the form

G±(z, x) = A±(z)Y1(x)+ B±(z)Y2(x)+ C±(z)Y3(x)+ D±(z)Y4(x)

where the z-dependent coefficients may be determined from boundary conditions.
The resulting solutions may be written as

ψk(z) = yk(z)+ y2(z)I
−
1k/ε + y4(z)I

−
0k + y1(z)I

+
2k/ε + y0(z)I

+
4k (6.113)

where y0 = y3 − y1 has been introduced for convenience, and the integrals are
over a semi-infinite range defined by

I−j k(z) =
1

2π iλ2

∫ z

−∞
Y j (x)g(x, ψk) dx (6.114)

I+j k(z) =
1

2π iλ2

∫ ∞

z
Y j (x)g(x, ψk) dx . (6.115)

6.4.2.2 Scattering coefficients with absorption

The scattering coefficients may be expressed in terms of the I jk integrals over the
infinite range and are given in table 6.5.

While in general, the I jk integrals must be calculated numerically, it has
been proved that I11 = I12 = I21 = 0 identically [79], so that T1 = T2 = e−η
always and R1 = 0. For the coefficients that do depend on damping, the typical
behavior is for the reflection and conversion coefficients to decrease exponentially
as |R2|2 = R2

20e
−2αRκ2 where R20 = 1−e−2η is the value without absorption, κ is
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Table 6.5. Scattering coefficients with absorption for the tunneling equation with
1+ γ > 0.

Transmission Reflection Conversion

T1 = e−η(1+ I21/ε) R1 = −e−2η I11/ε C13 = −ε + e−2η I31
T2 = e−η(1+ I12/ε) R2 = −(ε + I22/ε) C23 = −e−η(ε + I32)
T3 = 0 R3 = −e−2η(1+ I33) C31 = −(1− e−2η I13/ε)

C32 = −e−η(1+ I23/ε)

the normalized parallel wavenumber, and αR is dependent on plasma parameters.
The conversion coefficients have a similar character. For a single-ion component
plasma, αR = 1 within 1%, but for multiple-ion species, there is no simple
approximation.

The results are similar for absorption/emission at the electron cyclotron
harmonic for the X-mode, but some interesting auxiliary effects influence the
emission. First, the electrons are weakly relativistic at even modest temperatures,
so the sink term in equation (6.111) must be replaced by the appropriate
relativistic expression. Second, the mode-converted branch is typically absorbed
very close to the resonance layer because the Bernstein mode turns around and
returns to the resonance layer where it is completely absorbed. The consequence
is that since a perfect absorber is a blackbody emitter, we must consider the
emitted blackbody radiation which traces the same path to the mode conversion
layer as an incident slow wave which then mode converts some of its power to an
electromagnetic wave, and though incoherent with the direct emission, it adds to
the overall radiation. The total emission on branches 1 or 2 is therefore given by

E1 = (1− e−2η − |C13|2)IBB(T )+ |C31|2 IBB(T
′) (6.116)

E2 = (1− e−2η − |R2|2 − |C23|2)IBB(T )+ |C32|2 IBB(T
′) (6.117)

where the original layer is at temperature T and the other blackbody layer is
at temperature T ′. These expressions are also simplified so that the |Cij |2
represents the power converted from branch i to branch j . It is evident that if
the temperatures are equal (or very nearly equal), the conversion terms cancel,
and the results simplify to

E1 = (1− e−2η)IBB (6.118)

E2 = (1− e−2η − |R2|2)IBB (6.119)

where the first result is completely independent of the strength of absorption,
depending only on the asymptotic parameter η which depends only on cold
plasma parameters. Equation (6.118) is exactly the same result commonly
used for electron cyclotron emission where mode conversion is ignored and
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the finite transmission is presumed to be due to absorption processes. In the
simpler analysis that neglects mode conversion, however, the emission is always
symmetric, but we see from equation (6.119) that the symmetry between the high
magnetic field side emission and the low magnetic field side emission is broken
if R2 �= 0. It has been shown that if the parameter, �Te ≥ 1000 where � is the
dimensionless length � = ωL/c with L the scale length of the magnetic field
variation, and the temperature is in keV, then R2 is small enough that neglecting
it produces less than 1% error [80]. If, however, �Te ≤ 500 and X = ω2

p/ω
2 is

not small, the error in estimating the temperature can exceed a factor of two.

Problem 6.4.1. Green’s function.

(i) Show that by using equation (6.58) in equation (6.110) and integrating by
parts that the Green function must satisfy the adjoint equation.
(ii) Show that the G+(z, x) and G−(z, x) and their derivatives must satisfy
certain jump conditions of the form G(n)

+ (z, z+)−G(n)
− (z, z−) = gn and find

gn for n = 0 through n = 3.

6.5 WKBMethod for three-dimensional inhomogeneous
plasmas—ray tracing

6.5.1 The ray equations

When the variation in the equilibrium parameters is no longer restricted to one
dimension, then there are no longer any simple invariants, and the direction of the
group velocity, or of the wave packet, is less obvious. There is a generalization
of the WKB method, however, which will answer this question and give a
prescription for following a wave packet and its energy density [89, 90].

We begin with the Maxwell equations

∇ × B = µ0 j + 1

c2
∂E
∂ t

(6.120)

∇ × E = − ∂B
∂ t

(6.121)

where we define

E = aeiψ (6.122)

B = beiψ (6.123)

∇ψ = k(r, t) (6.124)
∂ψ

∂ t
= − ω(r, t) (6.125)

and we assume that k, ω, a, and b are slowly varying in space and time. At this
point, we recognize that ψ is just the eikonal of WKB theory generalized to three
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dimensions. Then expanding the space and time derivatives,

∇ × B = eiψ(∇ × b+ ik × b) (6.126)

∇ × E = eiψ(∇ × a + ik × a) (6.127)
∂B
∂ t

= eiψ
(
∂b
∂ t
− iωb

)
(6.128)

∂E
∂ t

= eiψ
(
∂a
∂ t
− iωa

)
(6.129)

j = eiψ(σ A · a + K{a}) (6.130)

where σ A is the anti-Hermitian component of the conductivity tensor and K{a}
is related to the anti-Hermitian component of the dielectric tensor which is a
function of the loss terms in the plasma and to the nonlocal terms in the dielectric
tensor. If we assume the loss terms and nonlocal terms are of order δ compared
to the dominant terms, then K{a} is of order δ compared to σ A (since the anti-
Hermitian terms in σ correspond to the Hermitian terms in K and vice versa).
Expanding in order δ for the remaining quantities so that

a = a0 + δa1 + δ2a2 . . .

b = b0 + δb1 + δ2b2 . . .

then the ordering is such that

K{a} is of order δ compared to σ A

∇ × a is of order δ compared to ik × a

∇ × b is of order δ compared to ik × b
∂a
∂ t

is of order δ compared to − iωa

∂b
∂ t

is of order δ compared to − iωb

where the first relation is due to weak damping and the others are due to the slow
variation of a and b. Then the zero order equations from equation (6.121) are

i
[

k × b0 + ω

c2
a0 + µ0iσ

A · a0
]
= 0 (6.131)

i[k × a0 − ωb0] = 0 (6.132)

and the first order equations are

iδ
[

k × b1 + ω

c2
a1 + µ0iσ A · a1

]
= δ

[
µ0K{a} − ∇ × b0 + 1

c2
∂a0
∂ t

]
(6.133)

iδ[k × a1 − ωb1] = − δ

[
∇ × a0 + ∂b0

∂ t

]
. (6.134)
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Now equation (6.132) gives b0 = k × a/ω and this result in equation (6.131)
gives

k × (k × a0)
ω

+ ωa0
c2

+ µ0iσ A · a0 = 0

which may also be written as

ε · a0 ≡
[

I

(
1− k2c2

ω2

)
+ c2

ω2
kk + iσ A

ωε0

]
a0 = 0 (6.135)

and det |ε| = 0 is the dispersion relation with no losses (σ A only). We may denote
this dispersion relation in many ways, such as

det |ε| = D(k, ω, r, t) = 0 (6.136)

or as
ω = &(k, r, t). (6.137)

Now from the definitions of equation (6.125), we may establish that

∂

∂ t
(∇ψ) = ∂k

∂ t
= ∇

(
∂ψ

∂ t

)
= −∇ω

which leads to

∇ω + ∂k
∂ t
= 0. (6.138)

We may also establish that

∇ω = &r + (∇k) ·&k

where the last term is the dyadic

(∇k) ·&k = ∂&

∂kx
∇kx + ∂&

∂ky
∇ky + ∂&

∂kz
∇kz

and the subscript means the derivative holding the other variables fixed so that

&r + (∇k) ·&k + ∂k
∂ t
= 0. (6.139)

Now taking k, r , and t as the independent variables, we may write
equation (6.136) as

D(k, ω(k, r, t), r, t) = 0

and then it follows that

∂D

∂k
+ ∂D

∂ω

∂ω

∂k
= 0 or Dk + Dω&k = 0

∂D

∂ r
+ ∂D

∂ω

∂ω

∂ r
= 0 or Dr + Dω&r = 0

∂D

∂ t
+ ∂D

∂ω

∂ω

∂ t
= 0 or Dt + Dω&t = 0.

(6.140)
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Using these, then equation (6.139) may be written as

(∇k) ·&k + ∂k
∂ t
= −&r = Dr

Dω

. (6.141)

Now at this point we introduce the concept of rays or trajectories defined by the
group velocity vg = ∂ω/∂k = &k such that

dr
dt
= &k = − Dk

Dω

. (6.142)

Since these rays follow the direction of the group velocity, they represent
the trajectory of a wave packet in the inhomogeneous medium. Using
equation (6.142), equation (6.141) can be written as

∂k
∂ t
+ dr

dt
· dk
dr
= −&r = Dr

Dω

= dk
dt

(6.143)

where we have used the symmetry of the dyadic so that (∇k) ·&k = &k · (∇k).
If we then consider the evolution of D along the ray by examining

dD

dt
= Dk

dk
dt
+ Dr

dr
dt
+ Dω

dω

dt
+ Dt = 0

then the first two terms cancel so

dω

dt
= − Dt

Dω

or
d&

dt
= &t . (6.144)

This set of equations represents a set of Hamiltonian equations with& playing the
role of the Hamiltonian. By rescaling the variable along the trajectory to τ , such
that Dω = dt/dτ , then these three equations may be written in the compact form,

dk
dτ
= Dr (6.145)

dr
dτ
= − Dk (6.146)

dω

dτ
= − Dt . (6.147)

The trajectories so defined are the characteristics of the wave equation and are
used to follow the power flow.

Problem 6.5.1. Analytic two-dimensional ray tracing. Consider the dispersion
relation,

D = (k2x + k2y)
2 − axk2x + bk2y + c + dx + ey = 0.

(i) Solve the ray equations to find x(τ ) and y(τ ) with k2x > d/a.
(ii) Sketch k2x versus x for d = 0 and at least two values of y0 as a parameter.
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6.5.2 The inhomogeneous plasma dispersion relation

The numerous dispersion relations for cold plasmas, warm plasmas, hot plasmas,
etc, have all had one common feature, namely that the z-axis has been in the
direction of the magnetic field (if any). In the inhomogeneous plasma, the
magnetic field may vary in direction so that except at a point, the magnetic field
points in an arbitrary direction. If the magnetic field is curved, it may still be
possible to keep the dispersion relation simple if the field always follows one of
the coordinates, such as in a simple toroidal field (with no shear) where the field
is in the φ-direction. In general, however, with a fixed coordinate system, the
dielectric tensor has all nine components nonzero and the dispersion relation is
somewhat more complicated than our previous examples.

To find the weakly inhomogeneous dispersion relation, we consider only the
cold plasma case, where the equations of motion may be written as

 −iω −ωcj z ωcj y

ωcj z −iω −ωcj x

ωcj y ωcj x −iω




 v j x

v j y
v j z


 = q j

m j


 Ex

Ey

Ez


 (6.148)

where ωcj z = q j Bz/m j , ωcj y = q j By/m j , ωcj z = q j Bz/m j , and ω2
cj =

ω2
cj x +ω2

cj y +ω2
cj z . Solving for the velocity components, we find for the mobility

tensor,

v j = iq j

m jω
T j · E (6.149)

where

T j =




ω2 − ω2
cj x

ω2 − ω2
cj

iωωcj z − ωcj xωcj y

ω2 − ω2
cj

−ωcj xωcj z + iωωcj y

ω2 − ω2
cj

− iωωcj z + ωcj xωcj y

ω2 − ω2
cj

ω2 − ω2
cj y

ω2 − ω2
cj

iωωcj x − ωcj yωcj z

ω2 − ω2
cj

iωωcj y − ωcj xωcj z

ω2 − ω2
cj

− iωωcj x + ωcj yωcj z

ω2 − ω2
cj

ω2 − ω2
cj z

ω2 − ω2
cj




and using the usual transformation to the dielectric tensor from the mobility
tensor, we have ∑

j

n j q jv j − iωε0E = −iωε0K · E

so the general form for K is

K = I−
∑
j

ω2
pj

ω2 T j . (6.150)
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The dielectric tensor components may then be written as

Kxx = 1− ω2
pi [ω2 − ω2

cix ]
ω2[ω2 − ω2

ci ]
− ω2

pe(ω
2 − ω2

cex )

ω2(ω2 − ω2
ce)

(6.151)

Kyy = 1− ω2
pi [ω2 − ω2

ciy ]
ω2[ω2 − ω2

ci ]
− ω2

pe(ω
2 − ω2

cey)

ω2(ω2 − ω2
ce)

(6.152)

Kzz = 1− ω2
pi [ω2 − ω2

ciz ]
ω2[ω2 − ω2

ci ]
− ω2

pe(ω
2 − ω2

cez)

ω2(ω2 − ω2
ce)

(6.153)

Kxy = K ∗yx =
ω2
pi [ωcixωciy − iωωciz ]

ω2[ω2 − ω2
ci ]

+ ω2
pe(ωcexωcey + iωωcez)

ω2(ω2 − ω2
ce)

(6.154)

Kxz = K ∗zx =
ω2
pi [ωcixωciz + iωωciy ]

ω2[ω2 − ω2
ci ]

+ ω2
pe(ωcexωcez − iωωcey)

ω2(ω2 − ω2
ce)

(6.155)

Kyz = K ∗zy =
ω2
pi [ωciyωciz − iωωcix ]

ω2[ω2 − ω2
ci ]

+ ω2
pe(ωceyωcez + iωωcex )

ω2(ω2 − ω2
ce)

(6.156)

and where now we have taken ωcjk = |q j |Bk/m j , k = x, y, z, so that all of
the cyclotron frequencies are taken to be positive if the corresponding magnetic
field component is positive. Without collisions, the tensor is Hermitian, but with
collisions, all nine components are distinct.

Because of the inhomogeneity, we cannot rotate the coordinate system about
the field direction, so the dispersion relation becomes

{[Kxx − (n2y + n2z )][Kyy − (n2x + n2z )] − |Kxy + nxny |2}[Kzz − (n2x + n2y)]
− [Kxx − (n2y + n2z )]|Kyz + nynz |2
− [Kyy − (n2x + n2z )]|Kxz + nxnz |2
+ 2Re[(Kxy + nxny)(Kyz + nynz)(K

∗
xz + nxnx )] = 0. (6.157)

If collisions or collisionless damping are included, then the dielectric tensor is no
longer Hermitian, and the dispersion relation is even longer, since no longer can
we use Kij = K ∗j i to simplify the expression.

6.5.3 The amplitude equations

From the first order terms, after considerable vector manipulation given in
appendix C, an expression for the amplitude may be obtained of the form

dU

dt
= −U∇ · ωk − 1

2
a∗0 · σ H · a0 (6.158)
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where U is the energy density in the wave from the Hermitian portion of the
dielectric tensor (anti-Hermitian part of the conductivity tensor). Clearly, the
∇ ·ωk term represents the effects of convergence or divergence of a ray bundle, or
focusing. When this term becomes large, the WKB formalism eventually breaks
down. When the divergence term is small or vanishes, then the σ H term, which
represents losses due to dissipation, dominates the changes in energy density.

Another limit to the validity of the ray tracing equations has to do with the
fact that the rays are presumed to be single rays. The determinant of the dielectric
tensor generally has two roots for a cold plasma and more for a hot plasma, and if
two of the roots begin to coalesce, then the ray tracing theory breaks down. While
the ray tracing will continue as long as the two roots do not exactly coincide, the
energy flow is split between two nearby roots, and hence both the rays and the
amplitudes are invalid near such a coalescence. The greater problem is with the
amplitudes, since the divergence of the group velocity is effectively sampling the
vicinity near the ray, while the ray equations effectively sample only along the ray.
Thus, even though a ray may experience a mode conversion at a coalescence of
two roots, entering the region on one root and leaving on another, following a valid
ray after the encounter, it is possible that most of the energy may have transferred
to the other ray. Such problems are outside the suitable domain for geometric
optics, and fall in the mode conversion domain where full wave solutions in
the coalescence region are found and then matched to WKB solutions where ray
tracing and geometric optics are once again valid.

6.6 Drift waves and instabilities

6.6.1 Introduction—drift waves

Whenever there is a gradient in one of the equilibrium parameters, it generally
leads to crossed electric and magnetic fields that allow the propagation of drift
waves. The literature is extensive in the kinds of instabilities that may arise from
these gradients [91, 92], and it is beyond the scope of this book to investigate all
of them, so again we will examine some of the basic principles and illustrate with
a few examples. The literature is difficult to survey because there are examples
of collisionless drift instabilities from a kinetic equation, there are collisional or
dissipative drift instabilities from the fluid equations, and some use a mixture
of both. There is no unified theory of drift instabilities, and hence there is
also no unified nomenclature for the various instabilities, and while the various
approximations are commonly very specific, they may not always be consistent,
and the results are sometimes abstract in the sense that a consistent set of plasma
parameters is not always invoked. For example, one case in which simplifications
and approximations were made in order to get an analytic result for the instability
growth rate was subsequently found to be stable when a more nearly complete
model was analyzed. Because the literature is so vast and complicated, we shall
only show a few examples of the various types of analysis and a small set of the
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known drift instabilities.
In order to see some of the nature of the problem without extensive analysis,

we first begin with a case of electrons and ions in the long wavelength limit
(k2 � k2D so that ne = ni ) using the fluid equations and examine low-frequency
electrostatic waves. If we neglect electron inertia (me → 0) in the momentum
equation, then we have the balance between the pressure gradient and the electric
field as

e
∂ϕ

∂x
= KTe

ne

∂ne
∂x

whose solution is ne = exp(eϕ/KTe). We shall assume the potential varies as
ϕ ∼ eiky y−iωt , and that the density perturbations are given by

ni = ne = n0 exp(eϕ/KTe) = n0 + n1e = n0 + n0eϕ/KTe.

The equation of motion for ions is

−iωmivi = e(E + vi × B0) � 0

since ω � ωci . Hence, vix � Ey/B0 = −ikyϕ/B0. The ion continuity equation
gives

−iωn1i + vix
dn0
dx

= 0

and using the expressions for n1i and vix , this may be solved for ω as

ω = −kyKTe
eB0

1

n0

dn0
dx

≡ ω∗e . (6.159)

Usually n0(x) decreases with increasing x , so normally ω∗e > 0. The wave travels
in the direction of ∇n0 × B0 with phase velocity csρs/Ln where cs is the ion
acoustic speed, ρs = cs/ωci is like an ion Larmor radius, except it depends on Te
rather than Ti , and Ln is the scale length of the density variation.

One way of thinking about the source of free energy for this instability is to
realize that the density gradient tends to establish a radial electric field to balance
the diffusion rates, and this radial field sets the plasma into rotation due to the
E × B0 drift. As we saw in chapter 3, drifting plasmas are frequently unstable.
In this case, a cylindrical plasma leads to waves rotating with an azimuthal mode
number ky � 2πm/r , so the waves may be localized about a radius where m
is an integer. These drifting low-frequency waves are susceptible to a variety of
instabilities.

6.6.2 The drift resistive instability

For this example we shall generalize somewhat the previous elementary
analysis, but still use the long wavelength approximation and the electrostatic
approximation, but with E = E(x) exp[i(ky y+ kzz−ωt)]. This allows the wave
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to propagate parallel to the magnetic field in addition to its drift perpendicular to
both the field and the gradient. Then using the fluid equation for electrons with
collisions,

men0
∂ve

∂ t
= −n0e(E + ve × B0)−∇ pe − men0νeive

we find from the z-component (with ω � νei � ωce) that

vez = in0ekzϕ − ikzneKTe
men0νei

. (6.160)

The electron continuity equation is

−iωne + vex
dn0
dx

+ in0(kxvex + kyvey + kzvez) = 0

and we have taken a WKB form for E(x) so that kx is a slowly varying function
of x . Then for ω � ωce, vex � Ey/B0 and vey � −Ex/B0, we may solve the
continuity equation for vez and equate it to the expression in equation (6.160) and
write the result in the form(

ω

kz
+ ikzKTe

meνei

)
ne
n0
= eϕ

(
ikz

meνei
− ky

kzeB0

1

n0

dn0
dx

)
.

Then this may be written as

ne
n0
= eϕ

KTe

(1− iω∗emeνei/k2zKTe)

(1− iωmeνei/k2zKTe)
. (6.161)

For the ions, we assume ω � ωci but keep first order terms, so that

vix = Ey

B0
− iω

ωci

Ex

B0

viy = − Ex

B0
− iω

ωci

Ey

B0

viz = ieEz

miω
.

Then the ion continuity equation,

−iωni + vix
dn0
dx

+ in0k · vi = 0

leads to
ni
n0
= eϕ

KTe

(
ω∗e
ω
+ k2z c

2
s

ω2 − k2⊥ρ2s

)
(6.162)
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where we neglected a term of order iω∗e kx/ωci ky compared to unity. Equating
equation (6.161) to equation (6.162) leads to the dispersion relation,

1− ω∗e
ω
+
(
k2⊥ρ2s −

k2z c
2
s

ω2

)(
1− iωmeνei

k2zKTe

)
= 0. (6.163)

This dispersion relation may be written as a quadratic equation,

ω2 + iωs

(
1+ k2⊥ρ2s −

k2z c
2
s

ω2

)
ω − iω∗eωs = 0 (6.164)

where

ωs = ωceωci

νei

(
k2⊥
k2z
− ω2

ci

ω2

)−1
.

The unstable root is given by

ω = − iωs

2

(
1+ k2⊥ρ2s −

k2z c
2
s

ω2

)
1−

[
1− 4iω∗e

ωs(1+ k2⊥ρ2s − k2z c
2
s /ω

2)2

]1/2



(6.165)

and its maximum growth rate occurs when ω∗e � ωs

(
1+ k2⊥ρ2s − k2z c

2
s

ω2

)2
at which

point

ω = ω∗e (0.618+ 0.300i)

1+ k2⊥ρ2s − k2z c
2
s /ω

2
.

Problem 6.6.1. Drift instability growth rate. We define

α ≡ 4ω∗e
ωs(1+ k2⊥ρ2s − k2z c

2
s /ω

2)2
.

(i) Show that with ω∗e fixed that Im(ω) has a maximum as a function of α.
(ii) Show that for α � 1,

ω ∼ ω∗e (1+ iα/4)(1+ k2⊥ρ2s − k2z c
2
s /ω

2)−1

and for α � 1,

ω ∼ ω∗e (1+ i)

√
2

α
(1+ k2⊥ρ2s − k2z c

2
s /ω

2)−1.

(iii) Find αm for maximum growth rate.
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6.6.3 Kinetic theory of drift waves

In order to include collisionless plasmas and the effects of resonant particles along
with nonuniform distribution functions, we need to use extensions of the kinetic
theory of chapter 4. In this expanded formalism, we will include gradients in
temperature, magnetic field, density, and curvature of the magnetic field. Because
of the additional complexity which these additional effects add to the problem,
we will restrict ourselves to electrostatic waves, but electromagnetic drift waves
also occur. In this list, we have distinguished between magnetic field gradients,
which we take to come from currents inside the plasma, such as that caused by
finite β effects where ∇ × H = j and the magnetic field gradient is related to
a density gradient such that (1/B)dB/dx � β(1/n)dn/dx . Curvature effects
are taken to be due to external currents, so that inside the plasma ∇ × B = 0,
and we represent the inertial response to these curvature effects in terms of a
‘gravitational’ potential where g = ( 12v

2⊥ + v2z )/Rc wherein Rc is the radius of
curvature of the magnetic field. When a combination of these gradients occur,
they could, in principle, act in different directions, but because most gradients
occur normal to the flux surfaces, we shall assume they all occur in the x-direction
with the magnetic field in the usual z-direction, so drifts commonly are in the y-
direction. In this section, we shall generally follow the review by Krall [92], but
use the conventions and notation of our earlier chapters.

6.6.3.1 The equilibrium distribution function

Our basic set of equations are the familiar Vlasov equations, except that with the
electrostatic approximation, these are

∂ f j
∂ t
+ v · ∇ f j +

[
g + q j

m j
(E + v × B)

]
· ∇v f j = 0 (6.166)

g = −gêx , and Poisson’s equation

ε0∇ · E =
∑
j

q j

∫
d3v f j . (6.167)

Our zero-order distribution function, f0(v, x), must satisfy

vx
∂ f0 j
∂x

+
(

g + q j

m j
v × B0

)
· ∇v f0 j = 0. (6.168)

In order to guarantee this, we must construct f0 j from the constants of the motion,

E = 1
2m jv

2 + m j gx

py = m jvy + q j Ay � m j (vy + ε jωcj x)

pz = m jvz
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which are the energy and the two components of the momentum perpendicular
to the gradients, and we have assumed weak gradients in estimating the vector
potential Ay . The weak gradients may then be used again to write the zero-order
distribution function in the form

f0 j = n0e
−(v2⊥+2gx)/v2t j−v2z /v2�j
π3/2v2t jv�j

[
1+

(
x + vyε j

ωcj

)(
ε′ + δ⊥

v2⊥
v2j

+ δz
v2z

v2j

)]

(6.169)
where v2t j = 2KT⊥ j/m j and v2�j = 2KT‖ j/m j . We identify the various constants
by evaluating

n j =
∫

d3v f0 j = n0e
−2gx/v2t j [1+ x(ε′ + δ⊥ + 1

2δz)]

n jKT⊥ j =
∫

d3v( 12mv
2⊥) f0 j = n0KT⊥ je

−2gx/v2t j [1+ x(ε′ + 2δ⊥ + 1
2δz)]

n jKT‖ j =
∫

d3v( 12mv
2
z ) f0 j = 1

2n0KTje
−2gx/v2t j [1+ x(ε′ + δ⊥ + 3

2δz)]

so that we may find

T⊥ j � T⊥ j (1+ δ⊥x)⇒ δ⊥ = 1

T⊥
dT⊥
dx

T‖ j � T‖ j
2
(1+ δz x)⇒ δz = 1

T‖
dT‖
dx

1

n j

dn j

dx
= ε′ + δ⊥ + 1

2δz ⇒ ε′ = 1

n j

dn j

dx
− δ⊥ − 1

2δz .

Problem 6.6.2. Constants of the motion. Verify that any function of the constants
of the motion, f0(E, py, pz), satisfies equation (6.168).

6.6.3.2 Integrating over the unperturbed orbits

If we now examine the evolution of the perturbed distribution function in a fashion
similar to section 4.3.2, then we may write for the first order terms

d f1
dt

= ∂ f1
∂ t
+ v · ∇ f1 +

(
g + q

m
v × B0

)
· ∇v f1 = − q

m
(E1 + v × B1) · ∇v f0

(6.170)
where we have used equations (6.166) and (6.168). Then, assuming the
perturbation vanishes for sufficiently long times in the past, we may integrate
directly to obtain

f1(r, v, t) = − q

m

∫ t

−∞
dt ′[E1(r ′, t ′)+v′×B1(r ′, t ′)]·∇v′ f0(E, py, pz) (6.171)
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where we integrate along the unperturbed orbit defined by

v′ = dr ′

dt ′
dv′

dt ′
= g + q

m
v′ × B0

with v′(t ′ = t) = v and r ′(t ′ = t) = r and where now B0 = B0(1 + x/LB) and
B1 = 0 in the electrostatic approximation.

The unperturbed orbit equations are similar to the case without drifts except
for the drift terms, such that

v′x = vx cosωcτ − εvy sinωcτ

v′y = εvx sinωcτ + vy cosωcτ − εg/ωc + εv2⊥/2ωcLB (6.172)

v′z = vz

for the velocities and the displacements are given by

x ′ = x + εvy

ωc
(1− cosωcτ )− vx

ωc
sinωcτ (6.173)

y ′ = y − εvx

ωc
(1− cosωcτ )− vy

ωc
sinωcτ + εgτ/ωc − εv2⊥τ/2ωcLB (6.174)

z′ = z − vzτ (6.175)

and τ = t − t ′ as before. We have neglected some oscillating terms of the order
of the drift speed varying as sin(2ωcτ +φ) in these expressions. Since the plasma
is not uniform in the x-direction, we shall not Fourier analyze in that direction,
and in fact we shall restrict our case to E1x = 0, which is a low-β limit. Then the
phase term becomes

ik · r ′ − iωt ′ = ik · r − iωt − iεvx ky
ωc

(1− cosωcτ )− ivyky
ωc

sinωcτ

+ i

(
ω − kzvz + εkyg

ωc
+ ω∗

v2⊥
v2j

)
τ. (6.176)

Now the drift velocities are proportional to the velocity squared, so that, for
example, the drift frequency from g is not a constant, but given by

εkyg

ωc
= ωg

(
v2⊥
2v2j

+ v2z

v2j

)
(6.177)

where ωg ≡ εkyv2j/ωc Rc. Also, the gradient B drift is velocity dependent, being

proportional to v2⊥, so for the integrals over perpendicular velocities, we shall
introduce the combined drift frequency,

ωd ≡ ω∗ + 1
2ωg.
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The integrals over the perpendicular velocities are then all of the form

G(aq , n) = 1

v j
√
π

∫ ∞

−∞
vn exp

(
−v2

v2j

− iaqv + iωdτ
v2

v2j

)
dv

= e−λq/2 f (aq , n)/
√
αd (6.178)

where q = x, y, λq = a2qv
2
j/2αd , αd = 1 − iωdτ , and ax = (εky/ωc)(1 −

cosωcτ ), ay = (ky/ωc) sinωcτ , so λx + λy = 2λ(1 − cosωcτ )/αd , and
f (aq, 0) = 1. This time we need through n = 4, so we list the results as

f (aq , 1) = −
iaqv2j
2αd

f (aq , 2) =
v2j

2αd
(1− λq )

f (aq , 3) =
iaqv4j
4α2d

(−3+ λq) f (aq , 4) =
v4j

4α2d
(3− 6λq + λ2q)

so that the products are of the form

G(ax , n)G(ay,m) = f (ax , n) f (ay,m)

1− iωdτ
exp

[
−λ(1− cosωcτ )

1− iωdτ

]
.

The form of these results with ωd �= 0 prevents any further exact analysis,
so we will make an approximation based on the smallness of ωd . Since τ is
unbounded, it would appear that ωdτ cannot be treated as a perturbation, but by
examining the integral over the parallel velocities first, we will demonstrate that
it is effectively small. For this demonstration, the parallel velocity integrals are of
the form

1

v j
√
π

∫ ∞

−∞
vnz exp

[
−v2z

v2j

+ i

(
ω − kzvz + ωg

v2z

v2j

)
τ

]
dvz

= vnj e
iωτ−(kzv j τ )2/4αg
√
πα

(n+1)/2
g

∫ ∞

−∞
e−x2

(
x − ikzv jτ

2
√
αg

)n
dx (6.179)

where αg = 1 − iωgτ . From this expression, it is clear that the integrand of the
integral over τ will be exponentially small for kzv j τ � 1. If we imagine then that
the τ integral is ‘cut off’ at τ0 where, say, kzv j τ0 = 4, then ωdτ0 = 4ωd/kzv j .
Hence, if we take ωd/kzv j � 1 (this guarantees also that ωg/kzv j � 1), then we
may treatωdτ as a perturbation. This approximation thus assumes that beforeωdτ

reaches order unity, the other terms in the integrand have made the contribution
from the range 1/ωd < τ <∞ of no consequence. Treating ωdτ now as a small
quantity, we will back up and do the τ integral first before doing the average over
parallel velocities.
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Using the electrostatic approximation in equation (6.171), the average over
perpendicular velocities of the Fourier amplitude of f1 j may be written as

〈 f1(k, v, ω)〉⊥ = iq

m
e−λ

∫ ∞

0
dτeφϕ〈k · ∇v′ f0(x ′, v′)〉⊥

� − q f0(x, vz)

m
e−λ

∫ ∞

0
dτ eφϕ(〈h0〉⊥ + ε′〈hn〉⊥

+ δ⊥〈h⊥〉⊥ + δz〈hz〉⊥)(1+ iωdτ ) (6.180)

where now f0(x, vz) = (n0/
√
πv j )e

−(2gx+v2z )/v2j , and

φ = i

(
ω + ωg

v2z

v2j

− kzvz

)
τ + λ cosωcτ

1− iωdτ

� i

(
ω + ωg

v2z

v2j

− kzvz

)
τ + λ cosωcτ (1+ iωdτ )

and

〈h0〉⊥ =
k2y

ωcα
2
d

sinωcτ + 2i

αdv
2
j

[
kzvz − ωg

v2z

v2j

− ωd

αd
(1− fd)

]

〈hn〉⊥ = x〈h0〉⊥ − iεky
ωcα

2
d

(αd − cosωcτ + λ sin2 ωcτ )

+ εky
ω2
cαd

sinωcτ

[
kzvz − ωg

v2z

v2j

− ωd (2− fd )

]

〈h⊥〉⊥ = ky

ωcα
3
d

{
kyx sinωcτ (2− αd − fd )+ iε [2− αd(1+ cosωcτ )

+αd fd
(
2+ cosωcτ + 3+ 4 cosωcτ

αd
+ λ

αd
sin2 ωcτ

)]}

+ (kzvz + ωd − ωgv
2
z /v

2
j )

α2dv
2
j

[
2ix(1− fd )+

εkyv2j
αdω2

c
sinωcτ (2− fd )

]

− 2ωd

α3dv
2
j

[
ix(2− 4 fd + f 2d )+

εkyv2j
αdω2

c
(3− 3 fd + f 2d )

]

+ ωgv
2
z

αdv
4
j

(
2ix + εkyv2j

αdω2
c
sinωcτ

)

〈hz〉⊥ = v2z

v2j

〈hn〉⊥ − 2kzvz
αdv

2
j

(
i x + εkyv2j

αdω2
c
sinωcτ

)

where fd = λ(1 − cosωcτ )/αd .

Copyright © 2003 IOP Publishing Ltd.



The next step is to integrate over τ , where each component integral may be
written in the form

I f � =
∫ ∞

0
dτ exp[i(ω+ωgv

2
z /v

2
j −kzvz)τ−λ(1−cosωcτ )(1+ iωdτ )] f (ωcτ )

α�d

.

(6.181)
Expanding α−�d = (1−iωdτ )

−� � 1+i�ωdτ , then the integral can be represented,
using the Bessel function identity equation (4.224), by

I f � = e−λ
∞∑

n=−∞
In(λ)

∫ ∞

0
dτ ei(ω+nωc+ωgv

2
z /v

2
j−kzvz−λωd )τ

×
∞∑

m=−∞
im Jm(λωdτ )eimωcτ f (ωcτ )(1+ i�ωdτ ). (6.182)

For small λ and small ωdτ , we need only keep m = 0,±1, so for the second sum
1∑

m=−1
im Jm(λωdτ )eimωcτ � 1− λωdτ sinωcτ.

The integrals of equation (6.181) are then of the form

I f � =
∞∑

n=−∞
In(λ)

∫ ∞

0
dτ eiωnτ (1+ i�ωdτ − λωdτ sinωcτ ) f (ωcτ )

=
∞∑

n=−∞

fn�
ωn

(6.183)

with ωn = ω+nωc+ωgv
2
z /v

2
j −kzvz , and these integrals may be performed with

the pertinent terms given in table 6.6.
The final step is to average over the parallel velocities, where each integral

may be written as

Hrm = 1√
πv j

∫ ∞

−∞
vrz e

−v2z /v2j

(ω + nωc + ωgv2z /v
2
j − kzvz)m+1

dvz. (6.184)

Here again, the exponential guarantees that there is little contribution from large
values of vz , so again we can treat ωg as a small parameter and expand the
denominator. Then with ζn = (ω + nωc)/kzv j , the integrals are all of the form

Hrm = (−1)m
(kzv j )mm!

dm

dζmn

[
Fr + ωg

kzv3j

d

dζn
Fr+2

]
+O

(
ωg

kzv j

)2
(6.185)
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Table 6.6. Representation of trigonometric functions by corresponding Bessel functions
as defined by equation (6.183) with gn� = 1− (n + �)ωd/ωn .

f (ωcτ) fn�

1 iIngn�
cosωcτ iI ′ngn� + iωdnIn/ωnλ

cos2 ωcτ iI ′′n gn� +
2iωdn

ωnλ

(
I ′n −

In
λ

)

cos3 ωcτ iI ′′′n gn� + iωd
2ωn

{
λIn
2
+ n

[(
I ′n −

In
λ

)(
1− 12

λ2

)
+ 6I ′′n

λ

]}
sinωcτ

n

λ
Ingn� + ωd

ωn
I ′n

cosωcτ sinωcτ
n

λ

(
I ′n −

In
λ

)
gn� + ωd

ωn
(2I ′′n − I ′n)

where

Fr = 1√
πv j

∫ ∞

−∞
vrz e

−v2z /v2j
ω + nωc − kzvz

dvz (6.186)

= (−vz)r−1r !
kz2r

r/2∑
k=0

1

(r − 2k)!k!
d(r−2k)

dζ r−2kn
Z(ζn) (6.187)

whose first few terms may be written as

F0 = − 1

kzv j
Z(ζn) F1 = 1

2kz
Z ′(ζn)

F2 = v j

2kz
ζn Z

′(ζn) F3 = −
v2j

2kz
[1− ζ 2n Z

′(ζn)].

6.6.3.3 The dispersion relation

At this point, after developing terms consistently through first order in ωd/kzv j ,
the inclusion of these terms in general formulas is too cumbersome, so from this
point on, we will neglect these terms. For problems with curvature (g �= 0) these
terms must be kept in 〈h0〉, but one frequently neglects the other corrections in δ⊥
or δz for these problems. The corrections for 〈h0〉 are included as a problem.

Assembling now the pieces, the averages over velocities of the several terms
are:

〈h0〉 = 2e−λ

v2j

∞∑
n=−∞

In[1+ ζ0Z(ζn)]
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〈hn〉 = x〈h0〉−e−λ
∞∑

n=−∞

εky
ωc

[
In−I ′n + λ(In−I ′′n )

kzv j
Z(ζn)− nIn

2ωcλ
Z ′(ζn)

]

〈h⊥〉 = − e−λ

v2j

∞∑
n=−∞

2xλ(In − I ′n)[1+ ζ0Z(ζn)] + x In Z
′(ζn)

− n

εky
[nIn − nλ(In − I ′n)]Z ′(ζn)

− εkyv j
kzωc

[
1+ 5λ+ λ2 + 5λ

d

dλ
− λ2

d2

dλ2

]
(In − I ′n)Z(ζn)

〈hz〉 = e−λ
∞∑

n=−∞
x In[1− ζ0ζn Z

′(ζn)]

+ 1

εky

{
λωc

kzv j
[In−I ′n + λ(In−I ′′n )]ζn Z ′(ζn)−nIn[1−ζ 2n Z ′(ζn)]

}

With these expressions, the dispersion relation can finally be written as

k2 +
∑
j

2ω2
pj

v2j

e−λ
∞∑

n=−∞
In(λ)

[
1+ ω

kzv j
Z(ζn)

]

= −
∑
j

ω2
pj (ε

′〈hn〉 j + δ⊥〈h⊥〉 j + δz〈hz〉 j ). (6.188)

Problem 6.6.3. Gravitational corrections for 〈h0〉. Work out the first order terms
in ωg and ωd in 〈h0〉.

6.6.3.4 The universal instability

A very important special case of drift instabilities is that due to the density
gradient alone in the range where |ω/kzve| � 1 and |ω/kzvi | � 1. For this
case we will keep first order terms in λi and let λe → 0, set δ⊥ = δz = x = 0
and use ωci � ω. With these restrictions and approximations, equation (6.188)
reduces to

k2 + 2ω2
pe

v2e
[1+ ζeZ(ζe)] +

2ω2
pi

v2i

(1− λi )[1+ ζi Z(ζi )] +
2ω2

pi

v2i

λi

= −kyε′ω2
pe

ωcekzve
Z(ζe)+

kyε′ω2
pi

ωci kzvi
(1− λi )Z(ζi )

where ζ j = ω/kzv j . If we now multiply by ω2λ2De and neglect k2λ2De compared
to 1, the result may be written as

ω2(1+ k2⊥ρ2s )+ ω(ω − ω∗e )ζeZ(ζe)− (1− λi )(k
2
z c

2
s + ωω∗e ) = 0 (6.189)
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where cs is the ion acoustic speed and ρs = cs/ωci . With ζe small, Z(ζe) ∼
i
√
π − 2ζe, so if we let ω = ωr + iγ with ωr ∼ ω∗e so that kzcs � ωr and

γ � ωr , then

ωr � ω∗e
(1− λi )

(1+ k2⊥ρ2s )
(6.190)

γ � √πω∗e
(

k⊥ρs
1+ k2⊥ρ2s

)2
(1+ 2Ti/Te). (6.191)

This instability is called the universal drift instability because it requires only
a density gradient, a finite Larmor radius, and electron Landau damping, all of
which are universally present in magnetized plasmas.

Problem 6.6.4. The universal drift instability. Fill in the steps leading to
equations (6.189)–(6.191).
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Chapter 7

Quasilinear theory

7.1 Introduction

In the preceding chapters, we have considered a variety of plasma wave
phenomena where waves are treated linearly, so that particles and waves have
a self-consistent motion, but the effects of the finite wave amplitudes has been
neglected. For some externally excited waves, where the wave amplitude can be
maintained low, this is often adequate, but for unstable waves, where the linear
theory indicates wave amplitude growth, the amplitude will eventually become
large enough to affect the zero-order distribution function and couple the primary
wave to other waves. When this leads to a large number of finite amplitude waves,
or a broad spectrum of waves, the plasma has become turbulent and nonlinear
effects may dominate.

In hydrodynamic theory, the turbulent state is particularly difficult because
the various nonlinear couplings are characteristically strong, so it is difficult to
isolate the various nonlinear couplings. In a plasma, however, this is frequently
not the case, since the nonlinearly inducedwaves are frequently excited with small
amplitudes, and unless these waves are also unstable, we may have a case of weak
turbulence. As a first approximation, then, we may consider the differentmodes to
be independent, and then add the coupling at various levels and focus our attention
on one phenomenon at a time.

In the first approximation, the nonlinear coupling coefficients between
various linear modes change slowly in time, and this is the domain of weak
turbulence theory. The fundamental smallness parameter in this expansion is
the ratio of the wave energy density to the plasma energy density. This theory
began with the work of Drummond and Pines [93] and Vedenov et al [94], and
was developed further by Kadomtsev [95] and Kennel and Engelmann [96], while
more complete treatments are given by Davidson [97] and Galeev and Sagdeev
[98].

Weak turbulence theory is generally broken into three types of interactions:
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(i) Quasilinear wave–particle interactions. This is generally a resonant wave–
particle process where ω = k · v without any magnetic field, or where
ω − nωc = kzvz in a magnetic field. This interaction is due to a group
of particles that remain in phase with the wave over many cycles and have
time to exchange energy with the wave, resulting in slow changes in the
distribution function which may be attributed to a diffusion process called
quasilinear diffusion. Because of the resonance nature of the interaction, this
is a kinetic process, and gives rise to phenomena such as plateau formation
on the distribution function, and general distortions of the distribution
function such as tail formation.

(ii) Nonlinear wave–wave interactions. Sometimes also called wave–wave
scattering, this process is resonant among the waves such that∑

i

ωi = 0
∑
i

ki = 0

where ωi and ki are the frequencies and wavevectors of the participating
waves. For this case, there are no particle resonances involved, so a fluid
approach may suffice. One of the most important examples of this kind
of interaction is the class of parametric instabilities where two waves beat
together to interact with a third, and above a certain threshold, the interaction
goes unstable. We leave this class of nonlinear interactions to the final
chapter in section 8.4.

(iii) Nonlinear wave–particle–wave interactions. This process is also resonant,
but here the particles keep constant phase relative to the beat frequency of
two waves, so that the resonance condition is ω1 − ω2 = (k1 − k2) · v. This
process is also a kinetic process, and gives rise to phenomena such as plasma
wave echoes.

All of these resonance conditions can be viewed as arising from the
conservation of energy and momentum, so it will not be surprising when we find
these conservation laws built into the various nonlinear formalisms. There are
also quantum analogs to each of these three processes, but the quantum approach
is generally much more complicated than a direct perturbation expansion.

7.2 Quasilinear theory

7.2.1 Basic equations

Quasilinear theory was developed to treat weak turbulence observed in
nonequilibriumplasmas. Due to the non-Maxwellian nature of a turbulent plasma,
a spectrum of electromagnetic waves is generated from local charge separations
or particle currents. This spectrum of waves, known as fluctuations, can then
interact with the plasma through Landau processes described in chapter 4. On a
short enough time scale, such that t � τB =

√
m/ek2ϕ0, where τB is the bounce
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time for a particle in the electrostatic potential well of the wave, the linear Landau
theory is adequate. However, as illustrated in section 4.2.3, the kinetic energy
gain of the particles is proportional to the slope of the zero-order distribution
function, ∂ f0/∂v|v=vp . This implies that the damping or growth rate of the wave
is independent of time even on the longer time scale over which the first-order
distribution function changes since the zero-order distribution is unaffected by
the growth of the first-order distribution function. At some time, this clearly fails
to describe the physics of wave–particle interaction if the first order distribution
function grows to be a non-negligible perturbation on the zero order distribution.

It is the purpose of quasilinear theory to address the time evolution of the
zero-order distribution function f0. Moreover, we will show that this theory
conserves energy and momentum between the wave and the particle distribution
function. Another useful aspect of quasilinear theory is the interaction of the
particles with an externally imposed wave such as in wave heating of a plasma or
driving a macroscopic current in a plasma with waves. We should be cautious in
applying these results, since these wave damping or wave growth processes are
collisionless, so the final state of the distribution function will not be Maxwellian.
The treatment of only one nonlinear effect at a time for a non-Maxwellian
distribution may occasionally lead to a serious error, especially as the amplitude
grows, since somewhere one crosses the boundary fromweak turbulence to strong
turbulence. One rather surprising experimental observation is that the quasilinear
description of the wave–particle interaction is quite good even for fairly large
amplitude waves.

For simplicity, we shall first restrict our discussion to the case of an
unmagnetized plasma and develop the more general case later. This will enable
us to bring out the physical processes more clearly without the mathematical
complexity added by the magnetic field. Furthermore, the one-dimensional
problem will be applicable to wave–particle interactions along a magnetic field
where the Lorentz force is negligible.

The basic procedure of developing the one-dimensional quasilinear
equations is the same as the treatment of the linear Landau case given in
chapter 4. Here, however, the quasilinear approximation implies that the
distribution function is allowed to evolve nonlinearly while the wave is calculated
using the linear method of chapter 4. The distribution function is assumed to
be locally uniform in space, but approach zero as one tends toward infinity, or
f (x → ±∞, v, t) = 0. We again assume there are no zero order electric
or magnetic fields and use the Vlasov equations for electrons only (assuming a
uniform, stationary ion background to cancel all zero-order electric fields). Thus
we have

∂ f

∂ t
+ v

∂ f

∂x
− e

me
E
∂ f

∂v
= 0 (7.1)

where the distribution function is assumed to have the properties

f (x, v, t) = f0(v, t) + f1(x, v, t) (7.2)

Copyright © 2003 IOP Publishing Ltd.



f1(x, v, t) =
∫ ∞

−∞
dk

2π
f̃k(k, v, t)eikx (7.3)

E(x, t) =
∫ ∞

−∞
dq

2π
Ẽq(q, t)e

iqx (7.4)

where now the zero-order distribution function depends on time and the tilde
denotes the Fourier-transformed quantity. We will denote the average over space
by

〈 f 〉 = lim
L→∞

1

L

∫ L/2

−L/2
dx f (7.5)

so the first order perturbations average to zero so that

〈 f 〉 = f0(v, t) (7.6)

〈E〉 = 0. (7.7)

We note that the zero-order distribution function is a function of time, and the
average of the second term of equation (7.1) is eliminated by the boundary
condition 〈

∂ f

∂x

〉
= lim

L→∞
1

L

∫ L/2

−L/2
dx

∂ f

∂x
= 0 (7.8)

since f (x → ±∞) = 0 so we have a nonlinear equation for the time evolution
of the zero-order distribution function from averaging equation (7.1),

∂

∂ t
f0(v, t) = e

me

∂

∂v
〈E f1〉 (7.9)

where

〈E f1〉 = lim
L→∞

1

L

∫ L/2

−L/2
dx

∫ ∞

−∞
dk

2π

∫ ∞

−∞
dq

2π
f̃k Ẽqe

i(k+q)x . (7.10)

We will integrate over the space coordinates first and use the identity∫ ∞

−∞
ei(k+q)x dx = 2πδ(k + q)

so

〈E f1〉 = lim
L→∞

1

L

∫ ∞

−∞
dk

2π

∫ ∞

−∞
dq f̃k Ẽqδ(k + q) (7.11)

and then integrating over q , we have nothing unless q = −k so

〈E f1〉 = 1

L∞

∫ ∞

−∞
dk

2π
f̃k(t)Ẽ−k(t) (7.12)

where we have introduced the abbreviated notation limL→∞ 1/L ≡ 1/L∞.
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As we have seen in chapter 4, the linear solution for f̃k is

f̃k(v, t) = eẼk

me(p + ikv)

∂ f0
∂v

(7.13)

so we have the time evolution of f0(v, t) in terms of Ẽk as

∂ f0
∂ t

=
(

e

me

)2
∂

∂v

1

L∞

∫ ∞

−∞
dk

2π

Ẽk Ẽ−k
(p + ikv)

∂ f0
∂v

. (7.14)

The form of equation (7.14) is that of a diffusion equation with the spatial
coordinate replaced by the velocity, or

∂ f0
∂ t

= ∂

∂v
D

∂

∂v
f0 (7.15)

where

D = e2

m2
e L∞

∫ ∞

−∞
dk

2π

Ẽk Ẽ−k
p + ikv

. (7.16)

If we separate the integral of equation (7.16) into the principal part and a pole
term as was done in equation (4.55), where

lim
b→0

1

a + ib
= ℘

a
− iπδ(a)

then equation (7.16) becomes two parts: a principal part and a resonant term. If
we let p = γ − iω, we have

∂ f0
∂ t

= ∂

∂v

e2

m2
e L∞

∫ ∞

−∞
dk

2π

[
i℘

(
Ẽk Ẽ−k
ω − kv

)
+ πδ(ω − kv)Ẽk Ẽ−k

]
∂ f0
∂v

.

(7.17)
The two terms in equation (7.17) contribute differently to the wave–particle
interaction. Since the principal part does not involve the particle with velocity
v = ω/k, it is nonresonant and has only a weak effect.

7.2.2 Conservation laws

The basic conservation laws in weak turbulence theory are direct consequences
of the kinetic equation, but we wish to show that even in the multicomponent
environment of weak turbulence that the conservation of momentum and energy
are explicitly conserved. We first note the trivial case, where the normalization of
the velocity distribution function is invariant, since

d

dt

∫
dv f0 j =

∫
dv

∂ f0 j
∂ t

= 0 (7.18)
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from equation (7.15) for the one-dimensional case we are treating here, and j
denotes the species.

Momentum conservation is less trivial, since it requires a sum over wave
momentum and particle species. For electrostatic waves, this is relatively simple,
since the waves carry no momentum, and the rate of change of particle momentum
density is given by

d

dt

∑
j

Pj (t) =
∑
j

n̄ jm j

∫
dv v

∂ f0 j
∂ t

= −
∑
j

n̄ jm j

∫
dv Dj

∂ f0 j
∂v

= −
∑
α

∑
j

n̄ j q2j
m j L∞

∫ ∞

−∞
dk

2π

∫
dv

Ẽα
k Ẽ

α−k
(pα + ikv)

∂ f0
∂v

(7.19)

where the middle result was obtained by integrating by parts and the last
expression from equation (7.16), and the sum

∑
α is over the spectrum of unstable

waves, with pα = γ αk − iωαk and γ αk > 0. From Poisson’s equation and
equation (7.13), however, the dispersion relation for electrostatic waves (see also
equation (4.55)) is

1 =
∑
j

iω2
pj

k

∫ ∂ f0 j
∂v

p + ikv
dv (7.20)

so equation (7.19) becomes

d

dt

∑
j

Pj (t) = 2i
∑
α

∫ ∞

−∞
dk

2π
W

α
k k (7.21)

whereWα
k = ε0|Eα

k |2/2L∞ is the wave energy density since Eα−k = Eα
k
∗. Then,

sinceWα
k is even in k and k is odd, the integral vanishes and momentum density

is conserved.
For the conservation of energy density, we examine

d

dt

∑
j

1
2 n̄ jm j

∫
dvv2 f j = −

∑
j

n̄ jm j

∫
dv vDj

∂ f0 j
∂v

= 2
∑
α

∫
dk

2π
W

α
k

∑
j

ω2
pj

k2

∫
dv

(ikv)ik
∂ f0 j
∂v

pα + ikv
.

Then we let ikv→ (ikv + pα)− pα in the numerator, and use equation (7.20) to
obtain

d

dt

∑
j

1
2 n̄ jm j

∫
dvv2 f j = −2

∑
α

∫
dk

2π
W

α
k γ

α
k (7.22)
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since pα−k = pαk
∗. We then use the fact that the energy density varies in time as

∂Wα
k

∂ t
= 2γ αk W

α
k (7.23)

so that we may write equation (7.22) in the form

d

dt

[∑
j

1

2
n̄ jm j

∫
dv v2 f j +

∑
α

∫
dk

2π
W

α
k

]
= 0 (7.24)

which demonstrates that the sum of the particle energy and wave energy is
conserved.

For the more general problem of electromagnetic waves in the presence of a
static magnetic field, the demonstration is much more involved, since the waves
carry both momentum and energy in general, and the dispersion relation is much
more formidable, so it will not be given here, but the conservation laws still follow
from the kinetic equation.

Problem 7.2.1. Conservation of momentum density.

(i) Fill in the steps between the first part of equation (7.19) and
equation (7.21).
(ii) Fill in the steps leading to equation (7.24).

7.2.3 Velocity space diffusion in a magnetic field

While the simplified theory given here outlined the methods of quasilinear theory,
it can only be applied to the case with no magnetic field or the case with
an infinite magnetic field. In order to examine the more interesting problems
associated with wave heating or current drive, it is necessary to include the
effects of magnetic fields, since wave heating usually uses either electron or ion
cyclotron fundamental or harmonic resonances, and current drive (the generation
of unidirectional currents by transferring wave momentum to selected particles)
usually employs waves that only propagate in magnetized plasmas.

When the effects of a magnetic field are included, the problem is no longer
one-dimensional, so we now need for the Fourier transforms of the basic variables,

f (r, v, t) = f0(v, t) + f1(r, v, t) (7.25)

f1(r, v, t) =
∫ ∞

−∞
d3k

(2π)3
f̃k(v, t)e

ik·r (7.26)

E(x, t) =
∫ ∞

−∞
d3q

(2π)3
Etq(t)eiq·r (7.27)

B(x, t) =
∫ ∞

−∞
d3q

(2π)3
B̃q(t)eiq·r (7.28)
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and again 〈 f 〉 = f0(v, t) where now the average is over the volume V .
We begin the analysis looking for the fast (wave) time scale, and then use

the quasilinear diffusion equation to analyze the slow time scale evolution of f0.
Following the development of Kennel and Engelmann [96] we choose to analyze
this problem in cylindrical coordinates in velocity space and wavevector space,
establishing B0 to be in the z-direction, so that

vx = v⊥ cosφ vy = v⊥ sinφ
kx = k⊥ cosψ ky = k⊥ sinψ.

It is clear that the dispersion properties do not depend on ψ , since there are only
two directions specified, that of the magnetic field and of the wavevector k. Due to
asymmetric initial or boundary conditions, however, a physical problemmay have
such dependence. Hence, if there were no asymmetries in the physical problem,
we could let ψ = 0 with no loss of generality.

It is also convenient to use rotating coordinates for the wave field components
in the form

Ẽ± = Ẽx ± iẼy

B̃± = B̃x ± iB̃y .

In this representation, Ẽ+ and Ẽ− represent left- and right-handed waves,
respectively, for Reω > 0. If Reω < 0, the polarizations are reversed. In these
rotating coordinates, the additional phase shift ψ can be included by rotating an
additional angle, so that the electric field vector for a specific k can be represented
by Ẽk = (Ẽ+k e

−iψ, Ẽ−k eiψ, Ẽ‖k).
Using these in the Fourier-transformed kinetic equation, the result may be

written as

L̂k f̃k = P̂k f0 + 1

2

∫ ∞

−∞
d3k ′

(2π)3
(P̂k−k′ f̃k′ + P̂k f̃k−k′) (7.29)

where we have introduced the operators

L̂k = ∂

∂ t
+ i[kzvz + k⊥v⊥ cos(φ − ψ)] − εωc

∂

∂φ
(7.30)

P̂k = − εe

m
(Ẽk + v × B̃k) · ∂

∂v
. (7.31)

We note that the convolution term in equation (7.29) has been explicitly
symmetrized. This term is second order in the amplitude (hence the convolution
form), and represents wave–wave or mode–mode coupling which will be
neglected in this quasilinear treatment since we are primarily interested in the
slow development of f0(t) from quasilinear diffusion. We now need to solve the
linear wave problem on the fast time scale, where the relation between k and ωk
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is determined from the dispersion relation of equation (4.255) with the dielectric
tensor elements of section 4.3.3 for an arbitrary distribution function.

If we now let ∂/∂ t → −iωk where ωk is the complex wave frequency, then
equation (7.29) is a first-order differential equation in φ if we neglect the second-
order convolution terms, with solution

f̃k = (L̂k,ωk)
−1 P̂k f0

= exp

{−i[(ωk − kzvz)φ − k⊥v⊥ sin(φ − ψ)]
εωc

}

×
∫ φ

dφ′ exp
{
i[(ωk − kzvz)φ′ − k⊥v⊥ sin(φ′ − ψ)]

εωc

}
P̂k f0.

(7.32)

It is assumed that ωk has a positive imaginary part so that the integral converges.
This appears to limit the discussion to unstable modes since Imωk > 0, but it can
be extended to damped modes by analytic continuation.

In order to express P̂k more explicitly, we use the Bessel function identity of
equation (4.179) in order to express the operator (L̂k,ωk)

−1 as

(L̂k,ωk)
−1 = −

∞∑
n,m=−∞

Jm Jn
εωc

exp

[
i(n − m)ψ

−i(ωk − mεωc − kzvz)φ

εωc

]

×
∫ φ

dφ′ exp
[
i(ωk − nεωc − kzvz)φ′

εωc

]
(7.33)

where the argument of the Bessel function is k⊥v⊥/εωc, and we use the Maxwell
equations to eliminate the wave magnetic fields from P̂k , with the result

P̂k = − q

m

[
ei(φ−ψ)

2

(
Ẽ−k e

iψ Ĝ+k +
k⊥ Ẽ‖k
ωk

Ĥ+
)

+ e−i(φ−ψ)

2

(
Ẽ+k e

−iψ Ĝ−k +
k⊥ Ẽ‖k
ωk

Ĥ−
)

+ ik⊥
2ωk

(Ẽ+k e
−iψ − Ẽ−k e

iψ)
∂

∂φ
+ Ẽ‖k

∂

∂vz

]
(7.34)

where

Ĝ±k =
∂

∂v⊥
± i

v⊥
∂

∂φ
− kz
ωk

Ĥ±

Ĥ± = vz
∂

∂v⊥
− v⊥

∂

∂vz
± ivz

v⊥
∂

∂φ
.

(7.35)

This completes the problem of solving for f̃k in terms of f0 and the wave fields
and polarizations.
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For the evolution of f0(t), we use the space-averaged kinetic equation,
which, after Fourier transformation and again symmetrizing the convolution
terms, is

∂ f0
∂ t
− εωc

∂ f0
∂φ

= 1

2V∞

∫
d3k

(2π)3
[P̂−k(L̂k,ωk)

−1 P̂k + P̂k(L̂−k,ω−k)
−1 P̂−k] f0

= 1

2

∫
d3k

(2π)3
(D̂k + D̂−k) f0 (7.36)

where the linear expression for f̃k has been substituted into the convolution terms,
and we again use the abbreviated form limV→∞ 1/V ≡ 1/V∞. This formally
completes the derivation of the evolution of the zero-order distribution function
from quasilinear theory and the quasilinear diffusion operators, D̂k and D̂−k , are
explicit, but very complicated.

Problem 7.2.2. Solving the linearized kinetic equation.

(i) Show that equation (7.32) is the solution of the linearized Vlasov equation.
(ii) Show that P̂k has the form given by equation (7.34).
(iii) Show that Ĥ± vanishes for isotropic distributions.

7.2.3.1 Gyroperiod expansion

It is fruitful to introduce a small parameter in order to simplify some of the
complications in our treatment. If we limit ourselves to time scales that are
long compared to the gyroperiod, and length scales that are long compared to
the Larmor radius, then many simplifications occur. We note that this also limits
us to instabilities whose growth over a gyroperiod is small. This approximation
immediately smooths out any inhomogeneities in the φ distribution, since all
particles make so many orbits on the macroscopic time scales. It is possible that
the first order distribution, f̃k , may have rapid variations due to the waves, but
the space-averaged f0(t) must vary slowly. We make the dependence explicit by
defining

f0 = f (0)0 + ε

ωc
f (1)0 +O

(
1

ω2
c

)
. (7.37)

Substituting equation (7.37) into equation (7.36), and keeping only the lowest
order terms, we find simply

∂ f (0)0

∂φ
= 0 (7.38)

since we assume the wave background produces only a slow variation in time.
This result already tells us several things about the φ-dependence of the

diffusion process. It says that the lowest-order spatially averaged distribution
function is independent of the phase φ because it has to make many gyro-orbits
before it can diffuse enough to be significant. The corresponding diffusion in
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velocity space is therefore two-dimensional, since ∂ f (0)0 /∂φ always vanishes.
A corollary of this is that if the excited wave spectrum is axially symmetric
in k-space, the diffusion is intrinsically two-dimensional, and the initial axial
symmetry is preserved for all times.

The zero order equation (7.38) still leaves the time dependence of f (0)0
undetermined, so we must go to the next order to find

∂ f (0)0

∂ t
− ∂ f (1)0

∂φ
= 1

2

∫
d3k

(2π)3
(D̂k + D̂−k) f

(0)
0 . (7.39)

If we now demand that all f (n)0 be exactly periodic in φ, so that averaging
over the period [0, 2π] in φ eliminates all of the higher order terms, then we can
obtain a Larmor phase-averaged equation of the form

∂ f (0)0

∂ t
= 1

4π

∫ 2π

0
dφ

∫
d3k

(2π)3
(D̂k + D̂−k) f

(0)
0 . (7.40)

Since now only the φ-independent term is left, we can delete the superscript
notation. This also greatly simplifies the linear portion of the problem, so that
now we may write (with ∂/∂φ → 0 from equation (7.38) in equations (7.34) and
(7.35) so that the ± terms and notation disappear for Ĝk and Ĥ )

f̃k = iq

m

∞∑
m,n=−∞

Jmei(m−n)(φ−ψ)

ωk − nεωc − kzvz
(En,kĜk + Jn Ẽ

‖
k K̂n,k) f0 (7.41)

where En,k is defined by

En,k ≡ 1
2 (Ẽ

−
k e

iψ Jn+1 + Ẽ+k e
−iψ Jn−1) (7.42)

and K̂n,k is the operator

K̂n,k ≡ ∂

∂vz
+ εnωc

ωkv⊥
Ĥ . (7.43)

Equation (7.41) is equivalent to equation (4.180), and can be used to generate the
linear dielectric tensor and dispersion relation through equation (4.177).

In order to evaluate those terms involving the −k subscript, we note the
symmetry relations for the variable ψ , where −k = (k⊥,−kz, ψ + π) so that
E−k = E∗k and B−k = B∗k , so that

Ẽ+−ke
−i(ψ+π) = − (Ẽ−k e

iψ)∗

Ẽ−−ke
i(ψ+π) = − (Ẽ+k e

−iψ)∗

Ẽ‖−k = (Ẽ‖k)
∗.
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These relations, along with ω−k = −ω∗k , lead to P̂−k = (P̂k)
∗, f̃−k = ( f̃k)∗, and

D̂−k = (D̂k)
∗. Hence the quasilinear term in equation (7.40) is pure real.

Averaging over φ at this point, we note that ∂/∂φ from equations (7.34)
and (7.35) in the first operator of D̂±k operates not only on f0, but that we can
replace e±iφi∂/∂φ → ±e±iφ and i∂/∂φ → 0. Using these relations and the
earlier symmetry relations, we may write the averaged first operator P̂−k of D̂k
(operating on f̃k of equation (7.41)) as

P̂−k = − q

m

[
ei(φ−ψ)

2

(
Ẽ+k e

−iψ Ĝ+k +
k⊥ Ẽ‖k
ωk

Ĥ+
)∗

+ e−i(φ−ψ)

2

(
Ẽ−k e

iψ Ĝ+k +
k⊥ Ẽ‖k
ωk

Ĥ+
)∗
+ (Ẽ‖k)

∗ ∂

∂vz

]
(7.44)

where now

Ĝ+k = Ĝk + ωk − kzvz
ωkv⊥

Ĥ+ = Ĥ + vz

v⊥
.

Noting now that the only remaining φ-dependence is the simple exponential phase
which leads to a Kronecker delta function, collapsing the double sum to a single
sum, we may write equation (7.40) in the form

∂ f0
∂ t

= ∂

∂v
·
(

D · ∂ f0
∂v

)
(7.45)

where the quasilinear diffusion tensor is given by the dyadic

D = q2

m2

∞∑
n=−∞

1

V∞

∫
d3k

(2π)3
i

ωk − nεωc − kzvz
(an,k)

∗(an,k) (7.46)

with

an,k = En,k kz
ωk

[(
ωk

kz
− vz

)
Êv⊥ + v⊥ Êz

]

+ Ẽ‖k Jn
[

Êz + nεωc

ωkv⊥
(vz Êv⊥ − v⊥ Êz)

]
. (7.47)

Again, as in chapter 4, we could eliminate the Bessel function sum by use of the
Newberger sum rule.

Since all of these expressions depend on the relation between ωk and k, any
actual solutions for the quasilinear diffusionmust include the solution of the linear
dispersion relation for the given f0 which relates them. This is a difficult problem,
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since in these cases, the Maxwellian distribution is suitable only for a zero-order
trial solution, if that, so that generally each component of the dielectric tensor
is a combination of formidable integrals and transcendental functions. In some
specific cases, the solution may simplify because either the specific wave branches
are given along with their polarization, or because the problem is one-dimensional
and many terms vanish. For example, with waves propagating exactly parallel to
the magnetic field, we have k⊥ = 0 and the waves are either right-handed, as in
the fast Alfvén wave (the whistler wave at higher frequencies), or left-handed, as
in the slow or torsional Alfvén wave, or electrostatic wave. Each of these cases
reduces the complexity substantially, but represents a severely restricted problem
which may not be representative of the physics of quasilinear diffusion.

Problem 7.2.3. Zero order equation. Justify equation (7.38).

Problem 7.2.4. Averaging over φ. Show that in the average over φ, integrating
the terms involving ∂/∂φ by parts in the first operator of D̂±k leads to the recipes
e±iφi∂/∂φ →±e±iφ and i∂/∂φ → 0 in obtaining equation (7.44).

7.2.3.2 Electrostatic case

When all the waves in the weak turbulence spectrum are slow waves such that we
may use the electrostatic approximation, Ẽ = −ikϕ̃, then

1

2π

∫ 2π

0
f̃k dφ = q

m
kz ϕ̃k

∞∑
n=−∞

J 2n
ωk − εωc − kzvz

(
∂

∂vz
+ nεωc

kzv⊥
∂

∂v⊥

)
f0.

(7.48)
Using this expression, the diffusion tensor may be described by

D = q2

m2

∞∑
n=−∞

1

V∞

∫
d3k

(2π)3
iJ 2n |ϕ̃k|2

ωk − nεωc − kzvz
bn,k bn,k (7.49)

since an,k = −iϕ̃k Jnbn,k with

bn,k = nεωc

v⊥
Êv⊥ + kz Êz . (7.50)

If we define ωk ≡ ωrk + iγk, then we may write equation (7.49) in terms of its
real part only as

D = q2

m2

∞∑
n=−∞

1

V∞

∫
d3k

(2π)3
γk J 2n |ϕ̃k|2

(ωrk − nεωc − kzvz)2 + γ 2
k

bn,k bn,k (7.51)

since the imaginary contribution vanishes.

Problem 7.2.5. Electrostatic quasilinear diffusion tensor. Show that equa-
tion (7.46) reduces to equation (7.49) if Ẽ = −ikϕ̃.
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7.2.4 H-theorem for quasilinear theory

One of the purposes of quasilinear theory is to study the effects of saturation
of growing waves by the modification of the distribution function by the waves
themselves. One way of addressing this problem is to examine the positive
definite functional H ,

H = 1
2

∑
j

∫
d3v ( f0 j )2 (7.52)

where the sum is over the species j . Integrating by parts, we find that dH/dt may
be written

dH

dt
= −

∑
j

∫
d3v

∂ f0 j
∂v

·D · ∂ f0 j
∂v

= −
∑
j

q2j
m2

j

∞∑
n=−∞

∫
d3v

1

V∞

∫
d3k

(2π)3

×
∣∣∣∣∂ f0∂v · an,k

∣∣∣∣
2

j

γk

(ωrk − nε jωcj − kzvz j )2 + γ 2
k

≤ 0. (7.53)

Then, since H is positive definite, and dH/dt is negative definite, it follows that
H must decrease monotonically with time until it reaches some time asymptotic
limit. This limit corresponds to a zero in dH/dt , which implies a marginally
stable state, since there is neither growth nor decay.

As an alternative to marginal stability, we consider the possibility of a
domain in k-space where γk is positive and we have dH/dt = 0. Then, since
each term in dH/dt is positive definite, it follows that

an,k · ∂ f0
∂v

= (En,kĜk + Jn Ẽ‖k K̂n,k) f0 ≡ 0 (7.54)

for all v and n in the domain of k, which from equation (7.41) implies that f̃k ≡ 0
so that there are no waves at all in that region, which is contradictory. Hence, the
asymptotic state implies marginal stability for all waves.

7.2.4.1 Plateau formation and resonant diffusion

In developing this argument, we avoided taking γk → 0+, first, so that we did
not distinguish between resonant (ωk − nεωc − kzvz = 0) and nonresonant
diffusion. If, however, we consider the limit γk → 0+ first, then we may discuss
the formation of the quasilinear plateau, at which point the wave growth ceases.
In this limit, equation (7.46) becomes

D = πq2

m2

∞∑
n=−∞

1

V∞

∫
d3k

(2π)3
δ(ωk − nεωc − kzvz)(an,k)

∗(an,k) (7.55)
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where now

an,k =
(
En,k + vz

v⊥
Ẽ‖k Jn

)(
nεωc

ωk
Êv⊥ +

kzv⊥
ωk

Êz

)
. (7.56)

A sufficient condition for the steady state case, which leads both to dH/dt = 0
and ∂ f0/∂ t = 0 is that

an,k · ∂ f0
∂v

=
(
En,k + vz

v⊥
Ẽ‖k Jn

)
Ĝk f0 = 0.

or more simply,

Ĝk f0 = kz
ωk

[(
ωk

kz
− vz

)
∂ f0
∂v⊥

+ v⊥
∂ f0
∂vz

]
= 0 (7.57)

and this condition is required everywhere in velocity space where the diffusion
tensor is nonzero. For one particular value of k (or of kz), this is satisfied by the
characteristics of Ĝk, such that

(vz − ωk/kz)
2 + v2⊥ = constant (7.58)

or if f0 = f0[(vz−ωk/kz)2+v2⊥] in that region of velocity space. This represents
curves of constant particle energy in the wave frame moving at the parallel phase
velocity.

If only one value of k were excited, then the single wave characteristics
would be a set of concentric circles in velocity space, with the origin displaced
by the parallel phase velocity of the wave. Once this distribution was established,
there would be no further diffusion, and particles would have bounded energies.
When multiple waves are excited, however, and this is the general case considered
by quasilinear theory, these characteristics intersect, and for a broad spectrum of
waves, the single wave condition cannot be satisfied except for the trivial solution
that f0 be constant. The intersection of the characteristics allows individual
particles to move from one set to another, and may lead to unbounded energies.

If we restrict our attention to either the zero magnetic field case, or the
infinite magnetic field case, then the Landau resonance at vz = ωk/kz restricts
the parallel motion, so the surfaces are restricted to constant v⊥. Then if the
spectrum of k is bounded, so that we can define a vmax and a corresponding
vmin, where these are the maximum and minimum parallel phase velocities of
the excited spectrum of waves, then we only require the distribution function to
be flat over that range of vz . This flat region in figure 7.1 is called a plateau
region, and is the limit condition of quasilinear diffusion. On longer, collisional
time scales, this plateau will be changed back towards an equilibrium distribution,
but quasilinear theory by itself does not evolve toward equilibrium, since it ends
in a state with finite amplitude, steady state waves.

When the magnetic field is finite, the problem is much more complicated
unless we restrict our attention to k⊥ = 0 modes, where the waves are purely
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Figure 7.1. Quasilinear plateau between the end points of the kz spectrum.

right-handed or left-handed, and the characteristics may not intersect. In general,
however, more general k-vectors are excited, and true plateaus do not exist,
but quasi-plateaus, through the coupling of quasilinear diffusion with a Fokker–
Planck analysis including collisions, are possible, but do not admit analytic
solutions.

7.2.5 Weak bump-on-the-tail instability

One of the simplest instabilities that leads to quasilinear diffusion and to plateau
formation is the weak beam–plasma instability, or since in this case the weak
beam is taken to be spread out in velocity and hence adds a gentle bump on the
tail of the distribution function, it is also called the bump-on-the-tail instability.
We require both that the magnitude of the bump be small and that it be spread out
in order to use quasilinear theory. Otherwise, the bump leads to strong turbulence,
and the approximations we have used fail long before the plateau is reached.
For simplicity, we shall consider an unmagnetized plasma (we could also use
the infinite magnetic field limit) in order to make the problem one-dimensional.
The initial distribution is illustrated in figure 7.2 where the two velocities v1 and
v2 denote the limits where unstable waves occur.

We can see from figure 7.2 some of the quasilinear processes that must
evolve as waves grow in the unstable region between v1 and v2, since from
equation (4.58), γk is proportional to the slope of the distribution function, and
hence positive in this range. The first step is for the waves to grow to sufficient
amplitude that quasilinear diffusion begins to change the distribution function,
tending to flatten the distribution in the positive slope (resonant) region due to
resonant diffusion. Lowering the level at the upper end and raising the level at
the lower end, however, extends the region of instability unless the regions for
v > v2 and v < v1 are simultaneously lowered and raised, respectively, but
these are initially in the nonresonant diffusion region. Resonant diffusion alone,
then, would tend to broaden the resonant region until the plateau indicated was
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Figure 7.2. Bump-on-tail distribution showing initial unstable region and eventual plateau.

reached, at which point resonant diffusion ceases. The indicated plateau is only
suggestive, however, since it was drawn to conserve energy, but fails to conserve
momentum. In order to conserve both, the entire distribution must be shifted by
various amounts, and this requires nonresonant diffusion processes.

7.2.5.1 Resonant diffusion

Looking more carefully at these processes, we have, from equation (4.58), that
the growth rate, for ω � ωpe, may be represented by

γk = π

2
ωk

ω2
pe

|k|3 k
∂ f0
∂v

∣∣∣∣
v=ωk/k

. (7.59)

Thus, for the velocity range v1 < v < v2, since ωpe/k1 � v1 and ωpe/k2 � v2,
there is a range of k, k2 < k < k1 (or −k1 < k < −k2 since ω−k = −ω∗k )
where waves grow in time. At time 0+, this leads to a growth spectrum illustrated
in figure 7.3(a) and a low wave energy spectrum shown in figure 7.3(b). As the
wave energy density grows according to equation (7.23), the resonant diffusion
coefficient builds as shown in figure 7.3(c), since

Dr = 2e2

ε0m2
e

∫ ∞

−∞
dk

2π
πδ(ωk − kv)Wk � e2

ε0m2
ev
Wωpe/v(t) (7.60)

leading to changes in the distribution function which will tend to reduce γk . As
the plateau develops, eventually γk < 0 everywhere as in the lower curve of
figure 7.3(a).

7.2.5.2 Nonresonant diffusion

Generally speaking, nonresonant diffusion is much weaker than resonant
diffusion, but it acts on many more particles, so the net effects may be of the
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Figure 7.3. (a) Initial and asymptotic growth rate spectrum; (b) wave energy density
spectrum; and (c) quasilinear diffusion coefficient at general time t .

same order of magnitude. The nonresonant diffusion coefficient for our one-
dimensional example is given by the principal part of equation (7.17) as

Dnr = 2e2

ε0m2
e

∫ ∞

−∞
dk

2π
Wk

γk

(ωr − kv)2

� 2

n̄me

∫ ∞

−∞
dk

2π
γkWk

� 1

n̄me

∂

∂ t

∫ ∞

−∞
dk

2π
Wk (7.61)

where the first approximation is valid for speeds much less than the phase velocity
and k2λ2D � 1, and the second uses equation (7.23). That Dnr � Dr is apparent
from the fact that Dnr ∼ γkWk while Dr ∼Wk .

Now since from equation (7.61), Dnr is independent of v, then the velocity
diffusion equation becomes

∂ f0(v, t)

∂ t
= Dnr ∂2

∂v2
f0(v, t) (7.62)

which may also be written as

∂ f0(v, τ )

∂τ
= 1

2me

∂2

∂v2
f0(v, τ ) (7.63)

by changing variables to τ (t) = (1/n̄π)
∫∞
−∞Wk(t) dk. This is the standard form

of the diffusion equation, whose solution may be written for an arbitrary initial
distribution f0(v, τ (0)) in terms of the Green function as

f0(v, τ (t)) =
∫

dv′ f0(v′, τ (0))G(v′, v, τ (t)) (7.64)

G(v′, v, τ (t)) =
{

me

2π[τ (t)− τ (0)]
}1/2

exp

{
− me(v

′ − v)2

2[τ (t)− τ (0)]

}
. (7.65)
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If the zero order distribution is Maxwellian (in the nonresonant region), the
solution of equation (7.64) is especially simple, and takes the form

f0(v, t) =
{

me

2π[KTe + τ (t)− τ (0)]
}1/2

exp

{
− mev

2

2[KTe + τ (t)− τ (0)]

}
.

(7.66)
From the form of the solution of equation (7.66) and from the general

character of diffusion equations, the evolution of the distribution function in the
nonresonant region takes the form of a broadening of the distribution function,
as one might expect from the conversion of wave energy to particle energy. The
energy gain per particle is

1

2
KTe → 1

2
KTe + 1

n̄

∫ ∞

−∞
dk

2π
[Wk(∞)−Wk(0)].

The additional energy is due to the change in τ (t), such that if we define the
quantity �W ≡ ∫∞

−∞[Wk(∞) − Wk(0)] dk/2π , the change in energy for the
resonant particles may be found from equation (7.15) with equation (7.60) and the
change for the nonresonant particles from equation (7.62) with equation (7.61),
so that the results may be summarized as

�

(
n̄
∫

dv 1
2mev

2 f0

)r
= − 2�W (7.67)

�

(
n̄
∫

dv 1
2mev

2 f0

)nr
= +�W . (7.68)

These results lead to the interpretation that the resonant electrons lose two units
of energy for every unit of energy the nonresonant electrons gain, the extra unit
of energy going to the waves, so the resonant particles have both heated the main
bulk of the plasma and increased the energy density of the wave fluctuations.

At this point, we cannot calculate in detail the form of the distribution
function as it evolves without doing a numerical calculation. We can, however,
indicate the basic form of the evolved distribution as the plateau forms and
the distribution broadens by also noting that the conservation of momentum
requires that as the resonant electrons lose momentum (they fall back on
the average in order to fill in the depression in f (v)), the bulk electrons
must gain momentum, shifting the main distribution slightly to the right in
figure 7.2. Assuming the distribution will remain relatively smooth (since
diffusion processes always tend to smooth transition regions), we sketch the
general form of the asymptotic distribution function in figure 7.4 where the
broadening and shifts are exaggerated.

We conclude this section by noting that although the distribution eventually
is modified so that it is everywhere stable or marginally stable, it is not an
equilibrium distribution and there remain finite amplitude waves in the marginally
stable regions of the wave spectrum as a remnant of the originally unstable
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Figure 7.4. Original bump-on-tail distribution (full curve) and time asymptotic form of
f0(v,∞)(dotted curve).

distribution. It remains for collisional effects to finally relax the distribution
towards an equilibrium. We also note that while only quasilinear effects have
been considered in this section, there are inevitably other nonlinear wave–wave
interactions also which will modify these conclusions somewhat.

Problem 7.2.6. The nonresonant diffusion equation. Show that the general
solution of equation (7.64) and the specific solution of equation (7.66) are both
solutions of equation (7.63).

Problem 7.2.7. Energy gain and loss. Verify equation (7.67) for the resonant
electrons and equation (7.68) for the nonresonant electrons.

7.2.6 Effects of collisions

In the restricted domain of quasilinear theory outlined in the previous sections,
it has been assumed that the plasma is collisionless. In cases where the growth
rates of the instabilities are large enough that quasilinear diffusion modifies the
distribution on a time scale which is short compared to the collision time scale,
this neglect is reasonable. In the latter phases of the plateau formation, however,
there always comes a stage where collisions become important because the
growth rates decrease monotonically. When collisions are included, the evolution
equation becomes the Fokker–Planck equation,

d fi
dt

=
∑
j

C( fi , f j )+ ∂

∂v
·
(

D · ∂ fi
∂v

)
(7.69)

where C( fi , f j ) denotes the collision operator between species i and j , and is
taken to be of the form given by Landau [99]:

C( fi , f j ) = − ∂

∂v
· S j

i (7.70)
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S j
i =

q2i q
2
j

8πε0mi
ln!

∫
d3v′ (v − v′)2I− (v − v′)(v − v′)

|v − v′|3

×
[
fi (v)

m j

∂

∂v′
f j (v

′)− f j (v′)
mi

∂

∂v
fi (v)

]
. (7.71)

In general, the sum over species includes collisions between particles of the
same species (electron–electron or ion–ion) as well as collisions between different
species (electron–ion).

We can get an idea of the possible domain where collisions become
important if we treat a particularly simple case, where we use equation (7.60) for
the quasilinear diffusion coefficient and represent the electron–electron collisions
only through the approximate operator in the resonant region as

C( f0, f0) ∼ νv2t
d2

dv2
( fM − f0)

where fM is a Maxwellian distribution and ν is the collision frequency, while vt
is not the true mean velocity, but is of that order. The important feature to notice
is that the collision term depends on the second derivative of the deviation of the
distribution function from equilibrium. If we assume that the quasilinear term
approximately balances the collision term, then

D
∂ f0
∂v

+ νv2t
∂

∂v
( f0 − fM ) � 0

so that
∂ f0
∂v

�
[
1+ ω2

peWωpe/v

νvn̄mev
2
t

]−1
∂ fM
∂v

. (7.72)

Using this expression in the Landau damping formula equation (7.59) indicates
that the damping rate is roughly

γk � γL

[
1+ ωpe

ν

kWk

n̄mev
2
t

]−1
(7.73)

so that both the ratio of the wave frequency (ω ∼ ωpe) to the collision frequency
and the ratio of the wave energy density to the particle energy density influence
the deviation of the growth rate from the Landau rate. It is apparent from
equation (7.73) that either a low wave energy density or a large (relatively
speaking) collision frequency reduces the quasilinear effects.

7.3 Nonlinear wave–particle–wave applications

7.3.1 Plasma wave echoes

Plasma wave echoes, described by Gould et al [100], are fundamentally a
nonlinear response to two different impulses separated in time by an interval
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τ . The analysis is based on weak turbulence theory which couples wave modes
through weak nonlinear interactions. Before calculating the echo response, we
discuss the problem in its simplest terms in order to understand the fundamental
physics involved.

The echo phenomenon is a classic example which demonstrates the
‘memory’ of the plasma. We are familiar with the fact that an impulse in time
(or space) will lead to Landau damping of the plasma wave potential, but there
remains an undamped perturbation of the distribution function. The echo is a
means of adding another perturbation to this undecayed perturbation (making it
a second order perturbation) so that the stored information can be momentarily
(or locally) recovered. This can be understood by imagining an undamped
first-order perturbation varying as exp[iω1(−t + x/v)] that was produced at
x = 0 at frequency ω1. Downstream, after the potential perturbation has
Landau damped away, another perturbation varying as exp(iω2[t − (x − �/v)]) is
introduced a distance � from the first, so the second order perturbation varies
as exp{i[(ω2 − ω1) + ω2�/v + (ω1 − ω2)x/v]}. Now at the position given
by �′ = �ω2/(ω2 − ω1), the integral over velocity will not phase mix as the
exponential has no v-dependence there. Hence, at this position, a second order
potential will be generated at frequency ω3 = ω2 − ω1. For a distribution over
velocities, this echo will have finite extent in space. For the temporal echo, the
echo occurs at τ ′ = k2τ/k3 where τ is the delay between two impulses with
wavenumbers k1 and k2 and k3 = k2 − k1. We will calculate the temporal echo
case, but the fundamental phenomenon is the same in either time or space.

This phenomenon is not unique to plasmas, as spin echoes and numerous
other examples have been found in other fields. The ability to generate an
echo is dependent, of course, on the retention of the original information, and
if collisions, though weak enough to be ignored in the Landau damping of the
potentials, are sufficiently frequent to damp the perturbation before the echo
can form, then the echo will not be observed. When collisions are ignorable,
however, the echo provides a dramatic demonstration that Landau damping does
not represent a loss of information, since long after the potential has died away,
the information is recoverable. Landau damping is then seen rather as carrying
the initial perturbation in velocity space, where it is undamped until collisions
randomize the information, and the velocity spread distributes the perturbation in
configuration space so that the potential dies away.

7.3.1.1 Basic equations

We begin the analysis with the kinetic equation, equation (7.1), for electrons,
assuming a uniform, stationary background of ions. For this case, we assume a
zero order distribution that is time independent, or

f = f0(v) + f1(x, v, t)
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with the initial condition f1(x, v, 0) = 0. We then expand f1 in a Fourier series
in space and examine the kth component, such that

∂ fk
∂ t
+ ikv fk = e

m
Ek

∂ f0
∂v

+ e

m

∑
q

Ek−q
∂ fq
∂v

(7.74)

where the nonlinear term is the discrete sum analog of the convolution integral of
equation (7.12). The Laplace transform in time then leads to

(p + ikv) f̃k(p) = e

me
Ẽk(p)

∂ f0
∂v

+ e

me

∑
q

∫ σ ′+i∞

σ ′−i∞
dp′

2π i
Ek−q (p − p′)

∂ f̃q(p′)
∂v

(7.75)
where now we have a convolution integral from the product term. Assuming the
field is electrostatic, we also have Ẽk(p) = −ikϕ̃k(p) so equation (7.75) becomes

f̃k(p) = − ik
e

me

ϕ̃k(p)

(p + ikv)

∂ f0
∂v

− ie

me

∑
q

∫ σ ′+i∞

σ ′−i∞
dp′

2π i

(k − q)ϕ̃k−q(p − p′)
p + ikv

∂ f̃q (p′)
∂v

. (7.76)

7.3.1.2 The source potential

The sources for the echo are assumed to be impulses at time 0 and time τ with
wavenumbers k1 and k2, respectively, so that the source potential is

ϕext = ϕ1 cos(k1x)δ(ωpet)+ ϕ2 cos(k2x) δ[ωpe(t − τ )]. (7.77)

The sources of the potential in the plasma are due to the external field and the
density fluctuations, so from Poisson’s equation, we have

∇2ϕ = − ρ

ε0
+ ∇2ϕext

and taking Fourier and Laplace transforms of this, we find

ϕ̃k(p) = − ne

k2ε0

∫ ∞

−∞
dv f̃k(p)+ ϕ1

2ωpe
(δk,k1+δk,−k1 )+

ϕ2

2ωpe
(δk,k2+δk,−k2 )e−pτ

(7.78)
where the sum of the Kronecker delta functions comes from transforming
cos(k1,2x) and the 1/ωpe and e−pτ /ωpe terms come from the Laplace transforms.

7.3.1.3 The echo potential

Now the echo will, in general, occur at a wavenumber different from either k1 or
k2, so we are looking for a potential of the form ϕk3(t). Using equation (7.78), we
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have the simple result

ϕ̃k3(p) = −
ne

k23ε0

∫ ∞

−∞
dv f̃k3 (p) (7.79)

and from equation (7.76) we find

f̃k3 (p) =
−ik3eϕ̃k3(p)
me(p + ik3v)

∂ f0
∂v

+ ie

me

∑
q

∫ σ ′+i∞

σ ′−i∞
dp′

2π i

k3 − q

p + ik3v
ϕ̃k3−q (p − p′)

∂ f̃q(p′)
∂v

.

Inserting this result into equation (7.79) and solving for ϕ̃k3(p), we can write the
result as

ϕ̃k3(p) =
ω2
pe

k23ε(k3, p)

∑
q

∫ σ ′+i∞

σ ′−i∞
dp′

2π i

∫ ∞

−∞
dv

i(k3 − q)

(p + ik3v)
ϕ̃k3−q(p−p′)

∂ f̃q(p′)
∂v

(7.80)
where

ε(k, p) = 1− ω2
pe

k2

∫ ∞

−∞
dv

∂ f0
∂v

p
ik + v

. (7.81)

Now to obtain a response, ϕ̃k3 must couple to either ϕ̃k1 or ϕ̃k2 or both, so in
the sum over q , k3− q must be either±k1 or±k2 for a nonvanishing response (to
lowest order). Let us examine k3 = k2 − k1 and include the lowest order terms.
These terms will occur when q = k2 and q = −k1. These will be the only second
order terms that couple to ϕ̃±k1 or ϕ̃±k2 . Since the terms in equation (7.81) are
already second order for lowest order in ϕ̃k3−q and f̃q , we need these latter terms
only to first order. For q = k2, k3 − q = −k1, so we need ϕ̃−k1(p − p′) and
f̃k2 (p

′). From equations (7.78) and (7.76) (to first order), these are

ϕ̃−k1(p − p′) = − ne

k21ε0

∫ ∞

−∞
dv f̃−k1 (p − p′)+ ϕ1

2ωpe
(7.82)

f̃−k1 (p − p′) = ik1e

me

ϕ̃−k1(p − p′)
(p − p′ − ik1v)

∂ f0
∂v

. (7.83)

Solving this pair for ϕ̃−k1 (p − p′), we obtain

ϕ̃−k1(p − p′) = ϕ1

2ωpε(−k1, p − p′)
. (7.84)

For f̃k2 (p
′), we use equations (7.76) and (7.78) again to obtain the result

f̃k2 (p
′) = −ik2eϕ2e−p′τ

2meωpeε(k2, p′)(p′ + ik2v)

∂ f0
∂v

. (7.85)
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When q = −k1, then k3 − q = k2, and we find by similar methods

ϕ̃k2(p − p′) = ϕ2e−(p−p′)τ

2ωpeε(k2, p − p′)
(7.86)

and

f̃−k1 (p′) =
ik1eϕ1

2meωpeε(−k1, p′)(p′ − ik1v)

∂ f0
∂v

. (7.87)

Inserting equations (7.84)–(7.87) into equation (7.80), we find

ϕ̃k3(p) =
−ek1k2ϕ1ϕ2

4mek23

∫ σ ′+i∞

σ ′−i∞
dp′

2π i

∫ ∞

−∞
dv

×
[

e−p′τ

(p + ik3v)ε(−k1, p − p′)ε(k2, p′)
∂

∂v

(
∂ f0
∂v

(p′ + ik2v)

)

+ e−(p−p′)τ

(p + ik3v)ε(k2, p − p′)ε(−k1, p′)
∂

∂v

(
∂ f0
∂v

(p′ − ik1v)

)]

so to find ϕk3(t), we do the inverse Laplace transform with the result

ϕk3(t) = − ek1k2ϕ1ϕ2
4mek23

∫ ∞

−∞
dv

∫ σ ′+i∞

σ ′−i∞
dp′

2π i

∫ σ+i∞

σ−i∞
dp

2π i

1

ε(k3, p)(p + ik3v)

×
[

ept−p′τ

ε(−k1, p − p′)ε(k2, p′)
∂

∂v

(
∂ f0
∂v

(p′ + ik2v)

)

+ ep(t−τ )+p′τ

ε(k2, p − p′)ε(−k1, p′)
∂

∂v

(
∂ f0
∂v

(p′ − ik1v)

)]
.

Integrating by parts in the velocity integrals, this becomes

ϕk3 (t) = − ek1k2ϕ1ϕ2
4mek23

∫ ∞

−∞
dv

∫ σ ′+i∞

σ ′−i∞
dp′

2π i

∫ σ+i∞

σ−i∞
dp

2π i

∂ f0
∂v

× ik3
ε(k3, p)(p + ik3v)2

[
ept−p′τ

ε(−k1, p − p′)ε(k2, p′)(p′ + ik2v)

+ ep(t−τ )+p′τ

ε(k2, p − p′)ε(−k1, p′)(p′ − ik1v)

]
. (7.88)

7.3.1.4 Evaluating the inverse Laplace integrals

We first do the p′ integral by closing the contour in figure 7.5 on the side that will
produce a vanishingly small exponential. For the first term in equation (7.88),
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Figure 7.5. Path in the p′-plane.

which varies as e−p′τ , we must close to the right, so we enclose no pole (since we
assume τ to be larger than the Landau decay time of either of the initial waves,
only the poles at ikv1 and −ikv2 will contribute at a later time). For the second
term which varies as ep

′τ , we must close to the left and hence enclose the pole at
ikv1 with the result

ϕk3(t) = − ek1k2ϕ1ϕ2
4mek23

∫ ∞

−∞
dv

∫ σ+i∞

σ−i∞
dp

2π i

∂ f0
∂v

× ik3ep(t−τ )+ik1vτ

ε(k3, p)(p + ik3v)2ε(k2, p − ik1v)ε(−k1, ik1v) . (7.89)

For the p integral, we must examine two cases. If t < τ , then we must close
to the right and include no pole, hence ϕk3(t) ∼ 0 for t < τ . For t > τ , we close
to the left and pick up the double pole of −ik3v to obtain

ϕk3(t) = − ek1k2ϕ1ϕ2
4mek23

∫ ∞

−∞
dv

ik3eik1vτ

ε(−k1, ik1v)
∂ f0
∂v

× ∂

∂p

[
ep(t−τ )

ε(k3, p)ε(k2, p − ik1v)

]
p=−ik3v

. (7.90)

Now all three terms in the expanded partial derivative have the same exponent so
the total exponent is −ik3v(t − τ − k1τ/k3) or−ik3v(t − τ ′) where τ ′ = k2τ/k3.
In general, the integral over velocity will phase mix to zero except where t � τ ′.
At this point in time, the largest of the terms in the derivative is the derivative of
the exponential, since the other terms still relate to Landau decay times and those
terms are presumably small at this time, so neglecting the other terms, we have

ϕk3(t) � −
iek21k2ϕ1ϕ2τ

4mek23

∫ ∞

−∞
dv

e−ik3v(t−τ ′)

ε(−k1, ik1v)ε(k3,−ik3v)ε(k2,−ik2v)
∂ f0
∂v

.

(7.91)
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Figure 7.6. Path in the p-plane.

7.3.1.5 Doing the velocity integral

We now need to know where the poles of the integrand are, so we note that

ε(k3,−ik3v) = 1− ω2
pe

k23

∫ ∞

−∞
dv′

v′ − v

∂ f0(v′)
∂v′

Im(v) > 0

where the condition on the imaginary part of v comes from figure 7.6 where the
contour specified that the path went to the right (positive real part) of −ik3v. If
we choose a Maxwellian, f0 = (1/

√
πve) exp(−v2/v2e ), then

ε(k3,−ik3v) = 1− ω2
pe

k23v
2
e

Z ′
(
v

ve

)
(7.92)

ε(k2,−ik2v) = 1− ω2
pe

k22v
2
e

Z ′
(
v

ve

)
(7.93)

ε(−k1, ik1v) = 1− ω2
pe

k21v
2
e

Z̃ ′
(
v

ve

)
(7.94)

where the path for Z̃ ′ is defined to go over the pole while the path for Z goes under
the pole since the sign of the real part is determined by the sign of k. If we now
assume that the zeros of the dielectric functions are where v � ve, then expanding
the plasma dispersion function in equation (7.92) with v = v3 � ωpe/k3, we find

k3v3 � ωpe

[
1+ 3

2
k23λ

2
D −

i
√
π

2
√
2k33λ

3
D

exp

(
− 1

2k23λ
2
D

)]
(7.95)

where v2e/ω
2
pe = 2λ2D and λD is the Debye length, and we obtain a similar result

for k2. For k1, the result is similar except that kv1 has a positive imaginary part.
Hence we have established that the poles associated with k2 and k3 are in the
lower half-plane and that the pole associated with k1 is in the upper half-plane as
shown in figure 7.7.
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Figure 7.7. Poles and specified path in the v-plane.

We now wish to perform the integral of equation (7.91) by the residue
method and close the contour where the exponential will give a vanishing
component for finite (t − τ ′). We first note that ∂ f0/∂v will generally diverge for
either positive or negative imaginary part of v, but the divergent factor is canceled
either by a similar factor in ε(−k1, ik1v) when closing above and from either
ε(k3,−ik3v) or ε(k2,−ik2v) when closing below. Hence for the case t − τ ′ < 0,
we must close above and thus pick up the pole from the zero of ε(−k1, ik1v)
which we designate v1. Thus for the case for t < τ ′, equation (7.91) gives

ϕk3(t) =
ek21k2ϕ1ϕ22πτ

4mek23

∂ f0
∂v
|v1e−ik3v1(t−τ ′)

ε(k2,−ik2v1)ε(k3,−ik3v1)[ ∂∂v ε(−k1, ik1v)]v=v1
.

For t > τ ′, we close below and pick up poles at both v2 and v3:

ϕk3(t) =
πek21k2ϕ1ϕ2τ

2mek23




∂ f0
∂v

∣∣∣
v1
e−ik3v2(t−τ ′)

ε(−k1, ik1v2)ε(k3,−ik3v2)[ ∂∂v ε(k2,−ik2v)]v=v2

+
∂ f0
∂v

∣∣∣
v3
e−ik3v3(t−τ ′)

ε(−k1, ik1v3)ε(k2,−ik2v3)[ ∂∂v ε(k3,−ik3v)]v=v3


 . (7.96)

We now take the case where the echo is largest, namely where k3 � k1 so
that k2 � 2k3. Now if we define kivi = ωi− iγi , so that γi represents the damping
rate for the ki root, then γ2 � γ3 so the only important term in equation (7.96) is
the v = v3 root. From equation (7.95), we have

ω3 � ωpe(1+ 3
2k

2
3λ

2
D) γ3 �

√
πωpe

23/2k33λ
3
D

exp(−1/2k23λ2D). (7.97)

Problem 7.3.1. Plasma wave echo damping. Show that γ2 � γ3.

Copyright © 2003 IOP Publishing Ltd.



7.3.1.6 Putting the pieces together

Assembling the components, we find using equation (7.97) that

∂ f0
∂v

∣∣∣∣
v=v3

= −2γ3k23
πω3ω2

pe
. (7.98)

Then evaluating ε(k2,−ik2v3) and ε(−k1, ik1v3), noting that v3 is defined by
k23v

2
e = ω2

pe Z
′(v3/ve), we find that

ε(k2,−ik2v3) = 1− ω2
pe

k22v
2
e

Z ′
(
v3

ve

)
= k1(k2 + k3)/k

2
2 (7.99)

ε(−k1, ik1v3) � 1− k23
k21

(
1+ 4i

γ3

ω3

)
= 1

k21

(
k21 − k23 − 4i

k23γ3
ω3

)
(7.100)

= k2
k21

(
k1 − k3 − 4i

k23γ3
k2ω3

)
. (7.101)

where we may not neglect the imaginary part compared to the real part in
equation (7.100), since k1 ∼ k3 and the real part may be very small. In this
case the echo is nearly resonant. The final result was obtained using k21 − k23 =
k2(k1 − k3). Finally, we note that

∂

∂v
ε(k3,−ik3v) = −

ω2
pe

k23v
3
e

Z ′′
(
v

ve

)
(7.102)

which leads to

∂

∂v
ε(k3,−ik3v)

∣∣∣∣
v=v3

= 2k3
ω3

(
1− iγ3ω3

k23λ
2
Dω

2
pe

)
(7.103)

where we have used equation (7.97). Neglecting the imaginary part at this step,
we can now combine these several expressions to obtain the result

ϕk3(t) =
eϕ1ϕ2
mev2e

k31k
2
2v

2
e (γ3τ )e

−γ3(t−τ ′)−iω3(t−τ ′)

2k3ω2
pe(k2 + k3)

(
k1 − k3 − 4i

k23γ3
k2ω3

) . (7.104)

Now we should write k3v3 = ±ω3 − iγ3, since both yield poles when
ε(k3,−ik3v3) = 0. If we sum over these two solutions, then we obtain the final
results for t > τ ′:

ϕk3(t) =
2eϕ1ϕ2
mev2e

γ3τk31k
2
2λ

2
De
−γ3(t−τ ′) cos[ω3(t − τ ′)+ δ′]

k3(k2 + k3)

[
(k1 − k3)2 +

(
4k23γ3
k2ω3

)2]1/2
(7.105)
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Figure 7.8. Third order echo. The transmitter probes were separated by 40 cm and the
receivers were tuned to the indicated frequencies. (From [101].)

with tan δ′ = −4k23γ3/k2(k1 − k3)ω3, and for t < τ ′,

ϕk3(t) =
2eϕ1ϕ2
mev2e

γ1τk31k
2
2λ

2
De
−(γ1k3/k1)(τ ′−t) cos[(ω1k3/k1)(τ ′ − t)+ δ′]

k3(k2 + k1)

[
(k1 − k3)2 +

(
4k21γ1
k2ω1

)2]1/2

(7.106)
where tan δ′ = −4k21γ1/k2(k1 − k3)ω1.

From equation (7.105), it is apparent that the growth rate of the echo is
given by γ1k3/k1 while the decay rate is given by γ3. The growth of the echo
is dependent on both k1 and k2, but once created at time τ ′, it decays with a decay
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rate determined by its own characteristic wavenumber k3.
In a classic experiment where these results were adapted to spatial decay

with a finite spacing between launching antennas, each driven at a different
frequency, rather than temporal decay with a time interval between sources,
the principal features of the echo were verified [101]. As seen in figure 7.8,
the individual sources had decayed away and subsequently the third order echo
was reconstructed with appropriate growth and decay lengths. The experiments
detected both second and third order echoes, where higher order echoes occur at a
distance �′ = (nω1/ω3)�with ω3 = mω2−nω1, wherem and n relate to the order
in perturbation theory that each term appears. The basic frequency and position
relationships were verified over a wide range of frequencies (110–280 MHz) and
separations (10–60 cm).

Problem 7.3.2. Plasma wave echo.

(i) Fill in the steps leading to equations (7.98), (7.99), (7.101), and (7.103).
(ii) Show that equation (7.105) and equation (7.106) follow from
equation (7.104) when summed over±ω3.
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Chapter 8

Finite amplitude plasma waves

8.1 Nonlinear mechanisms in plasmas

Beyond the weakly nonlinear effects described by quasilinear diffusion and weak
turbulence, there are several well-documented nonlinear effects that lead to very
different types of behavior. In the strongly nonlinear limit, shock waves may
occur when the wave energy density is comparable to or exceeds the plasma
energy density. Some of these can be described by solitary waves, and in the lower
but significant amplitude limit, some of these solitary waves relax to solitons
which have unique particle-like and stability properties.

Another area where nonlinear effects exhibit new features is due to trapped
particles. In section 4.2.3, we outlined a weakly nonlinear picture of trapped
particles to help us to understand Landau damping, but when the amplitude gets
large, the trapped particles begin to bounce on short time scales relative to the
Landau damping rate, and these particles will severely modify the energy balance
between particles and waves and hence the damping rate. In the large amplitude
limit, the damping eventually ceases, and the distribution function is modified in
the vicinity of the phase velocity to support these stationary waves.

The final nonlinear effect we consider is the class of parametric instabilities
where a driven pump wave, above a certain threshold, will interact with other
normal modes in the plasma through the beating of the pump wave with a normal
mode to produce a third wave, typically at a much lower frequency. The number
of such instabilities in plasmas is legion, since nearly every linear wave type we
have considered can beat with another of the same type or with every other wave
type, and the third wave does not even have to be resonant if the pump amplitude
is high enough.

Before considering these three topics, we examine another nonlinear effect
that plays a role in several of them.
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8.1.1 Ponderomotive effects

When waves travel in a plasma, particularly when the plasma or the wave
amplitude is not homogeneous, the wave amplitude itself can effectively modify
the plasma density profile through the ponderomotive force. One of the
consequences of this ponderomotive force is that a localized wave can effectively
expel plasma from the vicinity of the wave amplitude maximum, and this may
tend to make the wave even more localized, leading to a trough in the plasma that
is called a caviton. We give here a brief derivation of the pondermotive force and
its associated potential. Applications in both solitons and parametric instabilities
follow in subsequent sections.

In an inhomogeneous, high frequency field, the motion of an electron may
be divided into two parts which describe the high frequency oscillation about an
effective center of oscillation, and the relatively slow motion of this oscillation
center. If we take the electric field to be given by E(x, t) = E0(x) cosωt , and
imagine that the amplitude is increasing in the positive x-direction, then as the
electron moves into the stronger field, it will be accelerated more strongly back
toward the oscillation center. However, as it moves toward the weaker field as x
goes negative, it receives a weaker restoring force. On the average, then, it will
experience a slow drift toward the weaker field as if under the influence of a steady
or slowly varying force, while at the same time experiencing the rapid oscillation
at the high frequency.

In order to make this more nearly quantitative, we examine the equation of
motion for a charged particle in an inhomogeneous electric field:

m r̈ = qE0(r) cosωt . (8.1)

We will separate the motion into a slow motion and a fast motion such that
r = r0 + r1 where 〈r〉 = r0 is the average over the fast time scale, or over
the period, T = 2π/ω. r0 hence describes the oscillation center. r1 describes the
rapidly oscillating motion, and is determined by

m r̈1 = qE0 cosωt (8.2)

where E0 = E0(r0). The solution is simply

r1 = −(qE0/mω
2) cosωt . (8.3)

For the slow variation, we will expand E0(r) about r0 such that the equation
of motion becomes

m(r̈0 + r̈1) = q[E0 + (r1 · ∇)E0] cosωt (8.4)

and we wish to average this over a period such that

m r̈0 = q〈r1 cosωt〉 · ∇E0. (8.5)
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Using equation (8.3) for r1, the average is simply 〈r1 cosωt〉 = −qE0/2mω2, so
equation (8.5) becomes

m r̈0 = − q2

2mω2 E0 · ∇E0 = − q2

4mω2∇(E2
0). (8.6)

The ponderomotive force and its associated ponderomotive potential, then, are
given by

Fp = − q2

4mω2
∇(E2

0) = −∇ψp (8.7)

ψp = q2

4mω2
E2
0 . (8.8)

If inhomogeneous magnetic fields are included, there is a drift of the guiding
center in addition to the motion from the ponderomotive force, but the
ponderomotive force is unchanged.

8.2 Solitary waves and solitons

When the amplitude of a wave is not small, there are a variety of effects that
may result due to the finite amplitude effects, several of which are important in
laboratory and astrophysical plasmas. Considering only the dispersive effects and
neglecting possible coupling to other waves, we begin with a simple model for
solitary waves in a one-dimensional, field-free plasma.

8.2.1 Ion-acoustic solitary wave

We shall assume the ions to be cold, but the electrons will have a finite
temperature. We begin with the fluid equations of continuity, equation (3.34),
and momentum, equation (3.35),

∂n

∂ t
+ ∂

∂z
nv = 0

∂v

∂ t
+ v

∂v

∂z
= − q

m

∂ϕ

∂z
− 1

nm

∂p

∂z

and Poisson’s equation,
∂2ϕ

∂z2
= − e

ε0
(ni − ne).

For electrons, me is taken to be so small that we can neglect the left-hand side
of the momentum equation, and then letting pe = neKTe (assumed isothermal
because of the high electron mobility), we obtain

e

KTe

∂ϕ

∂z
= 1

ne

∂ne
∂z

(8.9)
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with solution
ne = n0eeϕ/KTe . (8.10)

Assuming now a wavelike solution so that all functions may be written as a
function of ξ = z − Ut , then ∂/∂ t → −U∂/∂ξ and ∂/∂z → ∂/∂ξ , so the
continuity equation for ions becomes

−Un′i + niv
′ + vn′i = 0 and integrating, ni (v −U) = constant

where the prime denotes the derivative with respect to the argument, and the
momentum equation becomes

−Uv′ + vv′ = − e

mi
ϕ′ and integrating, −Uv + 1

2
v2 = − e

mi
ϕ + constant

which is the conservation of energy, and we set this last constant to zero. Solving
for v, we find

v = U ±
[
U2 − 2e

mi
ϕ

]1/2
so that the ion density is given by

ni = n0√
1− 2eϕ

miU2

and Poisson’s equation gives

d2ϕ

dξ2
= −n0e

ε0


 1√

1− 2eϕ
miU2

− eeϕ/KTe


 . (8.11)

Then using the change of variable, η = dϕ/dξ , we may write

d2ϕ

dξ2
= η

d

dϕ
η = d

dϕ

(
η2

2

)
(8.12)

where now we can separate variables and integrate, with the result

η2

2
= n0

ε0

[
miU

2

(√
1− 2eϕ

miU2 − 1

)
+ KTe(e

eϕ/KTe − 1)

]
(8.13)

where the constant terms are chosen so that η→ 0 as ϕ→ 0. Now solitary wave
solutions do not exist for all values of ϕ and U . It is clear from equation (8.13)
that eϕ ≤ miU2/2 for a meaningful solution.

If we consider v(ϕ) = −η2/2 to be a ‘pseudopotential’ with ϕ the
‘coordinate’ and ξ the ‘time’, then equation (8.12) has the form of an equation
of motion for a particle moving in a ‘pseudopotential well’,

d2ϕ

dξ2
= −dv(ϕ)

dϕ
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and we need a potential well for v(ϕ) with two zero crossings for a ‘bound’
(localized) solution. From equation (8.12), v′ = 0 at ϕ = 0 and from
equation (8.13) we have v(ϕ) = 0 at ϕ = 0, so we require another zero crossing
for a solitary wave. Using the parameter α ≡ U2/c2s with c2s = KT/mi , then for
α < 1, v increases monotonically with ϕ, so there is no second zero crossing. For
αc > α > 1 with αc � 2.5, there is a well with two zero crossings, while for
α > αc there is a well but without a second zero. Thus there exist solitary wave
solutions of this type only for Mach numbers 1 < M <

√
αc where the Mach

number is defined asM = U/cs and cs is the ion acoustic speed.

Problem 8.2.1. The solitary wave ‘pseudopotential’. Sketch v(ϕ) versus ϕ for
values of α < 1, 1 < α < αc, and α > αc and determine αc to show the features
described earlier.

Problem 8.2.2. Small (but finite) amplitude solitary wave solution.

(i) Show that if one expands equation (8.11) or equation (8.13) for small ϕ
that there is a solution of the form ϕ = ϕmsech�(ξ/�).
(ii) Find �, � and U in terms of ϕm .

The ion-acoustic solitary wave described earlier is only one example among
many for solitary waves which include shocks and other nonlinear waves. A
special subset of these cases are solitons where two (or n) solitary waves can
collide and maintain their identity. Because of their unusual stability and other
properties (infinite number of conservation laws, solvable by linear methods via
the inverse scattering technique [102,103], etc) this subset is of sufficient interest
to examine a systematic derivation of the relevant nonlinear wave equation for the
same basic case given earlier, but without the assumption of solitary waves until
the basic nonlinear partial differential equation is established.

8.2.2 The Korteweg–de Vries (KdV) equation

Although there are many different nonlinear partial differential equations that give
rise to solitons, there is one soliton equation which is generic to many different
kinds of waves. The Korteweg–de Vries equation, which was shown in 1896 to
describe shallow water waves, has turned out to be the key to understandingmany
types of waves and the key to solving these nonlinear PDEs by the method of
inverse scattering. The general form of the KdV equation is

uτ + auuξ + buξξξ = 0 (8.14)

where a and b are constants (the classical form has a = 6 and b = 1), and
the subscripts denote partial derivatives (e.g. uτ = ∂u/∂τ ). The nonlinearity is
evident from the middle term. We may note that the first two terms typically come
from the first two terms of the momentum equation, equation (3.8), so that τ and
ξ usually represent normalized time and space variables, respectively. The third
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term of equation (8.14) is a dispersive term, and we elucidate its form and indicate
its generality by examining the form of a very simple dispersion relation.

Neglecting damping, the simple dispersion relation for the ion acoustic wave
is given by equation (4.141) which we may write as

ω = ±kcs(1− k2λ2De/2+ · · ·) (8.15)

which to the order indicated is representative in form of the dispersion relations
of a great many waves that are characterized by a constant phase velocity in the
long wavelength limit and some dispersion. Neglecting the higher order terms,
we can identify the term on the left as coming from ∂/∂ t , and the first term on
the right as coming from ∂/∂x (with the characteristic speed being amplitude
dependent if we compare term by term with equation (8.14)). The second term
on the right is proportional to k3, so it represents a third-order spatial derivative
as we find in the KdV equation. The importance of this dispersive term must
not be underestimated, since if it were neglected in equation (8.14), then the
peak amplitude would grow and speed up, eventually leading to wave breaking
where the peak overtakes the trough, and the wave becomes multiple valued. The
dispersive term limits this growth and the tradeoff between the tendency to peak
from the nonlinear term and the tendency to spread due to the dispersive term
leads to the stable character of solitons.

The single soliton solution of equation (8.14) may be simply found by
assuming that a stationary solution exists in some rest frame moving at velocity
U . Assuming then that u = u(ξ −Uτ ) leads to an ordinary differential equation,
and the boundary conditions that lim|ξ |→∞ u = 0 along with all its derivatives
allows the solution to be found.

Problem 8.2.3. Soliton solution of the KdV equation.

(i) Assuming u = u(η) with η = ξ − Uτ , write the ordinary differential
equation representing the soliton solution of equation (8.14).
(ii) Integrate this equation once and evaluate the integration constant if
lim|η|→∞ u = 0.
(iii) Make a variable change as in equation (8.12) and integrate to find the one
soliton solution of the KdV equation.

8.2.3 Ion acoustic solitons

The proof that ion acoustic waves are KdV solitons follows the development
of Washimi and Taniuti [104] where we begin with the same equations as in
the previous section. We then normalize the variables, defining n = ni/n0,
u = vi/cs , x = z/λD , τ = cst/λD , and � = eϕ/KTe. Then the ion fluid
equations become

∂n

∂τ
+ ∂

∂x
(nu) = 0 (8.16)

Copyright © 2003 IOP Publishing Ltd.



∂u

∂τ
+ u

∂u

∂x
= − ∂�

∂x
. (8.17)

The normalized electron density from equation (8.10) is ne = exp(�), so
Poisson’s equation becomes

∂2�

∂x2
= e� − n. (8.18)

We now linearize these equations to see the general behavior of the solutions,
which leads to the ion acoustic waves of section 4.2.5 with ω � kcs �
ωpi (unnormalized), but will return to the nonlinear set. To this end, we let
∂/∂τ →−iω, ∂/∂x → ik, n = 1+ ñ, and ne = 1+ ñe. These lead to

−iωñ + iku = 0⇒ u = ωkñ

−iωu = −ik�⇒ � = ω

k
u = ω2

k2
ñ

k2� = ñ −�⇒ k2 = ω2

1− ω2 � ω2(1+ ω2 + ω4 + · · ·)

since ω2 � 1 (ω is normalized to ωpi ) and ω/k � 1 (normalized). Thus

kx − ωτ � ωx + 1
2ω

3x − ωτ = ω(x − τ )+ 1
2ω

3x

so it is advantageous to introduce new variables η = ω(x − τ ), ξ = ω3x , and a
smallness parameter ε = ω2 so that

kx − ωτ ∼ ε1/2(x − τ )+ 1
2ε

3/2x = η + 1
2ξ. (8.19)

These variable changes lead to

∂

∂x
= ∂η

∂x

∂

∂η
+ ∂ξ

∂x

∂

∂ξ
= ε1/2

∂

∂η
+ ε3/2

∂

∂ξ

∂

∂τ
= ∂η

∂τ

∂

∂η
+ ∂ξ

∂τ

∂

∂ξ
= −ε1/2 ∂

∂η
.

Using these in equations (8.16) through (8.18) and expanding to second order in ε,

n = 1+ εn(1) + ε2n(2) + · · ·
u = εu(1) + ε2u(2) + · · ·
� = ε�(1) + ε2�(2) + · · ·

then one obtains to first order,

∂n(1)

∂η
= ∂u(1)

∂η
= ∂�(1)

∂η
(8.20)
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which leads to n(1) = u(1) = �(1) ≡ φ. Then to second order,

∂n(2)

∂η
− ∂u(2)

∂η
= ∂u(1)

∂ξ
+ ∂

∂η
(n(1)u(1)) = φξ + (φ2)η

∂u(2)

∂η
− ∂�(2)

∂η
= ∂u(1)

∂ξ
+ u(1)

∂u(1)

∂η
= φξ + φφη

�(2) − n(2) = ∂2�(1)

∂η2
− (�(1))2

2
= φηη − 1

2
φ2

and we can eliminate the second order quantities if we differentiate the last
equation with respect to η, and then add all three equations, with the result

φξ + φφη + 1
2φηηη = 0 (8.21)

which is the KdV equation with a = 1 and b = 1
2 .

The KdV equation is more than an ordinary solitary-wave equation since it
has been proved that individual solitary waves survive collisions and hence these
are called solitons to indicate their particle-like behavior. The KdV equation
and other soliton equations may be solved by the method of inverse scattering
which is a method of solving the nonlinear partial differential equations for
arbitrary initial conditions by linear methods. The solution via inverse scattering
for the KdV equation is discussed by Davidson [97], but for a more complete
discussion of this method and its application to other soliton equations, Ablowitz
and Segur [102] and Lamb [103] are useful references. Through this formalism,
it has been possible to show that the solitary waves are indeed normal modes
and that arbitrary perturbations invariably relax to these solitary waves and the
remainder ‘radiates’ away. Analytic N-soliton solutions are also known and there
are an infinite number of conservation laws associated with the KdV equation and
other soliton equations.

Problem 8.2.4. Ion acoustic solitons.

(i) Show by direct substitution that equation (8.21) has solutions of the form

φ = A sech2[k(η −Uξ)].
(ii) Find expressions for k(A) and U(A).
(iii) Find the corresponding equation for the potential φ in terms of the
original variables z and t and the amplitude φm .

8.2.4 Alfvén wave solitons

In addition to ion acoustic solitons, which have been experimentally observed
to survive collisions, nonlinear Alfvén waves also are characterized by the KdV
equation. This is due to the fact that they propagate near the Alfvén speed at
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low frequency and long wavelength, and, especially begin to show dispersion at
higher frequencies and one begins to have finite ω/ωci . The fast Alfvén waves
were shown to satisfy the KdV equation by Gardner and Morikawa [105] and the
slow waves by Morton [106].

Problem 8.2.5. Alfvén wave soliton solutions. In [106], Alfvén waves are shown
to be governed by the KdV equation in the weak nonlinear limit. Fill in the
missing steps in that paper leading to equation (4.5). Then find a solution for
B(1)
2 in unnormalized form.

8.2.5 Nonlinear Schrödinger equation

The nonlinear Schrödinger equation describes a nonlinear wave where the wave
amplitude is large enough to modify the dispersion relation by changing the
parameters of the medium. Also called the Zakharov–Shabat equation after
the authors who showed it to be a soliton and found the inverse scattering
solution [107], its solution is an envelope soliton where the wave packet envelope
has the soliton character where the medium is modified, and the complex phase
term propagates at the wave phase velocity.

We begin with the assumption of a plane wave of the form

Aei(k·r−ωt)+ A∗e−i(k·r−ωt) (8.22)

and a nonlinear dispersion relation

D(ω, k, |A|2) = 0 (8.23)

where it has been assumed that the nonlinearity depends on the amplitude of
the wave and not on the phase. This kind of nonlinearity is quite typical of
the ponderomotive force (see section 8.1.1). We also presume the medium is
homogeneous and isotropic in the absence of the wave, so D and A are scalar
quantities. We assume the nonlinear effects will result in a slow modulation of
the wave amplitude about an average amplitude A0, so we expand ω and k, which
represent the time and space differential operators, about the fast variation values,
so that equation (8.23) becomes a differential equation for the slowly varying
amplitude:

D

[
ω + i

∂

∂ t
, k − i∇, |A(r, t)|2

]
A = 0. (8.24)

Assuming that the differential operators are small (ω � ∂/∂ t , k � ∇) and
|A2| − |A0|2 � |A0|2, this may be expanded to obtain[

i
∂D

∂ω

∂

∂ t
− i

∂D

∂k
· ∇ − 1

2

∂2D

∂k∂k
: ∇2 + (|A|2 − |A0|2) ∂D

∂|A0|2 + · · ·
]
A = 0.
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Dividing by ∂D/∂ω, this may be written as

i

(
∂

∂ t
+ vg · ∇

)
A − P : ∇2A + Q(|A|2 − |A0|2)A = 0 (8.25)

where vg = −(∂D/∂k)/(∂D/∂ω) = ∂ω/∂k is the group velocity and

P = 1

2

∂vg

∂k
= 1

2

∂2ω

∂k∂k

Q = ∂D

∂|A0|2
(
∂D

∂ω

)−1
= − ∂ω

∂|A0|2 .

We can see that Q represents the nonlinear frequency shift due to the finite wave
amplitude. If we now shift to the wave frame moving with the group velocity,
so that ξ = r − vgt , we then obtain the three-dimensional nonlinear Schrödinger
equation

i
∂A

∂ t
+ P : ∇2

ξ A + Q(|A|2 − |A0|2)A = 0. (8.26)

We note a difficulty with names at this point, since the one-dimensional
version of equation (8.26),

i
∂A

∂ t
+ P

∂2A

∂ξ2
+ Q(|A|2 − |A0|2)A = 0 (8.27)

is commonly called the nonlinear Schrödinger equation. The Zakharov–Shabat
equation, however, whose solutions are solitons, has A0 = 0, and is also called the
nonlinear Schrödinger equation, although the character of the solutions is quite
different.

8.2.5.1 Linear stability of the nonlinear Schrödinger equation

We first consider the linear stability of equation (8.27) by considering a small
perturbation of the form A − A0 = x + iy and linearize, separating the real and
imaginary parts so that we have

−∂y

∂ t
+ P

∂2x

∂ξ2
+ 2Q|A0|2x = 0 (8.28)

∂x

∂ t
+ P

∂2y

∂ξ2
= 0 (8.29)

and with
x = x0 sin(κξ −&t) y = y0 cos(κξ −&t)

the dispersion relation is

&2 = P2κ4 − 2PQκ2|A0|2. (8.30)
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In order for an instability to occur, (Im& �= 0), it is clear that we must have
PQ > 0 and the wavenumber must satisfy 0 < κ2 < 2Q|A0|2/P , with the
maximum growth rate occurring for κ = √

Q|A0|2/P where the growth rate is

(Im&)max = Q|A0|2. (8.31)

The implication of this linear instability is that provided PQ > 0, there
exists a range of κ where the wave amplitude will grow. This leads to a collapse
where the amplitude will grow until all of the plasma has been expelled due to
the ponderomotive force, resulting in a density cavity, or caviton. For a driven
wave, then, it is expected that the wave will collapse, but the severe modification
of the plasma may decouple the driven pump wave, so that effectively A0 → 0 in
which case the equation becomes the soliton equation that is stable. These general
characteristics are borne out in numerical simulations and experiments.

Problem 8.2.6. Nonlinear Schrödinger equation.

(i) Fill in the steps leading to equations (8.30) and (8.31).
(ii) Show that equations (8.28) and (8.29) require Re A0 � Im A0.

8.2.5.2 Soliton solutions of the Zakharov–Shabat equation

Here we wish to establish the form of the solitons from the Zakharov–Shabat
equation

iut + Puξξ + Q|u|2u = 0 (8.32)

where the subscript indicates a partial derivative. We assume a wave packet
solution of the form

u = eik(ξ−vpt)�[K (ξ − v′gt)]. (8.33)

We note from ξ − v′gt = x − (vg + v′g)t that v′g represents the excess velocity
of the wave packet over the linear group velocity. Inserting equation (8.33) into
equation (8.32) and separating the real and imaginary parts results in

kvp�+ P(κ2�′′ − k2�)+ Q�3 = 0 (8.34)

−iK�′(v′g − 2Pk) = 0 (8.35)

where �′ represents the derivative of � with respect to its argument, so the
wavenumber is k = v′g/2P . We may write equation (8.34) as

1

2

d

d�
(�′)2 = a�− 2b�3 (8.36)

where
a = (k2 − kvp)/PK

2 b = Q/2PK 2.
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Separating variables and doing the first integral, a localized solution leads to

K (ξ − v′gt) =
∫

dφ

�
√
a − b�2

= − 1√
a
sech−1

(√
b�√
a

)

with solution

�(ξ, t) = √
a/b sech[√aK (ξ − v′gt)]

= �m sech[K (ξ − v′gt)] (8.37)

so a = 1 and b = 1/�2
m , resulting in K = �m

√
Q/2P and vp = (v′g/2) −

�2
mQP/v′g . We note again that vp represents the phase velocity relative to the

linear group velocity. The normal form for the Zakharov–Shabat equation has
P = 1 and Q = 2 so that K = �m , k = v′g/2, and vp = (v′g/2)− 2�2

m/v
′
g .

8.2.5.3 Nonlinear plasma wave instability

In this section, we consider a driven plasma wave with ω � ωpe, where
the amplitude is large enough that the ponderomotive force causes a nonlinear
frequency shift. Beginning with the fluid equations (through the third moment)
for the electrons along with Poisson’s equation, we obtain

ñe(ω
2 − ω2

pe − 3
2k

2v2e )+ ñiω
2
pe. (8.38)

This was obtained on the fast time scale of the driven frequency. The
ponderomotive effects occur on a longer time scale, and on this slow time scale,
the momentum equations lead to

eE � − KTe
me

∂

∂x

(
ñe
n0

)

0 � e

mi
E − 1

mi

∂ψ

∂x
− KTi

mi

∂

∂x

(
ñi
n0

)

� − 1

mi

∂ψ

∂x
− c2s

∂

∂x

(
ñi
n0

)

where on the slow time scale ñe � ñi , c2s = K(Te + Ti )/mi , and ψ is the
ponderomotive potential from the high-frequency electron motion. This leads
to

ñi = − n0
mic2s

ψ (8.39)

which, in turn, leads to the nonlinear dispersion relation

ω2 − ω2
pe −

3

2
k2v2e −

e2

4memic2s
|E + E0|2 = 0 (8.40)
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where E0 represents the uniform amplitude of the high-frequencydrivenwave and
E represents the slowly varying wave amplitude, and we have taken ω0 � ωpe.
This dispersion relation is of the form of equation (8.23) so we may immediately
write

i
∂E

∂ t
+ 3v2e
4ω0

∂2E

∂x2
+ e2

8ω0memic2s
(|E+E0|2−|E+E0|2k=0)(E+E0) = S(t) (8.41)

where S(t) represents the coupling between the source antenna and the plasma,
since if the instability is strong enough, the source may be decoupled from the
plasma wave and S(t)→ 0. The k = 0 component of |E + E0| is subtracted out
because it represents the spatially homogeneouspart of the electric field and hence
does not contribute to the ponderomotive force. This equation was first derived
by Morales et al [108] who demonstrated in numerical simulations that the driven
wave collapses into cavitons. The instability is called the oscillating two-stream
instability (OTSI), and is a parametric instability (see section 8.4.2) which couples
two plasma waves and an ion-acoustic wave, hence the appearance of cs . Once
the plasma is decoupled from the source, the nonlinear Schrödinger equation may
relax to the Zakharov–Shabat equation, so the final state of the caviton is a soliton.
In fact, it has been shown that yet another nonlinear soliton equation describes
both the collapse and the decoupling, so that one can be assured that cavitons are
solitons [109].

Problem 8.2.7. Nonlinear Schrödinger equation example. Calculate P and Q
from the dispersion relation (8.40) and estimate the maximum growth rate of the
instability.

8.3 Trapped particle effects

8.3.1 Nonlinear Landau damping

A celebrated example of the effects of trapped particles is the calculation
of nonlinear Landau damping. In the linear treatment of section 4.2.2, the
effects of resonant particles were already apparent in the limit of vanishing
amplitude, giving rise to either growth or damping depending on the slope of
the distribution function at the phase velocity of the wave. When one considers
the finite amplitude of the wave, as in section 4.2.3, it is clear that some of the
particles traveling near the phase velocity will be trapped and oscillate in the
quasistationary potential well of the wave. Others will be nearly trapped, but will
also exchange energy with the wave. To make matters even more complicated, as
the wave amplitude initially falls at the linear rate, some of the initially trapped
particles will become untrapped. As will be shown, the amplitude will actually
oscillate some if the initial amplitude is sufficiently large, so there is both trapping
and untrapping going on as the amplitude evolves and the energy sloshes back and
forth between wave field energy and particle energy. For a sufficiently large initial
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Figure 8.1. Potential well and particle motions in the wave frame.

amplitude, the wave finally settles down to a steady but finite amplitude where the
zero-order distribution function is modified.

8.3.1.1 Particle motions in a constant wave field

In order to grasp first some of the physical principles and important parameters,
we begin with the assumption of a driven sinusoidal electrostatic traveling wave
field of infinite extent imposed on a plasma. In the wave frame, however, the
field is a stationary potential well, so we represent the traveling wave field
E(x, t) = E0 sin(kx − ωt) by its wave frame counterpart

E(x) = E0 sin kx (8.42)

where E0 is constant, and examine particles whose velocity is nearly vp = ω/k,
or v ∼ 0 in the wave frame. If we describe the trajectory of an electron by xe(t),
then its equation of motion is that given in equation (4.118):

d2

dt2
xe(t) = − e

me
E0 sin[kxe(t)]. (8.43)

The solution for E0 → 0 is, of course, trivial, leading to free-streaming solutions
of the form xe(t) = x + vt where x and v are the initial position and velocity
respectively.

Equation (8.43) is identical in form to the equation of motion for a finite
amplitude pendulum,whose solutions lead to an expression for the period in terms
of an elliptic integral, but for small amplitudes about the bottom of the potential
well, it is clear that the ‘bounce’ period is given by

τB ≡ ω−1B = √
me/ekE0. (8.44)

Particles traveling sufficiently close to the phase velocity that their kinetic
energy, as measured in the wave frame, is less than eE0/k will be unable to climb
out of the potential well, illustrated in figure 8.1, and so will make periodic orbits.
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Particles with wave frame energy greater than eE0/k will be slowed down and
speeded up by the wave, but will continue to pass over each successive potential
hill, as shown above the well in figure 8.1. If, however, the amplitude is not steady,
but varies slowly, then as long as the amplitude varies little over a bounce period,
the motions of the trapped and untrapped particles will be affected little unless
they are very close to the boundary (where the bounce time approaches infinity
so any variation is relatively fast). The slowly varying condition, which limits the
validity of the following analysis, is∣∣∣∣ 1

E0

dE0

dt

∣∣∣∣� ωB . (8.45)

This condition limits the number of particles that change from trapped to
untrapped, and vice versa, to a small fraction of the affected particles.

The slowly varying condition is related to the Landau damping rate, which
from equation (4.61) may be approximated by

γL � −
√
π

8

ωpe

k3λ3De

exp

(
− 1

2k2λ2De

− 3

2

)
(8.46)

where we use the long wavelength limit for plasma waves such that ω2
k ∼

ω2
pe(1 + 3k2λ2De). It is convenient to define τL ≡ |γL |−1, and the plasma period

τp ≡ ω−1pe so that the weak damping condition is τp � τL and the slowly varying
condition is τB � τL . We combine these, requiring that the wave period be short
compared to the bounce period, so that the general validity condition is

τp � τB � τL . (8.47)

If kλDe is not small, then there is no environment where the slowly varying
condition is valid. If the bounce period approaches the wave period, then the
assumption of a sinusoidal variation is very restrictive, since in general nonlinear
effects will distort the wave for a general distribution function. Although
there exists a distribution function that is consistent with a large amplitude
sinusoidal wave, the distribution is not Maxwellian. We will return to this case in
section 8.3.2, but it is not typical. These conditions imply both a minimum and
a maximum amplitude for nonlinear Landau damping. We will examine some of
the qualitative effects of violating these conditions at the end of this section.

Problem 8.3.1. Exact bounce time. Solve equation (8.43) exactly for the bounce
period without making xe small.

(i) Using the variable change of equation (8.12), with dxe/dt ≡ ve, separate
variables to do the first integral with the integration constant representing
the amplitude xm where ve = 0 (the turning point), showing that the critical
energy for periodic motion is eE0/k.
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(ii) Using the definition of ve, separate variables again to solve for the bounce
period in terms of a definite integral over [0, xm].
(iii) Using trigonometric identities, cast the integral into the form of an
elliptic integral and show that as the amplitude is small, the full period is
2π/ωB .

Problem 8.3.2. Limits of validity.

(i) Show that equation (8.47) fails if kλDe approaches unity.
(ii) Find kλDe where 100τp = 10τB = τL .
(iii) Find kλDe where 9τp = 3τB = τL .
(iv) Find eE0/k in terms of KTe for cases (ii) and (iii) where Emax = Emin.

8.3.1.2 Exact trajectories of trapped and nearly trapped electrons

When the linear theory fails, as it inevitably does for any finite amplitude wave,
we need to treat the trapped and nearly trapped particles carefully. In this section,
we follow O’Neil [110] and Davidson [97] where we solve

(i) equation (8.43) exactly for both trapped and untrapped particles for constant
E0; and then

(ii) solve for the slow variation of E0 from the conservation of energy (particle
energy plus wave energy).

We wish to solve for the distribution in the wave frame variables where the
evolution of fe(x, v, t) is obtained from

∂

∂ t
fe(x, v, t) + v

∂

∂x
fe(x, v, t) − e

me
E0 sin kx

∂

∂v
fe(x, v, t) = 0. (8.48)

Using the method of characteristics, we write this from the Liouville theorem as

d

dτ
fe[xe(τ ), ve(τ ), τ ] = 0 (8.49)

where xe(τ ) and ve(τ ) are the particle orbits in the wave field E0 sin kx and are
solutions of

d2xe(τ )

dτ 2
= −eE0

me
sin[kxe(τ )]. (8.50)

The solutions we need are the orbits that satisfy the end point conditions

xe(τ = t) = x ve(τ = t) = v.

From equation (8.49), we have

fe[xe(τ ), ve(τ ), τ ] = constant (independent of τ ) (8.51)
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and by evaluating equation (8.51) at τ = t and τ = 0, we have

fe(x, v, t) = fe[xe(0), ve(0), 0] (8.52)

which expresses fe(x, v, t) in terms of the initial distribution.
Following the first step of problem 8.3.1, the first integral gives

me

2

[
d

dτ
xe(τ )

]2
− eE0

k
cos[kxe(τ )] = W = constant. (8.53)

Changing variables to ξ(τ ) ≡ kxe(τ )/2 and κ2 ≡ 2eE0/(kW + eE0) where we
take k > 0 and E0 > 0 without loss of generality, then equation (8.53) becomes

[
d

dτ
ξ(τ )

]2
= 1

κ2τ 2B

[1− κ2 sin2 ξ(τ )]. (8.54)

The solution of equation (8.54) may be written in terms of the incomplete elliptic
integral of the first kind, F(κ, z), where

F(κ, z) ≡
∫ z

0

dz′√
1− κ2 sin2 z′

. (8.55)

The case κ2 < 1—untrapped particles. When W > eE0/k, then κ2 < 1 and
the particles are untrapped. In this case, the solution of equation (8.54) may be
written as

F[κ, ξ(τ )] − F[κ, ξ(t)] = (τ − t)/κτB . (8.56)

At τ = 0, this reduces to

F[κ, kx0/2] − F[κ, kx/2] = −t/κτB (8.57)

and this determines x0 = xe(0) implicitly. This can be inverted to give the explicit
dependence

sin kx0 = 2sn[F(κ, ξ)− t/κτB, κ]cn[F(κ, ξ)− t/κτB, κ] (8.58)

where sn and cn are Jacobi elliptic functions. Using this result in equation (8.54),
we may then solve for ve(0) with the result

ve(0) = 2

kκτB

√
1− κ2 sin2[kxe(0)/2]. (8.59)

These expressions may then be used in equation (8.52) to express fe(x, v, t) in
terms of the initial conditions. The phase space trajectories of these particles are
shown in figure 8.2 where they lie outside the shaded area.
The case κ2 > 1—trapped particles. When−eE0/k < W < eE0/k, then κ2 > 1
and the particles are trapped. In this case, it is convenient to introduce the variable

Copyright © 2003 IOP Publishing Ltd.



Figure 8.2. Constant energy surfaces in phase space (x, v) for the electrons.

ζ(τ ) such that sin[ζ(τ )] = κ sin[ξ(τ )]. With this variable change, equation (8.54)
becomes [

d

dτ
ζ(τ )

]2
= 1

κ2τ 2B

[κ2 − sin2 ζ(τ )] (8.60)

with solution
F[1/κ, ζ(τ )] − F[1/κ, ζ(t)] = (τ − t)/τB . (8.61)

At τ = 0, this reduces to

F[1/κ, ζ0] − F[1/κ, ζ(t)] = −t/τB (8.62)

which again implicitly determines xe(0) = (k/2) sin−1[κ−1 sin ζ0] for the trapped
electrons. Again inverting,

sin kx0 = (2/κ)sn[F(1/κ, ζ )− t/τB , 1/κ]dn[F(1/κ, ζ )− t/τB , 1/κ] (8.63)

where dn is another Jacobi elliptic function. We can again use equation (8.59) for
ve(0) in terms of xe(0). The trajectories for the trapped particles are illustrated
by the closed loops in the shaded area of figure 8.2, where each closed contour
represents the motion of a particle characterized by a particular total energy
W = 1

2mev
2 − (eE0/k) cos kx .

Problem 8.3.3. Solving the equations of motion. Fill in the steps leading to
equations (8.58) and (8.63).

8.3.1.3 Conservation of energy

In order to estimate the slow variation of the amplitude, we look at the
exact energy conservation expression which follows from the Vlasov–Maxwell
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equations, so that we have

d

dt

[ ∫ π/k

−π/k
dx

ε0E2(x, t)

2
+
∫ π/k

−π/k
dx

∫ ∞

−∞
dv

1

2
mev

2 fe(x, v, t)

]
= 0. (8.64)

If we assume the wave field varies as E(x, t) = E0(t) sin(kx − ωt), this
conservation law expressed in the wave frame becomes

d

dt

∫ π/k

−π/k
dx

ε0E2
0(t)

2
sin2 kx

= −
∫ π/k

−π/k
dx

∫ ∞

−∞
dv

1

2
me

(
v + ω

k

)2 ∂

∂ t
fe(x, v, t).

Averaging first over space, this reduces further to

dE(t)

dt
= −

∫ ∞

−∞
dv

1

2
me

(
v + ω

k

)2 ∂

∂ t
〈 fe〉(v, t) (8.65)

where E(t) = ε0E2
0(t)/4 is the spatially averaged electrostatic energy density,

and 〈 fe〉(v, t) is the spatially averaged distribution, defined by

〈 fe〉(v, t) = k

π

∫ π/k

−π/k
dx fe(x, v, t). (8.66)

We now need an expression for ∂ fe/∂ t which, from equation (8.52), is
related to an initial condition that we take to be of the form

fe(x, v, 0) = f0(v)+ f1(v, 0) cos kx (8.67)

which is consistent at least with the linear problem. Then using ∂xe/∂ t =
−∂xe/∂τ = −ve and ∂ve/∂ t = (e/me)E0 sin kxe at τ = 0, we obtain

∂

∂ t
fe(x, v, t) =

{
e

me
E0 sin kx ′

∂

∂v′
[ f0(v′)+ f1(v

′, 0) cos kx ′]
+ kv′ f1(v′, 0) sin kx ′

}
x ′=xe(0),v′=ve(0) . (8.68)

We expect the principal contribution to equation (8.65) to come from the
neighborhood of v = 0, since these are the trapped or nearly trapped particles.
In the other limit, when W � eE0/k, the orbits are nearly straight lines in phase
space, and xe(0) ∼ x − vt and ve(0) ∼ v in which case the only variation with
x in equation (8.68) is simple sinusoidal, and when averaged over a period these
terms vanish. If we do an ordering of the various terms in the smallness of v and
τp/τB , then it can be shown that the dominant term in equation (8.68) is [110]

∂

∂ t
fe(x, v, t) � ∂ f0(v)

∂v

∣∣∣∣
v=0

eE0

me
sin[kxe(0)]

[
1+O

(
τp

τB

)]
. (8.69)
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At this point, the expressions for sin[kxe(0)] from equation (8.58) for the
untrapped particles and equation (8.63) for the trapped particles, and the
subsequent integration of equation (8.65) with equation (8.69) for the time
derivative of the distribution function leads to

d

dt
E(t) = 2γ (t)E(t) (8.70)

where

γ (t) ≡ γL

∞∑
n=0

64

π

∫ 1

0
dκ

{
2nπ2 sin(πnt/κFτB)

κ5F2(1+ q2n)(1+ q−2n)

+ (2n + 1)π2κ sin[(2n + 1)π t/2FτB]
F2(1+ q2n+1)(1+ q−2n−1)

}
(8.71)

and
q ≡ eπF

′/F F ≡ F(κ, π/2) F ′ ≡ F
(√

1− κ2, π/2
)
.

The details of this calculation [110] are long and tedious, but the results allow us
to get some insights into the nature of the nonlinear effects.

First, we note that the first term in the curly brackets of equation (8.71) is
due to the untrapped electrons and that the second term is due to the trapped
electrons. At short times, t � τB , the untrapped electrons dominate and lead
to γ (t) ∼ γL so initially the amplitude follows the linear decay (or growth
if the distribution is initially unstable) rate. This is to be expected, since the
bounce effects require roughly a bounce period to become important. When they
do become important, the wave energy density ceases to decay as the bouncing
particles begin to reconstruct the wave. This is illustrated in figure 8.3 where the
energy density is seen to oscillate several times before finally settling down to a
finite amplitude that is lower than the original amplitude. Since it may be shown
that∣∣∣∣

∫ ∞

0
dt γ (t)

∣∣∣∣ = γLτB
64

π

∫ 1

0
dκ

{
1

κ4

[
E

π
− π

4F

]
+ κ

π
[E + (κ2 − 1)F]

}
� O(τB/τL) (8.72)

where E = E(κ, 12π) is the complete elliptic integral of the first kind and the
final amplitude is given approximately by E0(∞) ∼ E0(0)[1 − (τB/τL)] (in
figure 8.3, with τB/τL = 0.1,

∫∞
0 γ (t) dt � −0.2). In the fully saturated

wave, the trapped particles with differing bounce periods have completely lost
their original coherence with the wave and as many are giving energy to the
wave as taking energy from the wave. The distribution function is now distinctly
different from the original distribution, and was known long before the nonlinear
decay problemwas solved as the self-consistent distribution associated with BGK
waves, which we describe in the next section.
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Figure 8.3. Amplitude variation of the electric field with τL/τB = 10. Note the suppressed
zero.

Problem 8.3.4. Approximate damping rates. Following O’Neil [110], use the
expressions of equations (8.71) and (8.72) to prove

(i) γ (t) ∼ γL for t � τB and
(ii)

∫∞
0 dtγ (t) ∼ O(γLτB).

8.3.1.4 Other nonlinear effects

Although finite amplitude damping appears to be due only to the modification
of Landau damping by the trapped particles, cyclotron damping is also akin to
Landau damping, except that it occurs in a rotating reference frame. Indeed,
large-amplitude cyclotron damping also occurs and is similar to that previously
sketched out, although the analysis is somewhat more formidable [111].

Because we have considered only one nonlinear effect, the energy oscillation
and decay pattern of figure 8.3 is never precisely observed. One of the observed
nonlinearities that interfere with this picture is due to wave–particle–wave
interactions when the bounce period is an integral multiple of the wave period.
Particles with this period will, after a fixed number of oscillations in the well,
come back in phase with the wave and have a resonant interaction. This group
of particles can also lead to sidebands or daughter waves at frequencies that are
submultiples of the wave frequency. These exchanges modify the energy content
of the primary wave, and hence the evolution will differ from that pictured.

If one considered lowering the amplitude to avoid these other nonlinearities,
then the validity conditions begin to fail, and it is worthwhile to note the behavior
when this begins to happen. We could begin to get an idea of the changes when the
amplitude is lowered by considering that the bounce period, previously considered
to be constant, is now taken as τB = τB(t), where τB(t) is calculated from the
instantaneous value of E0(t). This is only a first step, since it still completely
ignores the transitions from trapped to untrapped and vice versa. This case can be
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Figure 8.4. Integral of the damping coefficient with γLτ0 as a parameter.

solved as an integral equation [112] where

τB(t) = √me

[
ekE0(0) exp

(∫ t

0
γ (t ′) dt ′

)]−1/2
(8.73)

so γ (t) appears both inside and outside the integral. When this expression is
solved for various values of E0(0), as the initial amplitude is lowered, it takes
longer (of course the nominal bounce time is longer) to oscillate and oscillates
fewer times before settling down to a BGK mode at a much lower amplitude.
Eventually a critical amplitude is reached where there are no oscillations at all
and the decay is smooth until the saturation is reached. Below this amplitude,
the wave continues to decay forever, but the rate is slower than for the linear
case. This behavior is illustrated in figure 8.4 where we show the integral of the
damping coefficient as a function of time, where the time is normalized to the
initial bounce period τ0 = τB(0), and the parameter is γLτ0. It is apparent the
critical level in this simplified case is near γLτ0 = 0.6.

The neglect of the effects of the trapping–untrapping transitions becomes a
larger and larger error as the initial amplitude decreases. Clearly, as the amplitude
is lowered, more trapped particles are dumped out of the well, and become
untrapped. The inclusion of these effects must involve numerical codes, and these
show the same qualitative features as the previous integral equation method, but
the separatrix between the oscillatory and steady decay cases occurs for somewhat
higher initial amplitudes. For example, more detailed numerical calculations by
Canosa and Gazdag [113] indicate the transition from oscillatory to monotonic
decay is closer to γLτ0 = 0.5.

Another effect that accompanies nonlinear damping is the nonlinear
frequency shift. Because of the conservation of both energy and momentum, the

Copyright © 2003 IOP Publishing Ltd.



change of energy of the trapped particles must be balanced by the change of the
total wave energy, and in the wave frame, this energy must be proportional to the
frequency shift. This effect is found to oscillate as the amplitude does, saturating
asymptotically to [114]

δ&(∞) = − 1.63&0 (8.74)

&0 ≡
(
eE0

mk

)1/2 (ωp

k

)2 (∂2 f0
∂v2

)
vp

(
∂ε

∂ω

)−1
ωL

(8.75)

where ε is the dielectric constant for linear plasma oscillations.

8.3.2 Bernstein–Greene–Kruskal (BGK) modes

We have alluded to the fact that there exist exact solutions for finite amplitude
sinusoidal waves, where the distribution function is modified from an equilibrium
distribution to support these waves. In fact, any wave profile, periodic or not,
can be established by a suitable modification of the distribution function. For
example, a single Gaussian pulse could be established as well as a periodic square
wave. These large amplitude waves are stationary in the wave frame, and referred
to as Bernstein–Greene–Kruskal (BGK) waves [115].

We are looking for nonlinear electrostatic waves that are stationary in the
wave frame, so the basic equations to be solved are

v
∂

∂x
f j (x, v)+ q j

m j
E(x)

∂

∂v
f j (x, v) = 0 (8.76)

∂

∂x
E(x) =

∑
j

q j

ε0

∫ ∞

−∞
dv f j (x, v) (8.77)

where the wave frame variables are related to the laboratory frame variables
through x = x ′ − v0t ′ and v = v′ − v0 where v0 is the phase velocity of the
wave. The coordinate and velocity variables are related through the conservation
of energy

Wj = 1
2m jv

2 + q jφ(x) (8.78)

where φ(x) is the electrostatic potential from E(x) = −∂φ(x)/∂x , so the
distribution function can be written in terms of Wj and v as

f j = H (v) f +j (Wj )+ H (−v) f −j (Wj ) (8.79)

where H (x) is the Heaviside step function, defined such that H (x) = 1 for x ≥ 0
and H (x) = 0 for x < 0. Equation (8.79) satisfies equation (8.76) if

f +j (Wj ) = f −j (Wj ) q jφmin < Wj < q jφmax. (8.80)

Equation (8.80) simply states that for the trapped particles, lying between the
absolute minimum and maximum potential energies, there cannot be any net
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momentum in the wave frame, so the distributions must match. For the untrapped
particles, there is no such limitation.

If we now take Poisson’s equation, equation (8.77), and use equation (8.78)
to express dv in terms of Wj , such that

dv = dWj√
2m j (Wj − q jφ)

then we obtain

∂2φ

∂x2
= −

∑
j

q j

ε0

∫ ∞

q jφ

dWj
f +j (Wj )+ f −j (Wj )√
2m j (Wj − q jφ)

. (8.81)

This equation relates the potential to the distribution function, but it can be
regarded either as determining the potential function for a given distribution
function, or the other way around, determining the distribution function for a
given potential function.

8.3.2.1 Solving for the potential

Wemake a first step by introducing a pseudopotential, multiplying equation (8.81)
by ∂φ/∂x and integrating once to

1

2

(
∂φ

∂x

)2
+ V (φ) = constant (8.82)

where the pseudopotential V (φ) is given by

V (φ) ≡ −
∑
j

1

ε0

∫ ∞

q jφ

dWj [ f +j (Wj )+ f −j (Wj )]
√
2(Wj − q jφ)/m j . (8.83)

We may then solve equation (8.82) in terms of the quadrature

x − x0 = ± 1√
2

∫ φ

φ0

dφ√
V (φ)− V (φ0)

(8.84)

where φ0 = φ(x0) and x0 is a point where dφ/dx = 0. This gives the implicit
relationship of the potential to the coordinate for a specific distribution function.

Problem 8.3.5. BGK distributions.

(i) Show that equation (8.80) is a solution of equation (8.76).
(ii) Fill in the steps leading to equation (8.84).
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8.3.2.2 Solving for the distribution function

If we suppose that the distribution functions for the ions and the untrapped
electrons are specified, along with a specific potential that may or may not be
periodic, then we can solve for the trapped-electron distribution function. If we
define the trapped electron term from equation (8.81) to be

g(eφ) ≡
∫ −eφmin

−eφ
dWe

f Te (We)√
2me(We + eφ)

(8.85)

then Poisson’s equation may be written as

g(eφ) = ε0

e

∂2φ

∂x2
+
∫ ∞

−eφ
dWi

[ f +i (Wi )+ f −i (Wi )]√
2mi (Wi − eφ)

−
∫ ∞

−eφmin

dWe
[ f +e (We)+ f −e (We)]√

2me(We + eφ)
(8.86)

where f Te is the trapped-electron distribution function. From equation (8.80), f Te
forWe < −eφmin is related to fe by f Te (We) = f +e (We)+ f −e (We) = 2 f +e (We).
The solution to this integral equation is

f Te (We) =
√
2me

π

∫ −We

eφmin

dW√−W −We

dg(W )

dW
We < −eφmin (8.87)

with the condition that g(eφmin) = 0, and that f Te be nonnegative.

Problem 8.3.6. Trapped particle solution. Prove by direct substitution that
equation (8.87) is a solution of equation (8.86).

8.3.2.3 BGK example—sinusoidal wave

If we assume the electrostatic potential is a simple sinusoidal wave, described by

φ(x) = φ0 sin kx (8.88)

and then assume that both the ions and untrapped electrons are monoenergetic
beams of particles moving to the left (in the wave frame) with sufficient energy
that neither are trapped by the potential such that

f +i (Wi ) = 0 (8.89)

f −i (Wi ) = ni0
√
2mi (Wi0 + eφ0)δ(Wi − Wi0) Wi0 > eφ0 (8.90)

f +e (We) = 0 (8.91)

f −e (We) = ne0
√
2me(We0 − eφ0)δ(We −We0) We0 > eφ0 (8.92)
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where ni0, ne0,Wi0, and We0 are constants. From their respective contributions
to equation (8.81), the corresponding charge densities are

ni (x) = ni0

[
Wi0 + eφ0
Wi0 − eφ(x)

]1/2
(8.93)

nUe (x) = ne0

[
We0 − eφ0
We0 + eφ(x)

]1/2
. (8.94)

From the form of equation (8.93), we note that ni0 is the minimum value of ni ,
whereas from equation (8.94), ne0 is themaximum value of nUe , and these maxima
and minima occur at kx = ±π/2,±3π/2, . . . . Using these expressions, g(eφ)
from equation (8.86) becomes

g(eφ) = −ε0k2

e2
eφ + ni0

[
Wi0 + eφ0
Wi0 − eφ(x)

]1/2
− ne0

[
We0 − eφ0
We0 + eφ(x)

]1/2
. (8.95)

From this result we can obtain dg/dW and insert this into equation (8.87) to obtain
the trapped-electron distribution function,

f Te (We) �
√
2me

π

√
eφ0 −We

(
−2ε0k2

e2
+ ni0

Wi0 + We
+ ne0

We0 −We

)
(8.96)

for all We < eφ0. The auxiliary conditions put some constraints on the various
constants, since g(−eφ0) = ε0k2φ0/e + ni0 − ne0 = 0 and the condition that
f Te (We) be nonnegative leads to

−2ε0k2

e2
+ ni0

Wi0 +We
+ ne0

We0 −We
> 0 (8.97)

and the two combined lead to

ni0(Wi0 +We + 1
2eφ0)

Wi0 +We
− ne0(We0 −We − 1

2eφ0)

We0 −We
> 0. (8.98)

Problem 8.3.7. BGK example.

(i) Fill in the missing steps for this example.
(ii) Show that ni0 ≥ ne0 is a sufficient condition for equation (8.98).
(iii) Sketch ni (x), nUe (x), and g(eφ) as a function of x over a full period.

8.4 Parametric instabilities

Parametric instabilities are not unique to plasmas, as they relate to any oscillatory
system where one of the parameters (hence parametric) is modulated at an
appropriate frequency. A simple system is that of a child’s swing, whose period
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depends on the length of the swing from its support, and the parametric instability
occurs when the child lengthens or shortens the effective length twice each period.
This modulation at twice the natural frequency leads to growth of the fundamental
oscillation, through what is commonly called ‘pumping’. A similar situation was
described by Lord Rayleigh in 1883 [116] where a tuning fork was attached to
one end of a stretched string and tuned to twice the natural frequency of the string.
The modulation of the tension at twice the natural frequency led to an increased
amplitude in the string’s oscillation through the parametric instability.

A rather extensive review of parametric instabilities in plasmas, including
magnetized and unmagnetized plasmas, inhomogeneous and uniform plasmas,
for linear and nonlinear electrostatic and electromagnetic waves, is given by Kaw
et al [117]. This section is intended to be an introduction to some of these
topics in order to establish the fundamentals of parametric instabilities with a
few examples, and as such abstracts some of the topics from this review.

Quite generally, parametric excitations require a minimal set of common
characteristics:

(i) Matching condition: The modulation and the natural oscillation should
satisfy a phase matching condition, such as ωT = nπ , n = 1, 2, . . .where ω
is the natural frequency and T is the period of the modulation. The previous
examples have n = 1.

(ii) Threshold: Instability or amplification occurs only when the amplitude of
the modulation exceeds a critical value.

(iii) Frequency locking: The frequencies of the amplified oscillations are
determined by the modulation frequency rather than the natural frequency.
For the previous examples for n = 1, amplification is at frequency π/T (the
natural frequency), but for n = 2, amplification occurs at 2π/T (the natural
frequency again) and at zero frequency.

The matching and frequency locking conditions follow from the intrinsic
nonlinearity of the multiple frequency system, and can be viewed either as coming
from conservation of energy and momentum or as coming from the resonance
conditions of the weak turbulence analysis such that

ω0 = ωi + ωs (8.99)

k0 = ki + ks (8.100)

where the subscripts 0, i, s stand for pump, idler and signal, respectively. The
instability occurs when the pump exceeds a certain threshold and the idler and
signal waves grow. In general, we assume that the idler and signal represent waves
that satisfy a dispersion relation in a plasma and are weakly damped modes, but
this is not a strict requirement. When one of the waves is highly damped, we call
it a quasimode, and numerous important applications involve quasimodes. From
the nonlinear nature of the coupling, it is apparent that energy can be drawn from
the pump wave and diverted to the idler and signal waves, or daughter waves.
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This process can become so efficient that as a pump wave propagates, it loses
energy to the daughter waves until it is depleted to the extent that it falls below
threshold. Among the various effects which limit this efficiency of coupling
are: finite wavelength effects, where the phase matching conditions cannot be
satisfied everywhere; finite pump extent, where the daughter waves grow only to
a finite value because they propagate beyond the extent of the pump; and nonlinear
effects, where saturation may occur due to quasilinear effects changing the decay
and amplification rates, or to nonlinear frequency shifts that modify the matching
condition.

In order to sort out this somewhat bewildering array of possible effects, we
will examine a few basic models that illustrate the fundamental phenomena, and
then apply the principles thus discovered to a few specific plasma problems.

8.4.1 The modulated harmonic oscillator model

We consider first a damped oscillator described by

d2x

dt2
+ 2γ0

dx

dt
+ (&2 + γ 2

0 )x = 0 (8.101)

which has the simple solution x = A exp(−i&t − γ0t) if & and γ0 are constants
and represent the frequency and damping rate of the oscillator. If, however, we
take the frequency to be modulated at frequency ω0, such that

&2 = &2
0(1− 2ε cosω0t) (8.102)

where&0 is the natural frequency andω0 and ε the pump frequency and amplitude
of the modulation, respectively, then the transformation x(t) = e−γ0t y(t) brings
equation (8.101) into the form

d2y

dt2
+&2

0(1− 2ε cosω0t)y = 0 (8.103)

which is the Mathieu equation. All of the characteristics of the parametric
instability are contained in the properties of Mathieu functions, but since these
are neither trivial nor commonly known, it is more instructive to examine the
properties of equation (8.103) by a perturbational analysis assuming that the
damping decrement, γ0/&0, and modulation amplitude, ε, are both small.

Taking the Fourier transform of equation (8.103) leads to

D(ω)x̃(ω) = ε&2
0[x̃(ω + ω0)+ x̃(ω − ω0)] (8.104)

where
D(ω) ≡ −ω2 − 2iωγ0 +&2

0 + γ 2
0 .

The convolution integral has led to a function of ω being coupled to the response
at frequencies ω ± ω0. We examine two special cases.

Copyright © 2003 IOP Publishing Ltd.



8.4.1.1 Case I: ω0 � 2&0

If we chooseω � &0, then the first term on the right-hand side of equation (8.104)
represents the response at ∼3&0, so is far from resonant. The second term on
the right gives a response at frequency ω − ω0 � −&0, so this term is nearly
resonant. Keeping only the resonant term, we need x̃(ω − ω0) which we obtain
from equation (8.104) to be

D(ω − ω0)x̃(ω − ω0) � ε&2
0 x̃(ω) (8.105)

then the dispersion relation becomes

D(ω)D(ω − ω0) = ε2&4
0. (8.106)

Making simple resonant approximations for the D(ω),

D(ω) = − (ω +&0 + iγ0)(ω −&0 + iγ0)

� − 2&0(ω −&0 + iγ0)

D(ω − ω0) � 2&0(ω − ω0 +&0 + iγ0)

the dispersion relation may be written as

(ω −&0 + iγ0)(ω −&0 −�+ iγ0)+ 1
4ε&

2
0 = 0 (8.107)

where � ≡ ω0 − 2&0 is the frequency mismatch. Then using the definition
ω ≡ &0 + δ + iγ , where δ is the real frequency shift and γ is the growth rate,
separating the real and imaginary parts of equation (8.107) results in

δ(δ −�)− (γ + γ0)
2 + 1

4ε&
2
0 = 0 (8.108)

(2δ −�)(γ + γ0) = 0 (8.109)

so there are two types of solutions from equation (8.109):

(i) Damped zolution: γ = −γ0. This describes damped oscillations with
frequencies given by

δ = 1

2

(
�±

√
�2 − ε2&2

0

)

which requires �2 ≥ ε2&2
0, or that the frequency mismatch be sufficiently

large or the modulation amplitude be sufficiently small.
(ii) Locked solution: δ = �/2. This describes frequency locked oscillations

since Reω = δ + &0 = ω0/2 so that the frequency is independent of the
natural frequency. Then from equation (8.108), this root gives

γ = −γ0 ± 1

2

√
ε2&2

0 −�2 (8.110)
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which is complementary to the other case in the sense that this case requires
�2 ≤ ε2&2

0. The more weakly damped root of equation (8.110) becomes
unstable when

ε2 > (�2 + 4γ 2
0 )/&

2
0 (8.111)

so this is the parametric instability and equation (8.111) gives the threshold
as a function of the mismatch. The maximum growth rate occurs when
� = 0, where the minimum threshold and maximum growth rate are given
by

εmin = 2γ0/&0 (8.112)

γmax = − γ0 + ε&0/2. (8.113)

We note that in the limit as γ0 → 0, there is no threshold, so an infinitesimal
excitation can drive the instability.

8.4.1.2 Case II: ω0 � &0

For this case, we expect the coupling near ω ∼ 0 which is the difference
frequency. The coupling from the symmetric forms of equation (8.105),

D(ω ± ω0)x̃(ω ± ω0) � ε&2
0 x̃(ω)

leads to the dispersion relation,

1 = ε2&4
0

D(ω)

[
1

D(ω + ω0)
+ 1

D(ω − ω0)

]
. (8.114)

Using the approximation D(ω±ω0) � ∓2&0(ω±�+ iγ0), where the frequency
mismatch is given in this case by � = ω0 − &0, and approximating D(ω) by
D(0), equation (8.114) simplifies to

1 = ε2&0

2

[
1

ω −�+ iγ0
− 1

ω +�+ iγ0

]
. (8.115)

Separating this into real and imaginary parts, with ω ≡ ωr + iγ ,

ω2
r −�2 − (γ + γ0)

2 = ε2&0� (8.116)

ωr (γ + γ0) = 0. (8.117)

Again there are two types of solution:

(i) Damped solution: γ = −γ0, ωr = ±
√
�(�+ ε2&0). This solution requires

either � > 0 or � ≤ −ε2&0.
(ii) Locked solution. For this case,

ωr = 0 γ = −γ0 ±
√
−�(�+ ε2&0) (8.118)
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so −ε2&0 ≤ � ≤ 0. For this case, a growing solution occurs whenever the
threshold is exceeded, given by

ε2 ≥ −(γ 2
0 +�2)/�&0. (8.119)

The minimum threshold occurs when� = −γ0 and is given by
εmin =

√
2γ0/&0. (8.120)

The maximum growth rate occurs when � = −ε2&0/2 and is given by

γmax = −γ0 + ε2&0/2. (8.121)

Comparing these several results, each case has a damped solution and a
locked solution, and there is a threshold for the instability. In case I, the threshold
is lower and the growth rate is higher than the corresponding case II solution. In
case I, the minimum threshold and the maximum growth rate occur for the same
mismatch, while the maximum growth rate for case II is amplitude dependent.
Examples of both these cases are to be found in plasmas.

Problem 8.4.1. Growth rates and thresholds. Fill in the missing steps leading to
equations (8.112), (8.113), (8.120), and (8.121).

8.4.2 Excitation of coupled mode oscillations

The previous simple example had only one natural frequency, but plasmas are
characterized by numerous natural frequencies. We shall choose as an example
a case where the two natural frequencies are far apart, with the pump frequency
close to the higher frequency. When the sum of the two natural frequencies nearly
equals the pump frequency, then both kinds of instabilities, cases I and II, may be
excited.

For the special case of a uniform pump, the natural oscillations are described
by

Ls xs = d2xs
dt2

+ 2γs
dxs
dt
+ (ω2

s + γ 2
s )xs = 0 s = 1, 2. (8.122)

We assume the frequenciesωs and damping rates γs are both constant. We choose
to denote the lower frequency as ω1. The pump field is described by

Z(t) = 2ε cosω0t (8.123)

with ε constant. This pump field couples x1(t) and x2(t) through the nonlinear
interaction. We assume the coupling is of the form

L1x1(t) = λ1Z(t)x2(t) (8.124)

L2x2(t) = λ2Z(t)x1(t) (8.125)
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where the λs are constants. We can imagine the pump and the high frequency
producing a modulation at their beat frequency, and if this forced oscillation
resonates with the low frequency, then we expect a resonant energy transfer when

ω0 � ω1 + ω2. (8.126)

Taking the Fourier transforms of equations (8.124) and (8.125), we find

D1(ω)x̃1(ω) = λ1ε[x̃2(ω + ω0)+ x̃2(ω − ω0)] (8.127)

D2(ω ± ω0)x̃2(ω ± ω0) = λ2ε[x̃1(ω)+ x̃1(ω ± 2ω0)] (8.128)

where Ds(ω) = −ω2−2iωγs+ω2
s+γ 2

s . From equation (8.127) we see that x̃1(ω)
couples with x̃2(ω±ω0), which through equation (8.128) couples with x̃1(ω) and
x̃(ω ± 2ω0), the latter of which is nonresonant and can be neglected. We need to
keep both x̃2(ω ± ω0), however, since for ω ∼ ω1 � ω0, both may be near±ω2.
The dispersion relation is then given by

1 = λ1λ2ε
2

D1(ω)

[
1

D2(ω + ω0)
+ 1

D2(ω − ω0)

]
(8.129)

which is similar to equation (8.114). For weak coupling, (|λ1λ2ε2| � 1), one or
more of the denominators must be nearly resonant, or

D1(ω) � 0 or D2(ω + ω0) � 0 or D2(ω − ω0) � 0. (8.130)

From comparison with equation (8.114), two of the denominators must be
resonant for the instability, so the two possible cases are:

(i) D1(ω) � 0 and D2(ω + ω0) � 0 or D2(ω − ω0) � 0.
(ii) D2(ω + ω0) � 0 and D2(ω − ω0) � 0.

The first case corresponds to case I in the previous section by comparison with
equation (8.106) (in the limit as ω1 → ω2 → ω0/2). The second case
corresponds to case II by comparing equation (8.129) to equation (8.114) (in
the limit as ω2 → ω0). Making resonant approximations for D2(ω ± ω0) with
� = ω0−ω2, but not approximating D1(ω) since ω may differ significantly from
±ω1, equation (8.129) reduces to

ω2 + 2iωγ1 − ω2
1 − γ 2

1 =
λ1λ2ε

2

ω2

(
1

ω +�+ iγ2
− 1

ω −�+ iγ2

)
. (8.131)

Again defining ω ≡ ωr + iγ and separating the real and imaginary parts, we
obtain

ω2
r − ω2

1 − (γ + γ1)
2 + [ω2

r −�2 − (γ + γ2)
2]/F(γ, ωr ) = 0 (8.132)

ωr [γ + γ1 − (γ + γ2)/F(γ, ωr )] = 0 (8.133)
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where

F(ωr , γ ) = ω2

�λ1λ2ε2
[(ωr +�)2+ (γ +γ2)

2][(ωr −�)2+ (γ +γ2)
2]. (8.134)

From this there are two solutions:

(1) ωr = 0 is the purely growing mode instability since ω is purely imaginary.
The oscillating two-stream instability (OTSI) is the best known example that
occurs when a plasma is driven by a uniform pump close to the electron
plasma frequency.

(2) ωr �= 0 and γ + γ1 = (γ + γ2)/F(ωr , γ ) which corresponds to the decay
instability. This describes the decay of the pump wave into two lower
frequency waves (idler and signal). This is the most common case, and has
numerous examples in plasma physics.

Problem 8.4.2. Thresholds and growth rates:

(i) The purely growing instability (case (1) above)

(a) Show that the threshold condition may be written as

|λ1λ2|ε2min = 2ω2
1ω2γ2. (8.135)

(b) Show that the maximum growth rate condition is

ω0 = ω2 − (γmax + γ2). (8.136)

(c) Show that near threshold,

γmax = |λ1λ2|(ε2 − ε2min)

2ω2(ω
2
1 + 2γ1γ2)

. (8.137)

(ii) The decay instability (case (2) above)

(a) Show that the threshold εmin as a function of the offset�, is given by

ε2min =
γ1γ2ω2

�λ1λ2

[
4�2 + (γ 2

2 + 2γ1γ2 + ω2
1 + γ 2

1 −�2)2

(γ1 + γ2)2

]
(8.138)

and hence vanishes when either γ1 or γ2 is zero.
(b) Show that ωc(�), the real part of the frequency at threshold, is given by

ωc(�) = ±
√
γ2ω

2
1 + γ1�2 + γ 2

1 γ2 + γ 2
2 γ1

γ1 + γ2
. (8.139)

(c) Find �, εmin, and ωc for the limiting cases ω1 � γ2 and ω1 � γ2.
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8.4.3 Effects of finite pump wavelength

For this case we replace equation (8.123) by

Z(r, t) = 2ε cos(k0 · r − ω0t) (8.140)

and must now Fourier transform in both space and time, so that equations (8.127)
and (8.128) become

D1(ω, k)x̃1(ω, k) = ε[λ+1 x̃2(ω + ω0, k + k0)+ λ−1 x̃2(ω − ω0, k − k0)]
(8.141)

D2(ω ± ω0, k ± k0)x̃2(ω ± ω0, k ± k0) = ελ±2 x̃1(ω, k) (8.142)

where now ωs and γs are the frequency and damping rate for a wave with
wavevector k for an uncoupled wave. The dispersion relation corresponding to
equation (8.129) is then

1 = ε2

D1(ω, k)

[
λ+1 λ

+
2

D2(ω + ω0, k + k0)
+ λ−1 λ

−
2

D2(ω − ω0, k − k0)

]
. (8.143)

We solve equation (8.143) in the same way in which we solved equation (8.129),
but now it is more complicated. In order to keep the arguments clear, we take
λ+1 λ

+
2 = λ−1 λ

−
2 > 0. Separating the real and imaginary parts as before, we now

find that

ω2
r − ω2

1 − (γ + γ1)
2 = [�2 − (ωr − µ)2 + (γ + γ2)

2]/F(γ, ωr−µ) (8.144)
ωr (γ + γ1) = (ωr − µ)(γ + γ2)/F(γ, ωr − µ) (8.145)

where now

µ = 1
2 [ω2(k + k0)− ω2(k − k0)] (8.146)

� = ω0 − 〈ω2〉 (8.147)

〈ω2〉 = 1
2 [ω2(k + k0)+ ω2(k − k0)] (8.148)

and we have used the approximation that |µ| � 〈ω2〉. It is convenient to recast
equations (8.144) and (8.145) by eliminating F(γ, ωr−µ) between them to obtain

ωr (γ +γ1)[�2−(ωr−µ)2+(γ +γ2)2] = (ωr−µ)(γ +γ2)[ω2
r −ω2

1−(γ +γ1)2]
(8.149)

and eliminating the �2 terms from F(γ, ωr − µ) leads to

�κ

〈ω2〉 = ωr (ωr − µ)(γ + γ1)(γ + γ2)

{
4+ [ω

2
r − ω2

1 − (γ + γ1)
2]2

ω2
r (γ + γ1)2

}
(8.150)

where κ ≡ ε2λ+1 λ
+
2 = ε2λ−1 λ

−
2 . Equation (8.149) has three roots for ωr , where

for µ > 0,

(I) ωr > µ (II) µ > ωr > 0 (III) ωr < 0 (8.151)
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where each root is labeled. Since κ > 0, equation (8.150) indicates that modes
I and III both occur when � > 0, and mode II corresponds to � < 0. The
uniform pump case (µ = 0) shows that mode II is the purely growing mode and
the other two are decay type modes. For this case with µ �= 0, however, there is
no longer any purely growing mode. When µ > ω1, then the frequency of mode
I becomes nonresonant and we have a quasimode. For µ �= 0, the threshold can
be substantially reduced for ωr ∼ ω1, and the growth rate well above threshold
can be significantly increased.

Problem 8.4.3. Coupled equations. Show that equations (8.149) and (8.150)
follow from equations (8.144) and (8.145). (Hint: writing (8.144) and (8.145)
as A = B/F and C = D/F , with F = (〈ω2〉/�κ)E+E−, and using�2 = B+?,
show that E+E− = B2 + 4D2.)

Problem 8.4.4. Resonant decay. When ωr is resonant (D1(ω, k) � 0), show that
the growth rate and threshold are given by

γ = 1

2

[
−(γ1 + γ2)+

√
(γ1 − γ2)2 + κ

ωr 〈ω2〉
]

(8.152)

and
κ0 = 4ωr 〈ω2〉γ1γ2. (8.153)

(Hint: Show that equation (8.149) leads to � ∼ ωr − µ.)

8.4.4 Unmagnetized plasma examples

In the unmagnetized plasma, the principal wave is the ordinary wave from
equation (2.37), where the dispersion relation may be written as

D(ω, k) = ω2
pe + k2c2 − (ω − iνe)2 (photons) (8.154)

where νe is due to collisional damping since there is no Landau damping.
The plasma wave dispersion relation may be obtained from equation (3.32) or
equation (4.56) and may be written as

D(ω, k) = ω2
pe + 3

2k
2v2e − (ω − iγp)

2 (plasmons) (8.155)

where

γp =
√
π

8

ωpe

k3λ3De

exp

[
− 1

2k2λ2De

− 3

2

]
(8.156)

from equation (4.61). The ion-acoustic wave dispersion relation comes from
equation (4.141), written as

D(ω, k) = k2c2s
1+ k2λ2De

− (ω − iγa)2 (phonons) (8.157)
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where kλDe � 1 and

γa =
√
π

8

[√
me

mi
+
(
Te
Ti

)3/2
e−Te/2Ti

]
+ νi (8.158)

from equation (4.142) plus a collisional term. In each case, the name for the
quantized excitation is given as a convenient label to designate the appropriate
wave type.

8.4.4.1 Case 1—The pump is a plasma wave

For this case, ω0 satisfies equation (8.155) with wavevector k0. If k ‖ k0,
(otherwise λ+1 λ

+
2 �= λ−1 λ

−
2 ), then

µ � 3kk0v2e
2ω0

� � −3k2v2e
4ω0

.

With � < 0, this is mode II where µ > ωr > 0. We note two special cases:

(a) When µ � ω1 � ωr , then equation (8.149) requires that �2 ∼ µ2

so that k ∼ 2k0 ∼ 2(k − k0). In this case, a plasmon has decayed
into another plasmon (ω2 from equation (8.155)) and a phonon (ω1 from
equation (8.157)). This is an example where an electron plasma wave is
backscattered by an ion wave since k0 − k ∼ −k0.

(b) Another limiting case is when µ � ω1 � ωr , in which case equation (8.149)
leads to �2 ∼ 0, so k2 must be small. In this limit, k0 ± k ∼ k0, so this case
represents forward scattering.

8.4.4.2 Case 2—The pump is an electromagnetic wave

Here we note four special cases:

(a) When the pump frequency is just above the plasma frequency, it may decay
into a plasmon (ω2) and a phonon (ω1 = ω0 − ω2 � ω0). Since all three
waves are different, (photon→plasmon+phonon), this is just a decay process
that damps the pump.

(b) Instead of decaying into a plasmon and a phonon when the pump frequency
is just above the plasma frequency, it can also decay into another photon
(a scattered electromagnetic wave) and a phonon. This type of scattering is
called Brillouin scattering.

(c) When the pump frequency is higher such that ω0 > 2ωp, then it may decay
into another photon (a scattered electromagnetic wave) and a plasmon. This
type of scattering is called Raman scattering.

(d) For the special case of ω0 = 2ωp , the photon may decay into two plasmons.

In order to examine any of these cases in more detail, we must first examine
some of the physics that goes into the amplitude (ε) and coupling coefficients (λ1
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and λ2). For an electromagnetic wave pump, we take the electric field amplitude
to be

E0(r, t) = 2E0ê0 cos(k0 · r − ω0t) (8.159)

from which we find the electron velocity to be

v0 = v+0 + v−0

where v±0 = ∓ieE±0 /meω0 and

E±0 = E0ê0 exp[±i(k0 · r − ω0t)]. (8.160)

This driven velocity of the electrons multiplied by the density fluctuation of a
daughter wave generates a current density which drives waves at the sum and
difference frequencies of the velocity and density fluctuations. From the wave
equation, driven waves satisfy[

k2I− ω2

c2
K− kk

]
· E = iωµ0 jpump

or casting this result into the form of equation (8.142), we have

D2(ω±, k±) · E±(ω±, k±) = −ω2
p
ñe(ω, k)

n0
E±0 (8.161)

where ω± = ω± ω0 and k± = k ± k0, and we have assumed ω0 � ω1. Because
D2 is a tensor, the inversion of equation (8.161) is nontrivial, but one form of the
inversion may be written as

E± · E∓0 =
ω2
peñe(ω, k)

k2±n0

[
(k± × E∓0 )2

D±2t
− (k± · E∓0 )2

D±2�

]
(8.162)

where D2t and D2� are the transverse and longitudinal dispersion functions given
by

D±2t = k±2c2 − ω±Kt (ω±, k±) (photons)

D±2� = − ω±K�(ω±, k±) (plasmons)

and Kt and K� are given by equation (4.31).
The low-frequency density fluctuations, ñe(ω, k), result from the beating

of the high and low frequency waves, forming a nonuniform wave field. This
inhomogeneous field in turn drives a low frequency perturbation through the
ponderomotive force. The ponderomotive potential from equation (8.8) uses the
low-frequency beat component of the electric fields, such that

ψ = e2

4me

∣∣∣∣ E0

ω0
+ E+

ω+
+ E−

ω−

∣∣∣∣
2

. (8.163)
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The low frequency components, with ω � ω0, then lead to

ψ = e2

meω
2
0

(E+0 · E− + E−0 · E+). (8.164)

In order to calculate the electron density fluctuations due to the
ponderomotive potential, the linearized kinetic equation for electrons gives

∂ f1
∂ t
+ v · ∇ f1 + 1

me
(e∇ϕ −∇ψ) · ∇v f0 = 0 (8.165)

and taking Fourier and Laplace transforms, we have

ñe =
∫ ∞

−∞
f̃1 d3v = − n0e

2KTe

(
ϕ̃ − ψ̃/e

)
Z ′(ζe). (8.166)

The ions do not respond to the ponderomotive potential, so the ion density and
Poisson’s equation become

ñi = n0e

2KTi
ϕ̃Z ′(ζi )

k2ϕ̃ = e

ε0
(ñi − ñe).

If we represent the dielectric constant from equation (4.138) in terms of the
electron and ion susceptibilities as

K = 1+ χe + χi

where

χe = −
ω2
pe

k2v2e
Z ′(ζe) χi = −

ω2
pi

k2v2i
Z ′(ζi )

we finally obtain for the perturbed electron density,

ñe = −k2ε0χe(1+ χi )

Ke2
ψ̃. (8.167)

It is convenient to rearrange this, using equation (8.164), so that(
1

χe
+ 1

1+ χi

)
ñe = − k2ε0

meω
2
0

(E+0 · E− + E−0 · E+)

which can be put into the form of equation (8.141) where D1 represents either a
plasmon or a phonon, such that

D1(ω, k)ñe(ω, k) = − ω2
pek

2ε0

meω
2
0

(E+0 · E− + E−0 · E+) (plasmon)

D1(ω, k)ñe(ω, k) = − ω2
pi k

2ε0

meω
2
0(1+ k2λ2De)

(E+0 · E− + E−0 · E+) (phonon).
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Table 8.1. Threshold parameter κ for several combinations of daughter waves for an
electromagnetic pump wave.

Case D1 D2 κ

(c) Raman plasmon photon k2ω2
pe(k± × v0)

2/k2±
(b) Brillouin phonon photon k2ω2

pi (k± × v0)
2/(1+ k2λ2De)k

2±
(d) decay plasmon plasmon k2ω2

pe(k± · v0)2/k2±
(a) decay phonon plasmon k2ω2

pi (k± · v0)2/(1+ k2λ2De)k
2±

From these results and equation (8.161) along with equation (8.162), we
find that the threshold parameters for several cases may be expressed in terms of
v0 = eE0/meω0 as in table 8.1.

Problem 8.4.5. The threshold parameter. Find λ±1 , λ
±
2 and fill in the missing steps

from equation (8.165) to fill in the values of table 8.1.

8.4.4.3 Brillouin scattering

For this case, D2 is a photon dispersion function and D1 is a phonon dispersion
function, so κ = (k/k±)2ω2

pi (k
− × v0)

2/(1 + k2λ2De), since k ∼ 2k0 making
k− the resonant mode. For the photon case, with ω0 ∼ ω2 ∼ ωpe, we have
µ � kk0c2/ω0, � � −k2c2/ω0 (so case II again from equation (8.151)), and
with ω1 = ω2−ω−2 , µ−ω1 � k2c2/ω0. In the resonant scattering case, ω � ω1,
so the threshold condition from equation (8.150) or equation (8.153) with γ = 0
is

k2v20 sin
2 θ � 4γaγ2ω1ω0(1+ k2λ2De)/ω

2
pi (8.168)

where θ is related to the angle between k− and v0 (sin θ = 1 if k− ⊥ v0). The
corresponding growth rate just above threshold (from equation (8.152)) is

γ = −γ2 +
ω2
pi k

2v20 sin
2 θ

4ω1ω0γa(1+ k2λ2De)
(8.169)

for γ � γ2 ∼ νe.

Problem 8.4.6. Maximum growth rate. Show that the maximum growth rate for
Brillouin scattering is given by

γmax � ωpi kv0 sin θ√
ω1ω0(1+ k2λ2De)

.

This is maximized when k � 2k0 (backscattering). For k0λDe � 1, show that
this maximum growth rate is given by γmax = ωpiv0/

√
csω0/2k0.
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8.4.4.4 Resonant raman scattering

In this example, a photon is scattered off a plasmon rather than a phonon. Hence,
D1 represents a plasma wave from equation (8.155), and D2 an electromagnetic
wave from equation (8.154). Again for this case, k − k0 is the resonant root, so
κ = (k/k−)2ω2

pe(k− × v0)
2 = k2v20ω

2
pe sin

2 θ ′ from table 8.1 where θ ′ again
represents an angle between k and v0. Also for this case, ω − µ � � (from
ω0 = ω1 + ω−2 ). The threshold is then given by equation (8.153) as

k2v20 sin
2 θ ′ = 4γpγ2〈ω2〉/ωpe (8.170)

and the minimum threshold is for k ∼ 2k0 (backscattering) and θ ′ = π/2, when
k20v

2
0 = γpγ2〈ω2〉/ωpe. The gain just above threshold from equation (8.152)

(resonant case) is

γ = −γ2 + ωpek2v20 sin
2 θ ′

4〈ω2〉γp . (8.171)

Problem 8.4.7. Raman example. With ω0 = 3ωpe, νe/ωpe = 0.01, and ve/c =
0.05, find the daughter wave frequencies, the threshold for Raman scattering
(v0/c)min, and maximum growth rate (γmax/ωpe). (Hint: Let k = αk0 and find α
from ω0 = ω−2 + ω1.)
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Appendix A

Complex variables

It is not the intention of this discussion of complex variables to give a full treatise
on the subject, as this is covered in numerous textbooks. What follows is rather an
indication of how the theorems and properties of analytic functions can be used
to solve the kinds of problems which appear in the body of the text. In each case,
we give some of the general principles, and then illustrate the technique with an
example.

A.1 Contour integrals

Many of the integrals in this book are conveniently evaluated by the use of contour
integrals, which are based on the Cauchy integral theorem. In its simplest form,
this theorem states that ∮

C

f (z)

z − z0
dz = 2π i f (z0) (A.1)

if f (z) is an analytic function everywhere inside the closed contour C (which is
traversed in the counterclockwise direction). Since the path integral of an analytic
function is independent of the path, we are free to deform paths to suit ourselves
unless they encounter a pole, whereupon the Cauchy integral theorem tells us
what the contribution is from circumnavigating the pole. More generally, for a
function which may have a series of poles, we may write the result in terms of the
residues at the poles:1 ∮

C
F(z) dz = 2π i

∑
k

resk (A.2)

where for simple poles the residues are given by

resk = lim
z→zk

(z − zk)F(z).

1 These are rumored to be due to Cauchy’s dog, who went around leaving residues at every pole.
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By simple poles, we mean that F(z) may be written as

F(z) = f (z)

[ N∏
k=1

(z − zk)

]−1

where f (z) is analytic and all of the zk are distinct(no higher order poles). If there
are higher order poles, then the residue from a pole of order N is given by

resk = 1

(N − 1)! lim
z→zk

dN−1

dzN−1
[(z − zk)

N F(z)].

We illustrate some of the methods by evaluating a nontrivial integral by
contour methods. We wish to evaluate

I =
∫ ∞

−∞
cosαz

a4 + z4
dz = I1 + I2

I1 = 1

2

∫ ∞

−∞
eiαz

a4 + z4
dz

I2 = 1

2

∫ ∞

−∞
e−iαz

a4 + z4
dz

where α is real and positive. In order to use the contour method, we must close
the contour, and we do this on a semicircle above or below the real axis, and let
the radius of this semicircle approach infinity. We choose whether to close above
or below depending upon which will give us a vanishing contribution in the limit
as the radius gets large. For this case, we have broken the cosαz term into two
exponentials because the original expression blows up both above and below (as
z →±i∞), while the first exponential vanishes as z → i∞ so that we may close
above, and the second vanishes as z → −i∞ so we may close below. These
two cases are shown in figure A.1 along with the location of the poles located at
z = x + iy = a 4

√−1.
The contour of I1 clearly encloses z1 and z2, and the contour of I2 clearly

encloses z3 and z4, so

I1 =
∮

eiαz dz

(z − z1)(z − z2)(z − z3)(z − z4)

= 2π i

[
eiαz1

(z1 − z2)(z1 − z3)(z1 − z4)
+ eiαz2

(z2 − z1)(z2 − z3)(z2 − z4)

]

= π√
2a3

e−αa/
√
2
(
cos

αa√
2
+ sin

αa√
2

)

I2 =
∮

e−iαz dz
(z − z1)(z − z2)(z − z3)(z − z4)
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Figure A.1. (a) Contour for I1, closing above. (b) Contour for I2, closing below.

= − 2π i

[
e−iαz3

(z3 − z1)(z3 − z2)(z3 − z4)
+ e−iαz4

(z4 − z1)(z4 − z2)(z4 − z3)

]

= π√
2a3

e−αa/
√
2
(
cos

αa√
2
+ sin

αa√
2

)

where for I2 we have the negative of the sum of the residues because the contour
goes clockwise (the portion of the contour between −∞ and ∞ must be in the
sense of the original integral in both cases). The final result is then (letting
a = √2b for convenience of expression)

I =
∫ ∞

−∞
cosαx

4b4 + x4
dx = π

2b3
e−αb(cosαb + sin αb).

A.2 Analytic continuation

In some cases, a function may be analytic in a specific domain, or contain a
finite number of poles in that domain, but its properties in another domain are
not initially known. For example, a function may be specified everywhere in the
upper half-plane, or to the right or left of a vertical line in the complex plane,
and the character of the function may be of interest in the undefined region. The
specification of the properties of the function in the undefined region is called the
analytic continuation of the function.

Suppose a function is defined, for example, by an integral over a specified
contour C with the argument of the function establishing the location of a pole
or poles relative to the specified contour, and the argument is defined only in
a specified domain (e.g. real part positive, imaginary part greater than some
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minimum value, etc). The analytic continuation would then give the recipe for
establishing the value of the function as the argument leaves the specified domain.
If none of the poles crosses the specified contour as the argument varies, then the
analytic continuation is trivial, as the function is still analytic over that enlarged
domain. If one of the poles crosses the specified contour, however, we must
deform the contour so that the pole remains on the same side of the deformed
contour as if the pole found the contour impenetrable and pushed the contour
ahead of it. As long as the pole is not allowed to cross the contour, the integral
along the deformed contour represents the analytic continuation of the integral
into the originally undefined domain.

An example of analytic continuation is shown in figure 4.3 on page 139
where the original contour was defined to be to the right of σ , or that Re p > σ ,
as shown in the dashed curve. For the case shown, the analytic continuation, as
the path is moved over to the left for convenience, is represented by the deformed
contour which may not cross the pole in the left-hand half-plane so must double
back in the neighborhood of the pole, leaving it to the left of the contour, and
similarly must not cross the branch point, keeping both the branch point and
branch cut to the left of the deformed contour. For this example, we effectively
continued σ from positive and finite to negative and unbounded, making the
evaluation of an integral over p trivial along the deformed contour, needing only
to pick up contributions from circling the pole via the Cauchy integral theorem
and from looping around the branch point, if any.

A.3 The method of steepest descents—saddle point method

The method of steepest descents, or the saddle point method which is the same
thing, is a very powerful method for finding asymptotic expressions for integrals,
and the recipe for the steepest descent contributions to an integral is relatively
straightforward, but there is invariably a great deal of thought which must be given
to the setting up of the problem before applying the recipe. This analysis which
precedes the application of the recipe generally requires a good understanding of
the physics of the problem (or it will lead to such an understanding), for each of
the saddle points, if there are more than one, has an interpretation which must
be understood if the proper evaluation is to take place. In this section, we shall
first determine the recipe, and then do two examples to illustrate the method. The
contour integrals in chapter 6 will then serve as further examples which both use
and describe the method.

A.3.1 Steepest descents with saddle points along the real axis

A simple but relatively general example of the method may be illustrated by the
integral

F(t) =
∫ B

A
eth(x) dx (A.3)
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where h(x) has a maximum (or several maxima) somewhere in the range [A, B].
In this problem, we are looking for an approximate expression for the integral in
the limit where t is large, so we are looking for an asymptotic expression for F(t).

We begin by expanding h(x) in a series about the maximum (if there are
several maxima, we treat them one at a time), such that

h(x) = h(x0)+ h′(x0)(x − x0)+ h′′(x0)
2! (x − x0)

2 + h′′′(x0)
3! (x − x0)

3 + · · ·

and we choose x0 to be the maximum such that h′(x0) ≡ h′0 = 0 and h′′(x0) ≡
h′′0 < 0 (if h′′0 = 0, then require h′′′0 = 0 and hiv0 < 0). Then we have

F(t) = eth0
∫ B

A
e
1
2 th

′′
0(x−x0)2

[
1+ th′′′0

3! (x − x0)
3

+ thiv0
4! (x − x0)

4 + · · ·
]
dx (A.4)

� eth0
∫ ∞

−∞
e
1
2 th

′′
0u

2

[
1+ th′′′0

3! u
3 + thiv0

4! u4

+ 1

2!
(
th′′′0
3!

)2
u6 + · · ·

]
du (A.5)

= eth0

[(
2π

|h′′0|t
) 1

2 + thiv0
4!

3
√
π

4

(
2

|h′′0|t
)5/2

+ 1

2!
(
th′′′0
3!

)2 15
√
π

8

(
2

|h′′0|t
)7/2

+ · · ·
]

(A.6)

=
√
2πeth0

[|h′′0|t]1/2
[
1+ hiv0

8|h′′0|2t
+ 5[h′′′0 ]3

24|h′′0|3t
+O

(
1

t2

)]
. (A.7)

In equation (A.4) we have treated all the terms above h′′ as small and expanded
the exponent about the maximum. In equation (A.5), the largeness of t in the
exponent guarantees that the principal contribution to the integral comes from
the immediate vicinity of the maximum, since the width of the Gaussian gets
narrower as t gets large, so we extend the limits of integration to infinity with little
error. After performing these integrals, we collect the terms in equation (A.7), and
note that all odd terms in u vanish, leaving only two terms of order 1/t fromwhich
we can estimate the range of validity of the approximations involved. In general,
t must be large enough that the correction terms are small.

If the maximum should occur at an end point, then the extension is
straightforward, since the integral would then be only semi-infinite, and we may
even have h′(0) < 0, so the small terms are of order th′′(0), etc.
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The asymptotic narrowing of the Gaussian in the integral, in addition to the
extension of the limits of integration to infinity, permits another variation which
is frequently useful. If the original integral is, instead of equation (A.3), of the
form

G(t) =
∫ B

A
g(x)eth(x) dz

then the region near the maximum may be considered to be like a delta function,
effectively evaluating g(x) at that point and then moving it outside the integral,
so that the result, following the same general procedures, may be expressed as

G(t) =
√
2πeth0

[|h′′0|t]1/2
{
g0 + 1

2t

[
g′′0
|h′′0|

+ 1

|h′′0 |2
(
hiv0 g0
4

+ h′′′0 g′0 +
5(h′′′0 )2g0
24|h′′0|

)]

+O
(
1

t2

)}
. (A.8)

Unfortunately, there is no unique way to determine which part of an
integrand belongs to g(u) and which part belong to h(u) in the exponent, but
generally any slowly varying function may be included in g(u), while h(u)
includes as much as possible without becoming too complicated.

The gamma function demonstrates these arguments, such that


(t + 1) =
∫ ∞

0
e−uut dt t > −1 (A.9)

has an integrand which has a maximum value, but this maximum depends on t so
that u0 = t . We write the integrand as e−uut = exp(−u + t ln u) = exp[th(u)]
so h(u) = ln u − u/t . Evaluating the various derivatives of h(u) and evaluating
them at u = t , equation (A.7) gives


(t + 1) = √2π tt te−t
[
1+ 1

12t
+ · · ·

]
(A.10)

which is the Stirling formula for the large argument approximation to the gamma
function.

Problem A.3.1. Modified bessel function. Show that

Kν(z) =
∫ ∞

0
e−z cosh t cosh(νt) dt

�
√
π

2z
e−z

[
1+ 4ν2 − 1

8z
+ (4ν2 − 1)(4ν2 − 9)

2!(8z)2 + · · ·
]
.
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A.3.2 Saddle point method

In the complex plane, the statement of the problem is more general, such that we
wish to evaluate

F(t) =
∫
P
φ(z, t) dz (A.11)

and P represents some path from a point A to a point B in the complex plane. We
solve this problem in two steps:

(i) Find the best path between the prescribed end points. This involves scheming
and conjecturing. This is the hard part.

(ii) Execution of the integral. This is easy. Simply add the contributions from
each saddle point (and perhaps from the end points).

A.3.2.1 General considerations

Suppose we only want an upper bound, which may be described by

|F(t)| ≤
∫
P
|φ(z, t)| |dz| ≤ �PmaxP |φ(z, t)|

where �P is the distance along the path and maxP |φ(z, t)| is the maximum along
the path. A better estimate may be found by choosing a different path with the
same end points which does not leave the region of analyticity of φ(z, t). All such
paths are admissible, and we label such paths C such that

|F(t)| ≤ �CmaxC |φ(z, t)|
and we wish to choose C to minimize �CmaxC |φ(z, t)|.

Now if φ(z) behaves violently, then �C is unimportant, as the dominant
contribution will come from short sections of the path. If φ(z) is not violent,
then the saddle point method is of little use. Hence we ignore �C and look for a
path C where maxC |φ(z)| is minimal (if it exists). The strategy is to find a path
from A to B along an admissible path C , the highest point of which is either an
end point or a saddle point.

A.3.2.2 Steepest descent path

If the highest point is a saddle point, then we wish to cross it such as to minimize
the path length. Thus we wish to use the steepest ascent and steepest descent,
deforming the path as necessary to cross at the right point at the proper angle.

Suppose that in the neighborhood of the saddle point, ψ ′(ζ ) = 0. (Analytic
function theory guarantees us that ψ ′ = 0 is a saddle point if ψ is analytic.) Then

ψ(z) = ψ(ζ )+ 1
2ψ

′′(ζ )(z − ζ )2 + · · ·
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(and if ψ ′′(ζ ) = 0, go to ψ ′′′(ζ ), etc). Then define an axis by a straight line
through the saddle point oriented such that

ψ ′′(ζ )(z − ζ )2 < 0 and real.

We then let ψ ′′(ζ ) = |ψ ′′(ζ )|ei argψ ′′ and define αx = (z − ζ ) = xei argα

where |α| = 1. Then argψ ′′ + 2 argα = π guarantees the exponent will be
real and negative along the path through the saddle at the angle defined by argα.
Solving for this crossing angle,

argα = π

2
− 1

2
arg(ψ ′′). (A.12)

A.3.2.3 A general but simple case

We now take the case of evaluating

F(t) =
∫ B

A
g(z)eth(z) dz (A.13)

where g(z) and h(z) are analytic in a domain that includes A and B , which are
independent of t . Then we assume there exists a point ζ in the domain where
h′(ζ ) = 0 and where h′′(ζ ) �= 0. In this case, ζ is a saddle point of h(z), but not
of g(z), but this is sufficient provided g(z) is slowly varying near the saddle point
of h(z). Then with z = ζ + αx with x real,

F(t) =
∫ B

A
g(ζ + αx)eth(ζ+αx)α dx

and
h(ζ + αx) = h(ζ )+ 1

2h
′′(ζ )α2x2 + · · ·

so

F(t) = αeth0g0

∫ B

A
e−t |h′′0 |x2/2 dx +O(1/t)

=
√
2πα

[t|h′′0 |]1/2
eth0[g0 + f1/t +O(1/t2)] as t →∞ (A.14)

provided g(ζ ) ≡ g0 �= 0 where h(n)(ζ ) ≡ h(n)0 and where

f1 = α2g′′0
2|h′′0|

+ α4

|h′′0|2
[
g0
8

(
hiv0 +

5α2(h′′′0 )2

3|h′′0|

)
+ g′0h′′′0

2

]
.

We note that α = exp[i(π2 − 1
2 arg h

′′
0)] and that th′′0α2 = −|th′′0|.
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A.3.3 Spatial Landau damping example

In addition to the temporal Landau damping found in chapter 4, Landau showed
that for spatial decay there is an additional term [33], whose inverse Laplace
transform leads to an integral of the form

F(x) =
∫ ∞

0
g(k)eikx−ω2/k2v2dk (Im(x) > 0).

The positive imaginary part of x guarantees a maximum along the real axis, but
the saddle point is displaced from the axis. Assuming g(k) is slowly varying, we
find from the exponent that ikx − ω2/k2v2 ≡ xh(k) gives

h(k) = ik − ω2

k2v2x
(A.15)

h′(k) = i+ 2ω2

k3v2x
(A.16)

h′′(k) = − 6ω2

k4v2x
. (A.17)

We find then from equations (A.16) and (A.12) that the saddle points and crossing
angles are located at ks = k0eiφ where

k0 =
(
2ω2

v2x

)1/3

φ = π

6
,
5π

6
,−π

2

α = π

3
,
2π

3
, 0.

It is easy at this step to insert these pieces into equation (A.14) to obtain a
result, but we have three different saddle points to choose from. Choosing the
right saddle point(s) and the right sign is usually the hard part. For this example,
it is relatively easy since only one saddle point is in the right half of the k-plane,
as shown in figure A.2 and the path should quite obviously be deformed to cross
over this saddle point as in the figure, and the crossing is in the positive sense, so
the result is

F(x) = 2
√
πg(k0)√
3x2/3

( ω
2v

)1/3
exp

[
−3

2

(ωx
2v

)2/3
(1− i

√
3)+ iπ

6

]
. (A.18)

There is no contribution from the end points, so for large x , the spatial damping is
exponential, but the exponential factor is not linear in x as one might expect from
the time decay problem, but varies as x2/3.
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Figure A.2. Deformed contour for spatial Landau damping.

Problem A.3.2. Spatial Landau damping integral.

(i) Fill in the steps leading to equation (A.18).
(ii) Assuming g(k) is a constant, calculate f1 and from that estimate the
minimum value of |x | for which the asymptotic expression is useful, i.e.
where f1(x)/x < g0/3.

When there are many saddle points, and especially when there are branch
points and their associated branch cuts, the proper contour is the hardest part of
the problem, as it requires the determination of the proper contour which connects
the given end points without crossing any branch cuts. Occasionally, as in the
contours of chapter 6, the physical interpretation of each saddle point must be
determined before the proper contour can be established, and although the end
point is given, it may have to be approached at a specified angle so that one
stays on a path which has no contribution except at the saddle points. Finally,
if the function should be so perverse near its saddle point that it does not steepen
and narrow even as the asymptotic parameter gets large, as in the case of the f±
saddle points in figure 6.8 on page 275, then the steepest descents methods are
not useful for the magnitude and phase of the contribution, but may still be useful
in identifying the proper contour.

Copyright © 2003 IOP Publishing Ltd.



Appendix B

Special functions in plasma physics

B.1 Plasma dispersion function, Z(ζ )

The plasma dispersion function is a commonly occurring function in thermal
plasmas and is related to the error function for complex arguments and some other
representations which occur commonly in the literature. Tabulated by Fried and
Conte [31], we list here its properties and show its relationships to other common
functions.

B.1.1 Properties of the plasma dispersion function

Definition of the plasma dispersion function:

Z(ζ ) ≡ 1√
π

∫ ∞

−∞
e−ξ2 dξ
ξ − ζ

Im(ζ ) > 0. (B.1)

Differential equation:
Z ′(ζ ) = −2[1+ ζ Z(ζ )]. (B.2)

Power series:

Z(ζ ) = i
√
π

∞∑
n=0

(iζ )n



(n
2
+ 1

) = i
√
πe−ζ 2

− 2ζ

[
1− 2

3
ζ 2 + 4

15
ζ 4 · · · (−2)nζ 2n

(2n + 1)(2n − 1) · · · 3 · 1

]
. (B.3)

Continued fraction expansion:

Z(ζ ) = ζ

1
2 + ζ 2−

1 · 12
5
2 + ζ 2−

2 · 32
9
2 + ζ 2−

3 · 52
13
2 + ζ 2− · · · . (B.4)
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This expression converges poorly as ζ approaches the real axis, but is very good
for Im(ζ ) ≥ 1.

Asymptotic series:

Z(ζ ) = − 1

ζ

N∑
n=0

(2n − 1)!!
(2ζ 2)n

+ iσ
√
πe−ζ 2 (B.5)

= − 1

ζ

(
1+ 1

2ζ 2
+ 3

4ζ 4
+ · · ·

)
+ iσ

√
πe−ζ 2 (B.6)

where (−1)!! = 1, N indicates the series truncates when successive terms no
longer decrease in magnitude, and

σ =
{ 0 Im(ζ ) > 0
1 Im(ζ ) = 0
2 Im(ζ ) < 0.

The discontinuity due to the Stokes’ phenomenon in the asymptotic series
indicates an uncertainty of the same magnitude as the discontinuity in the
asymptotic series expansion, since the smallest term is of the same order of
magnitude as the pole term. For the asymptotic expansion, the imaginary part
of Z(ζ ) is exact only for real ζ .

Symmetry relations:

Z(−ζ ) = 2i
√
πe−ζ 2 − Z(ζ )

Z(ζ ∗) = [Z(ζ )− 2i
√
πe−ζ 2 ]∗ (B.7)

Z̃(ζ ) = Z(ζ )− 2i
√
πe−ζ 2 for Im(ζ ) < 0.

Zeros of Z(ζ ): An infinite number of zeros are located close to the negative 45◦
lines as illustrated in figure B.1 where the first three zeros are shown. The first
five zeros are located at

ζ1 = ± 1.991 466 835− 1.354 810 123i (B.8)

ζ2 = ± 2.691 149 024− 2.177 044 906i (B.9)

ζ3 = ± 3.235 330 868− 2.784 387 613i (B.10)

ζ4 = ± 3.697 309 702− 3.287 410 789i (B.11)

ζ5 = ± 4.106 107 271− 3.725 948 729i. (B.12)

Copyright © 2003 IOP Publishing Ltd.



Figure B.1. Contours for |Z(x + iy)| = 0.1, 0.2, 0.3, 0.4, 0.5, 0.7, 1, 2, 3, 10, 100 for
x ≥ 0. The altitude contours are symmetric for x < 0 but the phase is not, tending toward
0◦ on the negative x-axis. The phase (· · ·) is shown every 15◦ except in the vicinity of the
zeros where the interval is 30◦.
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B.1.2 Generalized dispersion functions and the Gordeyev integrals

The generalized Gordeyev integrals may be defined by

In(ζ ) = −i
∫ ∞

0
τ neiζτ−τ 2/4 dτ (B.13)

where I0(ζ ) is Gordeyev’s integral. This integral is related to the generalized
dispersion functions, defined by

Zn(ζ ) = 1√
π
P

∫
C

zne−z2

z − ζ
dz + i

√
π

kz
|kz|ζ

ne−ζ 2 (B.14)

(where C is the integration path that goes through the singularity) through the
relations I0(ζ ) = −Z0(ζ ) = −Z(ζ ). The integrals of various orders are related
by

In(ζ ) = (−i)n d
n I0(ζ )

dζ n
(B.15)

and the Zn(ζ ) are related by

dZn(ζ )

dζ
= −2Zn+1(ζ )+ nZn−1(ζ ). (B.16)

The Zn(ζ ) also have a recursion formula given by

Zn+1(ζ ) = ζ Zn(ζ )+ (n − 1)!!
2n/2

εn (B.17)

where εn = 1 for even n and εn = 0 for odd n. Several relations to the plasma
dispersion function are

Z0(ζ ) = Z(ζ ) (B.18)

Z1(ζ ) = − 1
2 Z

′(ζ ) (B.19)

Z2(ζ ) = − ζ

2
Z ′(ζ ) (B.20)

1− 2Z3(ζ ) = ζ 2Z ′(ζ ) (B.21)
2Z3(ζ )

Z1(ζ )
= 2ζ 2 − 2

Z ′(ζ )
. (B.22)

B.1.2.1 Asymptotic series

The asymptotic expression for odd n is

Z2n−1(ζ ) = −
N∑
j=0

(2(n + j)− 1)!!
2n+ j ζ 2( j+1)

+ iσ
√
π

kz
|kz |ζ

2n−1e−ζ 2 (B.23)

where N(ζ ) truncates the series when the terms no longer decrease in magnitude.
The series with even n follows from equation (B.17) where Z2n(ζ ) = ζ Z2n−1(ζ )
for n > 0 while for n = 0, one uses equation (B.5).

Copyright © 2003 IOP Publishing Ltd.



B.1.2.2 Power series

For small arguments, one begins with equation (B.3) for Z0(ζ ) = Z(ζ ) as
the starting point, and then equation (B.17) is used for higher n. Because the
combination 2Z3/Z1 appears together on some occasions, its series varies as

2Z3(ζ )

Z1(ζ )
= 1− i

√
πζ + (4− π)ζ 2 + i(π − 3)

√
πζ 3 +O(ζ 4). (B.24)

B.1.3 Relation to the error function for complex argument

We begin the analysis by examining the commonly occurring integral

I =
∫ ∞

−∞
f0(v) dv

p + ikv
Re(p) > 0 (B.25)

where the distribution function is a Maxwellian described by

f0(v) = n0√
πv0

exp

(
−v2

v20

)

and v0 = √2KT/m. If we write

1

p + ikv
=
∫ ∞

0
e(p+ikv)t dt

then the original integral becomes

I = n0√
πv0

∫ ∞

0
dt e−pt

∫ ∞

−∞
dv e−v2/v20−p+ikvt .

Completing the square in the velocity integral, we obtain

I = n0√
πv0

∫ ∞

0
dt e−pt−kv20 t2/4

∫ ∞

−∞
dv exp


− 1

v20

(
v + ikv20 t

2

)2
= n0

∫ ∞

0
dt e−pt−kv20 t2/4.

Completing the square again with p = −ikv0x so that Im(x) > 0, then

I = n0e
−x2

∫ ∞

0
e(kv0t/2−ix)2 dt .

Then let kv0t/2 − ix = u so that

I = 2n0
kv0

e−x2
∫ ∞

−ix
e−u2 du = 2n0

kv0
e−x2

(∫ 0

−ix
e−u2 du +

√
π

2

)
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and with the final variable change, we let iu = τ so that equation (B.25) may be
written as

I = n0
√
π

kv0
e−x2

(
1+ 2i√

π

∫ x

0
eτ

2
dτ

)
(B.26)

and x = ip/kv0 or x = ω/kv0 if p = −iω so that Im(ω) > 0. Equation (B.26)
is in the form of the error function for a complex argument [71] such that

I = n0
√
π

kv0
w(x)

and w(x) is the tabulated function. Comparing this with the plasma dispersion
function in chapter 4, we see that

Z(x) = i
√
πw(x) = i

√
πe−x2Erfc(−ix). (B.27)

B.1.4 Relation to the Y function

In Russian literature, the complex error function is tabulated as the Y function
where

Y (z) ≡ i
√
π ze−z2

(
1+ 2i√

π

∫ z

0
et

2
dt

)
(B.28)

so that

Y = i
√
π zw(z)

= zZ(z). (B.29)

Because the plasma dispersion function satisfies the differential equation

Z ′(ζ ) = −2[1+ ζ Z(ζ )]
both the plasma dispersion function and its derivative may be simply expressed
by means of the Y function as

Z(ζ ) = Y (ζ )/ζ (B.30)

Z ′(ζ ) = − 2[1+ Y (ζ )]. (B.31)

B.1.5 Relation to the W function

Another equivalent function, similar to the Y function is the W function, which is
defined by [118]

W (y) = 1√
2π

∫ ∞

−∞
xe−x2/2

x − y
dx Im(y) > 0. (B.32)
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If we let x = √2ξ , this becomes

W (y) = 1√
π

∫ ∞

−∞
ξe−ξ2

ξ − y/
√
2
dξ (B.33)

so it is related to the Z function either by

W (y) = 1+ y√
2
Z

(
y√
2

)
= −1

2
Z ′
(

y√
2

)
(B.34)

or letting y = √2ζ , by

W (
√
2ζ ) = 1+ ζ Z(ζ ) = − 1

2 Z
′(ζ ). (B.35)

The W function satisfies the differential equation

dW

dy
= W − 1

y
− yW. (B.36)

B.2 Weakly relativistic plasma dispersion function, Fq(z)

The weakly relativistic dispersion function (sometimes called the Dnestrovskii
function) is defined by

Fq (z) ≡ −i
∫ ∞

0

eizt

(1− it)q
dt . (B.37)

B.2.1 Relation to other functions

The properties of this function were described by Dnestrovskii et al [50], and its
relation to other functions was noted by Lazzaro et al [119]. It is equivalent to the
confluent hypergeometric function of the second kind by

Fq (z) = ψ(1, 2 − q, z) = zq−1ψ(q, q, z) (B.38)

and this allows us to identify it with the error function so that for q = 1
2 ,

F1
2
(x) = √

π/xex [1− erf(
√
x)] (B.39)

which establishes the connection noted by Shkarofsky [51] between Fq(z) and
the plasma dispersion function.

iF1
2
(z) =

∫ ∞

0

eizt

(1− it)1/2
dt = 1√

z
Z(i
√
z). (B.40)

Integrating Fq by parts for q > 1
2 , we find

Fq =
q−3/2∑
p=0

(−z)p
(q − p − 1)


(q)
+
√
π


(q)
(−z)q−3/2[i√zZ(i

√
z)]. (B.41)
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B.2.2 Properties of Fq (z)

A useful recursion relation for finding the properties of the higher order functions
is

(q − 1)Fq(z) = 1− zFq−1 (B.42)

so the first few of the functions are

F1
2
=




Z(i
√
z)

i
√
z

z > 0

Z∗(
√−z)√−z z < 0

(B.43)

F3
2
= − Z̃ ′(i

√
z) (B.44)

F5
2
= 2

3 [1− zZ ′(i
√
z)]. (B.45)

For a large argument, the weakly relativistic dispersion function with half-
integer order varies as

Fq (z) � 1

z

N∑
n=0

(−1)N
(n + q)


(q)zn
N + q ≤ |z| (B.46)

� 1

z

(
1− q

z
+ q(q + 1)

z2
− · · ·

)
. (B.47)

It is thus real for real argument.
For small arguments, we first note that for F1

2
, the function is real for positive

real argument, since Z(ζ ) is pure imaginary for pure imaginary ζ = i
√
z. For

z < 0, however, i
√
z is real, and Z(ζ ) is complex for real argument. Then using

equation (B.41) for q ≥ 3
2 , we may approximate

Fq (z) � 1

q − 1
− iπ(−z)q−1ez


(q)
(B.48)

where the imaginary part is exact for z < 0 from equation (B.41).

B.3 Generalized relativistic plasma dispersion function,
Fq(z, a)

The weakly relativistic dispersion function Fq(z) is for perpendicular propagation
only, while the generalized function Fq(z, a) includes the effects of a parallel
component through the parameter a = 1

2µn
2‖, and zn = µ(1 + nωc/ω) where

µ = KTe/mec2.
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F

B.3.1 Properties ofFq(z, a)

Definition:

Fq(z, a) ≡ −i
∫ ∞

0

exp[izt − at2/(1− it)] dt
(1− it)q

. (B.49)

Limiting form:
lim
a→∞Fq(zn, a) = −Z(ζn)/n‖β. (B.50)

Recursion formula:

aFq+2(z, a) = 1+ (a − z)Fq(z, a)− qFq+1(z, a). (B.51)

Differential equations:

∂Fq(z, a)

∂z
= Fq(z, a)− Fq−1(z, a)

∂Fq(z, a)

∂a
= Fq−1(z, a)− 2Fq(z, a)+ Fq+1(z, a).

Asymptotic form:

Fq(z, a) = 1

z

[
1− q

z
+ q(q + 1)+ 2a

z2
−q(q + 1)(q + 2)+ 6(q + 1)a

z3
+ · · ·

]

= 1

z

[
1− A1

z
+ A2

z2
− A3

z3
+ A4

z4
− · · ·

]
(B.52)

where A0 = 1, A1(q) = q , and the higher An are found from the recursion
relation:

An+1(q) = q An(q + 1)+ a[An(q + 2)− An(q)].

B.3.2 Relation to Z(ζ )

F 1
2
(z, a) =




1

2i
√
z − a

[
Z
(√

a + i
√
z − a

)− Z∗
(√

a + i
√
z − a

)]
z > a

− 1

2
√
a − z

[
Z
(√

a −√a − z
)+ Z

(−√a −√a − z
)]

z < a

(B.53)

F 3
2
(z, a) =



− 1

2
√
a

[
Z
(√

a + i
√
z − a

)+ Z∗
(√

a + i
√
z − a

)]
z > a

− 1

2
√
a

[
Z
(√

a −√a − z
)− Z

(−√a −√a − z
)]

z < a.

(B.54)
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B.4 Gamma function, �(z)

Definition: The gamma function, which for integer values is related to the
factorial function, is defined by the integral


(z) =
∫ ∞

0
t z−1e−tdt Re z > 0. (B.55)

Useful relations: Integrating by parts, it is easy to establish the recursion
formula


(z + 1) = z
(z) (B.56)

which for integer values becomes


(n + 1) = n! (B.57)

since 
(1) = 1. Some useful special values and relations are




(
1

2

)
= √π 
(1+ iy)
(1− iy) = πy

sinhπy
.

Asymptotic expressions: For large arguments, Stirling’s formula gives


(z) = √2πzz−
1
2 exp

(
−z + 1

12z
− 1

360z3
+ · · ·

)
. (B.58)

For large half-integer values, it is convenient to use the alternate formula




(
z + 1

2

)
= √2πzz exp

(
−z − 1

24z
+ 7

2880z3
− · · ·

)
. (B.59)

Hankel’s contour integral:

1


(z)
= i

2π

∫
C
(−t)−ze−tdt (|z| <∞). (B.60)

The path of integration C starts at +∞ on the real axis, circles the origin in the
counterclockwise direction and returns to the starting point.

Incomplete gamma functions γ (a, x) and 
(a, x): The incomplete gamma
functions are defined by

γ (a, x) =
∫ 1

0
e−t xa−1 dx Re(a) > 0 (B.61)


(a, x) = 
(a)− γ (a, x) =
∫ ∞

x
e−t xa−1 dx . (B.62)
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The recursion formula is

γ (a + 1, x) = aγ (a, x)− xae−x . (B.63)

The continued fraction expansion for 
(a, x) is


(a, x) = e−x xa
(

1

x+
1− a

1+
1

x+
2− a

1+
2

x+
)

x > 0. (B.64)

The error with this continued fraction does not decrease monotonically until a
large number of terms is used, so it must be used with care. Also its accuracy is
sensitive to relatively small changes in a. For large |x |, the asymptotic expression
is


(a, z) ∼ e−zza−1
[
1+ a − 1

z
+ (a − 1)(a − 2)

z2
+ · · ·

]
|arg| < 3π

2
.

(B.65)

B.5 Generalized hypergeometric functions

The generalized hypergeometric functions used in chapter 4 are defined by the
power series

1F2(a; b1, b2; x) = 
(b1)
(b2)


(a)

∞∑
k=0


(a + k)


(b1 + k)
(b2 + k)

xk

k!
(B.66)

2F3(a1, a2; b1, b2, b3; x) = 
(b1)
(b2)
(b3)


(a1)
(a2)

×
∞∑
k=0


(a1 + k)
(a2 + k)


(b1 + k)
(b2 + k)
(b3 + k)

xk

k! .

(B.67)

B.5.1 Integrals leading to hypergeometric functions of the first type

Integrals over the angle that lead to the hypergeometric functions of the first type,
1F2(a1; b1, b2, x), are:∫ π

0
sin θ [Jn(b sin θ)]2 dθ

= 2b2n1F2(n + 1
2 ; n + 3

2 , 2n + 1; −b2)
(2n + 1)! (B.68)
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∫ π

0
sin2 θ Jn(b sin θ)J

′
n(b sin θ) dθ

= b2n−11F2(n + 1
2 ; n + 3

2 , 2n; −b2)
(2n + 1)(2n − 1)!

− b2n+11F2(n + 3
2 ; n + 5

2 , 2n + 2; −b2)
(2n + 3)(2n + 1)!

(B.69)∫ π

0
sin2 θ Jn(b sin θ)Jn−1(b sin θ) dθ

= 2b2n−11F2(n + 1
2 ; n + 3

2 , 2n; −b2)
(2n + 1)(2n − 1)!

(B.70)∫ π

0
sin3 θ [Jn−1(b sin θ ]2 dθ

= 4nb2n−21F2(n − 1
2 ; n + 3

2 , 2n − 1; −b2)
(2n + 1)(2n − 1)!

− 4b2n1F2(n + 1
2 ; n + 5

2 , 2n; −b2)
(2n + 3)(2n + 1)(2n − 1)!

(B.71)∫ π

0
sin θ cos2 θ [Jn(b sin θ)]2 dθ

= 2b2n1F2(n + 1
2 ; n + 5

2 , 2n + 1; −b2)
(2n + 3)(2n + 1)! .

(B.72)

B.5.2 Integrals leading to hypergeometric functions of the second type

Integrals over the angle that lead to the hypergeometric functions of the second
type, 2F3(a1, a2; b1, b2, b3, x), are:∫ π

0
sin θ Ja(b sin θ)J−a(b sin θ) dθ

= 2 sinπa

πa
2F3

(
1

2
, 1; 3

2
, 1− a, 1+ a; −b2

)
(B.73)∫ π

0
sin2 θ Ja(b sin θ)J ′−a(b sin θ) dθ

= b sinπa

3πa(a − 1)
2F3

(
3

2
, 1; 5

2
, 2 − a, 1+ a; −b2

)

− sinπa

πb
2F3

(
1

2
, 1; 3

2
,−a, 1+ a; −b2

)
(B.74)
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∫ π

0
sin2 θ Ja(b sin θ)J1−a(b sin θ) dθ

= − 2b sinπa

3πa(a − 1)
2F3

(
3

2
, 1; 5

2
, 2− a, 1+ a; −b2

)
(B.75)∫ π

0
sin2 θ Ja−1(b sin θ)J−a(b sin θ) dθ

= 2 sinπa

πb
2F3

(
1

2
, 1; 3

2
, 1− a, a; −b2

)
(B.76)∫ π

0
sin3 θ Ja−1(b sin θ)J1−a(b sin θ) dθ

= − 4 sinπa

3π(a − 1)
2F3

(
1

2
, 2; 5

2
, 2− a, a; −b2

)
(B.77)∫ π

0
sin θ cos2 θ Ja(b sin θ)J−a(b sin θ) dθ

= 2 sinπa

3aπ 2F3

(
1

2
, 1; 5

2
, 1− a, 1+ a; −b2

)
. (B.78)
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Appendix C

The amplitude equations of geometric
optics

In this appendix, we take an alternate approach to the equations of geometric
optics in a slowly varying medium, and derive a specific set of amplitude
equations which are ultimately equivalent to those in section 6 but more
symmetric formally. The analysis here uses some of the formalism of
Bernstein [90], but follows more closely the development of Bravo-Ortega [120].

C.1 The current density

We begin with the general expression for a nonlocal current density, where a
disturbance at r ′′, t ′′ induces a current at r, t through the nonlocal conductivity
such that

J(r, t) =
∫

d3r ′′
∫ t

−∞
dt ′′ σ̂ [r − r ′′, t − t ′′; 12 (r + r ′′), 1

2 (t + t ′′)] · E(r ′′, t ′′)
(C.1)

where in this appendix, we use the hat to denote a tensor. We note that in a
homogeneous plasma, the difference terms remain, but the mean location and time
terms disappear so that we expect relatively rapid variation from the difference
terms and relatively slow variation from the mean terms. As in section 6.5, we
represent the wave electric field as

E(r, t) = a(r, t)eiψ(r,t) (C.2)

where ψ(r, t) is called the eikonal from which we define

k(r, t) ≡ ∇ψ(r, t) ω(r, t) ≡ − ∂

∂ t
ψ(r, t). (C.3)

The phase function here is rapidly varying (over the scale length of a wavelength
and period of the wave) and a is slowly varying (over the scale length of the
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plasma inhomogeneity) by assumption. Since geometric optics is essentially a
local theory, the nonlocal effects in space and time will be treated to lowest
nontrivial order. For simplicity, we introduce the change of variable

r ′ ≡ r − r ′′ t ′ = t − t ′′

so the current density becomes

J(r, t) =
∫

d3r ′
∫ ∞

0
dt ′ σ̂ (r ′, t ′; r− 1

2 r ′, t− 1
2 t
′) · a(r− r ′, t− t ′)eiψ(r−r′,t−t ′).

(C.4)
We now expand the slow time dependence only in the conductivity tensor, so that

σ̂ (r ′, t ′; r − 1
2 r ′, t − 1

2 t
′) =

(
1− 1

2
r ′ · ∇ − 1

2
t ′ ∂
∂ t
+ · · ·

)
σ̂ (r ′, t ′; r, t)

a(r − r ′, t − t ′) =
(
1− r ′ · ∇ − t ′ ∂

∂ t
+ · · ·

)
a

ψ(r − r ′, t − t ′) = ψ − r ′ · k + t ′ω + t ′r ′ · ∂
∂ t

k

+ 1

2
r ′ · (r ′ · ∇)k − 1

2
t ′2 ∂
∂ t
ω + · · · .

Using the relation from equation (C.3) that ∂k/∂ t = −∇ω, along with the tensor
identity for general tensor B̂,

∇ · (φABij ) = (A · φ + φ∇ ·A+ φA · ∇)Bij

from which we obtain

∇ · [ei(ωt ′−k·r ′)r ′σ̂ ] = ei(ωt
′−k·r ′){r ′ · ∇σ̂ + i[t ′r ′ · ∇ω − r ′ · (r ′ · ∇)k]σ̂ }

we may write the current density as

J = eiψ(r,t)
{∫

d3r ′
∫ ∞

0
dt ′ ei(ωt ′−k·r ′)

[
σ̂ · a − σ̂ ·

(
r ′ · ∇a + t ′ ∂a

∂ t

)]

− 1

2

[
∂

∂ t

∫
d3r ′

∫ ∞

0
dt ′ ei(ωt ′−k·r ′)t ′σ̂

]
· a

− 1

2

[
∇ ·

∫
d3r ′

∫ ∞

0
dt ′ ei(ωt ′−k·r ′)r ′σ̂

]
· a
}
.

We note that a is outside the integrals since it depends on r, t only.
We now define a Fourier transform in space and a Laplace transform in time

such that

σ̂T (k, ω; r, t) ≡
∫

d3r ′
∫ ∞

0
dt ′ ei(ωt ′−k·r ′)σ̂ (C.5)
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so that

i∇k σ̂T =
∫

d3r ′
∫ ∞

0
dt ′ ei(ωt ′−k·r ′)r ′σ̂

−i∂σ̂T
∂ω

=
∫

d3r ′
∫ ∞

0
dt ′ ei(ωt ′−k·r ′)t ′σ̂ .

Using this transform and the notation σ̂ · (r ′ · ∇)a ≡ r ′σ̂ : ∇a, and introducing
the tensor κ̂ defined by

κ̂ · a ≡ − i

2

[
∇ · (∇k σ̂T )− ∂

∂ t

(
∂σ̂T

∂ω

)]
· a − i

[
∇k σ̂T : ∇a − ∂σ̂T

∂ω

∂a
∂ t

]
(C.6)

the current density may be expressed as

J(r, t) = (σ̂T + κ̂) · aeiψ(r,t). (C.7)

C.2 The wave equation

Using the current density from the previous section, we wish to solve the wave
equation

∇ × (∇ × E)+ 1

c2
∂2E
∂ t2

+ µ0
∂ J
∂ t

. (C.8)

Then using equation (C.2) for E and equation (C.7) for J , the wave equation may
be expressed as

ε̂ · a = c2

ω2
{∇ × (∇ × a)+ i[k × (∇ × a)+∇ × (k × a)]

× 1

ω2

{
∂2a
∂ t2

− i

[
ω
∂a
∂ t
+ ∂

∂ t
(ωa)+ ∂

∂ t
(Q̂ · a)

]}

+ 1

ω2ε0

[
∂

∂ t
(κ̂ · a)− iωκ̂ · a

]
(C.9)

where we have introduced the definitions

Q̂ ≡ iσ̂T
ε0

ε̂ ≡ c2

ω2 (kk − k2 Î )+ Î + Q̂

ω
.

C.3 The amplitude equation

At this point we introduce the ordering where the amplitude has a dominant term
and perturbations at various orders, so that we may write

a = a0 + δa1 + δ2a2 + · · ·
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where δ is a small expansion parameter. We now note that the quantities a, k,
and ω are zero order quantities while ∇ and ∂

∂t (and hence κ̂) are first order in δ.
The zero order equation is then trivial since everything on the right-hand side of
equation (C.9) is first order or higher. Hence,

ε̂ · a0 = 0 (C.10)

from which the basic ray equations were derived. The first order equation follows
immediately as

ε̂ · a1 = i
c2

ω2
[k × (∇ × a0)+ ∇ × (k × a0)]

− i

ω2

[
ω
∂a0
∂ t

+ ∂

∂ t
(ωa0)+ ∂

∂ t
(Q̂ · a0)

]

− i

ε0ω
ωκ̂ · a0. (C.11)

Expanding κ̂ and using vector identities (and deleting the 0 subscript since it is no
longer ambiguous) and the additional identities,

ωε̂ =
(
ω − c2

k2

ω

)
Î + c2

kk
ω
+ Q̂

∂ωε̂

∂ω
=

(
1+ c2

k2

ω2

)
Î − c2

kk
ω2
+ ∂ Q̂

∂ω

∇k(ωε̂) : ∇a = c2

ω
[−2(k · ∇)a +∇a · k + k∇ · a] + ∇k Q̂ : ∇a

∇ · [∇k(ωε̂)] · a = 2c2

ω
[∇k · a − a∇ · k] + ∇ · (∇k Q̂) · a

− c2

ω2
[∇(ωk) · a + k(a · ∇)ω − 2(k · ∇)(ωa)]

∂

∂ t

[
∂(ωε̂)

∂ω

]
= 2c2

ω3
(kk − k2 Î )

∂ω

∂ t
+
[
∂

∂ t

(
∂ Q̂

∂ω

)]

− c2

ω2
[2(k · ∇ω) Î − ∇ω(k · Î )− k(∇ω · Î )]

this may also be written as

iωε̂ · a1 = −∇k(ωε̂) : ∇a− 1

2
∇ · [∇k(ωε̂)] · a+ ∂(ωε̂)

∂ω
· ∂a
∂ t
+ 1

2

[
∂

∂ t

∂(ωε̂)

∂ω

]
· a.

(C.12)
The solution of the amplitude equations is implicit in equation (C.12), but

this is still very difficult to solve in this form. In order to simplify the form of the
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solution, we introduce b, the null vector of ε̂† which is defined such that

ε̂† · b = b† · ε̂ = 0. (C.13)

Multiplying equation (C.12) on the left by −2b†, we introduce the quantity

I ≡ − 2iωb† · ε̂ · a1

= − 2b† ·
{
−∇k(ωε̂) : ∇a − 1

2∇ · [∇k(ωε̂)] · a

+∂(ωε̂)

∂ω
· ∂a
∂ t
+ 1

2

[
∂

∂ t

∂(ωε̂)

∂ω

]
· a
}

= − ∂

∂ t

[
∂(ωε̂)

∂ω
: ab†

]
+∇ · [∇k(ωε̂) : ab†]

− ∂(ωε̂)

∂ω
:
[
∂a
∂ t

b† − a
∂b†

∂ t

]
+∇k(ωε̂) : [(∇a)b† − a∇b†].

To avoid the complicated vector notation at this point, we introduce dummy
indices such that

∂

∂xi
=

{∇ i = 1, 2, 3
∂

∂ t
i = 4 (C.14)

∂

∂ki
=

{∇k i = 1, 2, 3

− ∂

∂ω
i = 4 (C.15)

in which case the amplitude equation becomes

I = ∂

∂xi

[
akb

†
j

∂(ωε j k)

∂ki

]
+ ∂(ωε j k)

∂ki

(
∂ak
∂xi

b†j − ak
∂b†j
∂xi

)
. (C.16)

From equation (C.13), b†jωbε j kak = 0 so

∂

∂xi

∂

∂ki
(b†jωbε j kak) =

∂

∂xi

[
akb

†
j
∂(ωε j k)

∂ki

]
= 0 (C.17)

and I = 0, so we also have

∂(ωε j k)

∂ki

(
∂ak
∂xi

b†j − ak
∂b†j
∂xi

)
= 0. (C.18)

If we now separate a = αA and b† = βB† where α and β represent the amplitude
and A and B† are unit vectors, then equation (C.17) becomes

I1 = ∂

∂xi

[
αβ

∂

∂ki
(ωε j k Ak B

†
j )

]
= 0. (C.19)
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Since any factor multiplying the dispersion relation may be considered equivalent
to a dispersion relation, so long as the distance along the ray characterized by the
parameter τ is properly defined, we choose to define the dispersion relation as

D ≡ ωε j k Ak B
†
j (C.20)

so that equation (C.19) becomes

I1 = ∂D

∂ki

∂(αβ)

∂xi
+ αβ

∂

∂xi

(
∂D

∂ki

)
= 0.

The corresponding parameter τ is defined then as

d

dτ
≡ ∂D

∂ki

∂

∂xi

so that we obtain
d(αβ)

dτ
+ αβ

∂

∂xi

(
∂D

∂ki

)
= 0

or equivalently

d

dτ
lnαβ = − ∂

∂xi

(
∂D

∂ki

)
. (C.21)

An alternate expression can be obtained from equation (C.18) such that

I2 = ∂(ωε j k)

∂ki

[
AkB

†
j

(
β
∂α

∂xi
− α

∂β

∂xi

)
+ αβ

(
B†
j
∂Ak

∂xi
− Ak

∂B†
j

∂xi

)]

= ∂D

∂ki

(
β
∂α

∂xi
− α

∂β

∂xi

)
+ αβωε j k

(
∂Ak

∂ki

∂B†
j

∂xi
− ∂B†

j

∂ki

∂Ak

∂xi

)

+ αβ

[
∂

∂ki
(ωε j k B

†
j )
∂Ak

∂xi
− ∂

∂ki
(ωε j k Ak)

∂B†
j

∂xi

]

− ωε j k

[
∂

∂ki
(Ak B

†
j )

](
β
∂α

∂xi
− α

∂β

∂xi

)
= 0.

From b† · ε̂ = βε j k B
†
j = 0 and ε̂ · a = αωε j k Ak = 0, the last terms vanish, and

dividing by αβ, we have

d

dτ
ln
α

β
= ωε j k

(
∂Ak

∂ki

∂B†
j

∂xi
− ∂B†

j

∂ki

∂Ak

∂xi

)
. (C.22)

Copyright © 2003 IOP Publishing Ltd.



Combining equations (C.21) and (C.22), the amplitude equations acquire their
final symmetric form,

d

dτ
lnα2 = − ∂

∂xi

(
∂D

∂ki

)
− ωε j k

(
∂Ak

∂ki

∂B†
j

∂xi
− ∂B†

j

∂ki

∂Ak

∂xi

)
(C.23)

d

dτ
lnβ2 = − ∂

∂xi

(
∂D

∂ki

)
+ ωε j k

(
∂Ak

∂ki

∂B†
j

∂xi
− ∂B†

j

∂ki

∂Ak

∂xi

)
. (C.24)

We note that the first term in each expression is the four-dimensional divergence
of the group velocity, and the Poisson brackets vanish for Hermitian dielectric
tensors since then a = b∗.

We conclude the amplitude equations by noting that the components of a are
obtained from the minors of ε̂ with respect to any row and b† is determined from
the minors of ε̂ with respect to any column. Hence

a ∝

 ε22ε33 − ε23ε32

ε23ε31 − ε21ε33
ε21ε32 − ε22ε31


 (C.25)

and

b† ∝ [(ε22ε33 − ε23ε32), (ε13ε32 − ε12ε33), (ε12ε23 − ε13ε22)]. (C.26)

Normalizing these vectors yields the unit vectors.

C.4 Energy density conservation

In order to cast the amplitude equations in a more useful form, we may recast
equation (C.21) as

d

dt
ln

(
αβ

∂D

∂ω

)
= −∇ · ωk (C.27)

where ωk = dr/dt is the group velocity. If we then add equation (C.27) to its
complex conjugate, and define the energy density U by

U = ε0

2
Re

(
αβ

∂D

∂ω

)

then the energy density conservation law is

1

U

dU

dt
= −Re(∇ · ωk) (C.28)

whose solution is

U = U0 exp
[
−
∫ t

0
dt ′ Re(∇ · ωk)

]
. (C.29)
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In the weak damping limit, it is useful to separate the energy density into
the principal part which comes from the anti-Hermitian part of σ̂ (the Hermitian
part of ε̂), and the small part of order δ which comes from the Hermitian part of
σ̂ . Letting U ≡ U + UH where UH is the small absorptive term, we may write
equation (C.28) as

dU

dt
= − dUH

dt
− (U + UH )∇ · ωk

� − U∇ · ωk + iωUH .

The energy density due the Hermitian part of the dielectric tensor is to lowest
order given by

UH � i

2ω
a∗ · σ̂ H · a

so the result may be written as

dU

dt
= −U∇ · ωk − 1

2a∗ · σ̂ H · a. (C.30)
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Appendix D

Answers to selected problems

Chapter 2 Waves in a cold uniform plasma

Problem 2.1.2. Zeros of D.

(i) With only one ion species,

D = ωciω
2
pi

ω(ω2 − ω2
ci )
− ωceω

2
pe

ω(ω2 − ω2
ce)

= 0

so we have

ω2(ω2
piωci − ωceω

2
pe) = ω2

piωciω
2
ce − ω2

peωceω
2
ci = 0

because of charge neutrality. Hence either ω = 0 or ω2
pi = ω2

pe = 0 or
ωci = ωce = 0, all of which are forbidden by the problem statement.

(ii) Near each ion cyclotron resonance, the term in D due to that species
will dominate sufficiently close to the resonance and will change sign as one
passes through the resonance. This requires D to be positive just above each ion
resonance and negative just below each ion resonance, and hence D must pass
through zero between each adjacent pair of resonances.
Problem 2.2.1. The ordinary wave. From the dispersion relation for the O-wave,
n2 = 1− ω2

p/ω
2, we may solve for ω:

ω =
√
ω2
p + k2c2

so the phase velocity is

vp = ω

k
=

√
ω2
p + k2c2

k
.
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Similarly, the group velocity is given by

vg = ∂ω

∂k
= kc2√

ω2
p + k2c2

so the product is vpvg = c2.
Problem 2.2.5. Change of polarization. Letting sin2 θ = P/S, then the
coefficients of equation (2.22) become

A = P(2 − P/S)
B = RLP/S + PS(2 − P/S)
C = PRL

and since the polarization changes when n2 = S from equation (2.49), we try this
in equation (2.21) to get

P(2 − P/S)S2 − [RLP/S + PS(2 − P/S)]S + PRL = 0

so n2 = S is a solution and Ex changes sign at that angle along with the
polarization.

Problem 2.5.1. The whistler wave.

(i) Beginning with equation (2.79),

tanα =
1
k
∂ω
∂θ
|k

∂ω
∂k |θ

= − kc2ωce sin θ/ω2
pe

2kc2ωce cos θ/ω2
pe
= −1

2
tan θ

so

d

dθ

(
tan θ

2+ tan2 θ

)
= (2+ tan2 θ) sec2 θ − tan θ(2 tan θ sec2 θ)

(2+ tan2 θ)2
= 0

so tan2 θ = 2 and the rest follows from the text.
(ii) The magnitude of the group velocity is given from equation (2.54) by

vg =
√(

∂ω

∂k

∣∣∣∣
θ

)2

+
(
1

k

∂ω

∂θ

∣∣∣∣
k

)2

= kc2ωce

ω2
pe

√
1+ 3 cos2 θ

(iii) The plots are shown in figure D.1.
(iv) Eventually, as θ → π/2, it reaches the angle where tan2 θr = −P/S �

1, so the wave ceases to propagate and vp → 0. The wave normal surfaces are not
quite the perfect circles, then, that they appear to be in figure D.1 and the polar
plot of vg has a narrow tail reaching to the origin.
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Figure D.1. (a) Wave normal surfaces vp(θ) and (b) group velocity polar plot, vg(φ)
where φ = θ + α, for the whistler mode.

Problem 2.6.1 Faraday rotation.

ω2
pe = 9.16× 106 → n̄ = 2.8× 103/m3.

Problem 2.7.1. Phase shift with nonuniform density profile.

(i)

φ = ωL

2c

[
a2

α
sinh−1

(α
a

)
− 1

]
.

(ii)

φ = ωL

c

[
2

π
E(α2)− 1

]

where E is the complete elliptic integral of the second kind.

Problem 2.8.1 Cold electrostatic waves. Since for the X-Wave, the dispersion
relation is

n2 = RL/S

and the hybrid resonances occur where S → 0, then near the hybrid resonances,
n2 → ∞ and neither P nor S is getting large. Thus the sufficient condition is
satisfied.

Copyright © 2003 IOP Publishing Ltd.



Chapter 3 Waves in fluid plasmas

Problem 3.4.2. Low frequency dispersion relation with collisions.

(ii) equation (3.56) becomes

ω � kVA cos θ

[
1− ik2c2

2ω2
pe
(ε‖ sin2 θ + ε⊥ cos2 θ)

]

equation (3.57) becomes

ω2 = k2[V 2
A + c2s sin

2 θ ](1− ik2c2ε⊥/ω2
pe)

and equation (3.58) is unchanged to lowest order.

Chapter 4 Kinetic theory of plasma waves

Problem 4.2.1. Properties of the plasma dispersion function.

(iv)(b) For an eight-digit machine, ζc = 3.3 for 4.7 digits accuracy. For the
14-digit machine, ζc = 4.3 for 7.8 digits accuracy.

Problem 4.2.3. Landau damping with a Lorentzian distribution.

(i) A = n0ve/π .
(ii) The potential and distribution function are given by

φ̃p(k, p) =
iωω2

pe�meve(p + kve)

ek2[(p + kve)2 + ω2
pe]

f̃ p(u, k, p) = g(u)

p + iku

{
1− 2ω2

peve(p + kve)

k(u2 + v2e )[(p + kve)2 + ω2
pe]

}
.

(iii) The potential is thus given by

φ̃(k, t) = iωω2
pe�meve

ek2
e−kvet cos(ωpet).

The distribution function is more complicated, but is given by

f̃ = g(u)e−ikut
[
1− 2ω2

peve

A
k(u2 + v2e )

]

+ 2g(u)ω2
peve A

k(u2 + v2e )
e−kvet

[
cos(ωpet)− ωpe

k(ve − iu)
sin(ωpet)

]

where A = k(ve − iu)/[k2(ve − iu)2 + ω2
pe], so the leading term does not decay

in time but the second term does.
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Problem 4.2.4. The electrostatic picture of Landau damping.

(iii) I = n0kt exp[−(kvet/2)2] cosωt . So κ = (kve/2)2.
(iv) I = n0kte−kvet cosωt .

Problem 4.2.5. The ordinary wave in a hot unmagnetized plasma. Even with
the hot plasma corrections, vp > c, so there cannot be any Landau damping
of the type we have considered here. The theory here will imply some, since a
Maxwellian has finite (but exponentially small) amplitude even for vp > c, but the
physical picture tells us this is a weakness in our analysis. A relativistic analysis
requires a momentum distribution, f (p) ∼ exp(−p2/2m0KT ) with v < c, and
results in only slight changes in phase velocity.

Problem 4.3.9 Lorentz distribution.

(i) With v0 �= 0, Fm = (v0 − iv�)m/kzv�(ζn + i), and∫ ∞

−∞
F ′(vz) dvz

ω + nωc − kzvz
= − 1

kzv2� (ζn + i)2∫ ∞

−∞
vz F ′(vz) dvz

ω + nωc − kzvz
= − ζn + v0/v�

kzv�(ζn + i)2
.

(ii) With v0 = 0, simply let v0 → 0 in the previous expressions.
Note that these results are equivalent to letting Z(ζn)→ −1/(ζn + i).

Problem 4.3.10. Cold plasma limits.

(i) As T⊥ → 0, λ→ 0, so

K0 → 0

K1 → 1+
∑
j

ω2
pj

ωkzv�j

{
1

2
[Z(ζ+1 j )+ Z(ζ−1 j )]

+kzv�j
4ω

[Z ′(ζ+1 j )+ Z ′(ζ−1 j )]
}

K2 → i
∑
j

ε jω
2
pj

ωkzv�j

{
1

2
[Z(ζ−1 j )− Z(ζ+1 j )] + kzv�j

4ω
[Z ′(ζ−1 j )− Z ′(ζ+1 j )]

}

K3 → 1−
∑
j

ω2
pj

ωkzv�j

{
ζ0 j Z

′(ζ0 j )+ k2⊥v�
4kzωωcj

[(ω − ωcj )Z
′(ζ−1 j )

− (ω + ωcj )Z
′(ζ+1 j )]

}

K4 → −
∑
j

k⊥ω2
pj

2ω2kz

1

2
[Z ′(ζ+1 j )+ Z ′(ζ−1 j )]
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K5 → i
∑
j

k⊥ε jω2
pj

2ω2kz

1

2
[Z ′(ζ+1 j )− Z ′(ζ−1 j )].

(ii) As T‖ → 0, v� → 0, so in this limit, Z(ζnj )/kzv� → −1/(ω + nωcj )

and Z ′(ζnj )/(kzv�)2 → 1/(ω + nωcj )
2, and the tensor elements become

K0 → 2
∑
j

ω2
pje

−λ j

ω

∞∑
n=−∞

λ j (I ′n − In)

ω + nωcj

[
1+ k2z v

2⊥ j

ω(ω + nωcj )

]

K1 → 1−
∑
j

ω2
pje

−λ j

ω

∞∑
n=−∞

n2 In
λ j (ω + nωcj )

[
1+ k2z v

2⊥ j

ω(ω + nωcj )

]

K2 → i
∑
j

ε jω
2
pje

−λ j

ω

∞∑
n=−∞

n(I ′n − In)

ω + nωcj

[
1+ k2z v

2⊥ j

ω(ω + nωcj )

]

K3 → 1−
∑
j

ω2
pje

−λ j

ω2

∞∑
n=−∞

In = 1−
∑
j

ω2
pj

ω2

K4 →
∑
j

ω2
pj kzk⊥v2⊥ j e

−λ j

2ω2ωcj

∞∑
n=−∞

nIn
λ j (ω + nωcj )

K5 → i
∑
j

ε jω
2
pj kzk⊥v2⊥ je

−λ j

2ω2ωcj

∞∑
n=−∞

In − I ′n
ω + nωcj

.

(iii) Taking T‖ → 0 last, or first taking T⊥ = T‖ = T and then taking
T → 0, one recovers the cold plasma terms (and K0 = K4 = K5 = 0). The order
does not matter.

Problem 4.4.2. The unmagnetized ion dispersion relation.

(ii) Keeping the first warm plasma term, the result may be written as a
quadratic in ω2 of the form

aω4 − bω2 − c = 0

with

a = k2z + k2⊥(1+ ω2
pe/ω

2
ce)

b = k2zω
2
p + k2⊥ω2

pi

c = 3
2k

4v2i ω
2
pi .

Since a, b, and c are all positive, one of the roots for ω2 is negative, so that ω is
imaginary for these roots. The other root is given approximately by

ω2 � b

a
+ c

b
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Figure D.2. Plot of k2⊥ versus fractional deviation from lower hybrid frequency, �/ω0
with k2z = 10−6, 5 × 10−6, 2 × 10−5, 5 × 10−5 as a parameter with v2i /ω

2
0 = 10−4,

ωpe =
√
2ωce, and mi/me = 1836.

= ω2
0

[
1+ µκ

1+ κ/(1+ α)
+ 3(1+ κ)2k2z v

2
i

2(1+ µκ)κω2
0

]

whereµ = mi/me = 1836, κ = k2z /k
2⊥, and α = ω2

pe/ω
2
ce so thatω

2
0 ≡ ω2

pi/(1+
α). Letting ω = ω0 + �, then for kz = 0, this leads to �/ω0 = 3

4k
2⊥v2i /ω2

0. For
kz �= 0, we have

�

ω0
� κµ

2[1+ κ/(1+ α)] +
3(1+ κ)2

κ(1+ κµ)

k2z v
2
i

ω2
0

.

Figure D.2 plots k2⊥ versus�/ω0 for several values of k2z .

Problem 4.4.3 The large-λ dispersion relation.

(iv) For ν = 40, λ = 100, a = 2.828, b = 0.0705 � aν2/6λ2 =
0.075, η = 0.390 � ν/λ = 0.4, so the worst approximation is 6.4% error.
eb

2−a2 Z(a)/Z(b) = 9.1 × 10−4, hence it is neglectable. Since maximum of z
is iη, coshη = 1.07605 and 1+ η2/2 = 1.07702 so error is of the order of 0.1%.
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Chapter 5 Bounded plasmas

Problem 5.2.2. Surface charge density at the plasma–vacuum interface.

ρs = ε0

(
K3

nxp
− 1

nxv

)
nz Ez .

Problem 5.2.3. Second value of k⊥.

k2⊥1k2⊥2 = (γ 2 + κ22 )
κ3

κ1

k2⊥1 + k2⊥2 = − γ

(
1+ κ3

κ1

)
+ κ22

κ1

Problem 5.3.2. Glass boundary effect.

Keff = Kg

[
(Kg + 1)b2(c2 + a2)− (Kg − 1)(b4 + a2c2)

(Kg + 1)b2(c2 − a2)− (Kg − 1)(b4 − a2c2)

]
.

Problem 5.3.3. Estimates of the Tonks–Dattner resonances. We treat each
resonance separately:

(i) For the main resonance, ω2 = 0.39ω2
p. This compares with ω2 = 0.54ω2

p
from figure 5.5.

(ii) For the first resonance, ka = 0 and ω = ωp compared with ω2 = 1.26ω2
p

from figure 5.5.
(iii) For the second resonance, ka = x0 − ε, x0 = 1.83, ε � 0.76, leading to

ω2 = 1.0069ω2
p. This compares with ω2 = 1.89ω2

p from figure 5.5.

Problem 5.3.7. The unbounded finite column. 1 − ω2
p/ω

2 = −1.9677 which
leads to ω = 0.5805ωp and τa = 2.236. The values of E1z(r)/A for r/a =
0.0, 0.5, 1.0, 1.5, 2.0 are 0.370, 0.506, 1.0, 0.305, 0.098 respectively so E1z(r) is
sketched in figure D.3.

Problem 5.4.1. The effects of ion motions.(
k‖a
pnν

)2
= −1+ ω2

pe/(ω
2
ce − ω2)+ ω2

pi/(ω
2
ci − ω2)

1− ω2
p/ω

2 .

Since ωLH > ωci always, the lower branch of the dispersion relation is modified
(showing only the modifications to the lower branch, as the upper branches are
unchanged) as in figure D.4.

Problem 5.5.3. Waveguide cutoff frequencies.

(iii) For the first case (Bz �= 0), Eθ (a) = 0 so J ′0 = −J1(k⊥a) = 0, so
k⊥a = p1ν = 3.83, 7.01, . . . . For the second case (Ez �= 0), Ez(a) = 0 so
k⊥a = p0ν = 2.405, 5.52, . . . .
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Figure D.3. Sketch of E1z(r) for an unmagnetized plasma column of radius a with
τ0a = 2 and ωpa/c = 1.

Figure D.4. Lower branch of the dispersion relation for electrostatic waves for the case
where ion motions are important. This example has mi/me = 10 and ω2

pi/ω
2
ci = 2.52.

(iv) The cutoff frequency is given by

ω2 = ω2
pe + 1

2 (k
2⊥c2 + ω2

ce)± 1
2 [(k2⊥c2 − ω2

ce)
2 + 4ω2

peω
2
ce]

1
2 .

For the second case, κ3 = k2⊥ = ω2

c2
(1 − ω2

p/ω
2) so ω2 = ω2

pe + k2⊥c2 which is
the same as the infinite magnetic field case.

Problem 5.5.6. Compressional mode excitation coefficients. b/a = p11/p12 =
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Table D.1. Amplitude ratios for fast wave modes for loop excitation.

n p1n An/A1

2 7.01 0
3 10.17 −4.52
4 13.32 1.96
5 16.47 11.01

3.83/7.01 = 0.546. For the relative amplitudes, the ratio is given by

An

A1
= p1n

p11

(
35

36− p21n/p
2
11

)1/2
J1(p1n p11/p12)

J1(p211/p12)

J 20 (p11)

J 20 (p1n)

so the ratios are given in table D.1.

Problem 5.6.1. Boundary condition for vacuum layer in a conducting waveguide.

U(kk⊥1)− U(kk⊥2) = 0

where

U(k⊥ j ) =
J ′m(k⊥ j a)

k⊥ j Jm(k⊥ j a)
+ g′(Ta)

Tg(Ta) −
im[(κ1−ω2

c2
)(γ+k2⊥ j )−κ22 ]

aκ2T 2k2⊥ j

β j J ′m(k⊥ j a)
k⊥ j Jm(k⊥ j a)

+ ω2β j

c2κ3

f ′(Ta)
T f (Ta) +

imk2z κ2
aκ1T 2

(
1+ T 2

k2⊥ j

)
where in the vacuum region, we defined

Ezv = Bm

[
Im(Tr)− Im(Tb)

Km(Tb)
Km(Tr)

]
≡ Bm f (Tr)

Bzv = Dm

[
Im(Tr)− I ′m(Tb)

K ′m(Tb)
Km(Tr)

]
≡ Dmg(Tr).

Problem 5.7.1. The Poynting vector profile. See figure D.5.

Sz = ωk‖ε0|A|2k2⊥[J1(k⊥r)]2/γ 2.

Problem 5.7.2. Thermal corrections. The dispersion relation is

k2⊥ =
p2nν
a2

=
(
ω2

c2
− k2‖

)(
1− ω2

p

ω2 − k2‖v2s

)

where v2s = γ kBT/me. This dispersion relation has the same cutoff as
figure 5.17, but there is no longer a resonance. The slope near the origin is
unchanged, but now as k‖ gets large, there remains a finite slope of ω/k‖ � vs
which is the sound speed. See figure D.6.
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Figure D.5. Power flow versus radius for a plasma-filled waveguide in a magnetic field.

Figure D.6. Dispersion relation for the plasma-filled waveguide in an infinite magnetic
field with finite temperature. For this example, ω0 = ωp and c/vs = 6.

Chapter 6 Inhomogeneous plasmas

Problem 6.2.1. WKB approximation. The approximations are that |η′′| can be
ignored, that ∣∣∣∣∣12 k

′2

k3

∣∣∣∣∣�
∣∣∣∣∣
(
k ′

k2

)′∣∣∣∣∣
and finally that |k ′/k2| � 1.
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Problem 6.2.2. Validity of linear matching to WKB solutions.

(i) k2(x) = αk20x/4+O(x2).
(ii) u = 3

2 (
3α
k0
)2/3.

(iii) 2kdk/dx = 1
4αk

2
0 sech

2 u, so

1

k2
dk

dx
= α

k0(cosh u)1/2(2 sinh u)3/2
.

(iv) The condition |ζ | ≥ 3 may be written

α

k0
≤ (2u)3/2

9
(Airy asymptotic condition) (D.1)

and the limit on k ′/k2 may be written

α

k0
≤ 0.1(coshu)1/2(2 sinh u)3/2 (WKB condition) (D.2)

and these are both monotonically increasing functions of u, so there always exists
a value of α/k0 which is small enough for validity for any value of u.

(v) The percentage error between the linear approximation and the exact
expression may be found from

% error =
∣∣∣∣∣k

2(u)− 1
2k

2
0u

k2(u)

∣∣∣∣∣× 100% = |1− uctnhu| × 100%. (D.3)

Calculating the percentage error from equation (D.3), the Airy limit on α/k0 from
equation (D.1) and the WKB limit from equation (D.2), all as a function of u, the
results may be expressed as in table D.2, and then plotting the smaller limit versus
the error, the result may be expressed as in figure D.7. Hence if one limits the error
in the linear approximation, one limits the value of α/k0 where the matching is
valid.

Problem 6.3.1. Changing to dimensionless variables. For b0 �= 0, λ2 =
b5/22 /b3/20 , z0 = a2b

1/2
0 /b3/22 , and γ = b2(a0b2 − a2b0)/b20.

For b0 = 0, λ2 = b2, z0 = a2/b2, and β = a0/b2.

Problem 6.3.2. The case for λ2 < 0.

(i) The roots of k4 + λ20zk
2 − λ20β = 0 are plotted in figure D.8.

(ii) The roots of k4 − λ20xk
2 + λ20x − γ0 = 0 are plotted in figure D.9.
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Table D.2. Errors in wkb matching.

u % Error Airy limit WKB limit

0.1 0.33 0.010 0.009
0.2 1.3 0.028 0.026
0.3 3.0 0.052 0.049
0.4 5.3 0.080 0.077
0.5 8.2 0.111 0.113
0.6 11.7 0.146 0.156
0.7 15.8 0.184 0.209
0.8 20.5 0.225 0.274

Figure D.7. α/k0 limits versus percentage error: dashes, fromWKB condition; full curve,
from Airy asymptotic condition.

Problem 6.3.3. Conservation laws.

(ii) The expression for P(s±) is straightforward, and is dominated by the
first term only in the asymptotic limit. For the fast wave, the first two terms
cancel and the last two add so that

P( f±)→ ∓2i(1+ γ )| f±|2 = ∓2π iλ2(1− e−2η)

where the identity |
(1 ± iy)|2 = πy/ sinhπy has been used.
(iii) The connection formula for solution y1 is

T1 f− ← e−η y1 → f− + C1s−

so the conserved quantities give

T 2
1 P( f−) = P( f−)+ C2

1 P(s−)
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Figure D.8. Dispersion relation for λ2 < 0 for Wasow equation with λ2 = −2, β = 1.

Figure D.9. Dispersion relation for λ2 < 0 and 1+ γ < 0 for the tunneling equation with
λ2 = −2, γ = −2.

or
T 2
1 = 1+ C2

1/(1− e−2η) = 1+ ρC2
1

so ρ = (1− e−2η)−1 as for solution y2.

Problem 6.3.4. Connection formulas for the case γ < −1. The solution
equation (6.32) is still exact, but it is now convenient to use η = π

2 |1+γ |/λ2 > 0.
But the location and orientation of the fast-wave saddle points is different. The
saddle points are located where h′(u0) = 0 with u0 = u f , us . Hence,

tan u f = ± i

(
1− 2η

πz

)
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Figure D.10. Saddle points and asymptotic contours for solutions of the tunneling equation
with 1+γ < 0; (a) locations and paths as z →−∞; and (b) locations and paths as z →∞.

u f =



nπ ± i

2
ln

∣∣∣∣∣ 4λ
2z

1+ γ

∣∣∣∣∣ z > 0

(2n + 1)
π

2
± i

2
ln

(
4λ2z

1+ γ

)
z < 0

so that the saddle points and asymptotic contours for z → ±∞ are given
in figure D.10, and the corresponding solutions in table 6.3 and the coupling
coefficients in table 6.4. In order to construct the relevant contours, it must be
noted that eiz is still incoming from the left and e−iz is incoming from the right
(z > 0). This is because switching from x = −α(z − z0) switches both the phase
velocity and the group velocity for the fast waves, but now the outgoing slow
wave is s+.
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Problem 6.3.5. The Wasow equation for λ2 > 0.

(i) The exact solution is

y(z) =
∫
C
exp

(
−ikz + ik3

3λ2
− iβ

k

)
1

k2
dk.

(ii) The end point condition is

exp

(
−ikz + ik3

3λ2
− iβ

k

)∣∣∣∣∣
C

= 0

so the contours must end where |k| → ∞ along the angles π/6, 5π/6, or −π/2
with an additional end point at the origin, approached along the positive imaginary
axis (for β > 0). The contours are sketched in figure D.11.

(iii) The saddle points are located approximately at ±λ√z and at ±√β/z as
z →∞ and at ±iλ√|z| and ±i√β/|z| as z →−∞ (see figure D.12).

(iv) The fast-wave saddle point contributions from k0 � ±√β/z are not
accurate because of the singularity at the origin near the saddle point. Using the
integral expression for the Hankel function [67]

H (2)
1 (x) = i

π

∫ ∞−iπ

−∞
ex sinh t−t dt

with suitable variable changes (let k → iu first, 0 < u <∞ for f−, then neglect
t3 term in exponent (why?), and in the Hankel integral, let t = ln(2τ/x), and
compare), the result is

f− = −
√
z/βπH (2)

1

(
2
√
βz
)
.

As z →−∞, the slow-wave saddle points at k0 = ±iλ√|z| lead to

s− =
√
π

λ3/2|z|5/4 exp
(
−2λ|z|3/2

3

)

s+ = i
√
π

λ3/2|z|5/4 exp
(
2λ|z|3/2

3

)

respectively. For the fast wave contributions from k0 = ±i√β/z, the
corresponding results vary as

f+ ∝
√
β|z|I1

(
2
√
β|z|

)
and f− ∝

√
β|z|K1

(
2
√
β|z|

)
.

(v) For z → ∞, f− is an incoming fast wave and f+ is outgoing. For
the slow waves, s− is outgoing and s+ is incoming. As z → −∞, s− and f−
are decaying away from the resonance and s+ and f+ are growing slow and fast
waves respectively.

(vi) The contours are sketched in figure D.12.

Copyright © 2003 IOP Publishing Ltd.



Figure D.11. Independent contours for the Wasow equation in the k-plane.

Figure D.12. Saddle points and contour for (a) z →∞ and (b) z →−∞.

Problem 6.3.9. The energy-conserving tunneling equation. As k → 0, ζ → ∞,
so Z(ζ )→−1/ζ = −kvi/(ω − 2ωci )→ kvi L/ωx .

(i) In this limit, factoring out kvi/ω, the result is

Eiv
y −

1

x
E ′′′y +

[
16( 13 + p2)x

ρ2L L
− 1

Lx
+ 2ω2( 13 − p2)

V 2
A

]
E ′′y

− 2ω2( 13 − p2)

V 2
Ax

E ′y +
2ω2( 13 − p2)

V 2
A

[
8(1+ p2)x

ρ2L L
− 1

Lx

]
Ey = 0

which still has all the odd derivative terms.
(ii) With Ey = uφ, the differential equation becomes

φiv + f3φ
′′′ + f2φ

′′ + f1φ
′ + f0φ = 0
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with

f3 =
(
4u′

u
− 1

x

)

f2 = 6u′′

u
− 3u′

ux
+ 16( 13 + p2)x

ρ2L L
+ 2ω2( 13 − p2)

V 2
A

f1 = 4u′′′

u
− 3u′′

ux
+ 32( 13 + p2)xu′

ρ2L Lu
+ 2ω2( 13 − p2)

V 2
A

(
2u′

u
− 1

x

)

f0 = uiv

u
− u′′′

ux
+ 16( 13 + p2)xu′′

ρ2L Lu
+ 4ω2( 13 − p2)

V 2
A

(
u′′

u
− u′

xu

)

+ 16ω2(1+ p2)( 13 − p2)x

LV 2
Aρ

2
L

so we require u′/u = 1/4x so that u = x1/4.
(iii) Changing variables to z − z0 = µxω/VA, this becomes

φiv + λ2zφ′′ + 1
2λ

2φ′ + (λ2z + γ )φ � 0

where terms in (z − z0)−1 or smaller have been discarded for the asymptotic
equation. Note that even though the first and third derivative coefficients were
asymptotically vanishing in the original equation for Ey , the substitution that
formally eliminated the third derivative resulted in a nonvanishing coefficient for
the first derivative term.

(iv) From the Handbook of Plasma Physics [71], we have the case with
α = 1

2 , and the fast and slow wave solutions vary as

s− ∼ (λ2z)α/2z−5/4 exp
(
−i 2

3
λz3/2

)
f± ∼

(
1+ γ

λ2z

)α/2
exp(±iz)

so for the slow wave, φ∼z−1 exp(−2iλz3/2/3) so Ey ∼ z−3/4 exp(−2iλz3/2/3).
For the fast wave, since φ ∼ z−1/4 exp(±iz), then Ey ∼ exp(±iz).

Problem 6.3.10. Kinetic flux and power conservation.

(i)

E+ =
[
2+ 1

k2 − ω2

c2
R

d2

dx2

]
iEy .

(ii) From problem 6.3.9 and the result above, E+ ∼ E ′′y �
z1/4 exp(−2iλz3/2/3). Hence, E ′∗+E+ ∼ z and since KH ∼ 1/z, then
E ′∗+KH E+ ∼ constant.

(iii) With α = 0, E+ ∼ E ′′y � z−1/4 exp(−2iλz3/2/3). Hence, E ′∗+E+ ∼
constant and since KH ∼ 1/z, then E ′∗+KH E+ ∼ 1/z.
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Figure D.13. V (�) versus � for (a) α = 0.5, (b) α = 2.0, and (c) α = 3.0.

Problem 6.6.1. Drift instability growth rate.

(iii) Maximum growth rate occurs when αm = 4.12.

Chapter 7 Weak turbulence theory

Problem 7.3.1. Plasma wave echo damping.

γ2

γ3
= k33

k32
exp

(
1

2k23λ
2
D

− 1

2k22λ
2
D

)

so since k2 � 2k3,
γ2

γ3
� 1

8
exp

(
3

8k3λ2D

)
.

Since wave 2 is presumed to be weakly damped, 1/2k22λ
2
D > 8 so 1/8k23λ

2
D > 8,

and γ2/γ3 > 109.

Chapter 8 Nonlinear plasma waves

Problem 8.2.1. The solitary wave ‘pseudopotential’. If we define � = eφ/KTe,
then we may write the pseudopotential v(�) as

v(�) = −n0KTe
ε0

[
α

(√
1− 2�

α
− 1

)
+ e� − 1

]

so we can plot v versus� for the three cases which are shown in figures D.13(a)–
(c).

αc must satisfy
−αc + eαc/2 − 1 = 0

whose root is αc = 2.513.
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Problem 8.2.2. Small (but finite) amplitude solitary wave solution. � = 2,
� = 2λD/

√
1− 1/α(�m), and �m = eφm/KTe = 3α(α − 1)/(3 − α2) with

1 < α2 < 3, or inverting,

α(�m) = 1+√1+ 4�m(1+�m/3)

2(1+�m/3)

so that U = cs
√
α(�m).

Problem 8.2.4. Ion acoustic solitons.

(ii) k = √A/6, U = A/3.
(iii) φ = φm sech2[K (x − vt)] with v = cs/(1−�m/3), K = √�m/6(1−

�m/3)/λD .
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