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Preface

The primary objective of these lecture notes is to present the basic theories
and analytical methods of plasma physics and to provide the recent status
of fusion research for graduate and advanced undergraduate students. I also
hope that this text will be a useful reference for scientists and engineers
working in the relevant fields.

Chapters 1-4 describe the fundamentals of plasma physics. The basic
concept of the plasma and its characteristics are explained in Chaps.1 and
2. The orbits of ions and electrons are described in several magnetic field
configurations in Chap. 3, while Chap. 4 formulates the Boltzmann equation
for the velocity space distribution function, which is the basic equation of
plasma physics.

Chapters 59 describe plasmas as magnetohydrodynamic (MHD) fluids.
The MHD equation of motion (Chap.5), equilibrium (Chap.6) and plasma
transport (Chap.7) are described by the fluid model. Chapter 8 discusses
problems of MHD instabilities, i.e., whether a small perturbation will grow
to disrupt the plasma or damp to a stable state. Chapter 9 describes resistive
instabilities of plasmas with finite electrical resistivity.

In Chaps. 10-13, plasmas are treated by kinetic theory. The medium in
which waves and perturbations propagate is generally inhomogeneous and
anisotropic. It may absorb or even amplify the waves and perturbations. The
cold plasma model described in Chap. 10 is applicable when the thermal ve-
locity of plasma particles is much smaller than the phase velocity of the wave.
Because of its simplicity, the dielectric tensor of cold plasma is easily derived
and the properties of various waves can be discussed in the case of cold plas-
mas. If the refractive index becomes large and the phase velocity of the wave
becomes comparable to the thermal velocity of the plasma particles, then the
particles and the wave interact with each other. Chapter 11 describes Landau
damping, which is the most characteristic collective phenomenon of plasmas,
and also cyclotron damping. Chapter 12 discusses wave heating (wave absorp-
tion) and velocity space instabilities (amplification of perturbations) in hot
plasmas, in which the thermal velocity of particles is comparable to the wave
phase velocity, using the dielectric tensor of hot plasmas. Chapter 13 dis-
cusses instabilities driven by energetic particles, i.e., the fishbone instability
and toroidal Alfvén eigenmodes.



VI Preface

In order to understand the complex nonlinear behavior of plasmas, com-
puter simulation becomes a dominant factor in the theoretical component of
plasma research, and this is briefly outlined in Chap. 14.

Chapter 15 reviews confinement research toward fusion grade plasmas.
During the last decade, tokamak research has made remarkable progress. To-
day, realistic designs for tokamak reactors such as ITER are being actively
pursued. Chapter 16 explains research work into critical features of toka-
mak plasmas and reactors. Non-tokamak confinement systems are also re-
ceiving great interest. The reversed field pinch and stellarators are described
in Chap. 17 and inertial confinement is introduced in Chap. 18.

The reader may have the impression that there is too much mathematics
in these lecture notes. However, there is a reason for this. If a graduate student
tries to read and understand, for example, frequently cited short papers on
the analysis of the high-n ballooning mode and fishbone instability [Phys.
Rev. Lett 40, 396 (1978); ibid. 52, 1122 (1984)] without some preparatory
knowledge, he must read and understand a few tens of cited references, and
references of references. I would guess that he would be obliged to work hard
for a few months. Therefore, one motivation for writing this monograph is to
save the student time struggling with the mathematical derivations, so that
he can spend more time thinking about the physics and experimental results.

This textbook was based on lectures given at the Institute of Plasma
Physics, Nagoya University, Department of Physics, University of Tokyo and
discussion notes from ITER Physics Expert Group Meetings. It would give me
great pleasure if the book were to help scientists make their own contributions
in the field of plasma physics and fusion research.

Tokyo, November 2004 Kenro Miyamoto
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Part 1

Plasma Physics



1 Nature of Plasma

1.1 Introduction

As the temperature of a material is raised, its state changes from solid to
liquid and then to gas. If the temperature is elevated further, an appreciable
number of the gas atoms are ionized and a high temperature gaseous state is
achieved, in which the charge numbers of ions and electrons are almost the
same and charge neutrality is satisfied on a macroscopic scale.

When ions and electrons move, these charged particles interact with the
Coulomb force which is a long range force and decays only as the inverse
square of the distance r between the charged particles. The resulting current
flows due to the motion of the charged particles and Lorentz interaction takes
place. Therefore many charged particles interact with each other by long
range forces and various collective movements occur in the gaseous state. In
typical cases, there are many kinds of instabilities and wave phenomena. The
word ‘plasma’ is used in physics to designate this high temperature ionized
gaseous state with charge neutrality and collective interaction between the
charged particles and waves.

When the temperature of a gas is T'(K), the average velocity of the thermal
motion of a particle with mass m, that is, thermal velocity vt is given by

mva/2 = kT/2 (1.1)

where £ is the Boltzmann constant £ = 1.380658(12) x 10723 J/K and T
denotes the thermal energy. Therefore the unit of 7" is the joule (J) in MKSA
units. In many fields of physics, the electron volt (eV) is frequently used as
the unit of energy. This is the energy required to move an electron, charge
e = 1.60217733(49) x 10719 coulomb, against a potential difference of 1 volt:

1eV =1.60217733(49) x 107197 .

The temperature corresponding to a thermal energy of 1eV is 1.16 x 10* K
(= e/k). The ionization energy of the hydrogen atom is 13.6eV. Even if the
thermal energy (average energy) of hydrogen gas is 1eV, that is T ~ 10* K,
there exists a small number of electrons with energy higher than 13.6eV,
which ionize the gas to a hydrogen plasma.
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Fig. 1.1. Various plasma domains in the n—«T diagram

Plasmas are found in nature in various forms (see Fig. 1.1). One example is
the Earth’s ionosphere at altitudes of 70-500 km, with density n ~ 10'2m—3
and kT =~ 0.2eV. Another is the solar wind, a plasma flow originating from
the sun, with n ~ 10-10" m—3 and kT ~ 10eV. The sun’s corona extending
around our star has density ~ 10'*m™3 and electron temperature ~ 100eV,
although these values are position-dependent. The white dwarf, the final state
of stellar evolution, has an electron density of 103°-103¢ m—3. Various plasma
domains in the diagram of electron density n(m~3) and electron temperature
kT (eV) are shown in Fig. 1.1.

Active research in plasma physics has been motivated by the aim to create
and confine hot plasmas in fusion research. In space physics and astrophysics,
plasmas play important roles in studies of pulsars radiating microwaves or
solar X-ray sources. Another application of plasma physics is the study of
the Earth’s environment in space.

Practical applications of plasma physics are MHD (magnetohydrody-
namic) energy conversion for electric power generation and ion rocket engines
for spacecraft. Plasma processes for the manufacture of integrated circuits
have attracted much attention recently.
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1.2 Charge Neutrality and Landau Damping

One fundamental property of plasmas is charge neutrality. Plasmas shield
electric potentials applied to the plasma. When a probe is inserted into a
plasma and a positive (negative) potential is applied, the probe attracts (re-
pels) electrons and the plasma tends to shield the electric disturbance. Let us
estimate the shielding length. Assume that heavy ions have uniform density
(ni = no) and that there is a small perturbation in the electron density n.
and potential ¢. Since the electrons are in the Boltzmann distribution with
electron temperature T, the electron density n, becomes

ne = ng exp(ed/rT.) = no(1+ ed/rT) ,

where ¢ is the electrostatic potential and e¢/kT, < 1 is assumed. The
equation for the electrostatic potential comes from Maxwell’s equations (see
Sect. 3.1),

62710

E=-V¢, V(«E)=-aV¢=p=—cln.—n)=-—2¢
and
1/2 1/2
2 ¢ eokTe 3 (1 KT,
Y - =745 x10° { — 1.2
\V4 (b )\QD 5 AD ( neez > 7.45 x 10 (ne c (Hl) , ( )

where ¢q is the dielectric constant of the vacuum and FE is the electric inten-
sity. ne is in m 3 and kT, /e is in eV. When n, ~ 102° em =3, kT, /e ~ 10keV,
then Ap ~ 75um. In the spherically symmetric case, the Laplacian V? be-

comes Lo 9
2 —_— — PR
Ve = r Or (rar> ’

_ g exp(=r/Ap)
dmeg r '

and the solution is

It is clear from the foregoing formula that the Coulomb potential ¢/4mwegr of
a point charge is shielded out to a distance Ap. This distance Ap is called the
Debye length. When the plasma size is a and a > \p is satisfied, the plasma is
considered to be electrically neutral. If on the other hand a < Ap, individual
particles are not shielded electrostatically and this state is no longer a plasma
but an assembly of independent charged particles.

The number of electrons included in a sphere of radius Ap is called the
plasma parameter and is given by

3/2
3 _ (€ rTe 1
ne)\D = ( e e > Té/Q . (13)
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When the density is increased while keeping the temperature constant, this
value becomes small. If the plasma parameter is less than say ~ 1, the concept
of Debye shielding is not applicable, since the continuity of charge density
breaks down on the Debye length scale. Plasmas in the region of nAd > 1
are called classical plasmas or weakly coupled plasmas, since the ratio of
the electron thermal energy 7T, and the Coulomb energy between electrons
Ecoulomp = €2/4meqd, with d ~ ne /3 the average distance between electrons

with density ne, is given by

T.
e Amt(nedd))?/ (1.4)
ECoulomb

and n Ay > 1 means that the Coulomb energy is smaller than the thermal
energy. The case ne)\?]; < 1 corresponds to a strongly coupled plasma (see

Fig. 1.1).
The Fermi energy of a degenerate electron gas is given by
h2

- 2Me

€F (3772ne)2/3 ,
where h = 6.6260755(40) x 10734 J s is Planck’s constant. When the density
becomes very high, it is possible to have ep > KT,. In this case, quantum
effects dominate over thermal effects. This case is called a degenerate electron
plasma. One example is the electron plasma in a metal. Most plasmas in
magnetic confinement experiments are classical weakly coupled plasmas.
The other fundamental plasma process is collective phenomena involv-
ing the charged particles. Waves are associated with coherent motions of
charged particles. When the phase velocity vpn of a wave or perturbation
is much larger than the thermal velocity vt of the charged particles, the
wave propagates through the plasma media without damping or amplifica-
tion. However, when the refractive index N of the plasma medium becomes
large and the plasma becomes hot, the phase velocity vpn = ¢/N (where ¢ is
the light velocity) of the wave and the thermal velocity v become compara-
ble (vpn = ¢/N ~ vr). Then energy exchange is possible between the wave
and the thermal energy of the plasma. The existence of a damping mechanism
for these waves was found by L.D. Landau. The process of Landau damping
involves a direct wave—particle interaction in a collisionless plasma without
the need to randomize collisions. This process is the fundamental mechanism
in wave heating of plasmas (wave damping) and instabilities (inverse damping
of perturbations). Landau damping is described in Chaps. 11 and 12.

1.3 Fusion Core Plasma

Progress in plasma physics has been motivated by the desire to realize a fusion
core plasma. The necessary condition for fusion core plasmas is discussed in
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Fig. 1.2. (a) Dependence of the fusion cross-section o on the kinetic energy E
of colliding nucleons. opp is the sum of the cross-sections of D-D reactions (1)
and (2). 1 barn = 107**cm?. (b) Dependence of the fusion rate (ov) on the ion
temperature T;

this section. Nuclear fusion reactions are the fusion reactions of light nuclides
to heavier ones. When the sum of the masses of nuclides after nuclear fusion
is smaller than the sum before the reaction by Am, we call this the mass
defect. According to the theory of relativity, the amount of energy (Am)c?
(c is the speed of light) is released by the nuclear fusion.

Nuclear reactions of interest for fusion reactors are as follows (D deuteron,
T triton, He? helium-3, Li lithium):

(1) D+D — T (1.01MeV) +p (3.03MeV) ,

(2) D+D — He® (0.82MeV) +n (2.45MeV) ,
(3) T+D — He' (3.52MeV) + n (14.06 MeV) ,
(4) D+ He* — He* (3.67MeV) + p (14.67MeV) ,
(5) Li®+n — T4 He' +4.8MeV ,

(6) Li" 4+n (2.5MeV) — T +He* +n,

where p and n are the proton (hydrogen ion) and the neutron, respectively
(1MeV = 10°%eV). Since the energy released by the chemical reaction

1
HQ + 502 — HQO

is 2.96 eV, the fusion energy released is about a million times as great as the
chemical energy. A binding energy per nucleon is smaller in very light or very
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heavy nuclides and largest in nuclides with atomic mass numbers around 60.
Therefore, large amounts of energy can be released when light nuclides are
fused. Deuterium is abundant in nature. For example, it comprises 0.015 atom
percent of the hydrogen in sea water, with a volume of about 1.35 x 109 km?.

Although fusion energy was released in an explosive manner by the hydro-
gen bomb in 1951, controlled fusion is still at the research and development
stage. Nuclear fusion reactions were found in the 1920s. When proton or
deuteron beams collide with a light nuclide target, the beam loses its energy
by ionization or elastic collisions with target nuclides, and the probability of
nuclear fusion is negligible. Nuclear fusion research has been most actively
pursued in the context of hot plasmas.

In fully ionized hydrogen, deuterium and tritium plasmas, the process of
ionization does not occur. If the plasma is confined adiabatically in some
specified region, the average energy does not decrease by elastic collision pro-
cesses. Therefore, if very hot D-T plasmas or D-D plasmas are confined, the
ions have large enough velocities to overcome their mutual Coulomb repul-
sion, so that collision and fusion take place.

Let us consider the nuclear reaction wherein D collides with T. The cross-
section of T nucleons is denoted by o. This cross-section is a function of the
kinetic energy E of D. The cross-section of the D-T reaction at £ = 100 keV
is 5 x 10724 em?. The cross-sections o of D-T, D-D, D-He? reactions versus
the kinetic energy of colliding nucleons are shown in Fig.1.2a [1.1,1.2]. The
probability of the fusion reaction per unit time in the case where a D ion
with velocity v collides with T ions with density of nr is given by nrowv.
(We discuss the collision probability in more detail in Sect.2.7.) When a
plasma is Maxwellian with ion temperature T;, one must calculate the average
value (ov) of ov over the velocity space. The dependence of (ov) on the ion
temperature T; is shown in Fig. 1.2b [1.3]. A fitting equation for (ov) for the
D-T reaction as a function of xT" in units of keV is [1.4]

_ 3.7x 10718 20
(ov) (m™3) = HnT) % (W1} exp |:_(I€T)1/3:| , (1.5)
H(kT) = a + o4

37 3+ kT(1+kKT/37.5)28 "

Figure 1.3 shows an example of an electric power plant based on a D-T fu-
sion reactor. Fast neutrons produced in the fusion core plasma penetrate the
first wall and a lithium blanket surrounding the plasma moderates the fast
neutrons, converting their kinetic energy to heat. Furthermore, the lithium
blanket breeds tritium due to reactions (5) and (6) above. [Triton beta-decays
to He® with a half-life of 12.3 yr, T — He®4e (< 18.6keV), and tritium does
not exist as a natural resource.] The lithium blanket gives up its heat to gener-
ate steam via a heat exchanger and a steam turbine generates electric power.
Part of the generated electric power is used to operate the plasma heating
system. As alpha particles (He ions) are charged particles, they can heat the
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heating sys.

turbine | generator

Fig. 1.3. Electric power plant based on a D-T fusion reactor

plasma directly by Coulomb collisions (see Sect. 2.6). The total heating power
Picat is the sum of the a particle heating power P, and the heating power
P.xt due to the external heating system. The total heating power needed to
sustain the plasma in a steady state must be equal to the energy loss rate of
the fusion core plasma. Consequently, good energy confinement (small energy
loss rate) in the hot plasma is the key issue.

The thermal energy of the plasma per unit volume is (3/2)nx(Ti + T¢).
This thermal energy is lost by thermal conduction and convective losses. The
notation P, denotes these energy losses from the plasma per unit volume and
unit time (power loss per unit volume). In addition to P, there is radiation
loss R due to electron bremsstrahlung and impurity ion radiation. The total
energy confinement time 7g is defined by

(3/2)nk(Te +T3)  3nkT

= ~ . 1.6
B P+ R PL+R (1.6)

The input heating power Ppe.; required to maintain the thermal energy of
the plasma is equal to P, + R.

For the D-T reaction, the sum of kinetic energies Qq = 3.52 MeV of alpha
particles and @, = 14.06 MeV of neutrons is Qnr = 17.58 MeV per reaction
(Qn : Qa = mg : my, = 0.8 : 0.2 due to momentum conservation). Since
the densities of D ions and T ions in an equally mixed plasma are n/2, the
number of DT reactions per unit time and unit volume is (n/2)(n/2){cv)
(refer to the discussion in Sect. 2.6), so that the fusion output power per unit
volume Py is given by

Pre = (n/2)(n/2){00)Qnr - (L.7)

If the fusion powers due to the neutron and alpha particle are denoted by P,
and P, respectively, then P, = 0.8 Pyr and P, = 0.2Pyr. Let the thermal-
to-electric conversion efficiency be 7 and the heating efficiency (ratio of the
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Fig. 1.4. Condition of D-T fusion core plasma in nrtg—T diagram in the case
n = 0.3, critical condition n = 1, and ignition condition n = 0.2

power deposited in the plasma to the input electric power of the heating
device) by Mheat- When a part (7 < 1) of generated electric power is used to
operate the heating system, then the available heating power to plasma is

(0~8ne17nheat + 02)PNF - nPNF 3 n= O'S’Ynelnheat + 0.2.

The burning condition is

3nkT
Pocat =P+ R = <77PNF7 (18)
TE
that is,
3nkT
< n@n%ﬂﬁ ;
TE
and hence,
125T
nE > ————— . 1.9
B nQnr(ov) (19)

The right-hand side of (1.9) is a function of temperature T alone. When
kT = 10%eV and n ~ 0.3 (y ~ 0.4, 7¢ ~ 0.4, Nheat ~ 0.8), the necessary
condition is n7g > 1.7 x 102 m~3s. The burning condition of the D-T fusion
plasma in the case n ~ 0.3 is shown in Fig. 1.4. In reality the plasma is hot
in the core and cold at the edges. For a more accurate discussion, we must
take this temperature and density profile effect into account, an analysis
undertaken in Sect. 16.10.

The ratio of the fusion output power due to a particles to the total is
Qq/Qnr = 0.2. If the total kinetic energy (output energy) of alpha particles
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contributes to heating the plasma and alpha particle heating power can sus-
tain the necessary high temperature of the plasma without heating from the
outside, the plasma is in an ignited state. The condition P, = P, + R is called
the ignition condition, which corresponds to the case n = 0.2 in (1.8).

The condition Pjeat = Pnr is called the break-even condition. This cor-
responds to the case of n = 1 in (1.8). The ignition condition (n = 0.2) and
break-even condition ( = 1) are also shown in Fig. 1.4.
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2.1 Velocity Space Distribution Function

In a plasma, electrons and ions move with various velocities. The number
o electrons in a unit volume is the electron density n. and the number of
electrons dne(v,) with the z component of velocity between v, and v, + dv,
is given by
dne(vy) = fe(ve)dv, .

Then f(v,) is called the electron wvelocity space distribution function. When
electrons are in a thermal equilibrium state with electron temperature 75,
the velocity space distribution function is the Maxwell distribution:

B ﬁ 1/2 /ng me
fc(vm) = Ne <27‘() €xXp <_ 9 > 9 6 - KZTe .

From the definition, the velocity space distribution function satisfies

/ O; folvs)dvg = g |

The Maxwell distribution function in the three-dimensional velocity space is
given by

3/2 mcv2+v2+vz
Me > exp [ ( x Yy z) (21)

2wKT, 2T,

fe(vzavyyvz) = Ne (

The ion distribution function is defined in the same way as for the electron.
The mean of the squared velocity v2 is given by

1 [ kT
2 2
= — x d r = . 2'2
vT n/_ vz f(vg)dv m (2.2)
The pressure p is
p=nkT .

The particle flux in the 2 direction per unit area I} , is given by

0o 1/2
Iy ,= / Ve f(vg)dv, = n <KT> .
0

2mm
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2.2 Plasma Frequency. Debye Length

Let us consider the case where a small perturbation occurs in a uniform
plasma and the electrons in the plasma move due to the perturbation. It is
assumed that the ions do not move because they have much greater mass than
the electrons. Due to the displacement of electrons, electric charges appear
and an electric field is induced. The electric field is given by

e V-E = —e(ne — ng) -
Electrons are accelerated by the electric field:

dv
mea = —eF .

Due to the movement of electrons, the electron density changes:

One
ot

+ V-:(nev) =0.

Writing ne — ngp = ny and assuming |n;| < ng, we find

ov 8n1
V-E =— — =—cFE — Vu=0.
€0 eny , Me ot ek , It + no
For simplicity, the displacement is assumed to be only in the x direction and

sinusoidal with angular frequency w:
ny(x,t) = ny exp(ike — iwt) .

The time derivative 9/t is replaced by —iw and 9/9z is replaced by ik. The
electric field has only the x component E. Then

ikegEl = —eny —iwmev = —ek —iwny = —ikngv ,

so that we find )
W= 20 (2.3)
€0Me

This wave is called the electron plasma wave or Langmuir wave and its fre-
quency is called the electron plasma frequency Il :

2\ 1/2 1/2
I, = (nee ) =5.64 x 10" ( fe ) rad/s .

€M 1020

The following relation holds between the plasma frequency and the Debye
length Ap :

T 1/2 T 1/2
ADnez(“ ) = up, = 4.19 x 10° (“) m/s .

Me e
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Fig. 2.1. Larmor motion of charged particle in magnetic field

2.3 Cyclotron Frequency. Larmor Radius

The equation of motion of a charged particle with mass m and charge ¢ in
electric and magnetic fields E, B is given by

mi—;} =q¢(E+wv x B). (2.4)

When the magnetic field is homogeneous and in the z direction and the
electric field is zero, the equation of motion becomes © = (¢B/m)(v x b),
where b = B/B, and

vy = —vy sin(2t +90) , vy = v cos(2t +6) , Uy = Vs ,

2=-. (2.5)

The solution of these equations is a spiral motion around the magnetic line
of force with angular velocity {2 (see Fig.2.1). This motion is called Larmor
motion. The angular frequency {2 is called cyclotron (angular) frequency.
Denoting the radius of the orbit by pg, the centrifugal force is mv? /pg and
the Lorentz force is qu; B. Since the two forces must balance, we find

muv

SRR (2.6)

pPo

This radius is called the Larmor radius. The center of the Larmor motion
is called the guiding center. The Larmor motion of the electron is a right-
handed rotation ({2, > 0), while the Larmor motion of the ion is a left-handed
rotation ({2 < 0). When B = 1T, kT = 100eV, the values of the Larmor
radius and cyclotron frequency are given in Table 2.1.
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Table 2.1. Mass, thermal velocity, Larmor radius and cyclotron frequency of the
electron and proton when B =1T, k7" = 100eV

Electron Proton
Mass [kg] 9.1093897(54) x 1073 1.6726231(10) x 10~*7
Thermal velocity 4.2 x105ms™? 9.8 x 10*ms™?
vr = (KT /m)/?
Larmor radius pgo 23.8 um 1.02mm
Cyclotron frequency 1.76 x 10 s™* —9.58 x 107 s~ !
(angular) 2
Cyclotron frequency 2/2r 28 GHz —15.2 MHz

2.4 Drift Velocity of Guiding Center

When a uniform electric field F is superposed perpendicularly to the uniform
magnetic field, the equation of motion (2.4) reduces to

du

ma = Q(u X B) )
introducing w and ug defined by
Exb
v=ug+u, ug = <2 (2.7)

B

Therefore the motion of the charged particle is a superposition of the Larmor
motion and the drift motion ug of its guiding center. The direction of the
guiding center drift due to E is the same for both ions and electrons (Fig. 2.2).
When a gravitational field g is superposed, the force is mg, which corresponds
to gF in the case of an electric field. Therefore the drift velocity of the guiding
center due to gravitation is given by

gxb

ug:q%(gxb):— 7 (2.8)

Electrons and ions drift in opposite directions under gravitation and the
drift velocity of the ion guiding center is much larger than the electron’s (see
Fig.2.2).

When the magnetic and electric fields change slowly and gradually in time
and space (Jw/2] < 1, po/R < 1), the formulas for the drift velocity are
valid as they are. However, because of the curvature of the magnetic field
lines, a centrifugal force acts on any particle which runs along a field line
with velocity v)|. The acceleration due to the centrifugal force is

il

Geurv = En )
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Fig. 2.2. Drift motion of the guiding center in electric and gravitational fields
(schematic)

where R is the radius of curvature of the field line and n is the unit vector

running from the center of curvature to the field line (Fig.2.3).
Furthermore, as described at the end of Sect. 2.4, the resultant effect of

Larmor motion in an inhomogeneous magnetic field reduces to an acceleration

v? /2
gvs = g VB.

Therefore the drift velocity ug of the guiding center due to an inhomogeneous
curved magnetic field is given by the drift approzimation as

2
1 (7 viVB
= —— — —_ - b. 2
UG Q(Rn 2 B |~ (29)

The first term is called the curvature drift and the second term is called
gradient B drift. Since V x B = ppj, where j is the current density, the
vector formula reduces to

%V(B-B) =(b-V)B+bx (V x B)

0
= 5;(Bb) +bx poj
_ 0B b  Vp
=t By Ty
0B Vp
= Gb By

where p is plasma pressure and Vp = j X B holds in the equilibrium state
[see (6.1) in Chap. 6]. We used the following relation (see Fig. 2.3):

9% _ n

o R’
where [ is the length along the field line. Then we have
nxb (VB Vp)
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e

Fig. 2.3. Radius of curvature of the line of magnetic force

If Vp is much smaller than V B?/(2u0), we find

2 2
1 v + v /2
ug = —5%(71 X b) .
The parallel motion along the magnetic field is given+by
d’UH mv2 /2
— =gqFE - —=VB.
m-g T BT my) 5 VI

Let us consider the effect on a gyrating charged particle of an inhomogeneity
in the magnetic field. The x component of the Lorentz force F, = qu x B
perpendicular to the magnetic field (z direction) and the magnitude B of the
magnetic field near the guiding center is

0B 0B
Fr,, = quyB = —|q|vi cos0B B:BO—F&—pgcosG—i—a—pQSinG.
xz Yy

The time average of the x component of the Lorentz force is given by

10B
<FLx> = 55(—|Q|)ULPQ ,

and the y component similarly, so that

muv? /2
(FL), =— 5/ V.B.

We must now estimate the time average of the z component of the Lorentz
force. The equation V-B = 0 near the guiding center in Fig. 2.4 becomes
B,./r+ 0B,./0r + 0B,/0z = 0 and we find

_ _ OB,  mvi/20B
(FLz) = —(quoBr) = |qlvLpe o - B 9

where r ~ pg is very small and B,./r ~ 0B, /0r. The required expression for
gvp is thus derived.
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Fig. 2.4. Larmor motion in an inhomogeneous magnetic field

2.5 Magnetic Moment. Mirror Confinement

A current loop with current I encircling an area S has magnetic moment
m = IS. Since the current and area encircled by the gyrating Larmor motion
are I = ¢2/2m and S = 7p?, respectively, it has the magnetic moment

q? 5 mv?
~ P27 B
This physical quantity is adiabatically invariant, as will be shown at the end
of this section. When the magnetic field changes slowly, the magnetic moment
is conserved. Therefore, if B is increased, mv? /2 = u, B is also increased
and the particles are heated. This kind of heating is called adiabatic heating.

Let us consider a mirror field as shown in Fig. 2.5, in which the magnetic
field is weak at the center and strong at both ends of the mirror field. For
simplicity, the electric field is assumed to be zero. Since the Lorentz force is
perpendicular to the velocity, the magnetic field does not contribute to the
change of kinetic energy and

fim (2.10)

mu? 2 2
Ly ML T _ B — const. (2.11)
2 2 2

Since the magnetic moment is conserved, we find

9 1/2 9 1/2
v ==+ (mE — vi) =+ <1)2 — m,umB> .

When the particle moves towards the open ends, the magnetic field becomes
large and v|| becomes small or even zero. Since the force along the direction
parallel to the magnetic field is —u,, V|| B, both ends of the mirror field repel
charged particles as a mirror reflects light. The ratio of the magnitude of the
magnetic field at the open end to the central value is called the mirror ratio:

Ry = .
M Bo
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Fig. 2.5. Mirror field and loss cone in vj—v. space

Let us denote the parallel and perpendicular components of the velocity at
the mirror center by v)g and v, respectively. The value v} at the position
of maximum magnetic field By is given by

2 Bwv

Yim = pllo-

0

This value vf_M cannot be larger than v? = v3, so that the particle satisfying
the following condition is reflected and trapped in the mirror field:

2
V1o BO 1
— ) >—=—=—" 2.12
< Vo > BM RM ( )
Particles in the region where sin @ = v, ¢ /v satisfies

1
sin?6 < —
M

are not trapped and the region is called the loss cone in v —vL space (see
Fig. 2.5).

Let us check the invariance of u,, in the presence of a slowly changing
magnetic field (|J0B/0t| < |£2B]). Taking the scalar product of v, with the
equation of motion gives

dv d [/mv?
oS0k = ( L>q<vL-EL>.

dt At \ 2

During one period 27/|f2| of Larmor motion, the change AW, in the kinetic
energy W, = mu? /2 is

AWLZQ/(’IM-EL)dt:q%EL-ds:q/(VxE)-ndS,

where f ds is the closed line integral along the Larmor orbit and f dS is the
surface integral over the area encircled by the Larmor orbit. Since V x E =
—0B/ot, AW is
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0B 0B

AW, = — —ndS = |q|mp%— .
=[5 kS

The change AB in the magnetic field during one period of Larmor motion is
AB = (0B/0t)(2r/|12]). Hence,

mv? AB AB
AW, = S
+ B B
and
——l—const
Fm =" = '

When a system is periodic in time, the action integral ¢ pdg, in terms of the
canonical variables p, q is generally an adiabatic invariant. The action integral
of the Larmor motion is

4mm
Ji = (—mpp2)2rpo = —y e

J | is called the transversal adiabatic invariant.

A particle trapped in a mirror field moves back and forth along the field
line, from one end to the other. The second action integral of this periodic
motion, viz.,

is another adiabatic invariant. J) is called the longitudinal adiabatic invari-
ant. As one makes the mirror length [ shorter, (v|) increases (for Jj = 2m(v)I
is conserved), and the particles are accelerated. This phenomena is called
Fermi acceleration.

The line of magnetic force of the mirror is convex towards the outside. The
particles trapped by the mirror are subjected to curvature drift and gradient
B drift, so that the trapped particles move back and forth, while drifting in
the @ direction. The orbit (r,0) of the crossing point on the z = 0 plane of
the back and forth movement is given by Jj(r, 0, pum, E) = const.

2.6 Coulomb Collision. Fast Neutral Beam Injection

The motions of charged particles were analyzed in the previous section with-
out considering the effects of collisions between particles. In this section,
phenomena associated with Coulomb collisions will be discussed. Let us start
from a simple model. Assume that a sphere of radius a moves with velocity
v in a region where spheres of radius b are filled with the number density n
(see Fig. 2.6). When the distance between the two particles becomes less than
a+b, collision takes place. The cross-section o of this collision is ¢ = 7(a+b)?.
Since the sphere a moves through the distance | = vdt during &t, the proba-
bility of collision with the sphere b is
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Fig. 2.6. Probability of collision between a sphere a and spheres b

Fig. 2.7. Coulomb collision of electron with ion

nlo = novdt ,

since nl is the number of spheres b with which the sphere a may collide
within a unit area of incidence, and nlo is the total cross-section per unit
area of incidence during the time 8t. Therefore the collision time ¢, when
the probability of collision becomes 1, is
Teoll = (now) ™t .

In this simple case the cross-section ¢ of the collision is independent of the
velocity of the incident sphere a. However, the cross-section depends on the
incident velocity, in general.

Let us consider the strong Coulomb collision of an incident electron with
ions having charge Ze (see Fig. 2.7), in which the electron is strongly deflected
after the collision. Such a collision can take place when the magnitude of the
electrostatic potential of the electron at the closest distance b is of the order
of the kinetic energy of the incident electron, i.e.,

Ze? _ mev?
dmegh 2

The cross-section of the strong Coulomb collision is ¢ = wb?. The inverse of
the collision time 7., of the strong Coulomb collision is
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1 B2 nim(Ze?)?v, Z2%etn;
= Nj0Ve = NjVeT = = 3 .
Teoll (dmegmev2/2)?  dmegm2u3

Since the Coulomb force is a long range interaction, a test particle is deflected
by a small angle even by a distant field particle, which the test particle does
not come very close to. As explained in Sect. 1.2, the Coulomb field of a field
particle is not shielded inside the Debye sphere, which has radius equal to the
Debye length Ap, and there are many field particles inside the Debye sphere
in typical laboratory plasmas (weakly coupled plasmas). Accumulation of
many collisions with small angle deflection results in a large effect. When the
effect of the small angle deflection is taken into account, the total Coulomb
cross-section increases by a factor of the Coulomb logarithm

2 A 1
InA~In ()\D> ~ / —dr ~ 15-20 .
b b/2 T

The time derivative of the momentum p| parallel to the incident direction of
the electron is given by use of the collision time 7 as follows [2.1,2.2]:

2.4
ﬂz—ﬂ, 1 :Ze2niln/17 (2.14)
dt TeiH Tei” 47Teom§v§
where Tei | indicates the deceleration time of an electron by ions.

When a test particle with charge ¢, mass m and velocity v collides
with field particles with charge ¢*, mass m* and thermal velocity v} =
(kT*/m*)*/?, in general, the collision time of the test particle is given
by [2.1,2.2]

1 2*2*1/1 %\ 2 InA
_a°¢”n"In _<qqn> n (2.15)

TT‘  4mretmm,v? eom ) Amw(my/m)vin*’

under the assumption that v > v7. In this expression, m, is the reduced mass

*

mm
my = ———.
m+ m*
Taking the average of (m/2)v? = (3/2)xT, 1/7 becomes
1 ¢?q¢>n*In A
T 3Y/2127ed (m,/m1/2)(KT)3/2

(2.16)

The inverse of the collision time, denoted by v, is called the collision fre-
quency. The mean free path is given by A = 3'/2vpr.
The collision frequency for electrons with ions is
1 Z%e*n;In A
- ¢ ”1/; — (2.17)
Tei|  31/212medme’ " (KTe)3/?
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Fig. 2.8. Elastic collision of test particle M and field particle m in the laboratory
system (a) and the center-of-mass system (b)

This electron-ion collision frequency is ~ 1.4 times the Spitzer result [2.3] of

1 Z2e*n;In A

1/2

= : (2.18)
Teil Spitzer 9.3 X 10eZme’” (KT.)3/2

When an ion with charge Z and mass m; collides with the same ions, the
ion—ion collision frequency is given by

I Z*e*n;In A (2.19)
Tii]| 31/267re(2)mi1/2(/£ﬂ)3/2 . .

The electron—electron Coulomb collision frequency can be derived by substi-
tuting m; — me and Z — 1 into the formula for 73, which yields

1 etln A
= fe€ 2 . (2.20)
Tee|  31/26me2me!? (kT,)3/2

However, the case of ion-to-electron Coulomb collisions is more complicated
to treat because the assumption v; > v7- is no longer justified. Let us consider
the case where a test particle with mass M and velocity v collides with a field
particle with the mass m. In the center-of-mass system, where the center of

mass is at rest, the field particle m moves with velocity v. = —Muvg/(M + m)
and the test particle M moves with velocity vs — v. = mus/(M + m) (see
Fig. 2.8).

Since the total momentum and total kinetic energy of two particles are
conserved in the process of elastic collision, the speeds of the test particle and
the field particle do not change and the two particles are merely deflected
through an angle 6 in the center-of-mass system. The velocity v¢ and scat-
tering angle ¢ of the test particle after the collision in the laboratory system
are given by (see Fig.2.8)
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M2+ 2Mm cos § + m?
vE = (Vs — ve)? 4+ v + 2(vs — Ve )ve cos O = v2 O +m)? ,

msin 0
(M2 +2Mmcosf +m2)t/2 °

Denoting the momentum and kinetic energy of the test particle before and
after the collision by ps, Fs, and pt, Ef, respectively, we find

sing =

AE _Ei— B, 2Mm_
E. B, (M+m)? '

When the average is taken over 6, we obtain the following relations in the

case m/M < 1:
AEN 2 ap\ ,om
E /- M’ 0 /T M-

From the foregoing discussion, the collision frequency 1/ for the situation
where a heavy ion collides with light electrons is about m./m; times the value
of 1/7, and is given by [2.1,2.2]

1 me Z%e*n.In A

. (2.21)
Tie| i (2m)1/23me2mi 2 (kT.)3/2

When the parallel and perpendicular components of the momentum of a test
particle are denoted by p| and p_, respectively, and the energy by E, we have

P+ 7 dp? dE dp|
E=-"1_= —
2m dt dt

We define the velocity diffusion time 7, in the direction perpendicular to the
initial momentum and the energy relazation time 7¢ by

i _pi  dE_

dt 7 at — e’
respectively. 1/7) and 1/7¢ are given by [2.1]

1 ?q¢>n*In A B ¢*q¢>2n*In A

[ = 2.22
7. 2medv(mv)? 2re2m2v3 (222)

1 2 %2 *1n A 2 %2 *1n A
B . & LU (2.23)

¢ dmegmrv(mu?/2)  2megmm* vl

In the case of electron-to-ion collisions, we find
1 2

~ (2.24)

Teil Tei|
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and

1 Me 2

— ~ .
€ . .

Tei my Tei H

(2.25)

In the case of electron-to-electron collisions and ion-to-ion collisions, we find

1 I e*neln A _InA I, (2.26)
Teel N Teel| 31/267T€gm(13/2(l€Te)3/2 32.6 ne)\% ’ '
1 1
— (2.27)
Tee Tee||
and
11 Z4e*n;ln A (2.28)
Tl T 31/26me2m. A (T})3/2 '
1 1
— ~ , (2.29)
Ti¢ T
respectively.
In the case of ion-to-electron collisions, we have the relations [2.1]
1 Z%e*n,In A o
~ - Me (2.30)
Tiel  (2m)3/263me’ " Ei(kTy)1/2 Mi
1 Z%e¢*neIn A 4 Me 1 me 2.77
i /2 7z ~— (2.31)
Tie  dmwema!?(kT,)3/2 3(2m) 2 mi  Tie  ma Tei|

where E; = (3/2)kT; is the kinetic energy of the ion.

High-energy neutral particle beams can be injected into plasmas across
strong magnetic fields. The neutral particles are converted to high-energy ions
by means of charge exchange with plasma ions or ionization. The high-energy
ions (mass my, electric charge Zye, energy F},) running through the plasma,
slow down due to Coulomb collisions with the plasma ions (m;, Zie) and
electrons (m,, —e) and the beam energy is thus transferred to the plasma.
This method is called heating by neutral beam injection (NBI). The rate of
change of the energy of the fast ion, that is, the heating rate of the plasma
is [2.4]

dEy,  Ey Ep 1 (Zve)?(Zie)? In An;
a7 TS 2meimimpu,
and
2.4 2 3/2
dE,  Zje"InAn, Me NiZ; n 4 meFEy (2.32)
dt  dmwemeuvy; —~ M Me 3rl/2 \ mykT, ’ '

when the beam ion velocity vy, is much less than the plasma electron ther-
mal velocity (say by a factor of 1/3) and much larger than the plasma ion
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thermal velocity (say by a factor of 2). The first term on the right-hand side
is due to beam—ion collisions and the second term is due to beam—electron
collisions. The critical energy E., of the beam ion, at which the plasma ions
and electrons are heated at equal rates, is given by

2/3
mu?2 1 ny 22
o — B, = 14.8xT, Ay | — lad , 2.
5 8kT.Ap (n > T > (2.33)

i

where Ay, A; are the atomic weights of the injected ion and plasma ion,
respectively. When the energy of the injected ion is larger than E.., the
contribution to the electron heating is dominant. The slowing down time of

the ion beam is given by
B\ 32
1
() |

B —dBy, T
be
slowdown — —_— = 1
Tslowd /E (dBy/dt) 15
1 Z?n.e*In A Me (2.34)

The  (2m)1/23me2md/? (kT.)3/2 M

where 7¢, is the energy relaxation time of the beam ion with electrons.

2.7 Runaway Electron. Dreicer Field

When a uniform electric field F is applied to a plasma, the motion of a test
electron is
dv 1 1 etln A
Mme— = —eBl — ——mev — =NV = ———— .
°dt Teo(v)  © Tee ¢ 2redm2v’

The deceleration term decreases as v increases and its magnitude becomes
smaller than the acceleration term |—eE]| at a critical value ve,. When v > v,
the test particle is accelerated. The deceleration term becomes smaller and
the velocity starts to increase without limit. Such an electron is called a
runaway electron. The critical velocity is given by

mevZ  e?nlnA

2¢  AnelE

(2.35)

The electric field required for a given electron velocity to be v, is called the
Dreicer field. Taking In A = 20, we find

Mev? n
— =5x 10710~
2¢ E’
with MKS units. When n = 10 m™3, E = 1V/m, electrons with energy

larger than 5keV become runaway electrons.
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2.8 Electric Resistivity. Ohmic Heating

When an electric field weaker than the Dreicer field is applied to a plasma,
electrons are accelerated and decelerated by collisions with ions to reach an
equilibrium state as follows:

me (Ve — ¥i)

=—ekb .
Tei

The current density j induced by the electric field becomes

2
. € NeTei
Jj=—ene(ve —v;) = E.
Me

The specific electric resistivity defined by nj = E is [2.3]

MelVei itzer Me 1/2262 InA _
7] Spitzer = ”S;Jt = ( ) 5 (KTG) 3/2
Ne€ 9.3 x 10€5
7\ 32
=52x10"°ZInA (” ) (Qm) . (2.36)
e

The specific resistivity of a plasma with T, = 1keV and Z = 1 is n =
3.3 x 1078 Qm and is slightly larger than the specific resistivity of copper
at 20°C, 1.8 x 1078 Qm. When a current density of j is induced, the power
142 per unit volume contributes to electron heating. This electron heating
mechanism is called ohmic heating.

2.9 Variety of Time and Space Scales in Plasmas

Various kinds of plasma characteristics have been described in this chapter.
Characteristic time scales are:

— period of electron plasma frequency 2w/ I1,,

— electron cyclotron period 27/ (2,

— ion cyclotron period 27/|§2],

— electron-to-ion collision time 7,

— ion-to-ion collision time 7y,

— electron—ion thermal energy relaxation time 7.

The Alfvén velocity va, which is the propagation velocity of a magnetic per-
turbation, is v = B?/(2110pm), where py, is the mass density (see Chaps.5
and 10). The Alfvén transit time g = L/va is a typical magnetohydro-
dynamic time scale, where L is the plasma size. In a medium with specific
resistivity 7, the electric field diffuses with a time scale of Tr = poL?/n (see
Chap. 5). This time scale is called the resistive diffusion time.

Characteristic length scales are:
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— Debye length Ap,

— electron Larmor radius pge,

— ion Larmor radius pg;,

— electron—ion collision mean free path Ag,
— plasma size L.

The relations between space and time scales are:

Aplle = ur, , erQe =T, ,
)\ei
1/2
pailfs| = vr =2~ 32
Tei
1/2
2~ gt/ Ty — =4,
Tii TH

where vr,, vy, are the thermal velocities

9 KT o KL
vTe = 5 UT; - .
Me myi

The drift velocity of the guiding center is

kT

“BL _ vr(pa/L) .

Udrift ™~

Parameters of a typical D fusion grade plasma with n, = 102°m=3, kT, =
kT; =10keV, B=5T, L = 1m are as follows:

s II.
— =11.1 — =89.8 GH
iR ps, o 89.8 GHz ,
2 2
| — = 140GH
0, 7.1ps, o 0GHz ,
2 |Ql|
=26 = 38 MH
2] ns, o 7z,
mH=013us, 7r=12x10%s,
TLei:0.12mS, TJ_ii:7.2mS, 7';:0.357
Pne = 47.6 um pni = 2.88mm ,

)\D =745 um , /\oi = 8.6km s )\ii =8.6km .
The ranges of scales in time and space extend to

)\ .
29 1.6 x 108
o Shad

Il ~ 10

and the wide range of scales suggests the variety and complexity of plasma
phenomena. Equations for plasma parameters are listed in Table 2.2.
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Table 2.2. Equations for plasma parameters (M.K.S. units). In A = 20 is assumed.
kT /e in eV and nao = n (m?)/102°

n 62 1/2
.= () =5.64 x 10" (ne20)"/?

Mme€Q
0.=L _176x10"B
Me
1] = Zn‘f —0.58 x 107(Z/A)B
1 Z2 ) 41 A T —3/2
Veil = = e 1 =8.41 x 10°2? (2) Ni20
Teil 31/267re(2)m;/2(/iTe)3/2 €
1 Z*nie* In A Z' (KT T2
Vil = = e i =2.0x 10® (K ) i 20
TiL  31/267e3m)? (kT)3/? Al
Veill = 1/Tei)] = VeiL/2, Veil|spitzer % 0.TVei|
1/2 1/2
o= (TN Cgas 1077 (R} T 1
neez e €20
v, 6 ,.;Te)l/2 1
= —=2.38x10 =
P02 -Qc X ( e B
or, 4 AnTi)l/Q 1
. =—=1.02x1 >0
PQ, Qi 0 X O ( ZB
T.\1/2 TN 2
Aei = (3:1 e) Tei = 1.73 x 107* (%) (ne20)”"

1/2
B? 6 B
= =218 x10° ——F
va <M0nimi> X (Ani 20)1/2

’“Te)w — 419 x 10° (@)1/2
e

1\ 1/2 1\ 1/2
vr, = (ﬂ) = 9.79 x 10° ("”T)
mi Ae

MeVei itzer — T —3/2
7] Spitzer = % =52x10 5Zh’1/1 (K e) (Qm)
Ne€ e

()l () * mene
va/ 2 c “ \ pae min;
. 326
Veii, ZlnA




3 Magnetic Configuration and Particle Orbit

In this chapter, the motion of individual charged particles in more general
magnetic fields is studied in detail. There are a large number of charged
particles in a plasma, so movements do affect the magnetic field. But this
effect is neglected here.

3.1 Maxwell Equations

Let E, B, D, and H be the electric intensity, magnetic induction, electric
displacement and magnetic intensity, respectively. When the charge density
and current density are denoted by p and j, respectively, Maxwell’s equations
are

0B
E+—= Nl
V x E+ o 0, (3.1)
oD
H-—=j 2
V x ot 7 (3 )
V-B=0, (3.3)
V:-D=p.
p and j satisfy the relation
. Op

Equations (3.2), (3.4) and (3.5) are consistent with each other due to the
Maxwell displacement current 9D /d¢t. From (3.3), the vector B can be ex-
pressed as the rotation of a vector A:

B=VxA. (3.6)

A is called the vector potential. If (3.6) is substituted into (3.1), we obtain

Vx(E+%?):O. (3.7)

The quantity in brackets can be expressed in terms of a scalar potential ¢
and
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0A
E=-V- 7. (3.8)
Since any other set of ¢’ and A’,
A'=A-Vy, (3.9)
N
I — R
g =0+ (3.10)

can also satisfy (3.6) and (3.8) for arbitrary v, ¢’ and A" are not uniquely
determined.
When the medium is uniform and isotropic, B and D are expressed by

D=¢E, B=uH,

where € and p are called the dielectric constant and permeability, respectively.
The values of €y and pg in vacuum are

€ =
4mc?

.x 1072 F/m ,

o =41 x 107" kgm/C? = 1.257... x 1075 H/m ,
1
=c?, c=2.99792458 (m/s) [definition] ,
€oMo

where ¢ is the light speed in vacuum and C is the coulomb. Plasmas in
magnetic fields are anisotropic and e and p generally have tensor form. In
vacuum, (3.2) and (3.3) may be reduced to

0 1 0%A ,
VxVxA+t Va(f—f—gﬁzuo.], (3.11)
oA 1

As ¢ and A are arbitrary up to %, as shown in (3.9) and (3.10), we impose
the supplementary condition (Lorentz condition)

10¢
ViAo =0. (3.13)

Then (3.11) and (3.12) reduce to the wave equations

1 02%¢ 1
29— 22— _— 3.14
Vi - o =" (3.14)
1 0%2A
2 _
V A — 02 at —M(]J (315)

In the derivation of (3.15), the vector relation
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Fig. 3.1. Magnetic surface 1) = const., normal V1 and line of magnetic force

V x (V xa) - V(V-a) = -V3a

is used, which is valid only in (z,y, z) coordinates. The speed of propagation
of the electromagnetic field is 1/(uo€o)'/? = ¢ in vacuum.
When the fields do not change in time, the field equations reduce to

E:—V¢, B:VXA,

1
Vip=——p, VZA = —puj, V-A=0, Vj=0.
€0

3.2 Magnetic Surface

A line of magnetic force satisfies the equations

A dy el

1
B, B, B. B’ (3.16)

where [ is the length along the line of force,
(d1)? = (dz)® + (dy)* + (d2)* .

The magnetic surface ¥(r) = const. is such that all magnetic lines of force
lie upon on that surface. It satisfies the condition

[Vi(r)]-B=0. (3.17)

The vector V) (r) is normal to the magnetic surface and must be orthogonal
to B (see Fig.3.1).
In cylindrical coordinates (r, 0, z), the magnetic field B is given by

104, 04 _ 04, 04,

104, 04y 19 194,
" r 96 0z ' o 0z or ’

= oAl = s
(3.18)

B.
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For an azisymmetric configuration (0/00 = 0),

P(r,z) =rdy(r, 2) (3.19)
satisfies the condition (3.17) of the magnetic surface:

Bra(’l"Ag) —|—Bg 'O+Bza(7’Ag)
or 0z

=0.

In the case of translational symmetry (0/0z = 0), the magnetic surface is
given by

Y(r,0) = A.(r,0), (3.20)
and in the case of helical symmetry, in which v is a function of r and 6 — az
alone, the magnetic surface is given by

P(r,0 —az) = A (r,0 —az) + ardy(r,0 — az) , (3.21)

where « is the helical pitch parameter.

3.3 Equation of Motion of a Charged Particle

The equation of motion of a particle with mass m and charge ¢ in an elec-
tromagnetic field E, B is

d?r dr
—=F=q|E+—xB]| . 3.22

e e ( LFT ) (3:22)
Since the Lorentz force of the second term on the right-hand side of (3.22) is
orthogonal to the velocity v, the scalar product of the Lorentz force and v is
zero. The kinetic energy is given by

t

=q E-vdt .
2 2 t=to

mu?  mugy?

When the electric field is zero, the kinetic energy of the charged particle is
conserved. When generalized coordinates ¢; (i = 1,2,3) are used, the La-
grangian formulation must be used. The Lagrangian of a charged particle in
the field with scalar and vector potentials ¢, A is given by

2
. muv
L(Qi,%t) = 5 +quv-A—q¢, (323)

where ¢; is the time derivative of ¢;. Lagrangians in orthogonal and cylindrical
coordinates are given by

L(x,y,z,x,y,z,t) = 5(332 +y2 +Z2) + q(xAI "‘yAy +ZAZ) - ng )
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L(r,0,z,7,0,2,t) = 5 [rQ + (r9)2 + 22] +q(rA, +1r0Ag + 2A.) — q0,

respectively. The Lagrange equation of motion is

d /0L oL
— — =0. 24
de (aqz) 0q; 0 (3:24)

Canonical transformations are more general than coordinate transformations.
The Hamiltonian equation of motion is conserved under canonical transfor-
mations. In this formulation, we introduce momentum coordinates (p;), in
addition to the space coordinates (g;), defined by

OL
7 = a9 .2
Pi = 50 (3.25)

and treat p; as independent variables. Then we can express ¢; as a function
of (g;,pj,t) from (3.25) as follows:

lji = Qi(Qj>pj7 t) . (326)
The Hamiltonian H(g;, p;,t) is given by
H(q;,pist) = —L(qi, 4i(q5,pj, 1), t) + Zpidi(qg‘7pj7t) . (3.27)

The z component of momentum p, in orthogonal coordinates and # compo-
nent pg in cylindrical coordinates are given as examples:

. —qA,
m
. . —qrA
po = mr20 + qrig , 0:2)07(]29.
mr

In orthogonal coordinates, the Hamiltonian is

1

H= o [(px —qA.)? + (py — qAy)* + (ps — qu)Z} + qo(z,y, 2, t)

and in cylindrical coordinates, the Hamiltonian is

1

_ o 2
H= 5 {(pr qA.)* +

(po — qrAg)*

72 + (pz - qu)2:| + Q¢(T7 93 2, t) .

The variation of the Lagrangian L is given by

oL oL . . . .
OL = Z (aqi&h + %Sqi> = Z(pi&]i + pidd;)

=98 (Z pi(L-) + Z(pi8Qi — 4;%p;) ,
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and

5 <—L + ZIML‘) = (G:dpi —pidq;) . SH(qi,pirt) = Y _(4:dpi — pidas) -

Accordingly, the Hamiltonian equation of motion reduces to

dg; OH dp; _ oH
dt — op;’ dt — 0¢q;

(3.28)

In orthogonal coordinates, (3.28) is

dz  ps —qAs dp, g 0A
dt m ’ dt ~ m oz

d%x _dp, dA,

"we T aw Ta

r{(o5) -5 o)

=q(E+vxB),,

and it follows that (3.28) is equivalent to (3.22).
When H does not depend explicitly on ¢, i.e., when ¢, A do not depend

on t,
dH (g, pi) _ Z OH dg; OH dp; _0
dt Og; dt ~ Op; dt ’

and
H(q;,p;) = const. (3.29)

is one integral of the Hamiltonian equations. This integral expresses the con-
servation of energy.

When the electromagnetic field is axially symmetric, py is constant be-
cause 0H/00 = 0, as can be seen from (3.28), and

pg = mr260 + qrAg = const. (3.30)

This indicates conservation of angular momentum. In the case of translational
symmetry (0/9z = 0), we have

p. = mZ + qA, = const. (3.31)

3.4 Particle Orbit in Axially Symmetric System

The coordinates (r*,6*, 2*) on a magnetic surface of an axially symmetric
field satisfy
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P(r*, z*) = const.

(r,2)
Fig. 3.2. Magnetic surface (dotted line) and particle orbit (solid line)

Y =r"Ag(r*,2*) = em (cMm constant) .

On the other hand the coordinates (r,0, z) of a particle orbit are given by
the conservation of angular momentum (3.30) as follows:
Do

rAg(r,z) + M2 Do
q q

= const.

If cp is chosen to be ¢y = pg/q, the relation between the magnetic surface
and the particle orbit reduces to

rAg(r,z) — r*Ap(r*,z%) = Mg
q

The distance 6 (Fig.3.2) between the magnetic surface and the orbit is
given by

d=(r—re,+(z—2"e,, 5-V(rAg):_Tr29'7
q

where e, and e, are unit vectors in the directions of r and z, respectively.
Since B, = —0(rAp)/0z, rB, = 0(rAy)/0r, this reduces to

—(z2=2")B, 4+ (r—r")B, = —%ré )

The left-hand side of the above equation is the # component of the vector
product of B, = (B, B;) and § = (r — r*,z — z%), and

(B, x 8)g = — 14 .
q

Denoting the magnitude of the poloidal component B, [the component in
the (rz) plane] of B by B,,, we find the relation —B,d = —(m/q)vgy (vg = 10)

and we have

(5:7:p9 .
qu P
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z4

:

Fig. 3.3. Toroidal drift

This value is equal to the Larmor radius corresponding to the magnetic field
B, and the tangential velocity vg. If ¢y is chosen to be ey = (pg —m(rvg))/q,
where (rvg) is the average of rvg, we find

5= <’U9— <m9>> . (3.32)

- qBy r

3.5 Drift of Guiding Center in Toroidal Field

Let us consider the drift of the guiding center of a charged particle in a simple
toroidal field (B, =0, B, = BoRy/R, B, = 0), using cylindrical coordinates
(R, ¢, z). The ¢ component B, is called the toroidal field and B, decreases
as 1/R as we move outward. The lines of magnetic force are circles around the
z axis, which is called the major azxis of the torus. As described in Sect. 2.4,
the drift velocity of the guiding center is given by

Vg =v)e —|—L 1)2—&-i e
G = V)|€p qupR I 2 Z

where e, is the unit vector in the ¢ direction (see Fig.3.4). Particles in this
simple torus move fast in the toroidal direction and drift slowly in the z
direction with velocity

2
LR eSO ()
Var = Bolis <v| +t5 > <R0> v. (3.33)

This drift is called toroidal drift. Ions and electrons drift in opposite directions
along the z axis.

As a consequence of the resulting charge separation, an electric field E
is induced, and both ions and electrons drift outward by E x B/B? drift.
Consequently, a simple toroidal field cannot confine a plasma (Fig. 3.3), un-
less the separated charges are cancelled or short-circuited by an appropriate
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Fig. 3.4. Major axis A and minor axis M of a toroidal field, showing the rotational
transform angle ¢

method. If lines of magnetic force connect the upper and lower regions as
shown in Fig. 3.4, the separated charges can be short-circuited, since the
charged particles can move freely along the lines of force.

If a current is induced in a toroidal plasma, a component of the magnetic
field around the magnetic azxis (also called the minor azis) is introduced as
shown in Fig.3.4. This component By, is called the poloidal magnetic field.
The radius R of the magnetic axis is called the major radius of the torus and
the radius a of the plasma cross-section is called the minor radius. Let r be
the radial coordinate in the plasma cross-section. When a line of magnetic
force circles the major axis of the torus and comes back to cross the plane P,
the crossing point rotates in P through an angle ¢ around the minor axis O.

‘We have the relation
rL B,

TR Big, ’
The angle ¢ is called the rotational transform angle and is given by

L _RB,

— . 3.34
2w r B, ( )

A = R/a is called the aspect ratio.

3.5.1 Guiding Center of Circulating Particles

When a particle circulates around the torus with velocity v, it takes T' ~
2w R /v). Accordingly the particle rotates around the minor axis with angular
velocity
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0on electron

Fig. 3.5. Orbits (solid lines) of guiding center of circulating ions and electrons,
showing magnetic surfaces (dotted lines)

L_ W)

T 27R,’
and drifts in the z direction with velocity wvg,. Introducing the coordinate
x = R — Ry, the orbit of the guiding center of the particle is given by

dz z n
- = —WZz -— = WIT VU .
dt ’ dt dr

The solution is

2
(JH-Udr) +22 =7,
w

If a rotational transform angle is introduced, the orbit becomes a closed circle
and the center of this circle deviates from the center of the magnetic surface
by the amount

Vdr mu|| 27 v? 27
A= — — 1 L Al ~ — 3.35
w qBoy ¢ ( + 2vﬁ ’ Al ~ pa v ) (3.35)

where pg is the Larmor radius. As can be seen in Fig. 3.5, the sign of the
deviation is A < 0 for the case v >0, ¢ > 0 (ion) since vg, > 0, w > 0 and
the sign becomes A > 0 for the case v < 0 (opposite to v > 0) ¢ > 0 (ion).

3.5.2 Guiding Center of Banana Particles

When |B,| > | By, the magnitude of the toroidal field is nearly equal to B,

and
_ BoRy By

r
B= = ~Byll——= 0 .
R 1+ (r/R)cosd 0( R, " >
Let [ denote the length along the line of magnetic force and use coordinates

(r,0) for the projection of a location on the magnetic line of force onto the
(R, z) plane, as shown in Fig.3.6. Since
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B B,
ﬁ:—p, 0= ! ==kl ,
l BO TBQ

we find that

B = By [1 — RLO cos(/@l)] .
If v (component parallel to magnetic field) is much smaller than the com-
ponent v and satisfies the condition

< — (3.36)

the particle is trapped outside in the region of weak magnetic field due to the
mirror effect, as described in Sect. 2.5. [The mirror ratio is (1/R)/(1/(R+r)).]
This particle is called a trapped particle. Circulating particles that are not
trapped are also called untrapped particles. Since ’U|2 < v? for the trapped
particle, the » component of the toroidal drift vg, ofl the trapped particle is
given by

dr m v2

= Vg, Sinf = — —L sin 6 .

dt qBy 2R
The parallel motion of the guiding center is given by (see Sect. 2.4)

d'U” m 0B Hm T . Ule .
e R A ) 1= YL 2vgng
at m ol m RTOOSE SR B,

The solution is

d
T < qB v|> 0, r—ry = _EUH . (3.37)

Here r = 1y indicates the radial coordinate of the turning point by the mirror
effect. Since the orbit has banana shape, the trapped particle is also called a



42 3 Magnetic Configuration and Particle Orbit

Fig. 3.7. Banana orbit of ion

banana particle (see Fig.3.7). The width Ay, of the banana is given by

1/2
m mv vy By By /r\1/2 R 27
A= ~woBo B ~ () () pe. (338
b I yB, v B, BP(R) P\ ;)re 338

3.6 Orbit of Guiding Center and Magnetic Surface

The velocity of the guiding center was derived in Sect. 2.4 as

1 mo? /2 muf
ve = b+ 5 (B x b) + qéQ (bx VB) + q?! [bx (b-V)B], (3.39)
2
- va -
Hm = 5B const.

When the electric field E is static and expressed by E = —V¢, we have

conservation of energy, i.e.,
m
E(vﬁ—l—vi)—i—q(b:W.

Then v is expressed by

1/2
v ==+ () (W —q¢ — puB)"/2.
m
Noting that v) is a function of the coordinates, we can write
V x (my)b) = my|V x b+ V(my)) x b

1
= mu|V x b+ —(~qV¢ — 1 VB) x b
u
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and

va_/2

v ( b)—m—lﬁwai(Exb) (bx VB).
4B v =B B

Then eq.(3.39) for vg reduces to [3.1]

Y muip moj
UG:U”b+ BVX(m’U”b) qB V xb —|—q?[b><(b-V)B}

muv
= v||b+ L % (moyb) q—B”[V xb—bx (b-V)b] .

Since we have
V(b-b) =2(b-V)b+2bx (V xb)=0

because b-b = 1, the square-bracketed part of the third term on the right-
hand side of the equation for vg becomes

(Vxb)—(Vxb)=(Vxb)=I[b(Vxb)b

Accordingly, within accuracy of 2nd order of Larmor radius/characteristic
length of b, the velocity of guiding center is reduced to

T (mvu/qlB)b -V xb (U“I”' BV x )) (3.40)

The first factor in the righthand side of (3.40) is necessary in order to con-
serve the phase space volume in Lagrange-Hamiltonian formulation of guiding
center motion [3.2].

Since

VXB=BVXxb+VBXxb=puoj,
we have b-V x b = pgj)/B. The second term of the denominator in (3.40) is
usually very small compared with 1 (zero in the case of j; = 0). If the second
term of the denominator can be neglected, eq.(3.39) for vg is reduced to [3.1]

drg _ v
are _ U A+ Mg 41
@ ~BYS e 4B (3.41)

The orbit of (3.40) and (3.41) are identical when the magnetic field does
not depend on time. The orbit of the guiding center is equal to the field line
of the magnetic field B* = V x A* with the vector potential

a=a+"p
=A+ B

For analogous reasons to those discussed in Sect. 3.2, the orbit surface of the
drift motion of the guiding center is given by

rAg(r, z) = const. (3.42)
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3.7 Effect of Longitudinal Electric Field
on Banana Orbit

In the tokamak configuration, a toroidal electric field is applied in order to in-
duce the plasma current. The guiding center of a particle drifts by E x B/B?,
but the banana center moves in a different way. The toroidal electric field can

be described by
B _ 0A,

v ot ’
in (R, p, z) coordinates. Since angular momentum is conserved, we can write

R(mR¢ + qA,) = const.

Taking the average of the foregoing equation over a Larmor period, and using
the relation

) B
(Ré) = s
we find B
R (mv| fv + qA<p> = const. (3.43)

For particles in banana motion (v < vy ), v becomes 0 at the turning points
of the banana orbit. The displacement of a turning point (R, Z) per period
At is obtained from

1o} 0

0=A[RA,(R,Z)] = Ar—RA, + At—RA, ,

or ot
where r is the radial coordinate of the magnetic surface. The derivatives of
RA, = const. with respect to ¢ and @ are zero, since RA, = const. is the
magnetic surface. By means of the relation

lg( ) = 1 87R§(RA¢) 8£8(RA¢)
R Or " R|Or OR or 07
=cos0Bz —sin0Br = By, -eg = — B},

we obtain the drift velocity

Ar E,

AT B, (3.44)
where ey is the unit vector in the @ direction (see Fig.3.8). When the sign
of B, produced by the current induced by the electric field E,, is taken into
account (B, > 0, E, > 0 in the case of Fig.3.8), the sign of Ar/At is
negative and the banana center moves inward. Since |B,| < |By| ~ B, the
drift velocity of the banana center is (B/Bp)? times as fast as the the drift
velocity E,Bp/ B? of the guiding center of the particle. This phenomena is
called Ware’s pinch.
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o

Fig. 3.8. Coordinate system in which the Ware pinch is analyzed

3.8 Polarization Drift
Let us consider the case when E = Ejexp(—iwt)& lies in the x direction and

is time dependent, but B is stationary and constant in the z direction. Then
the equation of motion (3.22) is

) E,
ip = LB, + Lo, B =iwR=2 — %,
m m - B

Ey
i, = —%mB — 02T %,

B
When we define
E, w By
Vg = —— vy =1—=—
E B ) P 0 B )
the equation of motion reduces to
by = —82%(vy —vp) iy = —2%(v, — vg) .
When 22 > w?, the solution is
vy = v exp(—if2t) +vp , vy = v exp(—if2t) + vg .

This solution shows that the guiding center motion consists of the usual
E x B drift (but slowly oscillating) and the new drift along E. This new
term is called the polarization drift and is expressed by

1 OF
Vp = ———=— . 3.45
P 2B 0t (345)
Since vy, is in opposite directions for ions and electrons, there is a polarization
current
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. ne(mi + me) OE  py OF
Jp = ene(’vpi - vpe) = TE = ?E s (346)

where py, is the mass density.



4 Velocity Space Distribution Function
and Boltzmann’s Equation

A plasma consists of many ions and electrons, but the individual behav-
ior of each particle can hardly be observed. What can be observed instead
are statistical averages. In order to describe the properties of a plasma, one
must define a distribution function that indicates particle number density
in the phase space whose ordinates are the particle positions and velocities.
The distribution function is not necessarily stationary with respect to time.
In Sect.4.1, the equation governing the distribution function f(g;,p;,t) is
derived by means of Liouville’s theorem. Boltzmann’s equation for the distri-
bution function f(x,v,t) is formulated in Sect.4.2. When the collision term
is neglected, Boltzmann’s equation is called Vlasov’s equation.

4.1 Phase Space and Distribution Function

A particle can be specified by its coordinates (z,y, 2), velocity (va, vy, v.), and
time t. More generally, the particle can be specified by canonical variables
1,92, 93,1, P2, p3 and t in phase space. When canonical variables are used,
an infinitesimal volume in phase space A = 8q10¢20q30p10p20p3 is conserved
(Liouville’s theorem). The motion of a particle in phase space is described by
Hamilton’s equations

dql aH(qj s pj, t) dpz 8H(q]'7pj, t)

_ = 2\ F ) ,j=1,2,3. (4.1
dt Bpi ’ dt 86]1' ’ b ’ ’3 ( )

The variation over time of A is given by

dA  [d(s d(é
== { (d(t]l)&pl + (dfl)&h] 8g20p28q30p3

[t

d(é
B2 + 2 o0 | B0

d(d d(é
+ { (dgg)Sps + (dfg)&]:a] 8q10p18q206p7

d OH 92H d OH 92H
a2 =0 ((%) - Opi0y; o4 =0 <0qi) T 9qi0p;i o,
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8¢ dp

dq &p

Fig. 4.1. Movement of particles in phase space

dA 0*H 0’H
—_— _— A = O . 4~2
dt zl: (31%3%‘ a%‘api) 42
This is a proof of Liouville’s theorem (see Fig.4.1).

Let the number of particles in a small volume of phase space be 8N
given by

where 8q = 08¢108¢20q3, Op = Op18p2dps, and F(gq;,p;,t) is the distribution
function in phase space. If the particles move according to the equation of
motion and are not scattered by collisions, the small volume in phase space
is conserved. As the particle number dN within the small phase space is
conserved, the distribution function (F' = 8N/A) is also constant, i.e.,

dF aj+z OF dg;  OF dpi\ _ aj+z OHOF 0H OF
dt B ot 8qi dt 8pi dt n ot 3 8pi 6%‘ (’9qi Opi

(4.4)
In the foregoing discussion, we did not take collisions into account. If we
denote the variation of F' due to collisions by (8F/8t)con, (4.4) becomes

OF OH OF OH OF OF
ot + Z <8pi dq;  0q 51%‘) ( ot )coll )

%

4.2 Boltzmann’s Equation and Vlasov’s Equation

Let us use the space and velocity space coordinates 1, x2, X3, v1,v2,v3 in-
stead of canonical coordinates. The Hamiltonian is

_ LA
H=5—(p—qA)"+49, (4.6)
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pi = mu; + qA; , (4.7)
qi = Ti, (4.8)
and d SH
x;
= = ; 4.
= op (4.9)
dp; e — qA 3Ak 3¢
dt 8% Z m 8$ 83: (4.10)

Consequently, (4.5) becomes

DA, OF  (OF
Sl ey (Sud - 2) 2 ()

Using (4.7) and (4.8), independent variables are transformed from (g;, p;,t)
to (xj,v;,t) and

8vj(xk,pk,t) _ l& 8vj(xk,pk,t) - _iaAj
Op; m 7’ ox; m Ox;

8Uj(xk7pkat) _ _g%
ot m Ot
We denote F(z;, p;, t) = F(xi,pi(:cj,vj,t),t) = f(zj,v;,t)/m3. Then we have
mSF(‘riapiat) = f(xjavj(x’uplat)vt) and
0 0 af v, of 1
3 F - ey _ “J 7% 2 =
m 8}72 (xhaphat) apif(x]’v](xh7phat)7t) - 311] apl (‘91)@- m

9 B af dv;
37 = —_— . . = —_— —_— v
m 8I1€F(xh,ph,t) axkf(xzavz(xh7ph7t)7t> aﬂCk + Ei 8vi 8xk

0
msaF(mh,ph,t) =

af(ﬂc“Uz(iﬂhvph,t)at) ot +zi:6vi <m> 5’t '

Accordingly, (4.11) reduces to
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+Zk Z( O >qaf

ox; ox;

df
St coll
Since

DA  OA o« 04 |
;vkaimi —gvk% + [U x (V x A)L —kaaTk—i—(’v x B); ,

k

m Ov;

we have

of &f
Z Z (E + v x B)iavi (& )COH (4.12)

This equation is called Boltzmann’s equation. The electric charge density p
and the electric current j are expressed by

p= Zq/fdvldvgdvg , (4.13)

i=>q / v fdvidvadus . (4.14)

Accordingly, Maxwell’s equations are given by

1
V-E = q)ize:q/fdv, (4.15)

—VxB_eo—JrZ /vfdv (4.16)

Ho

aB
VxE=-7". (4.17)

V-B=0. (4.18)

When the plasma is rarefied, the collision term (3f/¢)con may be neglected.
However, the interactions of the charged particles are still included through
the internal electric and magnetic fields which are calculated from the charge
and current densities by means of Maxwell’s equations. The charge and cur-
rent densities are expressed by the distribution functions for the electron
and the ion. This equation is called the collisionless Boltzmann equation or
Vlasov’s equation.

When the Fokker—Planck collision term is adopted as the collision term
in Boltzmann’s equation, this equation is called the Fokker—Planck equation
(see Sect. 16.8).
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5.1 Magnetohydrodynamic Equations for Two Fluids

Plasmas can be described as magnetohydrodynamic double fluids of ions and
electrons with mass densities pni, pme, charge density p, current density 7,
flow velocities Vi, V., and pressures p;, p.. These physical quantities can be
expressed by appropriate averages in velocity space using the velocity space
distribution functions f;(r,v,t) of ions and electrons, which were introduced
in Chap. 4. The number density of ions n;, the ion mass density pu;, and the
ion flow velocity V'i(r,t) are expressed as follows:

n(rst) = /fi(r,v,t)dv , (5.1)
pmi(rat) - mini(rat) ) (52)

Jvfi(r,v,t)dv 1

V(r,t) = Thimo.do — m) /vfl(r,v,t)dv. (5.3)
We have the same expressions for electrons as for ions. Since magnetohydro-
dynamics treats average quantities in the velocity space, phenomena asso-
ciated with the shape of the velocity space distribution function (Chap.11)
will be neglected. However, the independent variables are r,t alone, and it is
possible to analyze geometrically complicated configurations.

The magnetohydrodynamic equations are:

One
*NeVe) =Y, 4
4 Ve (ne V) =0 (5.4)
8ni
o T V(mVi) =0, (5.5)
dVv,
nemew =—-Vpe—en.(E+V.xB)+R, (5.6)
dVv;
nimjﬁ = _Vpl + Z@ni(E + Vi X B) -R. (57)

Here R denotes the rate of change of momentum (density) of the electron
fluid by collisions with the ion fluid. The rate of change of momentum of
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A-‘
z p(z + Az)

N
n(z + Az)V(z + Az)

n(a:, t)V:(a:, t)
Fig. 5.1. Particle flux and force due to pressure

the ion fluid due to collisions with the electron fluid is —R. The change in
the number n(x,y, z,t)AxAyAz of particles within the region AzAyAz is
the difference between the incident particle flux n(x, y, z,t)Va (2, y, 2, t) AyAz
into the surface A in Fig.5.1 and the outgoing particle flux

n(z+ Ax,y, 2, )V (x + Az, y, 2, 1) AyAz
from the surface A’, that is,
[n(x, Y, z, t)V:L’('T7 Y, %, t) - n(m + A1.7 Y, %, t)Vz(x + A(E, Y, z, t):| AyAZ

= 73(71‘/;) AxAyAz .
ox

When the particle fluxes of the other surfaces are taken into account, we find
the equations of continuity (5.4) and (5.5), that is,

@AxAyAz =— O(nVe) + Onty) + 6(7]%)] AxzAyAz .

ot oz 0y 0z

The term —Vp in (5.6) and (5.7) is the force per unit volume of plasma due to
the pressure p and the second term on the right-hand side of (5.6) and (5.7) is
the Coulomb force and Lorentz force per unit volume. The third term is the
collision term for electron—ion collisions, as mentioned in Sect. 2.8, given by

R=-nme(Ve—Vi)e, (5.8)

where vg; is the Coulomb collision frequency of electrons with ions.

Let us consider the total time derivative on the left-hand side of the
equation of motion. The flow velocity V is a function of space coordinates r
and time t. Then the acceleration of a small volume of fluid is given by

dV(r.t) _oV(rt) (Z_V) Vrt) = w + [V, 0V V(1) .

dt ot
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Therefore the equations of motion (5.6) and (5.7) reduce to

TeMe {3;/;6 + (VC-V)VC] =—-Vp.—en.(E+V,xB)+ R, (5.9)
oV
nim;i ot + (Vi'V)Vi = —Vpi + Zeni(E + Vi X B) -R. (510)

Conservation of particle number, (5.4) and (5.5), and the equations of motion
(5.9) and (5.10) can be derived from Boltzmann’s equation (4.12). Integrating
the Boltzmann equation over velocity space yields (5.4) and (5.5). Integrating
the Boltzmann equation multiplied by mv yields (5.9) and (5.10) [5.1].

5.2 Magnetohydrodynamic Equations for One Fluid

Since the ion-to-electron mass ratio is m;/me = 1836 A, where A is the atomic
weight of the ion, the contribution of ions dominates the mass density of the
plasma. In many cases it is more convenient to reorganize the equations of
motion for two fluids into the equation of motion for one fluid and Ohm'’s
law.

The total mass density of the plasma p,,, the flow velocity of the plasma
V', the electric charge density p and the current density j are defined as
follows:

Pm = NeMe + NyMy; (5.11)
e ch i iVi
y = lelle¥e T mmili (5.12)
Pm
p=—en.+ Zen; , (5.13)
j=—-enVe+ ZniV;y. (514)

From (5.4) and (5.5), it follows that

0pm

(puV) =0, 1
S V(o V) =0 (5.15)
Jdp .
il 3=0. 1
5+ V=0 (5.16)

From (5.9) and (5.10), we find

ov .
Pm—F7 + neme(ve'v)ve + nimi(vi°v>vi = *V(pe +pi) +pE +3 % B.

ot
(5.17)
The charge neutrality of the plasma allows us to write n, ~ Zn;. Putting
Ane = ne — Zn;, we have

MmeZ

(Ve - Vl) )

1

m
pmnimi(1+n:2)7 P=pi+pe, V=Vi+
1
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p=—eAn,, Jj=—-ene(Vo—V;).

Since me/m; < 1, the second and third terms on the left-hand side of (5.17)
can be written as (V-A)V. Since V, = V; — j/en, ~ V — j/en., (5.9)
reduces to

R  m. 05 m.0V

o o= e 9 MOV 1
ene Vp ene  €2ne Ot e Ot (5.18)

J

(5]

E+(V )xB+

Using the expression for the specific resistivity n (see Sect.2.8), the collision
term R reduces to

MelVei .
R =n, ( p— ) (—ene) (Ve — Vi) = neeny . (5.19)

e€

Equation (5.18) is a generalized Ohm’s law. Finally, the equation of motion
for the single fluid model and the generalized Ohm’s law are

v .
Pm [(% + (V-V)V} =-Vp+pE+3xB, (5.20)
J 1 . Mme 0] me OV
E — B —nj = -~ ) 1).
+ <V ene) x +ene Vpe=n e2n, Ot e Ot 0 (/2] <1)
(5.21)
The equation of continuity and Maxwell’s equations are
Om 9. (puV) =0, (5.22)
ot
op .
s g = 2
ot +V.3=0, (5.23)
0B
E=—— .24
V x o (5.24)
1 oD
—VXxB=j+— 5.25
s I+ (5.25)
V:-D=p, (5.26)
V-B=0. (5.27)

From (5.25) and (5.24), it follows that

dj 0’E
VXV XE=—u—= — — .
Ho ot Ho€o a2
A typical propagation velocity for a magnetohydrodynamic wave or pertur-
bation is the Alfvén velocity va = B/(popm)'/? as described in Sect. 5.4. This
is much smaller than the speed of light ¢ and w?/k? ~ v3 < 2. Since
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0B
‘me’:|VxVxE|~k2|E|7

and
0%E
ot?

the displacement current 0D /0t in (5.25) is negligible. Since the ratio of the
first term (me/€)04/0t on the right-hand side of (5.21) to the term (j x B)
on the left-hand side is w/ (2, the first term can be neglected, if |w/§2| < 1.
The second term (m./e)dV /Ot on the right-hand side of (5.21) is of the order
of w/ 2 times as large as the term V' x B on the left-hand side. Therefore we
may set the right-hand side of (5.21) almost to zero. When the term j x B
is eliminated by means of (5.20), we find

w’| E|
2 )

~

Ho€o

C

1 An, i dV
Vo -nj= —CE+ T

E+V xB-—
TV eNne Ne e dt

The ratio of (m;/e)dV /dt to V x B is around |w/{%|, and An./n. < 1.
When |w/f2| < 1, we find

1

ene

E+V xB-— Vi =nj (lw/f] < 1) . (5.28)

5.3 Simplified Magnetohydrodynamic Equations

When |w/ 2| < 1, |w/k| < ¢, and the ion pressure term Vp; can be neglected
in Ohm’s law, the magnetohydrodynamic equations simplify as follows:

E+V xB=nj, (5.29)
P {%‘; + (V-V)V] =-Vp+jxB, (5.30)
V x B = uoj . (5.31)
0B

E=-2" 32
V x 5 (5.32)
V-B=0, (5.33)

8pIIl
5 T (V-V)pm + puV:V =0. (5.34)

We may add the adiabatic equation as an equation of state:

d
=) —
T (Prn) =0,
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where the quantity ~y is the ratio of specific heats and v = (2 + §)/d, with §
the number of degrees of freedom, is 5/3 in the three-dimensional case § = 3.
Combined with (5.34), the adiabatic equation becomes

dp

Instead of this relation, we may use the simpler relation of incompressibility
V.V =0, (5.36)

if |(dpm /dt)/ pm)| < |V - V.
From (5.31) and (5.32), the energy conservation law is

1 0 [ B?
—V(ExB)+—|—|+FE-37=0. 5.37
LExB) g (5 ) + P (5.37)

From (5.29), the third term on the left-hand side of (5.37) becomes
E-j=nj*+(j x B)-V. (5.38)

Using (5.30) and (5.34), the Lorentz term in (5.38) is expressed by

9 [ pmV? V2
(ij)-V:at<p2 )+V-<”2 V>—|—V-Vp.

From (5.35), it follows that

0
“V-(pV) = 5+ (-~ LpV-V

0 p p
VP =G <71)+V (vlﬂj)v'

Therefore the energy conservation law (5.37) reduces to

0 [ puV? P B?
(ExH)+2 _r_ 5 .
V-(E x Hat( o (5.39)

and

m V2
+nj2+V-(p2 p1+p)V:O.
o

Substituting (5.29) into (5.32) yields

0B

E:Vx(VxB)anxj:Vx(VxB)JrMQAB, (5.40)
0

%’f = (V-V)B - B(V-V) + (B-V)V + %AB . (5.41)
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Here we have used the vector formulas for V x (V' x B) and V x (V x B)
(refer to Table 5.1). The quantity 1/uo = v, is called the magnetic viscosity.
Substituting (5.31) into (5.30) yields

dv

2
pny =V <p+ B) + LBV)B. (5.42)

210 Ho

The equation of motion (5.42) and the equation of magnetic diffusion (5.41)
are fundamental equations of magnetohydrodynamics. Equation (5.33), the
equation of continuity (5.34) and the equations of state (5.35) or (5.36) are
additional equations.

The ratio Ry, of the first term to the second term on the right-hand side
of (5.40), defined by

Vx(VxB)| _ VB/L VL
IAB(n/mo)l — (B/L2)(n/mo)  n

is called the magnetic Reynolds number. The notation L indicates a typical
plasma size. The magnetic Reynolds number is equal to the ratio of the
magnetic diffusion time 7R = poL?/n to the Alfvén transit time 7q = L/va
(assuming that v & va), i.e., Ry = 7r/7u. When R,, < 1, the magnetic field
in a plasma evolves according to the diffusion equation. When R, > 1, it
can be shown that the lines of magnetic force are frozen in the plasma. Let
the magnetic flux within the surface element AS be A®, and take the z axis
in the B direction. Then A® is

R, (5.43)

AP = B-nAS = BAzAy .
As the boundary of AS moves, the rate of change of AS is

d d oV
&(Ax) = &(x + Az —z) =V (x4 Az) — Vy(x) = e Az,

Table 5.1. Vector formulas

a-(bxec)=b(cxa)=c(axb)
a x (bxc)=(ac)b— (ab)c
(a x b)-(c x d) = abx (cxd) =a-[(b-d)c— (b-c)d]
= (a-c)(b-d) — (a-d)(b-c)
V:(pa) = ¢V-a+ (a-V)¢p
V x (¢pa) =Voxa+ ¢V xa
V(a-b)=(a-V)b+ (b-V)a+ax (Vxb)+bx(V xa)
V-(axb)=b-Vxa—a -Vxb
V x (a xb) =a(V-b) —b(V-a)+ (b-V)a — (a-V)b
V xV xa=V(V-a)—V?a (valid only for z,y, z coordinates)
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a v, v,
A I Azay .
@89 = (a +8y> s

The rate of change of the flux AP is [see (5.41)]

d
S(A9) = —ASJrB - (A9)
dB
_ {dt +B(V-V) - (B-V)VLAS
= LAB.(AS) . (5.44)
Ho

When R,, — oo,  — 0, the rate of change of the flux becomes zero, i.e.,
d(A®)/dt — 0. This means that the magnetic flux is frozen in the plasma.

5.4 Magnetoacoustic Wave

As usual, we indicate zeroth-order quantities (in the equilibrium state) by
a subscript 0 and first-order perturbation terms by a subscript 1, so that
Pm = Pmo+ Pm1, P=po+p1, V=0+V, B=By+ B;. The case n = 0 will
be considered here. We find the first-order equations as follows:

Opm
g L Ve (pmoV) =0, (5.45)
1% . .
PmOE‘FVPl:JoXBl +J1 % Bo, (5.46)
B
(;';1 (V-V)po + 00 V-V =0, (5.47)
B
% =V x (V x By). (5.48)

If the displacement of the plasma from the equilibrium position r is denoted
by &(ro,t), it follows that

V=">T~2 E(ro,t) =r—1rg. (5.49)

Substituting (5.49) into (5.48), (5.45), and (5.47) yields

=V x (€ X By), (5.50)

toj, =V x By, (5.51)
pm1 = —V+(pmo§) , (5.52)
p1=-&Vpo—1poV-§. (5.53)
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Then (5.46) reduces to

0%¢

1 1
pmow =V (& Vpo+vpoV-€) + %(V x Bp) x B1+ —(V x By) x By .

Ho
(5.54)
Let us consider the case where By = const., pg = const. and the displacement
is expressed by &(r,t) = &, expi(k-r — wt). Then (5.54) reduces to

0w’y = —po(ke&, )k — ugl{k x [k x (& % BO)]} x By. (5.55)
Using the vector formula a x (b x ¢) (see Table 5.1), we can write (5.55) as

[(k-Bo)? — pow”pmo &1 + [(B§ + poypo)k — (k-Bo)Bo| (k-£,)
—(k-Bo)(Bo-&; )k =

Denoting unit vectors along k, By by k= k/k, b= By/By, respectively, and
introducing

B? ~
0 8= Po , cosf = k-b,

\%4
H0Pm0 Bc2) /210

I
RS
<
ENY
I

we find

<0052 0 — :j;) &+ [(1 + ’Yﬁ) — cos Hb} (251) — cos 9(”‘51)/"; =
A (5.56)

The scalar product of (5.56) with k and b, and the vector product of k with
(5.56), yield

(1 + 8 _ V2> (k-&,) — cosO(b-¢,) =

2 vA
75 cos O(k-€, )—V—;(b-sl):o, <cos 9—‘/2> (kx &)=
VA Vi

The solutions of these equations are magnetoacoustic waves. One solution is
V% =3 cos? 0, (€,°k) =0, (€,-Bp) =0. (5.57)

Since &, of this solution is orthogonal to k and By, this is called a torsional
Alfvén wave (see Sect. 10.4). The other solutions are given by

<X\)4 <1+W> <UA) + P 020 =0, Bo(kx&)=0. (5.58)

If the velocity of sound is denoted by ¢? = ypg/pmo, (5.58) becomes

Vi+ (R + @)V + 02 cZcos® 0 =0
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and
o _ Lo o 1[0 a0 oo o V2
Vi = 2(UA—|—CS)—|—2 (v +c5)° — 4oy cos” 0 , (5.59)
o Loo o L[ 9 | o909 2 2 2,2
V; :i(UA‘FCS)*i{(UAJrCS) — 4oy ¢ cos 0} . (5.60)

The solution of (5.59) is called a compressional Alfvén wave (see Sect. 10.4)
and the solution of (5.60) is called a magnetoacoustic slow wave. The char-
acteristic velocity
BQ
H0Pmo

is called the Alfvén wvelocity. The plasma with zero resistivity is frozen to
the magnetic field. There is tension B2 /2 along the magnetic field line. As
the plasma, of mass density pp,, sticks to the field lines, the magnetoacoustic
waves can be considered as waves propagating along the strings of magnetic
field lines (see Sect. 10.4).

0 =



6 Equilibrium

In order to maintain a hot plasma, we must confine it and keep it away from
the vacuum container wall. The most promising method for such confinement
of a hot plasma is the use of appropriate strong magnetic fields. An equilib-
rium condition must be satisfied for such magnetic confinement systems.

6.1 Pressure Equilibrium

When a plasma is in the steady state and the fluid velocity is zero (V' = 0),
the magnetohydrodynamic equation (5.30) yields the equilibrium equation

Vp=j3x B, (6.1)
and
VXB:/Loj, (6'2)
V-B=0, (6.3)
V.j=0. (6.4)
From (6.1), we have
B-Vp=0, (6.5)
jVp=0. (6.6)

Equation (6.5) indicates that B and Vp are orthogonal, and the surfaces of
constant pressure coincide with the magnetic surfaces. Equation (6.6) shows
that the current density vector j is everywhere parallel to the constant pres-
sure surfaces. Substituting (6.2) into (6.1) yields

B? B B? 1 0B/l >
v +—]|=(BV)—=—|—-—=n+—->b]) . 6.7
(p 2#0) ( )Mo 1o ( R B (©7)
The vector relations
B x (VxB)+(B-V)B=V(B-B/2),

oo o ] (40
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are used, where R is the radius of curvature of the line of magnetic force
and m is the unit vector directed toward a point on the line of magnetic force
from the center of curvature. [ is the length along the field line. We find that
the right-hand side of (6.7) can be neglected when the radius of curvature
is much larger than the length scale of the pressure gradient, i.e., the size of
the plasma, and the variation of B along the line of magnetic force is much
smaller than the variation of B in the perpendicular direction. Then (6.7)

becomes
n B2 B2
p 5. 5
20 2p0
where By is the the value of the magnetic field at the plasma boundary
(p = 0). When the system is axially symmetric and 9/9z = 0, (6.7) exactly

reduces to 5 ) ) )

B B B

— [p+ —2=2"-2F + 5y =0 (6.8)
or 20 T Lo

Multiplying (6.8) by r? and integrating by parts, we obtain

B+ Bj I B?
p+ 0 =— p+ 2mrdr
2110 o Ta* Jo 210

(B2) B(a) + B3(a)
P+ =Pt — 6.9
)+ 5 = put SO (69)
where ( ) is the volume average and p, is the plasma pressure at the plasma
boundary. As B? /2 is the pressure of the magnetic field, (6.9) is the pressure
equilibrium equation. The ratio of the plasma pressure to the pressure of the
external magnetic field By, viz.,

and

p _n(Te+T)
B§/2u0 — Bj/2u0

8= (6.10)
is called the beta ratio. For a confined plasma, (§ is always smaller than 1,
and is used as a figure of merit for the confining magnetic field. The ratio
of the plasma pressure to the pressure of the poloidal field By is called the
poloidal beta.

When the pressure at the boundary is p, = 0 and |B.(a) — B,(r)] <
|B.(a)] in (6.9), the poloidal beta 3, is

() _  Bi(a) = (BX(r))

%= B~ T Baa)?

~ 1+ (QBZ)a (B.(a) — B.(r)) .

57

(6.11)
B, (a) is the magnetic field in the direction of z in the case without plasma. In
the case B, > 1, the magnitude of the magnetic field B, (r) inside the plasma
is smaller than that in the vacuum case [B,(r) < B,(a)]. This indicates
that the plasma is diamagnetic. In the case 3, < 1, B,(r) becomes larger
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than B,(a) [B,(r) > B.(a)]. When the plasma current flows along a line
of magnetic force, the current produces the poloidal magnetic field, and a
poloidal component of the plasma current appears and induces an additional
z component of the magnetic field. This is the origin of paramagnetism in
the plasma.

6.2 Equilibrium Equation
for Axially Symmetric Systems

Let us use cylindrical coordinates (7, ¢, z) and denote the magnetic surface
by 1. The magnetic surface ¢ in an axisymmetric system is given by [see
(3.19)]

Y =rAy(r z).
The r and z components of the magnetic field are given by
oY oY
B, = ——_ B, = —/. 12
T Dy 02 rDy Or (6 )

Therefore 9 is also called the flux function. The relation B-Vp = 0 follows
from the equilibrium equation and is expressed by

Qpdp  ap

828T+58270'

Accordingly, p is a function of 1 alone, i.e.,

p=p). (6.13)
Similarly, from j7:Vp =0 and V x B = pj, we may write
Opd(rB,)  Opd(rBy,)

— =0.
or 0z + 0z Or
This means that 7B, is a function of ¢ alone and
pol (¥)
B,=—"". 6.14
"oy 2 ( )

Equation (6.14) indicates that I(t) is the current flowing in the poloidal
direction through the circular cross-section within ¢ = rA, (Fig.6.1). The r
component of j X B = Vp leads to the equation for v :

op(v) | i3 O (v)

2
L(¥) + por o) Sr2 o

=0, (6.15)

where
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e

J>

CA))
N2y

1(4)

=y
&

Fig. 6.1. Magnetic surfaces ¢ = rA, and I(¢)

/0108 8
Liy) = (rarrar * a) v

This equation is called the Grad—Shafranov equation. The current density is
expressed in terms of the function of the magnetic surface as

_ —10I(y) o1 9I(¥)

" 2mr 0z = 2mr Or
L 910y  19% Ly 1 1o (oo
Je <37“T8r+r8z > por  for oy T ()]

where the prime indicates differentiation with respect to ¢. Using (6.12) and
(6.14), we have

/

j = —B+p 6.16
j=5-Btrre,, (6.16)
L(¢) + porj, =0. (6.17)
When the unit vectors in the directions of r, ¢, z are denoted by e,, e, e,
respectively, we have Vo = e, /R, e, X e, = €., e, X e, = —e,. Therefore,

from (6.12) and (6.14), B can be expressed as
I
B= ’“‘02 1) G vy x v (6.18)
p(1) and I?(1)) are arbitrary functions of 1). When they are linear or quadratic
functions of ¥, (6.15) becomes a linear differential equation. Let us consider a
simple linear case for ¢. At the plasma boundary i = 1y, we let p, = p(¢y,)
and I2 = I*(¢y), e

p(¥) =py — m(w — ), (6.19)
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2
) =12 - if%bw ). (6.20)

Then (6.15) and (6.17) reduce to

2
T .
L(y) = aps +b=—Horj, . (6.21)

We set the position of the magnetic axis to (R, 0). The function

1 r? — R? €
1 oY 2y € 2 p2ye
2<+c o2 )z +8R2(7“ R?)

I+eb—(1—-c)b+a)
24(b+a)R*

_b+ta
T 14e

Y — o

(r? — R%)3 (6.22)

is then the solution of (6.21), which is correct up to the cube of (r—R), z [6.1].
€, ¢ are constant and 1y = (R, 0). When the coefficient of the third term on
the right-hand side of (6.22) is 0, i.e.,

1+eb—(1-c)b+a)=0 —> ez—(c—l)%—c, (6.23)

equation (6.22) becomes the exact Solovev solution of Grad—Shafranov (6.21)
[6.1]. When we set ¢ = R?/(R? — R2), € becomes

a n R? R?
e=— |-+ = | 55—
b R)RE_RZ
due to (6.23), and then (6.22) reduces to

P = g <1 — ;2> 22+ %}{W)[(ﬁ LR (R R, (6.24)

X

Equation (6.24) is an exact equilibrium solution in the interior region of the
plasma surrounded by the conductive wall specified by ¥(r,z) = . The
surface 1(r, z) = 0 is the separatrix surface (see Fig.6.2 and Sect. 16.5). The
separatrix points X are located at (Ry, £7), where

a R2\1 R2\1"?
Zx{(b+R)2()2<1RQ>} R, .

The maximum value Ry, of 7 within the separatrix surface is
R2 1/2
Rmax - ( - R;() R .

When we set the separatrix surface as the plasma boundary (i, = 0), the
aspect ratio A, elongation ratio s, and central poloidal beta 3,9 are
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Fig. 6.2. The contour (magnetic surface) of the flux function ¢ of (6.24) in the
case a/b=4.4, R =3, R« = 2. X indicates the separatrix points and the magnetic
surface passing through the X points is the separatix surface

1 Rumwx—R. (2-RI/R)H)V2—_R/R
A 2R N 2 ’
2Z, AZy
KS_Rmax_Rx_ R ’

R,0) — a
By = p(R,0)—p» _

B2(R,0)/2u0  a+ (R?/R2)b-
When A and kg are specified, 8y is fixed. To avoid this inadequacy, Weening
[6.2] added an additional particular solution r? In(r?/R2) —r? to the Solovev
solution (6.24), i.e.,

e e B

2 R2 SR2
d| o r? 2 2
~1 [T In R—?{ —(r*=R2)| . (6.25)

When the plasma boundary is chosen to be the separatrix i (r,z) = 0, the
aspect ratio A, elongation ratio s and central poloidal beta 3, are

Zi_ V(e R\ ( R

RZ 2\b+d R2 ")
R2.. B R? 2d[1’1n1‘/([lj —1)— 1] R
R? at+ (R2JRH)(b+d) =~ '~ R

R2
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1 Ruux/R—Ry/R . _ Az,

A 2 ) S R )

a L, 2d[n(R*/RY) — (1 - R*/RY)]
a+ (RZ/R2)(b+ d) [a+ (R?/R2)(b+d)|(1— R2/R?) [

51)0 =

The magnetic surface ¢, the magnetic field B, and the pressure p in a trans-
lationally symmetric system (9/0z = 0) are given by

Y =A:(r,0),
_ 1oy - _ M
Br == ;% 5 BG — 8’[‘ ) Bz - 27_‘_-[(11})7
p=p) .

The equilibrium equation reduces to

19 [ o\ 18% Op(y) | wp OI*(Y)
T (r5r) ¢ et e S =0 @
jzziI'B—&-p/eZ? A+ poj. =0. (6.27)
v

It is possible to derive a similar equilibrium equation for a helically symmetric
system.

6.3 Tokamak Equilibrium

The poloidal magnetic field produced by a plasma current I, inside the
plasma ring is stronger than that outside the plasma ring. For the tokamak
equilibrium, one must therefore add a vertical field to reduce the poloidal field
inside the ring and to inrease the poloidal field outside the ring, as shown in
Fig.6.3. Let us estimate the required vertical field B .

Fig. 6.3. Poloidal magnetic field due to the combined plasma current and vertical
field
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Fig. 6.4. Equilibrium of forces acting on a toroidal plasma

The hoop force by which the current ring of a plasma tends to expand is
given by
o LpI?

- L »9L;
OR 2

2°POR "’

B =

Ly I,=const.

where Ly, is the self-inductance of the current ring,

8R
L, =R <ln — 4+ - - 2> . (6.28)
a 2
In this expression, ugR[In(8R/a) — 2] is the inductance due to the magnetic
field energy outside the plasma and pgRli/2 is the inductance due to the
magnetic field energy inside the plasma, with

27 [ By (p)pdp
ma?BZ(a)

li (6.29)

Accordingly, the hoop force is

I2 I
R o= Hop (1n8R+‘—1) .
2 a 2

The outward force F}, exerted by the plasma pressure is (Fig. 6.4)
F, = (p)ma®2r .

The inward (contractive) force Fg; due to the tension of the toroidal field
inside the plasma is
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B2
FBl = —7<2 QD> 271'2&2 5

Ho

and the outward force Fgo due to the pressure caused by the external mag-

netic field is )

B
FB2 = ﬂ2772a2 .
240

The force F] acting on the plasma due to the vertical field B is
FI = IpBLQTFR .
Balancing these forces gives
poly S8Rk 2 2 B (BY)
— (In—+=--1 2 —_ - —= 2rRI,B; =0
2<na+2 tema <p>+2#0 o, ) TAHRPL =0,

and the amount of B, required is

/Lolp 8R li 1 /loIp 8R 1
B, = i S N Ly
+ 477R<na+2 5 =3 R\ e T3

(6.30)

where

.
= B2w)/2m0

A=B,+15/2—1. (6.32)

Equation (6.9) has been used for the derivation. The equilibrium of a tokamak
with circular cross-section is discussed in detail in the references [6.3,6.4].

(6.31)

6.4 Upper Limit of Beta Ratio

In the last section, the necessary vertical field B, for plasma equilibrium is

given by
a 8R 1
B =Bagp (lna“—Q) :

The direction of B is opposite to that of B, produced by the plasma current
inside the torus, so that the resultant poloidal field becomes zero at some
points in the inside region of the torus and a separatrix is formed. When the
plasma pressure is increased and 3, becomes large, the required amount of
B isincreased and the separatrix shifts toward the plasma. For simplicity, let
us consider a sharp-boundary model in which the plasma pressure is constant
inside the plasma boundary, and in which the boundary encloses a plasma
current I,. Then the pressure-balance equation is

2 2
BE) BavaerBwi

Zo ~p+ 2 6.33
20 2p0 2410 (6.33)
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where B, is the poloidal field outside the plasma and By, By are the ¢
components of the field outside and inside the plasma boundary, respectively.
By and B,; are proportional to 1/r, according to (6.14). If the values of B,
B, at r = R are denoted by BS,V, Bgi, respectively, (6.33) may be written as

R\ 2
B2 =2uop — [(B2,)* — (BY)?] (T> .
The upper limit of the plasma pressure is determined by the condition that
the resultant poloidal field at r = r,;, inside the torus should be zero, i.e.,

2
"in
2M0pmax R2 = (Bgv)2 - (Bgl)z . (634)

As r is expressed by r = R 4 acosw, (6.33) reduces (using rmin = R — a) to

2

2 _ Tmin | _ a 2%
B, = 210Pmax (1 - 7“2) = 8,uopmax§ cos” o -

Here a/R < 1 is assumed. From the relation ¢ B,adw = oI, the upper

limit 37 of the poloidal beta ratio is

g TR 058 (6.35)
PT 16a a '

Thus the upper limit of 5 is half of the aspect ratio R/a in this simple model.

When the rotational transform angle ¢ and the safety factor gs = 27/ are
introduced, we find that

&_g(;)_ a
B, R\2r) Rgs’

so that 3 is

_p  _p B.,\? [ a\? 6.36
0= B ~ B2 (B) (Rq> Bo - (6.36)

Accordingly, the upper limit of the beta ratio is

_05a

F=5g (6.37)

6.5 Pfirsch—Schliiter Current

When the plasma pressure is isotropic, the current j in the plasma is given
by (6.1) and (6.4) as
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jl = % X Vpa (638)
. . B B
Vijy=-Vj, =-V- (32 X Vp> =—-Vp-V x (B2> .
Then the component of the plasma current parallel to the magnetic field j is
. 1 HoJ VB x B
V-j,=-Vp- {(VBZ X B) + BQ} = QVP'T ) (6.39)
aj) (VB x b)
D~ gy (VEXE) (6.40)

where s is the length along a line of magnetic force. In the zeroth-order
approximation, we can put B « 1/R, p = p(r), and

9 _0090 _ v 0

ds 0s00 2mRO0’
where ¢ is the rotational transform angle. When s increases by 27 R, 6 in-
creases by ¢. Then (6.40) reduces to

e 99 9p 2
2rR 00 or RB ’
that is,
) 47 Op
N="gar cos @ . (6.41)

This current is called the Pfirsch—Schliter current [6.5]. These formulas are
very important, and will be used to estimate the diffusion coefficient of a
toroidal plasma in Chap. 7. The Pfirsch—Schliiter current is due to the short
circuiting, along magnetic field lines, of toroidal drift polarization charges.
The resulting current is inversely proportional to ¢.

6.6 Virial Theorem

The equation of equilibrium j x B = (V x B) x B = Vp can be reduced to

Zaxz ra—xkzo, (6.42)

where

1 1
Tik = — (Bin - 325ik> : (6.43)
Ho 2

The symbol ;5 is the Kronecker delta matrix. This is called the magnetic
stress tensor. From the relation (6.42), we have
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/s[(“fm)"‘B(Zm] 45=0, (6.44)

where m is the outward unit normal to the closed surface surrounding a
volume V. Since

0 0
Z oz, [z (Tir, — poir) | = (Ter — p) + Z oz (T — poir) = (T, — p)

it follows that

O I TLET

This is called the virial theorem. When a plasma fills a finite region with p = 0
outside the region, and no solid conductor carries the current anywhere inside
or outside the plasma, the magnitude of the magnetic field is of the order of
1/73, so the surface integral approaches zero as the plasma surface approaches
infinity (r — 0). This contradicts the fact that the volume integral of (6.45)
is positive definite. In other words, a plasma of finite extent cannot be in
equilibrium unless there exist solid conductors to carry the current.

Let us apply the virial theorem (6.45) to a volume element of an axisym-
metric plasma bounded by a closed toroidal surface S; formed by rotating
an arbitrarily shaped contour 1; (see Fig.6.5a). We denote the unit normal
and tangent of the contour l; by n and [ respectively and a surface element
of the transverse cross-section by dS,. The volume and the surface element
are related by

dV = 2nrdS, .

The magnetic field B is expressed by
B=DB,e,+B,,
where By, is the poloidal field, B, is the magnitude of the toroidal field, and

e, is the unit vector in the ¢ direction.
Notice the two relations

/Ta(r.n)dst =(a+3) /radV , (6.46)

10
/’I"a(er'n)dSt Z/V'(Taer)dV:/;aro‘+ldV
= (a+ 1)/r(“_1)dV

=2m(a + 1)/rad5<p , (6.47)
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S(p:() Sl.

(a) . (b)
Fig. 6.5. Integration region of the virial theorem: (a) (6.45) and (b) (6.44)

where e, is the unit vector in the r direction. Applying (6.45) to the full torus
surrounded by Sy, we obtain

B? + B2
/ <3p+ *"") v = /
240

1l 55 -

B?
©
+ | —(n- 4
/QMO( r)dS; , (6.48)

B2+ B2 B,.(B-
<p+ WP) (n-r) — ﬁ ds,
210 Ho

because B, = Bjl + B,n (see Fig.6.5a). When the vacuum toroidal field
(without plasma) is denoted by By, this is given by Byo = pol/(27r),
where I is the total coil current generating the toroidal field. Using (6.47),
(6.48) reduces to

B2 + B2 — B2
/ <3p-|— %*"0 27rdS,, (6.49)
Ho

[ e s

Applying (6.44) to the sector surrounded by ¢ = 0, ¢ = Ap and S; (see
Fig.6.5b) and taking its r component gives [6.6)
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B2 B2
ngo/ <p+ — - *") ds,
2po Mo

[l £ 2522

B27B2+B2
Qﬁ/ eru ds,
2110

B?—B2> BB, :|
= + 20 ) (nee,) — l-e,)| dS, = 0.
/[(p 2o (n-er) Ho (ber)| dS

(6.50)

Equations (6.49) and (6.50) are used to measure the poloidal beta ratio
(6.31) and the internal plasma inductance per unit length (6.29) of arbi-
trarily shaped axisymmetric toroidal plasmas by means of magnetic probes

surrounding the plasma.
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Transport in plasmas is one of the most important subjects in fusion research,
with theoretical and experimental investigations being carried out concur-
rently. Although a general discussion of transport or confinement requires
consideration of the various instabilities (which will be studied in subsequent
chapters), it is also important to consider simple but fundamental diffusion
for the ideal stable cases. A typical example (Sect.7.1) is classical diffusion,
in which collisions between electrons and ions are the dominant effect. Sec-
tion 7.2 describes the neoclassical diffusion of toroidal plasmas confined in
a tokamak, for both the rare-collisional and collisional regions. Sometimes
the transport in an unstable plasma may be studied in a general way, with-
out recourse to detailed knowledge of instabilities. In this manner, transport
caused by fluctuations in a plasma is explained in Sects. 7.3 and 7.4.
The transport equation for particles is (see Sect.5.1)

0
an(r,t) + V-[n(r,t)V(r,t)] =0, (7.1)
provided that the processes of ionization of neutrals and recombination of
ions are negligible. In many cases, the particle flux I' = nV is given by

n(r,t)V(r,t) = —D(r,t)Vn(r,t) ,

where D is the diffusion coefficient. (Additional terms may be necessary in
more general cases.)

The diffusion coefficient D and particle confinement time 1, are related
by the diffusion equation of the plasma density n as follows:

V-[DVn(r,t)] = %n(fr,t) :

Substituting n(r,t) = n(r)exp(—t/7p,) into the diffusion equation yields

V-[DVn(r)] = fin(r) .

Tp

When D is constant and the plasma column is a cylinder of radius a, the
diffusion equation reduces to
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Lo (ony 1
r Or Tar DTpn_ ’

The solution satisfying the boundary condition n(a) = 0 is

2.4r t
n = noJo o exp —— )
P

and the particle confinement time is

a? a?

- __ 4 72
™T502D " 58D (7.2)

where Jy is the zeroth-order Bessel function. The relation (7.2) between the
particle confinement time 7, and D holds generally, with only a slight mod-
ification of the numerical factor. This formula is frequently used to obtain
the diffusion coefficient from the observed values of the plasma radius and
particle confinement time.

The equation of energy balance is given by [7.1]

ov;

G 19

% <Zm<;T) + V. (3/<;T71V> +V.q=Q—-pV-V — Z]L-j

ij
The first term on the right-hand side is the heat generation due to particle
collisions per unit volume per unit time, the second term is the work done
by pressure, and the third term is viscous heating. The first term on the
left-hand side is the time derivative of the thermal energy per unit volume,
the second term is convective energy loss, and the third term is conductive
energy loss. Denoting the thermal conductivity by kT, the thermal fluxz due
to heat conduction may be expressed by

qg=—ktV(KT).

If the convective loss, the second term in the left-hand side of eq.(7.3), is
neglected and the terms on the right-hand side are also negligible, we find
that

0 (3
pn <2n/<aT) — V-,V (kT)=0.

In the case n = const., this equation reduces to

% <§HT> = V. [%FV(HT)} .

When the thermal diffusion coefficient xr is defined by

RT
XT = —,
n
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the same equation in k7T is obtained as (7.1). In the case xyT = const., the
solution is

2.4 t a?
T = rTyJy | — - ==, 7.4
M O( a r) eXp( TE) R T ICTE e T4)

The term 7g is called the energy confinement time.

7.1 Collisional Diffusion (Classical Diffusion)

7.1.1 Magnetohydrodynamic Treatment

A magnetohydrodynamic treatment is applicable to diffusion phenomena
when the electron-to-ion collision frequency is large and the mean free path
is shorter than the connection length of the inside regions of good curvature
and the outside region of bad curvature of the torus, i.e.,

%<27TR 1 1 (/@'Te)l/2

Vei > Vp = 5-—UT, = 5
Vei ¢ PT Rox R27 \ me

The MHD treatment can be applied to plasma diffusion. vy, is the electron
thermal velocity and v is the electron-to-ion collisional frequency. From
Ohm’s law (5.28),

1
E+VxB-_Vp=nj,
en

the motion of plasma across the lines of magnetic force is expressed by

mu:i {(nEﬁTiVn) xb} 7%@
e

B e?2 B2

— % KnE _ AT Vn) X b} — (pge)?vei (1 + ;) Vn, (7.5)

€ e

where pge = v1. /82, v1, = (KTo/me)'/?, and 1 = mevei/e*ne (see Sect. 2.8).
If the first term on the right-hand side can be neglected, the particle
diffusion coefficient D is given by

D = (poe)wei (1 ¥ ,f) | (7.6)

The classical diffusion coefficient De; is defined by

nTe 56””
Dei = e 2 ei — = s 7.7
(pe) V. o B (7.7)

where 0| = nee?/(meve), n =1/20..
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Fig. 7.1. Electric field in a plasma confined in a toroidal field. The symbols ® and
® here show the direction of the Pfirsch—Schliiter current

However, the first term on the right-hand side of (7.5) is not always neg-
ligible. In the toroidal configuration, the charge separation due to toroidal
drift is not completely cancelled along the magnetic field lines due to the
finite resistivity, and an electric field E arises (see Fig.7.1). Therefore the
E x b term in (7.5) contributes to the diffusion. Let us consider this term.
From the equilibrium equation, the diamagnetic current

. b . 1 0p
Jl_Exvpa .]L_Eav
flows in the plasma. From V-j = 0, we find V-5, = —V.j,. Using the
equation B = By[1 — (r/R) cosf], j; may be written as [see (6.41)]
2 1 Op
j| =2— —— . 7.8
Ji . Bo or cos 6 (7.8)

If the electrical conductivity along the lines of magnetic force is o), the par-
allel electric field is ) = jj /o). It is clear from Fig. 7.1 that

Ey . Bo
Ej By

From By/By =~ (r/R)(t/27), the 6 component of the electric field is given by

1 2 or\? 1
EGBOElRQW'lR< W) —@COSO. (7.9)

J
T v UH 0'|| r L

Accordingly, (7.5) reduces to
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o E9 2 T1 on
nV; = ng (P2e) Vei <1 + Te> a
R_/27\? nkT, r nkT, r 2
= — 72 (L> UHBS cos (1 + ECOSQ) + JJ_Bg (1 + ECOSG> ]
T\ On
I+ =] =—. 1
X ( + Te> o (7.10)

Noting that the area of a surface element depends on 8, and taking the average
of nV,. over 0, we find that

1 [ T
r) — &~ T 1 =
(nV;) o7 J, nV( + RCOSH) dé
nkT, T; 20, (27 2l on
= — 1+ — 1+— [ — —_— . 11
MB%(JFTe) T (L)]ar (7:11)

The diffusion coefficient of the toroidal plasma is [1 + (27/:)?] times as
large as the diffusion coefficient of (7.6). This value is called the Pfirsch-
Schliiter factor [7.2]. When the rotational transform angle ¢/27 is about 0.3,
the Pfirsch—Schliiter factor is about 10.

7.1.2 A Particle Model
The classical diffusion coefficient of electrons given by

Dei = (er)zVei

is the same as the one for electrons which move in a random walk with step
length equal to the Larmor radius. Let us consider a toroidal plasma. For
rotational transform angle ¢, the displacement A of the electron drift surface
from the magnetic surface is (see Fig. 7.2)

2
Ax ineTﬂ- . (7.12)

The =+ signs depend on whether the direction of electron motion is parallel
or antiparallel to the magnetic field (see Sect.3.5). As an electron can be
transferred from one drift surface to another by collision, the step length
across the magnetic field is

21

A= (L) poe - (7.13)

Consequently, the diffusion coefficient is given by



80 7 Plasma Transport

Fig. 7.2. Magnetic surface (dotted line) and drift surfaces (solid lines)

2
Dps = A%y = <2Zr> (poe)?Vei - (7.14)

The Pfirsch—Schliiter factor has thus been reduced, since we assume that
|27r/¢] > 1. The diffusion coefficient of (7.14) is called the Pfirsch—Schliiter
diffusion coefficient [7.2].

7.2 Neoclassical Diffusion of Electrons in a Tokamak

The magnitude B of the magnetic field of a tokamak is given by

RBy

B=———"0
R(1 + e, cosb)

= Bo(1 — €, cosb) , (7.15)

where

Consequently, when the perpendicular component v, of an electron’s velocity
is much larger than the parallel component v, i.e., when

(%)2 = Rir ’

v b
1/2 7
v e/

that is,
(7.17)

the electron is trapped outside of the torus, where the magnetic field is weak.
Such an electron drifts in a banana orbit (see Fig.3.7). In order to complete
a circuit of the banana orbit, the effective collision time 7. = 1/veg of the
trapped electron must be longer than one period 71, of the banana orbit, i.e.,

R (2 R /(2
A (”) -— (”) . (7.18)
RN V€& L
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The effective collision frequency veg of the trapped electron is the frequency
at which the condition (7.17) for the trapped electron is violated by collision.
As the collision frequency v, is the reciprocal of the diffusion time required to
change the direction of velocity by 1 radian, the effective collision frequency
Vet is given by

1
Voff = —Vej - (7.19)
€t
Accordingly, if veg < 1/, i.e.,
3/2 1/2
) :Ulet (L>: 3/21 (L) K:Te 7.20
Vei < Vp = R o € R \2r Me ) ( . )

the trapped electron can travel the entire banana orbit. When the trapped
electron collides, it can shift its position by an amount equal to the banana
width (see Sect.3.5.2)

mu)| mv, v B 12 R 27 2\ —1/2
A= —n ——F — =~ —— = — . 7.21
b eB, eB vy By Ps2ecy roL L € Poe ( )

As the number of trapped electrons is etl /2 times the total number of electrons,
the trapped-electron contribution to diffusion is

2
1/2 12 (27 _ 1

Dgs. = & Alveg = ¢/ (L) € 1(er)2:Vei
t

_ o\ ?
= €& 82 <L> (p.Qe)QVei . (7.22)

This diffusion coefficient, introduced by Galeev and Sagdeev [7.3], is €, /2 =

(R/r)3/? times as large as the diffusion coefficient for the collisional case. This
derivation is semi-quantitative. A more rigorous discussion is given in [7.3].

As discussed in Sect. 7.1, the MHD treatment is applicable if the electron-
to-ion collision frequency is larger than the frequency v, given by

1 1 /. KT, 1/2
Vp = E%’UTS = E (g) (me ) . (723)

When the electron-to-ion collision frequency is smaller than the frequency

w = 2u, (7.24)

the electron can complete a banana orbit. The diffusion coefficients are

2
Dpg = <L) (pae)*vei , Vei > Vp (7.25)
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D

Dps.

Y

Fig. 7.3. Dependence of the diffusion coefficient on collision frequency in a toka-
3/2
mak. v, = (v/2m)vr, /R, vy = €' “1p

2
Dgg = 61;_3/2 (2zr> (p2e)*Vei , Vei < Vp = ef’/zyp ) (7.26)
If v is in the region 1, < v < 1y, it is not possible to treat the diffusion
phenomena of electrons in this region by means of a simple model. In this
region we must resort to the drift approximation of Vlasov’s equation. The
result is that the diffusion coeflicient is not sensitive to the collision frequency
in this region and is given by [7.3,7.4]

21\ 2
Dy, = (L> (er)2Vp ) Vp > Vei > Vp = 53/2Vp . (7.27)

The dependence of the diffusion coeflicient on the collision frequency is shown
in Fig.7.3. The region ve > v}, is called the MHD region or collisional re-
gion. The region v, > v > 14 is the plateau region or intermediate region;
and the region vy < v is called the banana region or rare collisional re-
gion. These diffusion processes are called neoclassical diffusion. There is an
excellent review on neoclassical diffusion in [7.4].

The reason why the electron—electron collision frequency does not affect
the electron particle diffusion coefficient is that the center-of-mass velocity is
not changed by the Coulomb collision.

The neoclassical thermal diffusion coefficient x7, is of the same order as
the particle diffusion coefficient (x1, ~ D,). Although an ion collision with
the same ion species does not affect the ion’s particle diffusion coefficient,
it does contribute thermal diffusion processes, if a temperature gradient ex-
ists. Even if the ions are the same species as each other, it is possible to
distinguish hot ions (with larger thermal velocity) and cold ions. Accord-
ingly the ion’s thermal diffusion coefficient in the banana region is given by
XTi ~ 6;3/2(27T/L)2p%il/ii, and y1i ~ (mi/me)'/?Dic (Die ~ Dy;). Therefore
the ion’s thermal diffusion coefficient is about (m;/m.)'/? times as large as
the ion’s particle diffusion coefficient.
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7.3 Fluctuation Loss. Bohm and Gyro-Bohm Diffusion.
Convective Loss

In the foregoing sections we have discussed diffusion due to binary collisions
and have derived the confinement times for such diffusion as an ideal case.
However, a plasma will in many cases be more or less unstable, and fluctua-
tions in the density and electric field will induce collective motions of particles
and bring about anomalous losses. We will study such losses here.

Assume the plasma density n(r,t) consists of the zeroth-order term
no(r,t) and first-order perturbation terms ny(r,t) = ngexpi(k - r — wit)
and

Since n and ng are real, the following relations hold:
i = ()", n_p =mny, Wk = W ,

where the asterisk denotes the complex conjugate. wy is generally complex,
with wr = wgr + iy, and

W_kr = —Wkr , Y-k = V& -

The plasma is forced to move by the perturbation. When the velocity is
expressed by

t) = Z V= Z Viexpi(k-r — wit) , (7.29)
k k

then V_j = V' and the equation of continuity

on
— +V:(nV)=0
5 T V-(nV)
may be written as
ong 8nk
5 T d > nOVk+kEk/nka’ =0.

When the first- and second-order terms are separated,

8nk

ot + V. E novk =0, (7.30)
8n0
— + V. E nka/ =0. (7.31)

k,k’
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Here we have assumed that the time derivative of ng is second order. The

time average of the product of (7.30) and 7i_; becomes

7k|nk\2 + Vno Re(nkV ) + Tlok? Im(nkV )
Wer|nk|? + Vng-Im(ng V _1) — nok-Re(nyV _i) =

Taking the time average of (7.31), we find that

8n0

- + V- ZRe neV _i)exp(2yt)| = 0.

The diffusion equation is

o

5 = V-(DVno)

and the particle flux I" is

I'=—-DVny= ZRe(nkV_k) exp 2Vt .

Equation (7.32) alone is not enough to determine the quantity
Vno-Re(niV _i) exp(2yxt)

Putting
nok-lm(nk V_k-)

VTL()' [Re(nkV_k)] ’

Br =

equation (7.34) reduces to

Yie| e |* exp 2xt
D|Vno|* =) H———
” 1+ B

and

D=4 > 1
- "IV 1+ B

This is the anomalous diffusion coefficient due to fluctuation loss.

(7.32)

(7.33)

(7.34)

(7.35)

Let us consider the case in which the ﬂuctuationNEk of the electric field
is electrostatic and can be expressed by a potential ¢x. Then the perturbed

electric field is expressed by
E, = -V, = —ikdy expi(k-r — wit) .
The electric field results in an E), x B drift, i.e.,

- EyxB _  (kxb)gy
Vk— B2 = —1 B y

(7.36)
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where b = B/B. Equation (7.36) gives the perpendicular component of the
fluctuating motion. Substituting (7.36) into (7.30) yields

bxk @
B wk'

i = Vng- ( (7.37)
In general Vngy and b are orthogonal. Take the z axis in the direction of b
and the x axis in the direction of —Vn, i.e., let Vn = —k,no&, where ,, is
the inverse of the scale of the density gradient and @ is the unit vector in the
x direction. Then (7.37) gives

@ KT, quk o izeqzk

"eBuwy kTs  wi kT,

Kn ky ~
= ——¢p = kyK
ng B wy, O Y
where k, is the y (poloidal) component of the propagation vector k. The

quantity
© KT,

Wi = Fyhn o
is called the drift frequency. If the frequency wy, is real (i.e., if v = 0), 723, and
o1 have the same phase and the fluctuation does not contribute to anomalous
diffusion, as is clear from (7.35). When ~; > 0, so that w is complex, there
is a phase difference between 7, and ék, and the fluctuation in the electric
field contributes to anomalous diffusion. (When ~;, < 0, the amplitude of the
fluctuation is damped and does not contribute to diffusion.) Using the real
parameters Ay, oy of wy = wyy + iyx = wiAkexpiag (Ax > 0, oy are both
real), V' is expressed by

~ : KTe Ok . KTe g wir + Ykl
Vi=—-i(kxb =—ilkxb)————
k ik x )eB kT, ik x )eB ng Wi,
T.n )
= —i(k x b)ZB %Akexplam
~ n k1 Vi — Wil g K1 . .
Vig = ky———c Tk Z 2k g TRTe (4 :
k Yno eB Wy, Yno eB( ig expiay)

Then the diffusion coefficient may be obtained from (7.34) as follows:

1 ~ ky i | g 2 KT,
D= Re(igV_py) = SyTk Mk ) Fle
KnNo ek V) (zk: KnW} | M0 ) eB
k g |?\ KT
= (E Y Ay sin o | — ) = (7.38)
—~ Kin no eB

The anomalous diffusion coefficient due to fluctuation loss increases with time
[from (7.35) and (7.38)] and eventually the term with the maximum growth
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rate 75 > 0 becomes dominant. However, the amplitude || will saturate
due to nonlinear effects and the saturated amplitude will be of the order of

K
7| = |Vno| Az ~ —ng .
ks

Az is the correlation length of the fluctuation and the inverse of the propa-
gation constant k, in the  direction. Then (7.35) yields

-2
o

no

Tk Yk
= N (7.39)

D = K2

When the dimensionless coefficient in brackets in eq.(7.38) is assumed to
be at its maximum of 1/16, we have the Bohm diffusion coefficient

1 kT,
16 eB -~

Dg = (7.40)
Equation (7.40) thus gives the largest possible diffusion coefficient.

When the density and potential fluctuations ng, ¢k are measured, V', can
be calculated using (7.36), and the estimated outward particle flux I" using
(7.34). The diffusion coefficient D can then be compared with the values
obtained by experiment. As the relation between 7, and (;NSk is given by (7.37),
the phase difference will indicate whether wy, is real (oscillatory mode) or
vk > 0 (growing mode), so that this equation is very useful in interpreting
experimental results.

We consider the example of a fluctuation driven by ion-temperature-
gradient drift instability (see Sect.8.7). The mode is described by

o(r,0,2) Z¢mn r)exp(—imf + inz/R) .

The growth rate of the fluctuation has maximum at around

10 m
Mo=l5 T

or [7.5]
kol = =~ 22 0y =0.7-08.
Pi
Then the correlation length Ao in the € direction is Ay ~ p;/ag, where p; is
the ion Larmor radius.
The propagation constant k| along the line of magnetic force near the

rational surface ¢(r,,) = m/n is

b=y = Do () By L

m rq s
= Eq—Q(r—rm) = R—qk@(r—rm) ,
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Fig. 7.4. Upper: the radial width of eigenmode Ar is larger than the radial sepa-
ration of the rational surfaces Ar,,. A semi-global eigenmode structure Arg arises
due to the mode couplings. Lower: the radial width of eigenmode Ar is smaller
than the radial separation of the rational surfaces Ar,,. Modes with radial width
Ar are mutually independent

where ¢(r) = (r/R)(B;/By) is the safety factor, with By and By the poloidal
and toroidal fields, respectively, and s is the shear parameter s = rq’/q (see
Sect.8.3.3). |ky| is larger than the inverse of the connection length ¢R of
the torus and is less than the inverse of, say, the pressure gradient scale Ly,
that is

1 1
— < k| < —.
ok <Ihl <z
The radial width Ar = |r — 7| of the mode near the rational surface r = ry,
is expected to be roughly

Rqk :
Ar=|r—rpy|= a2 _ P

~ O(pi/s) -

s ko sou

The estimated radial width of the eigenmode of ion-temperature-gradient
driven drift turbulence is given by [7.6,7.7]

1/2 1/2
qR Vi
Ar=p [ 2= L .
e <5Lp> <wkr)
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The radial separation length Ar,, between adjacent rational surfaces r,, and

Tm+1 18
m+1 m 1
q/ArmZQ(Tm-i-l)_Q(rm): " _EZE,
1 m/n r 1
Arm:—,: /,—N—.
ng rg m  sky

When the mode width Ar is larger than the radial separation of the rational
surface Ar,,, the different modes overlap each other and toroidal mode cou-
pling takes place (see Fig. 7.4). The half-width Ar, of the envelope of coupled
modes is estimated to be [7.8,7.9]

iL 1/2
Arg: (psp) .

The radial correlation length becomes a large multiple of Arg [Arg/Ar ~
(Lp/pi)'/?] and the radial propagation constant becomes k,. ~ 1/Ar,. In this
case, the diffusion coefficient D is

pily, . KT oy
Wk ~

eB s’

D= (Arg)Q'yk ~

where wj is the drift frequency (Sects. 8.7 and 9.2). This coefficient is of Bohm

type.
When the mode width Ar is less than Ar,, (weak shear case), there is no
coupling between different modes and the radial correlation length is

1/2
qR
Ar=pi <3L) :
p

The diffusion coefficient D in this case is

R korT kT pi [ agqR kT p;
D~ (Ar)2up ~p? (L2 ) (2L ) B 2L (ra
(Ar)wi ~ p; <st) <eBLp BL, \sL, ) S eBL, 4

This is called a gyro-Bohm-type diffusion coeflicient. The transport in toroidal
systems may be expected to become small in the weak shear region of the
negative shear configuration near the minimum ¢ position (see Sect. 16.7).

Next, let us consider stationary convective losses across the magnetic flux.
Even if fluctuations in the density and electric field are not observed at a
fixed position, the plasma may be able to move across the magnetic field and
escape continuously. When a stationary electric field exists and the equipo-
tential surfaces do not coincide with the magnetic surfaces ¢ = const., the
E x B drift is normal to the electric field E, which is itself normal to the
equipotential surface. Consequently, the plasma drifts along the equipotential
surfaces (see Fig.7.5) which cross the magnetic surfaces. The resulting loss
is called stationary convective loss. The particle flux is given by
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¥r=const.

¢=ccn>s&

Fig. 7.5. Magnetic surface ¢ = const. and electric field equipotential ¢ = const.
The plasma moves along the equipotential surfaces by virtue of E x B

E
I, = nofy . (7.42)
The losses due to diffusion by binary collision are proportional to B2, but

fluctuation or convective losses are proportional to B~!. Even if the magnetic
field is increased, the loss due to fluctuations does not decrease rapidly.

7.4 Loss by Magnetic Fluctuation
When the magnetic field in a plasma fluctuates, the lines of magnetic force

will wander radially. Denote the radial shift of the field line by Ar and the
radial component of magnetic fluctuation 8B by dB,., respectively. Then we

find
L
Ar :/ b,dl ,
0

where b, = 8B,./B and [ is the length along the line of magnetic force. The
ensemble average of (Ar)? is given by

(Ar)?) = </0Lbrdl/OL brdl’> = </0Ldl/OLdl’br(l) br(l’)>
= </L dl /L_ldsbr(l)br(l+s)> ~ L (b?) leoxr
0 -1

where l.opr 1S
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o <fj’°oo b (1) by (1 + 5) ds> |
(b2)

If electrons run along the lines of magnetic force with the velocity vr,, the
diffusion coefficient D, of the electrons becomes [7.10]

e % T < (8§T)2> - (143)

At At

We may take l.orr ~ R in the case of a tokamak and l.o ~ a in the case of
the reverse field pinch (RFP, see Sect. 17.1).



8 Magnetohydrodynamic Instabilities

The stability of plasmas in magnetic fields is one of the primary research
subjects in the area of controlled thermonuclear fusion, and both theoretical
and experimental investigations have been actively pursued. If a plasma is
free from all possible instabilities and if the confinement is dominated by
neoclassical diffusion in the banana region, then the energy confinement time
T is given by

o G2 B (1 ) 1
B~ 9.8xa.s. - 5.8 2 PRI Vi ’

where a is the plasma radius, pgo; the ion Larmor radius, and 14 the ion—
ion collision frequency. For such an ideal case, a device of a reasonable size
satisfies the ignition condition. (For example, with B = 5T, a = 1m, T} =
20keV, ¢/27 ~ 1/3, and inverse aspect ratio ¢ = 0.2, the value of nrg ~
3.5 x 1020 cm™3s.)

A plasma consists of many moving charged particles and has many magne-
tohydrodynamic degrees of freedom as well as degrees of freedom in velocity
space. When a certain mode of perturbation grows, it enhances diffusion.
Heating a plasma increases the kinetic energy of the charged particles but
at the same time may induce fluctuations in the electric and magnetic fields,
which in turn augment anomalous diffusion.

Therefore, it is very important to determine whether any particular per-
turbed mode is stable (damping mode) or unstable (growing mode). In the
stability analysis, it is assumed that the deviation from the equilibrium state
is small, so that a linearized approximation can be used. In this chapter
we consider instabilities that can be described by linearized magnetohydro-
dynamic equations. These instabilities are called the magnetohydrodynamic
instabilities (MHD instabilities) or macroscopic instabilities.

A small perturbation F(r,t) of the first order is expanded in terms of its
Fourier components,

F(r,t) = F(r) exp(—iwt) , w=wy +iw ,

and each term can be treated independently in the linearized approximation.
The dispersion equation is solved for w and the stability of the perturbation
depends on the sign of the imaginary part w; (unstable for w; > 0 and stable
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Fig. 8.1. Ion and electron drifts and the resulting electric field for interchange
instability

for w; < 0). When w, # 0, the perturbation is oscillatory, and when w, = 0,
it grows or damps monotonically.

In the following sections, typical MHD instabilities are introduced. In
Sect. 8.1, interchange instability is explained in an intuitive manner. In
Sect. 8.2, the magnetohydrodynamic equations are linearized and the bound-
ary conditions are implemented. The stability criterion is deduced from the
energy principle in (8.45)—(8.48). In Sect. 8.3, a cylindrical plasma is stud-
ied as an important example, and the associated energy integrals are de-
rived. Furthermore, important stability conditions, the Kruskal-Shafranov
limit (8.66) and the Suydam criterion (8.98), are described. Tokamaks with
large aspect ratios are treated approximately as cylindrical plasmas and their
stabilities are examined. The MHD equation of motion in cylindrical co-
ordinates (Sect.8.4), the energy integral of axisymmetric toroidal systems
(Sect. 8.5), ballooning instability (Sect.8.6), and the n; mode due to density
and temperature gradients (Sect. 8.7) are described in this chapter. It should
be understood that there are many other instabilities. General reviews of
MHD instabilities may be found in [8.1].

8.1 Interchange Instabilities

8.1.1 Interchange Instability

Let x = 0 be the boundary between plasma and vacuum and let the z axis
be taken in the direction of the magnetic field B. The plasma region is z < 0
and the vacuum region is x > 0. It is assumed that the acceleration g is
applied in the x direction (see Fig.8.1). Ions and electrons drift in opposite
directions to each other, due to the acceleration, with drift velocities

_MgxB mgx B
’UG,i*??a VG,e e Bz
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where M and m are the masses of the ion and electron, respectively. Let us
assume that, due to a perturbation, the boundary of the plasma is displaced
from the surface x = 0 by the amount

oz = a(t) sin(kyy) .

The charge separation due to the opposite ion and electron drifts yields an
electric field. The resulting (E x B) drift enhances the original perturbation
if the acceleration g is directed outward from the plasma. We see that this
is the same as saying that the magnetic flux originally inside but near the
plasma boundary is displaced so that it is outside the boundary, while the flux
outside moves in to fill the depression thereby left in the boundary. Owing to
this geometrical picture of the process, this type of instability has come to
be called interchange instability. As the perturbed plasma boundary has the
form of flutes along the lines of magnetic force, this instability is also called
a flute instability. Similar phenomena occur in hydrodynamics when a dense
fluid is supported against gravity by a fluid with lower density. Therefore,
interchange instability is also called Rayleigh—Taylor instability.

The drift due to the acceleration produces a surface charge on the plasma,
of charge density

os = o(t) cos(kyy)d(z) (8.1)
(see Fig.8.1). The electrostatic potential ¢ of the induced electric field E =
—V ¢ is given by
¢ 0 0
0,9 (¢ 2) - .. 2
L 0y? * Oz (EL 8m) 7 (82)

The boundary condition is

0 0
€0 (£>+o - (q()i) B = -0y, b10=¢_0 .

Under the assumption k, > 0, the solution ¢ is

7L coslhy) exp(F o) (5.3)

¢:ky(€0+ﬁj_

The velocity of the boundary d(8z)/dt is equal to E x B/B? at x = 0, with
E found from the potential (8.3). The velocity is

da(t) a(t)

sin(kyy) = ————— sin(kyy) . 8.4
dt sin(kyy) (eo +€1)B sin(kyy) (84)
The charge flux in the y direction is
Y
nelvg | = 3

where p,, = nM. Accordingly, the rate of change of charge density is
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do(?) Pumg o d .
1 os(kyy) = ?a(t)d—y sin(kyy) (8.5)
and
d?a _ pmgky

@ B 0

The solution is in the form a o« exp~t and the growth rate « is given by
p 1/2
=|—"— key) /2. 8.7
Y |:(60+€J_)BQ:| (g y) ( )

In the low-frequency case (compared with the ion cyclotron frequency), the
dielectric constant is given by

Pm
€] =€ (1 + B260> > ¢, (88)

as will be explained in Chap. 10. Hence, the growth rate ~ is [8.2]

7= (gky)'? (8.9)

When the acceleration is outward, a perturbation with the propagation vector
k normal to the magnetic field B is unstable, as shown in Fig. 8.2a, i.e.,

(kB)=0. (8.10)

However, if the acceleration is inward (g < 0), v of (8.9) is imaginary and
the perturbation is oscillatory and stable.

The origin of interchange instability is charge separation due to the accel-
eration. When the lines of magnetic force are curved, as shown in Fig. 8.2, the
charged particles are subjected to a centrifugal force. If the magnetic lines
of force are convex outward (Fig. 8.2a), this centrifugal acceleration induces
interchange instability. If the lines are concave outward, the plasma is stable.
Accordingly, the plasma is stable when the magnitude B of the magnetic field
increases outward. In other words, if B is a minimum at the plasma region,
the plasma is stable. This is the minimum-B condition for stability. A more
general treatment of the interchange instability is described in [8.1].

The drift motion of charged particles is expressed by (see Chap. 3)

Exb b (v /2) +vf
vg = +—-x|g+———"n|+yb,

B 0 R

where mn is the unit normal vector from the center of curvature to a point
on a line of magnetic force, and R is the radius of curvature of the line of
magnetic force. The equivalent acceleration is

(v /2) + o

g=——Fp—n. (8.11)



8.1 Interchange Instabilities 95

%

Fig. 8.2. Centrifugal force due to the curvature of a line of magnetic force

(a) (b)

The growth rate becomes v ~ (a/R)'/?(vr/a) in this case.
When the growth rate v ~ (gk,)'/? is not very large and the ion Larmor
radius pl, is large enough to satisfy

iy 7
(kypﬂ) > |Ql| )

the perturbation is stabilized [8.3]. When the ion Larmor radius becomes
large, the average perturbation electric field felt by the ions is different from
that felt by the electrons, and the E x B/B? drift velocities of the ion and
the electrons are different. The charge separation thereby induced has oppo-
site phase from the charge separation due to acceleration and stabilizes the
instability.

8.1.2 Stability Criterion for Interchange Instability.
Magnetic Well

Let us assume that a magnetic line of force has ‘good’ curvature at one place
B and ‘bad’ curvature at another place A (Fig.8.3b). Then the directions of
the centrifugal force at A and B are opposite, as is the charge separation.
The charge can easily be short-circuited along the magnetic lines of force,
so that the problem of stability has a different aspect. Let us here consider
perturbations in which the magnetic flux of region 1 is interchanged with
that of region 2 and the plasma in region 2 is interchanged with the plasma
in region 1 (interchange perturbations, Fig.8.3b). It is assumed that the
plasma is low-beta so that the magnetic field is nearly identical to the vacuum
field. Any deviation from the vacuum magnetic field is accompanied by an
increase in the magnetic energy of the disturbed field. This is a consequence
of Maxwell’s equations. We now show that the most dangerous perturbations
are those which exchange equal magnetic fluxes.
The energy Qu of the magnetic field inside a magnetic tube is

Qu = /drB2 = /d1532 (8.12)

2410 2p0
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- - -

AR

vacuum

(a) (b)

Fig. 8.3. Charge separation in interchange instability. (a) The lower figure shows
the unstable part A and the stable part B along a magnetic line of force. The
upper figure shows the charge separation due to the acceleration along a flute. (b)
Cross-section of the perturbed plasma

where [ is length taken along a line of magnetic force and S is the cross-
section of the magnetic tube. As the magnetic flux & = B - S is constant,
the energy is

P2 dl
The change 6Qy; in the magnetic energy due to the interchange of the fluxes
in regions 1 and 2 is

1 dl dl dl dl
Qu=—1(2? | = @2/f S @2/f . (813
QM 2,[1/0 |:< 1 ) S + 2 1 S 1 1 S + 2 ) S ( )

If the exchanged fluxes @ and &5 are the same, the energy change 8Qy is
zero, so that perturbations resulting in #; = @5 are the most dangerous.
The kinetic energy @, of a plasma of volume V is

Qum

nlV  pV
y—1 ~y-1"

Qp = (8.14)

where 7 is the specific heat ratio. As the perturbation is adiabatic,
pV7 = const.

is conserved during the interchange process. The change in the plasma energy
is
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1
Q) = P (Plzvz —piVi +pi Vi — P2V2> ,

where p) is the pressure after interchange from the region V; to Vy and

p) is the pressure after interchange from the region Vs, to V;. Because of
adiabaticity, we have

Y (wY
Do P1 VQ 5 141 P2 Vl 3

50, = 14! 7V— Vi + &WV— 1% (8.15)
p_")/*].pl Vs 2 —p1V1 T+ P2 %) 1—p2V2| . .

and 8@, becomes

Setting
p2=p1+0p, Vo =V1 48V,

we can write 8(),, as

V)2
stzzspsv-+7p( V) . (8.16)

Since the stability condition is 8Qp > 0, a sufficient condition is
opdY >0 .

Since the volume is dl
= [dIS=d | =
y / =,

the stability condition for interchange instability is written as

dl

Usually, the plasma pressure p decreases (8p < 0), so that the stability con-
dition is

di
S/E <0, (8.17)

in the outward direction [8.4].

The integral is to be taken only over the plasma region. Let the volume
inside a magnetic surface » be V and the magnetic flux in the toroidal di-
rection ¢ inside the magnetic surface ¢ be ¢. We define the specific volume
vy dVv

U= R (8.18)
If the unit vector of the magnetic field B is denoted by b and the normal
unit vector of the infinitesimal cross-sectional area dS is denoted by n (see
Fig.8.4), then we have
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Fig. 8.4. Specific volume of a toroidal field

v = / D (bn)Sidl,  do = (bn);B;dS; .

%

When lines of magnetic force close upon a single circuit of the torus, the
specific volume U is

f lZ(bon»dSi

U= % — %

(3 7

dl ) (bn);BidS; %

i

As the integral over [ is carried out along a small tube of the magnetic
field, Z(b-n)idSiBl- is independent of [ (conservation of magnetic flux). As

3

j{ dl/B; on the same magnetic surface is constant, U reduces to

dl
U=¢ —.
B

When the lines of magnetic force close after N circuits, U is

U=— [ =. 1

When the lines of magnetic force are not closed, U is given by

. 1 dl
V=N B
Therefore, U may be considered to be an average of 1/B. When U decreases
outward, it means that the magnitude B of the magnetic field increases out-
ward in an average sense, so that the plasma region is the so-called average
minimum-B region. In other words, the stability condition for interchange
instability reduces to the average minimum-B condition:
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w_ &V

. 2
1P d@2<0 (8.20)

When the values of U on the magnetic axis and on the outermost magnetic
surface are Uy and Uy, respectively, we define a magnetic well depth —AU/U

as
AU Uy-U,

21
7 i (8.21)

8.2 Formulation of Magnetohydrodynamic Instabilities

8.2.1 Linearization of Magnetohydrodynamic Equations

Plasma stability problems can be studied by analyzing infinitesimal perturba-
tions from the equilibrium state. If the mass density, pressure, flow velocity,
and magnetic field are denoted by pp,, p, V', and B, respectively, the equation
of motion, conservation of mass, Ohm’s law, and the adiabatic relation are

ov

Opm
P =-Vp+ix B, D L Ve (puV) =0,

ot
0 .
E+VxB=0, aJrV-V (ppm) =0,

respectively, where +y is the specific heat ratio. Maxwell’s equations are then

0B .
VXEzfﬁ, VXB:/,LOJ, V'BZO
These are the magnetohydrodynamic equations of a plasma with zero specific
resistivity (see Sect.5.2). The values of p,, p, V, and B in the equilibrium
state are pmo, po, Vo = 0, and By, respectively. The first-order small quan-
tities are pm1, p1, V1 =V, and B;. The zeroth-order equations are

Vpo=joxBo, VXxBo=upojo, V-Bg=0. (8.22)

The first-order linearized equations are

Ipm
gtl +Ve(pmoV) =0, (8.23)
v . .
meE‘val:_joxBl +j1 %X Bo, (8.24)
0
% +(V-V)po +7poV-V =0, (8.25)
0B,

Tl V x (V x By) . (8.26)
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If the displacement of the plasma from the equilibrium position r¢ is denoted
by &(ro,t), it follows that

E&(ro,t) =r—rg, V:i—fz%. (8.27)

Equation (8.26) reduces to

0By o€
N =V x (875 ><BO>

and
B, =V x (£ x By) . (8.28)

From poj = V x B, it follows that
toj; =V x By . (8.29)
Equations (8.23) and (8.25) yield
pm1 = —V+(pmo§) , (8.30)

p1=—€Vpo —poV-§. (8.31)
Substituting these equations into (8.24) gives

o 1 1
Pm07§ =V (&-Vpo +7p0V-§) + —(V x Bg) x B1 + —(V x B1) x By
ot Ho Ho
By-B 1
= -V <p1 —+ 0 1) + ; [(BO'V)Bl + (B1'V)B0] . (832)
0

This is the linearized equation of motion in terms of &.

Next let us consider the boundary conditions. Where the plasma contacts
an ideal conductor, the tangential component of the electric field is zero, i.e.,
n x E = 0. This is equivalent to n x (€ x By) = 0, n being taken in the
outward direction. The conditions (£-n) = 0 and (B;-n) = 0 must also be
satisfied.

When the plasma is in contact with the vacuum, the total pressure must
be continuous at the boundary surface between plasma and vacuum and
B — Bg; ng_Bg,ex

in 0,in

240 240

P — Do + )

where Bj, and B i, give the internal magnetic field of the plasma and By
and B ex give the external field. When Bi, (), Bex(7) and p(r) are expanded
in & =r—ro, with f(r) = fo(ro) + (&-V) fo(r) + f1, the boundary condition
reduces to
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BO,in' [Bl,in + (E'V)B(Lin] _ BO,ex' [Blﬁex + (g'V)B(],ex]

—vpoV-€ +
Ho Ho
(8.33)
From Maxwell’s equations, we have the following relations:
nO'(BO,in - BO,ex) =0 5 (834)
ng X (Boin — Boex) = oK , (8.35)
where K is the surface current. Ohm’s law yields
Ein +V x BO,in =0 s (836)

in the plasma. As the electric field E* in coordinates moving with the plasma
is E* = E+V x B and the tangential component of the electric field E*
is continuous across the plasma boundary. The boundary condition can be
written as

Ei+(V X Boex)t =0, (8.37)

where the subscript t indicates the tangential component. Since the normal
component of B is given by the tangential component of E by the relation
V x E = —0B/0t, (8.37) reduces to

(nO'Bl,ex) = ’I’LO'V X (S X B()’ex) . (838)

The electric field Eqy and the magnetic field By in the external (vacuum)
region can be expressed in terms of a vector potential:

0A
Ey=—F—, Bix=VxA, V-A=0.
ot
If no current flows in the vacuum region, A satisfies

VxVxA=0. (8.39)

Using the vector potential, we may express (8.37) as

0A
ng X <_(915+VXB07GX> =0.

For ng-Bo,in = n-Bgex = 0, the boundary condition is
ngx A=—-£,Boex - (8.40)
The boundary condition at the wall of an ideal conductor is
nxA=0. (8.41)

The stability problem now becomes one of solving (8.32) and (8.39) under the
boundary conditions (8.33) and (8.38) or (8.40) and (8.41). When a normal
mode &(r,t) = &(r)exp(—iwt) is considered, the problem reduces to the
eigenvalue problem pyw?€ = —F(£). If any eigenvalue is negative, the plasma
is unstable; if all the eigenvalues are positive, the plasma is stable.
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8.2.2 Energy Principle

The eigenvalue problem is complicated and difficult to solve in general. When
we introduce a potential energy associated with the displacement &, the sta-
bility problem can be simplified. The equation of motion has the form
0%¢ =
Pmos = F(¢) =-K-¢, (8.42)
where K is a linear operator. When this equation is integrated, the equation
of energy conservation becomes:

1 9\ ° L[, =,
§/Pmo (5‘1?) dr—l—i/ﬁ-K&'dr—cons‘c.

The kinetic energy T' and the potential energy W are

1 o€\ 1 [, = 1
=3 [om(5) ar. w=j [eRewr - [er@ar,

respectively. Accordingly, if W > 0 for all possible displacements, the system
is stable. This is the stability criterion of the energy principle [8.5]. W is
called the energy integral. -

It is possible to prove that the operator K is Hermitian, i.e., self-adjoint
[8.6,8.7]. A displacement n and a vector potential @ are introduced which
satisfy the same boundary conditions as € and A, i.e.,

ng X Q = _nnBO,cx
at the plasma—vacuum boundary and
g X Q =0

at the conducting wall. Substituting (8.32), the integral in the plasma region
Vin is seen to be

/ nfﬁdr:/ {’YPO(V'U)(V‘E)+(V'77)(€'VP0)
Vin Vin

+i[Vx (n x By)]-V x (£ x By)

— ui[n X (V x Bg)]-V x (€& x Bo)}dr
0
+/ —— |:Bo,in'V X (5 X BO,in) - ’ypo(V-ﬁ) - (£Vp0):| ds .
S Ko

(8.43)
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Next let us consider the surface integral in (8.43). Due to the boundary
condition ng X Q = —n, By cx, we find that

M Bo,ex*B1,exdS = / NBoex(V x A)dS = —/(no x Q)-(V x A)dS
s s s
:—/no-[Qx(VxA)]dS:/V-[Qx(VxA)]dr
S Vex

:/ [(V % Q)-(V x A) - Q-V x (V x A)] dr

:/ (VxQ)(VxA)dr.
Vex

From the boundary condition (8.33), the difference between the foregoing
surface integral and the surface integral in (8.43) reduces to

/ |:B0,in'Bl,in - BO,cx'Bl,cx
Tin
Ho

Cpo(V£) — (§°V)po} as
[ ewy (B B N og
_/snn & <2ﬂ0 © 2u0 —po)

0 B(% ex Bg in
= n&n 7 — — —— —po |dS
/Snnfn on ( 20 2010 pO) )
where the relation ng X V(po + B ;,,/21t0 — B ox/2110) = 0 has been used.

The region of integration Vi is the region outside the plasma. Finally, the
energy integral reduces to

/ n-Kedr = / {vpo<v-n><v-s>+1[V><<n><Bo>]-[vX<sto>}
Vin Vin Ho

+(V-1)(&-Vpo)

- i[n x (V x Bg)]-V x (€ x Bo)}dr

4—i (Vx@Q)(V xA)dr
Ho Jv,,

+ / ¢ 0 <Bg’e" Bt n )dS (8.44)
Snn " n 2110 2010 Po . .

The energy integral W is divided into three parts Wp, Wy, and Wy, the
contributions of the plasma internal region Vi,, the boundary region S and
the external vacuum region Ve, i.e.,

1 —
W = 5/ EKEdr =W, + Ws + Wy (8.45)
Vi

in
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W, = éfv {’YPO(V'ﬁ)z + =[x (€% Bo))” + (V-€)(6:Vp0)

1
- AT[S X (V x Bg)]-V x (€ x BO)}dr
0
1 B? .
=3 — —pi(V-€) =& (4o x By)| dr, (8.46)
Vin L MO
1 9 (Biex Bi;
We=—- [ &= === =1 _ ds 8.47
s 2/55"871 ( 2010 o Po ; (8.47)
1 B3
Wy = — V><A2d7°=/ —Ldr. 8.48
VT 200 vex( ) Vex 2H0 (848)

The stability condition is W > 0 for all possible €. The frequency or growth
rate of a perturbation can be obtained from the energy integral. When the
perturbation varies as exp(—iwt), the equation of motion is

W pmo€ = KE . (8.49)

The solution of the eigenvalue problem is the same as the solution based on
the calculus of variations 8(w?) = 0, where

o JEKedr

= . 8.50
fpm052dr ( )

As K is a Hermitian operator, w? is real. In the MHD analysis of an ideal

plasma with zero resistivity, the perturbation either increases or decreases
monotonically, or else the perturbed plasma oscillates with constant ampli-
tude.

8.3 Instabilities of a Cylindrical Plasma

8.3.1 Instabilities of Sharp-Boundary Configuration

Let us consider a sharp-boundary plasma of radius a, with a longitudinal
magnetic field By, inside the boundary and a longitudinal magnetic field B,
and an azimuthal magnetic field By = pol/(27r) outside. By, and Be, are
assumed to be constant (see Fig. 8.5). We can consider the displacement

&(r) exp(imb + ikz) . (8.51)

Any displacement may be expressed as a superposition of such modes. Since
the term in V£ in the energy integral is positive, the incompressible pertur-
bation is the most dangerous. We examine only the worst mode,
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A
BezT By,
Q| P”

x T

Fig. 8.5. Sharp-boundary plasma

VE=0. (8.52)

The perturbation of the magnetic field By = V X (€ X By) inside the plasma
is

B, =ikBy.£ . (8.53)
The equation of motion (8.32) becomes
k?B2 By-B
(—O.)meO + 02)5 = —V(pl + =0 1) =-Vp*. (8.54)
Ho Ho
As V£ =0, it follows that Ap* =0, i.e.,
a2 1d 5  m? .
[d7“2+7’d7"—<k +72):|p (T‘)—O. (8.55)

The solution without singularity at » = 0 is given by the modified Bessel
function I, (kr) of the first kind, so that p*(r) is

p) =@
Accordingly, we find
&r(a) = kp"(a)/In(ka) (ka) . (8.56)

~ wW?pmo — k2Bg /o™

As the perturbation of the vacuum magnetic field B, satisfies V x B = 0
and VB = 0, B, is expressed by B, = V. The scalar magnetic potential
1) satisfies Ay =0 and ¥ — 0 as r — co. Then
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hr exp(imd + ikz) , (8.57)
a

where K, (kr) is the modified Bessel function of the second kind. The bound-
ary condition (8.33) is

1 1 B2 B2
p*(r)—p1+Bo-Bl—Be-Ble+(s-v>( c _ DB )
Ho Ho

1 B}
= —B. B+ <£V)(0)
Ho 2410
Since By  1/r and B, = V4 with (8.57), p*(a) is given by

i

m B2
" (kB.. + ;BQ)C - ﬁag,,(a). (8.58)

p*(a)
Due to By, = 0¢/0r, the boundary condition (8.38) is reduced to

K1, (ko)
K, (ka)

. m
—i (kBeZ + ;Bg) £.(a) . (8.59)
From (8.56), (8.58) and (8.59), the dispersion equation is

W2 B [kBe:t(m/a)By)’ I (ka) Ku(ka) B3 1 I(ka)
k2 popmo {10 Pmok? In(ka) K7, (ka)  popmo (ka) Im((/m) ')
8.60
The first and second terms represent the stabilizing effect of By, and B..,
where K,,,/K/ < 0.If the propagation vector k is normal to the magnetic

field, i.e., if

(k*B.) = kBe, + “By =0,
a
the second stabilizing term of (8.60) becomes zero, so that a flutelike pertur-
bation is dangerous. The third term is the destabilizing term.
m = 0 Mode with B,, =0

Let us consider the m = 0 mode with B,, = 0. This azimuthally symmetric
perturbation constricts the plasma like a sausage, and the mode is called the
sausage instability. Equation (8.60) reduces to

e B, k? 1 B Iy(ka)
140 Pm0 B3, (ka)lo(ka)

Since Ijj(z)/xIo(x) < 1/2, the stability condition is

(8.61)

B, > Bj/2 .
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m = 1 Mode with B., =0

The m = 1 mode perturbation kinks the plasma column and it is call the
kink mode. For the m = 1 mode with B,, = 0, (8.60) is

B2 k? B2 1 I K

£40Pmo0 BE. (ka) I,(ka) K/ (ka)

For perturbations with long characteristic length, (8.62) becomes

B2 k? By \°. 1
w? = 20T 1—( ")m . (8.63)
H0Pmo By, ka
This dispersion equation shows that the kink mode is unstable for perturba-
tions with long wavelength.

Instability in the Case |B..| > |Bog|

When |Be.| > |By|, the term including |ka| < 1 predominates. Expanding
the modified Bessel function (m > 0 is assumed), we find

m o

m 2
popmo? = kB3, + (kBes + EBQ) - 5B} (8.64)

Then w? becomes minimum when dw/0k = 0, i.e.,
m
k(BS, + BZ) + —ByBe: = 0.

In this case, w? has the minimum value

B? 2B? B2 1-—
Winin = ——— ( o —m) = —2 2m(mﬂ—1> , (8.65)
popmoa® \ Be, + B, H0Pmoa 2-p
where [ is the beta ratio. Accordingly, the plasma is unstable when 0 < m <

(2 —3)/(1 = B). For a low-beta plasma only the modes m = 1 and m = 2
become unstable. However, if

(?)2 < (ka)? (8.66)

is satisfied, the plasma is stable even for m = 1. Usually, the length of the

plasma is finite so that k cannot be smaller than 27 /L. Accordingly, when
By
B

2ma

L b

the plasma is stable. This stability condition is called the Kruskal-Shafranov
condition [8.8,8.9].
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When a cylindrical conducting wall of radius b surrounds the plasma, the
scalar magnetic potential of the external magnetic field is

K (kr) I (kr)

¥= YKonka) 2T, (ka)

exp(imf + ikz) , (8.67)

instead of (8.57). The boundary condition Bie,. = 0 at r = b yields

a1, (kb)K,,(ka)

o K/ (kb)I,(ka)

The dispersion equation becomes

W B}, [kBe:+(m/a)By]” I, (ka) Kn(ka)I,
K Hopmo j0pmok?  L(ka) K}, (ka)I, (kb) — I, (ka) K}, (kb)
B} 1 I,(ka)

popmo ka Ly (ka)

Expanding the modified Bessel functions under the conditions ka < 1, kb <
1, we find

1+ (a/b)*™
1—(a/b)*m

m o

2
,uopmowQ = ]CQBSZ + (k'Bez + %Bg) - EBG .
The closer the wall is to the plasma boundary, the more effective is the wall
stabilization.
In toroidal systems, the propagation constant is k = n/R, where n is an
integer and R is the major radius of the torus. Introducing the safety factor
¢ at the plasma boundary r = a,

aBe,
0 = ) 8.68
9% = RB, (8.68)
(k-B) may be written as
B
(k+B) = kBe: + By = " (gu + ™) .
a a n
The Kruskal-Shafranov condition (8.66) of the m = 1, n = —1 mode can
then be expressed in terms of the safety factor as
ga>1. (8.69)

This is the reason why g, is called the safety factor.
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8.3.2 Instabilities of Diffuse Boundary Configurations

The sharp-boundary configuration treated in Sect.8.3.1 is a special case. In
most cases the plasma current decreases gradually at the boundary. Let us
consider the case of a diffuse-boundary plasma whose parameters in the equi-
librium state are

po(r), By(r) = (O,Bg(r),Bz(r)) .
The perturbation & is assumed to be
& =&(r)exp(imb + ikz) .

The perturbation of the magnetic field B; = V x (€ x By) is

By =i(k-Bo)&r (8.70)
B —ikA—i(fB) (8.71)
10 = dr ro) .
imA 1d
By =— , + ;5(7"57»32) ; (8.72)
where m

(k-Bo) = kB. + =By , (8.73)

A= f@Bz - ngG = (£ X BO)T . (874)

Since the pressure terms

po(V-£€)* + (V-£)(&-Vpo) = (v — 1)po(V+-€)* + (V-£)(V-po&)

in the energy integral are nonnegative, we examine the incompressible dis-
placement V-:£ = 0 again, i.e.,
1d im
- , i iké, =0. 8.75
Tdr(r§)+rfe+1g (8.75)

From this and (8.74) for A, & and &, are expressed in terms of . and A as

. . By d
l(k'B)fa =ikA — 7@(7“67”) ; (876)
imA B, d
—i(k-B)¢, = — —(r&,) . .
i(k-B)E. = " + —2 () (8.77)
From poj, = V x By, it follows that
dB,

HoJjos = — (8.78)

dr ’
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. dBg By 1d
= —— + = =-—(rBy). .
Hofor =~ = 7‘dr(r 0) (8.79)

The terms of the energy integral are given by

Wo= 1 [ [mIVe? + (9:€)€V + LB — g < B ar

4 in

1 1 2 . *
=1 —pl(V-E)Jr%IBlI —Jo(B1 x &) |dr, (8.80)

1 2 0 Bgex Bgin
— = [ gL Zhex _ Z0in Vs 8.81
[P o (G - Jhin g (8.8)

1 2

WV = TILLO v |B1| dr . (882)

&p and £, can be eliminated by means of (8.76) and (8.77), and dB,/dr and
dBg/dr can be eliminated by means of (8.78) and (8.79) in (8.80). Then W,
becomes

1 k-B)? AP
Wp=1/ {( )|£r|2+<k2+>||
Vin Ho %) o

B 1|¢B g, |
o ‘ @+&<mh—ﬂ el p S
Ho d r Ho

z
r dr

+ (ﬂojz - Ej") fr] I”ZA* <5TB B, ‘if)}

+2Re{§:j02< Bgffr L“;"Z +ik:A)]}dr

+ 2 Re {ikA* {
Ho

The integrand of W, reduces to

. g &\ . dé- &
A R e il |
o\ )10 B+ (m2/r7)

2 2

21dg | &
dr + r

5i|de &

k-B _ 25:B
{( )? J 9]
dr r

I r & /° + m

,uo

ikBy[(d&,/dr) — (& /r)] — im(B./r)[(d&./dr) + (& /r)] ’2
- pio [k + (m?/r2)]

Accordingly, the integrand is a minimum when
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A= E@BZ - ngG

g (B 5B G - (ke )

Then W}, reduces to

u 2
_ / |(k-Bo)(d¢, /dr) + h(&/7)| (8.83)
P 20 k2 + (m/r)? '
2104.B
| eBopp - LB w}
where m
h=kB,— —DBy.
r
Let us next determine Ws. From (6.8), it follows that
d B? + B? B?
— (po+—=2—""1 ) =-—"2.
dr 240 Tfio
B3 is continuous across the boundary r = a, so that
d B? + B} d (B2 + B2
—\pot+t—F | =5 | — ] -
dr 2140 dr 210
Accordingly, we find
Ws =0, (8.84)

as is clear from (8.81).
The expression for Wy can be obtained when the quantities in (8.83) for
W, are replaced as follows:

j—0, B,— B, = B (=const.), Bg%Bengag,
r

Blr = l(kBO)f'r — Belr = i(k'BEO)T/r
This replacement yields

b 2
T m Bga
Wy = — |2 )
v o [ (et 2 (3.55)
1 m Bga\ dn, m B,a 777«2
|| kB + — —_— kB, — — = dr .
+k2+(m/r)2 ( + ror ) dr +< ooy > r rar

By partial integration, W, is seen to be
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2
+g‘€r‘2

T a

20 Jo

r(k-Bo)*
k2 + (m/r)?

¢,

We dr

dr (8.86)

ik2352 — (m/a)?B2

a 2
+2,u0 k2 + (m/a)? & (@)l
2
1 [k‘Bz — (m/r)Bg} 9 2By d(rBy)
- - .By)? - — 8.87
r k24 (m/r)? +r(k-Bo) rodr (8.87)
d k*B2 — (m/r)*B3
dr k2 + (m/r)? '
Using the notation ¢ = rBey, = ir(k-Beo)n:, we find that
b 2
T 1 d¢ 1, 5
Wy = — —_——— | = - dr . 8.88
VT 200 a {r[k2 + (m/r)?] |dr + 7“|C| } " (8.88)

The functions &, or ¢ that will minimize W}, or W+ are the solutions of Euler’s
equation:

d [ r(k-Bo)* d&,
dr [kz + (m/r)? dr

d 1 d¢ 1,
dr{r[kQ—s—(m/r)?]dr}_rc_ ’ rea (8.90)

There are two independent solutions, which tend to & oc r™~!, r~™~1 ag
r — 0. As &, is finite at r = 0, the solution must satisfy the conditions

}—96:0, r<a, (8.89)

r—0, & ocrmL
r=a, ((a) =1ia (kBS + %Ba) &r(a)
r=b, () =0.

Using the solution of (8.90), we obtain

b

- ! ¢
Wv = 2p0 T[K2 + (m/r)?] |dr> |, (8:91)
The solution of (8.90) is
_ Lo (kr) K5, (kD) — K, (kr) L5, (KD) m
C“llg(ka)ﬁqn(kb)—-1{;(ka)1;(kb)r(kf%‘+ a‘B“)ST“U' (8.92)

The stability problem is now reduced to one of examining the sign of Wy,+W+;.
For this we use
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[ ]de P )
W, = 2 )dr W, |
o= o [ (1| ol )ar 4w,

B ikng — (m/a)?B?

= @ 2 8.93
a 2/,60 k_2 + (m/a)g |£r(a‘)| ’ ( )
71' -1 d¢
W = | 2(F
VT 2 r[k? + (m/a)?] drC —a
where (kB. + (m/r)By)?
r .+ (m/r)byg
= . 4
1 [kBZ — (m/r)Be]z m 2
= kB, + —B
I=5 k2 + (m/r)? +r( + r 0)
rdr dr k2 + (m/r)? '
When the equation of equilibrium (d/dr)(uop + B%/2) = —BZ/r is used,
(8.95) of g reduces to
2k? dpo 2 k24 (m/r)? — (1)r)?

m
== (kB.+ B
g k2+(m/r)2'u0 dr +r( + r 0)

(2k?/r)[k*B2 — (m/r)* B .
(k2 + (m/r)?]?

k2 4+ (m/r)?

(8.96)

8.3.3 Suydam’s Criterion

The function f in the integrand of W, in the last section is always f > 0, so
that the term in f is a stabilizing term. The first and second terms in (8.95)
for g are stabilizing terms, but the third and fourth terms may contribute to
the instabilities. When a singular point

f o< (k-Bg)? =0

of Euler’s equation (8.89) is located at some point r = ry within the plasma
region, the contribution of the stabilizing term becomes small near r = r,
so that a local mode near the singular point is dangerous. In terms of the
notation

232 dpo
r—ro=x, f:O($27 g:ﬂa 6276”07 )
Bg " dr |,
oo 10 (8B g 9B\ rBEBE (Y
- k2r2 +m? dr ? ar )., B> \ji),_. '
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with i = By/rB., Euler’s equation reduces to

d 5 dé, B
aa (m dx) - B =0.

The solution is
&=z +crT ™, (8.97)

where n; and ny are given by

1+(1+4 1/2
nz—n—gzﬂ, n; = (+26/a) (1=1,2).

When a+48 > 0, n; and ny are real. The relation n; +ns = 1 always holds.
For n; < ng, we have the solution 7™, called a small solution. When n is
complex (n = y+£1id), & has the form exp [(—'y:Fi&) In x] and &, is oscillatory.

Let us consider a local mode &, which is nonzero only in the neighborhood
¢ around r = 1, and set

r—ro=¢t, &(r)=¢&0), (1) =¢&(-1)=0.
Then W, becomes

1
s
W, = — t2
P 2u05/71 (a

Since Schwartz’s inequality yields

1 1 1 2 1 !
214112 2 fex _ (1L 2
/1t|£|dt/1|€|dt2‘/lt€£dt —(2/1|e|dt) 7
m 1 ! 9
%Z(a+4ﬁ)/_l|§| dt |

The stability condition is a + 443 > 0, i.e.,

~ 2
r(E 210 dpo
4<;1> +B§ 5 >0 (8.98)

2

d¢

dit

+ ﬁ§|2) dt + O(£?) .

2

Wy, is
Wy, >

r(i' /i) is called the shear parameter. Usually, the second term is negative,
since, most often, dpg/dr < 0. The first term (ji’/f1)? represents the stabiliz-
ing effect of shear. This condition is called Suydam’s criterion [8.10]. It is a
necessary condition for stability, but is not always a sufficient condition, as
Suydam’s criterion is derived from consideration of local-mode behavior only.
Newcomb derived the necessary and sufficient conditions for the stability of
a cylindrical plasma. His twelve theorems are described in [8.11].
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8.3.4 Tokamak Configuration

In this case the longitudinal magnetic field By is much larger than the poloidal
magnetic field By. The plasma region is » < a and the vacuum region is
a < r < b, with an ideal conducting wall at » = b. It is assumed that ka < 1,
kb < 1. The function ¢ in (8.91) for Wy is

_.mBg + kaBs a™ /bm ™
(= I]WnET(a)m<m - bm> >

from (8.92), and Wy becomes

7w (mBg + kaBy)? 1+ (a/b)*™
Wy = %0 m &(a)A, A 1— (a/b)2m

From the periodic condition for a torus, it follows that

2mn
k

so that (k-B) is given by

= —-27R (n is an integer) ,

a(k-B) = mB, + kaB; = mB, (1 — nqa> ,
m

in terms of the safety factor. The W, term in (8.93) reduces to

9 2
k2B — (@) B2 = (kBS + mBa) —2™p, (k:Bs + mBa>
a a a a

- (2) (- ) o).

Accordingly, the energy integral becomes

W+ Wy = 52620 [ (1= 2)" (1 2 (1 - )

m

vr &\
Jr% [f( dr> +g§r} dr . (8.99)

The first term of (8.99) is negative when

2 Nnqq
1-— <
1+ mA m

<1. (8.100)

The assumption ng,/m ~ 1 corresponds to ka ~ mB,/Bs. As B,/Bs < 1,
this is consistent with the assumption ka < 1. When m = 1, (m? — 1)/m?
is zero in the second term of (8.96) for g. The magnitude of g is of the
order of k?r2, which is very small since kr < 1. The term in f(d¢,/dr)? can
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ﬂ\
3
2% o5
Py
[ x=1
2
/_\II >
1 nqq
x=2 X =4

Fig. 8.6. Relation between the growth rate v and ng, for the kink instability [8.9]
—2W/(n€2B% /o) = ~v*a® ({pmo) o/ BZ)

be very small if &, is nearly constant. Accordingly, the contribution of the
integral term in (8.99) is negligible. When m = 1 and a?/b* < ng, < 1, the
energy integral becomes negative (W < 0). The mode m = 1 is unstable in
the region specified by (8.100), irrespective of the current distribution. The
Kruskal-Shafranov condition for the mode m = 1 derived from the sharp-
boundary configuration is also applicable to the diffuse-boundary plasma.

The growth rate 72 = —w? is

-W 1 B2
2 ~ = @ 2 1 — N a) —
Y T oml€ BT~ (pma) poa® |2 )

_ S omoleP2nrar
) = g

The maximum growth rate is 72, ~ (1—a?/b?)B2/(u0{p)a?®). When m # 1,
(m2?—1)/m? in the second term of (8.96) for g is large, and g ~ 1. Accordingly,
the contribution of the integral term to W, must be checked. The region g < 0
is given by x1 < x < X2, when x = —krB./By = nq(r) and

2(1 — ng,)?
1—a2/b? |’

(8.101)

/2

Nia = m— 2 22 4 2k%r? 3 m2(m? — 1) porpj !
’ m(m2 —1) m(m2 —1) 2k2r2 B2

(8.102)

Since kr < 1, the region g < 0 is narrow and close to the singular point
ng(r) = m, and the contribution of the integral term to W}, can be neglected
in the case m # 1 too. Therefore, if ng,/m is in the range given by (8.100),
the plasma is unstable due to the displacement &,.(a) of the plasma boundary.
When the current distribution is j(r) = jo exp(—#2r2/a?) and the conducting
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wall is at infinity (b = o), 72 can be calculated from (8.101), using the solu-
tion of Euler’s equation. The dependence of 2 on g, can then be estimated.
The result is shown in Fig. 8.6 [8.9].

When the value of ng,/m is outside the region given by (8.100), the effect
of the displacement of the plasma boundary is not great and the contribution
of the integral term in W}, is dominant. However, the growth rate v? is k?r?
times as small as that given by (8.101), as is clear from consideration of
(8.102).

The characteristic of the reversed field pinch (RFP, see Sect. 17.1) is that
B, and B are of the same order of magnitude, so that the approximation
based upon ka < 1 or B, < Bg can no longer be used. MHD instabilities in
RFP are well analyzed in [8.12].

8.4 Hain—Liist Magnetohydrodynamic Equation
When the displacement £ is denoted by
E(r,0,z,t) = E(r)expi(mb + kz — wt) |
and the equilibrium magnetic field B is expressed by
B(r) = (0, Bo(r), Ba(r)) ,

the (r, 6, z) components of the magnetohydrodynamic equation of motion are
given by

d d
—popmw?Ey = 3 [uow(V-f) + BQ%@(T&) +iD(§B. — £.By)

2
F? 4 ri (Be)
dr \ r

&~ 2K (6B, ~ £:s)

(8.103)
m _ 1d . ByB,
—fiopmw?Ep = i—ypop(V-€) +1DB, = — (r€,) + 2k ¢,
r rdr r
~H’B.(&B. — £:Bo) , (8.104)
. ) 1d B2
_:uopmngz = lk’YMOp(V'é) - IDBefi(rfr) - 21]4;7657"
rdr r
+H?By(&B. — €& By) | (8.105)

where
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2
F=25B+kB. = (k:B), D="B.—kBy, H'=(Z) 48,
T T T

1d
Vg =06+ *59 + kS -
When &y, &, are eliminated by (8.104), (8.105), we find

d mw? — 2
o {MOPA [opmw? (Ypop + B?) — ypopF 2} (T&«)}

d [ By 4k? 32
2—F2—237 = - QBQ_ F2
+{M0me g\ A 2 ¢ (popmw YopE”)
d Qk‘Bg m 2 2 2 _
- [7’2A <7Bz - ]fBe) [Mopmw (Yrop + B7) — ypopF } & =0,
(8.106)
where A is

A = pgpaw* — popmw? H? (ypop + B?) + ypopH?F? .

This equation was derived by Hain and Liist [8.13]. The solution of (8.106)
gives &.(r) in the region 0 < r < a. The equations for the vacuum region
a < 1 < ay, where ay, is the radius of the wall, are

VxB;=0, V-B; =0,
so that we find
B, = V1/J ; A’l/) =0,
¥ = [bLy (kr) + cKy, (kr)] exp(imb + ikz)

oY
or

In the plasma region, B, is given by

By, = = [bI},(kr) + cK,, (kr)] exp(imf + ikz) . (8.107)

By, =i(k-B)&,. =iF¢,
and the boundary conditions at r = a are
By, (a) = iF§(a) , (8.108)

Bl (a) = i[F'&.(a) + FE.(a)] (8.109)
and the coefficients b, ¢ can be fixed.

To deal with this equation as an eigenvalue problem, boundary conditions
must be imposed on &,.. Oneis &. oc 7™ at r = 0, and the other is By, (ay) =
0 for the radial component of the perturbed magnetic field at the perfect
conducting wall. After finding suitable w? to satisfy these conditions, the
growth rate 42 = —w? is obtained [8.14].
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8.5 Energy Integral of Axisymmetric Toroidal System

8.5.1 Energy Integral in Illuminating Form
The energy integral (8.46) derived in Sect. 8.2, viz.,

w=y | [f (V€ + (V-€)(6-Vp) — € x Bn]dr, (8.110)

can be further rearranged to the more illuminating form [8.15,8.16]

2

1 1 1 v
W= 5/ [WP(V’E)Q + %\Buﬁ + ™ ‘B1| - B%Qp)
- (jz-;f) (£x B)-By — 2(€°Vp)(€-n)] dr . (8.111)

The first term in the integrand of (8.111) is the sonic wave term. The second
and third terms are Alfvén wave terms. The fourth term is the kink mode term
and the last is the ballooning mode term. & is the field line curvature vector.
The rearrangement from (8.110) to (8.111) is described in the following. When
€ is expressed by the sum of the parallel component §;b and the perpendicular
component &, to the magnetic field B = Bb

E=§b+E&,,

the last two terms of (8.110) reduce to

(V&) + (i % By
— (EVD)VA(E) + (EVPIVEL 4615 % D)V % (€% B) + (j x £.)-B,
U1 S0 [(6 x B) x Vil + (€ VD) VEL + (5 % 6,) By

% + %V- [(€-VP)B] + (£-Vp)V-£. + (§ x €1)-Bi

= (&-Vp)(B-V)
=(§-Vp)(B-V)

£ .
= V- [ SEVIB| 4 (EV0VEL 1 ) B (8112
The current density j can be expressed as the sum of components parallel
and perpendicular to the magnetic field as follows:

B x Vp

j=0B+=—",
where .
j-B

O':BQ.
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The last term of (8.112) is

(£.-Vp)

2 BB,

(G x€1)B1=0(Bx§,)B1—
and V-£ | in the second term of (8.112) is

V-{l:V-[BB;x(ng)}:(ng)-Vx;—;-Vx(ng)

:(ng).$—2(§xB).%xB—%Vx(&xB)
_ —(&’gizvp)ﬂ(ﬁxB)-%—%'Bv (8.113)
Then the energy integral (8.110) reduces to
1 Bl  po(¢-Vp)* B-B,
W= /V [W(V'S) A (&-Vp)—p
—(&,-Vp) Bgfl +0(B x €,)-Bi +2(£Vp)(€ % B)-% dr
1 1 1o(&-Vp) oI° (i~ B)
= 2/‘/{'yp(V-£) + o ’31 - T B| - B (§L x B)-By
—2(&-Vp) [“‘J(gyp) — (& x B)-Béfﬂ }dr

By introducing a vector k

K= L[B><V(B2—|—2u()pﬂ x B =

wpVp (BxVB)x B
2B4 +

B? B3 ’

(8.114)

the last ballooning term can be expressed as

—2(£-Vp)(§-k) ,
since
_ 10(&-Vp)  E(BXVB)xB _ pu(€-Vp) (§xB)(BxVB)
(k) = B2 + B3 - B2 B3 :
(8.115)
Equations (8.113) and (8.114) reduce to
Vg +2(8, k) = #€1Vp) B-Bi (8.116)

B? B2
From (6.7) of Chap. 6, we have

V (2uop + B*) = 2(B-V)B .



8.5 Energy Integral of Axisymmetric Toroidal System 121

Fig. 8.7. Orthogonal coordinate system (¢, x, ¢). €y, €y, €, are unit vectors in
the v, x, and ¢ directions, respectively

Then it becomes clear from (8.114) that k is equal to the curvature vector
as follows:

K= %[b X (b-V)(Bb)} x b= {b X [(b-V)b + b;(bV)B:| } xb
= [(b°v)b]J_ = 7% s

where R is the radius of curvature and n is the unit vector from the center of
curvature to the point on the line of magnetic force (see Fig. 2.4 of Chap. 2).

8.5.2 Energy Integral of Axisymmetric Toroidal System

In any axisymmetric toroidal system, the energy integral may be reduced to
a more convenient form. The axisymmetric magnetic field is expressed as

I . I
B= %ew +Bye,, ()= ”027(Tw) :

(8.117)

where ¢ is the angle around the axis of the torus and % is the flux function
defined by
Y =—-RA,. (8.118)

R is the distance from the axis of symmetry and A, is the ¢ component of
the vector potential of the magnetic field. B, is the poloidal component of the
magnetic field. e, and e, are the unit vectors in the directions of the toroidal
and poloidal angles, respectively (see Fig.8.7). The R and Z components of
the magnetic field are given by
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o W
57 RBz=-

RBR = .
R OR

Since Vy = (1/R)e,, the poloidal component of the magnetic field is ex-
pressed by B, = —V1 x V. Hence,

B=-V¢yxVo+I(1)Ve. (8.119)
We can introduce an orthogonal coordinate system (v, x, ), where ¢ =

const. are the magnetic surfaces and x, ¢ are the poloidal and toroidal angles,
respectively. The metric for these coordinates is

ds? = ( dv )2+(JB dx)? + (Rdy)? (8.120)
- RBX X X (10 ) .

where the volume element is dV = J(¢)didxde. A field line is defined by
1) = const. and R
Rdp B, _1(¥)

JBydx By, RBy’

that is, X
dp _ J)IW)
dy R?

Then the toroidal safety factor is given by

L JW)I()
_%% R2? d

G, x) -

q() X -

The energy integral of an axisymmetric toroidal system is given by [8.17]

2
W= [ B (e + (96 Vi) - €705 x B ar
vL Mo

21.2 2

_:/ 1 EghWXP 1 R?|0U (X '
~ Jv | 200 B3R? 219 J2 | Ox R2
B2 . 2 1 1 2
2x i 4+ x' = BYe x| 4 2o | Z(JX) + Bk Y + inU
+ 510 inU + RB? + 5P J( ) +1iBk)Y +in
— KXX*|Jdydyde . (8.121)

The derivation of (8.121) is described in the following. The notation in (8.121)
will be explained as we go along.

In a general orthogonal coordinate system (u!,u?,u3) with metric given
by
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ds? = h23(dub)? + h2(du?)? + h2(du®)?,  ¢'/2 = hyhohs ,
the gradient operator on a scalar ¢ is
1 0¢
Vo= ——
¢ Z hj 8”3 e] ’

and the divergence and rotation operators on a vector
F = Fie; + Faes + Fses

where e; are unit vectors, are expressed by

1 0 0 0
V-F=—2 [ (hahsFy) + (hsh1Fy) + (hlthg)] ,

9172 | dut 902 903
1 0 0
V x F = % |:8u2(h3F3) Ju 3(h/2F2):|
1 0 0
i [ ) — ) e
1 0 0
s {aul(hzﬁ) B 2(h1F1)}

In the coordinate system (¢, x, ¢), (£&-Vp) reduces to

(&Vp) =&4RB % =& RByp .

X aw
The prime on p means differentiation with respect to . From (6.16) in
Chap. 6, we have

r

—jo =Ry + , 8.122
Jo=Bp'+ o3 (8.122)
that is, -
j 1r
p=--—.
R ,U;OR

Note that v defined by (8.118) is —RA,,, while ¢ in (6.12) of Chap. 6 is RA,,.
V£ is expressed as

1[0 13 0 (J¢
Vo= e+ g (5 )+ o ()]

It is convenient to introduce

3 1 §o 7
X=RB&y. Y=35, Us e (Bé—B&) =5 IRB&, .
X X
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whence )
X I
&l) RBX fx x1t fcp + R
and %
j I
EVp=Xp =X <—JJ§ - M0R2> : (8.123)

We analyze an individual Fourier mode & = £(v, x) exp(iny). Then

, _ 1 9 10 10 f,

190 . .
jaY = (Bik))Y —in—Y .

R2

Since )

V-6 = S (JX) +iBRjY +inU (8.124)
it follows that

v (Ve = x (e~ AN (L oxey ipry — im0
b - R k2 | \J I '
(8.125)

We now derive the expression for By =V x (£ x B):

(€ x B)y = &By — £ By (€ x B)y = —&yBy (% B)y =&yBy
1 0X 0 (JB 1
Biy=——|7—+—+— £X iBk X ,

Y= JB.R [ax 90 ( R )] BRI

0X
le = — (l’I’LU + aw)

_i EX +a£
oY \ R? ax

The components of the current density are

R

Bl‘P:j

) . 0 - . R 0
toJy =0, HoJx = *Bx%(RBap) = *BXI/ ) HoJe = j%(JBi) )
(8.126)
and

ROU R (1J iBk
Bixen =556 -0 (5 )&p B

Bk
(B1 % &), B}gxg + (inU + X")By£j,



Then,

£(j xBy) =

(V-£7)(&-Vp) -

iBhy
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J(B1x &)

f’ 1BkH

ROU, R (IJ
T ( ) SR

HX§ + (inU + X') Xf;;l:l

I I I /1J
Y*j, + — | RU* + =V* - (=
( )] (2
I' oU
W Linux L X' X*
Tod Oy iU Rt

R'“”

(& xj)-B1
Ir

o 7‘7‘7907 */ 1 v .7799 x s *
< i M0R2> (XX"+X'X")+ R(mXU inX*U)

I
—|—1’I’Lﬁ

+XX* <— -

and

|Blsa|2 _ R?
o thoJ?

R2
poJ?

i I

2
U, (IXY X,
ox R? R?

ou

JX /|2
T = —
15% (132)

—(X'X"+ X¥X)+2

Bx”
Ho RB; RB2

71 71

1 ou
J 3)( Mo
7 112 ff/ / fj/ /
J jS" 5 + 7225 _272i ,
polR?  poR* R poR? J

J R

I /oU oU*
S (bl 'S T X
o (ax ox )

ff/ J 2R’ 712
tod ( -

2 s J) XX+

B 2
X finU + X'|?
0

2

inU + X' — + (inUX*

XX*.

11072
X X* X*/ J 4
+ + ) R R2BZ

o R

N
— X)ZLe
inU*X)

125

!/
X) X"

(8.127)

XX
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Finally, the energy integral of the axisymmetric toroidal system becomes

w-l /V[IJ:ZlP FAp| (V-6 + (V-£)(£-Vp) — £-( x Bl):| dr

2
7/1 || L RoU(IXY
N 210 BQR2 219 J2 | Ox R?
BQ
X |ipU + X' —
o MY RB?

2

1 |1
+2yp‘J(JX)'+in||Y+inU —KXX*} Jdypdxdy,  (8.128)

where

J " RB?

_ R G (I moje _ IRy (B
 woR? R 2R wR*R R \J B,/
Here we have used (8.126), i.e

R
HoJe = 7(J’B§ + J2B,B.) .

8.5.3 Energy Integral of High-n Ballooning Mode

The energy integral (8.128) is used for stability analysis of high-n modes and
the ballooning mode [8.17,8.18].

The first step in minimizing dW is to select Y so that the second positive
term in (8.128) vanishes (V- = 0). The second step is to minimize with
respect to U. The minimizing U is given by

0X Mop q I? 12 10XY

When we treat ballooning modes, perturbations with large toroidal mode
number n and |m — ¢n| < n are important (see Sect.8.6). After a long
mathematical calculation, the energy integral with O(1/n) accuracy is derived
as [8.17]

R2218 2

s JB
W_Mo/dwdx{R2B2 ’kHX’ JB2 naw
||26 LB\ L9 (BP) X oX
gy \ P T JB2ay \ 2 ) n

+)fl JBk)(Xo') — %(P*JB/%‘”Q + c.c.)} , (8.129)

5 (I BRIX)

2J pop’
—




8.5 Energy Integral of Axisymmetric Toroidal System 127

where c.c. means the conjugate complex and

2 / 72
19 X piop " 19
P=Xo— AB2 5 55 (IBRIX), Q=% PR2B2 1 0 —(JBkX) ,
f/ﬁop/ 2 ; 9 ing ] L7
o=+ WkB=g +ind, )= T

OW must be minimized with respect to all periodic functions X subject to
an appropriate normalization

XP |, (BB
R2B2 B

where py, is the mass density and (8.130) corresponds to the total kinetic
energy of transverse motion to the leading order in 1/n. The Euler equation
for the minimizing function X (¢, x) can be deduced form (8.129) and (8.130).
As X (v, x) is periodic in Y, it can be expanded in a Fourier series:

ZXm exp(imy) .

W/dedxpm ] = const. , (8.130)

n o

A continuous function X;(v) of s, which is equal to X,,,(¢) for s equal to an
integer m, can be constructed and expressed as a Fourier integral:

X - " X () explisy)dy/(2m) . X(y) = / "X (0) exp(—isy)ds.

X(1,y) is called the ballooning representation of X (v, x). Then X (¢, x)
reduces to

X0 = S ew(-imy) [ X esplimp)dy/2n) . (5.131)
Using the delta function 6(z),

—Zexp —im(x —y)] = Z(S(y—)(—&-%r]\/)7

N

and the relation between X (1, x) and X (¢, ) is

X(,x) =Y _ X(th,x—27N) . (8.132)
N

X (), x) is expressed as an infinite sum of quasi-modes.
The Euler equation for X (¢, x) is converted into an identical equation
for X (v,y), but with X in the infinite domain of y and free of periodicity
requirements. Let us consider X (¢, y) with the form
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X(,y) = F(i,y) exp (—in /y J édy) : (8.133)

in which the amplitude F'(¢,y) is a more slowly varying function as n — oo.
Then

iJkyBX (¢, y) = (83 +in(j> X(,y) = (d” )exp (m/y qdy> .

The leading term in the Euler equation for X (Y, y

)
2
Jdy | JR*B2 N a

reduces to [8.17]

2u0p’ O < Bg) Iuop y ) 190B?
- | top + q'dy Fy
B2 9y vo J oy
w* (¥, yo) R*B}
+— = |1+ —X/ dy Fyo=0. (8.134)
R2B>2( B Yo

The stability of the ballooning mode can be analyzed using this Euler equa-
tion (see Sect.8.6) [8.18].

8.6 Ballooning Instability

In interchange instability, the parallel component k = (k- B)/B of the
propagation vector is zero and an average minimum-B condition may stabilize
such an instability. Suydam’s condition and the local-mode stability condition
of the toroidal system are involved in perturbations with kj = 0. In this
section, we study perturbations where kj # 0 but [k /k.| < 1. Although the
interchange instability is stabilized by an average minimum-B configuration,
the perturbation with k|| # 0 may be able to grow locally in the bad region of
the average minimum-B field. This type of instability is called the ballooning
mode (see Fig. 8.8).

There is a beta limit for the stability of the ballooning mode. It will be
shown that average minimum-B and shear stabilize the ballooning mode.
Therefore measures of the magnetic well and shear are important parameters
in magnetic confinement configurations [8.19].

The energy integral 8W is given by

1

W= 5 {[V x (€ x Bo)]” = [£ x (V x Bo)|-¥ x (¢ x By)
Ho

+ Hopo(V-€)° + j1o(V-€) (€ Vpo) fdr
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Fig. 8.8. Ballooning mode

Let us consider the case where £ can be expressed as
By x V¢

3 B (8.135)

where ¢ is considered to be the time integral of the scalar electrostatic po-
tential of the perturbed electric field. Because
S X BO = Vl(b )

the energy integral reduces to

_ b o [(Box Vi¢) X pojo
5W—2MO/{(VXVJ_¢) [ B2 ]vam

+ Ypopo(V+-€)* + #O(V'E)(&Vpo)}dr .

V£ is given by

o (BoxVe\ _ . By
v (25 ) 9oy < ()

=V¢-[(V312> ><B+BlQV><B] .

The second term in square brackets is negligible compared with the first term
in the low beta case. Using Vpy = j, X By, OW is expressed as

S g— / {(v V1 g)? 4 HoVPor (VL6 X Bo) (Bo-V X Vm)

2410 BZ BZ

_ 10(Jo*Bo)
B§

+,U,0Vp0-(BQ x V1¢) [V (1) -(By % VM)} }dr .

2
V19V XV 1¢+vuopo [V (2) (B x Vﬂﬁ)}

Bj B3
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Let us use the z coordinate as a length along a field line, r as radial coordinate
of magnetic surfaces, and 6 as poloidal angle in the direction perpendicular to
field lines. The r, 8, z components of Vpg, B, and V¢ are given approximately
by

Vo = (p),0,0), B= (0, By(r), Bo[1 — rR;l(z)]) ,
_(9¢ 96 09
Vo= <8r’ rdf’ 0z

R.(z) is the radius of curvature of the line of magnetic force:

) , o(r,0,2) = ¢(r, z)Re(exp imb) .

1 [
RC(Z) o RQ

(7ot cos2r)
—w +cos2m— ) .
L

When R.(z) < 0, the curvature is said to be good. If the configuration is
average minimum-B, w and Ry must be 1 > w > 0 and Ry > 0. Since
By/By, v/ Ry, r/L are all small quantities, we find

Vi$=V—Vé~Re (?7””(2570) ,
T T
_ —im d¢ 9%
VX(VL¢)NRG( 8276287’70) )
BO X Vl(ﬁ ~ Re <1mBO¢a 30%7()) )
r or

and OW reduces to

|

where —po/p}y = rp and B = po/(B2/210). The second term contributes to
stability in the region R.(z) < 0 and contributes to instability in the region
of R.(z) > 0. Euler’s equation is given by

d*¢ g
dz2 rpRe(2)

6=0. (8.136)

R is nearly equal to B/|VB|. Equation (8.136) is a Mathieu differential
equation, whose eigenvalue is
w = F(BL?/2r*r,Ry) .
Since
F(x)=2x/4, rkl, Flz)=1—z"Y2, x>1,

we find the approximate relation
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4w 2m2r, Ro

fe~ (1+3w)(1—w)? L2

Since w is of the order of r, /2R and the connection length is
L =~ 271Ry(27/1) ,

where ¢ is the rotational transform angle, the critical beta ratio 3. is

5o~ (52) (%) (8.137
¢ 27 R/~ ’

If 3 is smaller than the critical beta ratio 8., then W > 0, and the plasma is

stable. The stability condition for the ballooning mode in the shearless case
is given by [8.19]

B <P -

In the configuration with magnetic shear, a more rigorous treatment is

necessary. For ballooning modes with large toroidal mode number n > 1 and

m —ng ~ 0 (see Sect.8.5), the stable region in the shear parameter S and

the measure « of the pressure gradient of the ballooning mode is shown in
Fig.8.9. The shear parameter S is defined by

_rdg

gdr’

where ¢ is the safety factor (¢ = 27/¢, ¢« the rotational transform angle) and
the measure « of the pressure gradient is defined by

_ @R dp
o 32/2/1,0 dr '

The straight-line approximation to the maximum pressure gradient in the
range of large positive shear (S > 0.8) is @ ~ 0.65, as shown in Fig. 8.9. Since

11 e 11 [*dp,
| prmrdr= e~ [ P2,
b B2/2p0 7ra2/0 pemrar B2/2pu0 a2/0 ar "

the maximum ballooning-stable beta is

.o (1 (" 1dg 4
B—O.6R (a3/0 q3d'rr dr) .

Under an optimum ¢ profile, the maximum beta is given by [8.20]

a
Rq,

Brnax ~ 0.28 (¢a >2), (8.138)

where ¢, is the safety factor at the plasma boundary. In the derivation of
(8.138), it is assumed that ¢, > 2, go = 1.
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1.0

0.0

Fig. 8.9. Maximum stable pressure gradient « as a function of the shear param-
eter S of ballooning mode. The dotted line is the stability boundary obtained by
imposing a more restricted boundary condition on the perturbation [8.18]

It should be noted that the ballooning mode is stable in the negative shear
region of S, as shown in Fig.8.9. When the shear parameter S is negative
[q(r) decreases outwardly], the outer lines of magnetic force rotate around
the magnetic axis more quickly than the inner ones. When the pressure in-
creases, the tokamak plasma tends to expand in a direction of major radius
(the Shafranov shift, see the note at the end of this section). This must be
counterbalanced by strengthening the poloidal field on the outside of the toka-
mak plasma. In the region of high pressure gradient, the necessary poloidal
field increases outwardly, so on outer magnetic surfaces the magnetic field
lines rotate around the magnetic axis faster than they do on inner ones and
the shear parameter becomes more negative [8.21].

In reality, the shear parameter in a tokamak is positive for typical oper-
ations. However, the fact that the ballooning mode is stable in the negative
shear parameter region is very important for developing a tokamak configu-
ration that is stable against ballooning modes. Since

r By 1o 7.
T _B__ 27rrd
Rq By Bp2nr ), j(r)2mrdr,

the profile ¢(r) of the safety factor is

1 R Ho " ,uoR .
——=— | — 2nrdr | = —— "
q(r) 2By <7rr2/0 Jemr r> 2By b))
Therefore, a negative shear configuration can be realized by a hollow cur-

rent profile. The MHD stability of a tokamak with hollow current profiles is
analyzed in detail in [8.22].
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Shafranov Shift

In the case of a tokamak with large aspect and circular plasma cross-section,
the Shafranov shift A(r) of the center of the magnetic surface with radius r
from the center of the plasma boundary with radius a is [8.23]

dA 1 ",d p "
D B? 2 - 24q —/ B2d 1
dr  RrB} <ﬂp 9‘1/0 " ar (p) " 0 "Pedr ) (8.139)

where By is the magnitude of the poloidal field at r and By, is the mag-
nitude of the poloidal field at r = a. 3, is the poloidal beta and (p) is the
volume average of the pressure (p) = foa p2rdr/a®. In the case of a parabolic
pressure profile, the pressure term on the right-hand side of (8.139) becomes
—(a/R)Bp(Bga/Bg)?(r/a)® and in the case of a flat current profile, the sec-
ond term on the right-hand side of (8.139) becomes —(a/4R)(r/a). When the
pressure profile is parabolic and the current profile is flat, the Shafranov shift

is AJa = (a/2R)(Bp +1/4)[1 — (r/a)?].

8.7 Eta-i Mode
Due to Density and Temperature Gradient

Let us consider a plasma with density gradient dng/dr and temperature
gradient dToo/dr, dTjp/dr in a magnetic field in the z direction. Assume
that the ion density becomes n; = n;g + n; by disturbance. The equation of
continuity

on;
787; +v;:Vn; +n;V.v; =0
reduces by linearization to
0
—iwis + B 5+ moiky By = 0. (8.140)
r

It is assumed that the perturbation terms change as expi(kerf + kjz — wt)
and kg, k| are the § and 2z components of the propagation vector. When the
perturbed electrostatic potential is denoted by 6, the E x B drift velocity
is o, = Ey/B = ikg¢/B. Since the electron density follows a Boltzmann
distribution, we find

ne _ e

= . 8.141
no k‘Te ( )
The component of the equation of motion parallel to the magnetic field,
dUH
nlmiﬁ = 7V|\p1 - GTLVHQb )

reduces by linearization to
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134
—iwnimyt) = —iky (B + enod) . (8.142)
Similarly the adiabatic equation
0 —5/3 —5/3\ __
~(ping 77) +v-V(ping 7)) =0
ot
reduces to
(P b ikgd (dTy/dr  2dng/dr
SRR - -z =0. 14
M(Pi 3ni> B ( 1 3 no 0 (8.143)

Let us define the electron drift frequencies wy,,, wt,, and the ion drift fre-

- * *
quencies w,;, wp; by

ot = _Fe(sTe)dne o L Ke(sTh) dr
" eBne dr '’ ™™ eBn; dr’
R R I T
’ =B dr -

Who =
Te eB dr
The ratio of the temperature gradient to the density gradient of electrons

and ions is given by

_ dTe/dr n.  dInT;
e = T, dne/dr dlnn,’

o dTi/dr n;  dInTj
=T Qnygjdr - dlnmg

respectively. The following relations hold among these values:

T;
* 1 * * _ * ko ok
- Wre = TNeWne » Wi = NiWn; -

Wy = — W,
ni ne ’ e
T

Then (8.140), (8.141), (8.142), and (8.143) reduce to

AP whe ed fie _ eg

ng _w/kH w kT, no kI,
Wo_ 1 (G B) B 5A_wn( 2\
‘“J/k\l_mi(w/k\l)2 (eqﬂ_no)’ po 3no w 'h 3) kT,

The charge neutrality condition 7i; /ng = 7ie/ng yields the dispersion equation:

2
wr VT . 5 W 2
1_ ne __ -°c _ ne e :O7
w (W/’ﬂ) [Tﬁzﬁ w (’7 3)}

where v3; = £Tj/m;. The solution in the case w < wy; is [8.24]

2
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The dispersion equation shows that this type of perturbation is unstable when
7 > 2/3. This mode is called the 7; mode or ion temperature gradient (ITG)
mode.

When the propagation velocity |w/kj| becomes of the order of the ion
thermal velocity vp, the interaction (Landau damping) between ions and
wave (perturbation) becomes important, as will be described in Chap. 11,
and the MHD treatment must be modified. When the value of 7; is not large,
a kinetic treatment is needed and the threshold of n; becomes 7; o ~ 1.5.



9 Resistive Instabilities

In the last chapter, we discussed instabilities of plasmas with zero resistivity.
In such cases, the conducting plasma is frozen to the line of magnetic force.
However, the resistivity of a plasma is not generally zero and the plasma may
therefore deviate from the magnetic line of force. Modes which are stable in
the ideal case may in some instances become unstable if a finite resistivity is
introduced.
Ohm’s law is
nj=E+V xB. (9.1)

For simplicity we assume here that E is zero. The current density is j =
V x B/n and the j x B force is

B(V-B) - VB?
; .

F,=3xB=

(9.2)

When 7 tends to zero, this force becomes infinite and prevents the plasma
from deviating from the line of magnetic force. When the magnitude B of
the magnetic field is small, this force does not become large, even if 7 is
small, and the plasma can deviate from the line of magnetic force. When we
consider a perturbation with propagation vector k, only the parallel (to k)
component of the zeroth-order magnetic field B affects the perturbation, as
will be shown later. Even if shear exists, we can choose a propagation vector
k perpendicular to the magnetic field B:

(k-B)=0. (9.3)

Accordingly, if there is any force F'g, driving the perturbation, this driving
force may easily exceed the force F's, which is very small for a perturbation
where (k-B) = 0, and the plasma becomes unstable. This type of instability
is called resistive instability.

9.1 Tearing Instability

Let us consider a slab model in which the zeroth-order magnetic field By
depends only on x, and B is given as
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B() = Boy(ac)ey + BOZ({E)GZ . (94)
From Ohm’s law (9.1), we find

%?:_VXE:VX[(VxB)—nj]:Vx(VxB)+:AB, (9.5)
0

where 7 is assumed to be constant. It is assumed that the plasma is incom-
pressible. Since the growth rate of the resistive instability is small compared
with the MHD characteristic rate (inverse of the Alfvén wave transit time)
and the movement is slower than the sound velocity, the assumption of in-
compressibility is justified and it follows that

V-V =0. (9.6)
The magnetic field B always satisfies
V-B=0. (9.7)

The equation of motion is

pm%:i(VxB)xB—Vp
- i (Bo-V)B1 + (B1-V)B, — sz _Vp. (98
Let us consider the perturbation expressed by
fi(r,t) = fi(z)exp [i(kyy + k.z) +t] .
Then (9.5) reduces to
YB1 = i(k-B)Vy + npo (0°02* — k) B, (9.9)

where k? = k2 4+ k2. The first term on the right-hand side of (9.8) becomes
(Bo:V)B; = i(k:-Bg)B;. The rotation of (9.8) is

1opmYV XV =V x [i(k-Bo)Bl + (Bm@ax> BO} . (9.10)
Equations (9.6) and (9.7) reduce to

% +ik, By +ik.Br. =0, (9.11)

% +ik,V, +ik.V, =0. (9.12)

Multiply k, and the z component of (9.10) and multiply %k, and the y com-
ponent and take the difference. Using the relations (9.11) and (9.12), we
find [9.1]
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3 BsrU

Fig. 9.1. Zeroth-order magnetic configuration and magnetic islands due to tearing
instability. Profiles of By, and V. are also shown

32 2 . 82 2 . "

[Lopm’y ((91,‘2 — k > Va: = 1(k°BQ) <(9$2 — k > le — l(k'Bo) le 5 (913)
where the prime denotes differentiation with respect to . Ohm’s law and the
equation of motion reduce to (9.9) and (9.13). It should be noted that the
zeroth-order magnetic field B appears only in the form (k-Bg). When we
introduce a function

F(z) = (k-By) (9.14)

the location of F(z) = 0 is the position where resistive instabilities are likely
to occur. We choose this position to be z = 0 (see Fig.9.1). F(z) is equal to
(k-Bo) ~ (k-Bo)'xz near x = 0. As is clear from (9.9) and (9.13), By, is an
even function and V. is an odd function near x = 0.

The term |[AB1;| ~ |pokyj1-| can be large only in the region |z| < €. Since
the growth rate of a resistive instability is much smaller than the MHD growth
rate, the left-hand side of the equation of motion (9.13) can be neglected in
the region |x| > ¢ and we have

dQB " F
dx; — k?By, = B, el >e (9.15)

The solution in the region x > 0 is
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b

x 3
By, =e7k l / e ¢ / (F"/F)Bize ™dn+ A

— 00

and the solution in the region x < 0 is

@ ¢
By, = ek / e 2RE ¢ / (F"/F)Bi,e"dn+ B
o0 o0

Let us define A’ as the difference between B, (+¢) at © = +¢ and Bj,(—¢)

at x = —e, so that

Bi.(+€) — Bi, (=€)
Bi.(0)

Then the value of A’ obtained from the solutions in the region |z| > ¢ is
given by

N = 2 — BM (/ />exp (—k|z|)(F" /F)Buydz . (9.17)

For a trial function

A =

(9.16)

F(r) = Fa/Ls (|| <Ls),  F(z) = Fa/lz] (x> |L),

we can solve (9.15) and A’ reduces to

A = 2a —ef2a+(1720[) %z l—oz .
Ls ) e 2 —(1-2a) Ls\«
Here a = kL has been used and Ly is the shear length defined by L
(F/F")z=o. For more general cases of F(z), By;(z) has a logarithmic singu-
larity at « = 0, since F'/F « 1/x generally. A method for avoiding difficulties

arising from the corresponding logarithmic singularity is described in [9.2].
Equations (9.9) and (9.13) in the region |z| < ¢ reduce to

02By,
P <k2 7;‘0) Bi, = —lfFll‘Vx , (9.18)
aZVw (F/)Q 1 E
- - {kQ + mﬂ V, =i (F'x — ) Bis . (9.19)
Ox PmTY PmT  HoPmY

The value of A’ obtained from the solution in the region |z| < ¢ is given from
(9.18) as

8Bli(+€) _ 831$(—€)
ox ox

ko [ M2 y
=" 7+%k By, —iF'2V, | dz.  (9.20)

A’ x Blm(o) =

n
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The value for A" in (9.20) must be equal to the value for A’ in (9.17). This
requirement gives the eigenvalue -y, and the growth rate of this resistive insta-
bility can be obtained [9.1]. However, we shall try to deduce the growth rate
in a qualitative manner in this section. In the region |z| < €, it is possible to
write
0’B1,  A'By,
9z2 e

It is assumed that the three terms in (9.9), namely the induced electric field
term (left-hand side), the V' x B term (first term on the right-hand side) and
Ohm’s term (second term) are of the same order, i.e.,

A'By,
VB, ~ %—E - (9.21)
YD1z ~ U EVy . .

B iF'eV, 9.22

Then (9.21) yields

n 4
T (9.23)
Accordingly,

A0 (9.24)

is the instability condition. In order to get the value of v, € must be evaluated.
Equation (9.13) reduces to

_V;E .
HoPmY <€2> ~iF'e

If the terms V., Bj., and 7 are eliminated by (9.21), (9.22) and (9.25), we

find 5
5 n Al PmM0 5
: (Moa2) ( a)(F’a)2a ’

A'B
= (9.25)

2 271/5 2/5
3 TA BO _ B()
S A A/ ~ S 2/5 A/ /5| 20
: [(m) @) () (@ap | ]
(9.26)
where the physical quantities
poa’ a
TR = y TA = )
T Bo/(110pm)*/?

are the resistive diffusion time and Alfvén transit time, respectively. The
dimensionless factor
S =1Tr/Ta

is the magnetic Reynolds number and a is a typical plasma size. Accordingly,
the growth rate v is given by
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y=—L%(Aa)= (A'a)"/? {(k-BO)/azr/E»

= u0a2 c 7_;’;/57_;/5 BO
B (A/a)4/5 (k-Bo)/a2 2/5 i (9 27)
o 53/5 BO TA ' '

Since this mode very likely breaks up the plasma into a set of magnetic
islands, as shown in Fig. 9.1, this mode is called the tearing instability [9.1].

The foregoing discussion has been based on the slab model. Let us consider
this mode in a toroidal plasma. The poloidal and the toroidal components of
the propagation vector k are m/r and —n/R, respectively. Accordingly, we
have the correspondences k, <+ m/r and k, <+ —n/R, and

n

R

rB.
RBy

m n m
(k'BO) = 7B9 - BZ = ;BO (7 - Q) ) q

n

Therefore weak positions for tearing instability are given by (k-Bg) = 0 and
these are rational surfaces satisfying ¢(rs) = m/n. The shear is given by

R

, -—n_ dqg (k-By)'r? rs\ q'Ts
(keBo) = —Bogl, S = on () SR
The tearing mode is closely related to the internal disruption in a tokamak
and plays an important role that we shall describe in Sect. 16.3.

It has been assumed that the specific resistivity 1 and the mass density
pm are uniform and there is no gravitation (acceleration) g = 0. If n depends
on z, the resistive term in (9.5) becomes V x (nV x B)/ug. When there is
a temperature gradient (' # 0), the rippling mode with short wavelength
(kLs > 1) may appear on the lower-resistivity side (high-temperature side)
of the x = 0 position. When there is gravitation, the term pg is added to the
equation of motion (9.8). If the direction of g is opposite to Vpy, (g is toward
the low-density side), the gravitational interchange mode may appear [9.1].

9.2 Resistive Drift Instability

A finite density and temperature gradient always exists at a plasma boundary.
Configurations including a gradient may be unstable under certain conditions.
Let us consider a slab model. The direction of the uniform magnetic field is
taken in the z direction and By = (0,0, By). The x axis is taken in the
direction of the density gradient with the positive direction outward from
the plasma. The pressure is po(x) (see Fig.9.2). The zeroth-order plasma
current is j, = (0,p4/Bo,0) and we assume that the flow velocity and the
electric field are zero Vo = 0, Eq = 0 to zeroth order. The flow velocity due
to classical diffusion is neglected here. Electron inertia is also neglected.
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Fig. 9.2. Slab model of resistive drift wave

The usual relations in this configuration are

ov
Mn~" =jxB—-Vp, (9.28)

ot

1
E+VxB=nj+_—(jxB-Vp), (9.29)
on

5tV V) =0, (9.30)
Vj=0, (9.31)

where M is the ion mass. In this configuration, electrostatic perturbations are
considered here. The first-order electric field E; is expressed by the electro-
static potential E1 = —V¢; and the first-order magnetic field perturbation
is zero By = 0 (0B/0t = V x E). The characteristics of the electrostatic
perturbation will be explained in detail in Chap.10. For simplicity, the ion
temperature is assumed to be zero T} = 0. Let us consider the mode

n1 = ny(x) expi(ky + kjz — wt) , $1 = ¢1(v) expi(ky + kjz — wt) .
Equations (9.28) and (9.29) reduce to
—iwMnogV1 =7, x Bg — kT, Vnq , (9.32)

j1 X Bg — kT.Vny = eng(—V¢1 + V1 X Bg —nj,) - (9.33)
Equations (7.32) and (7.33) yield

M
iw <e) Vl = V¢1 — V1 X BO + 77_]1 . (934)

When 7 is small (ve; < 2.), the contribution of 75 can be neglected in (9.34),
i.e., we may write
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_ g2 _ (L) _ (N ki
Vw_ lkBO7 ‘/;/—<th> Bo’ ‘/z— w BQ)

where 2 is as usual the ion cyclotron frequency (£2; = —eB/M). The wave
frequency w is assumed to be low (w/2;)? < 1. The , y components of (9.32)
and the z component of (9.33) are

. o KTeng . w\ ed . ik ny
r = k 3 =k - | 5 z = Tei - .
J [ By Jy ng ( Qi) By J e K o eP1

Since (9.31) is j;, + ikj, + ik j. = 0, and (9.30) is

—iwng +ng Ve + noikVy + neiky V. =0,

we find
2

ny Ak w engn \ epr

2 AR =0, 9.35
no ( + <k‘|> _Qi BO > /QTe ( )

2 /

nq ky\" kTe 5 KT k(—n{/no)kTe 1\ epr

— = — k — ] —=0. (9.36
no <( w ) M + eBo (2 + eBg w | KT, ( )

The dispersion equation is given by the determinant of the coefficients of
(9.2) and (9.2):

k)’ ki :

. W Vei I 2 2 We

i) @y (F) 24 _ e _ .

i (kl ) 0 0. ( ) e + (kpa) 0 (9.37)

where 7 = mevei/ne?, (ngen)/Bo = Vei/ 2. 2 = KT./M, po = cs/|]
and wf = k(—ny/no)(kTe/eBy). The drift velocities vg; and vqe of ions and
electrons due to the density gradient Vng are given by

—(kTiVng/ng) x b —kT; (—n{)) .
— -

vdi = €BO GBO no
(KTeVng/no) xb kT, {—n|
Vde — = — €y .
eB() €Bo o

The drift frequencies of ions and electrons are defined by w; = kvg; and
w} = kvqge, respectively. As nj/ng < 0, w} > 0 and w} = —(Ti/Te)w’ < 0.
The dispersion equation reduces to

? Kied\ Qo2 (k\? 2. (k)2
L) i1 (kpo)? - ) 2 (2 (2 pie (2L) <o,
w? w Veiw? \ k w} Veiwd \ k
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Fig. 9.3. Dependence of w/ws = z + iz on y o k /k for resistive drift instability

pg is the ion Larmor radius when the ions are assumed to have the electron
temperature T,. Setting w/w} =z +iz and —(2:92 /veiw] ) (K /k)? = 32, and
assuming (kpp)? — (kjcs/w)? < 1, the dispersion equation is then

(x+12)? +iy*(x +i2) —iy? =0 . (9.39)

The dependence of the two solutions x(y), z1(y) and x2(y), z2(y) on
y o< (kj/k) is shown in Fig.9.3. As 23(y) < 0, the mode corresponding to
x2(y), 22(y) is stable. This wave propagates in the direction of the ion drift.
The solution 1,27 > 0 propagates in the direction of the electron drift and
it is unstable. If the value of (kj/k) is adjusted to be y ~ 1.3, the 21 value
becomes maximum at z; ~ 0.25 and the growth rate is Imw ~ 0.25w. If 7 is
small, the wavelength of the most unstable wave becomes long and the num-
ber of collisions required to interrupt the electron motion along the magnetic
line of force is maintained. If the lower limit of k|| is fixed by an appropriate
method, the growth rate is

N _ Veiw E\?
tm(uft) 7" = i (1)

which is proportional to 1 o ve;. This instability is called resistive drift in-
stability or dissipative drift instability [9.3,9.4].

If the ion’s inertia term can be neglected (M — 0, |£2| — oo in eq.(9.37)),
the dispersion equation becomes w? — ww? — (k||cs)2 = 0. The instability is
therefore also called collisional drift instability.
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The instability does not appear in the collisionless case in the framework of
MHD theory. However, the instability may occur even in the collisionless case
when it is analyzed by the kinetic theory. This instability is called collisionless
drift instability (see Sects.12.7 and 12.8).
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A plasma is an ensemble of an enormous number of moving ions and elec-
trons interacting with each other. In order to describe the behavior of such
an ensemble, the distribution function was introduced in Chap. 4, and Boltz-
mann’s and Vlasov’s equations were derived with respect to the distribution
function. A plasma viewed as an ensemble of a large number of particles has
a large number of degrees of freedom; thus the mathematical description of
plasma behavior is feasible only for simplified analytical models.

In Chap. 5, statistical averages in velocity space, such as mass density,
flow velocity, pressure, etc., were introduced and the magnetohydrodynamic
equations for these averages were derived. We have thus obtained a mathe-
matical description of the magnetohydrodynamic fluid model, and we have
studied the equilibrium conditions, stability problems, etc., for this model in
Chaps. 6-9. Since the fluid model considers only average quantities in veloc-
ity space, it is not capable of describing instabilities or damping phenomena
in which the profile of the distribution function plays a significant role. The
phenomena which can be handled by means of the fluid model are of low
frequency (less than the ion or electron cyclotron frequency); high-frequency
phenomena are not describable via this model.

In this chapter, we will focus on a model which allows us to study wave
phenomena while retaining the essential features of plasma dynamics, and
at the same time maintaining relative simplicity in its mathematical form.
Such a model is given by a homogeneous plasma of ions and electrons at
0K in a uniform magnetic field. In the unperturbed state, both the ions and
electrons of this plasma are motionless. Any small deviation from the unper-
turbed state induces an electric field and a time-dependent component of the
magnetic field, and movements of ions and electrons are thereby excited. The
movements of the charged particles induce electric and magnetic fields which
are themselves consistent with the previously induced small perturbations.
This is called the kinetic model of a cold plasma. We will use it in this chap-
ter to derive the dispersion relation which characterizes wave phenomena in
a cold plasma.

Although this model assumes uniformity of the magnetic field and density,
and also zero temperature, the cold plasma model is applicable for a non-
uniform, warm plasma, if the typical length of variation of the magnetic field
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and the density is much larger than the wavelength, and if the phase velocity
of the wave is much larger than the thermal velocity of the particles.

One may treat the plasma as a medium of electromagnetic wave prop-
agation with a dielectric tensor K. This dielectric tensor K is a function
of the magnetic field and the density which may change with the position.
Accordingly, plasmas are in general non-uniform, anisotropic and dispersive
media.

When the temperature of plasma is finite and the thermal velocity of
the particles is comparable to the phase velocity of the propagating wave,
the interaction of the particles and the wave becomes important. A typical
interaction is Landau damping, which is explained in Chap.11. The general
mathematical analysis of the hot-plasma wave will be discussed in Chap. 12.
The plasma wave is described in more detail in [10.1-10.4].

10.1 Dispersion Equation of Waves in a Cold Plasma

In an unperturbed cold plasma, the particle density n and the magnetic
field B are both homogeneous in space and constant in time. The ions and
electrons are motionless.

Now assume that the first-order perturbation term expi(k-r — wt) is ap-
plied. The ions and electrons are forced to move by the perturbed electric
field E and the induced magnetic field B;. Let us denote the velocity by
v, where the suffix k indicates the species of particle (electrons, or ions of
various kinds). The current j due to the particle motion is given by

3= niav . (10.1)
k

ni and g are the density and charge of the kth species, respectively. The
electric displacement D is

D=¢E+P, (10.2)
Jj= %—1: = —iwP, (10.3)

where F is the electric intensity, P is the electric polarization, and ¢; is the
dielectric constant of the vacuum. Consequently, D is expressed by

D=gE+-j=e¢K-E. (10.4)
w

K is called the dielectric tensor. The equation of motion of a single particle

of the kth kind is d
v
mde’“ = u(E+ vy x B) . (10.5)
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Here B consists of B = By + B, where vy, E, By are the first-order
quantities. The linearized equation in these quantities is

—iwmpvg = qk(E —+ v X Bo) . (106)

When the z axis is taken along the direction of By, the solution is given by

—iE‘fC ka Ey Q]%
(U - T )
k, BO w2 - .le B() w2 - .Q]%
E, 22 B, Quw
I ) 10.7
ks B(] w2 — .Qi B(] w2 — Qi ’ ( )
—iE,
hE T TRy W

where (2 is the cyclotron frequency of the charged particle of the k th kind:

B
O = — 820 (10.8)

my

with £2, > 0 for electrons and {2; < 0 for ions. The components of v are the
linear functions of E given by (10.7). Moreover, j of (10.1) and the electric
displacement D of (10.4) are also linear functions of E, so that the dielectric
tensor is given by

K, —-iKyx 0 E,

K-E=|iK, K, 0 E, |, (10.9)
0 0 K] \E
where 72
_ k
k
_ I
Ky :—;m;7 (10.11)
_ 11}
K=1-) = (10.12)
k
112 = TRk (10.13)
k= €Eomy ' '

According to the Stix notation, the following quantities are introduced:

. I w
R:].—ZFM_Q]C—KJ_‘FKX,
k - (10.14)
—1_N"He_ Y _
L=1 zk:w%ﬂrgk K, — Ky .
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Fig. 10.1. Propagation vector k and z, y, z coordinates

From Maxwell’s equations

0B

VXxE=——

% ot '’
OE 0D
VxH=j —_— =
% Ity = o

it follows that
kxE:wBl, kXle—a)€0K'E,

and
w2
kx(kxE)+—2K-E:0.
c
Let us define a dimensionless vector

NEE
w

)

(10.15)

(10.16)

(10.17)

where c¢ is light velocity in vacuum. The absolute value N = |N| is the ratio
of the light velocity to the phase velocity of the wave, i.e., IV is the refractive

index. Using N, we may write (10.17) as

Nx(NxE)+K-E=0.

(10.18)

If the angle between N and By is denoted by 6 (Fig.10.1) and the z axis is
chosen so that IV lies in the z,z plane, then (10.18) may be expressed as
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K| —N?cos?0 —iK, NZ?sinfcos E,
iK K, — N? 0 E, | =0. (10.19)
N?sin 6 cos § 0 Ky —N%*sin*0 ) \ E.

For a nontrivial solution to exist, the determinant of the matrix must be zero,
that is

AN* - BN?+C =0, (10.20)

A=K, sin®0+ K| cos’0, (10.21)
B=(K?—K2)sin®0 + K| K. (1+ cos®0), (10.22)
C=K|(K}-K})=K|RL. (10.23)

Equation (10.20) determines the relationship between the propagation vector
k and the frequency w, and it is called the dispersion equation. The solution
of (10.20) is

_ B=£(B*-4A40)'?

N2
2A

= {(Ki - Ki)sin20+K”KL(1+cosze)

1/2
+ [(Kﬁ — K% — K| K1 )?sin® 0 + 4K K3, cos® 9} }
-1
X {Q(K 1 sin® 0+ K|jcos®0)| . (10.24)
When the wave propagates along the line of magnetic force (6 = 0), the
dispersion equation (10.20) is
K|[N*—2K,N*+ (K} - K2)| =0, (10.25)
and the solutions are
K, =0, N!=K, +Ky, =R, N?=K, —K,=L. (10.26)

For the wave propagating in the direction perpendicular to the magnetic field
(0 = 7/2), the dispersion equation and the solutions are given by

K| N*'— (K] - K+ KK\ )N*+ K|(K} —K2)=0, (10.27)

K? - K2 RL

N? = =,
Ky K,

N’ =K. (10.28)
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10.2 Properties of Waves

10.2.1 Polarization and Particle Motion

The dispersion relation for waves in a cold plasma was derived in the previous
section. We consider here the electric field of the waves and the resulting
particle motion. The y component of (10.19) is

iE, N?-K,|

iKyE,+ (K, —N)E, =0, B~ K. (10.29)

The relation between the components of the particle velocity is

. —iEz w Qk
i _
gz E, w?—022 w?—(23

Vk,y & 78 3 w
E, MQ—Q,% wQ—Qz
(W+ Q) (N? = L) + (w— 2)(N* - R)

St -w-ogve-Rr 0%

The wave satisfying N?> = R at § = 0 has iE,/E, = 1 and the electric field
is right-circularly polarized. In other words, the electric field rotates in the
direction of the electron Larmor motion. The motion of ions and electrons
is also right-circular motion. In the wave satisfying N2> = L as # — 0, the
relation iF;/E, = —1 holds and the electric field is left-circularly polarized.
The motion of ions and electrons is also left-circular motion. The waves with
N2 = Rand N2 = L as § — 0 are called the R wave and the L wave,
respectively. The solution of the dispersion equation (10.25) at § =0 is

1

N? =2
2

1K |

R+L+—|R-1]) , (10.31)
K)

so that R and L waves are exchanged when K| changes sign. When Ky =

R — L changes sign, R and L waves are also exchanged.

When 6 = /2, the electric field of the wave satisfying N? = K| is
E, = E, =0, E, # 0. For the wave safisfying N> = RL/K, the electric
field satisfies the relations

B, R—-L Ky

T RiL. K.

E,.=0.

The waves with N? = K and N> = RL/K, as § — w/2 are called the
ordinary wave (O) and the extraordinary wave (X), respectively. It should
be pointed out that the electric field of the extraordinary wave at 6 = 7/2
is perpendicular to the magnetic field (E, = 0) and the electric field of the
ordinary wave at § = 7/2 is parallel to the magnetic field (E;, = E, = 0).
The dispersion relation (10.24) at § = /2 is
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1
N? = E(Kﬁ - K, + KK, +|K] - K, —K|K.|)
1

so that the ordinary wave and the extraordinary wave are exchanged when
RL - KK, =0.

Besides the classification into R and L waves, and O and X waves, there
is another classification, namely, that of fast wave and slow wave, following
the difference in the phase velocity. Since the term inside the square root of
the equation N2 = [B + (B?% - 4AC’)1/2]/2A is always positive, as is clear
from (10.24), the fast wave and slow wave do not exchange between § = 0
and 0 = /2.

10.2.2 Cutoff and Resonance

The refractive index (10.24) may become infinity or zero. When N2 = 0, the
wave is said to be a cutoff wave. At cutoff, the phase velocity

w Cc

=== 10.
Uph = = (10.33)
becomes infinite. It is clear from (10.20) and (10.23) that cutoff occurs when
K =0, R=0, L=0. (10.34)

When N2 = oo, the wave is said to be at resonance. Here the phase velocity
becomes zero. The wave will be absorbed by the plasma at resonance (see
Chap. 11). The resonance condition is

tan2f = ——L | (10.35)

When ¢ = 0, the resonance condition is K, = (R + L)/2 — 4oo. The
condition R — +oo is satisfied at w = (2., where (2, is the electron cyclotron
frequency. This is called electron cyclotron resonance. The condition L — o0
holds when w = |£2|, and this is called ion cyclotron resonance.

When 6 = 7/2, K; = 0 is the resonance condition. This is called hybrid
resonance. When waves approach a cutoff region, the wave path is curved
according to Snell’s refraction law and the waves are reflected (Fig.10.2a).
When waves approach a resonance region, they propagate perpendicularly
toward the resonance region. The phase velocities tend to zero and the wave
energy will be absorbed (Fig. 10.2b).

10.3 Waves in a Two-Component Plasma

Let us consider a plasma which consists of electrons and one kind of ion.
Charge neutrality is expressed by
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Fig. 10.2. Wave propagation (a) near cutoff region and (b) near a resonance region

niZi = Ne . (1036)
A dimensionless parameter is introduced for convenience:

o (nim; + neme)c?

6:
Bj

(10.37)

The quantity defined by (10.13), which was also introduced in Sect. 2.2,
112 = nee?/(egme) (10.38)

is called the electron plasma frequency. We then have the relations

m  my II? + 112 I1?
w7 o e 009
K,, Ky, K), and R, L are given by
112 2
Kl:l_wQ—Qg_wQ—Qg’
J ) mn? .
K= e e (1040)
H2+Hi2 H2
Ry=1-—5—=1-75
112 + IT2 — (2 4 Qo)w + 2102, — IT2
R=1- ¢t Lt )“’+ . (1041)
(W —12)(w — £2) (W —2)(w — £2)
L1 1% + 11} + (2 + 2o)w + 202, — 112 (10.42)
Tt 2w ) (w+ 2) (W + £2) '

The dispersion relations for the waves propagating parallel to By (8 = 0) are
found by setting K = 0, N*> = R, and N? = L. Then
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Ck“ Ck 1

(a) (b)

Fig. 10.3. (a) Dispersion relations (w—ck|) for R and L waves propagating parallel
to the magnetic field (6 = 0). (b) Dispersion relations (w—ckj) for O and X waves
propagating perpendicularly to the magnetic field (0 = 7/2)

w?=12, (10.43)

Sl @ We-0)  _wrlahe=2) o
ki R w?—wle+ 205 - 112 (w—wr)(wtwr) ' '

where wg, wy, are given by

1/2
2. 2.\°
W2+(2>+mﬂmm >0, (10.45)
1/2
Qe 2.\ 2
=Ly (2) 2|20 >0, (10.46)
w? 1 (w+ 2)(w+ 92) (w — [2])(w + £2)

— - _ = ) 10.47
C2kﬁ L w?+wle+ 2.0 — II2 (w—wr)(w+ wr) ( )

Note that 2, > 0, 2 < 0 and wg > (2. Plots of the dispersion relations
w—ck) in the case of {2, > II., are shown in Fig. 10.3a. The dispersion relations
for the waves propagating perpendicularly to By are found by setting N2 =
K| (ordinary wave) and N? = (K3 — K2)/K | (extraordinary wave). Then

w? 1 m\ ! 12

2.2
w c?k
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Fig. 10.4. The w regions of R and L waves at § = 0, O and X waves at 0 = /2,
and F and S waves, in the case (wr, < Ile < (2). Numbers on the right identify
regions shown in the CMA diagram (Fig. 10.5)

UJ2 KJ_ KJ_

k2~ K2 -K2 RL

2(w? — ) (w? — 22) — I [(w + ) (w + ) + (w — 2) (w — £2)]
2(w? = wi)(w? — wj)

wh— (22 + 02 + 12H)w? + 2202 — 120400,

- Ry . (10.49)

Equation (10.48) is the dispersion equation of an electron plasma wave (Lang-
muir wave).
Let us define wyy and wry by

wig =22+ 12, (10.50)

1 1 n 1
Wiy R+ II2 |50
wuy is called the upper hybrid resonant frequency and wyy is called the lower
hybrid resonant frequency. Using these, we may write (10.49) as

(10.51)

w? (w2 — W%H)(w2 _ W%H) ) (1052)

k2 (w? - wi)(w? —wd)

We have wr > wyn > I, 2 and wiy < 2.|02], 22 + II?. Plots of the
dispersion relation w—ck, in the case {2, > II, are shown in Fig. 10.3b. The
gradient w/ck in the w—ck, diagram is the ratio of the phase velocity vpp to
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w?

157

Fig. 10.5. CMA diagram of a two-component plasma. The surfaces of constant
phase are drawn in each region. Dotted circles give the wave front in vacuum. The
magnetic field is directed toward the top of the diagram

c. The steeper the gradient, the greater the phase velocity. The regions (in
terms of w) of R and L waves at § = 0, and O and X waves at § = 7/2, and
F and S waves are shown in Fig. 10.4, for the case wy, < Il < 2.

We now explain the CMA diagram (Fig. 10.5), which was introduced by
P.C. Clemmow and R.F. Mullaly and later modified by W.P. Allis [10.3].
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The quantities 22 /w? and (II? + II2?)/w? are plotted along the vertical and
horizontal axes, respectively. The cutoff conditions R =0 (w = wg), L =0
(w=wL), K| =0 (w = II,) are shown by the dotted lines and the resonance
conditions R=00 (w= ), L=00 (w= (), K| =0 (w= 01y, w=Nun)
are shown by solid lines. The cutoff and the resonance contours form the
boundaries of the different regions. The boundary RL = KK, at which O
wave and X wave are exchanged, is also shown by broken and dotted lines in
Fig. 10.5. The surfaces of constant phase for R, L and O, X waves are shown
for the different regions. As the vertical and horizontal axes correspond to
the magnitude of B and the density ne, one can easily assign waves to the
corresponding regions simply by giving their frequencies w.

10.4 Various Waves

10.4.1 Alfven Wave

When the frequency w is smaller than the ion cyclotron frequency (w < [£2),
the dielectric tensor K is expressed by

H2
K =146, Kc.=0, K=1--%, (10.53)

where § = ponim;c?/B2. As 112 /w? = (m;/me)(2?/w?)d, we find I12/w? >
d. Assuming that IIZ /w? > 1, we have | K| > |K|. Then A, B, C of (10.20)

are given by
2

I
A~ ——Lcos?h,

w2
HQ

Br——2(1+0)(1+ cos?6) , (10.54)
H2

Cr-—3 (1+6)?,

and the dispersion relations are

2 2 2 2 BQ
R ¢ S~ 0 (10.55)
N2 k* 146 1+ popmc®/Bg  fopm
2 2 2
<Y € cos20, (10.56)

NZ TR 144
where py, is the mass density. The wave satisfying this dispersion relation is
called the Alfvén wave. We define the Alfvén velocity by

o2 c? B c? N B2
AT 146 1+ popmc®/BE T popm

(10.57)

Equations (10.55) and (10.56) correspond to modes appearing in region (13)
of the CMA diagram. Substituting (10.55) and (10.56) into (10.19) shows



10.4 Various Waves 159

that E, = 0 for either mode, whilst E, = 0 for the mode (10.55) (R wave,
F wave, X wave) and E, = 0 for the mode (10.56) (L wave, S wave). From
(10.6), we find for w < || that

E +v x By =0 (10.58)
and v; = (E x By)/Bj, so that v; of the mode (10.55) is
v; & & cos(kyx + k2 — wt) (10.59)
and v; of the mode (10.56) is
v; & geos(kyx + k2 — wt) , (10.60)

where &, § are unit vectors along the z and y axes, respectively. From these
last equations, the fast mode (10.55) and (10.59) is called the compressional
mode and the slow mode (10.56) and (10.60) is called the torsional or shear
mode. The R wave (10.55) still exists, although it is deformed in the transition
from region (13) to regions (11) and (8), but the L wave (10.56) disappears
in these transitions.

It is clear from (10.58) that the plasma is frozen to the magnetic field.
There is a tension B2/2juo along the magnetic field lines and a pressure
B?/2u exerted perpendicularly to the magnetic field. As the plasma, of
mass density pn, sticks to the field lines, the wave propagation speed in the
direction of the field is B2 /(opm)-

10.4.2 Ton Cyclotron Wave and Fast Wave

Let us consider the case where the frequency w is shifted from low frequency
toward the ion cyclotron frequency and 112 /w? > 1. The corresponding waves
are located in regions (13) and (11) of the CMA diagram. When |w| < (2,
6> 1, and I12/w? > 1, the values of K|, Ky and K are

5922 Swi2? 112
Ko=-—@ B=rm_g M= (1061)
Since I12 /w? = (mi/me) (22 /w?)6 > 4, the coefficients A, B, C are
2
A= w2
2 592?
B= w2 w2 — _Q2 (1+ cos” 0) . (10.62)
Iz §20?
B ﬁuﬂ 22

The dispersion equation becomes (IIZ = 22§, v = ¢*/d)
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5202
022 — w2

=

5422
(1 + cos® 0) +

N4 29—N27
COS .Q?—w

=0. (10.63)

Setting N cos? § = c?kjf/w?, and N? sin? § = k2 /w?, we may write (10.63)
as

wie20? — w2(259i2kﬁ02 + k;ﬁc‘l) + Qizk;ﬁc‘1

1= 10.64
]flc w2(5912 + kﬁc2) — Q?kﬁ@ ) ( O 6 a)
2 k)t — k)2 — 2) +1
1% _ (W/vaky) (Wé'UA D) 2(w/2 )°+ (10.64b)
k’” (w/vAkH) —(1—u) /Ql)
_ [w/vaky)? — (1= w/ )] [(w/vaky)? — (1 +w/02)]
(w/vaky)? — (1 —w?/022) '
Therefore resonance occurs at
k2c? k22
YT Re e T RE IR (10.65)

<U:’k|>2 —1- <;>2 . (10.65b)

When |w| approaches |2, the dispersion equation (10.63) approaches
)
Nm———
1+cos?6’
N2 cos? 0 ~ §(1 4 cos? 0) 2207 — w? . (10.67)

The mode (10.66) corresponds to the compressional Alfvén mode (fast wave)
and is not affected by the ion cyclotron resonance. The dispersion relation
(10.67) is that of the ion cyclotron wave, and can be expressed by

-1
172 VIE
w? = 2 <1+ L+ ! ) : (10.68)

(10.66)

kﬁc2 kﬁcQ + k22
Note that here w? is always less than 7.

The ions move in a left-circular motion (i.e., in the direction of the ion
Larmor motion) at w ~ |§2] for both waves [see (10.30)]. The mode (10.66)
satisfles iE,/E, = 1, i.e., it is circularly polarized, with the electric field
rotating the opposite way to the ion Larmor motion.

The ion cyclotron wave satisfies

ik, - w 1

L N (10.69)
E, |Qi|1+k2l/kﬁ

i.e., the electric field is elliptically polarized, rotating in the same direction
as the ion Larmor motion.
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Fig. 10.6. Orbits of ions and electrons at lower hybrid resonance

10.4.3 Lower Hybrid Resonance
The frequency at lower hybrid resonance at § = 7/2 is given by

1 1 1 wiy Iz + 22
Py IR 2 [0 TP |0+ 2
(10.70)
When the density is high and IT2 > [£2]£2,, it follows that wyy = (|92592.)"/2.
When 12 < |(4]82, then w?y = II2 + 027. At lower hybrid resonance, we
have £, = F, =0 and E, # 0.
When the density is high (i.e., II? > |(|2.), then || < wrn < 2
and the analysis of the motions of ions and electrons becomes simple. From
(10.7), the velocity is given by

2 _ 2
w _wLH’

iEkEI w\(Zk\
L= L] 10.71
k, BO CL)2 _ Q]% ( 0 7 )
and vy, = dg/dt = —iwzy, yields
—ep by |“Qk|
= 10.72
k BO w? — Q% ( )

At w? = |02, we find that z; ~ —E,/Bof2 and x, ~ —FE,/Byf2., or
x; & X, (see Fig.10.6). Consequently, charge separation does not occur and
the lower hybrid wave can exist.

We have been discussing lower hybrid resonance at § = 7/2. Let us con-
sider the case in which 6 is slightly different from 6 = 7/2. The resonance
condition is obtained from (10.24) as follows:
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Kisin?6+ Kjcos®0=0. (10.73)

K is given by (10.46), (10.50) and (10.51), and (10.73) reduces to

(W —wiy) (@ —wig) . o 2 )
(@ — 22) (w2 —22) " O+ (1- 5 )cos 0=0. (10.74)

When 6 is near 7/2 and w is not much different from wyy, we find that

2 2 (WEH - Qg)(wﬁH - 912) He2 - W%H

we—wig = cos? 0

‘UEH - W%H Win
22172 2 \? 2
—£° 1—( ) 1—(“;;1{) cos?f .
WLH e

2
wWon
Since wpwdy = 2202 + I112162]8., it follows that w? is expressed by

()]

~
~

2_ 2 ) M 2 )
w'=wig 1+ Zm. cos” 0 0 (10.75)
1+ 2
When 112 /|00 =~ § = ¢ /v3 > 1, (10.75) becomes
w? = wiy <1 + Zn;ie cos? 9) . (10.76)

Even if § differs from 7/2 by only a slight amount (Zm./m;)*/?, w? becomes
w? & 2w?y, so that (10.76) holds only in the region very near 6 = /2.
10.4.4 Upper Hybrid Resonance
The upper hybrid resonant frequency wyy is given by

wiy = 12+ 22 (10.77)

Since this frequency is much larger than [f2], ion motion can be neglected.

10.4.5 Electron Cyclotron Wave

Let us consider high-frequency waves, so that ion motion can be neglected.
When w > [£2|, we find

2 m o 2
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The solution of the dispersion equation AN* — BN? 4 C = 0, viz.,

_ B+ (B*-4AC)Y/?

N2
24 ’
may be modified to
N? 1o —2(A—-B+C) 7 —20T2(1 — I1% w?)
" 24— B+ (B2—4A0)Y2  2w2(1 — I12/w?) — 22sin? 0 + N.A
(10.79)
72\ 2 1/2
A= | 2%sin? 0 + 40? <1 - 2) cos? 9] . (10.80)
w

The ordinary wave and extraordinary wave will be obtained by taking the
plus and minus sign, respectively, in (10.79). In the case

m2\*
22 sin* 0 > 40? (1 - = > cos? 0 , (10.81)
w
we find 0
1—1I
N? e/ (10.82)

T 1- (I12/w?) cos? 6’
o (1—II2/w?)2w? — (22 sin? @
(1= I12)w?)w? — 22sin 0
Equation (10.82) becomes N? = K| = 1 — II7 /w? at § ~ 7/2 and does not

depend on the magnitude of the magnetic field. This wave is used for density
measurements by microwave interferometry. In the case

(10.83)

m\?
22 sin* 0 < 4w? (1 - ;) cos? 0, (10.84)
w
with the additional condition
2 2 2 He2
25sin”0 < 207 [ 1 — = (10.85)
the dispersion relations become
H2
N2=1—- ——¢ 10.86
(w+ 2 cosP)w ’ ( )
H2
N?2=1- = (10.87)

(w— 2 cosPw

Equation (10.86) corresponds to the L wave and (10.87) to the R wave. R-
wave resonance occurs near the electron cyclotron frequency. This wave can
propagate in regions (7) and (8) of the CMA diagram, where the frequency
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is less than the plasma frequency. This wave is called the electron cyclotron
wave. It should be noted that the assumptions (10.84) and (10.85) are not
satisfied near K =1 — I17 /w? ~ 0.

The electron cyclotron wave is also called the whistler wave. Electro-
magnetic disturbances initiated by lightning flashes propagate through the
ionosphere along magnetic field lines. The frequency of a lightning-induced
whistler wave falls in the audio region, and its group velocity increases with
frequency, so that this wave is perceived as a whistle of descending tone. This
is why it is called the whistler wave.

10.5 Conditions for Electrostatic Waves

When the electric field E can be expressed by an electrostatic potential ¢,
E=-V¢=—-ik¢o, (10.88)

the resulting wave is called an electrostatic wave. The electric field E is
always parallel to the propagation vector k, so that the electrostatic wave is
longitudinal. The magnetic field B; of the electrostatic wave is always zero:

Bi=kxE/w=0. (10.89)

Alfven waves are not electrostatic waves. We will discuss here the conditions
for electrostatic waves. Since the dispersion relation is

Nx(NxE)+K-E=0,
the scalar product with N becomes
N-K-(EH +E,)=0,

where E| and E, are the components of the electric field parallel and per-
pendicular to k. If |[E|| > |E |, the wave is electrostatic and the dispersion
relation becomes

N-K-N=0. (10.90)

Rewriting the general dispersion relation as
(N> -K)-E, =K-E|,
it follows that |E|| > |E | holds when
IN?| > | K (10.91)

is satisfied for all K;;. The dispersion relation (10.90) for the electrostatic
wave is then
E2Kyp + 2kyk. K, + K2K.. =0, (10.92)
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The condition (10.91) for the electrostatic wave indicates that the phase
velocity w/k = ¢/N of this wave is low. The K;; have already been given
by (10.9)—(10.12) for cold plasmas, and the general formula for hot plasma
will be discussed in Chap.12. We have stated that the magnetic field By of
the electrostatic wave is zero. Disturbances of the magnetic field propagate
with the Alfvén velocity va ~ B2/(uonim;). If the phase velocity of the
wave is much lower than va, the disturbance of the magnetic field will be
damped within a few cycles of the wave and the propagated magnetic field
disturbance becomes zero. When the electron thermal velocity vz, is taken as
a typical phase velocity for electrostatic waves, then the condition of va > vr,

reduces to )
B 2m, 2m,

b =_—°>1, Bo < —2.

ponimivy,  Pem m;

This measures the extent to which a wave is electrostatic.

At resonance, the refractive index N becomes infinite. As the K;; are
finite for lower hybrid and upper hybrid resonance, the condition (10.91) is
satisfied, and these hybrid waves are electrostatic. Since some of the Kj;
become infinite for the ion or electron cyclotron waves, these cyclotron waves
are not always electrostatic.



11 Landau Damping and Cyclotron Damping

The existence of a damping mechanism by which plasma particles absorb
wave energy even in a collisionless plasma was found by L.D. Landau, under
the condition that the plasma is not cold and the velocity distribution is
of finite extent. Energy-exchange processes between particles and waves are
possible even in a collisionless plasma and play important roles in plasma
heating by waves (wave absorption) and in the mechanism of instabilities
(wave amplification). These important processes will be explained in terms
of simplified physical models in this chapter, whilst in Chap. 12, they will be
described more systematically. In hot plasma models, a pressure term and
particle-wave interaction term appear in the dielectric tensor that are absent
in the dielectric tensor for a cold plasma.

11.1 Landau Damping (Amplification)

Let us assume that many particles drift with different velocities in the direc-
tion of the lines of magnetic force. When an electrostatic wave (a longitudinal
wave with k || E) propagates along the lines of magnetic force, an interaction
appears between the wave and a group of particles (see Fig. 11.1). Take the z
axis in the direction of the magnetic field and denote the unit vector in this
direction by 2. Then the electric field and the velocity v = vZ satisfy

E = 2E cos(kz — wt) , (11.1)
d
md—: = qE cos(kz — wt) . (11.2)

The electric field E is a quantity of the first order. The zeroth-order solution
of (11.2) is
z = vt + 29

and the first-order equation is

d
m% = qFE cos(kzp + kvot — wt) . (11.3)

The solution of (11.3) for the initial condition v; =0 at t =0 is
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Fig. 11.1. Propagation of wave and motion of particles in the process of Landau
damping

_qE sin(kzo + kvot — wt) — sin kzg

114
v m kvg —w ( )
The kinetic energy of the particle becomes
d mw? o d B n L (11.5)
dt 2 = vdtmv = U1 dtm’Ul Vo dtmvg . .

From (11.2) and (11.4), we have the relation

d
m% = qE cos [k(zo + vot + 21) — wt]
= gF cos(kzp + at) — gE sin(kzo + at)kz ,
/t qF [ cos(kzg + at) + coskzy  tsinkzg
z1 = V1 dt = — B} — s
0 m a !

where
a=kvy—w.

Using these, we may put (11.5) into the form

dt 2 m

3 kvog?E? { cos(kzo + at) + coskzg  tsin kzo] sin(kzo + at) .

dm®  ¢F? [sin(kzo + at) — sin k2
a

] cos(kzo + at)

m o? o

The average of the foregoing quantity with respect to the initial position zg

is
d mv? ¢*E? [ —wsinat wt cos at
- = t t+—— | . 11.6

< dt 2 >Z 2m < a? Theosat a > (11.6)

When we take the velocity average of (11.6) over vy with the weighting factor,
i.e., distribution function f(vg) (defining o = kvg — w),
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o) = £ () = (@),

the rate of increase of the kinetic energy of the particles is obtained. The
distribution function is normalized:

/O:Of(vo)dvozllgfg(a)dazL

The integral of the second term of (11.6), viz.,

1 1
- /g(a)tcosatda =— /g (E) coszdz , (11.7)
k k t
approaches zero as ¢t — co. The integral of the third term of (11.6) becomes
t t t
o [ olelteomal gy 2 Ly (%) cossda (118)

The function g(a)) can be considered to be the sum of an even and an odd
function. The even function does not contribute to the integral. The contri-
bution of the odd function approaches zero when ¢t — oo if g(«) is continuous
at a = 0. Therefore, only the contribution of the first term in (11.6) remains
and we find

d mov? wq?E? g(a) sinat
= = _ P d 11.9
<dt 2 >ZO v 2mk / a? “ (11.9)
where P denotes Cauchy’s principal value. The main contribution to the
integral comes from near o = 0, so that g(«a) may be expanded around
a=0:

2

9(@) = 9(0) +ag'(0) + -

As sin at/a? is an odd function, only the second term of the foregoing equa-
tion contributes to the integral and we find for large ¢ that

g0+

d mv? wg>E? [ ¢'(0) sincvtd
Bl = — a
dt 2 2mlk| J_ oo !
20,%0
2 2
B fwy [0f(vo)
= — . 11.1
2m| k| (k){ vy vo=w/k ( 0)

If the number of particles moving slightly slower than the phase velocity of the
wave is larger than the number moving slightly faster, i.e., if vo0fo/dvo < 0,
the group of particles as a whole gains energy from the wave and the wave
is damped. On the contrary, when vgdfy/0vg > 0 at v = w/k, the par-
ticles gives their energy to the wave and the amplitude of the wave in-
creases (Fig.11.2). This mechanism is called Landau damping or amplifi-
cation [11.1]. Experimental verification of Landau damping of waves in a
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Fig. 11.2. (a) Landau damping and (b) Landau amplification

collisionless plasma was demonstrated by J.M. Malemberg and C.B. Whar-
ton [11.2] in 1965, twenty years after Landau’s prediction.

The growth rate (11.10) of the kinetic energy of the particles must be
equal to the damping rate of the wave energy. Therefore the growth rate ~y of
the amplitude of the wave field is obtained by (7 < 0 in the damping case)

d mv?
_—— = 29W
n<dt 2 >Zovo T

and the growth rate v is given by

O R e

where I1? = ng? Jegm, W = 2¢0E? /4, [ f(v)dv = 1.

There is a restriction on the applicability of linear Landau damping. When
this phenomenon runs its course before the particle orbit deviates from the
linear-approximation solution, the reductions leading to linear Landau damp-
ing are justified. The period of oscillation in the potential well of the electric
field of the wave gives the time for the particle orbit to deviate from the linear
approximation (w? ~ eEk/m from mw?z = eE). The period of oscillation is

1 ( m )1/2
Tose = ~ \ekE '

wOSC

Consequently, the condition for the applicability of linear Landau damping
is that the Landau damping time 1/+ should be shorter than 7o or the
collision time 1/v¢on should be shorter than Tosc:

[YTosc| > 1, (11.12)

|VcollTosc| >1. (11.13)

On the other hand, it was assumed that particles are collisionless. The con-
dition that the collision time 1/vcon is longer than A /vy is necessary for the
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asymptotic approximation of the integral (11.9) as ¢ — oo, where \ is the
wavelength of the wave and v,5 is the spread in the velocity distribution:

1 27
>

Veoll kVrms

(11.14)

11.2 Transit Time Damping

We have already described the properties of Alfvén waves in cold plasmas.
There are compressional and torsional modes. The compressional mode be-
comes magnetosonic in hot plasmas, as described in Chap.5. In the low-
frequency region, the magnetic moment p,, is conserved and the equation of
motion along the field lines is

d’UZ 8Blz

g T 0z
This equation is the same as that for Landau damping if —pu,, and 0By, /02
are replaced by the electric charge and the electric field, respectively. The
rate of change of the kinetic energy is derived similarly, and is equal to

gmvz _ _7TM1211|k| |B ‘2 (g) 8f(1)0)
et 2/, . 2m =k 0 | o/ ’

(11.15)

(11.16)

This phenomenon is called transit time damping.

11.3 Cyclotron Damping

The mechanism of cyclotron damping is different from that of Landau damp-
ing. Here the electric field of the wave is perpendicular to the direction of
the magnetic field and the particle drift and accelerates the particle perpen-
dicularly to the drift direction. Let us consider a simple case in which the
thermal energy of particles perpendicular to the magnetic field is zero and
the velocity of particles parallel to the magnetic field By = BpZ is V. The
equation of motion is

ma—v+mV8—v:q(E1+vxﬁBo+V2xB1) . (11.17)

ot 0z

As our interest is in the perpendicular acceleration, we assume (E;-2) = 0.
B, is given by By = (k x E)/w. With the definitions v* = v, & iv, and
E* = E, +1iE,, the solution for the initial condition v = 0 at t = 0 is

ot = igE* (w — kV) exp(ikz — iwt) 1 — exp(iwt — ikVt £ i82t)

4B
n="120

m
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The macroscopic value of v is obtained by taking the average weighted by
the distribution function fo(V') as follows:

(v1) = WW L VEL it — Bl x 2], (1119)
F =a* —ip*, (11.20)
L[ fo(V)(A = EV/w)[1 - cos(w — kV + 2)t]
ot = / av T : (11.21)
O fo(V)(1 — kV/w)sin(w — KV £ Q)t
_/ dv e (11.22)
As t becomes large, we find that
+ < fo(V)(A - kV/w)
“ %P/foodv o WER (11.23)
ZFmQ w=x N
. 11.24
5 w|k| PIEL ( ) ( )
When )
™
L 11.2
Z WV’ (11.25)

where Vs = <V2>1/ 2 is the spread of the velocity distribution, the approxi-
mations (11.19)—(11.24) are justified. The absorption of the wave energy by
the plasma particles is given by

2
<Re [¢FE exp(ikz — iwt)] (Re(vJ_>)>Z = 4q—m (BY|Ex +1E, | + 87| E, — 1B, |?) .
(11.26)
Let us consider the case of electrons ({2 > 0). As described in Sect. 10.2,
the wave N2 = R propagating in the direction of the magnetic field (6 = 0)
satisfies F, 4+ iE, = 0, so that the absorption power becomes

¢ 2
Pe:mﬁ |E1;—1Ey| .
When w > 0, (11.24) indicates that 8~ > 0. When w < 0, 5~ is nearly zero

since fo[(w — £2.)/k] < 1.
Let us consider the case of ions (—{2; > 0). In a similar way, we find that

2
q S 12
P = @ﬁJFIEz +iE, | .

When w > 0, (11.24) indicates that 3 > 0. When w < 0, 87 is nearly zero,
since fo (w+ 2/k) < 1.
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The cyclotron velocity V, is defined so that the Doppler shifted frequency
(the frequency of the wave felt by a particle running with the velocity V) is
equal to the cyclotron frequency, that is,

w—kV,+02=0, VC_“’<1iQ) .
k w

Accordingly, particles absorb the wave energy when the absolute value of the
cyclotron velocity is smaller than the absolute value of the phase velocity
of the wave (£§2/w < 0) [see (11.24)]. This phenomena is called cyclotron
damping.

Let us consider the change in the kinetic energy of the particles in the
case of cyclotron damping. Then the equation of motion is

dv
me q(v x Bg) =qE +q(vx By).

Since By = (k x E)/w and E, = 0, we have

dv, gk,

-E
M w (wi-EL),

dv kv

md—; —q(vy x By)=qE | (1 - wz> ;
so that d L
vV 2Vz
= E 1—

muv at (J(’UL L) < w >

Then

i mv? kv, g mvf_
dt 2 T w— kv, dt 2 ’

2 w)?
v+ v, — ) = const.
z

In the analysis of cyclotron damping, we assumed that v, = V is constant.
The condition for the validity of the linearized theory is [11.3]

k2 E% |w — kv, |t3

24w?m? <l

We have discussed the case in which the perpendicular thermal energy is zero.
When the perpendicular thermal energy is larger than the parallel thermal
energy, so-called cyclotron instability may occur. The mutual interaction be-
tween particles and wave will be discussed again in Chap. 12 in relation to
heating and instabilities.
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11.4 Quasi-Linear Theory of Evolution
in the Distribution Function

It has been assumed that the perturbation is small and the zeroth-order
terms do not change. Under these assumptions, the linearized equations for
the perturbations can be analyzed. However, if the perturbations grow, the
zeroth-order quantities may change and the growth rate of the perturbations
may change due to the evolution of the zeroth-order quantities. Finally, the
perturbations saturate (growth rate becomes zero) and shift to a steady state.
Let us consider the simple case when B = 0 and there is a one-dimensional
electrostatic perturbation (B; = 0). Ions are uniformly distributed. Then the
electron distribution function f(z,v,t) obeys the following Vlasov equation:

af af e EG [

o Vor T miov

Let the distribution function f be divided into two parts, viz.,

flx,v,t) = fo(v,t) + fi(z,v,t), (11.28)

where fj is the slowly changing zeroth-order term and f; is the oscillatory
first-order term. It is assumed that the time derivative of fj is the second-
order term. When (11.28) is substituted into (11.27), the first and the second
terms satisfy

0. (11.27)

of _ 0h _ e 0h
5 +vax = mE 9 (11.29)
% - %E% . (11.30)

f1 and E may be expressed by Fourier integrals:
1 .
filz,v,t) = i /fk(v) exp {i[kz — w(k)t] }dk , (11.31)
1

E(x,t) = anie /Ek exp {i[kz — w(k)t] }dk . (11.32)

Since f1 and E are real, f_p = f;, E_x = E}, w(—k) = —w*(k), where
w(k) = wr (k) +iy(k). Substituting (11.31) and (11.32) into (11.29) yields

1 dfo
m L}(k) — k‘v] Ek% '

If (11.32) and (11.33) are substituted into (11.30), we find

% _ (6)2860<217T/Ek/ exp {i[k'z — w(k)t] }a¥’

m

fe(v) = (11.33)

! exp{i[k:xw(k‘)t]}dk>. (11.34)
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The statistical average of (11.34) (integration over ) reduces to

Ofo(v,t) 0 Bfo(v,t)]

= [D (0) =5 (11.35)

e < | Ey|? ex
Dy(v) = (E)Q/OO wr(llcc) lfv[i’yry(t]) dk

_ ( e )2 /°° v(k)|Ex|? exp [2v(k)t] A

m/ ) [wr(k) — kv]? + 4 (k)2

When |v(k)| < |w:(k)|, the diffusion coefficient in velocity space is

Dy(v) = (%>2ﬂ/|Ek|2exp [2(k)t] 6 [wr (k) — k] dk

e

_ (%)2 CrlE exp [23 (4] s (11.36)

From Poisson’s equation and (11.33), the dispersion equation can be derived:

:f—/fldv ikEk:fi/fkdv,
€0

JIED 1 dfo ,
1+7*/ [w(k)—kv} Edv—O (1137)

Under the assumption that |v| < |wy| (w = wy +17), the solution of (11.37)
for v is given by the same equation as (11.11).

Equation (11.35) is the diffusion equation in the velocity space. When
the electron distribution function is given by the profile shown in Fig. 11.2b,
where vdf/0v > 0 has positive gradient near vy, then waves with phase
velocity w/k = v; grow due to Landau amplification and the amplitude of
|E)| increases. The diffusion coefficient D, in velocity space becomes large
and anomalous diffusion takes place in velocity space. The positive gradient
of df/0v near ~ v; decreases and the profile of the distribution function
eventually becomes flat near v ~ v.

Let us consider the other case. When a wave is externally excited (by
antenna) in a plasma with Maxwellian distribution function, as shown in
Fig. 11.2a, the diffusion coefficient D, at v = w/k is increased. The gradient
of the distribution function near v = w/k becomes flat, as can be seen in
Fig.16.17 of Chap. 16.
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When the temperature of a plasma becomes hot and the thermal velocities
vp = (KT/m)/? of electrons or ions become comparable to the phase ve-
locity of waves, Landau damping or amplification may occur, as described
in Chap.11. In order to study the propagation and absorption (damping)
or excitation (amplification) of waves and perturbation systematically, the
dielectric tensor of a hot plasma must be used. The dielectric tensor of a hot
plasma is explained and derived in Sects. 12.1-12.3 and 12.8.

We discuss wave heating, i.e., wave heating in the ion cyclotron frequency
range (ICRF), in Sect.12.4, lower hybrid heating (LHH) in Sect.12.5, and
electron cyclotron heating (ECH) in Sect. 12.6. The physical processes of wave
heating are not simple and the interactions of waves and plasmas display a
great deal of variety, so that various applications are possible depending on
the development of wave heating methods.

Waves are excited in the plasma by antennas or waveguides located out-
side the plasma (ezcitation of wave, antenna—plasma coupling). When the
electric field of the excited wave is parallel to the confining magnetic field
of the plasma, the electron, which can move along the magnetic field, may
cancel the electric field. However, if the frequency of the wave is higher than
the plasma frequency the electron cannot follow the change in the electric
field, and the wave then propagates through the plasma. When the electric
field of the excited wave is perpendicular to the magnetic field, the electrons
move in the direction of E x B (under the condition w < (2,) and so can-
not cancel the electric field. In this case the wave can propagate through the
plasma even if the wave frequency is lower than the plasma frequency. Exci-
tation consists in pumping the high-frequency electromagnetic wave into the
plasma through the coupling system. If the structure of the coupling system
has the same periodicity as the eigenmode wave, the wave can be excited res-
onantly (resonant excitation). Electron cyclotron heating (and neutral beam
injection) can be launched in vacuum and propagate directly into the plasma
without attenuation or interaction with the edge. Consequently, the launch-
ing structures do not have to be in close proximity to the plasma and have
an advantage against thermal load and erosion by the plasma.

Excited waves may propagate and pass through the plasma center with-
out damping (heating) in some cases and may refract and turn back to the
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OO

Fig. 12.1. Fate of excited wave: passing through, refraction and reflection, absorp-
tion near boundary, and absorption at center of plasma

external region without passing the plasma center, or may be reflected by the
cutoff layer (see Fig.12.1). The wave may be converted to another type by
mode conversion (wave propagation).

The waves propagating in the plasma are absorbed and damped at the
locations where Landau damping and cyclotron damping occur and heat the
plasma. Therefore, the plasma center must be heated so that the waves can
propagate into the plasma center without absorption and be absorbed when
they reach the plasma center (wave heating).

When the velocity distribution function deviates from the stable Maxwell
distribution, the plasma may be unstable due to Landau and cyclotron ampli-
fication. This type of instability is called a velocity space instability. Electron
beam instability is described as an example in Sect. 12.7.

12.1 Energy Flow

Energy transport and the propagation of waves in the plasma medium are
very important in the wave heating of plasmas. The equation of energy flow
is derived by taking the difference between the scalar product of H with
(10.15) and the scalar product of E with (10.16):

oD 0B
V-(Ex H)+ E- 5 +H- N =0. (12.1)
P = FE x H is called the Poynting vector and represents the energy flow of
the electromagnetic field. This Poynting equation does not include the effect
of electric resistivity by electron—ion collisions.

Plasmas are dispersive media and dielectric tensors are dependent on the
propagation vector k and the frequency w. Denote the Fourier components
of E(r,t) and D(r,t) by Ej.,(k,w) and Dy (k,w), respectively. Then we
find

1 .
Dy, = 2n)? /D(r,t) exp [ —i(k-r — wt)] drdt,
1

Ej, = )2 /E(r,t) exp [ —i(k-r — wt)] drdt .
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There is the following relation between them:
Dy, (k,w) = K (k,w) -Ey,(k,w),
and we have

D(r,t) = ﬁeo/K(k,w)-Ekw(k,w) exp [i(k-r — wt)] dkdw ,

E(r,t) = ﬁ/Ek,w(law)exp li(k-r — wt)] dkdw .

From the formula for the Fourier integral:
D(r,t) = ¢ /ﬁ(r —r' t—t)-E(r' t')dr'dt’,
where /Iz(r,t) is
- 1
K(r,t)= @i /K(kz,w)exp [i(k -7 —wt)] dkdw .

Therefore analysis of general electromagnetic fields in dispersive media is
not simple. However, if the electric field consists of Fourier components in a
narrow region near kg, wp, and if K changes slowly as k, w change, then we
can use the relation

D(r,t) = egK(ko,wo) - E(r,t).

From now on, we will discuss only this simple case. The relation between the
magnetic induction B and the magnetic intensity H is B = ugH.
The quasi-periodic functions A, B may be expressed by

t
A= Agexp {—i/ (wr + iwi)dt’} = Ap exp(—ig, + ¢) ,

—00

t
B = Bgexp [—i/ (wr + iwi)dt/:| = By exp(—i¢r + ¢i) ,

where ¢, and ¢; are real. Denoting the average of the product of the real part
of A with the real part of B by AB, we find

B = 5 x 1{ [Avexp(~id + 61) + A exp(ion + 0]
x [Bo exp(~igy + 61) + By expliss + )] )

1 1
= 1 (A0B; + A3 Bo) exp(265) = SRe(AB") . (12.2)



180 12 Hot Plasma

The average of the Poynting equation becomes

ow
P+ — = 12.
V-P + En =0, (12.3)

t
P = TRe(EO x Bj) exp2/ widt’ (12.4)
Ho

— 00

W [(228

.0
ot 2 o 6t>+ coF at(KE)}

= 1Re {—in + 60(—iw)E*-K-E]
2 Ho
= %wiﬁ 620 [wiRe(E*-K-E) + w,Im(E*-K-E)| . (12.5)
Ho

From the relations

E*.K-E = ZEZ
E-K*.E* = ZETZK”E ZEZ
i J
=Y B> (K}
i J

find Ty
we i Re(E*-K-E) — g~ B E )

Im(E*-K-E) = E*-~—

(K™)* is the complex conjugate of the transpose matrix K of K (in which
the columns and rows of components are exchanged), i.e., K}; = Kj;. When
the matrices M and (M ™")* are equal, this kind of matrix is called a Hermite
matriz. For the Hermite matrix, (E*-M-E) is always real. The dielectric
tensor may be decomposed to

K(k,w) = Ku(k,w) +iK(k,w) .

As we shall explain in Sect.12.3, Ky and K| are Hermite when k, w are
real. It will be proved that the term 1Kt corresponds to Landau damping
and cyclotron damping. When the imaginary part of w is much smaller than
the real part (w = w, + iwi, |wi| < |wr|), we may write

K(k,wr + iwi) ~ KH(k:,wr) —+ Z‘wiaiKH(k,wr) + iKI(k,wr)7
Wy
—i[K — (KT)*
Ky, Sl €S0 N DA "
2 Owy

K+ (KT)*
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Fig. 12.2. F(z,t) and f(k) cos [kac - w(k)t]

When the Hermite component of W (the term associated with Ky in W) is
denoted by Wy, this Wy is given by

1 B*'BO €0 €0 0
Wo = ~Re | =2 —E}Kuy-Ey+ —E}-(w,—Ky | -E
0 26{2ﬂ0+20 H0+20(“’aer 0
1 BS'BO €0 1% 0
== 2E} | —(wKy)| -E 12.
Re{ P00 Qg | L ok o (126)

and (12.3) and (12.5) yield

Wo = —wrleOEg-KI-EO -V.P. (12.7)
ot 2
The first term in (12.6) is the energy density of the magnetic field and the
second term is the energy density of the electric field which includes the
kinetic energy of coherent motion associated with the wave. Equation (12.6)
gives the energy density of the wave in a dispersive media. The first term on
the right-hand side of (12.7) represents the Landau and cyclotron dampings
and the second term is the divergence of the flow of wave energy.
Let us consider the velocity of movement of the wave packet given by

F(r,t) = /jo f(k)expi[k-r — w(k)t|dk , (12.8)

when w = w(k) is given. If f(k) varies slowly, the position of the maximum
of F(r,t) at t is the position of the stationary phase of

0

o [kr —w(k)t] =0 (a==x,y,2),

because the main contribution to the integral (12.8) comes from the region
near the stationary phase, as shown in Fig. 12.2. Consequently, the velocity
of the wave packet is
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t Oky ok, 1 ok,
that is o 5 5
W (09} W
Ve = (3/@1 " Ok, ak) ' (12.9)

This velocity is called the group velocity and represents the velocity of energy
flow.

12.2 Ray Tracing

When the wavelength of waves in the plasma is much less than the charac-
teristic length (typically the minor radius a), the WKB approximation (ge-
ometrical optics approximation) can be applied. Let the dispersion relation
be D(k,w,r,t) = 0. The direction of wave energy flow is given by the group
velocity vy = Ow/0k = (0w/0k,, Ow/0k,, Ow/0k,), so that the optical ray
can be given by dr/dt = v,. Although the quantities (k,w) change according
to the change in 7, they always satisfy D = 0. Then the optical ray can be
obtained by

dr oD dk oD
-9k A5 or (12.10)
dt oD dw oD
& —_— _% 3 E _— E . (12.11)

Here s is a measure of the length along the optical ray. Along the optical ray
the variation 8D becomes zero:
oD oD

8D = 8—k6k+%8 g +a—6t_0 (12.12)

and D(k,w,r,t) = 0 is satisfied. Equations (12.10) and (12.11) reduce to

dr_dr (dt\™' _ oD (0D\7' _ (0w _
at “das\as) T ok \aw) TNk, E

Equation (12.10) has the same form as the equation of motion with Hamilto-
nian D. When D does not depend on t explicitly, D = const. = 0 corresponds
to the energy conservation law. If the plasma medium does not depend on z,
k. = const. corresponds to the momentum conservation law and is the same
as Snell’s law, N| = const.

When k = k, +ik; is a solution of D = 0 for a given real w and |k;| < |k, |
is satisfied, we have

OReD(k,,w)

D(k, + iki,w) = ReD(k,,w) + Ok,

ik; + ilmD(k,,w) =0,
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hence,
ReD(k,,w) =0,
D Iy
ki,aReTikw) = —ImD(ky,w) . (12.13)

Then the wave intensity I(r) becomes

I(r) = I(ro) exp (_2 / " k:i-dr> , (12.14)

To

oD ImD(k,,w)
e = se—— = — I D = — _
/k1 dr /k:l ok ds / mD(k,,w)ds / 9Dk dl,

(12.15)
where dl is the length along the optical ray. Therefore the wave absorption
can be estimated from (12.14) and (12.15) by tracing many optical rays. The
geometrical optical approximation can provide the average wave intensity
with a space resolution of, say, two or three times the wavelength.

12.3 Dielectric Tensor of Hot Plasma

In the process of wave absorption by a hot plasma, Landau damping or
cyclotron damping are the most important damping processes, as discussed
in Chap. 11. These are due to the interaction between the wave and so-called
resonant particles satisfying

w—kuw,—n2=0, n=0,£1,4+2, ... .

In coordinates moving with the same velocity, the electric field is static
(w = 0) or has a cyclotron harmonic frequency (w = nf2). The case n = 0
corresponds to Landau damping, whilst n = 1 corresponds to electron cy-
clotron damping and n = —1 corresponds to ion cyclotron damping (w > 0
is assumed).

Although nonlinear or stochastic processes accompany wave heating in
many cases, the experimental results of wave heating or absorption are usually
well described by linear or quasi-linear theories. The basis of the linear theory
is the dispersion relation with the dielectric tensor K of a finite-temperature
plasma. The absorbed power PP per unit volume of plasma is given by the
first term on the right-hand side of (12.7):

P =, (%’) E" K E.
Since Ky, K is a Hermite matrix for real k, w, as will be shown later in
this section, the absorbed power P" is given by

P = o, () Re[B*(<) K -E] (12.16)

w=w;
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It is clear from the expression (12.19) for K that the absorbed power PP
reduces to

€

P =w B, PImK yy + | By )T K, + |E,|*ImK,., (12.17)

|8

+2Im(E; Ey)Re Ky + 2Im(Ey B, )Re K, + 2Im(E;E,)Re K,
Since (10.3) gives j = —iwP = —ieqw(K — I)-E, (12.16) may be described
by
1
PP = §Re(E*-j)w=wr : (12.18)

The process driving the dielectric tensor K of a finite-temperature plasma is
described in Sect. 12.8. When the plasma is bi-Maxwellian,

m mv2
fO(UL;vz) = nOFL(’UL)Fz(Uz) ) FL(UL) = 2k exp (_ 2%Ti> ’
1/2 2
m m(vz - V)
F.(v;) = T okT. |
(v:) (27mTZ> P { 2kT, ]

the dielectric tensor K is given by

K =1+ (12.19)

Z %22 [Z{COZ(Cn) - (1 - %) [1 + CnZ(Cn)] }e_bXn + 2773)\TL

i,e

)

21, /b in(I, — I,)) —(2/\T)1/2nngln
X, =| —in(,-1) (n?/b+2b)I, —2bI, i(2A\r)'?nua(ll, — 1) ] ,
(A1) 2n, 21 =i(2A0) 2L, — 1) 227121,
(12.20)

o] xp(— 2
Z(C)EW3/2[ eg(_?)

where I,,(b) is the nth modified Bessel function and

s,

_ w +ni? ¢ :w—k‘ZV—i—nQ
I = 21/2kZUTz ’ " 21/2]€Z’UTZ
T, k vT 2
A\p = = b= ==+ = pl/2
T TJ_ ) ( N ) ) « )
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Fig. 12.3. Real part ReZ(z) and imaginary part ImZ(z) of Z(x)
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.

2 —
UTz , ’UTL =

m
The components of the matrix L are zero except for L,, = 1.

When the plasma is isotropic Maxwellian (T, = T, ) and V = 0, then
M = Cny, A7 = 1, and (12.19) reduces to

m? | & _
K=1I+ Z — > CZ(Cn)e P X, + 2L (12.21)

n=—oo

Z(¢) is called the plasma dispersion function. When the imaginary part Im w
of w is smaller than the real part Rew in magnitude (Imw| < |[Rew]), the
imaginary part of the plasma dispersion function is

ks
mZ() = g5 exp(~C?).
The real part ReZ(z) (x is real) is shown in Fig. 12.3.

The real part of Z(x) is
ReZ(z) = —2z[1 — (2/3)a® +---] ,
when z < 1 (hot plasma) and
ReZ(z) = —2 ' [1+ (1/2)27% + (3/4)z~* + -],

when z > 1 (cold plasma) [12.1-12.3]. The imaginary part of Z(() represents
the Landau damping and cyclotron damping terms, as described later in this

section.
When T — 0, that is, ¢, — +o00, b — 0, the dielectric tensor of the hot
plasma reduces to the dielectric tensor (10.9)—(10.13) of a cold plasma.
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When b = (kypp)? < 1, where po = vp, /£ is the Larmor radius, e 7* X,
can be expanded in powers of b using

&) S ()
) [ e @) s aem )

The expansion in powers of b and the inclusion of terms up to the second
harmonics in K gives

m—1+z< )

Zo(2b+ )+ (Z1+ Z-4) (;_?’2[’+...)

yy—1+Z(J> G

b
+(Z2+ Z_2) (2—b2+---)+~-~

J
7\ 2
Ke=1-3, (uj) G [%Wo(l — bt )+ (W + W) (bt )

2
+ (Wa + (2W_2) (Z +) + -

2
K,, = 21/22 (Izj) b1/2<0 [(Wl _ Wfl) (; _|_>

J

P (B )
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2
K, =—2%%" (HJ> b /2¢0 |Wo (1 + ;b+ . > (12.22)
- w
J

RS T A Uy (O B

2 4 ,
J
Kyz: = _K:ny 5 K.. =K, ) sz = _sz ;
where
— _ w—+nf?
Lin = Z(Cin) ) Wn = _[1 + CnZ(Cn>] ’ Cn = 91/2}; (liT /m)1/2 .
When = > 1,

ReW (z) = (1/2)z 2[1+ (3/2)z 2+ -] .

The absorbed power by Landau damping (including transit time damping)
may be estimated from the terms associated with the imaginary part Gg of

Go = ImGoZ(Go) = (ko /|k|)m' o exp(—(3) -
Since

7\ 2 7\
(ImK,, )0 = (J) 266Gy , (ImK.)o = (J) 203Gy ,

i

2
(ReKyz)O = (;) 21/2b1/2<0G0 ,

the contribution of these terms to the absorption power (12.17) is
7.\ 2
P = (J) Goeo [|Ey|2b+ B, |22 +1m(E;EZ)(2b)1/240} (12.23)

The first term is the transit time damping, equal to (11.16). The second term
is the Landau damping, equal to (11.10). The third arises from interference
between the first two terms.

The absorption power due to cyclotron damping and harmonic cyclotron
damping is obtained by the contribution from the terms

k.
771/2(0 eXp(,Cin) )

and for the case b < 1,

(ImK5)4n = (ImKyy)4n
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7\ >

(ReK,. )+ _—<wf) (20)%¢epnGipann™
T \?

(ImK.)p = — ( wa) (20)/%¢ 0 Gy (£ )t

b n—1
an =n*(2 xn!)™? (2> :

The contribution of these terms to the absorbed power (12.17) is

m\?
P — <wf> G (%0) an|Ey +1E,[? . (12.24)

Since
¢ wHnll  w—nlf}

- 21/2kszi h 21/2szT; ’

the term in +n is dominant for ion cyclotron damping (w > 0), and since

 w— nfle
N 21/2]{?2’1)'1“e ’

Cn

the term in —n is dominant for electron cyclotron damping (w > 0). The
relative strength of E components can be estimated from the following equa-
tions:

(Kyw — N{)Ey + Koy By + (Kpo + NUN))E. =0,
—KupyEy + (Kyy — Nf = N )E, + K,.E. =0, (12.25)

(Ke:+ N N)E, — K,.E, + (K.. — N7 )E. =0.

For cold plasmas,
Ky > K1, Kyy— K, K,.—K, Kgy—-iKy,
Ky;.—0, K,.—0,

can be substituted into (12.25), and the ratio is
E,:E,:E. = (KL —N*)x(K—N?}): —iK,(K|—N7) : —=NyN_ (K. —N?).

In order to obtain the magnitude of the electric field, one must solve the
Maxwell equations with the dielectric tensor of (12.19). In this case the den-
sity, the temperature, and the magnetic field are functions of the coordinates.
Therefore the simplified model must be used for analytical solutions. Other-
wise numerical calculations are required to derive the wave field.
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12.4 Wave Heating
in the Ion Cyclotron Frequency Range

The dispersion relation of waves in the ion cyclotron frequency range (ICRF)
is given by (10.64a) and (10.64c) and reduces to

@]
AT @) )T

The plus sign corresponds to the slow wave (L wave, ion cyclotron wave), and

the minus sign corresponds to the fast wave (R wave, extraordinary wave).
When 1 — w?/22 < 2(w/kjva)?, the dispersion relation becomes

k2 =2 (wQ> (1 - wQ) N (slow wave)

k2 2
TR (fast wave) .
v

N2 2w?
2 _ L
Ny = )

[1— (w/62)?]

Since the externally excited waves usually have propagation vectors with
0 < k? < (w/a)?, k% > (m/a)? usually, there are constraints for slow wave,
viz.,

2 2 2 2
w 2 T 2 -3 A ‘Qi w
—_ — 1.3 x10 "= 11— —
0w S (a) ! e 22 )
and for fast wave [12.4], viz.,
2 2 2
w ™ 2 —92 A Qi
E > (g) s nooa” > 0.5 x 10 ﬁ o2

where ngg is the ion density in 102°m™3, a is the plasma radius in meters,
and A is the atomic number.

An ion cyclotron wave (slow wave) can be excited by a Stix coil [12.1] and
can propagate and heat ions in a low-density plasma. But it cannot propagate
in a high-density plasma like that of a tokamak.

The fast wave is an extraordinary wave in this frequency range and can
be excited by a loop antenna, which generates a high-frequency electric field
perpendicular to the magnetic field (see Sect. 10.2). The fast wave can prop-
agate in a high-density plasma. The fast wave in a plasma with a single ion
species has E, +iF, = 0 at w = |{2] in the cold plasma approximation, so
that it is not absorbed by ion cyclotron damping. However, the electric field
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of the fast wave in a plasma with two ion species is E, +iF, # 0, so that the
fast wave can be absorbed, i.e., the fast wave can heat the ions in this case.

Let us consider the heating of a plasma with two ion species, M and m,
by a fast wave. The masses, charge numbers, and densities of the M and m
ions are denoted by myr, Zvm, nv and My, Zm, N, respectively. When we
use 2 p

g = 2MIM I = 2w
Te Ne

we have n\ /2y + M/ Zm = 1 since ne = Zynm + Zmnim - Since (I, /w)? > 1
in an ICRF wave, the dispersion relation in the cold plasma approximation
is given by (10.2) as follows:

(R - N2)(L - N?)

2 Il

T
R _Hf {(mM/mm)nmw mw w }
w? | w2 w [Qul  |2ul/Zu]
I — G [(mM/mm)nmw e w }
w2 w — |Qm‘ w — |QM| ‘QM|/ZM ’
I72 | (mag /M ) Nmw? w?
oI )
m M
2= e
e €oMmm '

Therefore ion—ion hybrid resonance occurs at K; — N, ”2 = 0, that is,

2 2 2
ﬂm(ﬂ”;M/m;n)w + ng 2 “*WQN\?RO,
w? — 22 w? — % 11;
2 / N 7
w2zwIHz"M+”’“(”/")93ﬂ, = O el
™ + nm/,U// mng Qm mMZm

Figure 12.4 shows the ion-ion hybrid resonance layer K| — N H2 =0, the L

cutoff layer L — NH2 = 0, and the R cutoff layer R — NH2 = 0 of a tokamak

plasma with two ion species D* (M ion) and H" (m ion).

Since the K,, component of the dielectric tensor is much larger than
the other component, even in a hot plasma, the dispersion relation of a hot
plasma is [12.5]

K,. — N, ”2 Ky

=0. 12.26
_Kw Kyy—NHQ_Ni ( )

When we use the relation Ky, = K, + AKy,y, |AK,,| < Ky,
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Fig. 12.4. L cutoff layer (L = NHQ), R cutoff layer (R = NH2)7 and ion—ion hybrid
resonance layer (K1 = N HQ) of an ICRF wave in a tokamak with two ion components
D, HT. The shaded area is the region N7 < 0

(Kaw — N}) Ky + MKy, — N?) + K2,

o

(Koo + 1Koy = NP (Kpp — 1Ky — N}
- K:mc - N”2 .

NT =

When w? is near w3y, K, is given by [see (12.22)]

2 [ my naw?
_ 1 ———m 7 PR
2 |:2mm77 CO (Cl) + wQ . Q]%/[

K:vw =
w

The resonance condition is K, = N HZ' The value of Z(¢y) that appears in
the dispersion equation is finite and 0 > Z({;) > —1.08. The condition

2 My T, ﬂMw2 w?
m > e = oo mot/2 VT (MW 2 &
T = Tler = 7708 g e\, TN

is required to obtain the resonance condition. This differs from the cold
plasma dispersion equation (note the difference between K., and K ).

It can be deduced from the dispersion equation (12.26) that the mode
conversion [12.5] from the fast wave to the ion Bernstein wave occurs at the
resonance layer when 7, > 7... When the L cutoff layer and the ion—ion
hybrid resonance layer are close to each other, as shown in Fig.12.4, the
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fast wave propagating from the outside torus penetrates the L cutoff layer
partly by the tunneling effect and is converted to the ion Bernstein wave.
The mode-converted wave is absorbed by ion cyclotron damping or electron
Landau damping. The theory of mode conversion is described in Chap. 10
of [12.1]. ICRF experiments related to this topic were carried out in TFR.

When nm < fer, K1 = N, |2 cannot be satisfied and the ion—ion hybrid res-
onance layer disappears. In tLis case a fast wave excited by the loop antenna
outside the torus can pass through the R cutoff region (because the width
is small), to be reflected by the L cutoff layer and bounced back and forth
in the region surrounded by R = N”2 and L = NHQ. In this region, there is a
layer satisfying w = |21, and the minority m ions are heated by the funda-
mental ion cyclotron damping. The majority M ions are heated by Coulomb
collisions with m ions. If the mass of M ions is [ times the mass of m ions,
the M ions are also heated by the [ th harmonic ion cyclotron damping. This
type of experiment was carried out in PLT with good heating efficiency. This
is called minority heating. The absorption power Py due to electron Landau
damping per unit volume is given by (12.23), and it is important only when
o < 1. In this case we have E,/E, ~ K../K,. ~ 2¢¢/[2"/?b'/%(,(-1)] and
Py is [12.6]

2 2
Po= 20,0 () (R0 o mi2ep(-2) . (12.27)
e 1 y o .Qe e Oe

The absorption power P, by nth harmonic ion cyclotron damping is given
by (12.24) as follows:

2 2 n—1
weQ .o (L n b
P = B, +iE, 2 [ = 2
3 |Ba+iEy| (w) (2><n!)(2>

w 1/2 _(w — n|$2])?
X STV /% exp [ hoon)? | (12.28)

The absorption power due to second harmonic cyclotron damping is propor-
tional to the beta value of the plasma. In order to evaluate the absorption
power from (12.27) and (12.28), we need the spatial distributions of E, and
E, and it is possible to calculate these distributions numerically [12.7].

In the range of the higher harmonic ion cyclotron frequencies, i.e., w ~
282;, 342;, the direct excitation of the ion Bernstein wave has been studied by
an external antenna or waveguide, which generates a high-frequency electric
field parallel to the magnetic field [12.8].

12.5 Lower Hybrid Heating

Since || < IT; in a tokamak plasma (n. > 103 cm™3), the lower hybrid
resonance frequency becomes
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112 + 7 ~ 12
14+ 112/0Q2 + Zme/m; 1+ I12/622°

2 _
WLH =

We have the relations 2, > wry > ], II2/1I? = |(%|/$2. For a given
frequency w, lower hybrid resonance w = wyy occurs at the position where
the electron density satisfies the condition

2(x) II? w?

res

2 o2 P P oo -

When the dispersion equation (10.20) of cold plasma is solved for N? using

N? = NH2 + NJQ_, we have

NZ — KJ_KJ_—K>2<+KHKJ_
+ 2K |

1/2

Bl 2 2
ZKL (KX KJ_) I

~ ~ 2
<KJ<l ~ K%+ K|KL> K|
+
K,

where I?L =K, — NHQ. The relations

H2 x Qe
h(x)E ];5 ) 5 KJ_:l—h(x), K>< :ph(w)j, anl—ﬁnh(:r),
2 2

— res — res 1/2
B =5~ O(mi/me), a=—2~O(mi/me)'/?, Buh>1,

(s}
reduce this to
Brrh

N2 (z) = ST [Nf — (1 —h+ph) (12.29)

i{ [N? — (1~ h+ph)]* —4(1 - h)ph}lq :

The slow wave corresponds to the plus sign in (12.29). In order for the slow
wave to propagate from the plasma edge with low density (h < 1) to the
plasma center with high density (112 = II2,, h = 1), N (x) must be real.
We thus require the condition

Ny > (1=h)Y? + (ph)'/? .

The right-hand side of the inequality has maximum value (1 + p)l/ 2 in the
range 0 < h < 1, so that the condition of accessibility of the lower hybrid
wave to the resonant region becomes

2

11
2 2 _ _ res
NP>NE, =1+p=1+ T (12.30)
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Fig. 12.5. Plot of lower hybrid wave in N1-h(z) (= II2(x)/I1%s) diagram for the
case p = 0.353, NHQCr = 14p = 1.353. This corresponds to an H plasma in B = 3T,
and f = w/2m = 10° Hz. The electron density for the parameter 37 = 7.06 x 10°
(= s /w?) i$ Nres = 0.31 x 10 m™°

If this condition is not satisfied, the externally excited slow wave propagates
into the position where the square root term in (12.29) becomes zero and
transforms to the fast wave there. Then the fast wave returns to the low-
density region (see Fig.12.5). The slow wave that satisfies the accessibility
condition can approach the resonance region and N, can become large, so
that the dispersion relation of a hot plasma must be used to examine the be-
havior of this wave. Near the lower hybrid resonance region, the electrostatic
wave approximation (12.35) is applicable. Since |{2;] < w < {2, the ion and
electron contribution terms are given by (12.37) and (12.39), respectively,
i.e.,
I’ m

e e — my
Lt —5 o [+ Toe "6 Z(Co)] + IR 2 [1 4+ CZ(Q)] = 0,
where w w w
% 21/2kaTe an ¢ 21/21451);/; 21/2kJ_'UTi
Since
—b 3.9 1.5 3 4
Iye zl—b—i—ib, Go>1, (>1, 1+<Z(C)%—§C _EC )
we have
3I12 kT, 3112 kT, m?  I? JIE
i 1 2 7e € k4 —(1 e 7 k2 — (1= == k}2: .
(S o )= (g - 5) - (- )

(12.31)
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Using the notation p; = vy /

s2=3 |thQi|—|—1E W =3 1_|—p+1E b )
W2 AT Q0] p ATi1l+p

{2 and

we have
32 KTy 3MM2 KT,  IT2m, v}s°
wh omp o 4% me wrmy

m oG 1 1—hll}

22 w2 14+p h w2’
Then the dimensionless form of (12.31) is

1+

l—hmi 1

(kLﬂl) h Me (1 +p)82

2
(klpi)Z + <Z:> S%(k'zpi)Q =0. (12.32)
This dispersion equation has two solutions. One corresponds to the slow wave
in a cold plasma and the other to the plasma wave in a hot plasma. The
slow wave transforms to the plasma wave at the location where (12.31) or
(12.32) has equal roots [12.9-12.11]. The condition of zero discriminant is
1/h =14 2k.pi(1+ p)s and

Hg(»’U) Hl%/I.C. _ p

22 22 T 1+ 2k.p(l+p)s

Accordingly, mode conversion occurs at the position satisfying

T, 1@\
To 4\ 20,

and the value of k% p? at this position becomes

1/2

c

w2 . 1 w2 i N||vTE2\/§
2~ |22

1

? my k. p;
: )
MC T T

K

If the electron temperature is high enough at the plasma center to satisfy
vr, > (1/3)c/Ny, the wave is absorbed by electrons due to electron Landau
damping.

After mode conversion, the value N; becomes large so that ¢/N| becomes
comparable to the ion thermal velocity (¢/N, ~ vp). Since w > [§2], the
ion motion is not affected by the magnetic field within the time scale w™?!.
Therefore the wave with phase velocity ¢/N is absorbed by ions due to ion
Landau damping. When ions have velocity v; larger than ¢/N, (v; > ¢/N),
they are accelerated or decelerated at each time satisfying v; cos(§2t) ~ ¢/N .
and are subjected to stochastic heating.

The wave is excited by the array of waveguides, as shown in Fig. 12.6,
with an appropriate phase difference to provide the necessary parallel index
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Fig. 12.6. Array of waveguides to excite a lower hybrid wave (slow wave)

Nj = k.c/w = 2mc/(A.w). In the low-density region at the plasma boundary,
the component of the electric field parallel to the magnetic field is larger
for the slow wave than for the fast wave. Therefore the waveguide directions
are arranged to excite the electric field parallel to the line of magnetic force.
The coupling of waves to plasmas is discussed in detail in [12.12] and the
experiments relating to lower hybrid heating (LHH) are reviewed in [12.13].

For a current to be driven by the lower hybrid wave, the accessibility
condition (12.30) and ¢/N) > vr, are required. If the electron temperature
is high and kT, ~ 10keV, then vz, /c is already ~ 1/7. Even if Nj is chosen
to be small under the accessibility condition (12.30), the wave is subjected
to absorption by electron damping in the outer part of the plasma, and the
wave cannot be expected to propagate into the central part of the plasma.

When the value of N is chosen to be N ~ (1/3)(c¢/vr,), electron heat-
ing can be expected and has indeed been observed experimentally. Under
conditions where mode conversion can occur, ion heating can be expected.
However, the experimental results are less clear than those for electron heat-
ing.

12.6 Electron Cyclotron Heating

The dispersion relation of waves in the electron cyclotron range of frequency
in a cold plasma is given by (10.79). The plus and minus signs in (10.79)
correspond to ordinary and extraordinary waves, respectively. The ordinary
wave can only propagate when w? > II2, as is clear from (10.86) (when
0 = 7w/2). This wave can be excited by an array of waveguides, like the one
used for lower hybrid waves (Fig. 12.6), which emits an electric field parallel
to the magnetic field. The phase of each waveguide is selected to provide the
appropriate value of the parallel index N = k.c/w = 27mc/(wA.).

The dispersion relation of the extraordinary wave is given by (10.87).
When 6 = 7/2, it is given by (10.52). One must satisfy w?;; > w? > w?, wiy.
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Fig. 12.7. Locations of electron cyclotron resonance (w = {2), upper hybrid res-
onance (w = wru), and R cut off (w = wr), when 2.0 > Ileo in tokamak configu-
ration, where (2.0 and Ileo are the electron cyclotron resonance frequency and the
plasma frequency at the plasma center, respectively (left). CMA diagram near the
electron cyclotron frequency region (right)

As can be seen from the CMA diagram in Fig. 10.5, the extraordinary wave
can access the plasma center from the high magnetic field side (see Fig. 12.7)
but cannot access from the low field side because of the w = wr cutoff. The
extraordinary wave can be excited by the waveguide, which emits an electric
field perpendicular to the magnetic field (see Sect. 10.2).

The ion’s contribution to the dielectric tensor is negligible. When relations
b < 1, {y > 1 are satisfied for the electron, the dielectric tensor of a hot
plasma is

sz:Kyy:1+XCOZ71/2u Kzzzl_X+NJ2_XzZ7
Kacy = 7iX<OZ—1/2 ) sz = NLXzz ) Kyz = iNLXyz )

_ 1V
Xaz = Xyz = 27V2XY 17T<0(1+<7lz,1),

Yoz = XY 2 (UT)2C0C71(1 +(-1Z-),

Cc

72 1, w — {2 kic
X == Yy == =" N, = .
w2 ) w ) C 1 21/2kz'UT’ 1 w

The Maxwell equations are
(Koo — NH2)E$ + Kz By + NJ_(NH + xz22)E. =0,
— Ky By + (Kyy — N\? - NJQ_)Ey +iN1xyE. =0,

Ni(Nj+ Xaz)Eo —iN1xyEy + [1 = X = N3 (1= x..)|E. =0.
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The solution is

Ez o 7iNJ2_X3cz(N|| +Xacz) +Kacy[1 - X - Ni(l - Xzz)]

Ey NJ2_(NHJrXacz)z*(Kxx*N‘?)[le*NJZ_(I*Xzz)]

The absorption power P_; per unit volume is given by (12.24) as follows:

ml/2 (w—92:)%] € R
P =wX( 5 exp {— 2]4:37){ ]2|E$—1Ey| )

When w = (2., then

(71:0’ Z,lzi’/Tl/2, Krz:1+lh’ sz:h’
X GoX
, = xz:21/2XLTe = - 2z =10 h = 1/27'
Xy X c CO 2NH ) X ) ™ 9

Therefore the dielectric tensor K becomes

14+ih b Nixe
K=| —h 1+4ih iN|ves
NJ_Xa:z _iNJ_sz 1-X

For the ordinary wave (O wave), we have

B, —iB, _iNZ(O)N|(N) +xs2) (1= Np)[1 - X - NZ(0)]
E, N1 (O)[Njh + ixez(1 = NJ)]

When N < 1 and the incident angle is nearly perpendicular, (10.82) gives
1-X —N?%(0) = (1-X)Nj. Since x;- = X/2N|, then X, > Nj. Therefore
the foregoing equation reduces to

Em — iEy . iNJ_(O)NHsz

E, NHh + inz

For the extraordinary wave (X wave), we have
By—iB,  INEOON|(V 4 xes) — i(1— NP)[1 - X — N3 (X)]

E,  NAX)Nj+xa2)® = (Koo — N1 - X = NF(X)]

When Nj < 1 and w = £, (10.83) gives 1 — X — N?(X) ~ —1 + Nj. Since
X2, = (2m)"Y/2(vg, /eN) X h < h, the foregoing equation reduces to
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E,—iB, _ —[1+NIXN(Nj+x22)] 1

E,  h—il+N2(X)(N) + x22)?] h'

The absorption power per unit volume [12.14] at w = (2, for the ordinary
wave is

LGO| |2hNi(O)NH2X§zeX
2 77 (Njh)2+ X2,

5 EZFﬁ (IZ,)Q (:]Tv,> N7 +N(%f/)cz)vj(2/w) ’

P_1(0) = —¢%) (12.33)

Q

and the absorption power per unit volume for the extraordinary wave is

1/2 -2
weg 1 weg 2 1T Nyvr,
PLa(X) ~ 0B, 5 = SRIE, P2 (ﬂ) (w) (”C . (12.34)

Since P(O) neTel/2/N”, P(X) x NHTel/Q/ne, the ordinary wave is absorbed
to a greater extent in higher density and for perpendicular incidence, whereas
the extraordinary wave has the opposite tendency.

Experiments with electron cyclotron heating (ECH) have been carried out
by T-10, ISX-B, JFT-2, D-ITID, and so on, and the good heating efficiency of
ECH has been demonstrated. Heating and current drive by electron cyclotron
waves are reviewed in [12.15].

12.7 Velocity Space Instabilities (Electrostatic Waves)

Besides the magnetohydrodynamic instabilities discussed in Chap. 8, there
is another type of instability caused by deviations of the velocity space dis-
tribution function from the stable Maxwell form. Instabilities which depend
on the shape of the velocity distribution function are called wvelocity space
instabilities or microscopic instabilities. However, the distinction between
microscopic and macroscopic or MHD instabilities is not always clear.

12.7.1 Dispersion Equation of Electrostatic Wave

In this section, we describe the characteristics of the perturbation of electro-
static waves. In this case the electric field can be expressed by E = —V¢ =
—ik¢. The dispersion equation of the electrostatic wave is give by (Sect. 10.5)

k2K pw + 2kok. Ky, + KK, =0. (12.35)

When the zeroth-order distribution function is expressed by

m va
folus, o) =m0 P00, Filon) = 5 enp (2l )
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1/2 2
m m(v, —V
Falv:) = <2nI€TJ_) P {_ (2/$T : } ’

the dispersion equation is given by substituting K., K,., K., expressed by
(12.19) and (12.20), into (12.35),

{1+ > e <<n>1n<b>eb}=o,

k2+k2+ZH2 m

(12.36)
derived in Sect. 12.8, where
_ Wn _
anm, wn:w—sz—i—nQ,
b kv, 2 9 kT, 5 kT
= _— v = () = —
N ’ T m L m

I,,(b) is the nth modified Bessel function, and Z(¢) is the plasma dispersion
function. When the frequency of the wave is much higher than the cyclotron
frequency (Jw| > |£2|) or the magnetic field is very weak (B — 0), then we
find ¢, — o, n2/w, — 0, I, (b)e~® = 1, so that the dispersion equation
reduces to

k2+k2+ZH2 m

[1 +6Z()] =0 (lwl>|02). (12.37)

When B =0, the dispersion equation is given by

m w—kV
K +;H2,TT[1+CZ(C)] =0 <C: B= 0) . (12.38)

21/2]{3’UT ’

When the frequency of the wave is much lower than the cyclotron frequency,
i.e., |w| < |£2|, then we find ¢, — oo (n #0), (2, — —1 and > I,,(b)e " =
1:

m _ T, _
k2 + k2 + §U2HTZ {Ioe "1+ ¢Z(G)] + T, (1= Ioe b)} =0
(ol < 12).  (12.39)

When the frequency of the wave is much higher than the cyclotron frequency
or the magnetic field is very small, the dispersion equation (12.35) with

(12.71) reduces to
2 2 2 M (f/n0o)/0v. .
k2 + k2 +§H { /7w_kvz v.| =0.

Partial integration gives

k2+k2 Z / fmo g, (12.40)

w—k,v,)?
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12.7.2 Electron Beam Instability

Let us consider the interaction of a weak electron beam of velocity Vy with a
plasma which consists of cold ions and hot electrons. The dispersion equation
(12.40) of an electrostatic wave with k, =0 (E, = E, =0, E, #0, B; =0)
is given by

H2
K. —-K ——"b
=TT W= kv)?
112 * fe(vy)/no 112
=1-—L 2 S E o - b __—0. 12.41
w? e[m (w—kv,)? dv (w—kVp)? 0. )

For the limit of a weak beam (Hg — 0), the dispersion equation reduces to
K|(w,k) = 0, if w # kVp. The dispersion equation including the effect of a
weak beam must be in the form

w—kVo =, (k) [6.(k) < kVo] .
Using 62, (12.41) reduces to

I1? K|
K(kaO,k)+( O -
oz 0w )i,
If w = kVp does not satisfy K|| = 0, then K| # 0 holds and the second term
on the right-hand side of the foregoing equation can be neglected:
H2

b _ —

The expression for Kj(w = kVo, k) is
K”(wr) = Kr(wy) +1K1(wy) -

The K7 term is the Landau damping term (see Sect. 12.3).
When the condition w = kVj is in a region where Landau damping is
ineffective, then |K| < |Kgr| and the dispersion equation becomes

117
—2 = Kp. 12.42
(w—k1p)2 ¢ (12.42)
Therefore if the condition
Kg <0 (12.43)

is satisfied, J,, is imaginary and the wave is unstable. When the dielectric
constant is negative, electric charges are likely to be bunched and we can
predict the occurrence of this instability.
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If w = £V} is in a region where Landau damping is effective, the condition
of instability is that the wave energy density W} in a dispersive medium (12.6)
should be negative, i.e.,

€0 0
WO = gE:%(WKZZ)EZ < 0 .
In other words, a negative energy wave is the condition for instability, because
the absolute value of Wy increases if 0W; /0t is negative:

8W0 0 €0 0 w

W = a EE:%(WKZZ)EZ = 7?YEOE:KIEZ <0.
When energy is lost from the wave by Landau damping, the amplitude of
the wave increases because the wave energy density is negative. Readers may
refer to [12.16] for a more detailed analysis of the beam—plasma interaction.

12.7.3 Various Velocity Space Instabilities

In Sect. 12.7.2, a simple case of electron beam instability was described. There
are various velocity space instabilities.

The distribution function of a plasma confined in a mirror field is zero
for the loss cone region (v, /v)? < 1/Ry, where Ry is the mirror ratio (see
Sect. 2.5). The instability associated with this is called loss-cone instability
[12.17).

Plasmas heated by ICRF have higher ion temperature in the perpendic-
ular direction than in the parallel direction. In this case instabilities with
higher harmonic ion cyclotron frequencies may occur. This type of instability
is called a Harris instability [12.18,12.19]. A Harris instability is electrostatic
and is analyzed by the dispersion relation (12.79).

In general plasmas are hot and dense in the center and cold and low
density on the outside. The instabilities driven by temperature gradient and
density gradient are called drift instabilities. The electrostatic drift instability
of an inhomogeneous plasma can be analyzed by the dispersion equation
(12.84) and (12.85) for the inhomogeneous plasma [12.3,12.20].

In a toroidal field, trapped particles always exist on the outside, where the
magnetic field is weak. Instabilities induced by trapped particles are called
trapped particle instabilities [12.21].

12.8 Derivation of Dielectric Tensor in Hot Plasma

12.8.1 Formulation of Dispersion Relation in Hot Plasma

The dispersion relation of a cold plasma was derived in Chap. 10. In the un-
perturbed state, both the electrons and the ions are motionless in a cold
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plasma. However, in a hot plasma, electrons and ions move along spiral tra-
jectories, even in the unperturbed state. The motion of charged particles in
a uniform magnetic field By = Byz may be described by

dr’ dv/ ¢

@ = 'U/ y @ = E’U/ X BO . (1244)
Assuming that ' =7, v/ = v = (v} cosf,v, sinf,v,) at t' = t, the solution
of (12.44) is obtained as follows:

vn(t') = vicos [0+02(t' —t)] , vy (t') =vysin [04+02(t'—t)] , V(') =v.,
(12.45)

(') =z + %‘{ sin [9 + 2t — t)] — sin 9} ,
y(t) =y~ S cos[0+ Q' — )] — cost} | (12.46)
dA)=z+v.(t —t),

where 2 = —¢By/m and v, = v, cosf, v, = vy sinf. The analysis of the
behavior due to a perturbation of this system must be based on Boltzmann’s
equation. The distribution function fi(7,v,t) for the kth kind of particles is

Ofk | 0 Vofi+ B (EtvxB)Vofi=0. (12.47)
ot mi

Maxwell’s equation are

1
-E=— d 12.4
\Y% « Ek Qk/vfk v, (12.48)
1 OF
— B =¢— d 12.4
MOVX ant-i-gk Qk/'vfk v, (12.49)
0B
EF=—— 12.
V x 5 (12.50)
V.B=0. (12.51)

As usual, we indicate zeroth-order quantities (the unperturbed state) by a
subscript 0 and first-order perturbation terms by a subscript 1. The first-order
terms are expressed in the form expi(k-r — wt). Using

fk = fko(’l’7’l)) + fkl 5 (1252)
B =By + B, (12.53)
E=0+E,, (12.54)

we can linearize (12.47)—(12.51) as follows:
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vV, fro + %(” x Bo)-Va fro =0, (12.55)
ZQk/kad'U =0, (12.56)
k
1 .
%V x Bg = Z(Ik/’l]fkod’l) =7Jo, (12.57)
k

Afr1
ot

0V, fr+ 2 (0x Bo) Vo fir = — 2 (B +vx B1)-Veofio , (12.58)
mg mg

, 1
ik-E, = ank/f;ﬂd’u, (12.59)
k

1 i
—kx B = —w <€0E1 + ; ;qk/vfkldv> s (12.60)

Mo

w

The right-hand side of (12.58) is a linear equation in E;, as is clear from
(12.61), so that fi; is given as a linear function in E;. The electric tensor of
the hot plasma is defined by K (D = ¢ K-E), given by

Ei+—j=E+—— > an /vfkldv =KE; . (12.62)
cw Eqw 3

The linear relation for E; is derived from (12.60) and (12.61):

2
kx (kxE)+—K-E =0, (12.63)
C

and the dispersion relation is obtained by equating the determinant of the
coefficient matrix of the linear equation to zero. Consequently, if fi1 can
be solved from (12.58), then K can be obtained. As for cold plasmas, the
properties of waves in hot plasmas can be studied using the dispersion relation
of a hot plasma.

12.8.2 Solution of Linearized Vlasov Equation

When the right-hand side of (12.58) is time-integrated along the particle orbit
(12.45) and (12.46) in the unperturbed state, we find

Vo, fro (' (), v/ (¢))dt" . (12.64)
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Substituting (12.64) into (12.58) yields

1
-2 {E1 + —v x (kx E1)] Vo fro
Mg w
a (1[0 T . /
g /_Oc ot +vV, + E(v X Bg):V, | [integrand of (12.64)] dt
= 5By +v x B)- Voo (12.65)
M

Therefore if it is proven that the second term on the left-hand side of (12.65)

is zero, (12.64) is confirmed to be the solution of (12.58). When the variables

(r,v,t) are changed to (r’,v’,t') using (12.45) and (12.46), the differential
operators in the second term on the left-hand side of (12.65) reduce to

o oo or_, o

o otor TVt

ot —t) or' ov’

— v RV
=T |law—p VT aw—p v

A vl

= —’U/'V/T — q—k(v' X B())’V{U s
my,

v-V, =0V, ,

a _or _, o
v, Ovg Vot Ovg

Rvii

Lf o 0 o Kl
— Q{smﬁ(t —t)=— 4+ [ —cos Q(t' —t) + 1] 8;/}

ox’
0
31}1’! ’
0

_ 1 112 fsnow - 02
aUyg{[cosﬁ(t t) 1}ax/+sm(2(t t)ﬁy’}

+sin 2t —t)

+ [cos 2 —t) 32

/
x

+ {— sin 2(t' —t) 0

2
5 + cos 2(t' —t) )

/ /
! vy,

%(v X Bg):Vy = —12 <vya - vma)
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Therefore the second term on the left-hand side of (12.65) is zero.

Since the first-order terms vary as exp(—iwt), the integral (12.64) con-
verges when the imaginary part of w is positive. When the imaginary part
of w is negative, the solution can be given by analytic continuation from the
region of the positive imaginary part.

12.8.3 Dielectric Tensor of Hot Plasma
The zeroth-order distribution function f; must satisfiy (12.55), or

folr,v) = f(vg,v,), vizvg—i—v;.

Let us consider

E(r',t') = Eexpi(k-r’ —wt') .
The z axis is taken along the B direction and the z axis is taken in the
plane spanned by B and the propagation vector k, so that the y component
of the propagation vector is zero (k, = 0), i.e

k=kz+k.z2.
Then (12.64) reduces to

k
fl(r,'v,t):—gexpi(sz+kzszt [ 1fkfvw E+('u -E)— ] -V fo
m

{kv
X exp

We introduce 7 = t' —t and use the following formulas for the Bessel function:

sin [0+ Q(t' —t)] — L sinf + i(k.vs — w)(t — t)}dt’ :

exp(ia sin 6) Z JIm(a) expimb | J_m(a) = (1) Jn(a),

m=—0oo

exp ( ) = Z Z Jm exp(—im8)J, exp [in(Q + QT)] expi(k,v, —w)T .

m=—0o0 Nn=—0o0

Since
[ i A G RRL L
(e [ R
pUL w vL n WL
[0t ]

o {E; [ei(GJrQ'r) +efi(0+m)} n % {ei(emm) _ei(9+m)]}
1

+ (3fo kwvz afO kw”i) % |:ei(9+()7-) _|_e—i(0+_(27'):| + %Ez ;

o, w _c%z w 2 v,




12.8 Derivation of Dielectric Tensor in Hot Plasma 207
we find

fi(r,v,t) = - expi(k,x + kyz — wt)
m

n—1 + Jnt1 . In-1— JIn+1
[ (Bt o (e

N (WJ"_l + Jnt1 n dfo Jn) . Jm(a) exp [ —i(m —n)6]

2 Ov,, i(kv, —w+n0) ’
where L o L o
2Uz 0 zUL 0
= — 12.
v ( w ) ov . T v, (12:66)
k Uz 8fO kwvj_ afO
— — 12.
W= w Ovy w Ov,’ (12.67)
o ka:UJ_ qB
a===, 0=-T, (12.68)
and
In-1(a) + Jni1(a) _ nJn(a) In-1(a) — Jnt1(a) _ ij (a)
2 a 2 da" "V

Since f; is obtained, the dielectric tensor K of a hot plasma reduces from
(12.62) to

(K —I)- qu/'vfjldv. (12.69)

Since v, = v cosf, vy = v sinf, v, = v,, only the terms in gl(m=—n)f — o+if
in f;; can contribute to the z, y components of the integral (12.69) and only
the term in ¢(™~™% = 1 in f;; can contribute to the z component of the
integral (12.69). Hence,

m = S,
K=1I- : —Zin 12.
zj: wnjo n_z:oo/dv kv, —w+ng2;’ (12.70)
where
2
v <an> U I’UL(an> J;LU Ul('fl(]n) J (3f0 + W)
a a a v,
Sp=livnds (n 2 )0 w0 oy (G0 4 2w )
a ov, «a
Vydn (an) U —iUZJnJ;lU Uan (afo + W)
a ov, «a

and
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2
n;iq;
2 _ 'Yy
Hj =
Omj

When we use the relations

8f0 n
UZU_/UL(@’UZ—’_kI’ULW)__’UzafO—FULafO

kv, —w+nf2 wov, w vy’

oo

o9} o
Soar=1, D Ldy=0, > ndi=0, Jo,=(-1)"J,

n=—oo n=—oo n=—oo

and replace n by —n, then (12.70) reduces to

-1 -1
v Ujn,

K=1- n—Jd

Z Z / J kv, —w —nf2; v

1 v? 0
_LZ ( njoJ vi 8?5 v> ’
where
ot (n{j) <n{:) iv? (n{j) J o —vv, <nin) In
T, = —iv? J, ( ﬁ) V3 JLJ) iy v, J) I
—v vy, (nJa"> —ivg v, JnJ), viJnJdn

and all the components of the matrix L are zero except L,, = 1. From the
relations

dfio dfjo
_Q J J
U; _19fj0 L T, + kvl v,
kv, —w—ng2; Cwov, w(k,v, —w—nﬂj) ’
> 1 = n?J%(a) 1
e _ n\ad) _
nzz_ooun) =3 :ZOO =5

another expression for the dielectric tensor is obtained:

_ 7 —n82; Ofjo dfjo\ 1
K= ( > Zw2/k:vz—w—n!2 <UJ_ 6vj_+kzavz njodv

(12.71)

Using N = ck/w, (12.63) becomes
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Ky By + (Kyy — N))E, + K,.E. =0,
(K. + NUN\)E, + K.yE, + (K.. — N1 )E. =0,

where N is the z component of N (parallel to B ) and N is the z component
of N (perpendicular to B'). The dispersion relation is given by equating the
determinant of the coefficient matrix to zero.

12.8.4 Dielectric Tensor of Bi-Maxwellian Plasma

When the zeroth-order distribution function is bi-Maxwellian,

fo(vi,v.) =noFL(vy)F:(v,), (12.72)
Fi(vy)= QWT:TL exp (— ;Z;%) , (12.73)
F.(v,) = (QWTZTZ)l/QeXp {W} , (12.74)
we find
(—T:;Qljggj + kng) 1 m {:J{Zj — kZ(qj:T: V)} Fi(v))F.(v,) .

The integration over v, can be carried out using the plasma dispersion func-
tion Z(¢). The plasma dispersion function Z(¢) is defined by

1 o] _ 12
Z(¢) = 771/2/_ exg(f Jas . (12.75)

Using the relations
o F 1
—Z Vy = — nZ n)
R B R

/ /€ UZ_V)F dz:1+<nZ(<n)7

© [ka(vs — V>]2Fz

Ko, V) — 0 = n[1+ G2 (G

3

|k (v, = V)|"F, k2(KT,

/ Mdvz = # +wp [1 + CnZ(Cn)] )
w—FkV +n2
k. (2T, /m)1/2 "’

S] .’1?2
/ J2(b'2x) exp (—) xdx = al, (ab)e b
0 2c

wp =w—k,V+nf, G =
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o oo o

Z I,(b) =¢, Z nl,(b) =0, Z n?I,(b) = be®

n=—oo n=—oo n=—oo

where I, () is the n th modified Bessel function, the formula for the dielectric
tensor of a bi-Maxwellian plasma is [12.3]:

K=1I+ Z fj{ zn: {COZ(CH) - <1 - ;T) [1+ CnZ(Cn)]} e P X,

+ 2n§ATL} , (12.76)
where
n2I, /b in(I', — I,,) —(2Ar) 2, 21,
e
X,=| —in(I), -1 ) (n?/b+2b)I, — 2bI!, i(2A7)?nua(ll, - 1,,) |
—(2\ )%, 71 —i(2A) Y201l — I,) 22021,
(12.77)
= M )\ E b — kCE’UTL ?
(ST =700 e )
ks T
= ;}ZTL , v%z = , v?ﬂ = Lml ,
and the matrix components of L are all zero except for L

12.8.5 Dispersion Relation of Electrostatic Wave

When the electric field E of the waves is expressed by an electrostatic po-
tential E = —V ¢, the waves are called electrostatic waves. The dispersion
relation of the electrostatic wave in a hot plasma reduces from (10.92) to

k2 Ky + 2k Koy + k2K, = 0. (12.78)

When K, K., and K, of (12.76) and (12.77) are substituted into (12.78),
we find

H2
0=kl +k2+> M{kﬁanAT

ie

21,
+ 3 [” — 2 )Y ""b1/2] W2kok, + 2221, kQ]

x [noZ@n) - (1 - A1T> e an<<n)ﬂ eb} .
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Using > oo I,(b)e”® =1, we have

2

7% | mw
0=Fk2+K? —
=t Z+ize:w2{nTJ_

n=—oo

+ i Zl;jln [COZ(Cn) - (1 — ;T> 1 +<,LZ(<,1)}} eb} —0,

O_k2+k2+ZH2 {1+ Z_: [1+< )}gn ((n)Ine_b}.

(12.79)
When the density and temperature of the zeroth-order state change in the
direction of y, we must resort to (12.59) and (12.64). Since the electrostatic
wave E = —V ¢, By = 0 is considered in this section, (12.59) and (12.64)
reduce to

1

2 —

-V ¢1 = a ;qk/fkldv ) (1280)
t
fu=2 [ VOV . (1280
The zeroth-order distribution function fxo must satisfy (12.55), i.e
9fo 9 0

vya—y -1 (vy Do, ~ Vo ) fo=0. (12.82)

Since v? = a, (v, — V)? = 3, and y + v, /2 = v are the solutions of the
equation for the particle motion, fo(a,3,7) satisfies (12.82) and we adopt
the following zeroth-order distribution function:

fo (v, 0 = V)2 + ) (12.83)
02 .
“wofis|esgd (5}
() ) " 5
X _
213, 2mvg, ZUTL 202,

The density gradient and temperature gradient of this distribution function
are

(”z - V)2

—€e+0, +(5Z

2v 203,

1 dng 0, 1 dT, 1 dT,
——— =—€+9 — —— =90 — =9, .
ng dy €t J‘+2’ T, dy L T, dy

Let us consider the perturbation ¢,(r,t) = ¢1(y)exp(ikzz + ik.z — iwt)
and assume |(k2 + k2)¢1| > |0%¢1/0y?|. Following the same approach as
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in Sect.12.8.3, (12.80) reduces to the following dispersion relation for the
electrostatic wave in an inhomogeneous plasma [12.3,12.20]:

1
0:(k§+k3)—217§n0j///[ ];d0dv dv, dv, ,
J

1 1 nf2
o T o T TLZ n
o (- 22 e

{[e+<n — fa(b)dL] {1 + Z}f(nZ(gn)}

0:k§+k§+2n§{ - Z n
j

n=—oo

1 n
U%k

_%Z {1 n wa” [14¢.2 (Cn)]} }

%%/: {[6 + 8, — fu(0)SL] [1+ G Z(Cn)]
T, e

5. 2
2 {1 i k;v%z [ C"Z(C")]} }

} ,(12.84)

where f,,(b) = (1 —b) + bI},(b)/1,(b) and we have used the relation

w'll

Jr];;{[efn(b)é ]Cn (Cn)f 2Zk2 2 [1+CnZ(§n)]}

/OO J2(bY %) exp (_3322) %zxdx = fu(b)L,(b)e " .

For low frequencies (w < |£2]), we have relations ¢, > 1 (n # 0), (. Z(¢n) —
-1 (n#0)and 1+ (,Z(¢) — —(1/2)¢,2 (n #0), and (12.84) reduces to

Oki+k§+2ﬂf{vé+lo(b)e li [1+¢Z (Co)]*vzi
J z vr, an
e o0 Z() — 8. G[1+GZ(G) | | . (12.8)
Qwo 0 1]G0Z(Go 0wy 0 04(Co E .
J

using > I,,(b)e™® = 1.

When an isotropic plasma with vy, = vy, = vr has no temperature
gradient §; = 6, = 0 and V = 0, we have the familiar dispersion relation of
a drift wave due to the density gradient as follows:



12.8 Derivation of Dielectric Tensor in Hot Plasma 213

(ZO €COZ(CO):| }j -

We can usually assume b, = 0 for electrons. Then it reduces to

0:k§+k§+ZUf{1 + Io(b)e™ [ CZ(Co) +
J

2 *
= (k2 + K2 14+ ¢Z(¢c) [1- %=
0= (241 414626 (1- %)
ZT, *
28 1 nme oz (1-4)] L azso
T; w
where
2 2
vy, T. B _ T;
T kxeeB and = 'Ql =k, EZ 5

Note that the x direction is opposite to the electron drift velocity vqe, ¥ is
in the direction of the negative density gradient and z is in the direction of
the magnetic field.



13 Instabilities Driven by Energetic Particles

Sustained ignition of thermonuclear plasma depends on heating by highly
energetic alpha particles produced from fusion reactions. Excess loss of the
energetic particles may be caused by fishbone instability and toroidal Alfvén
eigenmodes induced by energetic particles. Such losses do not only reduce
the alpha particle heating efficiency, but may also lead to excess heat loading
and damage to plasma-facing components. These problems have been studied
in experiments and analyzed theoretically. In this chapter, basic aspects of
theories on collective instabilities by energetic particles are described.

13.1 Fishbone Instability

Fishbone oscillations were first observed in PDX experiments with nearly per-
pendicular neutral beam injection. The poloidal magnetic field fluctuations
associated with these instabilities have a characteristic skeletal signature on
the Mirnov coils (see Sect.16.1), which is what suggested the name of fish-
bone oscillations. Particle bursts corresponding to loss of energetic beam ions
are correlated with fishbone events, reducing the beam heating efficiency. The
structure of the mode was identified as an m = 1, n = 1 internal kink mode,
with a precursor oscillation frequency close to the thermal ion diamagnetic
frequency as well as the fast ion magnetic toroidal precessional frequency.

13.1.1 Formulation

The theoretical analysis of the fishbone instability described here is mainly
due to Chen, White and Rosenbluth [13.1]. The core plasma is treated using
the ideal MHD analysis and the hot component is treated using a gyrokinetic
description. The first-order equation for the displacement £ is [see (8.24)]

where Op, is the first-order pressure disturbance of the core plasma (V3p. =
—&-Vp. — vpV-£) and dpy, is the first-order pressure disturbance of the hot
component. The following ideal MHD relations hold:

SE, =76 xB, 8E; =0, 8B=Vx((xB), 3 =V-3B.
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Multiplying (13.1) by [dr&” and assuming a fixed conducting boundary, we
have

SWviup + Wk +061 =0, (13.2)
where
A2
5 =1 [ pulePar. (13.3)
SWK = %/E'VSPhd’I‘ y (13.4)

and dWypp is the potential energy of the core plasma associated with the
displacement &, discussed in Sect. 8.3.2 and given by (8.80). 8Wx is the con-
tribution from the hot component.

13.1.2 MHD potential Energy

Let us consider the MHD term of 0Wyup, which consists of the contribution
OWinp from the singular region near the rational surface and the contri-
bution Wi, from the external region. The external contribution SWg,
from the cylindrical circular plasma is already given by (8.93):

8VVI?/IXI-tIDcycl _ <f ' dgr

2TR 2#0

9|§7-I2> dr, (13.5)

where f and g are given by (8.94) and (8.96). When /R < 1 is assumed, f
and g of the (—m,n) mode are

= () -Gl

2
_rp((l_n 2y (1o ()’
9=g" <(q_m) <(m Dt g ) <1 (mR) )
1 n\2 n r\?
+2(q2‘ (a) ) (a) (E) ) !
where ¢(r) = rB,/RBy(r) is the safety factor. Let us consider the m = 1
perturbation with the singular radius r = rg, ¢(rs) = m/n. In this case the

displacement is &. = const. for 0 < r < rg and &. = 0 for rs < r < a (see
Sect. 8.3.2). Then SWyHiip. . reduces to [13.2]

d &HDCVCI 7733 2 (Ts 2 ' 3 1 1
= T 12 () | g 4 13.
2R 20 | <R) { B /0 g (q2+q 3) dp} » (136)

where p = 1/rg, B, = (p)s/(B2,/210) and Bys = [rs/Rq(rs)] B. is the poloidal
field at = rs. The pressure (p)s is defined by
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(p)e = — /O (7')2 o= L [ = po2rdr (13.7)

re ) dr r2 Jo

The MHD potential energy SWyiip,,./2m R per unit length of toroidal plasma
with circular cross-section is given by [13.3]

6I/I/'I\E/IXPJDIDtor _ (1 _ 1 ) 8I/VISIXPtIDcycl

By . sy
D) = s SW 1)
2R n2 ok 2110 [&[7 W

§Wr =1 (%)2 3(1 - qo) G‘i - 55) . (13.8)

For m =1 and n = 1, Wb, /27 R reduces to just the 8Wr term.

Let us consider the contribution from the singular region. In this case we
must solve for the displacement &, in the singular region near the rational
surface. The equation of motion in the singular surface was treated in Sect. 9.1
on tearing instability. From (9.13) and (9.9), we have (in the limit = < 1)

28267" . 82317“

HopmY” 55 = iF = 5=, (13.9)
Bu =g+ 2 g (13.10)
YD1r = YSr M0T52 8$2 1r » .
where
m n By Byn dq Bgns
F=(k-B)=—-—B —B, = —~(— = — —Ar= ,
( ) r 9+R r( m+nQ) r dr r Ts z
Tr = r— TS S=r @
ooy T Cdr .
With the normalizations
1/) _ iBlrrs _ Ts _ MOTSQ S = TR
p— ) T = T ., = ) T = ) = 3
Bosn’ T (B} /1opm) 2 Ty * 7 Tas
we have
TAG 2 1
72 <7) 57/“/ = x¢1/ s /IZ) = —(Ijé‘r —|— /ll}// . (13.11)
ns YTA9SR

In the limit Sy — oo, (13.11) yields
TA0\ 2 2| ¢n /
(77) +x §r+2x€r20a
ns

and the solution is [13.4]



218 13 Instabilities Driven by Energetic Particles

-1
£ = (io/ﬁ)(WTAo/T;S) , &e(r) =8 — 80 tan~! [m ] .
z?/(yTa0/ns)? + 1 m Y7a0/(ns)
(13.12)
Since the external solution of m = 11is & = & as © — —oo and & = 0 as
x — o0, the matching conditions for the external solution yield £, = &5/2

and & = &. The term dWyyp for the singular region is

S T 2
W iaD _ i/ a T3(k-B)2 ¢, dr = LBQQS |2
2R 240 or 2u0 27 ( )
13.13

Equation (13.13) is the expression in the case of a cylindrical plasma. For
the toroidal plasma, Tag is replaced by 3'/%r,/(B2/pop)*/?, where 31/2 is the
standard toroidal factor (14 2¢?)*/? [13.5]. Therefore the total sum of MHD
contributions with m = 1, n = 1 is (assuming y7a¢ < 1)

B2 .
SWwinp + 81 = QWRﬁ|§S|2 <5WT + ’YTAH% + ”72712%))
0

~ Bgs 2 T f
~ 21R |&|7 (O + yTas . (13.14)
2[1,0 2

13.1.3 Kinetic Integral of Hot Component

The perturbed distribution 8F}, of the hot ion component is given by the gy-
rokinetic equation in the case of low beta and zero gyro-radius approximation
as follows [13.6]:

0
th —Sgb F0h+8Hh 5 |:’U| ol (w wdh):| SHh = I—Q(SQS ’UHSAH)

(13.15)
where 0/0l = b-V, 8A)| = (—i/w)08¢ /0l due to Ej = 0 [see (13.45)] and

v2 02 eB 0
EF=— =+ e = — = — «h | Fon ,

2 ’ M 28 ) W, m ) Q (waE +w h) Oh
. : 5 i\ m
Wdh = —I'Udh-v s Vdh = Ull + ? E(b X K,) s

~ . bXVFOh m 1 0

_ 1
h = — - — V~—n-——
Weh = Tlee T eBr Fop or

vqp is the magnetic drift velocity and |@qy| is the diamagnetic drift frequency
of the hot ions. kK = (b-V)b is the vector toward the center of curvature of
the magnetic field line and the magnitude is R~! (see Sect.2.4). 8¢ is the
scalar potential such that V8¢ = —iw& x B. When we set

SHy, = — 2 €086+ 8C, | (13.16)
wm
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we have

38Hh ,Cudh & 1 e 86(;5
8¢ — = —vj—- .
ol @89 w2m a1
Taking the average A = §(A/v)dl/ §dl/v| of both sides of the foregoing
equation yields

| = i(w — @Wan)0GyL +

j— —
w m

8G = —%Q L Sand (13.17)

W—Wgh W

and

Sandp 1 mvf +v1/2)
v  w eB
1 m(v? + 2 /2)
= —;T(b X K,)'w(g X B)
m(v? + o2 /2)

= ey =" = " pop,
e & e

(bx k)-Vdop

where

Uﬁ + 0% /2 (cos ¢, + sin 0)

T= -5 0f 407 /2) () &

v2 R
v+ /24-10
~ e & (13.18)
v R

(€ is incompressible).One notes that frequencies w, wqy are much smaller than
the hot ion transit and bounce frequencies v /R, 61/2’1)/(]R. For untrapped
particles (8Ghy,) and trapped particles (0Ghs), we have

J

w—djdh

G ~0,  8Gn ~2QFE (13.19)

The perturbed pressure tensor due to the hot ion component is
8P, = —&,-V[PLI+ (P — PL)bb] +8P .1 + (8P —8P.)bb, (13.20)

where

2
SPL = / m;l SFhQWULdULdU” s SPH = /m?)ﬁ&FhQ?TULdULdU” .

The first term on the right-hand side of (13.20) has similar form to the
pressure term of the core plasma. Since the beta of the hot ion component
Bn is much smaller than G, for the core plasma, the first term in (13.20) can
be neglected. Since E = v?/2, u = v% /2B and a = u/E are defined, we have

vﬁ =2FE(1 - aB), v? = 2BaFE
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BE E1/?
2mv  dv do) = 22r——dEda = 2*21B—————dadE .
| (1—aB)i/2

Then the perturbed pressure of the hot ion component reduces to

E1/2
=2%%7B / T ap)edlodE maBESE,

/
aB

E
da(1 — 31/2/ dEE3? 27
O‘( aB) = | 2(1 — aB)

8F,, (13.21)

E1/2
8P =278 / —————dadEm2E(1 — aB)3F,

(1—aB)l/2
B! E
—2Pmp [ da(-aB)? [apEPeR,. (1322)
B 0

The divergence of the second pressure term on the right-hand side of (13.20)
is
0(dP —dP,)

OdP ( - O(bab
(VSPh)BZZ WL(SOL[;JFZ Tbangr(&PH — 8PL) Z (856’ B)

88P g

+bg(b V)(SPH 6Pl)+(8pl‘ —dP)) [(b°V)b[j + bﬁ(VJ))] )

(VSPh)J_ =V.0P, + (SPH — 8PJ_)(b‘V>b =V 0P + (SPH — SPJ_)K,
(13.23)

(VSP}])” = V”SPJ_ + (bV)(SPH — 0P )+ (SPH —3dP,)V-b. (13.24)
The kinetic integral dWy is

Wi = %/ﬁ’i-VSPdr = %/5’1- {VLSPJ_ + (8P — SPJ_)’{} dr

_ —%/ [ V-£18P, — (3P, — 8P )€1 k| dr

E3/2
(1—aB)i2

v} U2| - UL/

X lv'ﬁi 902 - (&1-K)

= —23/27rm/drB/dadE

OF, .

Since V-£, + 2(&-k) ~ 0 [see (8.116)], the term in square brackets in the
integrand is
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’UH + 03 /2

v?

(€l-K)~ (£L K) .
Wk reduces to

23/2 Ed/? T*OE.J2
% = — 7rmh/d'rB/dosz J Qi
21 R 2R (1—aB)? - ou

1 E3/2 J*QFE.J2
= —25/27r2mh/drr—/d93/dadE J Qi
21 1 —OéB)l/2 wf(,:)dh

1+T/R E
27/%2mh/ drr/ /dEK g2 QS
1—r/R) w — @dn
2 s KQ
~~ 23/2w2mhg/ d7°7"/d(ozB)/dEE5/2—2 = @
R 0 Kb Wdh — W
B2
= S o (13.25)
where
dé 1 dé v dé cos 6
K = _— K = —_—
b 7{27r(1—aB)1/2 %27714 ’ 2 ,7{27r (1—aB)l/2

Therefore the dispersion relation (13.2) reduces to
iw AT A
—— +WT + Wk =0, (13.26)
wa
where wa = (7as/2)7! and 7 is replaced by —iw.

13.1.4 Growth Rate of Fishbone Instability

Let us assume a model distribution for slowing down hot ions with initial
velocity 12, /2 = Emnx:

d(a — ayp)

7 (E < Eu) - (13.27)

Fho = co

Then the pressure p, and the density ny of hot ions are

= [ 23/2 BL/Qd dE(mE)F
Ph = "B i oz de dEmE) Fio

Emx
_ 3/2 m _ 3/2
— co/o 2 7r37<1 — aOB)de =02 ? T BmK,Epy , (13.28)

Pn
232 BmKyEpy

(13.29)

Co =
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Emx 1/2
) E
ny = 2321 B———_dadER
h /T c (1—aB)/? ho

In(Emyx/Te)

= 02?7 BmKyEmx = pn 5

(13.30)
The kinetic integral is

Wk _ 2 3/2,2 5/2
m R2|£S| / dTT/dEQ mBE Kb

" [—(3/2)wcoE_5/2 — (aco/ar)(m/eBr)E_3/2]
mE/(2eBRr) —w

2 5 2 1
= 75 |€ "= / drr 2
R 2# T K me

Emx _(3/2)3n — 2(0By/0r)R(mE /2e BRrw)
x / dE : mE/(Q};BRrw) 1

r2 B
= d
R? 24 €] r2/ nr K Wdh,mx

Y dy 3ﬁh ydy
X( 56}1/@ y—1 3TR/y—1

B2‘ ™ K2 3 w w mx
= Dhjg PR2d — D) ——In (1 - )
0 2 Wdh,mx w

00 w Wdh,mx
9 <87’> R [1 o (1 - w)] } . (13.31)

As the second term of ((08n/0r))R is dominant, the dispersion relation re-
duces to

2
dehmx +8WT+W£ <_M>R[1+an (1_}2>} =0, (13.32)

WA K2 or

where

w _ omuk /2
N = ) Wdh,mx =
Wdh,mx eBRr

Let us consider the case 8W™T = 0. Then (13.32) is

Pn
, Bn= .
y B2 /20

2

—1
ap = Li:l[;mx (WKSK{‘; <—aaﬁrh> R) )

1
—iap 2+ 21n (1— ) +1=0, (13.33)

where
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Fig. 13.1. Toroidal precession of banana orbit of trapped ions

Under the assumption (1 —1/62,) < 0 and |£2;] < 2], (13.33) reduces to

. . : 1 : 2 .

—]O[h(.Qr —+ I.Qi) -+ (Qr + I.Qi) |:1n <(2r — 1> —+ T — ml -+ 1 = 0 .
(13.34)

From the real and imaginary parts of (13.34), we have

T — Qp
= 2, 13.35
(/% 0+ [ ()] (1.35)
1— (1 — an)

_1-(m—aw) (13.36)

Yo —In(1/92, 1)
In the case of a marginally unstable state m = ay,, that is, 2, = 0, {2, is given
by
1 1 1

1
o= T TrepCla) 2 (1 - tanh mr) ’

and (2, =~ 0.75. A necessary condition for the excitation of a fishbone insta-
bility is £2; > 0, that is, ap < 7 and

0P o s Wb, 1 K}
——— )Ty > = —=—=.
or R WA 2 K22

There is a threshold for (|08 /0r|)rs for the instability.
Banana orbits of trapped ions drift in the toroidal direction, as shown in
Fig. 13.1. The toroidal precession velocity and frequency are'

02, =

! The toroidal vertical drift velocity is vqa = muv? /2eBR, so that the poloidal
displacement of particles between bounces is 786 ~ vq74, Ta being the bounce
period. Since d¢/df = g along the magnetic field line, the associated toroidal
displacement between bounces is Rd¢ = Rquata/r, ¢ = 1. Thus the toroidal
precession velocity is given by (13.37).
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; ~mw? /2 " i /2
*~ “eBr ¢~ eBRr

Therefore wqn mx is equal to the toroidal precession frequency of trapped ions
with the initial (maximum) velocity. It seems that the fishbone instability
is due to an interaction between energetic particles and the m = 1, n =
1 MHD perturbation. The interaction of resonant type is characterized by
Landau damping. The resonance is between the toroidal wave velocity of the
instability and the toroidal precession of trapped energetic particles.

(13.37)

13.2 Toroidal Alfvén Eigenmode

Alfvén waves in a homogeneous magnetic field in an infinite plasma were
discussed in Sect.5.4. Shear Alfvén waves and fast and slow magnetosonic
waves appear. In the case of an incompressible plasma (V-£€ = 0 or specific
heat ratio v — 00), only the shear Alfvén wave can exist.

In the case of a cylindrical plasma in an axisymmetric magnetic field, the
displacement of the MHD perturbation &(r, 6, z) = &(r) expi(—mé+kz—wt) is
given by the Hain-Liist equations (8.103)—(8.106), as discussed in Sect. 8.4. In
the case of an incompressible plasma, the Hain—Liist equation (8.106) reduces
to [recalling that the perturbation is assumed to be &(r) expi(mf + kz — wt)
in Sect. 8.4]

d (F?— popmw®\ 1 d 4 (5
a4 (”OP> GO R { — (F? = popmw?) + 2By — <9>

dr \ m?2/r2+k% ) r dr \ r
k2 B2 F? d [ (m/r)FBy
t 553 N2 _ IRl e v wae 2 & =0,
r2(m?/r2 + k2)(F? — popmw?) dr [r2(m?/r2 + k?)
(13.38)
where
m n B, m _RB;

F=oB) = <250+ 5500 = - ) an =222

The position at which F? — pgppmw? =0 — w? = kﬁvi, v = B?/p0pm holds
is the singular radius. It was shown by Hasegawa and Chen [13.7] that, at this
singular radius (resonant layer), the shear Alfvén wave is mode-converted to
the kinetic Alfvén wave and absorbed by Landau damping. The Alfvén wave
is therefore stable in the cylindrical plasma.

Alfvén waves were also treated in Sects. 10.4.1 and 10.4.2 using the cold
plasma model. The dispersion relation in a homogeneous infinite plasma is
given by (10.64c), showing that Alfvén resonance occurs at w? =~ kﬁvi and
that the compressional Alfvén wave and shear Alfvén wave cutoffs occur at

w? = kﬁvi(l +w/ ) and w? = kﬁvi(l — w/ (), respectively.
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13.2.1 Toroidicity-Induced Alfvén Eigenmode

Let us consider shear Alfvén waves in a toroidal plasma and the perturbation
of the (—m,n) mode given by

&(r,0, 2, 1) = $(r) expi (fme n n% - wt) : (13.39)
where R is the major radius of the torus and
kB _ 11, _—m
B R q(r)

The resonant conditions of the m and m + 1 modes in a linear cylindrical
plasma are

ky =

w2 w2

k2 = k2 ., =0.
0T~ Fim = o Kl

However, the m mode wave can couple with m £ 1 in a toroidal plasma since
the magnitude of the toroidal field changes as B, = B.o[1 — (r/R) cosf], as
will be shown later in this section. Then the resonant condition of m and
m + 1 modes in a toroidal plasma becomes

w2 k w2
lm. CEGT
U U —0
w? w? 7
k2
CEG’UT 'Ui ”m+1
A A

where € = /R, and « is a constant of order of 1. Then the solutions are

1/2
, ) 2 212 1.2
ﬁ k\lm + k”m—&-l (ka k”"”"‘l) - dac kaka_A,_l (13 40)
U?& = 2(1 — a262) . .

The resonant condition (13. 40) is plotted in Fig. 13.2.
At the radius satisfying ka kﬁm 41 the difference of wy becomes min-
imum and the radius is given by

1
2q(T0)R '
q(rp) = 1.5 for the case m = 1 and n = 1. Therefore Alfvén resonance does
not exist in the frequency gap w_ < w < wy.

The continuum Alfvén waves correspond to excitation of shear Alfvén
waves on a given flux surface where the mode frequency is resonant w? =

kﬁm % (r), and such a resonance leads to wave damping. However, frequencies

Kijm = —Fjms1 =



226 13 Instabilities Driven by Energetic Particles

[

w

vi

qa”)

Fig. 13.2. Alfvén resonance frequency w of toroidally coupled m and m + 1 modes

excited within the spectral gaps are not resonant with the continuum and
hence will not damp in the gap region. This allows a discrete eigenfrequency of
the toroidicity-induced Alfvén eigenmode or toroidal Alfvén eigenmode (TAE)
to be established. This TAE can easily be destabilized by the kinetic effect
of energetic particles.

The equations of the TAE will be described here according to Berk, Van
Dam, Guo, and Lindberg [13.8]. The equations of the first-order perturbations
are

V.3, =0, p% = (g x B)1, (13.42)
E,=V¢, — 6(;:1 ., Bi=VxA. (13.43)

For ideal, low beta MHD waves, we have the relations
E =0, B, =0, Ay =Apb, (13.44)

so that B xb
iwA; =b-Voy, v =—p (13.45)

From (13.42), we have
Vg1 +V-(jjib) =0 (13.46)
and
—iwp(vy xb)=(j 1 xB)xb+(j x B1) xb,
iwp

. J
jin=—75Bu+ %BM . (13.47)
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Equations (13.43)—(13.45) yield

A A
BM:VX(A”lb):V F XB+BV x B

b-Vo,
~ —wv< e ) x B, (13.48)

. . 1
Jjn=b3,=—bVxB,,
Ho

:—;b-Vx B?V m XE
e [ )

WhiQ B2 B2
i B 2 B-V¢
“ () [ (557
_ i 2 B-V¢,
e[, (2] w5

Then (13.46)(13.49) yield
w1 I in g
0=V-. <1’u/0UiVL¢1> +V (BBL1> +V ( B ,
2 .
0=V- (ZQle) + 1oV <]> BxV [(Bv)ﬂ
A

B2

+(B-V) {Blzv. [B2Vl. (B'vilﬂ} . (13.50)

When coordinates (R, ¢, Z) and (r, 6, () are introduced by

R = Ry +rcosb Z =rsinf , cp:—%,

with the notation

Z Om (1) expi(—mb + np — wt) ,

(b°V)¢m = RLO |:TL - C]{En’l“):| Om = 1k\|m¢m ,
_Ll_m _ Om
e 1 R =

equation (13.50) reduces to [13.8]
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40 L m=1 -
3.0+ i
Em [ -
20+ 4
m=2
1.0 | E
0 0.5 1.0
rla

Fig. 13.3. Left: toroidal shear Alfvén resonance frequencies {2 corresponding to
(mn=1,m=1and (n = 1, m = 2), q(r) = 1+ (r/a)?, a/R = 0.25, 2 =
w/ [vA(O)/Ro} . Right: structure of the global mode amplitude as a function of radius
[13.8]

d[g/w? 5 \dE,] 5. d [(w)’
=S (L Som |y 2p, S (2 13.51
0 dr {T (vi k”m> dr } T " dr \va (13.51)

of W\ 2r (dEpia L 4B
Y e Bl
va ) Ry dr dr
As can be seen from Fig.13.3, the mode structure has a sharp transition of

m = 1 and m = 2 components at the gap location. Therefore m and m + 1
modes near the gap location reduce to

W—Q—k‘Q LEm—i—z—r “ QdEmHzo
V3 lm ) ar Ry \va dr ’

ST By | 27 (@ QdEmzo
V3 llmt1 dr Ry \va dr ’

so that the toroidal shear Alfvén resonance frequency is given by
2 2
w 9 w
(7-)  =(3)
w\? w?
2
() (tn)

When the Shafranov shift is included in the coordinates (R, ¢, Z) and (r, 6, (),
the coupling constant becomes 2.5¢ instead of 2¢ [13.8].

The energy integral from (13.51) without the coupling term of the m + 1
modes reduces to the following equation by partial integration:

2 d
—(m2=1 v o_ k2 E, + —
(m”—1) v3 m | TEm dr

=0. (13.52)
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a 2 2
G(w, Ey) = P/ drr{ lrz (dEm> + (m? - 1)E?, (wZ - klzm)
0 dr vx

- erEfndg}
dr v¥
= En(r5)Cm(r5) = En(r5)Cn(r) (13.53)

where )

w dE
Cn(r)= =5 — K 2 Eml(a)=0.
0= (5 ) P52 Ealo)
The radius r = ry is the singular radius at which (w?/va)? — k‘gm =0 and
P denotes the principal value of the integral. From this formu{ation, it is
possible to estimate the damping rate of TAE [13.8]:

ow . sgn(wo)Chp (15)?

—_— == . 13.54

w SO (e Y[, 9C o0
s or V% llm ‘”Oawo

Since wpdG /0wy > 0, we have Im(dw) < 0. This is called continuum damping.

13.2.2 Instability of TAE Driven by Energetic Particles

The dynamics of energetic particles must be treated by kinetic theory. The
basic equations are those due to Betti and Freidberg [13.9]:

0f; 4
87;+U‘fJ+m7]j(E+v X B)°V'U.fj =0 ’ (1355)
% bV (nyuy) =0, (13.56)
0
mj o (nju;) + VP = gy (E + u; x B) | (13.57)
P; =my /v'vfjdv , (13.58)
B, =V x (¢, xB), (13.59)
toj1 =VB1 =V xVx(, xB), (13.60)

jl XB+j3xB;= Z [VPU — iwmj(mjuj + le’u,lj):|

J

~ > (VP —pty;) . (13.61)
J
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F; is the equilibrium distribution function of the axisymmetric torus. F} (e, p,)
is assumed to be a function of the constants of motion € and p,, where

.
e= v +q0,  po=mjRu,+qv, ¢=RA,,

W RB. - ¥
OR’ E= 757"

The first-order perturbation f;; of the distribution function is

RBz =

afl] q;
B)Vofi; = Y (Bt vxB)V,F
B oty + (0 B9,y =~ (B 4o < BV,
and
ap, OF, OF, OF, OF,;
= pPe OF U R e S
Vol =@ ap, T (Ve e = emalin A mivy

The solution is obtained by integrating along the particle orbit:

t
.
fo=-2 [
mj J—co

It is assumed that perturbations have the form

(E + v X Bl)-VvFjdt’ .

Q1= Q1(R, Z) expi(ny — wt) .

(13.62)

(13.63)

(13.64)

(13.65)

The second term m;v(0F;/0¢) on the right-hand side of (13.64) contributes

to the integral

mj J—co

The contribution from the first term m;R(9F};/0p,) is

t t
g LOF; / ‘ (23]
: UOOE«,mJRa dt'+ | msR(ox By, oo ar'

oot
_qiﬂ/ (E—{—val)va% / E-vdt' .

. t
(p — 00
aFj 1 8 ) R) , t n 1 /
q]apw{ B T +/_Oo S(E) = —(v-V)(E,R)| dt
_ 3Fj 1 d(EuR) ., oy )
~ o, [ T oar o +[m (v-E)dt'| .

The solution is
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OF; OF; OF} ,
= E, E. . 13.
f1; {apr + ( B +n &%)/ ( v)dt] (13.66)
Since
EJ_ x B

Ey =0, —iwg = E, =iw(§, xB),

Bz
RE(,D = iw(éL X B)LPR = iw(flRBz — flzBR)R = —iw(f-Vw) s

d
Ev=iw(¢, x B)w=—iw¢ (v x B) = —iw¢ | - My v
Qj dt

_ & dv . my d(§,-v) d€,
=ty “ [ at U |

f1j becomes

OF; OF; OF; t d
fij q]a (5 V¢)+1mg ( 86]_’_71({9]);) (El-v—/ (ildt)

I OF:
= 0, Timi(w - wy) S (€rv—s5), (13.67)
where
_ [ .06 _ ndF;/op,
s; reduces to
tTy2 v2
8j :/_ [;V{L + (2 - v|> & n} dt’, (13.68)

as will be shown at the end of this section. The perturbed pressure tensor is
15 = /mj'vvfljd'u = Pu_j] + (PlHj - Pu_j)bb , (1369)

and VPy; is given by (13.23) and (13.24). Then the equation of motion is

—pw?€, =F1(€,)+iD1(€,), (13.70)

Fi(§,)=j1xB+jxB1+V(§,-VP), (13.71)
] 2 OF;
D, (&)= mj/ |:%VJ_ + (v2| — 7};) K,:| mj(w — w*j)ﬁ—ejsjdv . (13.72)

F(&)) is the ideal MHD force operator for incompressible displacement.
D (&) contains the contribution of energetic particles. Equations (13.70)—
(13.72) describe the low frequency, finite wave number stability of energetic
particle Alfvén waves in an axisymmetric torus.
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The energy integral of (13.70) consists of the plasma kinetic energy nor-
malization Ky, the ideal MHD perpendicular potential energy 8Wyup, and
the kinetic contribution to the energy integral 6Wx:

w? Ky = 8Wump + Wk , (13.73)

where

1 1
Kyv = §/p|§J_|2d7’ ) SWnnp = 2 /é.jFl(éL)dr

s -4 €11 €,

After a simple integration by parts, 0Wx can be written as

- dst
Wik = = Z/w w*] Y dtfd vdr (13.74)

ds* 1]2 " 1}2
ditj =m; [;VL{ + (; —v|> £J_-h:] .

On the other hand, ds}/dt is given by

since

45 Ds’ v B)-V,
Fre j+Dsj, =(vV)+ m; L (v x B)-
With the notation s; = a; + ic; (a; and ¢; real), we have
ds?

. x . 1
sjd—tj = iw*[s;|* +i(c;Da; — a;De;) + =D(aZ 4 ¢3) .

2

The contribution of the last term to the integral (13.74) by drdwv is zero,
since F; and w,; are functions of the constants of motion € and p,, and

Wk = Z/ w*J (1¢ul|sj\2 + R;)dvdr ,

Rj = chaj — achj — wr|sj|2

The desired expression for the growth rate is obtained by setting the real and
imaginary parts of (13.73) equal to zero:

2 5”MHD
wr =
Kwm

+0(8). (13.75)

O(p) is the contribution of the R; term. In the limit w; < w;, the imaginary
part yields
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Wk .
Wi & — Wk = lim E (w— w*] w1|sj|2dvdr
KM wi—0 4wr

(13.76)
Let us estimate (13.76). Since V£, +2£ -k ~ 0 [see (8.116)], s; is

' >, Vi ' > vt &r

where » i " i
Er = & cosf — Egsinf = & 0 — —gyS "
2 2i
Recalling that
19(r&,
v 2208 yme o,
r  Or r

& and & are

gr — Zé‘m(r)e—imﬂ , 69 — _IZ we—ime ]

m

Since the leading-order guiding centers of orbits of energetic particles are
given by

r) =rt), 6(t)=

v Be

E 0500, et) =L -0+l

perturbations along the orbit become

expi| —ml(t') + np(t') — wt']
= exp [i (—TBB: o)+ % - w) (t — t)} expi| — mO(t) + np(t) — wt]

=exp [ —i(w —wp)({t' —t)] expi[ — mO(t) + np(t) — wt] ,

where
Lo, m
and
m;(vd 4+ 03 /2) 1 _ _
55 = H—§ Z Em—1+ Emt1 — 1o(m—1) + i&o(m+1)]
0
X expi(—mb + ny — wt) / exp [ — i(w — wp,)t"]dt”

= 1% (’UI2 + U;) Z |:§m 1+ fm-‘rl ((TfLm— 1)) i(T§m+1)/(m + 1)

m

[exp i(—imf + np — wt)} (13.77)

(W — wm)
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It is assumed that the perturbation consists primarily of two toroidally cou-
pled harmonics &, and &,,,; and that all other harmonics are essentially
zero. Strong coupling occurs in a narrow region of thickness ~ ea localized
about the surface r = ry corresponding to g(ro) = (2m + 1)/2n = qo. The
mode localization implies that £/, ; terms dominate in (13.77). Substituting
these results into the expression for s; and retaining only those terms which
do not average to zero in 6 leads to the expression

2 2
PR P o TSN S W
J 4R\ 2 m+1)2 " m?2 |\|w—wnl®  |w—wnil?/)’

since wm+1 = —wp, and w12 = —wiym—1. Ky is given by
308 [ (16 | lEneal?
Ky = 20 m mill_ | dp 13.78
M 2/{m2+(m+1)2 " (13.78)

Using the relations w, = kjva, k| = 1/(2q0R), g0 = 2m + 1/2n, we obtain
the following expression for the growth rate:

2 2 2\ 2
wi . Ho™m5qg v OF; n OF;
—1 J 2, VI I O
kjva WalgO; 2B? /(v|+ 2) \"ac T g o0

x( i . )dv. (13.79)

|w—wm|?  |w—wmn-1]?

Using the formula lim. o [*_&/(2* + £?)dz = , a short calculation to find
the integral with respect to v yields

Wi 27T2/l0m?ng 9 ’Ui 2 8Fj n 8Fj
= _— _— r—— _—— d
kHUA ; 2B2 / ’U” * 2 v Oe + qj 31/1 vLavL

V| =vA

(13.80)

’UH:’UA/3

Note that w,, = v/(2@R), wm-1 = 3v)/(2q0R), wr = va/2qR. Equa-
tion (13.80) gives the TAE growth rate for an arbitrary distribution function
F;(e, ). The second term of (13.80) is due to sideband resonance.

The growth rate is easily evaluated for a Maxwellian distribution

mj 3/2 ijQ
Fy =n, (27TT') exp (— 5T ) .
J J

Here n; = n;(¢) and T; = T} (1)). Some straightforward calculation leads to

. HY +n;Jr.
Wi 2 T mj n] mj
=—q@28; | GL . — ngyo, —2—7ma | 13.81
</€||’UA>j qoﬂ] < mj — 1400 1+n; ) ( )
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where

n;T; dp;/dr m;uT, dInT;
B = =2 | 05 = —TLp, J y TLp, = z ;= .
7 B2 /2u J Le Dj P q; Bp = i n;

Each of these quantities is evaluated at r = ro. The functions G7),;, H,,; and
JT ; are functions of a single parameter \; = va /vr; (vr; = 27)/m;) and are

given by

71'1/2 _y2
G = Imi(X5) + 9m; (N /3) 5 g (N) = ——A( + 207 +2)))e ™

1/2

™ 2
Hppi = hoi () Hho (A /3) o hpi(Xg) = T(1+2A§+2A§)e Ai (13.82)

1/2 )
TR = )+ I A /3) s R y) = T (3/2 4+ 202 4 A+ 2X8)e N
J J J J J 2 J J J

For alpha particles it is more reasonable to assume a slowing down distribu-
tion

A
7+ R

2
Fy = <0 <v<ug, m";a =35 MeV> . (13.83)

A and vg are related to the density and pressure as follows:

2 2
Na _ NaMavy /2 m;vg

Ax 47 In(va fvo)’ Pa 31n(va /vo)’ 2

~ KTj.

After another straightforward calculation we obtain an analogous expression
for the alpha particle contribution to the growth rate:

Wi
(’WA)G = —q35a (Gay — nqodatly) (13.84)
where
Pa 2 dpg/dr MqUq
= 0g = —— = —.
ﬂa B2/2MO ) a 3rLa Pa ) TLpq anp

The functions G, and HJ are functions of the parameter Ay = va/vq and
are given by

3
G;Fa = g;r(Aa) + gsT(/\a/3) ) gsT(/\a) = E)\a(3 +4Xg — 6)‘3 - /\ﬁ)H(l — ) »
3

HE = 1E00) + BT 0a/3) . W 00) = T2 (14632 — 4N = XD H(1 = )
(13.85)
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H(1 — )\g) is the Heaviside step function [H(z) = 1 for x > 0, H(z) = 0
for < 0]. The final form of the growth rate is obtained by combining the
contributions of ions and electrons in the core plasma and a particles:

= —q3 [BiGr;i + BeGrhe + Ba(GH — ngodaHY)] (13.86)

where 3;, . and 3, are 3; = n;Tj/B? /20 of ions and electrons of the core
plasma and a particles. The contribution of ions and electrons in the core
plasma is to Landau damping. The marginal condition for excitation of TAE

is ar
1 1 Gg
—ﬂ (\) , 0g > —2 .
nCIOéa _GT anHS’E

Ba > (13.87)

Equation (13.68) is derived as follows:

d£ _ Uidfi _ a& Jrzvz ’UV leiwvi§i+Zvivj{i§i,
2,]

dt - dt

7 7 7

v = v b+ vy cos(f2t)ey — vy sin(02t)(bxéy),

70 = vﬁbb + 02 cos(2t)2&, &) +v3sin(2t)2(bx &, )(bx é])
= (v} — 03 /2)bb + (v /2)[bb + eLéL + (bx eL)(b x él)]

= (vﬁ — 02 /2)bb + (v2 /2)1

- 06
v-—€ = —iwoy€y + (v} /2) V€ + (vf —01/2) Zbibji? ’
at . Ox;

9]
5 (bb 86 +b§z > :E bj%(fibz‘),
i,j J

4,3

Zb b; ‘95’ = —&(bV)b+ (b-V)(£:b) = —k-€ + (b-V)E
TE 2
n = (01 /2)V-£+ (v /2 - vj)k-€ — iwv ) + (U|| - UL/2)

Since [§| < [£, |, we obtain

0. 38
dt

35n .

= (V2 )2) V€ + (v2 )2 — Uﬁ)K°EL Tage i 4.

The third term is rapidly oscillating and the contribution to (13.68) is small.
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25 [T .-1..|'Tﬂm5

Fig. 13.4. Representative shear Alfvén frequency continuum curves as a function
of minor radius r [13.15]. Horizontal lines indicate the approximate radial loca-
tion and mode width for the toroidal Alfvén eigenmode (TAE), kinetic TAE mode
(KTAE), core-localized TAE mode (CLM), ellipticity Alfvén eigenmode (EAE),
non-circular triangularity Alfvén eigenmode (NAE), and energetic particle contin-
uum mode (EPM)

13.2.3 Various Alfvén Modes

In the last section we discussed the excitation of weakly damped low-n TAE
by super-Alfvénic energetic particles. High-n TAE is analyzed in [13.10].
There are various Alfvén modes.

In high-temperature plasmas, non-ideal effects such as the finite Larmor
radius of the core plasma become important in the gap region and cause the
Alfvén continuum to split into a series of kinetic Alfvén eigenmodes (KTAE)
at closely spaced frequencies above the ideal TAE frequency [13.11].

In the central region of the plasma, a low-shear version of TAE can arise,
called the the core-localized mode (CLM) [13.12].

Non-circular shaping of the plasma poloidal cross-section creates other
gaps in the Alfvén continuum, at high frequency. Ellipticity creats a gap at
about twice the TAE frequency, within which there are ellipticity-induced
Alfvén eigenmodes (EAE) [13.9]; likewise for triangularity-induced Alfvén
eigenmodes (NAE) [13.9] at about three times the TAE frequency.



238 13 Instabilities Driven by Energetic Particles

The ideal and kinetic TAEs are ‘cavity’ modes, whose frequencies are
determined by the bulk plasma. In addition, a ‘beam mode’ can arise that is
not a natural eigenmode of the plasma, but is supported by the presence of
a population of energetic particles, and also destabilized by them. This so-
called energetic particle mode (EPM) [13.13], which can also exist outside the
TAE gaps, has a frequency related to the toroidal precession frequency and
poloidal transit/bounce frequency of the fast ions. The beta-induced Alfvén
eigenmode (BAE) [13.14] exists in the beta-induced gap. The schematic in
Fig.13.4 illustrates these different modes.

Close interaction between theory and experiment has led to many new dis-
coveries concerning Alfvén eigenmodes in toroidal plasmas. A great deal of
theoretical work has been carried out on energetic particle drive and compet-
ing damping mechanisms, such as continuum and radiative damping (mode
conversion and Landau damping), ion Landau damping for both thermal and
fast ions, electron damping and trapped electron collisional damping. For
modes with low to moderate toroidal mode numbers n, continuum damping
and ion Landau damping usually dominate, whereas high-n modes, trapped
collisional damping and radiative damping are strong stabilizing mechanisms.
There are excellent reviews on toroidal Alfvén eigenmodes in [13.15,13.16].
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What a plasma really is is a collection of a very large number of indi-
vidual charged particles, all interacting with each other through mu-
tual Coulomb forces and through the electric currents associated with
their motion, while at the same time interacting with (and thereby
modifying) any electromagnetic fields of external origin. It is this
property of collective long-range interactions, of plasma with itself
and of plasma with its electromagnetic environment, that gives rise
to the great complexity of its behavior. (From R.F. Post [14.1])

The use of computers as an aid to understanding the complex nonlinear
behavior of turbulence, such as mode—mode coupling, nonlinear saturation
and self-organization, has continued to grow and has become a dominant
factor in the theoretical component of plasma research. The evaluation of the
saturation level of perturbations is essential in the study of plasma transport,
which is very difficult to estimate in an analytical way.

However, computer simulation of plasma presents many difficulties. It is
a numerically tough problem, since plasma behavior contains a wide range of
length and time scales (see Sect.2.9):

— resistive diffusion time g ~ 103s,

— Coulomb collision time 7¢; ~ 0.1 ms,

— MHD Alfvén transit time 7 ~ 0.1 us,

— ion and electron cyclotron periods 7¢; ~ 301ns, Tce ~ 7S,
— electron plasma oscillation period 7, ~ 10 ps,

— mean free path Ag; ~ 10km,

— plasma radius a ~ 1m,

— Larmor radii p¢; ~ 3mm, pee ~ 50 1m,

— Debye length Ap ~ 70 um for typical fusion grade plasma.

Owing to these difficulties, simulations including all the relevant physics are
not possible even with the help of the most advanced computers, at least in
the near future. It is therefore necessary to use numerically feasible approx-
imate models while retaining the essential features of the relevant plasma
dynamics.

In this chapter, we provide a brief introduction to MHD models, the lin-
earized kinetic model, the gyrofluid or gyro-Landau-fluid model, the gyroki-
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Fig. 14.1. Unstable global n = 1 mode [14.6]. The singular surfaces ¢ = 2,3 and 4
are visible because of the peaked shear velocity on them. go = 1.35, 8 = 3%

netic particle model, and the full orbit particle model. Numerical algorithms
for simulations are not discussed here. Readers should refer to the excellent
textbooks [14.2-14.4] and references therein.

14.1 MHD model

The first requirement for confined plasma is an ideal MHD stability. To study
the linear growth rate of MHD instability, a variational method with the
energy integral

L= /éof(&dr fwz/pmﬁgdr (14.1)

is used to evaluate the eigenvalue of w?. The energy integral is described
in (8.45)-(8.48) in Sect.8.2. The linear growth rate is v = (—w?)/? when
w? <0 [€(r,t) = &(r) exp(—iwt)].

To solve the eigenvalue problem, the regular finite element method is
used in ERATO code [14.5] to avoid the introduction of spurious modes of
numerical origin. Troyon et al. [14.6] evaluate the maximum growth rates
of MHD instabilities in many cases for an elongated tokamak plasma and
derive the beta scaling on the upper limit of the stable beta value 8.(%) =
BnI, [MA/a(m)Byi(T)] (see Sect. 16.4). Figure 14.1 shows the poloidal plasma
flow associated with an unstable mode which develops when ( exceeds the
limit.
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Fig. 14.2. Time development of the 3D profiles of the plasma pressure and magnetic
field lines in the simulation of internal reconnection events in a spherical tokamak
at the initial time (left) and ¢t = 1977a (right) [14.11]

In the Princeton Plasma Physics Laboratory, the PEST code [14.7] has
been developed, in which £ is approximated by a linear superposition of finite
linearly independent expansion functions. With this expansion, the calculus
of variations for the energy integral reduces to a matrix eigenvalue problem.

The other method to study the MHD behavior of plasmas is to solve
the MHD equations of motion under the appropriate initial and boundary
conditions. An example of the full nonlinear MHD equations is:

dp
% —=V-(pv),
dpv . 5 1
Tl —V:(pvv) = Vp+jxB+u|Vv+ gV(V-v) , (14.2)
0B 0 .
5 = V*E, 8_It) =—V-(pv) — (v = )pV-v+ (v = D)(nj* + P),

1 1
j=—VxB, E=-vxB+nj, @EQM[eijeji—g(V"U)Q} s

Ho
0 = 1 8’Ui + 6’[}]'
E 2 8.173' 83:1 '

The p terms in the equations represent the viscosity effect and @ is the viscous
heating source term. The other notation is the same as in Sect. 5.3.

The phemonena of the dynamo and the reconnection of reversed pinch
plasma (RFP) are analyzed in [14.8,14.9]. High beta disruption in tokamaks
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is studied using the MH3D code [14.10] and nonlinear behavior of internal
reconnection events in spherical tokamaks (very low aspect tokamaks, see
Sect. 15.4) is simulated in [14.11]. Internal reconnection in a spherical toka-
mak is visualized in Fig. 14.2. In this simulation, the numerical grid consists
typically of 128 x 64 x 128 points in r, ¢, z coordinates. The time step is
At = 7o /27, 7o being the Alfvén transit time encircling the magnetic axis.

14.2 Linearized Kinetic Model

The fundamental equations of the linearized kinetic model are the Maxwell
equations with the dielectric tensor of a hot plasma:

V xE=iwB, eoV(K E) = pext ,
iw .
VXB:igK.E+MOJCXt7 V-B=0,
VXV XE—-wKE=iwijey (14.3)

where K is the dielectric tensor given in Sect.12.3. The vector ik appearing
in the tensor K should be replaced by the operator V.
In terms of vector and scalar potentials (A, ¢), the Maxwell equations are

B=VxA, E=-V¢+ivA,

w? iw .
-VxVxA+ C—QKA + C—QK Vo = —10F ext » (14.4a)
1
V-(KV¢)—iwV (K A) = ——poxt , (14.4b)
€0
V-A=0.

It is possible to treat the phenomena associated with Landau damping or
amplification and mode conversion using this analysis.

Ton—ion hybrid resonance in ICRF (see Sect.12.4) is analyzed using the
LION code [14.12], applying the finite hybrid element method to the varia-
tional form of (14.3). Alfvén waves are analyzed using the PENN code [14.13],
applying the standard finite element method to the variational form of (14.4a)
and (14.4b) without introducing spurious modes of numerical origin. Hydro-
gen minority heating in deuterium majority plasmas is studied using the
PION code [14.14]. Two-ion hybrid resonance heating is studied using the
TASK /WM code [14.15].
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m=13,14,15

02 04 06 08 1

[8 P(r) dr

DI.4 0‘.6
MINOR RADIUS s

Fig. 14.3. Wave field of n = 3 (toroidal mode number) kinetic Alfvén waves and
the integrated power transfer from AEs to particles in the region from r = 0 to
r = s for an optimized tokamak reactor with deeply reversed magnetic shear and a
large central safety factor qo = 4.5 [14.16]. A negative value of the integrated power
transfer means that AEs are excited by the particles. The critical energetic particle
pressure for marginal stability is calculated here to be Btst < 0.1%

14.3 Modeling Bulk Plasma and Energetic Particles

Alfvén eigenmodes (AEs) can be excited by energetic particles such as
fusion-produced alpha particles or energetic ions due to NBI or ICRF (see
Sect. 13.2).

When analyzing Alfvén eigenmodes with the PENN code [14.16], the bulk
plasma of the tokamalk is treated using the kinetic wave equations as described
in the last section and the energetic ions are treated using the gyrokinetic
Vlasov equation. The power transfer is calculated perturbatively from a global
eigenmode wave field E and the current density j,,; estimated from the non-
adiabatic part of the perturbed distribution function. The power transfer P
is obtained from

1
pP= 5Re/jm-E*dv.

Figure 14.3 shows the wave field of toroidal mode number n = 3 kinetic
Alfvén waves and the integrated power transfer from AEs to particles in the
region from r = 0 to r = s for an optimized reactor with deeply reversed
magnetic shear and a large central safety factor ¢p = 4.5.

In the TASK/WM code, the bulk plasma is treated using the kinetic wave
equations and the effects of energetic ions are calculated from the drift kinetic
equation [14.17].

In the NOVA-K code [14.18], thermal ions and electrons of the bulk
plasma are treated using the MHD or moment equations of the gyrokinetic
Vlasov equation. The perturbed pressure due to energetic ions is calculated
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Fig. 14.4. Time evolution of total TAE (toroidal Alfvén eigenmode) energy and
energetic ion distribution peak value for v = va [14.19]

using the gyrokinetic equation and combined with the perturbed pressure
terms from the bulk plasma.

A kinetic-MHD hybrid model [14.19] describes the bulk plasma using
the full nonlinear MHD equations and includes the effect of energetic ions
through the current j/, due to the energetic ions:

jgz/(v||b+vd)fad3v+VxM, M:—/ubfad%)’

where p is the magnetic moment, vq is the curvature and VB drift veloc-
ity. The distribution function of energetic ions f, is calculated from the 4D
(R, ¢, z,v) Fokker—Planck equation, where v is the parallel component of v.
The momentum equation for bulk plasma (14.2) reduces to

Ov 1
— + (v-V)v| = V><B—"a>><B—V :
o5+ o] = 7 ’

This simulation reproduces some aspects of the experimentally observed pe-
riodic burst of Alfvén eigenmodes, as shown in Fig. 14.4.

14.4 Gyrofluid/Gyro-Landau-Fluid Models

In the derivation of the gyrokinetic equation, the fast time scale associated
with the gyromotion of charged particles is asymptotically removed from the
kinetic equation. The resulting gyrokinetic Vlasov equation is therefore sim-
pler to solve than the full kinetic Vlasov equation, since it is independent of
the gyroangle phase space coordinate. By multiplying the gyrokinetic Vlasov
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equation by an arbitrary gyrocenter phase space function and integrating
over the velocity phase space, we obtain formulas for the gyrofluid model.
The electrostatic gyrokinetic Vlasov equation for the distribution function
F(R,v, p,t) of the gyrocenter position R, the parallel velocity v, and the
magnetic moment y = v3 /2B is

BC(F) = %(FB) +V. [FB(va o+ vd)}
a?q {FB|-Zb-91o0ub-V B + v (b-Vb)-vs| | . (145)

where C'(F') is the collision term for the test species with other species. The
magnitude B of the magnetic field is the Jacobian of the transformation from
the (v, v1) variable to (v, 1). Since finite Larmor radius effects are retained,
the particles feel the gyroaveraged E x B drift vy = (bx Jo®)/B, where Jj is
the Bessel function of (k v, /2). vq is the curvature and V B drift velocity.
The gyrokinetic Vlasov equation (14.5) reduces to [14.20]

0

_ 9 rpy 1 v, (FBu FBJy) + 2FBJy—iwy®
—a( )+ \—5 + v+ ( 0) + Oflwd

4 FB(} + uB)
v

OF, OF, (uB
~-‘v, (J0¢B°> + S @B (“2 = 1) V,InB
m v m ov \ vf

%wd(FBJl@lﬁvl /20) +

—pB 88 (FB)V InB — ;(FBJOUH) iwqg® , (14.6)
Y| Y

where vy = b x V&/B and iwq = (v4/2?)B x VB-V.

Taking an integral of the form n(A) = 2x [ dv duFBA leads to moment
equations for 1, I, m(v” — ’U,H)Q, mvf_/Q, m(U” — UH)S, and mvi(vu — ’LLH)/Z
for the density n, particle flux nu, pressures p|, p1, and energy fluxes q|, q.,
respectively, with the help of the appropriate closure approximation. The
quasi-neutrality constraint is used to solve for @.

The starting equation for the gyro-Landau-fluid model [14.21] is the gy-
rokinetic Vlasov equation [14.22,14.23]

iT
(v||b+vE+vd V):| (8 kJ_XbV) dJyFy

0
ot ot

Nl %\Q

o
(at + 1w*v> DIy Fy (147)

where h(R,v|,u,t) is the nonadiabatic part of the perturbed distribution
function f = —(q/T)®Fy + h and w,, = 1+ n(v?/20% — 3/2)w., with
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Fig. 14.5. Comparison of the frequency w and linear growth rate -y of toroidal ion-
temperature-gradient driven (ITG) turbulence for the Sydora (global) and Dimits
(flux-tube) nonlinear gyrokinetic codes, for the Kotschenreuther and Rewoldt (Full)
linear gyrokinetic codes, the Beer nonlinear gyrofluid code, and the Weiland fluid
calculation [14.24]. Lpc is the scale of the electron density gradient and vy is the
ion thermal velocity. Good agreement is observed between the gyrofluid code and
the gyrokinetic codes

ws = k¢T/eBL, the diamagnetic frequency. Here L' = —dInn/dr and
1= L,/Lr. vg is the E x B drift velocity, and vq is the curvature and VB
drift velocity. The moment equations of the density N, parallel flow velocity
U, and pressures P, P, are derived. This model is further generalized to
the moment equations of the ion density NVj, parallel ion flow velocity U;, ion
pressures P, Py, trapped electron and untrapped electron densities NY NY
trapped electron pressure P! and parallel magnetic potential A.

Figure 14.5 compares the calculated frequency and linear growth rate of
toroidal ion-temperture-gradient driven (ITG) turbulence by the gyrokinetic
codes and the gyrofluid code. Good agreement is observed between them
[14.24]. Figure 14.6 compares the ion thermal diffusion coefficient x; of ITG
turbulence in a tokamak in nonlinear phase versus R/Ly from the gyrofluid
codes and from the gyrokinetic particle codes (L:;1 = —dInT/dr, where R
is the major radius). The values of the threshold R/Lt.,, of the gyrofluid
codes, from which the ion thermal diffusion coefficient y; increases rapidly,
differ somewhat from that of the LLNL gyrokinetic results [14.24].
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Fig. 14.6. Ion thermal diffusion coefficient x; of ITG turbulence versus R/Lr
from the gyrofluid codes 941FS/PPP1, 97PPPL GFL, 98PPPL GFL and from the
gyrokinetic particle codes of LLNL and U. Colorado flux-tube and UCLA (Sydora)
global codes [14.24]. R/Lt,,, = 7, xi/(p{vti/Ln) = 0.16 is the experimental value
from the DIII-D data base. The values of the threshold R/Lr,,,, of the gyrofluid
code differ somewhat from that of the LLNL gyrokinetic results

14.5 Gyrokinetic Particle Model

The Vlasov equation for a distribution function F'(x,wv,t) in the space (x, v)
is given by

oF oF oF

L E+vxB)rZ =0.

m ov
Let us apply a gyrokinetic change of variables from (z,v) to (R, p, v, ¢),
where R is the gyrocenter coordinate, p1 = v? /2B the magnetic moment, |

the parallel component of velocity, ¢ the phase angle, and

bxuv, QEQ bzE

0 m B

The distribution function F(x,v,t) can be expressed by the sum of the
zeroth-order term f, which is independent of the gyrophase, and the first-
order term g, which does depend on the gyrophase:

F(:l),’l],t) = f(RvﬂaU\ht) +9(R7M7U\|7<P»t) :

r=R+p, p=

For an electrostatic perturbation E = —V®, f and g are given by [14.25]
1 0¥ af q OV 0B\ Of
= xb).-—L A =) =L
B@Rx)8R+( m H 8R>8v’
(14.8)

of
OZE-‘F (’U||b+’vd_
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q Of
= mB@u[ (x) — (9)],

where vq is the curvature and V B drift, i.e., vqg = bx [u-VB—H)IQl(b-V)b] /92,

and ( ) = §dp/2m denotes the gyrophase average. (x) and (P) are ex-
pressed by

a:)zZqS( explkw—ZqS )exp(k-R)expik-p ,
k

(@) = (D(R+ p)) Z¢ Jo( )exp(ik-R).

When f is Maxwellian in v, i.e., f oc exp(—v? /20v%) /2704, we find

q 0f _ q T _
T a. — T mo — =7,
mB Ou T m

and ¥ is given by

2

0(®)
I

)

()2 (@) ~ (@) - L 12

NHl=<

!
2
where we have used the relation
%) =) [Z (k) p(k — k’)] Jo(kivy /2)expik-R .
koL
Then the distribution function F' in (x,v) space becomes

F(z,v,t) = (F(Rop0p,0) {1 = L[e(@) — (@)R)]} . R=z—p,

and Poisson’s equation is given by

V2o(z) = —— [ (F - F.)dv. (14.9)
€0
As f is expressed by
2

1 v .
f(R,v1,v,t) Z f(k,v),t) 3T OX p( 2;) expik-(z — p) ,
A T T

it follows that (f) is

2
(f(R,vL,v,t)) Z f(k,v),t) 12 ex p( 2l> exp(ik-x)Jo(kivyi /) .

k

We define f(ac,vu,t) by
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a: ”UH, E/ R’UL,”UH, )>27rvldful

Z (k,v),t) exp(—b/2) expik-x ,
k

where pp = vp /02, b = (kipr)?. Furthermore, &(z) is defined by

Flevo,08(@) = [(@)()2m0dv. .
Then we obtain

&(x) ~ Z(ﬁ(k)Fo(b) expik-x , Iy(b) = Ip(b) exp(-D) .
i

The term [ Fdwv appearing on the right-hand side of Poisson’s equation (14.9)
is expressed by

/de =n(x) — %(@ — d)iv(x) , f(x) = /f(:mv”,t)dvﬂ .

Therefore (14.9) reduces to

T. 1 # -
2¢(x) = — = (R — o) + -2 =0 (D — P) . 141
V() = = (= ) + g (0= D) (14.10)

Here we have assumed a zero electron Larmor radius. Ap = (€T /nge?)'/?

is the Debye length. The second term on the right-hand side of (14.10) is

TC 1 ~ TC (klpi)Q H
——(P—-P) ~ — P~ -1V
T A3 T, A} 2?2
Usually, I12/022 = (T./T})(pi/Ap)? is much larger than 1.

We shall now discuss numerical schemes for solving the gyrokinetic
Vlasov—Poisson systems (14.8) and (14.10). Applying the discrete represen-
tation for the distribution function of N particles, viz.,

N

f(Ra sy, t) = Z 6(R - Rj (t))(S(u - ,Uj)(S(UL — U1y (t)) ’

Jj=1

o (14.8), the equations of motion in the gyrocenter coordinates for the j th
gyrokinetic particle must satisfy

dR; 1 ov
— = UH]b + vq — ( b)

5> o , (14.11)

Rjp;
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Fig. 14.7. Upper: temporal evolution of the mode amplitude of the drift-wave-
trapped-electron mode (m,n) = (5, —3). The solid line is the linear theory growth
rate. Lower: power spectrum density versus frequency [14.26]

doy; g (0¥
W = —— [)R -b o, — ,LLgB'VB . (1412)
Then the function f is given by
3 N
flx,v),t) = /<f(R»UJ_7U\|at)>27WJ_dUJ_ = Z<5(w —R; —p;))o(v) —vy;) -
j=1

In the first term on the right-hand side of (14.10), #; and 7, are

N

N
/f:vv”, )du = Z a:—Rij—p;-)>, ﬁe:Z(S(as—R;).
j=1

When k| p; < 1, the 4-point average by ¢ = 0,7/2,7,37/2 is a good approx-
imation to the gyrophase average ( ).

The drift-wave-trapped-electron mode in a tokamak is studied in [14.26].
Simulation parameters used there include the system size L, x L, x L, =
64AX64A%x32A,, where A = p; and A, = 25p;. The aspect ratio was Ry/a =
4 and ng = (n)=4 particles/cell (total ions ~ 0.5x10°). (T.) /T; = 4, m; /me =
1836, At = 0.1, wX /2 = 0.1m, with m the poloidal mode number, where
w} = k¢Te/LypeBy. Results from the simulation of the drift-wave-trapped-
electron mode with 1, = d(InT,)/d(Inne)=1 are shown in Fig. 14.7. The time
evolution of the mode amplitude for (m,n) = (5, —3) is shown in the upper
figure. The saturation amplitude reaches e®/T, ~ 0.035. The linear growth
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Fig. 14.8. Plots of the electrostatic potential of ITG turbulence in a poloidal
cross-section during the linear phase (left) and non-linearly saturated steady state
(right) [14.27]

rate in the initial phase and real frequency agree well with the theoretical
linear eigenmode analysis.

The ion temperature gradient (ITG) mode is studied in [14.27]. In this
analysis, the 8f/f method is used [14.28]. The electrons are assumed to be
adiabatic (8n./ng = e¢/T.) and the total of number ions is ~ 10°. Figure 14.8
plots the electrostatic potential during the linear phase and non-linearly sat-
urated steady state.

The ion thermal diffusivity of ITG turbulence in a tokamak is studied
in [14.29]. The number of particles in the simulation is in the range 5 x 10° to
1.34 x 108. For 10° or more (2 particles per cell), x; at the later time does not
appear to change with increasing particle number. The thermal diffusivity is
defined formally as x; = 1.5Ln<f1rfi> /T;, where 9, and T; are the fluctuating
components of the radial ion velocity and ion temperature. The dependence
of x; on R/Ly is scanned and the fit can be expressed by an offset linear
dependence on R/Lt (see Fig.14.6).

Xi Lt
——— =154(1.0-6.0—/—) .
pivei/La ( R )

We have discussed the gyrokinetic particle model of electrostatic perturba-
tions. The formulation of the gyrokinetic particle model of electromagnetic
perturbations has also been developed [14.30], in which the effect of magnetic
field fluctuations is included as well as the effect of electric field fluctuations.

14.6 Full Orbit Particle Model

The fundamental equations of the full orbit particle model are simple and
are given as follows [14.2]:
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dr;i(t) —vy(1) dv;;(t) _ %{E(rsj (t),1) + v, (t) x B(rsj(tm)} ,
p—Zq525r—rSJ ) Z‘ISZ”SJ §(r —mg(t)) .
e V-E=p, VoB:O,

VxE:—aa—f, V x B = joj + 12(957

where mg and g5 are the mass and charge of species s. The other notation
is as usual. However, the number of particles of real plasma is far beyond
107-108, which is the limit of the most advanced supercomputer, at least in
the near future. In the full orbit particle model, the concept of superparticle
with finite size is introduced instead. Let us consider the system with volume
of V.= L;L,L,, which contains N, electrons and N; ions. A number A
of particles are put together into one superparticle with mass and charge
(A>1)
m:p = Ams , q:p = Ags .

The average values of the density and temperature of superparticles are
nP = — TP = AT, .

Then the plasma frequency 1I5P, cyclotron frequency (2P, thermal velocity
vyY, Alfvén velocity v, Debye length A7, Larmor radius pfP, and beta ratio
(%P are the same as in the original system. However, the Coulomb collision
frequency is greatly enhanced, i.e.,

. II5P AT
P (0.4 e =04 = Avg
Vei nip(A%Je)?’ Ne(Ape)? v

The Coulomb collision frequency of superparticles with zero size can be
comparable to 1/10-1/100 of the electron plasma frequency, when NZP =
nsP(AD,)? is selected to be of order 10°-10'. Low frequency waves will there-
fore be masked by Coulomb collision. To avoid this effect, a charge density
distribution of finite size with shape factor of S(r) is introduced:

@GPo(r —rgj) — ¢ S(r — ;) , /S(r —rg)dr=1.

When the effective radius of the shape factor is R, the effective Coulomb
collision frequency is reduced by one to three orders of magnitude depending
on the size R ~ (1-5)Ap and ne(Ape)® ~ (10-10%) [14.31]. The dispersion
relation with & < R~! is barely affected. Therefore the simulation using
superparticles with a proper finite size can reproduce wave phenomena with
wavelength greater than R. The equations of motion of superparticles are
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dr®(t) dvll(t) g, .
I =) = T (B (g (0).0) + () < B (ry(0).1)]

where E* and B* are the fields felt by finite-size superparticles, i.e.,

E*(r,t)= /E(r’,t)S(r' —r)dr’ | B*(r,t) = /B(r',t)S(r’ —r)dr' |

NZP N3P
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When time and length are normalized by
t =tIl, , F=rA"t,

and E, B, p and j are normalized by

~ E ~ B
E = — B = —
meAIlZ /e’ mells/e’
~ P ~ _7 . .
= = A =
P eNe J encAll, ’ grid size,

then the dimensionless form of the above equations is [14.32]
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Fig. 14.9. Contour plots of mass density in the poloidal cross-section of the field-
reversed configuration (FRC) at periods t/ta = 0.0, 1.0, 3.0 and 5.0 [14.33]

where ¢ is the speed of light and Qs = ¢s/e (Qe = —1,Q; = ¢/e), My =
ms/me (Mo = 1, M; = mi/m,).

The tilt stability of a field-reversed configuration (FRC) is studied by full
orbit particle ions and electrons in [14.33]. The grid number is 49 x 49 x 32
and the total number of superparticles is 10%. Furthermore, II,At = 1.5,
c¢At/A < 1. The ion and electron mass ratio is set to be m;/m. = 50 and
2, ~ I, /5. Figure 14.9 shows contour plots of mass density in the poloidal
cross-section at periods of t/74 = 0.0, 1.0, 3.0 and 5.0. 74 is the Alfvén
transit time. In this simulation, [£2| < 75'. The stabilizing effect on the
tilting by cycling ions which cross the separatrix is discussed. Tilt stability of
FRC is also discussed using the hybrid model of full orbit particle ions and
fluid electrons [14.34]. The stabilizing effect due to finite ion Larmor radius
is analyzed.

When || > ’7';1, full orbit particle simulation of electromagnetic per-
turbation is very difficult due to the excess amount of computer run time.
The toroidal particle code (TPC) has been developed for electrostatic turbu-
lence [14.35]. TPC solves Poisson’s equation
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(@) n=500 (b) n=0640 (c) n=940

Fig. 14.10. Potential structure in poloidal cross-section at three different times for
a reversed magnetic shear configuration of a tokamak [14.36]. In the quasi-steady
state (c), the discontinuity of the potential structure across the gmin surface is
recovered

1 e i :
Vip=——p=—— {75 —r;) = S(r— e-} : 14.20
—p= =3 [Estr—r) = Sr—19) (14.20)
The ion motion is given by the Lorentz equation

dr!
de¢

i do' q i
=v', N :E(Eﬂ; x B) , (14.21)

and the electron motion is given by the drift equation

Pi__ep (b-V)B (14.22)
at  me ! K ' '

In [14.36], the ion temperature gradient (ITG) turbulences in the tokamak
configuration are analyzed using TPC. In these simulations, electrons are
treated as an adiabatic fluid (dne/n. = e®/T,). The effects of the reversed
magnetic shear configuration on ITG turbulence are studied (see Sect. 16.7)
and discontinuities and/or gaps in the structure of the ITG perturbed poten-
tial across the gmin surface are observed, as shown in Fig. 14.10.
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Controlled Nuclear Fusion



15 Development of Fusion Research

The major research effort in the area of controlled nuclear fusion focuses on
the confinement of hot plasmas by means of strong magnetic fields. Magnetic
confinements are classified into toroidal and open end configurations. Confine-
ment in a linear mirror field may have advantages over toroidal confinement
with respect to stability and anomalous diffusion across the magnetic field.
However, the end loss due to particles leaving along magnetic lines of force
is determined solely by diffusion in the velocity space, i.e., the confinement
time cannot be improved by increasing the intensity of the magnetic field or
the plasma size. Ways must be found to suppress end loss.

Toroidal magnetic confinements have no open ends. In the simple toroidal
field, ions and electrons drift in opposite directions due to the gradient of
the magnetic field. This gradient B drift causes the charge separation that
induces the electric field E directed parallel to the major axis of the torus.
The subsequent F x B drift tends to carry the plasma ring outward. In order
to reduce the E x B drift, the upper and lower parts of the plasma must be
connected by magnetic lines of force and the separated charges short-circuited
along these field lines. Accordingly, a poloidal component of the magnetic field
is essential to the equilibrium of toroidal plasmas, and toroidal devices may
be classified according to the method used to generate the poloidal field. The
tokamak (Chap. 16) and the reversed field (Sect.17.1) pinch devices use the
plasma current along the toroid, whereas the toroidal stellarator (Sect.17.2)
has helical conductors or equivalent winding outside the plasma to produce
the appropriate rotational transform angles.

Besides the study of magnetic confinement systems, inertial confinement
approaches are being actively investigated. If a very dense and hot plasma
could be produced within a very short time, it might be possible to com-
plete the nuclear fusion reaction before the plasma starts to expand. An
extreme example is a hydrogen bomb. This type of confinement is called
inertial confinement. In laboratory experiments, high-power laser beams or
particle beams are focused onto small solid deuterium and tritium targets,
thereby producing very dense, hot plasma within a short time. Because of the
development of the technologies of high-power energy drivers, the approaches
along this line have some foundation in reality. Inertial confinement will be
discussed briefly in Chap. 18.
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The various kinds of approach that are actively investigated in controlled
thermonuclear fusion are classified as follows:

Axially Tokamak
symmetric Reversed field pinch
Toroidal Spheromak
system
Magnetic Axially Stellarator system
confinement asymmetric < Heliac
Bumpy torus

Open end Mirror, Tandem mirror

system Field reversal configuration
Cusp
golflrﬁtlililment Laser
Ton beam, Electron beam

15.1 From Secrecy to International Collaboration

Basic research into controlled thermonuclear fusion probably began right af-
ter World War II in the United States, the Soviet Union, and the United
Kingdom in strict secrecy. There are on record many speculations about re-
search into controlled thermonuclear fusion even in the 1940s. The United
States program, called Project Sherwood, has been described in detail by
Bishop [15.1]. Bishop states that Z pinch experiments for linear and toroidal
configurations at the Los Alamos Scientific Laboratory were carried out in
an attempt to overcome sausage and kink instabilities. The astrophysicist
L. Spitzer Jr. started the figure-eight toroidal stellarator project at Prince-
ton University in 1951. At the Lawrence Livermore National Laboratory,
mirror confinement experiments were conducted. At the Atomic Energy Re-
search Establishment in Harwell, United Kingdom, the Zeta experiment was
started [15.2] and at the I.V. Kurchatov Institute of Atomic Energy in the
Soviet Union, experiments on a mirror called Ogra and on tokamaks were
carried out [15.3].

The first United Nations International Conference on the Peaceful Uses
of Atomic Energy was held in Geneva in 1955. Although this conference
was concerned with peaceful applications of nuclear fission, the chairman,
H.J. Bhabha, hazarded the prediction that ways of controlling fusion energy
that would render it industrially usable would be found in less than two
decades. However, as we have seen, research into controlled nuclear fusion
encountered serious and unexpected difficulties. It was soon recognized that
the realization of a practical fusion reactor was a long way off and that
basic research on plasma physics and the international exchange of scientific
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information were absolutely necessary. From around that time articles on
controlled nuclear fusion started appearing regularly in academic journals.
Lawson’s paper on the conditions for fusion was published in January 1957
[15.4] and several important theories on MHD instabilities had by that time
begun to appear [15.5,15.6]. Experimental results of the Zeta [15.7] (Zero
Energy Thermonuclear Assembly) and Stellarator [15.8] projects were made
public in January 1958. In the fusion sessions of the second United Nations
International Conference on the Peaceful Uses of Atomic Energy, held in
Geneva, 1-13 September 1958 [15.9,15.10], many results of research that had
proceeded in secrecy were revealed.

L.A. Artsimovich expressed his impression of this conference as “some-
thing that might be called a display of ideas.” The second UN conference
marks the beginning of open rather than secret international cooperation
and competition in fusion research.

In Japan, controlled fusion research started in the Japan Atomic Energy
Institute (JAERI) under the ministry of science and technology and in the
Institute of Plasma Physics, Nagoya University, under the ministry of educa-
tion and culture, in the early 1960s [15.11].

The First International Conference on Plasma Physics and Controlled
Nuclear Fusion Research was held in Salzburg in 1961 under the auspices of
the International Atomic Energy Agency (IAEA). At the Salzburg confer-
ence [15.12] the big projects were fully discussed. Among these were Zeta,
Alpha, Stellarator C, Ogra, and DCX. Theta pinch experiments (Scylla,
Thetatron, etc.) appeared to be more popular than linear pinches. The pa-
pers on the large scale experimental projects such as Zeta or Stellarator C
all reported struggles with various instabilities. L.A. Artsimovich said in his
summary of experimental results: “Our original beliefs that the doors into
the desired regions of ultra-high temperature would open smoothly [...] have
proved as unfounded as the sinner’s hope of entering Paradise without passing
through Purgatory.” The importance of the PR-2 experiments of M.S. Ioffe
and others was soon widely recognized [15.12, Vol. 3, p. 1045]. These experi-
ments demonstrated that the plasma confined in a minimum-B configuration
is MHD stable.

The Second International Conference on Plasma Physics and Controlled
Nuclear Fusion Research was held at Culham in 1965 [15.13]. The stabilizing
effect of minimum-B configurations was confirmed by many experiments.
An absolute minimum-B field cannot be realized in a toroidal configuration.
Instead of this, the average minimum-B concept was introduced [15.13, Vol. 1,
pp. 103, 145]. Ohkawa and others succeeded in confining plasmas for much
longer than the Bohm time with toroidal multipole configurations [15.13,
Vol. 2, p.531] and demonstrated the effectiveness of the average minimum-
B configuration. Artsimovich and others reported on a series of tokamak
experiments [15.13, T-5, Vol. 2, p.577; T-3, p. 595; T-2, p. 629; TM-2, p. 647;
TM-1, p.659]. Further experiments with Zeta and Stellarator C were also



262 15 Development of Fusion Research

reported. However, the confinement times for these big devices were only of
the order of the Bohm time, and painful examinations of loss mechanisms
had to be carried out. Theta pinch experiments were still the most actively
pursued. The ion temperatures produced by means of theta pinches were
several hundred eV to several keV, and confinement times were limited only
by end losses. One of the important goals of the theta pinch experiments had
thus been attained, and it marked the turning point from linear theta pinch
to toroidal pinch experiments.

In this conference, the effectiveness of minimum-B, average minimum-
B, and shear configurations was thus confirmed. Many MHD instabilities
were seen to be well understood experimentally as well as theoretically.
Methods of stabilizing against MHD instabilities seemed to be becoming
gradually clearer. The importance of velocity-space instabilities due to the
non-Maxwellian distribution function of the confined plasma was recognized.
There had been and were subsequently to be reports on loss-cone instabili-
ties [15.17], Harris instability [15.18] (1959), drift instabilities [15.19] (1963,
1965), etc. The experiment by J.M. Malmberg and C.B. Wharton [15.13,
Vol. 1, p.485] was the first experimental verification of Landau damping.

L. Spitzer Jr. concluded in his summary talk at Culham that: “most of
the serious obstacles have been overcome, sometimes after years of effort by a
great number of scientists. We can be sure that there will be many obstacles
ahead but we have good reason to hope that these will be surmounted by the
cooperative efforts of scientists in many nations.”

15.2 Artsimovich Era

The Third International Conference [15.14] was held in 1968 at Novosibirsk.
The most remarkable topic in this conference was the report that Tokamak
T-3 [15.14, Vol. 1, p. 157] had confined a plasma up to 30 times the Bohm
time (several milliseconds) at an electron temperature of 1keV. In Zeta exper-
iments a quiescent period was found during a discharge and MHD stability
of the magnetic field configuration of the quiescent period was discussed.
This was the last report on Zeta, and HBTX succeeded this reversed field
pinch experiment. Stellarator C [15.14, Vol. 1, pp. 479, 495] was still only con-
fining plasmas to several times the Bohm time at electron temperatures of
only several tens to a hundred eV. This was the last report on Stellarator
C; this machine was converted into the ST tokamak before the next confer-
ence (Madison 1971). However, various aspects of stellarator research were
still pursued. The magnetic coil systems of Clasp [15.14, Vol. 1, p. 465] were
constructed accurately, and the confinement of high-energy electrons was ex-
amined using the [ decay of tritium. It was demonstrated experimentally
that the electrons ran around the torus more than 107 times and that the
stellarator field had good charged-particle confinement properties. In WII



15.3 The Trek to Large Tokamaks Since the Oil Crisis 263

the confinement of the barium plasma was tested, and resonant loss was ob-
served when the magnetic surface was rational. Diffusion in a barium plasma
in non-rational cases was classical. In 2X [15.14, Vol. 2, p. 225] a deuterium
plasma was confined up to an ion temperature of 6-8keV at a density of
n < 5 x 108 cem™3 for up to 7 = 0.2ms. Laser plasmas appeared at this
conference.

At the Novosibirsk conference, toroidal confinement appeared to have the
best overall prospects, and mainstream research shifted toward toroidal con-
finement. L.A. Artsimovich concluded this conference by saying: “We have rid
ourselves of the gloomy spectre of the enormous losses embodied in Bohm’s
formula and have opened the way for further increases in plasma temperature
leading to the physical thermonuclear level.”

The Tokamak results were seen to be epoch-making if the estimates of the
electron temperature were accurate. R.S. Pease, the director of the Culham
Laboratory, and L.A. Artsimovich agreed to the visit of the British team of
researchers to the Kurchatov Institute to measure the electron temperature
of the T-3 plasma by laser scattering methods. The measurements supported
the previous estimates by the tokamak group [15.20]. The experimental re-
sults of T-3 had a strong impact on the next phase of nuclear fusion research
in various nations. At the Princeton Plasma Physics Laboratory, Stellara-
tor C was converted to the ST tokamak device. Newly built were ORMAK
at Oak Ridge National Laboratory, TFR at the Center for Nuclear Research,
Fontaney aux Rose, Cleo at the Culham Laboratory, Pulsator at the Max
Planck Institute for Plasma Physics, and JFT-2 at the Japan Atomic Energy
Research Institute.

The Fourth International Conference was held in Madison, Wisconsin,
in 1971 [15.15]. The main interest at Madison was naturally focused on the
tokamak experiments. In T-4 [15.15, Vol. 1, p. 443], the electron temperature
approached 3keV at a confinement time around 10 ms. The ions were heated
to around 600 eV by collision with electrons. ST [15.15, Vol. 1, pp. 451, 465]
produced similar results.

15.3 The Trek to Large Tokamaks Since the Oil Crisis

Since then the TAEA conference has been held every two years: Tokyo in
1974 [15.16], Berchtesgarden in 1976, Innsburg in 1978, Brussels in 1980,
Baltimore in 1982, London in 1984, Kyoto in 1986, Nice in 1988, Washington
D.C. in 1990, Wiirzburg in 1992, Seville in 1994, Montreal in 1996, Yokohama
in 1998, Sorrento in 2000, and Lyon in 2002. Tokamak research has made
steady progress as the mainstream of magnetic confinement. Pease stated in
his summary talk of the IAEA conference at Berchtesgarden in 1976 that:
“one can see the surprisingly steady progress that has been maintained. Fur-
thermore, looked at logarithmically, we have now covered the greater part
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of the total distance. What remains is difficult, but the difficulties are fi-
nite and can be summed up by saying that we do not yet have an adequate
understanding or control of cross-field electron thermal conduction.”

After the tokamaks of the first generation (T-4, T-6, ST, ORMAK, Al-
cator A, C. TFR, Pulsator, DITE, FT, JFT-2, JFT-2a, JIPP T-II, etc.),
second generation tokamaks (T-10, PLT, PDX, ISX-B, Doublet ITI, ASDEX,
etc.) began appearing around 1976. The energy confinement time of ohmi-
cally heated plasmas was approximately described by the Alcator scaling law
(te o< na?). The value of n7g reached 2 x 1013 cm™3s in Alcator A in 1976.
Heating experiments using neutral beam injection (NBI) in PLT achieved an
ion temperature of 7TkeV in 1978, and effective wave heating in an ion cy-
clotron range of frequency was demonstrated in TFR and PLT around 1980.
The average 3 value of 4.6% was realized in the Doublet IIT non-circular toka-
mak (k = 1.4) in 1982 using 3.3 MW NBI. Non-inductive drives for plasma
current have been pursued. Current drive by tangential injection of a neutral
beam was proposed by Ohkawa in 1970 and demonstrated experimentally
in DITE in 1980. Current drive by a lower hybrid wave was proposed by
Fisch in 1978 and demonstrated in JFT-2 in 1980 and in Versator 2, PLT,
Alcator C, JIPP T-II, Wega, T-7, and so on. Ramp-up experiments increas-
ing the plasma current from 0 were succeeded by WT-2 and PLT in 1984.
TRIAM-1M with superconducting toroidal coils sustained a plasma current
of I, = 22kA (ne ~ 2 x 10¥ m?3) during 70 minutes by LHW in 1990.

The suppression of impurity ions by a divertor was demonstrated in JFT-
2a (DIVA) in 1978 and investigated in detail by ASDEX and Doublet IIT
(1982). At that time the energy confinement time had deteriorated compared
with the ohmic heating case as the heating power of NBI was increased (ac-
cording to the Kaye—Goldston scaling law). However, the improved mode
(named H mode) of the confinement time, increased by a factor of about
2 compared with the ordinary mode (L mode), was found in the divertor
configuration of ASDEX in 1982. The H mode was also observed in Doublet
III, PDX, JET-2M, and DIII-D. Much progress had thus been made to solve
many critical issues of tokamaks.

On the basis of these achievements, experiments started on the third
generation of large tokamaks, with TFTR (United States) at the end of
1982, JET (European Community) in 1983 and JT-60 (Japan) in 1985.
Originally these large tokamaks were planned in the early 1970s. TFTR
achieved npr(0)ms ~ 1.2 x 10 m~3s, xTi(0) = 44keV by supershot (H
mode-like). JET achieved np(0)ms ~ 3.2 x 10 m—3s, x7;(0) = 18.6keV by
H mode with divertor configuration. JT-60 drove a plasma current of 1.7 MA
(fe = 0.3x10' cm™=3) by lower hybrid wave (Prp = 1.2 MW) in 1986 and up-
graded to JT60U in 1991 [15.21]. JT60U achieved np(0)7g ~ 3.4 x 10 m—3s,
kT;(0) = 45keV by high 8, H mode. A high performance confinement mode
with negative magnetic shear was demonstrated in TFTR, DIII-D, JT60U,
JET, Tore Supra [15.22] and T10.
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Fig. 15.1. Development of confinement experiments represented in a fieTe—+k73(0)
diagram, where 7ie is the line average electron density, 7g is the energy confinement
time 75 = W/(Piot — dW/dt — Linr), and T3(0) is the ion temperature. Tokamak
(black circle), stellarator (white triangle), RFP (white circle), tandem mirror, mir-
ror, theta pinch (black triangle). @ = 1 is the critical condition. W is the total
energy of the plasma, Piot the total heating power, and Ly, the shine-through of
neutral beam heating

JET performed a preliminary tritium injection experiment in 1991
[nr/(np + nr) ~ 0.11] [15.23] and produced 1.7MW (Q ~ 0.11) of fusion
power using 15 MW of NBI. An extensive deuterium—tritium experiment was
carried out on TFTR in 1994 [15.24]. Fusion power of 9.3 MW (Q ~ 0.27) was
obtained using 3¢ MW of NBI in supershot (I, = 2.5 MA). JET set records
of DT fusion output of 16.1 MW (Q ~ 0.62) using 25.7 MW of input power
(22.3 MW NBI + 3.1 MW ICRF) [15.25] in 1998. Pumped divertors were in-
stalled in JET, JT60U, DIIID, ASDEX-U and others in attempt to suppress
impurity ions and the heat load on the divertor plate. These large tokamaks
are now aiming at the scientific demonstration of required conditions with
regard to several critical issues in fusion reactors, including plasma transport,
steady operation, divertor and impurity control, and so on.

Based on the development of tokamak research, the design activities of
tokamak reactors have been carried out. The International Tokamak Reactor
(INTOR) [15.26] (1979-1987) and The International Thermonuclear Exper-
imental Reactor (ITER) [15.27] (1988-2001) are collaborative efforts among
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Euratom, Japan, The United States of America and the Russian Federation
under the auspices of the TAEA. The status of ITER in 2000 [15.28] is de-
scribed in Sect. 16.10.

15.4 Alternative Approaches

Potential theoretical advantages of the spherical tokamak have been outlined
by Peng and Strickler [15.29], in which the aspect rato A = R/a of the stan-
dard tokamak is substantially reduced toward unity. Predicted advantages
include a naturally high elongation (ks ~ 2), high toroidal beta and tokamak-
like confinement. These predictions have been confirmed experimentally, in
particular by the START device [15.30] at Culham (R/a =~ 0.3/0.28 = 1.31,
I, = 0.25MA, B; =~ 0.15T). The toroidal beta reached 40% and observed
confinement times follow similar scaling to standard tokamaks. Spherical
tokamak (ST) experiments were also conducted by Globus-M (Ioffe Physico-
Technical Inst.), Pegasus (Univ. Wisconsin), TST, TS-3 (Univ. Tokyo). The
next generation ST projects MAST (Culham) and NSTX (Princeton PPL)
started experiments in 1999-2000 [15.31]. Potential merits of possible ST
reactors are also discussed in [15.32].

Non-tokamak confinement systems have been investigated intensively to
catch up with the achievements of tokamaks. The stellarator program pro-
ceeded from small-scale experiments (Wendelstein IIb, Clasp, Uragan-1, L-1,
JIPP-I, Heliotron D) to middle-scale experiments (Wendelstein VIIA, Cleo,
Uragan-2, L-2, JIPP T-II, Heliotron E). Plasmas with T, ~ T; roughly several
hundred eV to 1keV, ne ~ 103 cm™3 were sustained by NBI heating with-
out an ohmic heating current, and the possibility of steady-state operation of
stellarators was demonstrated by WVIIA and Heliotron E. Confinement time
scaling in a currentless plasma was studied in Heliotron E, CHS, ATF and
WVII AS. The large helical device LHD started experiments in 1998 [15.33]
and an advanced stellarator WVII-X is under construction.

The reversed field pinch (RFP) configuration was found in the stable
quiescent period of Zeta discharge just before the shutdown in 1968. In
1974, J.B. Taylor pointed out that the RFP configuration is the minimum
energy state under the constraint of the conservation of magnetic helicity
in 1974 (see Sect.17.1). RFP experiments have been conducted in HBTX-
1B, ETA-BETA 2, TPE-1RM, TPE-1RM15, TPE-1RM20, ZT-40M, OHTE,
REPUTE-1, STP-3M, MST. An average 3 of 10-15% was realized. ZT-40M
demonstrated that the RFP configuration can be sustained by relaxation
phenomena (the so-called dynamo effect) as long as the plasma current is
sustained (1982). The next-step projects RFX and TPE-RX are currently
underway.

Spheromak configurations have been studied by S-1, CTX, and CTCC-
1, and field reversed configurations have been studied by FRX, TRX, LSX,
NUCTE and PIACE.
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In mirror research, 2XIIB confined a plasma with an ion temperature of
13keV and n1g x 101 cm~3s in 1976 [15.34]. However, suppression of end loss
is absolutely necessary. The concept of a tandem mirror, in which end losses
are suppressed by electrostatic potential, was proposed in 1976-1977 [15.35,
15.36]. TMX, TMX-U and GAMMA 10 are typical tandem mirror projects.
Mirror research is reviewed in [15.37]. The bumpy torus is the toroidal linkage
of many mirrors to avoid end loss and this method was pursued in EBT and
NBT.

Inertial confinement research has made great advances in the implosion
experiment by using an Nd glass laser as energy driver. Gekko XII (30kJ, 1 ns,
12 beams), Nova (100kJ, 1ns, 10 beams), Omega X (4kJ, 1ns, 24 beams),
and Octal (2kJ, 1ns, 8 beams) investigated implosion using A = 1.06 um
laser light and its higher harmonics A = 0.53 um and 0.35um. It was shown
that a short wavelength is favorable because of the better absorption and less
preheating of the core. A high-density plasma, 200-600 times as dense as the
solid state, was produced by laser implosion (1990). Based on Nova results,
the Lawrence Livermore National Laboratory is preparing the National Igni-
tion Facility (NIF) [15.38,15.39] (1.8 MJ, 20 ns, 0.35 um, 192 beams, Nd glass
laser system).

Controlled nuclear fusion research has been making steady progress
through international collaboration and competition. A summary of the
progress of magnetic confinement is given in Fig. 15.1 which shows the fioTg—
Ti(0) diagram. TFTR demonstrated @ ~ 0.27 DT experiments and JET
demonstrated Q ~ 0.62 DT experiments. JET and JT60U achieved the
equivalent break-even condition with a D-D plasma, that is, the extrapo-
lated DT fusion power output would be the same as the heating input power

(Qoquiv == ]-)



16 Tokamaks

The word ‘tokamak’ is said to be a contraction of the Russian words for cur-
rent, vessel, magnet, and coil. Tokamaks are axisymmetric, with the plasma
current itself giving rise to the poloidal field essential to the equilibrium of
toroidal plasmas. In a tokamak, the toroidal field used to stabilize against
MHD instabilities is strong enough to satisfy the Kruskal-Shafranov con-
dition. This characteristic is quite different from that of the reversed field
pinch, with its relatively weak toroidal field. There are excellent reviews and
textbooks on tokamak experiments [16.1,16.2], equilibrium [16.3], and diag-
nostics [16.4,16.5].

16.1 Tokamak Devices

The constructions of the large tokamak devices JET, JT60U and TFTR are
shown in Figs. 16.1, 16.2, and 16.3 as typical examples.

The toroidal field coils, equilibrium field coils (also called poloidal field
coils, which produce the vertical field and shaping field), ohmic heating coils
(primary windings of the current transformer), and vacuum vessel can be
seen in the figures. Sometimes the term ‘poloidal field coils’ means both the
equilibrium field coils and the ohmic heating coils. By raising the current
of the primary windings of the current transformer (ohmic heating coils), a
current is induced in the plasma, which acts as the secondary winding. In
the JET device, the current transformer is of the iron-core type. The air-
core type of current tranformer is utilized in JT60U and TFTR. The vacuum
vessel is usually made of thin stainless steel or inconel so that it has enough
electric resistance in the toroidal direction. Therefore the voltage induced by
the primary windings can penetrate it.

The thin vacuum vessel is called the liner. Before starting an experi-
ment, the liner is outgassed by baking at a temperature of 150-400°C for a
long time under high vacuum. Furthermore, before running an experiment, a
plasma is run with a weak toroidal field in order to discharge-clean the wall
of the liner. Inside the liner there is a diaphragm made of tungsten, molyb-
denum, or graphite that limits the plasma size and minimizes the interaction
of the plasma with the wall. This diaphragm is called a limiter. Recently
a divertor configuration was introduced instead of the limiter. In this case
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Table 16.1. Tokamak parameters. R, a, b in [m], By in [T], and I, in [MA]

R a(xb) R/a By Iy Remarks
T-4 1.0 0.17 59 50 03
T-10 1.5  0.39 3.8 5.0 0.65
PLT 1.32 04 3.3 3.2 0.5
TFTR 248 0.85 29 52 2.5 Compact

JET 296 1.25(x2.1) 24 345 7 Non-circular
JT60U 3.4 1.1(x14) 31 42 6 Non-circular, JT60 upgraded

the magnetic surface, including the separatrix point, determines the plasma
boundary (see Sect.16.5). A conducting shell surrounds the plasma outside
the liner and is used to maintain the positional equilibrium or to stabilize
MHD instabilities during the skin time scale. The magnitude of the vertical
field is feedback-controlled to keep the plasma at the center of the liner at
all times. Many improvements have been made in tokamak devices over the
years. The accuracy of the magnetic field is also important to improve the
plasma performance in tokamak and other toroidal devices. The parameters
of typical tokamak devices are listed in Table 16.1.

Measurements by magnetic probes surrounding the plasma are a simple
and useful way to monitor plasma behavior. As the magnetic probes detect
MHD fluctuations, they are indispensable in the study of MHD instabilities.
These small magnetic coils are called Mirnov coils. The loop voltage V1, and
the plasma current I, can be measured by the magnetic loop and Rogowsky
coil, respectively [16.4]. Then the electron temperature can be estimated by
the Spitzer formula from the resistivity of the plasma, which can be evaluated
using Vi, and I,. From (6.11), the poloidal beta ratio 3, is given by

2B
Z(Byv — By,) , (16.1)

ﬁpzl—‘rBiE)

where |B,v — By| < |B,| and B, = pol,/2ma. Since the diamagnetic flux
o is

80 = ma®(B,v — By) , (16.2)
we have 8rB
p Dy
= ~1 3P . 16.3
o= B jope = TR (16:3)

Therefore measurement of the diamagnetic flux 89 yields , and the plasma
pressure. Magnetic probes g1, go located around the plasma, as shown in
Fig. 16.4a, can be used to determine the plasma position. Since the necessary
magnitude B, of the vertical field for equilibrium is related to the quantity
A = B, +1i/2, the value of A can be estimated from B, (I; is the normalized
internal inductance). The fluctuations in the soft X-ray (bremsstrahlung)
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Inner PFC

TC

MS Vv

TFC

Quter
PFC

Fig. 16.1. Artist’s drawing of JET (Joint European torus), JET Joint Undertaking,
Abingdon, Oxfordshire, England. The toroidal field coils (TFC) are arranged around
the vacuum vessel (VV). The outer poloidal field coils (Outer PFC, equilibrium field
coils) and inner poloidal field coils (Inner PFC, ohmic heating coils) are wound in
the toroidal direction outside the toroidal field coils (TFC). JET uses an iron-core
current transformer (TC). The mechanical structures (MS) support the toroidal
field coils against the large torque due to the equilibrium field

signal follow the fluctuations in electron temperature. The fluctuations occur
at the rational surfaces [gs(r) = 1,2,...]. The mode number and direction of
propagation can be estimated by arrays of solid-state detectors, as shown in
Fig. 16.4b. When the positions of the rational surfaces can be measured, the
radial current profile can be estimated for use in studies of MHD stability.
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Fig. 16.3. Schematic view of TFTR (Tokamak Fusion Test Reactor), Plasma
Physics Laboratory, Princeton University

16.2 Equilibrium

If the vertical field B, is uniform in space, the equilibrium is neutral with
regard to changes in plasma position. When the lines of the vertical field are
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Fig. 16.4. (a) Locations of magnetic probes around the plasma (A shown in the
figure is negative). (b) Array of soft X-ray solid-state detectors. The main contribu-
tion of each detector to a signal comes from the emission at the peak temperature
along the line of sight of the detector. The fluctuation in the electron temperature
at this point can be detected

curved, as shown in Fig. 16.5, the plasma position is stable with regard to up
and down motion. The z component F, of the magnetic force applied to a
plasma current ring with mass M is

F, = —27RI,Bg .
From the relation (0Bgr/dz) — (0B./0R) = 0,

2 Bp
MYZ _ ongr 88 2 =2rl,B, (—

R 0B.
412 i

B, 9R
As I, B, < 0, the stability condition for decay index n is

R 0B,
= —— . 16.4
n BZ8R>0 (16.4)

The horizontal component Fg of the magnetic force is

d%(AR)

M
de?

= Frp = 2nRI,(B. — B, )AR.

The amount of B necessary for plasma equilibrium [see (6.30)] is
—puol, 8R 1 l
B =——"Fln—+4-= A== -1
L7 4R < a 2) " 3 T

When the plasma is ideally conductive, the magnetic flux inside the plasma
ring is conserved and

0
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ZA

oy

Fig. 16.5. Vertical field for plasma equilibrium

Here the self-inductance is L, = poR[In(8R/a) + l;/2 — 2]. Therefore the

equation of motion is

d2(AR)
dt?

under the assumption In(8R/a) > 1. Then the stability condition for hori-
zontal movement is

M

—2nI,B, @ - n> AR,

g >n. (16.5)

The poloidal beta limit of a circular tokamak is 8, = 0.5R/a, as given
by (6.37). The same poloidal beta limit is derived by similar considerations
for the elongated tokamak with horizontal radius a and vertical radius b.
When the length of the circumference along the poloidal direction is de-
noted by 2maK for the elongated plasma and the average poloidal field is
B, = pol,/(2maK), the ratio of the poloidal and toroidal fields is B, =
polp/(2maK), where K is given approximately by K = {[1 + (b/a)z]/2}1/2.
The beta limit of an elongated tokamak is therefore

5 a

8 <05K R (16.6)
which is K2 times as large as that of a circular one. In order to elongate the
plasma cross-section, the decay index n of the vertical field must be negative,
and the elongated plasma is positionally unstable in the up—down motion.
Therefore feedback control of the variable horizontal field is necessary to
keep the plasma position vertically stable [16.6].

16.3 MHD Stability and Density Limit

A possible MHD instability in the low-beta tokamak is kink modes, which
were treated in Sect.8.3. Kink modes can be stabilized by tailoring the cur-
rent profile and by appropriate choice of the safety factor ¢,. When the
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Fig. 16.6. Magnetic islands of m = 1, m = 3/2, m = 2 appear at q(r) =1, 3/2, 2

plasma pressure is increased, the beta value is limited by the ballooning
modes (Sect.8.5). This instability is a mode localized in the bad curvature
region driven by a pressure gradient. The beta limit of the ballooning mode
is given by Bmax ~ 0.28(a/Rq,) of (8.138). The § limit by kink and bal-
looning modes depends on the radial profile of the plasma current (shear)
and the shape of the plasma cross-section. The limit of the average beta,
Be = (p)/(B?/2u0), of the optimized condition is derived by MHD simula-
tion codes to be B.(%) = fAnI, (MA)/a(m)By(T) (Ox =2 ~ 3.5) [16.7,16.8].
Bmax of (8.138) is consistent with the result of MHD simulation.

Even if a plasma is ideally MHD stable, tearing modes can be unstable
for a finite resistive plasma. When A’ is positive at the rational surfaces
(see Sect.9.1) in which the safety factor ¢(r) is rational ¢(r) = 1, 3/2, 2,
tearing modes grow and magnetic islands are formed, as shown in Fig. 16.6.
When the profile of the plasma current is peaked, the safety factor at the
center becomes ¢(0) < 1 and the tearing mode with m = 1, n = 1 grows at
the rational surface ¢(r) = 1. The hot core of the plasma is then pushed out
when the reconnection of magnetic surfaces occurs (Fig. 16.7) and the current
profile is flattened. The thermal energy in the central hot core is lost in this
way [16.2,16.9]. Since the electron temperature in the central part is higher
than in the outer region and the resistance in the central part is smaller, the
current profile peaks again and the same process is repeated. This type of
phenomenon is called internal disruption or minor disruption.

The stable operational region of a tokamak with plasma current I, and
density n, is limited. With Greenward density defined by

I, (MA)

ng (10*°m=3) = o (m)? (16.7)
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(b)

fe)

Fig. 16.7. The hot core in the center is expelled by the reconnection of magnetic
surfaces

(d)

an empirical scaling of the normalized Greenward density or Greenward-—
Hugill-Murakami parameter Ngpwm

(ne)

ng

NGHM = <1 (168)
holds for most tokamak experiments [16.10], where ngg is the electron density
in units of 102°m™3. Nguwm can be expressed in the alternative form [see
(16.11)]

0.628 <n20>
K2 By(T)/R(m)

The upper limit of the electron density depends critically on the plasma wall
interaction and tends to increase as the heating power increases, although the
scaling Ngum < 1 does not reflect the power dependence. When hydrogen
ice pellets are injected into a plasma for fueling from the high field side of
ASDEX-U with advanced divertor [16.11], Ngum goes up to ~ 1.5. Therefore
there is a possibility of further increasing Ngum. The safety factor g, at the
plasma boundary is g, > 3 in most cases.

Beyond the stable region (Ngum < 1, 1/¢, < 1/3-1/2), a strong in-
stability, called disruptive instability, occurs in typical operations. Negative
spikes appear in the loop voltage due to the rapid expansion of the current
channel (flattened current profile), that is, the rapid reduction of the internal
inductance. The thermal energy of the plasma is suddenly lost. The electron
temperature drops rapidly and the plasma resistance increases. A positive
pulse appears in the loop voltage. Then the plasma discharge is terminated
rapidly. In some cases, the time scale of disruption is much faster than the

Neum = qr - (16.9)
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time scale (9.27) predicted by the resistive tearing mode. Possible mechanisms
of disruptive instability under discussion are overlapping of magnetic islands
of m=2/n=1[q(r) =2] and m = 3/n = 2 [¢(r) = 1.5], or reconnection of
m =2/n=1,m=1/n =1 magnetic islands. Reviews of MHD instabilities
in tokamak plasmas and plasma transport are given in [16.12-16.15].

16.4 Beta Limit of Elongated Plasma

The output power density of nuclear fusion is proportional to n?(ov). Since
(ov) is proportional to T? in the region near T; ~ 10keV, the fusion out-
put power is proportional to the square of the plasma pressure p = nkT.
Therefore, the higher the beta ratio 8 = p/(B?/2u0), the more economical
the possible fusion reactor. The average beta of (3) ~ 3% was realized by
NBI experiments in ISX-B, JFT-2, and PLT. All these tokamaks have a cir-
cular plasma cross-section. The theoretical upper limit of the average beta
B of an elongated tokamak plasma due to kink and ballooning instability
s [16.7,16.8]

Be(%) ~ OnIp(MA)/a(m)By(T) . (16.10)

On is called the Troyon factor or normalized beta (On = 2-3.5). Using the
definitions

= ol _ _a By
B, = :K—— 16.11
P~ omax’  T"TTRB,” (16.11)
the critical beta reduces to
a
(%) = 58nK?—— | 16.12
3u(%) = 50N K (16.12)

where 2w Ka is the the length of the circumference of the plasma boundary,
K is given approximately by

1
K2:§(1+’%§)7

and kg is the ratio of the vertical radius b to the horizontal radius a. The
safety factor g, at a magnetic surface v is given by

1 [ B 1 do
- al = Yo — Bidsdl =
W= 9r f{ RB," ~ 2rdy f{ ‘BB, T 2rdy f{ tE = oAy

where @ is the toroidal flux through the magnetic surface . It should be
noted that ¢p differs from ¢, in the finite aspect ratio. The approximate
formula used for the effective safety factor at the plasma boundary is

a®B 14k - 1+E
Tt = 2mRI 2 ‘ 2
x[1.24 — 0.54k, + 0.3(kZ + 6%) 4 0.135] , (16.13)
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Fig. 16.8. Observed beta versus I/aB for DIII-D. Various § limit calculations
are summarized in the curves with different assumptions on the location of the
conducting wall (ry/a) [16.17]

including the divertor configuration (see Sect.16.5) [16.16]. The notation is
e=a/R, A =B, +1;/2 [see (6.21)] and § = A/a is the triangularity of the
plasma shape (see Fig. 16.9 and Sect. 16.10).

In the non-circular tokamak DIII-D, (8) = 11% was realized in 1990
[16.17], in which a = 0.45m, B, = 075T, I, = 1.20MA, I,/aB, =
3.1MA/Tm, fn ~ 3.6, ks = 2.35, and R = 1.43m. Figure 16.8 shows the
experimental data for DIII-D on the observed beta versus Iy, /aB.

16.5 Impurity Control, Scrape-Off Layer and Divertor

Radiation power loss Pyrems by bremsstrahlung due to electron collisions with
ions per unit volume is

T, 1/2
Phirems = 1.5 x 10738 Z qn? <“€) (W/m?) .

The loss time due to bremsstrahlung defined by Threms = (3/2)nekT6/ Porems

is 12
1 KT,
rems — 0.16 5
™ Zeffn20< e ) )
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Fig. 16.9. Divertor configuration using the separatrix S of the magnetic surface
(left). Definition of the triangularity 6 = A/a (right)

where ngo is in units of 10*m=3 and xT,/e is in units of eV. When
ne ~ 102°m~3 and kT, ~ 10keV, then we have Threms ~ 16/Zeg(s). There-
fore if radiation losses such as bremsstrahlung, recombination radiation, and
line spectrum emission are much enhanced by impurity ions, the fusion core
plasma cannot be realized even due to radiation losses alone. When the tem-
perature of the plasma increases, the ions from the plasma hit the walls of
the vacuum vessel and impurity ions are sputtered. When the sputtered im-
purities penetrate the plasma, the impurities are highly ionized and yield a
large amount of radiation loss, which causes radiation cooling of the plasma.
Therefore impurity control is one of the most important subjects in fusion
research.

Light impurities such as C and O can be removed by baking and discharge-
cleaning the vacuum vessel. The sputtering of heavy atoms (Fe, etc.) of the
wall material itself can be avoided by covering the metal wall with carbon
tiles. Furthermore a divertor, as shown in Fig.16.9, is very effective in re-
ducing the plasma—wall interaction. Plasmas in the scrape-off layer (SOL)
flow at the velocity of sound along the lines of magnetic force just outside
the separatriz S into the neutralized plates, where the plasmas are neutral-
ized. Even if the material of the neutralized plates is sputtered, the atoms
are ionized within the divertor regions near the neutralized plates. Since the
thermal velocity of the heavy ions is much smaller than the flow velocity of
the plasma (which is the same as the thermal velocity of hydrogen ions), they
are unlikely to flow back into the main plasma. In the divertor region the elec-
tron temperature of the plasma becomes low because of impurity radiation
cooling. Because of pressure equilibrium along the lines of magnetic force,
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stagnation point (s = 0)

divertor plate (s = Lp)

Fig. 16.10. Left: configuration of the scrape-off layer (SOL) and divertor. (Right):
coordinates of the slab model

the density in the divertor region near the neutralized plates becomes high.
Therefore the velocity of ions from the plasma into the neutralized plates is
collisionally damped and sputtering is suppressed. A decrease in the impurity
radiation in the main plasma can be observed using a divertor configuration.

However, the scrape-off layer of the divertor is not broad and most of the
total energy loss is concentrated in the narrow region of the target divertor
plate. The severe heat load to the divertor plate is one of the most critical
issues of reactor design. Physical processes in the scrape-off layer and divertor
region are being actively investigated both experimentally and theoretically
[16.18].

Let us consider thermal transport in the scrape-off layer. It is assumed
that thermal transport parallel to the magnetic line of force is dominated
by classical electron thermal conduction, whilst thermal transport perpen-
dicular to the magnetic field is anomalous thermal diffusion. We use a slab
model, as shown in Fig.16.10 and omit the Boltzmann constant in front of
the temperature. Then we have

un + VqL + Qrad =0 5 (1614)
_ o _ 5200Te 2 Tl
q| = —hKc s —koT, Bs *?Ro 95 (16.15)
aTe i aTl 3 877,
=-n{xi5- +x —=D(Te +T,) = 16.1
qi n(XJ_ar +Xj_ar) ) (e+ 1)87”’ (6 6)

e ~ G Ve = 2.8 X 10°m ™ W (eV) TT2T2 (V)2 .

Here ¢ and ¢, are heat fluxes in the directions parallel and perpendicular to
the magnetic field and Q.4 is the radiation loss. k. is the heat conductivity,
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X%, X', are thermal diffusion coefficients, and D is the particle diffusion
coefficient. The stagnation point for heat flow is set at s = 0 and the X
point of the separatrix and divertor plate are set at s = Ly and s = Lp,
respectively. Then the boundary conditions at s = 0 and s = Lp are

q0=0, (16.17)

1
qip = YIpnpup + §miu2DnDuD + Enpup
= npMpes[(v + MB)To + ] (16.18)

where up is the flow velocity of the plasma at the divertor plate and Mp
is the Mach number Mp = up/cs. The sheath energy transfer coefficient is
v & 7 and the ionization energy is £ ~ 20 ~ 27eV. The sound velocity is
cs = EST];/Q, & = 0.98(2/A;)Y/210* ms~1(eV)~1/2, where 4; is the ion atomic
mass. The first and second terms of (16.18) are the power flux into the sheath
and the third term is the power consumed within the recycling process. The
equations of particles and momentum along the magnetic lines of force are

a(afZU) = Si — SCXJ — VL(HUL) ~ Si — Scx,r y (1619)
Ou  Op
mnuos = - - muSy, , (16.20)

where Sy, = nng(ov)y, is the loss of momentum of the plasma flow by collision
with neutrals, S; = nng(ov); is the ionization term, and Scxr = nNE(OV)cxr
is the ion loss by charge exchange and radiation recombination. Equations
(16.19) and (16.20) reduce to

A(nmu? + p)
0s
The flow velocities at s = 0 and s = Lp are ug = 0 and up = Mpcg, Mp ~

1, respectively. Equations (16.14) and (16.15) and the boundary conditions
(16.17) and (16.18) reduce to

= —mu(Sm + Sex,r) + muS; . (16.21)

2,%0 82 7/92
?@Te/ =V.iq1 + Qraa (16.22)
9 s s’
SR () - T =/ dS'/ (Vg1 + Qraa)ds” . (16.23)
Lp 0

When Vg, = const., Q,aq =0in 0< s < Ly and V¢ =0, Qraq = const.
in Ly < s < Lp, we have

2/‘60

- [T7/%(s) = TIL?] = 0.5(=V 1q1 ) 2Ly Lp — L2 — 8%) + 0.5Quaa(Lp — Ly)?
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for (0 < s < Ly). When the radiation term is negligible, Teg = T(0) becomes
7 (2L

T2 2 D

e0 eD + 4”0 Lx

1) (V.

If T.p < 0.5T and Lp — Ly < Ly, we have

_ L2 2/7 L2 2/7
Tuo ~ 1.17 [(V“”)X} =117 <qL X) , (16.24)
Ko RoAq

where 1/A\; = =V 1¢1/q.. When the scale lengths of the temperature and
density gradients are Ay and )\, respectively, where T'(r) = T exp(—r/Ar),
n(r) = nexp(—r/A\,), and assuming x| < x% and D ~ %, equation (16.16)

becomes T 3 TN )
e i T
=nxS — [14+=(14+—=] —| . 16.2
qL nxl)\T{ +2( +Te) )\n} (16.25)

Consequently, if x¢ is known as a function x¢(Te, n, B), then Ar is given as
/\T(Te, n, B, q1.)~

Let us consider the relations between ng, T.s, and Tis at the stagnation
point s = 0 and np, Tp at the divertor plate s = Lp. The momentum flux in
the divertor region decreases due to collisions with neutrals, charge exchange
and ionization, and becomes smaller than at the stagnation point:

o= T+ 1)

<1. (16.26)

The power flux to the divertor plate is reduced by radiation loss from the
power flux ¢, Ly into the scrape-off layer through the separatrix with length
Ly:

/ qdr = (1 = fraa)qu Lx (16.27)
0

where fraq is the fraction of radiation loss. Equations (16.27) and (16.18)
reduce to

5 /2 [ (v + M3)Tp 3

M, =1-f LX7
DIDEID 13 /90r + 1/ M 1/(2)\T)+1/)\n] (1= fraa)ar

that is,

6S-}“ >\ TCS +ﬂs
(1= fraa)qrLx = 1_5+§TT/A n, === G(Tp) | (16.28)

Mp 1/2 1 §
= — Mp)T; 1 — ] . 16.29
Tz )T ( M, To (16.29)

The curve of G(Tp) as a function of Tp is shown in Fig. 16.11 and G(1p) has
a minimum at Tp = &/(y + M3). When Mp ~ 1,y = 7, £ = 24eV, G(Tp) is

G(Tp)
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Fig. 16.11. Dependence of G(Tp) (eV)'/? on Tp(eV)

4.
GD4$”(1+T§>.

G(Tp) is roughly proportional to Tlé/Z when Tp > 15€V in this case. Since Ty

depends on ng through Ay /7 as can be seen from (16.24), the dependence
of Tes on ns is very weak. From (16.28) and (16.26), we have roughly the
following relations:

Tp xn;?, np o nd, (16.30)

and the density np at the divertor increases non-linearly with the density ng
of the upstream scrape-off layer.

When the upstream density ng increases while keeping the left-hand side
of (16.28) constant, the solution Tp of (16.28) cannot exist beyond a threshold
density, since G(Tp) has the minimum value (Fig.16.11). This is related to
the phenomenon of detached plasma above a threshold of upstream density
[16.18].

The heat load ¢p of the divertor normal to the magnetic flux surface is
given by

~ (1 - frad)Psep

a A B
on Sl (1 fnK g, (1.5+ T) Bo - 1631)

)\T )\n BG

where Pyp, is the total power flux across the separatrix surface and Agp is
the radial width of heat flux at the divertor plate, i.e.,

1 By

Puy = 27aK27Rq, . Aup = A _
P e gL ¢D T 1.5+ )\T/)\n Byp

The term By/Byp = 2 ~ 3 is the ratio of separations of magnetic flux
surfaces at the stagnation point and the divertor plate. If the divertor plate
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Fig. 16.12. Energy flow of ions and electrons in a plasma. Bold arrows: thermal
conduction (x). White arrows: convective loss (D). Dashed arrows: radiation loss
(R). Dot-dashed arrows: charge exchange loss (CX)

is inclined at an angle « relative to the magnetic flux surface, the heat load
of the inclined divertor plate becomes sin o times that of the divertor normal
to the magnetic flux surface.

16.6 Confinement Scaling of L. Mode

The energy flow of ions and electrons inside the plasma is shown in Fig. 16.12.
If we denote the heating power into the electrons per unit volume by P, and
the radiation loss and the energy relaxation of electrons with ions by R and
P,;, respectively, then the time derivative of the electron thermal energy per
unit volume is given by

d /3 10 OkT, 3 One
a <2ne/€Te> =P —R— P+ “or” <Xea7‘ + DeQHTeaT> )

where Y, is the electron thermal conductivity and D, is the electron diffusion
coefficient. Concerning the ions, the same relation is derived, but instead of
the radiation loss, the charge exchange loss Leyx of ions with neutrals must
be taken into account, whence

d 10 _3/1Ti 3 %
dt \ 2 Xi~5, 2 or )

d /3
<ﬂi/’€Ti) =Pni — Lex + Poi + —7r + Di5rT;
ror

The experimental results for ohmic heating and heating by neutral beam
injection can be explained by classical processes. The efficiency of wave heat-
ing can be estimated fairly accurately by theoretical analysis. Radiation and
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Fig. 16.13. Comparison of confinement scaling TéTER*P with experimental data

on the energy confinement time 75" for the L mode [16.20]

charge exchange loss are classical processes. In order to evaluate the energy
balance of the plasma experimentally, the fundamental quantities ne(r,t),
Ti(r,t), To(r,t), etc., must be be measured. According to the many experi-
mental results, the energy relaxation between ions and electrons is classical,
and the observed ion thermal conductivities in some cases are around 2-3
times the neoclassical thermal conductivity,

Xi,nc - nif(qa €)q2(in)2Vii )

where f = 1 in the Pfirsch-Schliiter region and f = ¢, 3/2 in the banana
region, and the observed ion thermal conductivities in some other cases are
anomalous. The electron thermal conduction estimated from the experimen-
tal results is always anomalous and is much larger than its neoclassical coun-
terpart (by more than one order of magnitude). In most cases the energy
confinement time of the plasma is determined mainly by electron thermal
conduction loss. The energy confinement time 7g is defined by

J(3/2)(nexT, + nikT;)dV
2 .

The energy confinement time 7oy of an ohmically heated plasma is well
described by Alcator (neo-Alcator) scaling as follows (units are 1029 m=3):

Tou(s) = 0.103¢"*fegpat 0 R%0*

However, the linear dependence of 7oy on the average electron density 7o
deviates in the high-density region n. > 2.5 x 102 m=2 and 7oy tends to
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saturate. When the plasma is heated by high-power NBI or wave heating,
the energy confinement time degrades as the heating power increases. Kaye
and Goldston examined many experimental results for NBI heated plasmas
and derived the so-called Kaye—Goldston scaling on the energy confinement
time [16.19], i.e.,

1 1 1/2
TR = (2 + ) , Taux(s) = 0.037k I, P00 3 TRV
Ton  TAux
(16.32)

where the units are MA, MW, and m, and kg is the elongation ratio of non-
circularity and P;. is the total heating power in MW.

The ITER team assembled data from larger and more recent experiments.
Analysis of the data base of L. mode experiments (see next section) led to the
proposal of the following ITER-P scaling [16.20],

(16.33)

A\ 2
TéTERfP(S) _ 0.04813'85R1‘2a0‘3ﬁgblBO'2 ( i b) 7

P

where units are MA, m, T, MW, and the units of figg are 102 m~3. P is the
heating power corrected for radiation Pr (P = Pyt — Pr). A comparison of
confinement scaling TéTER_P with experimental data for the L mode is pre-
sented in Fig. 16.13. For burning plasmas, the heating power is roughly equal
to a particle fusion output power P, & 0.04nd 10T Aa®ks (MW, 102°m =3,
keV, m) at around T ~ 10keV (see Sect. 16.8). It is interesting to note that
npt1'7g depends mainly only on the product of AI, for the Goldston and L

mode scalings (A = R/a is the aspect ratio).

16.7 H Mode and Improved Confinement Modes

An improved confinement state, the so-called H mode, was found in the AS-
DEX [16.21,16.22] experiments with divertor configuration. When the NBI
heating power is larger than a threshold value in the divertor configuration,
the D, line of deuterium (atom flux) in the edge region of the deuterium
plasma decreases suddenly (time scale 100 us) during discharge, and recy-
cling of deuterium atoms near the boundary decreases. At the same time
there is a marked change in the edge radial electric field E, (toward the
negative). Furthermore, the electron density and the thermal energy density
increase, and the energy confinement time of NBI heated plasma is improved
by a factor of about 2. The H mode was observed in PDX, JFT-2, DIII-
D, JET, JT60U, and so on. The confinement state following Kaye—Goldston
scaling is called the L mode. In the H mode, the gradients of electron tem-
perature and electron density become steep just inside the plasma boundary
determined by the separatrix. In the spontaneous H mode, F, becomes more
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Fig. 16.14. Plots of various edge plasma profiles at times spanning the L-H tran-
sition in DIII-D. (a) E, profile. (b) Profiles of the ion temperature measured by
CVII charge exchange recombination spectroscopy. (c¢) and (d) Profiles of electron
temperature and electron density measured by Thomson scattering [16.24]

negative (inward) (see Fig.16.14) [16.23,16.24]. Theoretical and experimen-
tal studies on the L-H transition or bifurcation have been actively carried
out [16.25,16.26]. The radial electric field near the plasma boundary is driven
by several mechanisms such as momentum injection due to NBI, or ion orbit
loss near the plasma boundary, or non-ambipolar flux.

The radial electric field causes plasma rotation with velocity v = —E,./B
in the poloidal direction and velocity vy = —(E,/B)(By/B) in the toroidal
direction. If a gradient of F, exists, sheared poloidal rotation and sheared
toroidal rotation are generated. The importance of sheared flow for sup-
pression of edge turbulence and for improved confinement was pointed out
in [16.27].
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Let us consider the following fluid model:

o ~
E—F(’UO—F’B)-V—FLd 6:57

where §~ is the fluctuating field, vg is taken to be the equilibrium E x B
flow, § represents a driving source of the turbulence, and Lq4 is an operator
responsible for dissipation of turbulence. The mutual correlation function
(E(1)E(2)) of the fluctuating field £(1) at a point 1 and £(2) at a point 2 is
given by [16.28]

57 (5 = v0/ryra g = 2Dl y-) g+ La| (EDER) =T
(16.34)
where D is the radial diffusion coefficient of turbulence, 7" is the driving term
and ry = (r1+72)/2, 0_ =61 — 0, y_ = r;0_. The decorrelation time 74 in
the poloidal direction is the time in which the relative poloidal displacement
between point 1 and point 2 due to sheared flow becomes the space correlation
length of the turbulence kakl, that is,

1

koksy ~ 1 y 6y = 'U(g(AT)Td y Td = m .

The decorrelation rate wg in the poloidal direction is

1
ws = — = (Arko)vp .
!
When Ar is the radial correlation length of the turbulence, the radial decor-
relation rate Awy is given by

Since there is strong mutual interaction between radial and poloidal decor-
relation processes, the decorrelation rate 1/7¢or becomes a hybrid of two
decorrelation rates, that is,

1

2/3
= (W2 Aw) /3 = (i}) Aw, . (16.35)
t

Tcorr
The decorrelation rate 1/7¢ory becomes (wy/ Awt)z/ 3 times as large as Awy,
where Aw; is the decorrelation rate of the turbulence in the case of shearless
flow. Since the saturation level of the fluctuating field £ is

|£|2 ~T X Teorr

the saturation level of the fluctuating field reduces to
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Fig. 16.15. Snapshot of the equidensity contours for shearless (top) and strongly
sheared (bottom) flows [16.27]. The wvertical azis represents the radial coordinate
r/a and the horizontal axis represents the poloidal angle 6 (in degrees)

€7 (Aw)* 1 25 toh = (k3,)D
o[ Ws (dvg/dr)to (koyAr)2 * 10 T Yoyl

where |£| is the level in the case of shearless flow. The effect of sheared flow
on the saturated resistive pressure-gradient-driven turbulence is shown in
Fig. 16.15. The coupling between poloidal and radial decorrelation in shearing
fluctuation is evident in this figure. Since the thermal diffusion coefficient is
proportional to [£]?, the thermal diffusion is reduced, i.e., a thermal barrier
is formed near the plasma edge.

Theoretical studies on H mode physics are being actively pursued. In ad-
dition to the standard H mode as observed in ASDEX and elsewhere, other
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types of improved confinement modes have been observed. In the TFTR
experiment [16.29], outgassing of deuterium from the wall and the carbon
limiter located on the inner (high-field) side of the vacuum torus was ex-
tensively carried out before the experiments. Then balanced neutral beam
injections of co-injection (beam direction parallel to the plasma current) and
counter-injection (beam direction opposite to that of co-injection) were ap-
plied to the deuterium plasma, and an improved confinement ‘supershot’
was observed. In supershot, the electron density profile is strongly peaked
[ne(0)/{ne) = 2.5-3].

In the DIII-D experiment, the VH mode [16.30] was observed, in which
the region of strong radial electric field was expanded from the plasma edge
to the plasma interior (r/a ~ 0.6), and g /75 ' becomes 3.6.

In the JT60U experiment, the high beta-poloidal H mode [16.31] was
observed, in which 8, was high (1.2-1.6) and the density profile was peaked
[ne(0)/(ne) = 2.1-2.4]. Furthermore the edge thermal barrier of the H mode
was formed.

Hinton et al. [16.32] pointed out that the peaked pressure and density pro-
files induce a gradient in the radial electric field. From the radial component
of the equation of motion (5.7) of the ion fluid or (5.28), we have

1 dp;

(16.36)

The derivative of E, with respect to r is

dE,- _ L dni dpi
dr en? dr dr’

since the contribution from the other terms is small in typical experimental
conditions for the H mode.

Recently, a high performance mode of negative magnetic shear config-
uration has been demonstrated in DIII-D, TFTR, JT60U, JET and Tore
Supra [16.33]. As described in Sect. 8.5, the ballooning mode is stable in the
negative shear region:

s=rd (16.37)

qdr

An example of radial temperature and density profiles and ¢ profile of JT60U
is shown in Fig. 16.16. Combining the central heating and magnetic negative
shear, steep gradients in temperature and density appear at around the ¢
minimum point. This internal transport barrier is formed by the effects of
the negative magnetic shear (see Sects. 7.3 and 14.6) and E x B flow shear.
As a measure of the high performance of the improved confinement mode, the
ratio of observed energy confinement time 75t to ITER-P scaling TéTER*P,

known as the Hy, factor, is widely used:

_
o)



16.7 H Mode and Improved Confinement Modes 291

=
<4}
£
=
P
-
E
o
g =
g

r/a

Fig. 16.16. Radial profiles of ion and electron temperatures, and density and ¢
profiles in the negative magnetic shear configuration of JT60U

Observed Hj, factors are in the range 2-3.

The ITER H mode database working group assembled standard experi-
mental data for the H mode from ASDEX, ASDEX-U, DIII-D, JET, JFT-
2M, PDX, PBX, Alcator C-Mod, and so on. Results of regression analy-
sis of H mode experiments led to the following thermal energy confinement
time [16.34]:

Télftli%ﬂ — 0_056213.98Bto.15P—0.69Mio.19R1.97ﬁ2.14§1€0.58,€0.78 ’ (16.39)
where units of s, MA, T, MW, amu, m, 10'm™2 are used and the total
heating power corrected for shine-through of NBI heating, orbit loss and
charge exchange loss, less the time derivative of stored energy. This scaling is
used when edge-localized-modes (ELM) exist. The heating power threshold
scaling Py, which defines the lowest boundary of the H mode operating
window, is

Pry = 2.84M ' By #2p508 R1-0060-81 (16.40)

In most hot plasma experiments, neutral beam injections are used to heat
the plasma. With improved confinement mode operations, such as H mode,
supershot and high 3, mode in large tokamaks, fusion grade plasmas are
produced by neutral beam injection. The plasma parameters of typical shots
of JET [16.35], JT60U [16.31] and TFTR [16.29] are listed in Table 16.2.
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Table 16.2. Plasma parameters of large tokamaks JET [16.35], JT60U [16.31],
and TFTR [16.29]. n;(0)7"73(0) is the fusion triple product. ks is the ratio of
the vertical radius to the horizontal radius. ¢ is the effective safety factor near the
plasma boundary with different definitions. gos5 is the safety factor at the 95% flux
surface. gesr and ¢* are defined in (16.13) and [16.29], respectively. ¢ is the factor
defined in (16.11). Eng is the particle energy of neutral beam injection

JET JT60U TFTR
ELM free ELMy supershot
No. 26087 No.E21140
I, (MA) 3.1 2.2 2.5
B; (T) 2.8 4.4 5.1
R/a (m/m) 3.15/1.05 3.05/0.72  ~2.48/0.82
Ks 1.6 1.7 1
q Qo5 = 3.8 qet = 4.6 q- =32
ar 2.8 3.0 2.8
ne(0) (101°m™2) 5.1 7.5 8.5
ne(0)/{ne) 1.45 2.4 -
ni(0) (10°m™3) 4.1 5.5 6.3
T.(0) (keV) 10.5 10 11.5
T.(0)/(T%) 1.87 - -
T; (keV) 18.6 30 44
Waia (MJ) 11.6 7.5 6.5
dWaia/dt (MJ/s) 6.0 - 7.5
Zeogt 1.8 2.2 2.2
Bo 0.83 1.2 ~1.1
Be (%) 2.2 ~1.3 ~1.2
g (Troyon factor) 2.1 ~1.9 2
Pxg (MW) 14.9 24.8 33.7
Exs (keV) 135, 78 95 110
= W/Pot (s) 0.78 0.3 0.2
H =7t Jr PRF ~3.0 ~2.1 ~2.0
ni (0)7°* T3 (0) (10*°keVm™3s) 5.9 5 5.5
nr(0)/ [nr(0) 4+ np(0)] 0 0 0.5

Prusion (MW) - - 9.3
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In the present neutral beam source, the positive hydrogen ions are ac-
celerated and then passed through the cell filled with neutral hydrogen gas,
where ions are converted to a fast neutral beam by charge exchange (elec-
tron attachment). However, the conversion ratio of positive hydrogen ions to
neutrals becomes small when the ion energy is larger than 100keV (2.5% at
200keV of HT). On the other hand, the conversion ratio of negative hydro-
gen ions (H™) to neutrals (electron stripped) does not decrease in the high
energy range (~60%). A neutral beam source with a negative ion source is
being developed as a high-efficiency source.

Wave heating is another method of plasma heating, described in detail in
Chap. 12. A similar heating efficiency was observed for wave heating in ICRF
(ion cyclotron range of frequency) and for NBI in PLT. In the JET ICRF
experiments, the parameters k7;(0) = 5.4keV, kTo(0) = 5.6keV, n.(0) =
3.7 x 1013 em ™3, 1 ~ 0.3s were obtained by Picrr = 7TMW.

16.8 Non-Inductive Current Drive

As long as the plasma current is driven by electromagnetic induction of the
current transformer in a tokamak device, the discharge is necessarily a pulsed
operation with finite duration. If the plasma current can be driven in a non-
inductive way, a steady-state tokamak reactor is possible in principle. Current
drive by neutral beam injection has been proposed by Ohkawa [16.36] and
current drive by traveling wave has been proposed by Wort [16.37]. The
momenta of particles injected by NBI or of traveling waves is transferred to
the charged particles of the plasma and the resulting charged particle flow
produces the plasma current. Current drive by NBI was demonstrated by
DITE, TFTR, etc. Current drive by a lower hybrid wave (LHW), proposed
by Fisch, was demonstrated by JFT-2, JIPPT-II, WT-2, PLT, Alcator C,
Versator 2, T-7, Wega, JT-60, and so on. Current drive by electron cyclotron
waves was demonstrated by Cleo, T-10, WT-3, Compass-D, DIII-D, TCV,
and others.

16.8.1 Lower Hybrid Current Drive

The theory of current drive by waves is described here according to Fisch
and Karney [16.38]. When a wave is traveling along the line of magnetic
force, the velocity distribution function near the phase velocity of the wave is
flattened by the diffusion in velocity space. Denoting the diffusion coefficient
in the velocity space of the wave by D¢, the Fokker—Planck equation is given
by [16.39]

of F 9 of 5f
E +uv- Vrf + (m> ‘va = v, <Drf8vz> + <6t>pp ) (16'41)
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where (8f/8t)r p. is the Fokker—Planck collision term

8\ _ 19
<6t>F.P, o Z LQ ov T+ vsing 06 79 806 | (16.42)
9 19
Jv==D) af tAf, Jo=-Di_ ag (16.43)

When the velocity v of a test particle is greater than the thermal velocity v}
of field particles (v > v7), the diffusion tensor in velocity space D), D1 and
the coefficient of dynamic friction A reduce to

3
vy (v vivg vp m v
Dy = -, Di= o A=-Dj——5,
2 v 2 2v m* vy
where v} and vy are given by
* * 2 *
2 T Vo = (qq ) n*lnA ., InA
T — * ) - *3,1,2 *3,,%
m €0 2rvm 2rvrn

and IT*? = qq*n* /(egm). (v,0,) are spherical coordinates in velocity space.
vy, ¢*, n* are the thermal velocity, charge, and density of field particles,
respectively, and v, q,n are the quantities relating to test particles. Let us
consider the electron distribution function in a homogeneous case in space
without external force (F' = 0). Electron—electron and electron—ion collision
terms (ion charge number Z) are taken into account. When dimensionless
quantities 7 = voet, u = v/v} , w = v /v, D(w) = Drf/v}zu()e are intro-
duced, the Fokker—Planck equation reduces to

aof _ 9o af 1 10f 1+2Z 1 0 (. Of
or  Ow {D(w) 8w] o 2u2 du (u ou A 4u3 sinf 90 Sme@@ '
When Cartesian coordinates in velocity space (vg,vy,v.) = (v1,v2,v3) are

used instead of spherical coordinates in velocity space, the Fokker—Planck
collision term in Cartesian coordinates is given as follows (assuming v > v.):

Ay = —Dovp— m U; : (16.44)

D;; = I;O 11})5 [(026” —vv5) + l;i;(&/ivj —v35;5)] (16.45)
Ji=Af — zj: Dijgi , (16.46)

Dy = (qg*)*n*In A v}zuo (16.47)

4re3mvi, 2 7
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w/ky

Fig. 16.17. The electron distribution function f(v)) is flattened in the region from
v1 = ¢/N1 to v2 = ¢/N»2 due to the interaction with the lower hybrid wave, for
which the spectrum of the parallel index N ranges from N to Na

AN
<&>F4p. = Vel

A; is the coefficient of dynamic friction and D;; is the component of the
diffusion tensor. Let us assume that the distribution function of the velocities
Vg, vy perpendicular to the line of magnetic force is Maxwellian. Then the one-
dimensional Fokker—Planck equation on the distribution function F'(w) =
[ fdv,du,, of the parallel velocity w = v,/ vy, can be deduced by integrating
over (vg,vy): '

//(Z)FP dedvyZ//(—VU.J)dv$dvy

B 0 of
7//871& —Aszr;Dzja—vj dv,dv, .

When |v,| > |vg], |vy], the approximation v ~ |v,| can be used. The resulting
one-dimensional Fokker—Planck equation for F'(w) is

oF 0 oF Z\ 0 1 9 1

The steady-state solution is
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—wdw

1+ w3D(w)/(1+ Z/2)

F(w) =Cexp /w

which is shown schematically in Fig. 16.17. When D(w) = 0, this solution is
Maxwellian. F'(w) is asymmetric with respect to w = 0, so that a current is
induced. The induced current density J is

J =envrj,
where j = [ wF(w)dw, and

Nw1+w2

9 F(wl)(wg — ’LUl) . (1648)

On the other hand, this current tends to dissipate by Coulomb collisions.

Dissipated energy must be supplied by the input energy from the wave in
order to sustain the current. The required input power Py is

nmv? [ df nmv? 0 af
Fa = _/ 2 <5t>F.P' dv _/ 2 Ov, <D‘favz> dv

29 OF
= nmv}fl/o/ d [D(w)] dw = nmvjvopa

2w ow

where pq is given by use of the steady-state solution of F(w), under the
assumption w3 D(w) > 1, as follows:

_ Z w2 _ A wo — W1
pd—<1+2)F(w1)1n<wl>~<1+Q)F(wl) oy

j 5 2,

— = 16.49
P 1+0523" (16.49)
More accurately, this ratio is [16.38]
j 1.12 )
— = —71.Tw". 16.50
pa 110127 " (16.50)

The ratio of the current density J and the input power Py per unit volume
required to sustain the current is given by

x T, 1.12 A/m?
S e 6Ty oy /m3 (16.51)
Py nTsvop4a N19 1+0.127; W/m

where (kT )kev is the electron temperature in keV units and

Icp 1 [ J2mrdr
Wig 27erPd27rrdT '

The current drive efficiency nf}; of LHCD is
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v _ Rniglop [ nuu(r)Pa(r)2mrdr (1019 A )

= Win J Pa(r)2nrdr Wm?

where 7 (r) is the local current drive efficiency given by

1.12 A
= 0.026(KT%)kev (w?) [T 0127, (1019Wm2> ,
(16.52)

and R is the major radius in meters. The average square (w?) of the ratio
of the phase velocity (in the direction of the magnetic field) of traveling
waves to the electron thermal velocity is of the order of 20-50. In the JT60U
experiment (1994), a plasma current of I, = 3MA was driven by a lower
hybrid wave with Wiz = 4.8 MW when n = 1.2 x 1019 m~2, (kT,) ~ 2keV,
R =35m and By = 4T (nLg ~ 2.6). These results are consistent with the
theoretical results.

The required current drive power is proportional to the density, and the
current cannot be driven beyond a threshold density in the case of lower hy-
brid current drive because of the accessibility condition (see Sect. 12.5). Other
possible methods, such as drive in the electron cyclotron range of frequencies
(see Sect. 16.8.2), fast wave, and neutral beam injection (see Sect.16.8.3) are
also being studied.

A ramp-up experiment taking the plasma current from zero was first
carried out by WT-2 and PLT and others by applying a lower hybrid wave
to the target plasma produced by electron cyclotron heating and other types
of heating. When the plasma current is ramped up in the low-density plasma
and the density is increased after the plasma current reaches a specified value,
all the available magnetic flux of the current transformer can be used solely
to sustain the plasma current, so that the discharge duration can be increased
several times.

16.8.2 Electron Cyclotron Current Drive

Electron cyclotron current drive (ECCD) relies on the generation of an asym-
metric resistivity due to the selective heating of electrons moving in a partic-
ular toroidal direction. N.J. Fisch and A.H. Boozer [16.40] suggested that the
collisionality of the plasma might be altered in such a way that, for example,
electrons moving to the left collide less frequently with ions than electrons
moving to the right. A net electric current would result, with electrons mov-
ing, on average, to the left and ions moving to the right.

Consider the displacement in velocity space of a small number, 8f, of
electrons from coordinates with subscript 1 to coordinates with subscript 2
as shown in Fig. 16.18. The energy expended to produce this displacement is
given by

AE = (Ey — E1)8f



298 16 Tokamaks

vy

of

- U,

Fig. 16.18. Displacement in velocity space of a small number, 3f, of electrons from
coordinates with subscript 1 to coordinates with subscript 2

where F; is the kinetic energy associated with velocity-space location . Elec-
trons at different coordinates will lose their momentum parallel to the mag-
netic field, which is in the z direction, at a rate vy, but now lose it at a rate
V. The z-directed current density is then given by

j(t) = —edf {vzg exp(—vat) — vz exp(fz/lt)} . (16.53)

Consider the time-smoothed current J over a time interval &t which is large
compared with both 1/v; and 1/vs, so that

I 8
J=*/ iyt =~ (2 a1
At 0 At 1) "
Therefore the input power density P4 required to induce the current density
is

AE B, — B

Py=—-= of .

T A ar o

The ratio J/P4q becomes
J Va2 /V2 — Va1 /11 8-V (v:/v)
J__ 2 TV, 16.54
P BB “TeVE (16:54)

where s is the unit vector in the direction of the displacement in velocity
space. Let us estimate v of (16.54). The deceleration rate of the momentum
of a test electron by collision with electrons and ions is expressed by [see
(2.14) and (2.17)]

d__» _» :_<1+Zi>Vop
dt Tee|| Tei| 2 ) ud’
where )
ene InA v
vy = , U= —,
0 €0Me 27‘('71611;’16 T,
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and v, = (KT./me)'/? is the electron thermal velocity. Therefore we have
dp 0
dt 2u
In order to estimate du/d¢, we must use the energy relaxation time 7¢, [see
(2.27)]

—UMP v = (2+Z)

dF E e
- =, E:m—uzv%,
dt TE, 2 e
that is
du v w
dt 21, 2uB
Each term in (16.53) for j(¢) must be modified as follows:
2+ 7
. . o ju(t
J(t) = joexp <—/VMdt> = Jo [i)] ) (16.55)
0
because
dt d t
—/I/Mdt:—/VM—du: (2+Zi)/£ = (2+Zi)ln& .
du u Ug

Then the integral of j(¢) in (16.55) reduces to

oo 0 2+7Z; . 3
: : u(t) de Jo 2ug
t)dt = — —du = =— .
/0 it ]O/U {uo} W™ T W+ Z

0
Accordingly, v in (16.54) is

54 Z;
= 16.56
v="1 2u3 ( )
and
J  enevr, j i 4 s-V(udw)
Py neTevopa’ pa 5+7Zi sVu?
where w = v, /vr,. In the case of ECCD, we have j/pq = 6wu/(5 + Z;) and
J e 6 To)kev (6
S enevn, (6w o (WTe)iev (6w (16.57)
Pd TLeTeI/O 5+ Zi N9 5+ Zi

The ratio of driven current Icp to ECCD power Wg( is

Icp 1 [J2mrdr
Wee  27R [ Py27mrdr’

and the current drive efficiency 1t of ECCD is

T o_ Rniglcp _ anc(r)Pd(r)Qwrdr
nEC - WCD f Pd27'("l"d’l" ’

where ngc(r) is the local current drive efficiency given by

_ RnyoJ(r) (6wu) 19 A
T]Ec(T’) = 271_de = 0.015(I€Te)kev5+zi 10 Wm2 . (1658)
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16.8.3 Neutral Beam Current Drive

When a fast neutral beam is injected into a plasma, it changes to a fast ion
beam by charge exchange or ionization processes. When the fast ions have
higher energy than E., = myv2 /2 given by (2.33), they are decelerated,
mainly by electrons in the plasma, while the fast ions with £ < E., are
decelerated mainly by ions in the plasma. The distribution function of the ion
beam can be obtained by solving the Fokker—Planck equations. The Fokker—
Planck collision term (16.42) of the fast ions with E > E., is dominated by
the dynamic friction term in (16.43) due to electrons. The dynamic friction
term due to electrons on the fast ions in the case v < v}, is given by [16.39]

v

Cor
Then the Fokker—Planck equation reduces to

0, 0 (o,
ot ov \ 27,

) = ¢d(v—wp) , (16.59)

where vy, is the initial injection velocity and 75, is the energy relaxation time
of beam ions and electrons as described by (2.34). The right-hand side is the
source term of beam ions. The steady-state solution of the Fokker—Planck
equation is

foox1/v.

However, the dynamic friction term due to ions or the diffusion term dom-
inates the collision term in the region v < wv. Therefore the approximate
distribution function of the ion beam is given by fi, oc v2/(v? +v32.), i.e.,

2

. ny v
MO i g R, ) (1060
folv) =0 (v>w). (16.60b)

The ion injection rate ¢ per unit time per unit volume required to maintain
the steady-state condition of the beam is derived by substituting the solution
for fi,(v) into the Fokker—Planck equation:

Np [1 + (vcr/vb)3]71

= 27'156 {1n [1 + (vb/vcr)g} }

1/3 °

The required power is then

mbvg - mbvgnb
2 - 4In(vp/ver) T,

P, = (16.61)

The average velocity of the decelerating ion beam is
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B = vp [ In(vp /ver)] (16.62)

Then the current density J driven by the fast ion beam consists of terms due
to fast ions and bulk ions and electrons of the plasma:

J = Zieniv; + Zpeny Uy — enete , Ne = Zini + Zpnyp ,

where 7; and U, are the average velocities of ions with density n; and electrons
with density n., respectively. The electrons of the plasma receive momentum
by collision with fast ions and lose it by collision with plasma ions, i.e.,
dve _ _ _
meneﬁ = mene(vb - Ue)VebH + mene(vi - 'Ue)’/eiH =0,
so that
(Z3ni + ZEny)0e = ZEnpoy, + Z3ni0;

Since np, < ny,
2

_ b _ _
Mele = — NMbUb + Ziniv
1

so that [16.36]
Zy, _
J=(1- 7 Zbenbvb . (1663)
The driven current density consists of the fast ion beam term Zyen,v;, and

the term corresponding to electrons dragged by the fast ion beam, viz.,
—ZZenyp/Z;. Then the ratio J/ Py becomes

J Znenyuy, o QGZb(QTge) <1 B Zb>

A -
Py ( b/ )mbnbvbﬁb/4T§e MpVh A

(16.64)

When the charge number of the beam ions is equal to that of the plasma ions,
that is, when Zy, = Z;, the current density becomes zero for linear (cylindrical)
plasmas. For toroidal plasmas, the motion of circulating electrons is disturbed
by collision with the trapped electrons (banana electrons), and the dragged
electron term is reduced. Thus J/Py becomes [16.41]

J 2€Zb(27'1§ ) AN
Pd mpUp Zi [ G( eff 6)} ) ( 6 65)
: 1.
G e) = <1'55 +3 85> - <0'2 i 55) € (16.66)
et Zeoft

where € is the inverse aspect ratio. When the effect of the pitch angle of the
ionized beam is taken into account, (16.65) must be multiplied by the factor
§ = v /v = Riang/Rion, Where Riang is the minimum value of R along the
neutral beam path and R;o, is the R value of the ionization position.

The driving efficiency calculated by the bounce average Fokker—Planck
equation [16.41] becomes
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i = M {1 - &[1 - G(Zeff76)] } €OFanbJ0(xb>y) )

Py My Z;

I 2e2(2m) {1 D0 (2, 0)] } &oFacdo(n,y),  (16.67)

Pd MpUecr Zi
where
Vp Zoft 22
= — =0.8 J, =
e Y a0 Y = a3 T 0610 £ (15 3y)

and Fy. = 1 — be? is the correction factor [16.42]. Finally, we have

J Am _ 15.8(I€Te)ke\/€ Zb o
( ) = TQO [1 - Z(1 - G)} (1 — be”)Jo(zp,y) . (16.68)

Py

W

The local current drive efficiency nnxpg of the neutral beam current drive
(NBCD) is

Rnelg J 19 A
= 10
INB = 9 RPy ( Wm?

— 2.52(K T ey o [1 - %(1 - G)} (1= be”) Jo(n,y) . (16.69)

When Z, = 1, Zeg = 1.5, Ay, = 2, 2¥ = 4, then (1 — be”).Jy ~ 0.2. When
(€) ~ 0.15, then nxp ~ 0.29(kT%)kev (101A/Wm?). Current drive by NBI
has been demonstrated by the DITE, TFTR JT60U and JET experiments.

When the application of a current drive to a fusion grade plasma with
ne ~ 102°m~3 is considered, the necessary input power for any current drive
of the full plasma current occupies a considerable amount of the fusion output.
Therefore a substantial part of the plasma current must be driven by the
bootstrap current, as described in the next section.

16.8.4 Bootstrap Current

It was predicted theoretically that radial diffusion induces a current in the
toroidal direction and that the current can be large in the banana region
[16.43-16.46]. This current, known as the bootstrap current, was later well
confirmed experimentally. This is an important process which can provide
the means to sustain the plasma current in the tokamak in a steady state.

As described in Sect. 7.2, electrons in the collisionless region vy < 1y,
make a complete circuit of the banana orbit. When a density gradient exists,
there is a difference in particle number on neighboring orbits passing through
a point A, as shown in Fig. 16.19.

The difference is (dny/dr)Ay, where Ay, is the width of the banana orbit.
As the component of velocity parallel to the magnetic field is v = e/ 2up,
the current density due to trapped electrons with density ny is
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Fig. 16.19. Banana orbits of trapped electrons which induce the bootstrap current

) dny 3/9 1 dp
anana — —A = — 22 .
I (cvp) ( dr b) " Bydr

The untrapped electrons start to drift in the same direction as the trapped
electrons due to the collisions between them and the drift becomes steady
state due to the collisions with ions. The drift velocity Vintrap of untrapped
electrons in the steady state is given by

o Vee Jbanana
chuntrachi - c Me en )
- e

where veo/e is the effective collision frequency between trapped and un-
trapped electrons. The current density due to the drift velocity Vintrap is

12 1 dp

. 16.70
By, dr ( )

jboot ~ —€

This current is called the bootstrap current. When the average poloidal beta
Bp = (p)/(BZ/2u0) is used, the ratio of the total bootstrap current I, to the
plasma current I, to form By, is given by

Iy, an1/2
TPNC(E) By (16.71)

where ¢ ~ 0.3 is constant. This value can be near 1 if 3, is high (5, ~ R/a)
and the pressure profile is peaked. Experiments on the bootstrap current
have been carried out in TFTR, JT60U and JET. 70-80% of I, = 1 MA was
bootstrap driven in high 3, operation.

As the bootstrap current profile is hollow, it can produce a negative mag-
netic shear ¢ profile, which is stable against ballooning. The MHD stability
of the hollow current profile is analyzed in detail in [16.47].
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16.9 Neoclassical Tearing Mode

Much attention has been focused on tokamak operational pressure limits im-
posed by non-ideal MHD instabilities, such as the effects of bootstrap-current-
driven magnetic islands. At high 3, (poloidal beta) and low collisionality,
the pressure gradient in the plasma gives rise to a bootstrap current (see
Sect. 16.8.4). If an island develops, the pressure within the island tends to
flatten out, thereby removing the drive for the bootstrap current. This gives
rise to a helical ‘hole’ in the bootstrap current, which increases the size of
the island (see Fig. 16.22).

Tearing instability was treated in the slab model in Sect.9.1. The zeroth-
order magnetic field By depends only on z and is given by

By = Boy(l‘)ey + Bg.e, , ‘Boy(l‘” < |BOZ| ,  Bp, = const.

The basic equations are

P [?;tj + (’U'V)’U] =-Vp+j3x B, (16.72)
—E:’UXB—T]J.ZE, 14:(070,—1ﬁ)7 (1673)
_ _9
Bi=—%. By=g.
o . .
— 5 = WaBy —vyBs) —nj. = (0-V)¢ —1j: , (16.74)
V2 = poj - (16.75)

Since

_ExB _(E, E,  \_( 106 1 ¢
v = B2 _(B0z7 BOZ7O)_< 70 )

a stream function ¢ can be introduced such that

__%

¢
'Umffayv o

Oz’

Vy

Furthermore, if the z component w, = (V X v), of the vorticity is introduced,
then w, = V2p. The rotation of (16.72) yields

ow,
T

+ (v-V)w, = [V x (§ x B)], = (B-V)j. - (j-V)B, = (B-V)j .

(16.76)
The relations V-B = 0, V-5 = 0 were used here. The zeroth-order flux
function vy and the first-order perturbation z/; are
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=

ky
I )

\
2T
flow cos ky
le 3
fl: = "leBy
\ sin ky

Fig. 16.20. Tearing mode structure in the singular layer

2
X
Yo(z) = B(’)y? , Bo=(0,Bgy,z, Bo.) ,

ﬁ(y,t) — Blz(t) cosky, B;= (Blm(t) sin k'y,(),()) , QZJA(t) _ Blz(t) ’
b= o) + 30 = By o+ 25D ooy 6)

0v o k
x = 0 is the location of the singular layer. The separatrix of islands is given

b
' 2 Bt Bua(t) B )"’
x 1z lx 1z
B(’)y?—i- . cosky:T, xS:2<k'B6y> ,

and the full width w of the island is

1/2
w = B =4
kB,

The perturbation By, (t) sin ky growing with the growth rate  induces a cur-
rent j1, = FE1./n = vBi./nk, which provides the z direction linear force
fiz = —j1.Bp,x indicated in Fig. 16.20. This drives the flow pattern of nar-
row vortices. Moving away from the resistive singular layer, the induced elec-
tric field produces a flow v, = —E./B, = —yBi, cosky/(kBy, ). For in-
compressible flow (in strong equilibrium field By, ), this requires a strongly

- 1/2
Pal(t)
Béy

(16.78)
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lez

5fy Bz

Fig. 16.21. Nonlinear forces decelerating v, flow in tearing mode

sheared flow vy (z) over the layer  ~ 7, that is the narrow vortex pattern
shown in Fig. 16.20, and we have

Vo~ Vg V.~ Vg -~ vB1x
T e T .
Y k ’ Y kZL'T k236yxT

If this shear flow is to be driven against inertia by the torque produced by
the linear forces, we require

4 7o vBie Ypn

TPUy
k )

x1j1:Boy =

BO :B/ TT — T = = ,
Y Oy T lekB[/)y k‘QB(’)y (/CBéy)Q

since j1, = E,/n = vB1,/nk. Thus the width of the perturbation is [16.48]

(ypm)*/*
T = (kB(’)y)l/2 . (16.79)
This is consistent with the results (9.26) and (9.27) obtained by the linear
theory of the tearing instability, described in Sect.9.1. (Note that & was used
in Sect. 9.1 instead of xT.)

Rutherford showed that the growth of the mode is drastically slowed
down and perturbation grows only linearly in time when non-linear effects
are taken into account [16.48]. The vortex flow will induce the second-order
y-independent eddy current 8ji. = —v,Bi./n ~ vBi,/(nk*Bj,x2). The y-
direction third-order non-linear forces df, ~ 6j.B1, indicated in Fig. 16.21
provide a torque opposing vortex flow and decelerate the v, flow.

We restrict ourselves to the case where the inertia may be neglected in
(16.76):
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o dj. . 9 j.

B. .Z = —— = 'Z = .Z .
(B-V)j oy or Toray 0 T T (¥)
Equation (16.74) yields
Opy | O , N
ot + ot —UxBny +nJ1z ot NJjoz »
o dp : :
T _@B(l)y'r +nj1z — Njo= - (16.80)

We may eliminate ¢ from (16.80) by dividing by x and averaging over y at
constant ¢. From (16.77), x is given by

1/2 1/2
2 7 2 ~1/2 Y
T = (Béy@/f?/})) = <36y> A/ (W — cos ky)'/? :JTA ’
(16.81)
and )
Y N ) i _ [ o /ot
. . 1 o /ot g\l
J1z(¥) = jo= () + ; <W> <(¢ — ) / > , (16.82)
where e
=g [ riv.

For the outer solution we require the discontinuity in the logarithmic deriva-
tives across the singularity. We must match the logarithmic discontinuity
from the solution within the singular layer to that of the outer solution:

7 7 +0
A'E<ag)A ——aawA >~1:§)1mzA .
R T/ ¥a . -0
We utilize V24 = g1, together with 621/;/8902 ~ loj1. and
Ay = aa% =20 <Cos k;y/ jlzdx> : (16.83)

1/2
dx = L dz/j .
2By, (1 —p)1/2

Inserting (16.82) into (16.83) yields
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Y
Fig. 16.22. Coordinates in the slab model and coordinates in the toroidal plasma.
The coordinates (x,y, z) correspond to the radial direction (r — rs), the poloidal
direction (~ r@), and the direction of the magnetic field at the rational surface in

the toroidal plasma, respectively. Arrows in the island indicate the direction of the
magnetic field B, — (nr/mR) B [see (16.86)]

n =2t [T 090t _~1/2—1<cosk:y>
2o = it | (G 07 ()

_ 4po * A cos ky /Ot o —1ya\ L cos ky
_ﬂ(QBéy)l/Z/w dw< (¥ — )1/ ><(1/) R <(¢—1l~))1/2>.

min

Since

fol )

W=/ (@ —g)-1r2)
_/< cos ky >2 dw N}JQ EWAYE
= (W—COSky)1/2 <(W—cosky)—1/2> - A >

dgA 0P 12
n(2By,)/2 ot A

we obtain
Ay =

and )
g 71/2 _ n(ZBéy)l/ A
ot A 8/1,0A '

Taking note of (16.78), the time variation of the island width reduces to
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dw 1 n ., n dw por?
_= —_— %fAI **:A/s = s.
dt 2124 py o TRy Ts fso TR n

(16.84)

Let us consider a toroidal plasma as shown in Fig. 16.22. The magnetic field

nr 1 1| r m
B,——Bi=|——-——| =B (:—)
PR L(r) qs]Rt B

corresponds to By, in the slab model near the singular radius. The coordi-
nates (x,y, z) in the slab model correspond to the radial direction (r — ryg),
the poloidal direction (~ r8), and the direction of the magnetic field at the
rational surface in the toroidal plasma, respectively. The flux function is

sl 1 1] r B
T,Y) = —— — —| =Bidx + —cosk 16.85
son = [ (i) et Breost o

and the magnetic field is given by

0
Bla::_aiw:BlmSinkyu
Yy
oY 1 1] q ,
By=—=|———-——|=By=——B,r =B, . 16.86
v =52 = |z o) 5= B (16:59)

Equation (16.85) reduces to

2
’ X Bl:r

Y(z,y) = BoyE i cos ky . (16.87)

The change 852, in the bootstrap current induces the change 8¢, in the flux
function and the electric field F, given by

_ Mo _ s
EZ - at _778]12 :

The discontinuity of the logarithmic derivative due to 8%, is

1 (o9} oYk 1ot
A{) = = TA — TA = f/ 'U()Sjijzdr B
Va " rs+ " re— VaJro-
where 2 gy
T By, o w= Loy
¢A - L - 16 )
so that

Al 16 /TSJ’_ 8 -b d
= T o r.
b wZBéy . H00J1~

Due to the flattening of the pressure profile caused by formation of the island,
8%, is given by [see (16.70)]



310 16 Tokamaks

dw
dt

we # 0

Wih Wsat w

Fig. 16.23. The curve of (16.90). wen is the threshold width of the island for the
onset of the neoclassical tearing mode, and wsat is the saturated width

1/2 1/2
8jr, =0 — <—€S dp) _= B (16.88)

B, dr )~ B, ar
This is called the helical hole of the bootstrap current. Thus the discontinuity
of the logarithmic derivative due to §;2, reduces to

(oo MO0 (aPdp) o sn ol
P w2B), \ B, dr T w B2t L
/ B, d
B(’)y:—q—B = P__P

P L, dr L,
Then the time variation of the island width is given by

d w
TR&E = A'rg + ael/?B,

Lats o (16.89)
L, w
The first term of right-hand side of (16.89) is the Rutherford term and the
second is the destabilizing term of the bootstrap current. This is the equation
for the neoclassical tearing mode. When transport and the effect of the ion
polarization current across the island are taken into account, a reduction
in the bootstrap current takes place. Then the term due to the bootstrap
current is modified to

dw L, rw Lo\ rep?
_ A/ 1/2 q S q S 16.
Rt 7 e e L, w? 4+ w? - azfip L,) w’ (16.90)

where w, is the effect of transport across the island, parametrizing the magni-
tude of the contribution of the x| /x| model [16.49] and given by the relation
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I 1/2 1/4
we = 1.8r (812 q) <Xl> .
rsn XH

The third term of the ion polarization current on the left-hand side of (16.90)
is given in [16.50]. Figure 16.23 shows the curve of (16.90). When the effect
of w, is included, there is a threshold wy, for the onset of the neoclassical
tearing mode. When w becomes large, the destabilizing term in the bootstrap
current becomes weak and the island width is saturated. The neoclassical
tearing mode can be controlled by local current drive in the rational (singular)
surface [16.51].

16.10 Tokamak Reactors

Although many parameters are needed to specify a tokamak device, there are
also many relations and constraints between them [16.52]. If the plasma radius
a, toroidal field By and ratio @) of fusion output power to auxiliary heating
power are specified, the other parameters of the tokamak are determined by
means of scaling laws for the electron density, beta, energy confinement time
and burning condition, when the cylindrical safety factor ¢; (or effective safety
factor at the plasma boundary ges, defined later), the elongation ratio g, and
triangularity § of the plasma cross-section are given. From the definition of
q1, we have

¢ :@&: 5K2aB; B tolp _ 1,
'"“ R B, AL, PT 2rKa  5Ka’
and the plasma current is
5K2aBt
I, =227
Aqr

where K2 = (1+ k2)/2 (I, in MA, By in T, and a in m). The aspect ratio
A = R/a will be given as a function of a and B; in (16.97). The effective
safety factor ges at the plasma boundary is given approximately by [16.16]

Geff = qIfAs(A) ’

1+ 422
L1 AT/2

fas(A) ~ (1 yE > [1.24 — 0.54k; + 0.3(k2 + 6%) 4 0.135] ,

where A = Bp + 1i/2. The volume average electron density ngg in units of
102°m—3 is

I
n2o = NGT;Q ; (16.91)

where Ng is the Greenward normalized density. The beta ratio of the thermal
plasma, viz.,



312 16 Tokamaks

(p)
BE/2p0

(n20T)
B

Bin = = 0.0403(1 + fpr + fue + f1)

is expressed by
1
= 0.0188y —2-, 16.92
Btn UN aB, ( )

where [y is the normalized beta. The symbols fpr, fue and f; denote the
ratios of fuel DT, He and impurity density to electron density, respectively,
and the unit of T' is keV. (X)) indicates the volume average of X. The thermal
energy of the plasma W is

3 Bt2 2
W = —Bimn——V = 0.59685:, BV,
277 2pg

where W is in units of MJ and the plasma volume V is in units of m—3. The
plasma shape with elongation ratio s and triangularity ¢ is given by

R=Ry+acos(f+ dsinb) , z = akssinf .
The plasma volume V is given by
V ~ 27T2Q2R“sfshape )

where fshape is @ correction factor due to the triangularity, viz.,

1) 5 a 53
fshape—1_8+192—4]%(5—3) .

We utilize the thermal energy confinement scaling of IPB98y2 [16.34]:
TR = 0.0562 x 100.41Hy210.9333.15M0.19n8.041a1.97A1.39K:g.78P—0.69 , (1693)

where M (= 2.5) is the average ion mass unit and P is the power loss in MW
due to transport, equal to the necessary absorbed heating power subtracted
from the radiation loss power P,,q. The total a particle fusion output power
Py is

Qq

Pa= S (ndrlov))V

where Qq = 3.515MeV. (ov), is a function of T' and a fitting equation for
(o), is given in (1.5). Since the fusion rate ov near T' = 10keV is approxi-
mated by

(ov)y ~ 1.1 x 107 T2, (m3/s)

the following © ratio is introduced:

oUT) =13 ;Z?)Tézzjri;)DLT?) '
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Fig. 16.24. O is function of the average temperature (T') (keV) in cases with profile
parameters (ar = 1.0, 2, = 0.0), (ar = 2.0, = 0.0), (ar = 1.0, . = 0.5) and
(ar =2.0,an, =0.3)

O is a function of the average temperature (T') in keV and the density and
temperature profiles have a peak of around 1 near (T") ~ 8-10keV. The curves
of © versus (T) for

(n)(1 —p?)on (T)(1 = p?)or

= T =
n(p) [ (P) T ar
are shown in Fig. 16.24 [16.53]. Then P, reduces to
Py = 0.9551 Jorot [Br 32 BoV (16.94)
a— Y 2 Mth=t ’ .

1+ for + fue + f1)

where fprof = (n2T2)/(nT)? =~ (an + a7 + 1)%/ (20, + 27 + 1) is the profile
effect of temperature and density. When the absorbed auxiliary heating power
is denoted by P,.x and the heating efficiency of a heating is f,, the total
heating power is fq Py 4+ Paux- When the ratio of radiation loss power to total
heating power is fr, the heating power to sustain the burning plasma is given
by

P = (]— - fR)(fGPa + Paux) .

When the @ ratio is defined as the ratio of total fusion output power P,+ P, =
5P, (P, is the neutron output power) to absorbed auxiliary heating power

Paux7 Q is
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5P,

aux

Q=

'_'U

Then P reduces to .
P=(1-fn) (m)Pa.

Therefore the burning condition is

w 5
p—— (1-/r) <fa + Q) Py . (16.95)

and (16.93)—(16.95) reduce to [16.53]

1 . 9 0.738
a=3.22f381 (L + for + fue 1) 5 ] (16.96)
(1 - fR)(fG + 5/Q)fproffDT@
R0 [quit/ fas(4)]** 40019
H3236N8'976“2'214K4'57 BL™
Therefore the aspect ratio A is given as a function of
A — (/1616,1.616 g2.81 (16.97)
= R .

where C' is the coefficient of A%619/BL-™ in (16.96). When the distance be-
tween the plasma separatrix and the conductor of the toroidal field coil is
A and the maximum field of the toroidal field coil is Bpax (see Fig. 16.25),
there is a constraint

By R—a—A AN 1
= =1-(1+2)=
Bmax R <+G>A

and 5 B )
1-= LB
ABo. ST A

under the assumption a > A > 0. By specification of A and Bpax, Bt is a
function of a.

The ratio ¢ of the flux swing A® of the ohmic heating coil and the flux
of the plasma ring LI, is given by

AP B 5Bpax(T) [(ROH + dOH)2 + 0'5d20H]

¢ Loly  [In(84/ki/?) + 1 — 2] RI,(MA)

where Rog = R—(a+A+drr+ds+don), drr and doy being the thickness of
the TF and OH coil conductors, respectively, and ds the separation of the TF
and OH coil conductors in meters (see Fig. 16.25). The average current den-
sities jrr and jou of the TF and OH coil conductors in MA /m?=A /(mm)?
are
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Fig. 16.25. Geometry of plasma, toroidal field coil, and central solenoid of the
current transformer in a tokamak

, 2.5 Bynax(T) 1
MA/m?) = ==
Jre(MA/m7) drp 1—05drr/(R—a— A)’
. 25 Bmax T
]OH(MA/mZ) = 7J .

71' dOH

When parameters a, By, A and the other dimensionless parameters are spec-
ified instead of a, B¢, @ as is shown in Table 16.3, then the @ value and the
other parameters can be evaluated and are shown in Table 16.4.

The conceptual design of tokamak reactors has been actively pursued in
the wake of tokamak experimental research. INTOR (International Tokamak

Table 16.3. Specified design parameters. The specified value of Sy is the normal-
ized beta of a thermal plasma which does not include the contribution of energetic
ion components. (Hy2 = 1.0, ar = 1.0, and «, = 0.1 are assumed)

a(m) B¢(T) A ga ks 0 fR fo B~ Nec for fue N
2.0 5.3 3.1 338 1.7 035 03 095 1.63 0.85 0.82 0.04 0.02

Table 16.4. Reduced parameters. Unit of (T') is keV and units of Py, Pa, Paux and
Prqq are MW.

Q R(m) IP(MA) TE(S) n20 <T> P, Py  Paux  Praa qr e
10.2 6.2 15.0 3.8 1.01 8.1 324 81 40 35 2.22 0.99
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Table 16.5. Parameters of ITER in the outline design of 2000

I, 15 MA Zest 1.65
Bt 53T for ~ 82%
R 6.2m fHe 4.1%
a 2.0m fBe 2%
R/a 3.1 far 0.12%
Ks 1.7 r 0.39
(ne) 1.01 x 10*°m~* Bt 2.5%
(0.5 x (T + T3)) 8.5keV Bp 0.67
Wthermal 325 MJ ﬂN 1.77
Wfast 25 MJ NG 0.85
T 3.7s Hyo = 75 /77 P92 1.0
Prus(Pa) 410 MW (82 MW) q95 3.0
Paux 41MW qr 2.22
Prag 48MW li 0.86

Reactor) [16.54] and ITER (International Thermonuclear Experimental Re-
actor) [16.55,16.56] are representative of international activity in this field.
ITER aims [16.56] to achieve extended burn in inductively driven plasmas
with @ ~ 10 and to demonstrate steady-state operation using non-inductive
drive with @ ~ 5.

The main parameters of ITER in 2000 are given in Table 16.5. 7 is
the energy confinement time corrected for radiation loss, @ = 10, kg is the
ratio of the vertical radius to the horizontal radius, and ggs5 is the safety fac-
tor at the 95% flux surface. The maximum field of the toroidal field coils is
Bax = 11.8 T. The number of toroidal field coils is 18 and the configuration
involves a single null divertor. The one-turn loop voltage is Vipop = 89 mV.
The inductive pulse flat-top under ¢ = 10 condition is several hundred sec-
onds. Ppys is the total fusion output power. Ng is defined in (16.7). fr is the
fraction of radiation loss and fpr, fBe, fue, and fye are the ratios of the DT,
Be, He, and Ar densities to the electron density.

A cross-section of the ITER outline design in 2000 is shown in Fig. 16.26.
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17.1 Reversed Field Pinch

17.1.1 Reversed Field Pinch Configuration

Reversed field pinch (RFP) is an axisymmetric toroidal field used as a toka-
mak. The magnetic field configuration is composed of the poloidal field B,
produced by the toroidal component of the plasma current and the toroidal
field B; produced by the external toroidal field coil and the poloidal compo-
nent of the plasma current. The particle orbit loss is as small as in a tokamak.
However, RFP and tokamaks have quite different characteristics. In RFP, the
magnitudes of the poloidal field B, and the toroidal field B; are comparable
and the safety factor

1 B.(r)
=) = R By(r)

is much less than 1 [gs(0) ~ a/(RO), © ~ 1.6]. The radial profile of the
toroidal field is shown in Fig.17.1. The direction of the boundary toroidal
field is reversed with respect to the direction of the on-axis field, and the
magnetic shear is strong. Therefore high-beta ({3) = 10-20%) plasmas can
be confined in an MHD stable way. Since the plasma current can be larger
than the Kruskal-Shafranov limit (¢ < 1), there is a possibility of reaching
the ignition condition by ohmic heating alone (although it depends on the
confinement scaling).

RFP started in an early phase of nuclear fusion research. A stable qui-
escent phase of discharge was found in Zeta in Harwell in 1968 [17.1]. The
configuration of the magnetic field in the quiescent phase was the reversed
field pinch configuration, as shown in Fig.17.1. The electron temperature,
the energy confinement time, and the average beta of Zeta were kT, = 100—
150eV, 7 = 2ms, (8) ~ 10% at the time of the TAEA conference at Novosi-
birsk. However, the epoch-making result of tokamak T-3 with high electron
temperature (kT, = 1keV, 15 = several ms, 8 ~ 0.2%) was also presented in
the same conference, and Zeta was shut down because of the better confine-
ment characteristics in tokamaks. On the other hand, RFP can confine higher
beta plasma and has been actively investigated to improve the confinement
characteristics (ZT-40 M, OHTE, HBTX1-B, TPE-1RM 20, MST and RFX,
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TPE-RX) [17.2-17.5]. The important issues of RFP are confinement scaling
and impurity control in the high-temperature region.

17.1.2 MHD Relaxation

Even if the plasma is initially MHD unstable in the formation phase, it has
been observed in RFP experiments that the plasma turns out to be a stable
RFP configuration irrespective of the initial condition. J.B. Taylor pointed
out in 1974 that the RFP configuration is a minimum energy state by relax-
ation processes under certain constraints [17.6].

We introduce a physical quantity referred to as magnetic helicity to study
this subject. Using the scalar and vector potentials ¢, A of the electric and
magnetic fields F, B, the magnetic helicity K is defined by the integral of the
scalar product A-B over the volume V surrounded by a magnetic surface:

K:/ A-Bdr (17.1)
v
where dr = dx dy dz. Since
A
E:—Vqﬁ—aa—t, B=VxA,

we find from Maxwell’s equations [17.7]

0 0A OB

5;(AB) = 5B+ A-” = (-E~ V§)-B — A(V x E)
= —E-B—V-(¢B)+V-(Ax E)— E-(V x A)
= V. (¢B+E x A) —2(E-B) .

When the plasma is surrounded by a perfect conductive wall, then the condi-
tions (B-n) = 0, E x n = 0 hold, where n is the unit outward vector normal
to the wall, and we find
K

oK = ﬁ/ A-Bdr = —2/ E.-Bdr. (17.2)

ot t v v
The right-hand side of (17.2) is the loss term of the magnetic helicity. When
Ohm’s law

E+vxB=nj

is applicable, the loss term reduces to

K
oK _ 72/ nj-Bdr . (17.3)
ot v

When 1 = 0, the magnetic helicity is conserved. In other words, if a plasma
is perfectly conductive, the integral of K over the volume surrounded by



17.1 Reversed Field Pinch 321
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Fig. 17.1. (a) Toroidal field B;(r) and poloidal field Bg(r) of RFP. The radial
profiles of the Bessel function model (BFM) and the modified Bessel function model
(MBFM) are shown. (b) F-6 curve

arbitrary closed magnetic surfaces is constant. However, if there is small
resistivity in the plasma, local reconnections of the lines of magnetic force
are possible and the plasma can relax to a more stable state, whereupon
the magnetic helicity may change locally. However, J.B. Taylor postulates
that the global magnetic helicity Kt integrated over the whole region of the
plasma changes much more slowly. It is assumed that Kt is constant within
the time scale of relaxation processes. Under the constraint of invariant K,

0Kt = /B-SAd'r +/5BoAdr = 2/B-8Adr =0,
the condition of minimum energy of the magnetic field, viz.,

(QMO)_16/(B-B)dr =gt /B-V x 8Adr = pg! /(v x B)-8Adr ,

can be obtained by the method of undetermined multipliers, and we have
VxB-AB=0. (17.4)

This solution is the minimum energy state in the force-free or pressureless
plasma (j x B = Vp = 0, j||B). The axisymmetric solution in cylindrical
coordinates is

BT =0 5 Bg = BOJI (/\7”) 5 Bz = BoJo()\’I“) s (175)

and is called a Bessel function model (BFM). The profiles of By(r) and B, (r)
are shown in Fig.17.1a. In the region Ar > 2.405, the toroidal field B, is
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reversed. The pinch parameter © and the field reversal ratio F' are commonly
used to characterize the RFP magnetic field as follows:

_Bel) _ (m/2ha . _ Bia)

e (B.) | B:2wrdr’ - (B.)’

(17.6)

where (B,) is the volume average of the toroidal field. The values of F' and
© for the Bessel function model are

e p_ 05029) (17.7)

© 2’ - J1(20)

and the FF—© curve is plotted in Fig. 17.1b. The quantity

j-B V x B)-B
A= M0é2 = ( X32 ) = const.

is constant in the Taylor model. The RFP fields observed in experiments
deviate from the Bessel function model due to the finite beta effect and the
imperfect relaxation state. The A value is no longer constant in the outer
region of the plasma and tends to 0 on the boundary. The solution of the
relation V x B — AB = 0 with A(r) is called the modified Bessel function
model (MBFM).

The stability condition of the local MHD mode [17.8] is

1 (g\* | 2p0p 2
(= 1-— . 17.
H(5) B a-a >0 (17.5)

This formula indicates that the strong shear can stabilize the RFP plasma in
the p/(r) < 0 region, but that the flat pressure profile, p’(r) ~ 0, is preferable
in the central region of weak shear. When ¢2 < 1, the local MHD mode is
unstable near ¢, = 0 (pitch minimum).

When the effect of finite resistivity of a plasma is taken into account, ac-
cording to the classical process of magnetic dissipation, the RFP configuration
is expected to be sustainable only during the period 7o) = pooa?, where o is
the specific conductivity. However, ZT-40M experiments [17.9] demonstrated
that RFP discharge was sustained more than three times (~ 20ms) as long
as 7. This is clear evidence that a regeneration process of the toroidal flux
exists during the relaxation process, which is consumed by classical magnetic
dissipation, so that the RFP configuration can be sustained as long as the
plasma current is sustained.

When there are fluctuations in plasmas, the magnetic field B in the
plasma, for example, is expressed by the sum B = (B); + B of the time
average (B); and the fluctuation term B. The time average of Ohm’s law
nj = E 4+ v x B reduces to

(mg)e = (E)t + (v)¢ x (B)¢ + (0 x B)y (17.9)
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where ( )¢ denotes the time average. A new term (¥ x B); appears due to
fluctuations. Since the time average of the toroidal flux &, = f B.dS within
the plasma cross-section is constant during the quasi-stationary state, the
time average of the electric field in the 6 direction is 0 (§ Egdl = —d®, /dt =
0) and (v, )y = 0. Steady-state RFP plasmas require the condition

(njo)s = (8 x B)g)y - (17.10)

In other words, resistive dissipation is compensated by the effective elec-
tric field due to the fluctuations. This process is called the MHD dynamo
mechanism. Active research has been carried out on the relaxation pro-
cess [17.10-17.12].

When the electron mean free path is very long, local relations such as
Ohm’s law may not be applicable. To replace the MHD dynamo theory, the
kinetic dynamo theory has been proposed [17.13], in which anomalous trans-
port of electron momentum across magnetic surfaces plays an essential role
in sustaining the RFP configuration.

Magnetic fluctuations of the dynamo sustaining the poloidal plasma cur-
rent, on the other hand, enhance electron diffusion, since the electron diffusion
coefficient is given by D, ~ vr,a{(8B,/B)?) (see Sect.7.4) and the energy
confinement of RFP deteriorates. In MST devices, a pulsed poloidal current
drive (PPCD) is applied [17.14] and the poloidal plasma current (between
the magnetic axis and the plasma edge) Iy = 2w Ra(jg) is increased tran-
siently. The spatial distribution of the plasma current density is flattened
and MHD fluctuations decrease. As a result, the energy confinement time is
greatly improved (by a factor of ~ 5).

17.1.3 Confinement

The energy confinement time 7 in an ohmically heated plasma can be ob-
tained from the energy balance equation:

(3/2)(nk(Ts + T3))y 27 Rra?

TE

= ‘/zIp 3
where V, is the loop voltage and I}, is the plasma current. The notation ( ),
indicates the volume average. Using the definition of the poloidal beta,

(ne(Te +T3))v  872a®(nk(T. + T3))v
T - —

the energy confinement time is given by

Bo =

3po I
= — —= . 17.11
TE= g Ry 7 (17.11)
Therefore the scalings of 3y and V, are necessary for the scaling of 7. In order

to apply a loop voltage to the RFP plasma, a cut in the toroidal direction
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is necessary in the shell conductor surrounding the plasma. In this case, the
contribution of the surface integral must be added to the equation (17.1)
giving the magnetic helicity:

oK

Fr —2/E-Bdr—/(</)B+E x A)ndS .
The induced electric field in the (conductive) shell surface is zero and is
concentrated between the two edges of the shell cut. The surface integral
consists of the contribution 2V,®, from the shell cut and the contribution
from the other part of the surface S_, i.e.,

K
% _ —Z/nj-B dr + 2V.&, _/ @B+ E x AyndS,  (17.12)

where @, is the volume average of the toroidal magnetic flux @, = 7ra2<Bz>v.
In the quasi-steady state, the time average (0K /0t); is zero. Then the time
average of (17.2) yields

Jng-B)udr +(1/2) [ (¢B+E x A)yndS  ozp

Vo= (D)4 ~ a2 molpC + Vi ,

_ 20R (9B + B x A)}n)s.
a {{Bz)e)v ’
where ( )s  is the average in the surface region S_. The notation ( is a

dimensionless factor determined by the radial profiles of the specific resistivity
and magnetic field as follows:

VB

{((ng-B)i)v {{ng)e-(B)e)v + (((n)-B)e)v

770<<jz>t>v<<Bz>t>v B 770<<jz>t>v<<Bz>t>V

Here 7 is the specific resistivity at the plasma center. When the fluctuation
term is negligible, the value ¢ of the modified Bessel function model is ¢ ~ 10,
but the value is generally { > 10 due to fluctuations. The value of Vg is 0
when the whole plasma boundary is a conductive shell. In reality, the plasma
boundary is a liner or protecting material for the liner. Lines of magnetic
force can cross the wall by the magnetic fluctuation or shift of plasma position
(Bn # 0, E # 0). Then the term Vg has a finite value. Substituting V, into
the equation for the energy confinement time 7g gives

1 _ 8 K Mo >2<+ VB/27"R] .

T® 30 | \ moa? aBy(a)
When plasmas become hot, the resistive term becomes small and the fluc-
tuation term and contribution from Vg are no longer negligible. The experi-
mental scaling in the region I, < 0.5 MA is I,/ma®(n), = (1-5) x 10~ *Am,
Bo ~ 0.1, [KTe(0)]kev ~ I (MA).

¢
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17.1.4 Oscillating Field Current Drive

RFP plasmas tend to be modelled by the modified Bessel function model due
to the non-linear phenomena of MHD relaxation. Oscillating field current
drive (OFCD) was proposed [17.15] to sustain the plasma current, and pre-
liminary experiments have been done [17.16]. If the terms V, and &, of the
second term on the right-hand side of the magnetic helicity balance equation
(17.12) are modulated according to V,(t) = V, cos wt, D.(t) =D +&, coswt,
a direct current component V,®, appears in the product 2V, &, and compen-
sates the resistive loss of the magnetic helicity. The period of the oscillating
field must be longer than the characteristic time of relaxation and shorter
than the magnetic diffusion time. Furthermore, the disturbing effect of the
oscillating field on the RFP plasma must be evaluated.

17.2 Stellarator

A stellarator field can provide a steady-state magnetohydrodynamic equilib-
rium configuration of the plasma only by the external field produced by the
coils outside the plasma. The rotational transform, which is needed to con-
fine the toroidal plasma, is formed by the external coils so that the stellarator
has the merit of steady-state confinement. Although Stellarator C [17.17] was
rebuilt as the ST tokamak in 1969 at the Princeton Plasma Physics Labo-
ratory, confinement experiments by Wendelstein 7A, TAS, Heliotron-E, and
ATF are being carried out, for the benefits of steady-state confinement with-
out current-driven instabilities. The large helical device LHD started experi-
ments in 1998 and the advanced stellarator WVII-X is under construction.

17.2.1 Helical Field

Let us consider a magnetic field with helical symmetry. Using cylindrical
coordinates (r, 8, z), we can express the field in terms of (r, ¢ = 6 — daz),
where a > 0, 6 = £1. A magnetic field in a current-free region (j = 0) can
be expressed in terms of a scalar potential ¢, satisfying A¢p = 0, and we

can write -
¢p = Boz + 1 > b (lar) sin(ly) , (17.13)

* =

p=0-—daz.

The field components (B, By, B,) of B = V¢g are given by

B, =Y IbI](lar)sin(lp) , (17.14)
=1
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Fig. 17.2. Current of helical coils

o0

By = Z (alr) I (lar) cos(ly) (17.15)

=1

B. =By~ _IbI(lar)cos(lp) . (17.16)
1=1
The vector potential corresponding to this field has components

& ) By
A, = o lz:; bil(lar)sin(ly), A= i lz; b I (lar) cos(lp) ,
A, =0.
Using these, we can write
04y _ 04, _10(rAg) 10A,
B = 0z Bo_@z7 Bz_r or r 00

The magnetic surface v = A, + darAy = darAy = const. is given by

(5ar

-7 Z bl (lar) cos(ly) = const. (17.17)
=1

P(r,¢) = Bo

Such a helically symmetric field can be produced by a helical current distribu-
tion, as shown in Fig. 17.2. Let the magnetic fluxes in the z and 8 directions
inside the magnetic surface be denoted by @ and X, where X is the integral
over the pitch along z, i.e., over 27 /a. Then these may be expressed by

2r pr(p)
&= / / B.(r, p)rdrdf,
o Jo
27 /o 27
X = / / (r, p)drdz = — / / (r, p)drdd .
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Since arB, — 6By = ad(rAy)/0r = 60v/0r, we find that

I L
oo

Let us consider only one harmonic component of the field. The scalar potential
and the magnetic surface are expressed by

¢p = Boz + EIl(low”) sin(lf — olaz) ,
!

Bo

20 b
)= e (M)Q_M

B
B I (lar) cos(16 — dlaz) | = —>(arg)? .
0

T 20

The singular points (rs, 65) in the z = 0 plane are given by

81/}_0 o

a0 e

Since the modified Bessel function I;(x) satisfies
I/
I'(x) + @ 1+ P2 =0,

the singular points are given by

sin(165) =0, ar {1 - %bj [1 + (a:s)2:| li(lars) Cos(l&s)} =0,
or 5
TG-1, 0/By>0,
o= ) J=1.00
s 27-[- . 1 - 200 )
z<32>’ §b/Bo < 0,
obl| 1
Bo|  [1+ (arg)2|L(larg)

The magnetic surfaces for [ = 1,2,3 are shown in Fig.17.3. The magnetic
surface which passes through the hyperbolic singular point or X point is
called the separatriz. When x < 1, the modified Bessel function is

=)

The magnetic surfaces in the region ar < 1 are expressed by

Sb(1/2)t1

- m(ar)l sinl(f — daz) = const.
olt — 1)!

(ar)?

The magnitude B is given by
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7/

=1 =2

Fig. 17.3. Magnetic surfaces of the helical field, showing X points and separatrices

(;)212‘2’5 cos(lp)+ (g;) 2{1? {1 + ((;)2] cos?(lp) + (I))? sin2(lg0)} )

The magnitude B at the X point (rs, 5) is given by

(-

and at the point (rs, 65 + 7/l) by

E ’ =1 + ﬂ .
By 14+ (ar)?
Therefore the magnitude B is small at X points.

Let us estimate the rotational transform angle ¢. As the line of magnetic

force is expressed by

dr o d:
B, By B.’

the rotational transform angle is given by
re  /rd@\ _ /Bp\ _ /(1 /ar)ibli(lar)cosl(f —0z)
2rR \dz/ \B./ \ Bo—IbIl(lar)cosl(0—dz) ) °

Here r and 6 are the values on the line of magnetic force and are functions
of z, and ( ) denotes the average over z. In a vacuum field,

][BgdlZ/(VXB)-dSZO,

so that the rotational transform angle is 0 to first order in b/Bj. However
the first-order components of By and B, resonate to yield the second-order
rotational transform angle. The average method gives the formula for the
rotational transform angle [17.18,17.19]:
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Fig. 17.4. Cross-sectional views of helical coils in the [ = 2 case. (a) standard
stellarator. (b) heliotron/torsatron

(a)

Fig. 17.5. (a) Arrangement of elliptical coils used to produce an ! = 2 linear helical
field. (b) twisted toroidal coils that produce the [ = 2 toroidal helical field

L b\’ B [d (LI R
— == =|— = 17.1
27 6(‘8) 2 |:d$( T ):|93_lar r <7 8)

Using the expansion

Ii(z) = (g)l Ll' i (z+11)!“”2 * 2!(112)!“’4 +} !

2 2
L b 1 5 2(1—2)
—=5(=) (= ~1 >2). (17.1
— 5(3) (2”!) Pl = Dak |(ar)* 2+ (122). (17.19)
An example of the analysis of the toroidal helical field is given in [17.20].

17.2.2 Stellarator Devices

Familiar helical fields are of pole number [ = 2 or [ = 3. The three-dimensional
magnetic axis system of Heliac has the [ = 1 component. When the ratio of
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Poloidal coil Cryostat

Cryogenic
\ supporting post

Fig. 17.6. Upper: schematic view of the LHD device in Toki (R = 3.9m, a ~
0.6m, B =3T) [17.44]. Lower: modular coil system and a magnetic surface of the
optimized stellerator Wendelstein 7-X under construction in Greifswald (R = 5.5 m,
a=0.55m, B=23T) [17.43]
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the minor radius ay of a helical coil to the helical pitch length R/m (R is
the major radius and m the number of field periods) is much less than 1,
i.e.,, map/R < 1, the rotational transform angle is 15(r) = const. for [ = 2
and t3(r) = t(r/a)? for | = 3. In this case the shear is small for the [ = 2
configuration, and ¢3(r) is very small in the central region for the I = 3
configuration. However, if may/R ~ 1, then 1a(r) = 1o + t2(r/2)?> + -+, s0
that the shear can be large even when [ = 2.

The arrangement of coils in the [ = 2 case is shown in Fig.17.4. Figure
17.4a is the standard type of stellarator [17.21,17.22] and Fig.17.4b is a
heliotron/torsatron type [17.23,17.24]. Helical fields are usually produced
by the toroidal field coils and the helical coils. In the heliotron/torsatron
configuration the current directions of the helical coils are the same, so that
the toroidal field and the helical field can be produced by the helical coils
alone [17.27,17.28]. Therefore, if the pitch is properly chosen, closed magnetic
surfaces can be formed even without toroidal field coils [17.29,17.30]. The
typical devices of this type are Heliotron E, ATF and LHD. The device LHD
is shown in the upper part of Fig. 17.6.

When elliptical coils are arranged as shown in Fig. 17.5a, an [ = 2 helical
field can be obtained [17.25]. The currents produced by the twisted toroidal
coil system shown in Fig.17.5b can simulate the currents of the toroidal
field coils and the helical coils taken together [17.26]. Typical devices of this
modular coil type are Wendelstein 7AS and 7X. The modular coil system of
Wendelstein 7X is shown in the lower part of Fig. 17.6.

For linear helical fields, the magnetic surface ¥ = rAy exists due to its
helical symmetry. However, the existence of magnetic surfaces in toroidal
helical fields has not yet been proven in the strict mathematical sense. Ac-
cording to numerical calculations, the magnetic surfaces exist in the central
region near the magnetic axis, but in the outer region the lines of magnetic
force behave ergodically and the magnetic surfaces are destroyed. Although
the helical coils have a relatively complicated structure, the lines of magnetic
force can be traced by computer, and the design of helical field devices be-
comes less elaborate. The effect of the geometrical error on the helical field
can be estimated and accurate coil windings are possible with numerically
controlled devices (Al/R < 0.05-0.1%).

17.2.3 Neoclassical Diffusion in Helical Field

To analyze classical diffusion due to Coulomb collision, one must study the
orbits of charged particles. In a helical field, or even in a tokamak, the toroidal
field is produced by a finite number of coils, and there is an asymmetric
inhomogeneous term in the magnitude B of the magnetic field,

B
B~ 1 — epcos(l0 — mp) — €, cos b, (17.20)
0
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Fig. 17.7. Variation of the magnitude B along the length [ of the line of magnetic
force

projection of
average drift orbit of

average .
magnetic pell?jdly trapped orbit of
surface lon banana helically trapped
\/ _ ion banana
/

Fig. 17.8. Orbit of a helical banana ion trapped in a helical ripple

in addition to the toroidal term —e; cosf. The variation of B along lines of
magnetic force is shown in Fig. 17.7. Particles trapped by the inhomogeneous
field of helical ripples drift across the magnetic surfaces and contribute to
the particle diffusion in addition to the banana particles, as was discussed
for tokamaks. The curvature of the line of magnetic force near the helically
trapped region is convex outward and is denoted by Ry. Helically trapped
particles drift in the poloidal direction (6 direction) due to V B drift with the
velocity vy, &~ mv? /(¢BRy) (see Fig. 17.8). The angular velocity of poloidal
rotation is

_ U T kT
Wh = o = Ry qBr? -’
In the case of a linear helical field (e; = 0), helically trapped particles rotate
along the magnetic surface. However, in the case of a toroidal helical field, the
toroidal drift is superposed and the toroidal drift velocity is vy, = kT'/(¢BR)
in the vertical direction (see Sect.3.5). When the effective collision time
(Veff) ™t = (v/en)~! is shorter than one period (wp,)~! of poloidal rotation,

(17.21)
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the deviation of the orbit of the helical banana ion from the magnetic surface

is
€n kT 1
A = UVy— = —_ .
nE O T BRY

Then the coefficient of particle diffusion becomes [17.31]

1/2 30 (KT \? 1 s (KT 1\ (kT
Dy ~ 6?2 ver = €/ (qBR ;:Egeh/ qBr2v) \g¢B)

Since Ry, ~ r/en, the other expression is

1/2 o (wh\ (kT
D1 ~ e/ (7) (qB> (/e > wp) , (17.22)
where vy, is a coefficient of order O(1) (Fig. 17.9).
When the effective collision time (veg) ! is longer than (wy) ™, the devi-
ation Ays of the orbit from the magnetic surface is
vy Ry &

Ah2%7~ re~—r,
Wh R €h

and the particle diffusion coefficient Dyo in this region becomes (Fig. 17.9)

2
Dya =~ 6}11/2A}212l/eff = (et) %/27“21/ (v/en < wn) -
€h eh
When a particle is barely trapped in a local helical mirror, the particle moves
very slowly near the reflection point where the magnetic field is locally maxi-
mum and the field line is concave outward. The effective curvature, which the
particle feels in time average, becomes negative (concave). The orbit of the
trapped particle in this case becomes the so-called superbanana [17.31]. How-
ever, this theoretical treatment is based on the assumption concerning the
longitudinal adiabatic invariant J = const. along the orbit of the helically
trapped particle. The adiabatic invariance is applicable when the poloidal ro-
tation angle, during one period of back and forth motion in the helical local
mirror, is small. As the single period of back and forth motion of the barely
trapped particles becomes long, the adiabatic invariance may not be appli-
cable in this case. The orbit plotted from numerical calculations shows that
the superbanana does not appear [17.32] in the realistic case when €y, ~ €. If
a particle orbit crosses the wall, the particle is lost. This is called orbit loss.
A loss region in velocity space appears due to orbit loss in some cases [17.33].
When a radial electric field appears, the angular frequency of the poloidal
drift rotation becomes wy + wg (wg = E,/Bg) and the orbit is affected by

the radial electric field.
The thermal diffusion coefficient y,1 due to helically trapped particles in
the region v/e, > wy, is given by
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Fig. 17.9. Dependence of the neoclassical diffusion coefficient of the helical field
on the collision frequency. v, = (¢/27)vr, /R, Vb = ef/zup, wh = enrTe/(qBr?)

2
32 [ KT 1
Xh1 ~ VTefeh/ <qBr) > (yr ~ 50) . (17.23)

Since v o« T71%, this means xp; oc 73°. This may suggest that the thermal
conduction loss becomes large in hot plasmas and the suppression of helical
ripple loss is very important [17.31-17.36].

Since toroidal helical systems lose helical symmetry as well as axisym-
metry, the generalized momentum correponding to the cyclic coordinate is
no longer conserved [angular momentum m7r20 + grAs = const. for the ax-
isymmetric system A(r, z) and m(z + ar20) + q(A, 4+ arAg) = const. for the
helically symmetric system A(r, § —az)]. Therefore the orbit loss of energetic
ions produced by heating or fusion-produced alpha particles with 3.5 MeV
becomes large and heating efficiencies may deteriorate.

There are active efforts to design quasi-axisymmetric [17.37], quasi-
helically symmetric [17.38] and quasi-omnigenous [17.39] stellerators by use
of Boozer magnetic coordinates [17.40].

17.2.4 Confinement of Stellarator System

After Stellarator C [17.41], the basic experiments were carried out in small
but accurate stellarator devices (Clasp, Proto Cleo, Wendelstein IIb, JIPP I,
Heliotron D, L1, Uragan 1). Alkali plasmas, or afterglow plasmas produced
by wave heating or gun injection, were confined quiescently. The effect of
shear on the stability and confinement scaling were investigated.

The | = 2 stellarators with long helical pitch, such as Wendelstein Ila or
JIPP I-b, have nearly constant rotational transform angles and the shears are
small. When the transform angle is rational, ¢/27 = n/m, a line of magnetic
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force comes back to the initial position after m turns of the torus and is
closed. If electric charges are localized in some place, they cannot be dispersed
uniformly within the magnetic surface in the case of rational surfaces. A
resistive drift wave or resistive MHD instabilities are likely to be excited, and
convective loss is also possible [17.42]. An enhanced loss is observed in the
rational case. This is called resonant loss. Resonant loss can be reduced by
the introduction of shear.

Medium-scale stellarator devices (Wendelstein VIIA, Cleo, JIPP T-II,
Heliotron-E, L2, Uragan 2, Uragan 3) have been constructed. The confine-
ment time of the ohmically heated plasmas (T, < 1keV) is similar to that of
tokamaks with the same scale. When the rotational transform angle is larger
than ¢, /27 > 0.14, the major disruption observed in tokamaks is suppressed
(W VIIA, JIPP T-II). NBI heating or wave heatings, which were developed
in tokamaks, have been applied to plasma production in helical devices. In
Wendelstein VIIA, a target plasma was produced by ohmic heating; then
the target plasma was sustained by NBI heating while the plasma current
was gradually decreased, and finally a high-temperature plasma with «7; ~
several hundred eV, n, ~ several 10" cm™ was confined without plasma
current (1982). In Heliotron-E, a target plasma was produced by electron cy-
clotron resonance heating with £, ~ 800eV, ne ~ 0.5 x 103 cm ™3, and the
target plasma was heated by NBI heating with 1.8 MW to the plasma with
KT ~ 1keV, ne = 2 x 10" cm™3 (1984). The average beta, (3) ~ 2%, was
obtained for B = 0.94T and NBI power Pxg ~ 1 MW. These experimental
results demonstrate the possibility of steady-state confinement by stellarator
configurations [17.43]. Experimental scaling laws of energy confinement time
are presented from Heliotron-E group [17.44] as follows;

FLHD O.17a2.0RO.75n866930.84P70.58 7 (17.24)

where the units of ngg are 102° m—3. W7AS group presented W7AS confine-
ment scaling [17.45] of

TV TAS = 0.115A% 7695090 BO-T3 p=0-54(, /2)0-43 (17.25)
The scaling law of the international stellarator database is [17.45]
7_}138895 — 0.079a2.21R0‘65n(1).951BO.83P70.59(L/27T)0.4 , (1726)

where the units of nig are 101 m™ and (/27 is the value at r = (2/3)a.
Units are s, m, T, MW.

High confinement operation by NBI was observed in WV7-AS and an
improvement factor of about 2 is obtained in H mode and HDH mode (Hig
Density H mode) [17.46]. The advanced stellarator Wendelstein 7-X [17.47]
with superconductor modular coils is under construction (refer the lower
figure of fig.17.6). Large helical device (LHD) [17.48] with superconductor
helical coils started experiments in 1998 (refer the upper figure of fig.17.6).
The relations of observed radial electric field and the transition or bifurcation
of improved confinement mode are actively investigated [17.49].
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Open End Systems

Open end magnetic field systems [17.50—-17.52] have a simpler configuration
than toroidal systems. The attainment of absolute minimum-B configurations
is possible with mirror systems, whereas only average minimum-B configu-
rations can be realized in toroidal systems. Although absolute minimum-B
configurations are MHD stable, the velocity distribution of the plasma be-
comes non-Maxwellian due to end losses, and the plasma confined in mirrors
will be prone to velocity-space instabilities.

The particle confinement time 1, of a mirror field is essentially determined
by the diffusion time to the loss cone in the velocity space, i.e., the ion—ion
Coulomb collision time 73, and is given by [17.53]

Tp = Tii IHRM 5 (1727)

where Ry is the mirror ratio. Therefore the most critical issue for open-end
systems is the suppression of end loss. The end plug of the mirror due to
electrostatic potential has been studied by tandem mirrors [17.54-17.56].
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The characteristic of inertial confinement is that the extremely high-density
plasma is produced within a short period by means of an intense energy
driver, such as a laser or particle beam, so that fusion reactions can occur
before the plasma starts to expand [18.1]. Magnetic confinement plays no part
in this process, which has come to be called inertial confinement. For fusion
conditions to be reached by inertial confinement, a small solid deuterium—
tritium pellet must be compressed to a particle density 103-10* times that of
the solid pellet particle density ns = 5 x 1022 cm™>. One cannot expect the
laser light pressure or the momentum carried by the particle beam to com-
press the solid pellet: they are too small. A more feasible method of compres-
sion involves irradiating the pellet from all sides, as shown in Fig. 18.1. The
plasma is produced on the surface of the pellet and heated instantaneously.
The plasma expands immediately. The reaction of the outward plasma jet
accelerates and compresses the inner pellet inward like a spherical rocket.
This process is called implosion. The study of implosion processes is one of
the most important current issues, and theoretical and experimental research
is being carried out intensively.

18.1 Pellet Gain

The pellet gain Gpeliet is the ratio of the output nuclear fusion energy Enr to
the input driver energy Ep, delivered to the pellet. The heating efficiency ny
of the incident driver is defined as the conversion ratio of the driver energy
E1, to the internal energy Fg,e of the compressed pellet core. Denote the
density and volume of the compressed core plasma by n and V', respectively,
and assume that (€0 is the average energy of a fuel particle. Then we have
the following relation:

Etuel = (etue)nV = m EL (18.1)

The densities np and nr of the deuterium and tritium are decreased by the
D-T fusion reaction (np = nt = n/2) and

L dnp nr(ov) n(t) =n !
—— =-nr(o =ng————— .
np dt T ’ 91+ no(ov)t/2
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(a)

Fig. 18.1. Conceptual drawing of implosion. (a) Irradiation from all sides by laser
or particle beam. (b) Expansion of plasma from the pellet surface and implosion

due to the reaction of the outward plasma jet

When the plasma is confined during the time 7, the fuel-burn ratio fg is

given by

no —n(t)  ng{ov)T/2

/B =

and the fusion output energy Enr is

no 1+ nolov)r/2  2/{ov) + nor

ENF = anV Q2NF .
When the core gain Gegre is defined by
F
Gcore = NF b)
Efuel
the pellet gain Gpeliet is
Exr
G ellet = —F— = Gcore P
pellet B h
which reduces to
Gool _77h< QNF ) noT
ellet — .
P 2{efuel) ) 2/{ov) + noT

(18.2)

(18.3)

(18.4)

(18.5)

(18.6)

Let us consider the energy balance of a possible inertial fusion reactor. The
conversion efficiency of the thermal-to-electric energy is 7], and the conver-
sion efficiency of the electric energy to output energy of the driver is denoted

by n1. Then at least
nclnLGpcllct > 1
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Fig. 18.2. Energy flow diagram of an inertial confinement reactor

is necessary to obtain usable net energy from the reactor (see Fig.18.2).
(When nr, ~ 0.1, 9t ~ 0.4 are assumed, Gpeiet > 25 is necessary.) Therefore
we find from (18.6)

nr > ) L (18.7)

NN QNF(ov) 1 — 2(egue1) /(ML QNF)

The confinement time 7 is the characteristic expansion time, expressed by
[18.2]

r 9 O P 10 kT
R — = =—— 18.8
T 3cg G 3 Pm 3m ( )
where ¢ is the sound velocity. Since the volume V of the core is
473
V =
3 )
equation (18.1) reduces to
47
Ep = Enﬁ(efuel) . (18.9)
Equations (18.2) and (18.8) yield
/B 2
T 18.10
- o) n{ov) 1810
7\ /2
r=55 <'€ ) . (18.11)
my
The fuel-burn ratio fg now reduces to
m’ 6cgmy
f L . B(T) = (18.12)

B 665m1/<011> + pm7 <UU> ’

where m; is the average mass of D and T particles (m; = 2.5m,,, where m,, is
the proton mass). When <7 = 10keV, then (ov) ~ 1.1 x 1070 cm3s~! and
B(T) ~ 26 g/cm?. The plasma density is expressed by the ratio with respect
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L

Fig. 18.3. Pressure, temperature and density profiles for the isobar model ignition
configuration

to the solid density neoia = 5 x 10??2cm™ or the mass density pmsolia =
Minsolia = 0.21 g/cm?3. Equations (18.10), (18.11) and (18.9) yield

- —6 g1 [ Msolid
7 =0.36 x 107% /4 ( ” ) (s) (18.13)
- / Nsolid 2
r=1.2f, (771 ) x 102 (cm) , (18.14)
1 4 <6fuel> Tsolid ) 2 ’3
By = — el ) — V _ s 18.15
L 77h<€f1>3n0( h (n) B ( )
Qnr/2 h /B 88 3
G ~ ~ (=)= 10 18.16
pellet ~ Th.fB {€tuel (0.1) 0.1) Teraet) oy X ) ( )
where
fo=dB_ Lt
P71 fs B(T)

Equation (18.14) is equivalent to
Tpm ~ 26f5  g/cm® .

Let us estimate the internal energy of the fuel Fpue. At the time of com-
pression, almost all the inward-going energy has been converted into internal
energy and the pressure is nearly uniform over the total (hot and cold) fuel
region at ignition (isobar model) [18.3]. But the central spark region becomes
hot and is surrounded by the cold compressed fuel (see Fig. 18.3). The inter-
nal energy of solid cold DT fuel per unit volume is given by the product of the
Fermi energy ep = (h%/2m.) x (372n)%/3, where i = h/27 is Planck’s con-
stant and m, is the electron mass, and the density with a factor of 3/5. The
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Fermi energy of electrons with solid density n = 5x10%2 cm ™3 is er,s = 4.9eV.
If preheating occurs before compression starts, the energy density of the cold
fuel is

3 3 h2 2,\2/3
N{Efuel) = panep = zan { o (37*n)~/° . (18.17)

a = 2-3 is called the preheating factor. Then the fuel energy is
3 3
Etyer = 3nskTs Vs + gaspnCVC = gOéanC‘/f , (18.18)

because of the pressure balance 2nskTy = (2/5)acy, where Vg, rg and V¢, r¢
are the volumes and radii of the spark region and the total region of the fuel,
respectively. V. is the volume of the cold compressed region V., = V; — V.
T, and ng are the temperature and density of the spark region and n. is the
density of the cold compressed region. Then the fusion output is

pe(re —175)
B(T) + pe(re —1s5) .

Here the contribution from the spark region is neglected (nsVy < n.V.). The
core gain Gegre 1S

Enp ~ %HC%QNF , B~ (18.19)

Gome ~ | 21— 75) One/2 Ve (18.20)

B(T) + pe(re —7s) | (3/5)acr Vi

The ignition condition is given by [18.4,18.5]

psts > 0.3-0.4g/cm®  when T ~ 5keV , (18.21)

and the slowing-down length A of alpha particles is given by [18.6, 18.7]
PAg = 0.015Tfe/é g/cm2 and pgrs > pAq is required.

Let us take the example of n, = 2000n4.);q. In this case p. = 420 g/cm3
and erp = 786 V. The mass density of the spark region is ps = aepp. /5T =
26.4g/cm?® (kTy = 5keV, a = 2). From the ignition condition we choose
rs = 0.015cm. The value of the fuel radius is chosen as r. = 0.03 cm. Then
we have (gye1) = 0.6acp = 943 eV, assuming o = 2 and Ejpye) = 1.7MJ. The
driver energy becomes Er, = 17 MJ under the assumption that n, = 0.1 and
the pellet gain is Gpenet = 3.2 x 10% for fg ~ 0.34 (3(T) ~ 12g/cm?) for
T ~ 17 keV.

The critical issue for an inertial fusion reactor is how to produce extremely
high-density plasmas by implosion. Hence, the optimum design of fuel pellet
structures and materials is important. Technological issues for energy drivers
involve increasing the efficiency of laser drivers and improving the focusing
of light ions or heavy ion beams.
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Fig. 18.4. Pellet structure. A: ablator, P: pusher, D-T: solid D-T fuel, V: vacuum

18.2 Implosion

A typical pellet structure is shown in Fig. 18.4. Outside the spherical shell
of deuterium—tritium fuel, there is a pusher cell, which plays the role of a
piston during compression; an ablator cell with low-Z material surrounds the
pusher cell and the fuel. The heating efficiency 7y, is the conversion ratio of
the driver energy to the thermal energy of the compressed core fuel. The
heating efficiency depends on the interaction of the driver energy with the
ablator, the transport process of the particles, and the energy and motion of
the plasma fluid. The driver energy is absorbed on the surface of the ablator
and the plasma is produced and heated.

The plasma then expands and the inner deuterium-tritium fuel shell is
accelerated inward by the reaction of the outward plasma jet. The implosion
takes place at the center. Therefore the heating efficiency 7y, is the product of
three terms, i.e., the absorption ratio 7,1, of the driver energy by the ablator,
the conversion ratio nnydro of the absorbed driver energy to the kinetic energy
of hydrodynamic fluid motion, and the conversion ratio nt of the kinetic
energy of the hydrodynamic motion to the internal energy of the compressed
core:

Th = Nab"hydro?)T-

The internal energy of the solid deuterium—tritium fuel per unit volume is
given by (3/5)ner. The internal energy of solid deuterium—tritium per unit
mass wo can be estimated to be wg = 1.1 x 108 J/kg. If the preheating occurs
before the compression starts, the initial internal energy is increased to a,wo,
and then the solid deuterium—tritium fuel is compressed adiabatically. Using
the equation of state for an ideal gas, the internal energy w after compression

is 2/3
wW = QpWo <p>
P £o '
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where pg and p are the mass densities before and after compression. If the
preheating is well suppressed and «, is of the order of 2-3, the internal energy
per unit mass after 2000 x compression is w ~ (4.5) x 1019 J /kg. This value w
corresponds to the kinetic energy of unit mass with velocity v ~ 3 x 10m/s
(w = v?/2). Therefore, if the spherical fuel shell is accelerated to this velocity
and if the kinetic energy is converted with good efficiency i into the internal
energy of the fuel core at the center, then compression with 2000 times mass
density of the solid deuterium—tritium is possible.

When the pellet is irradiated from all sides by the energy driver, the
plasma expands with velocity u from the surface of the ablator. Then the
spherical shell with mass M is accelerated inward by the reaction with the
ablation pressure P,. The inward velocity v of the spherical shell can be
analyzed by the rocket model with an outward plasma jet [18.8,18.9]:

d(Mv)  dM

T T SP,, (18.22)
where S is the surface area of the shell. When the average mass density and
the thickness of the spherical shell are denoted by p and A, respectively, the
mass M is M = pSA. The outward velocity u of the expanding plasma is
usually much larger than the inward velocity v of the spherical shell, and w is
almost constant. The change in the sum of the kinetic energies of the plasma
jet and the spherical shell is equal to the absorbed power of the energy driver:

d /1 1/ dM
IS = — [ = Mv? ) + = [ ——— ) u? 18.2
NabILS dt<2 U>+2< dt)u’ (18.23)

where I, is the input power per unit area of the energy driver. From (18.22)
and (18.23), the absorbed energy E, reduces to

1
Bo= [ nahsde~ j(AMe (18.24)

where the approximations u > v, and u = const. are used. The quantity
AM is the absolute value of the change in the mass of the spherical shell.
The pressure P, is estimated from (18.22) and (18.23) as follows:

u dM 1
Po=———— ) ~2np0L—. 18.25
S( dt) 77bLu ( )

Then the conversion ratio nnydro of the absorbed energy to the kinetic energy
of the spherical shell is

1
2F,

My — AM /v\2
_ _ o _ Mo—AM (v
Mhydro = —— (Mo — AM)v T (u) .

Since the rocket equation (18.22) implies v/u = —In [(Mo — AM| /M), the
conversion ratio Nnydro 18
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(Mo AMN\]?  AM
Thydro = (A]W - 1) |:1n (1 - %>:| ~ VO , (1826)

assuming that AM /M, < 1.

The final inward velocity of the accelerated spherical shell must still be
larger than v ~ 3 x 10°m/s. The necessary ablation pressure P, can be
obtained from (18.22) with the relation S = 4772, and the approximation
M =~ MyP, ~ const. as follows:

dv  4nP, 5 P 9 dr

a o IWQ n poT%Aor - 7& ’
Integration of vdv/dt gives
3 Ag
P, = —ppv?— 18.2
21001} o ) ( 8 7)

where pg, 19, and A are the mass density, the radius, and the thick-
ness of the spherical shell at the initial conditions, respectively. When
ro/Ag = 20 and py = 0.21g/cm®, the necessary ablation pressure is
P, = 1.4x 102 Newton/m? = 14 Mbar (1 atm = 1.013 bar) in order to achieve
the velocity v = 3 x 10° m/s. Therefore the energy flux intensity Iy, required

from the driver is
Pu

2
For the evaluation of the velocity u of the expanding plasma, the interaction
of the driver energy and the ablator cell must be taken into account. In this
section the case of the laser driver is described. Let the sound velocity of
the plasma at the ablator surface be ¢s and the mass density be p.. The
energy extracted by the plasma jet from the ablator surface per unit time
is 4p.c? and this must be equal to the absorbed power 7,,11,. The plasma
density is around the cutoff density corresponding to the laser light frequency
(wavelength), i.e.,

Nablr, = (18.28)

3
u~ 4cg , NablL, ~ 4mpTNcC; ,

where mpr = 2.5 x 1.67 x 1072" kg is the average mass of deuterium and
tritium, and the cutoff density is n. = 1.1 x 10%7/A\% (um) m~—3, with X the
wavelength of the laser in units of pm. From (18.28), we have

(nabIL>14:| 23
A(pm)

where (7ap11,)14 is the value in 10'* W/cm?. This scaling is consistent with
the experimental results in the range 1 < (1.p11)14 < 10.

Most implosion research is carried out by the laser driver. The observed
absorption rate 7, tends to decrease according to the increase in laser light
intensity Ir,.

P, =13 [ (Mbar) , (18.29)
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The absorption rate is measured for an Nd glass laser with wavelength
1.06 um (red), second harmonic 0.53 pm (green), and third harmonic 0.35 um
(blue). The absorption is better for shorter wavelengths, and it is 7,1, &~ 0.9
0.8 for A = 0.35um in the range I, = 1010 W/cm?. The conversion
ratio Mhydro determined by experiment is 0.1-0.15. The conversion ratio nr
is expected to be nr > 0.5. In order to compress the fuel to extremely high
density, it is necessary to avoid the preheating the inner pellet during the
implosion process, since the pressure of the inner part of the pellet must be
kept as low as possible before compression. When laser light with a long wave-
length (CO2 laser A = 10.6 um) is used, high-energy electrons are produced
by the laser—plasma interaction and these penetrate into the inner part of
the pellet and preheat it. However, the production of high-energy electrons
is much lower in short-wavelength experiments.

18.3 MHD Instabilities

In the accelerating phase of the implosion process, the low density plasma
ablating from the surface of the ablator accelerates the high density fuel, so
that Rayleigh-Taylor (RT) instability is likely to occur at the ablation front.
Furthermore, the boundary of the central spark region (low density) and main
pusher fuel (high density) can be unstable in the decelerating phase near the
stagnation time of the implosion process. The resulting RT instability may
cause mixing of the fuel and ablator material in the accelerating phase, and
mixing of the pusher fuel into the central spark region in the decelerating
phase, thereby severely degrading the pellet performance.

Let us consider the case where a fluid with mass density py is supported
against acceleration g by a fluid with lower density of p;. In this case the
growth rate of Rayleigh—Taylor instability is given by [18.10]

_ 1/2 _ Pn—p1
v = (aagk)’", aa P (18.30)
where k is the wave number of the perturbation in the direction perpendicular
to the acceleration. When py, > pi, the growth rate is v = (gk)'/2. When
the density gradient is finite with scale length L, the growth rate becomes
v ~ (aag/L)'/? when kL > 1.
The dispersion relations of the RT perturbation near the ablation front
that are widely used constitute an analytical fit to numerical simulation and
are given by [18.11,18.12]

kg 12
N = <1+kL) — BV, , (18.31)

where B is a constant with B = 1-3 and Vj, is the flow velocity across the
ablation front in the frame moving with the ablation front. The first term in
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Fig. 18.5. Numerical simulation of the side-on image of the spatial distribution of
a perturbed sample of planar target [18.2]. The ablated low density plasma is in
the upper region and the acceleration is upward

(18.31) is the usual one with the correction for the finite density gradient,
and the second one is a stabilizing term due to the convective effect, as will
be seen in the following.

Let us consider the case where the region of high density is z < 0 and
the acceleration g is in the positive x direction. The wave number in the y
direction is k. The irrotational incompressible flow velocity (vg,v,) is given

by
v, = __0¢
xr — ay ) Yy 85E )
so that the stream function ¢ is

Ap=0,

¢ = ¢o exp(—k|z| + iky) exp ot ,

in the frame moving with the ablation front. When the fluid flows with veloc-
ity Vi (positive z direction), the coordinate of the fluid element is = x¢+V,t
and ¢ is expressed by (z > 0)

¢ = goexp [ — k(xo + Vat) + iky] exp ot
= ¢g exp(—kxo + iky) exp(yo — kVa)t . (18.32)

This equation demonstrates the stabilizing effect of the convective fluid. Fig-
ure 18.5 shows the results of numerical simulation [18.13], in good agreement
with experiment.

When a shock encounters a fluid discontinuity, transmitted and reflected
shocks are generated. These are then refracted by any perturbations at the
fluid interface. The modulated shocks produce pressure variations in the up-
stream and downstream fluids that reinforce the initial interfacial perturba-
tions and cause them to grow. This type of instability is called a Richtmyer—
Meshkov instability [18.14,18.15].
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Fig. 18.6. Growth of perturbation due to Rayleigh—Taylor instability and
Richtmyer—Meshkov instability [18.17]

When an impulse of acceleration ¢(t) = AUG(t) is applied, a single si-
nusoidal perturbation & obeys d¢/dt = o kAUES, where o and & are the
post-shock values at ¢ = 0. With a constant k, the amplitude grows linearly
in time and eventually saturates when the amplitude becomes large, k£ ~ 1.
Thus, short wavelength modes grow quickly, but they saturate and will be
overtaken by longer wavelength, slower-growing modes [18.16].

When a shock encounters the perturbed fluid discontinuity, the pressure
gradient Vp and density gradient Vp are not necessarily parallel and a flow
vortex can be induced. The equation for an ideal fluid is

du 1

— =—-Vp. 18.33

g” VP ( )
Noting the vortex w = V X wu, the rotation of (18.33) reduces to

%‘: =(w:-V)u—-—w(V -u)+%V,o>< Vp. (18.34)
The third term on the left-hand side of (18.34) induces the vortex and helps
the growth of the perturbation of RT instability [18.17], as shown in Fig. 18.6.

In conclusion, effective implosion requires high quality spherical symmetry
of the irradiating laser light intensity and target structures. Moreover, the
limit of the radius, the density of the compressed fuel core, and the required
laser input energy are determined by the extent to which RT mixing can be
minimized.

18.4 Fast Ignition

Ultra-high intensity lasers with petawatt output (10 W) have been devel-
oped by the technology of chirp pulse amplification [18.18] and a new ap-
proach called fast ignition [18.19] is being actively studied. One scenario for
hot ignition has three phases. First a fuel capsule is imploded as in the usual
approach to assemble a high density fuel configuration. Second, a hole is
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hole boring pulse

Fig. 18.7. A configuration for efficient heating of the imploded core plasma using
an ultra-intense laser as fast ignitor

bored through the capsule corona composed of ablated material, as the crit-
ical density is pushed close to the high density core of the capsule by the
ponderomotive force associated with the high intensity laser light. Finally,
the fuel is ignited by suprathermal electrons, produced in the high-intensity
laser—plasma interactions, which then propagate from critical density to this
high density core (see Fig. 18.7). This new scheme, if realized, could separate
the process of implosion and self-spark of the central spot and also drasti-
cally reduce the difficulties involved with implosion, allowing lower quality
fabrication and less stringent beam quality and symmetry requirements from
the implosion driver.

Fuel ignition requires the hot spot to reach an average temperature of
5keV within a fuel areal density of (pr)ns = 0.3-0.4g/cm? (see Sect.18.1).
The mass of the hot spot region is

4 S 3 3 4)3 2
Myg(g) = —Polhe :4#9’"2“ ~4.2(02) = 2 d
3 3Phs Prs  Pis(8)

)

where pps, Ths are the mass density and radius of the hot spot region, respec-
tively. The thermal energy of the heated fuel is

My T
= B3 =315V (M),

my Phs

Ehs

The energy FEr of the cold imploded fuel before fast ignition is
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3 M,
Er = 50[5}: mf = 0.330<p?/3Mf (MJ),

where M is the mass of the main fuel in units of g and the mass density ps
is in units of g/cm?3.

When the ignition energy is injected sufficiently rapidly, the hot spot and
main fuel are not in pressure equilibrium and the uniform density model can
be used. Then the total energy Fg,e of the fuel is given by

T
By = 31% +0.33ap?3 M (MJ), (18.35)
and the fusion output energy Enf is

M,
mf@ =334 x 10°fgM;  (MJ). (18.36)

Exr = fB
Therefore the core gain Gcope reduces to

334prrf/[ﬂ(T) + prf]

Gcore = .
31Ths/p? + 0.33ap?/3 M

(18.37)

Let us consider the example of pr = 1000psoq = 210g/cm®. We choose
rhs = 0.002 cm and r¢ = 0.01 cm. Then we have My = 0.88 x 1072 g, Eryel =
(3.5+20.5) = 24kJ, fg = 0.22, Exr = 65.3 MJ, Geore = 2.7 x 10, assuming
a = 2, KTys = 5keV, B(T) ~ Tg/cm?, where 3(T) is about 7g/cm? for
KT = 30-40keV, and Ey, = 240kJ, Gpenet = 2.7 X 102, under the assumption
that n, = 0.1.

Let us estimate the laser power required for fast ignition. The energy
needed to ignite the hot spot region (pmr > 0.4g/cm?, pn ~ 10%psoid,
KT ~ 5keV) is at least 7-8kJ, taking heating efficiency into account. The
confinement time 7 = r/(3¢s) is of the order of 8 ps. Therefore a power of
1015 W = 1 petawatt is necessary. When the radius of the hot spot is 0.02 mm,
the intensity of the laser beam becomes 102° W /cm?.

The ponderomotive force F, of the laser beam is given by [see (18.40) at
the end of this chapter]

F,= _wfgve‘x2 )| (18.38)

A laser beam of finite diameter causes a radially directed ponderomotive
force in a plasma. This force moves plasma out of the beam, so that the
plasma frequency wy, is lower and the dielectric constant e is higher inside the
beam than outside. The plasma acts as a convex lens resulting in the self-
focus of the laser beam. The ponderomotive force will also push the critical
surface forward, resulting in the laser channel forming an over-dense plasma
[18.20]. The pressure of the cold imploded fuel with density of n = 103144
is 2/5aepn ~ 3.2 x 105 Pa (1 bar = 105 Pa ~ 1atm) and the pressure due to
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cylindrical high 7 case

O

| |

laser beams

Fig. 18.8. Configuration of Hohlraum target

the ponderomotive force of the laser beam with intensity I;, = 1024 W/m? is
€o(E?)/2 = I,/c ~ 3 x 10'® Pa. The critical surface can therefore be pushed
into the core plasma. Once the channel is created in the plasma with a critical
(cutoff) density, the laser light heats the plasma by J x B heating [18.21], in
which the oscillating component of the ponderomotive force [see (18.39)] can
lead to heating, and also by ‘not-so-resonant’ resonance absorption [18.22].
The interaction of dense plasma and ultra-high intensity laser light is being
actively studied in experiments [18.23] and computer simulations.

Hohlraum Target

The implosion process just described is for directly irradiated pellets. The
other case is indirectly irradiated pellets. The outer cylindrical case surrounds
the fuel pellet, as shown in Fig. 18.8. The inner surface of the outer cylindrical
case is irradiated by the laser light, and the laser energy is converted into X-
ray energy and plasma energy. The converted X-rays and the plasma particles
irradiate the inner fuel pellet and implosion occurs. The X-ray and plasma
energy is confined between the outer cylindrical case and the inner fuel pellet
and is used for effective implosion. This type of pellet is called a Hohlraum
target [18.2]. In this configuration, the possibility of using a heavy ion beam
as energy driver is being examined [18.24].

Recent activities in inertial confinement fusion including the NIF (Na-
tional Ignition Facility) are well described in [18.25].

Ponderomotive Force

The electron equation of motion in the electromagnetic wave E(r,t) =
E(r) cos(k-r — wt) is

d
md—’;}:—e(E—vaB).
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Here we assume that E (r) varies slowly on the scale of the wavelength. Using
the notation o = k-r — wt, the magnetic field B is given by

OB = =
E:—VxE:VxEcosoﬁ-kxEsina,

x E kExE

\v4
B = sin o +

COS (x .

To first order, we neglect the second-order term v x B, whence

me- = —eE(rg,t) = —eE(rg) cos(k-rg — wt)
E E

v = € (7’0) sin(k.ro — wt) , T = e (T20) COS(’C'T’O — Wt) 5
mw mw

where 7 is the initial position. We expand E(r,t) about 7g:
E(r,t) = E(ro,t) + (r1-V)E(r, t)|r,
= E(ro,t) + (11-V)E cos ag — E(r1-k) sinay ,
where ag = k-rg — wt. To second order, we must add the term v x B

d’UQ
m—=
dt

= —e {(rl-V)E cos o — E(rl-k) sin ao}
~ k
—evy X (V X Esinag + X
2

E
CoS (g
e

=——— [(EV)E cos® ag + E x V x Esin? ao}
mw

62

— 5 {—(E’k)E’ +Exkx E} sin ag cos g
mw

e2

~2
E ~ ~
=53 {V2 [1—cos2(k-rg — wt)| + 2(E-V)E cos 2(k-ro — wt)

VKE” sin2(k-ro — wt) — 2(k-B)E sin 2(k-ro — wt)} . (18.39)

Here we have used the formulas

=
4
=

E‘x(VxE):%V(E-E)—(

Ex(kxE)=kE — (k-E)E .
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In the case of a transverse electromagnetic wave, the terms (EV)E and
(k-E)E are negligible and the terms due to the Lorentz force dominate. The
time average of mdwsy/dt becomes

d’Ug 62 ~2
m{—)=— VE .
< dt > dmw?
This is the effective nonlinear force on a single electron. The nonlinear force
on the plasma per unit volume is

nm @ *fw—gVEOE2*fw—gV60<E2> (18.40)
dt /w2 4 w2 2 ’

where wy, is the electron plasma frequency. This force is called the pondero-
motive force.
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Index

accessibility of lower hybrid wave 193
adiabatic heating 19
adiabatic invariant 21

Alfvén velocity 60

Alfvén frequency gap 226
Alfvén resonance 225

Alfvén wave 158
antenna—plasma coupling 177
aspect ratio 39, 65

average minimum-B 98

axial symmetry 34

ballooning mode 128
ballooning representation 127
banana

particle 41

region 82

width 41
Bessel function model 321
beta ratio 62
Bohm diffusion coefficient 86
Boltzmann’s equation 50
bootstrap current 303

drive 302
break-even condition 11
bremsstrahlung 9
burning condition 10, 314
canonical variables 47
charge exchange 26,293
charge separation 38,78
circular polarization 152
circulating particle 39
CMA diagram 157
cold plasma 147
collision frequency 23
collision time 23
collisional region 82

collisionless drift instability 146
compressional Alfvén wave 60, 159,
160
conductive loss 76
connection length 77
continuum damping 229
convective loss 76, 88, 335
core-localized mode (CLM) 237
corona 4
Coulomb collision 21
cross-section of D-T, D-D, D-He?
nuclear fusion 8
current drive
bootstrap current
current drive
ECCD  see electron cyclotron
current drive
LHCD  see lower hybrid current
drive
NBCD
drive
oscillating field CD
field current drive
curvature drift 17

see bootstrap

see neutral beam current

see oscillating

cutoff 153
cyclotron

damping 173
frequency 15,149

velocity 173

Debye length 5
decay index 273
degenerate electron plasma 6
detached plasma 283
diamagnetism 62
dielectric constant 32
dielectric tensor

of hot plasma 208



368 Index

of bi-Maxwellian plasma
of cold plasma 149
diffusion coefficient 75
due to fluctuation loss 84
diffusion tensor 295
dispersion equation
of cold plasma 151
of drift wave 212
of electrostatic wave 200, 210
dissipative drift instability see
resistive drift instability
distribution function see velocity
space distribution function
divertor 279
Dreicer field 27
drift frequency 85,134, 144,213
drift instability 202, 212
drift velocity of guiding center
dynamic friction 295

184, 210

16, 42

ECCD  see electron cyclotron current
drive
ECH see electron cyclotron heating
effective collision frequency 81
electric displacement 31
electric intensity 31
electron beam instability 201
electron cyclotron current drive 297
electron cyclotron heating 196
electron cyclotron resonance 153
electron cyclotron wave 164
electron drift frequency 134
electron plasma frequency 14
electron plasma wave 14
electrostatic wave 164
ellipticity-induced Alfvén eigenmodes
(EAE) 237
elongated plasma 277
energetic particle mode (EPM) 238
energy confinement time 77
of H mode tokamak 291
of Kaye—Goldston scaling 286
of L mode tokamak 286
of RFP 323
of stellarator 335
energy integral 102
of axisymmetric toroidal system
126
energy principle 102

equilibrium 61

ERATO code 240
Eta-i mode 135
excitation of wave 177
extraordinary wave 152

fast ignition 347

fast wave 153

Fermi acceleration 21

field reversed configuration 254

fishbone instability 215

flute instability see interchange
instability

Fokker—Planck collision term 50, 294,
300

Fokker—Planck equation 50, 293, 300

full orbit particle model 251

Galeev—Sagdeev diffusion coefficient
81
Grad—Shafranov equation 64
Solovev solution 65
Solovev—Weening solution 66
gradient B drift 17
gravitational interchange mode 142
Greenward density 275
Greenward-Hugill-Murakami parame-
ter 276
group velocity 182
guiding center 16
gyro-Bohm diffusion coefficient 88
gyro-Landau-fluid model 245
gyrofluid model 245
gyrokinetic particle model 249

H mode 286

Hain-Liist MHD equation 118
Hamiltonian equation of motion 36
Harris instability 202

helical hole 304

helical symmetry 34, 325

Hermite matrix 180

high beta-poloidal H mode 290
Hohlraum target 350

hollow current profiles 132

hoop force 68

horizontal positional stability 274
hybrid resonance 153



ICRF heating 189

ignition condition 11

implosion 342

inertial confinement 337

interchange instability 93, 345

intermediate region 82

internal disruption 275

INTOR 315

ion Bernstein wave 192

ion cyclotron resonance

ion cyclotron wave 160

ion drift frequency 134

ion temperature gradient mode see
ITG mode

ion—ion hybrid heating 191

ion—ion hybrid resonance 190

isobar model 340

ITER 315

ITG mode 135

153, 160

kinetic Alfvén eigenmodes (KTAE)
237

kinetic Alfvén wave 225

kink instability 107

Kruskal-Shafranov condition 107

L mode 286

L wave 152

Lagrange equation of motion 35
Landau damping 169, 187
Langmuir wave 14

Larmor motion 15

Larmor radius 15

laser plasma 337

LHCD  see lower hybrid current drive
LHH see lower hybrid heating
line of magnetic force 33
linearized equation of MHD 99
linearized Vlasov equation 203
Liouville’s theorem 47
longitudinal adiabatic invariant 21
Lorentz condition 32

loss cone 20

loss-cone instability 202

lower hybrid current drive 293
lower hybrid heating 196

lower hybrid resonance 161,192

macroscopic instabilities 91

Index 369

magnetic
axis 39
fluctuation
helicity 320
induction 31
intensity 31
moment 19
probe 270
Reynolds number 57
surface 33
viscosity 957
well depth 99
magnetoacoustic slow wave 60
magnetoacoustic wave 59
magnetohydrodynamic equation 51
magnetohydrodynamic instability 91
major axis 38
major radius 39
Maxwell distribution function 13
Maxwell’s equations 31
mean free path 23
MHD equation see magnetohydrody-
namic equation
MHD instability see magnetohydro-
dynamic instability
MHD model 240
MHD region 82
microscopic instability 199
minimum-B condition 94
minor axis 39
minor disruption
disruption
minor radius 39
minority heating 192
Mirnov coil 270
mirror 19, 336
mirror ratio 19
mode conversion 178,192
modified Bessel function model 322

89, 99, 204

see internal

NBCD  see neutral beam current drive
NBI see neutral beam injection
negative dielectric constant 201
negative energy wave 202
negative shear 132,290
neoclassical diffusion

of stellarator 333

of tokamak 82
neoclassical tearing mode 310



370 Index

neutral beam current drive 301
neutral beam injection 26

of negative ion source 293
normalized beta see Troyon factor
nuclear fusion reactions 7

Ohm’s law 54

ohmic heating 28

open end system 336

orbit surface 43

ordinary wave 152

oscillating field current drive 325

paramagnetism 63

particle confinement time 75
of mirror 336

pellet gain 337

permeability 32

PEST code 241

Pfirsch—Schliiter factor 79

Pfirsch—Schliiter current 71

pitch minimum 322

plasma dispersion function

plasma frequency 149

plasma parameter 5

plateau region 82

Poisson’s equation

polarization 152
current 45
drift 45

poloidal beta 62, 66,70

poloidal magnetic field 39

ponderomotive force 352

Poynting vector 178

preheating 342

pulsed poloidal current drive (PPCD)

323

185, 209

248, 254

quasi-linear theory of evolution in the
distribution function 174

R wave 152

radiation loss 9,284

rare collisional region 82

ray tracing 182

Rayleigh-Taylor instability see
interchange instability

resistive drift instability 145

resistive instability 137

resonance 153,160, 163

reversed field pinch 319

RFP  see reversed field pinch
Richtmyer—Meshkov instability 346
rippling mode 142
Rogowsky coil 270
rotational transform angle
runaway electron 27
Rutherford term 310

39, 328

safety factor 108,142,277

sausage instability 106

scalar potential 31

scrape-off layer 279

separatrix 279, 327

Shafranov shift 133

shear Alfvén wave
Alfvén wave

shear parameter 114

sheared flow 288

slow wave 153

slowing down time of ion beam 27

small solution 114

SOL  see scrape-off layer

solid-state X-ray detector 271

specific electric resistivity 28

specific volume 97

spherical tokamak 266

stationary convective loss 88

stellarator 325

strongly coupled plasma 6

superbanana 333

superparticle 252

supershot 290

Suydam’s criterion 114

see torsional

TAE see toroidal Alfvén eigenmode

tandem mirror 336

tearing instability 142

thermal conductivity 76

thermal diffusion coefficient 76

thermal flux 76

tokamak device 269

tokamak reactor 315

toroidal Alfvén eigenmode 226

toroidal drift 38

toroidal precession velocity 224

toroidicity-induced Alfvén eigenmode
see toroidal Alfvén eigenmode



torsional Alfvén wave 59,159, 225
transit time damping 171, 187
translational symmetry 34
transversal adiabatic invariant 21
trapped particle see banana particle
trapped particle instability 202
triangularity-induced Alfvén eigen-
modes (NAE) 237
Troyon factor 277

untrapped particle 41
upper hybrid resonance 162

vector potential 31
velocity space distribution function
13

Index 371

velocity space instability see
microscopic instability

vertical positional stability 273

VH mode 290

virial theorem 72

Vlasov’s equation 50

Ware’s pinch 45

wave heating 178

wave propagation 178
weakly coupled plasma 6
whistler wave 164

X point 327



Springer Series on
ATOMIC, OPTICAL, AND PLASMA PHYSICS

Editors-in-Chief:

Professor G.W.E. Drake

Department of Physics, University of Windsor
401 Sunset, Windsor, Ontario N9B 3P4, Canada

Professor Dr. G. Ecker

Ruhr-Universitdt Bochum, Fakultét fiir Physik und Astronomie
Lehrstuhl Theoretische Physik I
Universitdtsstrasse 150, 44801 Bochum, Germany

Editorial Board:

Professor W.E. Baylis

Department of Physics, University of Windsor
401 Sunset, Windsor, Ontario N9B 3P4, Canada

Professor R.N. Compton

Oak Ridge National Laboratory
Building 45008 MS6125, Oak Ridge, TN 37831, USA

Professor M.R. Flannery

School of Physics, Georgia Institute of Technology
Atlanta, GA 30332-0430, USA

Professor B.R. Judd

Department of Physics, The Johns Hopkins University
Baltimore, MD 21218, USA

Professor K.P. Kirby

Harvard-Smithsonian Center for Astrophysics
60 Garden Street, Cambridge, MA 02138, USA

Professor P. Lambropoulos, Ph.D.

Max-Planck-Institut fiir Quantenoptik, 85748 Garching, Germany, and
Foundation for Research and Technology - Hellas (F.O.R.T.H.),
Institute of Electronic Structure & Laser (IESL),

University of Crete, PO Box 1527, Heraklion, Crete 71110, Greece

Professor G. Leuchs

Friedrich-Alexander-Universitdt Erlangen-Niirnberg
Lehrstuhl fiir Optik, Physikalisches Institut
Staudtstrasse 7/B2, 91058 Erlangen, Germany

Professor P. Meystre

Optical Sciences Center, The University of Arizona
Tucson, AZ 85721, USA

Professor Dr. H. Walther

Sektion Physik der Universitdt Miinchen
Am Coulombwall 1, 85748 Garching/Miinchen, Germany





