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Preface

The primary objective of these lecture notes is to present the basic theories
and analytical methods of plasma physics and to provide the recent status
of fusion research for graduate and advanced undergraduate students. I also
hope that this text will be a useful reference for scientists and engineers
working in the relevant fields.

Chapters 1–4 describe the fundamentals of plasma physics. The basic
concept of the plasma and its characteristics are explained in Chaps. 1 and
2. The orbits of ions and electrons are described in several magnetic field
configurations in Chap. 3, while Chap. 4 formulates the Boltzmann equation
for the velocity space distribution function, which is the basic equation of
plasma physics.

Chapters 5–9 describe plasmas as magnetohydrodynamic (MHD) fluids.
The MHD equation of motion (Chap. 5), equilibrium (Chap. 6) and plasma
transport (Chap. 7) are described by the fluid model. Chapter 8 discusses
problems of MHD instabilities, i.e., whether a small perturbation will grow
to disrupt the plasma or damp to a stable state. Chapter 9 describes resistive
instabilities of plasmas with finite electrical resistivity.

In Chaps. 10–13, plasmas are treated by kinetic theory. The medium in
which waves and perturbations propagate is generally inhomogeneous and
anisotropic. It may absorb or even amplify the waves and perturbations. The
cold plasma model described in Chap. 10 is applicable when the thermal ve-
locity of plasma particles is much smaller than the phase velocity of the wave.
Because of its simplicity, the dielectric tensor of cold plasma is easily derived
and the properties of various waves can be discussed in the case of cold plas-
mas. If the refractive index becomes large and the phase velocity of the wave
becomes comparable to the thermal velocity of the plasma particles, then the
particles and the wave interact with each other. Chapter 11 describes Landau
damping, which is the most characteristic collective phenomenon of plasmas,
and also cyclotron damping. Chapter 12 discusses wave heating (wave absorp-
tion) and velocity space instabilities (amplification of perturbations) in hot
plasmas, in which the thermal velocity of particles is comparable to the wave
phase velocity, using the dielectric tensor of hot plasmas. Chapter 13 dis-
cusses instabilities driven by energetic particles, i.e., the fishbone instability
and toroidal Alfvén eigenmodes.



VI Preface

In order to understand the complex nonlinear behavior of plasmas, com-
puter simulation becomes a dominant factor in the theoretical component of
plasma research, and this is briefly outlined in Chap. 14.

Chapter 15 reviews confinement research toward fusion grade plasmas.
During the last decade, tokamak research has made remarkable progress. To-
day, realistic designs for tokamak reactors such as ITER are being actively
pursued. Chapter 16 explains research work into critical features of toka-
mak plasmas and reactors. Non-tokamak confinement systems are also re-
ceiving great interest. The reversed field pinch and stellarators are described
in Chap. 17 and inertial confinement is introduced in Chap. 18.

The reader may have the impression that there is too much mathematics
in these lecture notes. However, there is a reason for this. If a graduate student
tries to read and understand, for example, frequently cited short papers on
the analysis of the high-n ballooning mode and fishbone instability [Phys.
Rev. Lett 40, 396 (1978); ibid. 52, 1122 (1984)] without some preparatory
knowledge, he must read and understand a few tens of cited references, and
references of references. I would guess that he would be obliged to work hard
for a few months. Therefore, one motivation for writing this monograph is to
save the student time struggling with the mathematical derivations, so that
he can spend more time thinking about the physics and experimental results.

This textbook was based on lectures given at the Institute of Plasma
Physics, Nagoya University, Department of Physics, University of Tokyo and
discussion notes from ITER Physics Expert Group Meetings. It would give me
great pleasure if the book were to help scientists make their own contributions
in the field of plasma physics and fusion research.

Tokyo, November 2004 Kenro Miyamoto
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Part I

Plasma Physics



1 Nature of Plasma

1.1 Introduction

As the temperature of a material is raised, its state changes from solid to
liquid and then to gas. If the temperature is elevated further, an appreciable
number of the gas atoms are ionized and a high temperature gaseous state is
achieved, in which the charge numbers of ions and electrons are almost the
same and charge neutrality is satisfied on a macroscopic scale.

When ions and electrons move, these charged particles interact with the
Coulomb force which is a long range force and decays only as the inverse
square of the distance r between the charged particles. The resulting current
flows due to the motion of the charged particles and Lorentz interaction takes
place. Therefore many charged particles interact with each other by long
range forces and various collective movements occur in the gaseous state. In
typical cases, there are many kinds of instabilities and wave phenomena. The
word ‘plasma’ is used in physics to designate this high temperature ionized
gaseous state with charge neutrality and collective interaction between the
charged particles and waves.

When the temperature of a gas is T (K), the average velocity of the thermal
motion of a particle with mass m, that is, thermal velocity vT is given by

mv2T/2 = κT/2 , (1.1)

where κ is the Boltzmann constant κ = 1.380 658(12) × 10−23 J/K and κT
denotes the thermal energy. Therefore the unit of κT is the joule (J) in MKSA
units. In many fields of physics, the electron volt (eV) is frequently used as
the unit of energy. This is the energy required to move an electron, charge
e = 1.602 177 33(49) × 10−19 coulomb, against a potential difference of 1 volt:

1 eV = 1.602 177 33(49) × 10−19 J .

The temperature corresponding to a thermal energy of 1 eV is 1.16 × 104 K
(= e/κ). The ionization energy of the hydrogen atom is 13.6 eV. Even if the
thermal energy (average energy) of hydrogen gas is 1 eV, that is T ∼ 104 K,
there exists a small number of electrons with energy higher than 13.6 eV,
which ionize the gas to a hydrogen plasma.
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Fig. 1.1. Various plasma domains in the n–κT diagram

Plasmas are found in nature in various forms (see Fig. 1.1). One example is
the Earth’s ionosphere at altitudes of 70–500 km, with density n ∼ 1012 m−3

and κT ≈ 0.2 eV. Another is the solar wind, a plasma flow originating from
the sun, with n ∼ 106–107 m−3 and κT ≈ 10 eV. The sun’s corona extending
around our star has density ∼ 1014 m−3 and electron temperature ∼ 100 eV,
although these values are position-dependent. The white dwarf, the final state
of stellar evolution, has an electron density of 1035–1036 m−3. Various plasma
domains in the diagram of electron density n(m−3) and electron temperature
κT (eV) are shown in Fig. 1.1.

Active research in plasma physics has been motivated by the aim to create
and confine hot plasmas in fusion research. In space physics and astrophysics,
plasmas play important roles in studies of pulsars radiating microwaves or
solar X-ray sources. Another application of plasma physics is the study of
the Earth’s environment in space.

Practical applications of plasma physics are MHD (magnetohydrody-
namic) energy conversion for electric power generation and ion rocket engines
for spacecraft. Plasma processes for the manufacture of integrated circuits
have attracted much attention recently.
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1.2 Charge Neutrality and Landau Damping

One fundamental property of plasmas is charge neutrality. Plasmas shield
electric potentials applied to the plasma. When a probe is inserted into a
plasma and a positive (negative) potential is applied, the probe attracts (re-
pels) electrons and the plasma tends to shield the electric disturbance. Let us
estimate the shielding length. Assume that heavy ions have uniform density
(ni = n0) and that there is a small perturbation in the electron density ne
and potential φ. Since the electrons are in the Boltzmann distribution with
electron temperature Te, the electron density ne becomes

ne = n0 exp(eφ/κTe) � n0(1 + eφ/κTe) ,

where φ is the electrostatic potential and eφ/κTe � 1 is assumed. The
equation for the electrostatic potential comes from Maxwell’s equations (see
Sect. 3.1),

E = −∇φ , ∇·(ε0E) = −ε0∇2φ = ρ = −e(ne − n0) = −e
2n0

κTe
φ

and

∇2φ =
φ

λ2
D
, λD =

(
ε0κTe

nee2

)1/2

= 7.45 × 103
(

1
ne

κTe

e

)1/2

(m) , (1.2)

where ε0 is the dielectric constant of the vacuum and E is the electric inten-
sity. ne is in m−3 and κTe/e is in eV. When ne ∼ 1020 cm−3, κTe/e ∼ 10 keV,
then λD ∼ 75 µm. In the spherically symmetric case, the Laplacian ∇2 be-
comes

∇2φ =
1
r

∂

∂r

(
r
∂φ

∂r

)
,

and the solution is

φ =
q

4πε0
exp(−r/λD)

r
.

It is clear from the foregoing formula that the Coulomb potential q/4πε0r of
a point charge is shielded out to a distance λD. This distance λD is called the
Debye length. When the plasma size is a and a � λD is satisfied, the plasma is
considered to be electrically neutral. If on the other hand a < λD, individual
particles are not shielded electrostatically and this state is no longer a plasma
but an assembly of independent charged particles.

The number of electrons included in a sphere of radius λD is called the
plasma parameter and is given by

neλ
3
D

=
(
ε0
e

κTe

e

)3/2 1

n
1/2
e

. (1.3)
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When the density is increased while keeping the temperature constant, this
value becomes small. If the plasma parameter is less than say ∼ 1, the concept
of Debye shielding is not applicable, since the continuity of charge density
breaks down on the Debye length scale. Plasmas in the region of neλ

3
D > 1

are called classical plasmas or weakly coupled plasmas, since the ratio of
the electron thermal energy κTe and the Coulomb energy between electrons
ECoulomb = e2/4πε0d, with d � n

−1/3
e the average distance between electrons

with density ne, is given by

κTe

ECoulomb
= 4π(neλ

3
D)2/3 , (1.4)

and neλ
3
D > 1 means that the Coulomb energy is smaller than the thermal

energy. The case neλ
3
D
< 1 corresponds to a strongly coupled plasma (see

Fig. 1.1).
The Fermi energy of a degenerate electron gas is given by

εF =
h2

2me
(3π2ne)2/3 ,

where h = 6.626 075 5(40) × 10−34 J s is Planck’s constant. When the density
becomes very high, it is possible to have εF ≥ κTe. In this case, quantum
effects dominate over thermal effects. This case is called a degenerate electron
plasma. One example is the electron plasma in a metal. Most plasmas in
magnetic confinement experiments are classical weakly coupled plasmas.

The other fundamental plasma process is collective phenomena involv-
ing the charged particles. Waves are associated with coherent motions of
charged particles. When the phase velocity vph of a wave or perturbation
is much larger than the thermal velocity vT of the charged particles, the
wave propagates through the plasma media without damping or amplifica-
tion. However, when the refractive index N of the plasma medium becomes
large and the plasma becomes hot, the phase velocity vph = c/N (where c is
the light velocity) of the wave and the thermal velocity vT become compara-
ble (vph = c/N ∼ vT). Then energy exchange is possible between the wave
and the thermal energy of the plasma. The existence of a damping mechanism
for these waves was found by L.D. Landau. The process of Landau damping
involves a direct wave–particle interaction in a collisionless plasma without
the need to randomize collisions. This process is the fundamental mechanism
in wave heating of plasmas (wave damping) and instabilities (inverse damping
of perturbations). Landau damping is described in Chaps. 11 and 12.

1.3 Fusion Core Plasma

Progress in plasma physics has been motivated by the desire to realize a fusion
core plasma. The necessary condition for fusion core plasmas is discussed in
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Fig. 1.2. (a) Dependence of the fusion cross-section σ on the kinetic energy E
of colliding nucleons. σDD is the sum of the cross-sections of D–D reactions (1)
and (2). 1 barn = 10−24 cm2. (b) Dependence of the fusion rate 〈σv〉 on the ion
temperature Ti

this section. Nuclear fusion reactions are the fusion reactions of light nuclides
to heavier ones. When the sum of the masses of nuclides after nuclear fusion
is smaller than the sum before the reaction by ∆m, we call this the mass
defect. According to the theory of relativity, the amount of energy (∆m)c2

(c is the speed of light) is released by the nuclear fusion.
Nuclear reactions of interest for fusion reactors are as follows (D deuteron,

T triton, He3 helium-3, Li lithium):

(1) D + D −→ T (1.01 MeV) + p (3.03 MeV) ,

(2) D + D −→ He3 (0.82 MeV) + n (2.45 MeV) ,

(3) T + D −→ He4 (3.52 MeV) + n (14.06 MeV) ,

(4) D + He3 −→ He4 (3.67 MeV) + p (14.67 MeV) ,

(5) Li6 + n −→ T + He4 + 4.8 MeV ,

(6) Li7 + n (2.5 MeV) −→ T + He4 + n ,

where p and n are the proton (hydrogen ion) and the neutron, respectively
(1 MeV = 106 eV). Since the energy released by the chemical reaction

H2 +
1
2
O2 −→ H2O

is 2.96 eV, the fusion energy released is about a million times as great as the
chemical energy. A binding energy per nucleon is smaller in very light or very
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heavy nuclides and largest in nuclides with atomic mass numbers around 60.
Therefore, large amounts of energy can be released when light nuclides are
fused. Deuterium is abundant in nature. For example, it comprises 0.015 atom
percent of the hydrogen in sea water, with a volume of about 1.35×109 km3.

Although fusion energy was released in an explosive manner by the hydro-
gen bomb in 1951, controlled fusion is still at the research and development
stage. Nuclear fusion reactions were found in the 1920s. When proton or
deuteron beams collide with a light nuclide target, the beam loses its energy
by ionization or elastic collisions with target nuclides, and the probability of
nuclear fusion is negligible. Nuclear fusion research has been most actively
pursued in the context of hot plasmas.

In fully ionized hydrogen, deuterium and tritium plasmas, the process of
ionization does not occur. If the plasma is confined adiabatically in some
specified region, the average energy does not decrease by elastic collision pro-
cesses. Therefore, if very hot D–T plasmas or D–D plasmas are confined, the
ions have large enough velocities to overcome their mutual Coulomb repul-
sion, so that collision and fusion take place.

Let us consider the nuclear reaction wherein D collides with T. The cross-
section of T nucleons is denoted by σ. This cross-section is a function of the
kinetic energy E of D. The cross-section of the D–T reaction at E = 100 keV
is 5 × 10−24 cm2. The cross-sections σ of D–T, D–D, D–He3 reactions versus
the kinetic energy of colliding nucleons are shown in Fig. 1.2a [1.1, 1.2]. The
probability of the fusion reaction per unit time in the case where a D ion
with velocity v collides with T ions with density of nT is given by nTσv.
(We discuss the collision probability in more detail in Sect. 2.7.) When a
plasma is Maxwellian with ion temperature Ti, one must calculate the average
value 〈σv〉 of σv over the velocity space. The dependence of 〈σv〉 on the ion
temperature Ti is shown in Fig. 1.2b [1.3]. A fitting equation for 〈σv〉 for the
D–T reaction as a function of κT in units of keV is [1.4]

〈σv〉 (m−3) =
3.7 × 10−18

H(κT ) × (κT )2/3 exp
[
− 20

(κT )1/3

]
, (1.5)

H(κT ) ≡ κT

37
+

5.45
3 + κT (1 + κT/37.5)2.8 .

Figure 1.3 shows an example of an electric power plant based on a D–T fu-
sion reactor. Fast neutrons produced in the fusion core plasma penetrate the
first wall and a lithium blanket surrounding the plasma moderates the fast
neutrons, converting their kinetic energy to heat. Furthermore, the lithium
blanket breeds tritium due to reactions (5) and (6) above. [Triton beta-decays
to He3 with a half-life of 12.3 yr, T → He3 +e (< 18.6 keV), and tritium does
not exist as a natural resource.] The lithium blanket gives up its heat to gener-
ate steam via a heat exchanger and a steam turbine generates electric power.
Part of the generated electric power is used to operate the plasma heating
system. As alpha particles (He ions) are charged particles, they can heat the
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Fig. 1.3. Electric power plant based on a D–T fusion reactor

plasma directly by Coulomb collisions (see Sect. 2.6). The total heating power
Pheat is the sum of the ' particle heating power P' and the heating power
Pext due to the external heating system. The total heating power needed to
sustain the plasma in a steady state must be equal to the energy loss rate of
the fusion core plasma. Consequently, good energy confinement (small energy
loss rate) in the hot plasma is the key issue.

The thermal energy of the plasma per unit volume is (3/2)nκ(Ti + Te).
This thermal energy is lost by thermal conduction and convective losses. The
notation PL denotes these energy losses from the plasma per unit volume and
unit time (power loss per unit volume). In addition to PL, there is radiation
loss R due to electron bremsstrahlung and impurity ion radiation. The total
energy confinement time τE is defined by

τE ≡ (3/2)nκ(Te + Ti)
PL +R

� 3nκT
PL +R

. (1.6)

The input heating power Pheat required to maintain the thermal energy of
the plasma is equal to PL +R.

For the D–T reaction, the sum of kinetic energies Q' = 3.52 MeV of alpha
particles and Qn = 14.06 MeV of neutrons is QNF = 17.58 MeV per reaction
(Qn : Q' = m' : mn = 0.8 : 0.2 due to momentum conservation). Since
the densities of D ions and T ions in an equally mixed plasma are n/2, the
number of D–T reactions per unit time and unit volume is (n/2)(n/2)〈σv〉
(refer to the discussion in Sect. 2.6), so that the fusion output power per unit
volume PNF is given by

PNF = (n/2)(n/2)〈σv〉QNF . (1.7)

If the fusion powers due to the neutron and alpha particle are denoted by Pn
and P' respectively, then Pn = 0.8PNF and P' = 0.2PNF. Let the thermal-
to-electric conversion efficiency be ηel and the heating efficiency (ratio of the
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Fig. 1.4. Condition of D–T fusion core plasma in nτE–T diagram in the case
η = 0.3, critical condition η = 1, and ignition condition η = 0.2

power deposited in the plasma to the input electric power of the heating
device) by ηheat. When a part (γ < 1) of generated electric power is used to
operate the heating system, then the available heating power to plasma is

(0.8ηelγηheat + 0.2)PNF = ηPNF , η ≡ 0.8γηelηheat + 0.2 .

The burning condition is

Pheat = PL +R =
3nκT
τE

< ηPNF , (1.8)

that is,
3nκT
τE

< η
QNF

4
n2〈σv〉 ,

and hence,

nτE >
12κT

ηQNF〈σv〉 . (1.9)

The right-hand side of (1.9) is a function of temperature T alone. When
κT = 104 eV and η ∼ 0.3 (γ ∼ 0.4, ηel ∼ 0.4, ηheat ∼ 0.8), the necessary
condition is nτE > 1.7× 1020 m−3s. The burning condition of the D–T fusion
plasma in the case η ∼ 0.3 is shown in Fig. 1.4. In reality the plasma is hot
in the core and cold at the edges. For a more accurate discussion, we must
take this temperature and density profile effect into account, an analysis
undertaken in Sect. 16.10.

The ratio of the fusion output power due to ' particles to the total is
Q'/QNF = 0.2. If the total kinetic energy (output energy) of alpha particles
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contributes to heating the plasma and alpha particle heating power can sus-
tain the necessary high temperature of the plasma without heating from the
outside, the plasma is in an ignited state. The condition P' = PL+R is called
the ignition condition, which corresponds to the case η = 0.2 in (1.8).

The condition Pheat = PNF is called the break-even condition. This cor-
responds to the case of η = 1 in (1.8). The ignition condition (η = 0.2) and
break-even condition (η = 1) are also shown in Fig. 1.4.
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2.1 Velocity Space Distribution Function

In a plasma, electrons and ions move with various velocities. The number
o electrons in a unit volume is the electron density ne and the number of
electrons dne(vx) with the x component of velocity between vx and vx + dvx

is given by
dne(vx) = fe(vx)dvx .

Then fe(vx) is called the electron velocity space distribution function. When
electrons are in a thermal equilibrium state with electron temperature Te,
the velocity space distribution function is the Maxwell distribution:

fe(vx) = ne

(
β

2π

)1/2

exp
(

−βv
2
x

2

)
, β =

me

κTe
.

From the definition, the velocity space distribution function satisfies∫ ∞

−∞
fe(vx)dvx = ne .

The Maxwell distribution function in the three-dimensional velocity space is
given by

fe(vx, vy, vz) = ne

(
me

2πκTe

)3/2

exp

[
−me(v2x + v2y + v2z)

2κTe

]
. (2.1)

The ion distribution function is defined in the same way as for the electron.
The mean of the squared velocity v2x is given by

v2T =
1
n

∫ ∞

−∞
v2xf(vx)dvx =

κT

m
. (2.2)

The pressure p is
p = nκT .

The particle flux in the x direction per unit area Γ+,x is given by

Γ+,x =
∫ ∞

0
vxf(vx)dvx = n

(
κT

2πm

)1/2

.
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2.2 Plasma Frequency. Debye Length

Let us consider the case where a small perturbation occurs in a uniform
plasma and the electrons in the plasma move due to the perturbation. It is
assumed that the ions do not move because they have much greater mass than
the electrons. Due to the displacement of electrons, electric charges appear
and an electric field is induced. The electric field is given by

ε0∇·E = −e(ne − n0) .

Electrons are accelerated by the electric field:

me
dv

dt
= −eE .

Due to the movement of electrons, the electron density changes:

∂ne

∂t
+ ∇·(nev) = 0 .

Writing ne − n0 = n1 and assuming |n1| � n0, we find

ε0∇·E = −en1 , me
∂v

∂t
= −eE ,

∂n1

∂t
+ n0∇·v = 0 .

For simplicity, the displacement is assumed to be only in the x direction and
sinusoidal with angular frequency ω :

n1(x, t) = n1 exp(ikx− iωt) .

The time derivative ∂/∂t is replaced by −iω and ∂/∂x is replaced by ik. The
electric field has only the x component E. Then

ikε0E = −en1 , −iωmev = −eE , −iωn1 = −ikn0v ,

so that we find

ω2 =
n0e

2

ε0me
. (2.3)

This wave is called the electron plasma wave or Langmuir wave and its fre-
quency is called the electron plasma frequency Πe :

Πe =
(
nee

2

ε0me

)1/2

= 5.64 × 1011
( ne

1020

)1/2
rad/s .

The following relation holds between the plasma frequency and the Debye
length λD :

λDΠe =
(
κTe

me

)1/2

= vTe = 4.19 × 105
(
κTe

e

)1/2

m/s .
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Fig. 2.1. Larmor motion of charged particle in magnetic field

2.3 Cyclotron Frequency. Larmor Radius

The equation of motion of a charged particle with mass m and charge q in
electric and magnetic fields E, B is given by

m
dv

dt
= q(E + v × B) . (2.4)

When the magnetic field is homogeneous and in the z direction and the
electric field is zero, the equation of motion becomes v̇ = (qB/m)(v × b),
where b = B/B, and

vx = −v⊥ sin(Ωt+ δ) , vy = v⊥ cos(Ωt+ δ) , vz = vz0 ,

Ω = −qB
m
. (2.5)

The solution of these equations is a spiral motion around the magnetic line
of force with angular velocity Ω (see Fig. 2.1). This motion is called Larmor
motion. The angular frequency Ω is called cyclotron (angular) frequency.
Denoting the radius of the orbit by ρΩ , the centrifugal force is mv2⊥/ρΩ and
the Lorentz force is qv⊥B. Since the two forces must balance, we find

ρΩ =
mv⊥
|q|B . (2.6)

This radius is called the Larmor radius. The center of the Larmor motion
is called the guiding center. The Larmor motion of the electron is a right-
handed rotation (Ωe > 0), while the Larmor motion of the ion is a left-handed
rotation (Ωi < 0). When B = 1 T, κT = 100 eV, the values of the Larmor
radius and cyclotron frequency are given in Table 2.1.
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Table 2.1. Mass, thermal velocity, Larmor radius and cyclotron frequency of the
electron and proton when B = 1 T, κT = 100 eV

Electron Proton

Mass [kg] 9.109 389 7(54) × 10−31 1.672 623 1(10) × 10−27

Thermal velocity 4.2 × 106 ms−1 9.8 × 104 ms−1

vT = (κT/m)1/2

Larmor radius ρΩ 23.8 µm 1.02 mm

Cyclotron frequency 1.76 × 1011 s−1 −9.58 × 107 s−1

(angular) Ω

Cyclotron frequency Ω/2π 28GHz −15.2 MHz

2.4 Drift Velocity of Guiding Center

When a uniform electric field E is superposed perpendicularly to the uniform
magnetic field, the equation of motion (2.4) reduces to

m
du

dt
= q(u × B) ,

introducing u and uE defined by

v ≡ uE + u , uE ≡ E × b

B
. (2.7)

Therefore the motion of the charged particle is a superposition of the Larmor
motion and the drift motion uE of its guiding center. The direction of the
guiding center drift due to E is the same for both ions and electrons (Fig. 2.2).
When a gravitational field g is superposed, the force ismg, which corresponds
to qE in the case of an electric field. Therefore the drift velocity of the guiding
center due to gravitation is given by

ug =
m

qB
(g × b) = −g × b

Ω
. (2.8)

Electrons and ions drift in opposite directions under gravitation and the
drift velocity of the ion guiding center is much larger than the electron’s (see
Fig. 2.2).

When the magnetic and electric fields change slowly and gradually in time
and space (|ω/Ω| � 1, ρΩ/R � 1), the formulas for the drift velocity are
valid as they are. However, because of the curvature of the magnetic field
lines, a centrifugal force acts on any particle which runs along a field line
with velocity v‖. The acceleration due to the centrifugal force is

gcurv =
v2‖
R

n ,
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Fig. 2.2. Drift motion of the guiding center in electric and gravitational fields
(schematic)

where R is the radius of curvature of the field line and n is the unit vector
running from the center of curvature to the field line (Fig. 2.3).

Furthermore, as described at the end of Sect. 2.4, the resultant effect of
Larmor motion in an inhomogeneous magnetic field reduces to an acceleration

g∇B = −v
2
⊥/2
B

∇B .

Therefore the drift velocity uG of the guiding center due to an inhomogeneous
curved magnetic field is given by the drift approximation as

uG = − 1
Ω

(
v2‖
R

n − v2⊥
2

∇B
B

)
× b . (2.9)

The first term is called the curvature drift and the second term is called
gradient B drift . Since ∇ × B = µ0j, where j is the current density, the
vector formula reduces to

1
2B

∇(B · B) = (b·∇)B + b × (∇ × B)

=
∂

∂l
(Bb) + b × µ0j

=
∂B

∂l
b +B

∂b

∂l
− µ0

∇p
B

=
∂B

∂l
b −Bn

R
− µ0

∇p
B

,

where p is plasma pressure and ∇p = j × B holds in the equilibrium state
[see (6.1) in Chap. 6]. We used the following relation (see Fig. 2.3):

∂b

∂l
= −n

R
,

where l is the length along the field line. Then we have

n × b

R
= −

(∇B
B

+ µ0
∇p
B2

)
× b .
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Fig. 2.3. Radius of curvature of the line of magnetic force

If ∇p is much smaller than ∇B2/(2µ0), we find

uG = − 1
Ω

v2‖ + v2⊥/2

R
(n × b) .

The parallel motion along the magnetic field is given+by

m
dv‖
dt

= qE‖ +mg‖ − mv2⊥/2
B

∇‖B .

Let us consider the effect on a gyrating charged particle of an inhomogeneity
in the magnetic field. The x component of the Lorentz force F L = qv × B
perpendicular to the magnetic field (z direction) and the magnitude B of the
magnetic field near the guiding center is

FLx = qvyB = −|q|v⊥ cos θB , B = B0 +
∂B

∂x
ρΩ cos θ +

∂B

∂y
ρΩ sin θ .

The time average of the x component of the Lorentz force is given by

〈FLx〉 =
1
2
∂B

∂x
(−|q|)v⊥ρΩ ,

and the y component similarly, so that

〈F L〉⊥ = −mv
2
⊥/2
B

∇⊥B .

We must now estimate the time average of the z component of the Lorentz
force. The equation ∇·B = 0 near the guiding center in Fig. 2.4 becomes
Br/r + ∂Br/∂r + ∂Bz/∂z = 0 and we find

〈FLz〉 = −〈qvθBr〉 = |q|v⊥ρΩ
∂Br

∂r
= −mv

2
⊥/2
B

∂B

∂z
,

where r ∼ ρΩ is very small and Br/r ≈ ∂Br/∂r. The required expression for
g∇B is thus derived.
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Fig. 2.4. Larmor motion in an inhomogeneous magnetic field

2.5 Magnetic Moment. Mirror Confinement

A current loop with current I encircling an area S has magnetic moment
µm = IS. Since the current and area encircled by the gyrating Larmor motion
are I = qΩ/2π and S = πρ2Ω respectively, it has the magnetic moment

µm =
qΩ

2π
πρ2Ω =

mv2⊥
2B

. (2.10)

This physical quantity is adiabatically invariant, as will be shown at the end
of this section. When the magnetic field changes slowly, the magnetic moment
is conserved. Therefore, if B is increased, mv2⊥/2 = µmB is also increased
and the particles are heated. This kind of heating is called adiabatic heating .

Let us consider a mirror field as shown in Fig. 2.5, in which the magnetic
field is weak at the center and strong at both ends of the mirror field. For
simplicity, the electric field is assumed to be zero. Since the Lorentz force is
perpendicular to the velocity, the magnetic field does not contribute to the
change of kinetic energy and

mv2‖
2

+
mv2⊥

2
=
mv2

2
= E = const. (2.11)

Since the magnetic moment is conserved, we find

v‖ = ±
(

2
m
E − v2⊥

)1/2

= ±
(
v2 − 2

m
µmB

)1/2

.

When the particle moves towards the open ends, the magnetic field becomes
large and v‖ becomes small or even zero. Since the force along the direction
parallel to the magnetic field is −µm∇‖B, both ends of the mirror field repel
charged particles as a mirror reflects light. The ratio of the magnitude of the
magnetic field at the open end to the central value is called the mirror ratio:

RM =
BM

B0
.
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Fig. 2.5. Mirror field and loss cone in v‖–v⊥ space

Let us denote the parallel and perpendicular components of the velocity at
the mirror center by v‖0 and v⊥0, respectively. The value v2⊥ at the position
of maximum magnetic field BM is given by

v2⊥M =
BM

B0
v2⊥0 .

This value v2⊥M cannot be larger than v2 = v20 , so that the particle satisfying
the following condition is reflected and trapped in the mirror field:(

v⊥0

v0

)2

>
B0

BM
=

1
RM

. (2.12)

Particles in the region where sin θ ≡ v⊥0/v0 satisfies

sin2 θ ≤ 1
RM

are not trapped and the region is called the loss cone in v‖–v⊥ space (see
Fig. 2.5).

Let us check the invariance of µm in the presence of a slowly changing
magnetic field (|∂B/∂t| � |ΩB|). Taking the scalar product of v⊥ with the
equation of motion gives

mv⊥·dv⊥
dt

=
d
dt

(
mv2⊥

2

)
= q(v⊥·E⊥) .

During one period 2π/|Ω| of Larmor motion, the change ∆W⊥ in the kinetic
energy W⊥ = mv2⊥/2 is

∆W⊥ = q

∫
(v⊥ · E⊥)dt = q

∮
E⊥·ds = q

∫
(∇ × E)·ndS ,

where
∮

ds is the closed line integral along the Larmor orbit and
∫

dS is the
surface integral over the area encircled by the Larmor orbit. Since ∇ × E =
−∂B/∂t, ∆W⊥ is
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∆W⊥ = −q
∫
∂B

∂t
·ndS = |q|πρ2Ω

∂B

∂t
.

The change ∆B in the magnetic field during one period of Larmor motion is
∆B = (∂B/∂t)(2π/|Ω|). Hence,

∆W⊥ =
mv2⊥

2
∆B
B

= W⊥
∆B
B

,

and
µm =

W⊥
B

= const.

When a system is periodic in time, the action integral
∮
pdq, in terms of the

canonical variables p, q is generally an adiabatic invariant. The action integral
of the Larmor motion is

J⊥ = (−mρΩΩ)2πρΩ = −4πm
q
µm .

J⊥ is called the transversal adiabatic invariant .
A particle trapped in a mirror field moves back and forth along the field

line, from one end to the other. The second action integral of this periodic
motion, viz.,

J‖ = m

∮
v‖dl , (2.13)

is another adiabatic invariant. J‖ is called the longitudinal adiabatic invari-
ant . As one makes the mirror length l shorter, 〈v‖〉 increases (for J‖ = 2m〈v‖〉l
is conserved), and the particles are accelerated. This phenomena is called
Fermi acceleration.

The line of magnetic force of the mirror is convex towards the outside. The
particles trapped by the mirror are subjected to curvature drift and gradient
B drift, so that the trapped particles move back and forth, while drifting in
the θ direction. The orbit (r, θ) of the crossing point on the z = 0 plane of
the back and forth movement is given by J‖(r, θ, µm, E) = const.

2.6 Coulomb Collision. Fast Neutral Beam Injection

The motions of charged particles were analyzed in the previous section with-
out considering the effects of collisions between particles. In this section,
phenomena associated with Coulomb collisions will be discussed. Let us start
from a simple model. Assume that a sphere of radius a moves with velocity
v in a region where spheres of radius b are filled with the number density n
(see Fig. 2.6). When the distance between the two particles becomes less than
a+b, collision takes place. The cross-section σ of this collision is σ = π(a+b)2.
Since the sphere a moves through the distance l = vδt during δt, the proba-
bility of collision with the sphere b is
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Fig. 2.6. Probability of collision between a sphere a and spheres b

Fig. 2.7. Coulomb collision of electron with ion

nlσ = nσvδt ,

since nl is the number of spheres b with which the sphere a may collide
within a unit area of incidence, and nlσ is the total cross-section per unit
area of incidence during the time δt. Therefore the collision time τcoll, when
the probability of collision becomes 1, is

τcoll = (nσv)−1 .

In this simple case the cross-section σ of the collision is independent of the
velocity of the incident sphere a. However, the cross-section depends on the
incident velocity, in general.

Let us consider the strong Coulomb collision of an incident electron with
ions having charge Ze (see Fig. 2.7), in which the electron is strongly deflected
after the collision. Such a collision can take place when the magnitude of the
electrostatic potential of the electron at the closest distance b is of the order
of the kinetic energy of the incident electron, i.e.,

Ze2

4πε0b
=
mev

2
e

2
.

The cross-section of the strong Coulomb collision is σ = πb2. The inverse of
the collision time τcoll of the strong Coulomb collision is
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1
τcoll

= niσve = niveπb
2 =

niπ(Ze2)2ve
(4πε0mev2e/2)2

=
Z2e4ni

4πε20m2
ev

3
e
.

Since the Coulomb force is a long range interaction, a test particle is deflected
by a small angle even by a distant field particle, which the test particle does
not come very close to. As explained in Sect. 1.2, the Coulomb field of a field
particle is not shielded inside the Debye sphere, which has radius equal to the
Debye length λD, and there are many field particles inside the Debye sphere
in typical laboratory plasmas (weakly coupled plasmas). Accumulation of
many collisions with small angle deflection results in a large effect. When the
effect of the small angle deflection is taken into account, the total Coulomb
cross-section increases by a factor of the Coulomb logarithm

lnΛ � ln
(

2λD

b

)
�
∫ λD

b/2

1
r
dr � 15–20 .

The time derivative of the momentum p‖ parallel to the incident direction of
the electron is given by use of the collision time τei‖ as follows [2.1, 2.2]:

dp‖
dt

= − p‖
τei‖

,
1
τei‖

=
Z2e4ni lnΛ
4πε20m2

ev
3
e
, (2.14)

where τei‖ indicates the deceleration time of an electron by ions.
When a test particle with charge q, mass m and velocity v collides

with field particles with charge q∗, mass m∗ and thermal velocity v∗
T =

(κT ∗/m∗)1/2, in general, the collision time of the test particle is given
by [2.1, 2.2]

1
τ‖

=
q2q∗2n∗ lnΛ
4πε20mmrv3

=
(
qq∗n∗

ε0m

)2 lnΛ
4π(mr/m)v3n∗ , (2.15)

under the assumption that v > v∗
T . In this expression, mr is the reduced mass

mr =
mm∗

m+m∗ .

Taking the average of (m/2)v2 = (3/2)κT , 1/τ‖ becomes

1
τ‖

=
q2q∗2n∗ lnΛ

31/212πε20(mr/m1/2)(κT )3/2 . (2.16)

The inverse of the collision time, denoted by ν, is called the collision fre-
quency . The mean free path is given by λ = 31/2vT τ .

The collision frequency for electrons with ions is

1
τei‖

=
Z2e4ni lnΛ

31/212πε20m
1/2
e (κTe)3/2

. (2.17)
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Fig. 2.8. Elastic collision of test particle M and field particle m in the laboratory
system (a) and the center-of-mass system (b)

This electron-ion collision frequency is ∼ 1.4 times the Spitzer result [2.3] of

1
τei‖ Spitzer

=
Z2e4ni lnΛ

9.3 × 10ε20m
1/2
e (κTe)3/2

. (2.18)

When an ion with charge Z and mass mi collides with the same ions, the
ion–ion collision frequency is given by

1
τii‖

=
Z4e4ni lnΛ

31/26πε20m
1/2
i (κTi)3/2

. (2.19)

The electron–electron Coulomb collision frequency can be derived by substi-
tuting mi → me and Z → 1 into the formula for τii‖, which yields

1
τee‖

=
nee

4 lnΛ

31/26πε20m
1/2
e (κTe)3/2

. (2.20)

However, the case of ion-to-electron Coulomb collisions is more complicated
to treat because the assumption vi > v∗

T is no longer justified. Let us consider
the case where a test particle with massM and velocity vs collides with a field
particle with the mass m. In the center-of-mass system, where the center of
mass is at rest, the field particle m moves with velocity vc = −Mvs/(M +m)
and the test particle M moves with velocity vs − vc = mvs/(M + m) (see
Fig. 2.8).

Since the total momentum and total kinetic energy of two particles are
conserved in the process of elastic collision, the speeds of the test particle and
the field particle do not change and the two particles are merely deflected
through an angle θ in the center-of-mass system. The velocity vf and scat-
tering angle φ of the test particle after the collision in the laboratory system
are given by (see Fig. 2.8)
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v2f = (vs − vc)2 + vc2 + 2(vs − vc)vc cos θ = v2s
M2 + 2Mm cos θ +m2

(M +m)2
,

sinφ =
m sin θ

(M2 + 2Mm cos θ +m2)1/2 .

Denoting the momentum and kinetic energy of the test particle before and
after the collision by ps, Es, and pf , Ef , respectively, we find

∆E
Es

≡ Ef − Es

Es
= − 2Mm

(M +m)2
(1 − cos θ) .

When the average is taken over θ, we obtain the following relations in the
case m/M � 1: 〈

∆E
Es

〉
� −2m

M
,

〈
∆p‖
ps

〉
� −m

M
.

From the foregoing discussion, the collision frequency 1/τie‖ for the situation
where a heavy ion collides with light electrons is aboutme/mi times the value
of 1/τei‖, and is given by [2.1, 2.2]

1
τie‖

=
me

mi

Z2e4ne lnΛ

(2π)1/23πε20m
1/2
e (κTe)3/2

. (2.21)

When the parallel and perpendicular components of the momentum of a test
particle are denoted by p‖ and p⊥, respectively, and the energy by E, we have

E =
p2‖ + p2⊥

2m
,

dp2⊥
dt

= 2m
dE
dt

− 2p‖
dp‖
dt

.

We define the velocity diffusion time τ⊥ in the direction perpendicular to the
initial momentum and the energy relaxation time τ ε by

dp2⊥
dt

≡ p2⊥
τ⊥

,
dE
dt

≡ −E
τ ε
,

respectively. 1/τ⊥ and 1/τ ε are given by [2.1]

1
τ⊥

=
q2q∗2n∗ lnΛ
2πε20v(mv)2

=
q2q∗2n∗ lnΛ
2πε20m2v3

, (2.22)

1
τ ε

=
q2q∗2n∗ lnΛ

4πε20m∗v(mv2/2)
=
q2q∗2n∗ lnΛ
2πε20mm∗v3

. (2.23)

In the case of electron-to-ion collisions, we find

1
τei⊥

� 2
τei‖

(2.24)
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and
1
τ ε
ei

� me

mi

2
τei‖

. (2.25)

In the case of electron-to-electron collisions and ion-to-ion collisions, we find

1
τee⊥

� 1
τee‖

=
e4ne lnΛ

31/26πε20m
1/2
e (κTe)3/2

=
lnΛ
32.6

Πe

neλ3
D
, (2.26)

1
τ ε
ee

� 1
τee‖

, (2.27)

and
1
τii⊥

� 1
τii‖

=
Z4e4ni lnΛ

31/26πε20m
1/2
i (κTi)3/2

, (2.28)

1
τiiε

� 1
τii‖

, (2.29)

respectively.
In the case of ion-to-electron collisions, we have the relations [2.1]

1
τie⊥

� Z2e4ne lnΛ

(2π)3/2ε20m
1/2
e Ei(κTe)1/2

me

mi
, (2.30)

1
τieε

� Z2e4ne lnΛ

4πε20m
1/2
e (κTe)3/2

4
3(2π)1/2

me

mi
� 1
τie‖

� me

mi

2.77
τei‖

, (2.31)

where Ei = (3/2)κTi is the kinetic energy of the ion.
High-energy neutral particle beams can be injected into plasmas across

strong magnetic fields. The neutral particles are converted to high-energy ions
by means of charge exchange with plasma ions or ionization. The high-energy
ions (mass mb, electric charge Zbe, energy Eb) running through the plasma,
slow down due to Coulomb collisions with the plasma ions (mi, Zie) and
electrons (me, −e) and the beam energy is thus transferred to the plasma.
This method is called heating by neutral beam injection (NBI). The rate of
change of the energy of the fast ion, that is, the heating rate of the plasma
is [2.4]

dEb

dt
= −Eb

τ ε
bi

− Eb

τ ε
be
,

1
τ ε
bi

=
(Zbe)2(Zie)2 lnΛni

2πε20mimbv3bi
,

and

dEb

dt
= −Z

2
be

4 lnΛne

4πε20mevbi

[∑
i

me

mi

niZ
2
i

ne
+

4
3π1/2

(
meEb

mbκTe

)3/2
]
, (2.32)

when the beam ion velocity vb is much less than the plasma electron ther-
mal velocity (say by a factor of 1/3) and much larger than the plasma ion
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thermal velocity (say by a factor of 2). The first term on the right-hand side
is due to beam–ion collisions and the second term is due to beam–electron
collisions. The critical energy Ecr of the beam ion, at which the plasma ions
and electrons are heated at equal rates, is given by

mv2cr
2

= Ecr = 14.8κTeAb

(
1
ne

∑
i

niZ
2
i

Ai

)2/3

, (2.33)

where Ab, Ai are the atomic weights of the injected ion and plasma ion,
respectively. When the energy of the injected ion is larger than Ecr, the
contribution to the electron heating is dominant. The slowing down time of
the ion beam is given by

τslowdown =
∫ Eb

Ecr

−dEb

(dEb/dt)
=
τ ε
be

1.5
ln

[
1 +
(
E

Ecr

)3/2
]
,

1
τ ε
be

=
Z2nee

4 lnΛ

(2π)1/23πε20m
1/2
e (κTe)3/2

me

mb
, (2.34)

where τ ε
be is the energy relaxation time of the beam ion with electrons.

2.7 Runaway Electron. Dreicer Field

When a uniform electric field E is applied to a plasma, the motion of a test
electron is

me
dv

dt
= −eE − 1

τee(v)
mev ,

1
τee

= neσv =
e4 lnΛ

2πε20m2
ev

3 .

The deceleration term decreases as v increases and its magnitude becomes
smaller than the acceleration term |−eE| at a critical value vcr. When v > vcr,
the test particle is accelerated. The deceleration term becomes smaller and
the velocity starts to increase without limit. Such an electron is called a
runaway electron. The critical velocity is given by

mev
2
cr

2e
=
e2n lnΛ
4πε20E

. (2.35)

The electric field required for a given electron velocity to be vcr is called the
Dreicer field . Taking lnΛ = 20, we find

mev
2
cr

2e
= 5 × 10−16 n

E
,

with MKS units. When n = 1019 m−3, E = 1 V/m, electrons with energy
larger than 5 keV become runaway electrons.
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2.8 Electric Resistivity. Ohmic Heating

When an electric field weaker than the Dreicer field is applied to a plasma,
electrons are accelerated and decelerated by collisions with ions to reach an
equilibrium state as follows:

me(ve − vi)
τei

= −eE .

The current density j induced by the electric field becomes

j = −ene(ve − vi) =
e2neτei
me

E .

The specific electric resistivity defined by ηj = E is [2.3]

η Spitzer =
meνei‖Spitzer

nee2
=

(me)1/2Ze2 lnΛ
9.3 × 10ε20

(κTe)
−3/2

= 5.2 × 10−5Z lnΛ
(
κTe

e

)−3/2

(( m) . (2.36)

The specific resistivity of a plasma with Te = 1 keV and Z = 1 is η =
3.3 × 10−8 ( m and is slightly larger than the specific resistivity of copper
at 20◦C, 1.8 × 10−8 ( m. When a current density of j is induced, the power
ηj2 per unit volume contributes to electron heating. This electron heating
mechanism is called ohmic heating .

2.9 Variety of Time and Space Scales in Plasmas

Various kinds of plasma characteristics have been described in this chapter.
Characteristic time scales are:

– period of electron plasma frequency 2π/Πe,
– electron cyclotron period 2π/Ωe,
– ion cyclotron period 2π/|Ωi|,
– electron-to-ion collision time τei,
– ion-to-ion collision time τii,
– electron–ion thermal energy relaxation time τ ε

ei.

The Alfvén velocity vA, which is the propagation velocity of a magnetic per-
turbation, is v2A = B2/(2µ0ρm), where ρm is the mass density (see Chaps. 5
and 10). The Alfvén transit time τH = L/vA is a typical magnetohydro-
dynamic time scale, where L is the plasma size. In a medium with specific
resistivity η, the electric field diffuses with a time scale of τR = µ0L

2/η (see
Chap. 5). This time scale is called the resistive diffusion time.

Characteristic length scales are:
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– Debye length λD,
– electron Larmor radius ρΩe,
– ion Larmor radius ρΩi,
– electron–ion collision mean free path λei,
– plasma size L.

The relations between space and time scales are:

λDΠe = vTe , ρΩeΩe = vTe ,

ρΩi|Ωi| = vTi ,
λei

τei
� 31/2vTe ,

λii

τii
� 31/2vTi ,

L

τH
= vA ,

where vTe , vTi are the thermal velocities

v2Te
=
κTe

me
, v2Ti

=
κTi

mi
.

The drift velocity of the guiding center is

vdrift ∼ κT

eBL
= vT (ρΩ/L) .

Parameters of a typical D fusion grade plasma with ne = 1020 m−3, κTe =
κTi = 10 keV, B = 5 T, L = 1 m are as follows:

2π
Πe

= 11.1 ps ,
Πe

2π
= 89.8 GHz ,

2π
Ωe

= 7.1 ps ,
Ωe

2π
= 140 GHz ,

2π
|Ωi| = 26 ns ,

|Ωi|
2π

= 38 MHz ,

τH = 0.13 µs , τR = 1.2 × 103 s ,

τ⊥ei = 0.12 ms , τ⊥ii = 7.2 ms , τ ε
ei = 0.3 s ,

ρΩe = 47.6 µm , ρΩi = 2.88 mm ,

λD = 74.5 µm , λei = 8.6 km , λii = 8.6 km .

The ranges of scales in time and space extend to

τRΠe ∼ 1014 ,
λei

λD
∼ 1.6 × 108 ,

and the wide range of scales suggests the variety and complexity of plasma
phenomena. Equations for plasma parameters are listed in Table 2.2.
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Table 2.2. Equations for plasma parameters (M.K.S. units). ln Λ = 20 is assumed.
κT/e in eV and n20 ≡ n (m3)/1020

Πe =

(
nee

2

meε0

)1/2

= 5.64 × 1011(ne 20)1/2

Ωe =
eB

me
= 1.76 × 1011B

|Ωi| =
ZeB

mi
= 9.58 × 107(Z/A)B

νei⊥ ≡ 1
τei⊥

=
Z2nie

4 ln Λ

31/26πε20m
1/2
e (κTe)3/2

= 8.41 × 109Z2
(

κTe

e

)−3/2

ni 20

νii⊥ ≡ 1
τii⊥

=
Z4nie

4 ln Λ

31/26πε20m
1/2
i (κTi)3/2

=2.0 × 108 Z4

A1/2

(
κTi

e

)−3/2

ni 20

νei‖ ≡ 1/τei‖ = νei⊥/2, νei‖spitzer ≈ 0.7νei‖

λD =
(

ε0κT

nee2

)1/2

= 7.45 × 10−7
(

κTe

e

)1/2

n
−1/2
e 20

ρΩe =
vTe

Ωe
= 2.38 × 10−6

(
κTe

e

)1/2 1
B

ρΩi =
vTi

Ωi
= 1.02 × 10−4

(
AκTi

e

)1/2 1
ZB

λei =
(3κTe

me

)1/2

τei‖ = 1.73 × 10−4
(

κTe

e

)2

(ne 20)−1

vA =

(
B2

µ0nimi

)1/2

= 2.18 × 106 B

(Ani 20)1/2

vTe =
(

κTe

me

)1/2

= 4.19 × 105
(

κTe

e

)1/2

vTi =
(

κTi

mi

)1/2

= 9.79 × 103
(

κTi

Ae

)1/2

η Spitzer =
meνei‖ Spitzer

nee2 = 5.2 × 10−5Z ln Λ
(

κTe

e

)−3/2

(Ωm)(
vTi

vA

)2
=

βi

2
,

(
vA

c

)2
=

(
λD

ρΩe

)2
mene

mini

Πe

νei⊥
=

32.6
Z ln Λ

neλ
3
D



3 Magnetic Configuration and Particle Orbit

In this chapter, the motion of individual charged particles in more general
magnetic fields is studied in detail. There are a large number of charged
particles in a plasma, so movements do affect the magnetic field. But this
effect is neglected here.

3.1 Maxwell Equations

Let E, B, D, and H be the electric intensity , magnetic induction, electric
displacement and magnetic intensity , respectively. When the charge density
and current density are denoted by ρ and j, respectively, Maxwell’s equations
are

∇ × E +
∂B

∂t
= 0 , (3.1)

∇ × H − ∂D

∂t
= j , (3.2)

∇·B = 0 , (3.3)

∇·D = ρ . (3.4)

ρ and j satisfy the relation

∇·j +
∂ρ

∂t
= 0 . (3.5)

Equations (3.2), (3.4) and (3.5) are consistent with each other due to the
Maxwell displacement current ∂D/∂t. From (3.3), the vector B can be ex-
pressed as the rotation of a vector A:

B = ∇ × A . (3.6)

A is called the vector potential . If (3.6) is substituted into (3.1), we obtain

∇ ×
(

E +
∂A

∂t

)
= 0 . (3.7)

The quantity in brackets can be expressed in terms of a scalar potential φ
and
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E = −∇φ− ∂A

∂t
. (3.8)

Since any other set of φ′ and A′,

A′ = A − ∇ψ , (3.9)

φ′ = φ+
∂ψ

∂t
, (3.10)

can also satisfy (3.6) and (3.8) for arbitrary ψ, φ′ and A′ are not uniquely
determined.

When the medium is uniform and isotropic, B and D are expressed by

D = εE , B = µH ,

where ε and µ are called the dielectric constant and permeability , respectively.
The values of ε0 and µ0 in vacuum are

ε0 =
107

4πc2
C2s2/kg m3 = 8.854 . . .× 10−12 F/m ,

µ0 = 4π × 10−7 kg m/C2 = 1.257 . . .× 10−6 H/m ,

1
ε0µ0

= c2 , c = 2.997 924 58 (m/s) [definition] ,

where c is the light speed in vacuum and C is the coulomb. Plasmas in
magnetic fields are anisotropic and ε and µ generally have tensor form. In
vacuum, (3.2) and (3.3) may be reduced to

∇ × ∇ × A +
1
c2

∇∂φ

∂t
+

1
c2
∂2A

∂t2
= µ0j , (3.11)

∇2φ+ ∇·∂A
∂t

= − 1
ε0
ρ . (3.12)

As φ and A are arbitrary up to ψ, as shown in (3.9) and (3.10), we impose
the supplementary condition (Lorentz condition)

∇·A +
1
c

∂φ

∂t
= 0 . (3.13)

Then (3.11) and (3.12) reduce to the wave equations

∇2φ− 1
c2
∂2φ

∂t2
= − 1

ε0
ρ , (3.14)

∇2A − 1
c2
∂2A

∂t2
= −µ0j . (3.15)

In the derivation of (3.15), the vector relation
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Fig. 3.1. Magnetic surface ψ = const., normal ∇ψ and line of magnetic force

∇ × (∇ × a) − ∇(∇·a) = −∇2a

is used, which is valid only in (x, y, z) coordinates. The speed of propagation
of the electromagnetic field is 1/(µ0ε0)1/2 = c in vacuum.

When the fields do not change in time, the field equations reduce to

E = −∇φ , B = ∇ × A ,

∇2φ = − 1
ε0
ρ , ∇2A = −µj , ∇·A = 0 , ∇·j = 0 .

3.2 Magnetic Surface

A line of magnetic force satisfies the equations

dx
Bx

=
dy
By

=
dz
Bz

=
dl
B
, (3.16)

where l is the length along the line of force,

(dl)2 = (dx)2 + (dy)2 + (dz)2 .

The magnetic surface ψ(r) = const. is such that all magnetic lines of force
lie upon on that surface. It satisfies the condition[∇ψ(r)

]·B = 0 . (3.17)

The vector ∇ψ(r) is normal to the magnetic surface and must be orthogonal
to B (see Fig. 3.1).

In cylindrical coordinates (r, θ, z), the magnetic field B is given by

Br =
1
r

∂Az

∂θ
− ∂Aθ

∂z
, Bθ =

∂Ar

∂z
− ∂Az

∂r
, Bz =

1
r

∂

∂r
(rAθ) − 1

r

∂Ar

∂θ
.

(3.18)
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For an axisymmetric configuration (∂/∂θ = 0),

ψ(r, z) = rAθ(r, z) (3.19)

satisfies the condition (3.17) of the magnetic surface:

Br
∂(rAθ)
∂r

+Bθ · 0 +Bz
∂(rAθ)
∂z

= 0 .

In the case of translational symmetry (∂/∂z = 0), the magnetic surface is
given by

ψ(r, θ) = Az(r, θ) , (3.20)

and in the case of helical symmetry, in which ψ is a function of r and θ−αz
alone, the magnetic surface is given by

ψ(r, θ − αz) = Az(r, θ − αz) + αrAθ(r, θ − αz) , (3.21)

where α is the helical pitch parameter.

3.3 Equation of Motion of a Charged Particle

The equation of motion of a particle with mass m and charge q in an elec-
tromagnetic field E, B is

m
d2r

dt2
= F = q

(
E +

dr

dt
× B

)
. (3.22)

Since the Lorentz force of the second term on the right-hand side of (3.22) is
orthogonal to the velocity v, the scalar product of the Lorentz force and v is
zero. The kinetic energy is given by

mv2

2
− mv0

2

2
= q

∫ t

t=t0

E·vdt .

When the electric field is zero, the kinetic energy of the charged particle is
conserved. When generalized coordinates qi (i = 1, 2, 3) are used, the La-
grangian formulation must be used. The Lagrangian of a charged particle in
the field with scalar and vector potentials φ, A is given by

L(qi, q̇i, t) =
mv2

2
+ qv·A − qφ , (3.23)

where q̇i is the time derivative of qi. Lagrangians in orthogonal and cylindrical
coordinates are given by

L(x, y, z, ẋ, ẏ, ż, t) =
m

2
(ẋ2 + ẏ2 + ż2) + q(ẋAx + ẏAy + żAz) − qφ ,



3.3 Equation of Motion of a Charged Particle 35

L(r, θ, z, ṙ, θ̇, ż, t) =
m

2
[
ṙ2 + (rθ̇)2 + ż2

]
+ q(ṙAr + rθ̇Aθ + żAz) − qφ ,

respectively. The Lagrange equation of motion is

d
dt

(
∂L

∂q̇i

)
− ∂L

∂qi
= 0 . (3.24)

Canonical transformations are more general than coordinate transformations.
The Hamiltonian equation of motion is conserved under canonical transfor-
mations. In this formulation, we introduce momentum coordinates (pi), in
addition to the space coordinates (qi), defined by

pi ≡ ∂L

∂q̇i
, (3.25)

and treat pi as independent variables. Then we can express q̇i as a function
of (qj , pj , t) from (3.25) as follows:

q̇i = q̇i(qj , pj , t) . (3.26)

The Hamiltonian H(qi, pi, t) is given by

H(qi, pi, t) ≡ −L(qi, q̇i(qj , pj , t), t
)

+
∑

i

piq̇i(qj , pj , t) . (3.27)

The x component of momentum px in orthogonal coordinates and θ compo-
nent pθ in cylindrical coordinates are given as examples:

px = mẋ+ qAx , ẋ =
px − qAx

m
,

pθ = mr2θ̇ + qrAθ , θ̇ =
pθ − qrAθ

mr2
.

In orthogonal coordinates, the Hamiltonian is

H =
1

2m

[
(px − qAx)2 + (py − qAy)2 + (pz − qAz)2

]
+ qφ(x, y, z, t) ,

and in cylindrical coordinates, the Hamiltonian is

H =
1

2m

[
(pr − qAr)2 +

(pθ − qrAθ)2

r2
+ (pz − qAz)2

]
+ qφ(r, θ, z, t) .

The variation of the Lagrangian L is given by

δL =
∑

i

(
∂L

∂qi
δqi +

∂L

∂q̇i
δq̇i
)

=
∑

i

(ṗiδqi + piδq̇i)

= δ

(∑
i

piq̇i

)
+
∑

i

(ṗiδqi − q̇iδpi) ,
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and

δ

(
−L+

∑
i

piq̇i

)
=
∑

i

(q̇iδpi − ṗiδqi) , δH(qi, pi, t) =
∑

i

(q̇iδpi − ṗiδqi) .

Accordingly, the Hamiltonian equation of motion reduces to

dqi
dt

=
∂H

∂pi
,

dpi

dt
= −∂H

∂qi
. (3.28)

In orthogonal coordinates, (3.28) is

dx
dt

=
px − qAx

m
,

dpx

dt
=
q

m

∂A

∂x
·(p − qA) − q ∂φ

∂x
,

m
d2x

dt2
=

dpx

dt
− qdAx

dt

= q

{(
v·∂A
∂x

)
− ∂φ

∂x
−
[
∂Ax

∂t
+ (v·∇)Ax

]}
= q(E + v × B)x ,

and it follows that (3.28) is equivalent to (3.22).
When H does not depend explicitly on t, i.e., when φ, A do not depend

on t,
dH(qi, pi)

dt
=
∑

i

(
∂H

∂qi

dqi
dt

+
∂H

∂pi

dpi

dt

)
= 0 ,

and
H(qi, pi) = const. (3.29)

is one integral of the Hamiltonian equations. This integral expresses the con-
servation of energy.

When the electromagnetic field is axially symmetric, pθ is constant be-
cause ∂H/∂θ = 0, as can be seen from (3.28), and

pθ = mr2θ̇ + qrAθ = const. (3.30)

This indicates conservation of angular momentum. In the case of translational
symmetry (∂/∂z = 0), we have

pz = mż + qAz = const. (3.31)

3.4 Particle Orbit in Axially Symmetric System

The coordinates (r∗, θ∗, z∗) on a magnetic surface of an axially symmetric
field satisfy
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Fig. 3.2. Magnetic surface (dotted line) and particle orbit (solid line)

ψ = r∗Aθ(r∗, z∗) = cM (cM constant) .

On the other hand the coordinates (r, θ, z) of a particle orbit are given by
the conservation of angular momentum (3.30) as follows:

rAθ(r, z) +
m

q
r2θ̇ =

pθ

q
= const.

If cM is chosen to be cM = pθ/q, the relation between the magnetic surface
and the particle orbit reduces to

rAθ(r, z) − r∗Aθ(r∗, z∗) = −m
q
r2θ̇ .

The distance δ (Fig. 3.2) between the magnetic surface and the orbit is
given by

δ = (r − r∗)er + (z − z∗)ez , δ·∇(rAθ) = −m
q
r2θ̇ ,

where er and ez are unit vectors in the directions of r and z, respectively.
Since rBr = −∂(rAθ)/∂z, rBz = ∂(rAθ)/∂r, this reduces to

−(z − z∗)Br + (r − r∗)Bz = −m
q
rθ̇ .

The left-hand side of the above equation is the θ component of the vector
product of Bp = (Br, Bz) and δ = (r − r∗, z − z∗), and

(Bp × δ)θ = −m
q
rθ̇ .

Denoting the magnitude of the poloidal component Bp [the component in
the (rz) plane] of B by Bp, we find the relation −Bpδ = −(m/q)vθ (vθ = rθ̇)
and we have

δ =
mvθ

qBp
= ρΩp .
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Fig. 3.3. Toroidal drift

This value is equal to the Larmor radius corresponding to the magnetic field
Bp and the tangential velocity vθ. If cM is chosen to be cM = (pθ −m〈rvθ〉)/q,
where 〈rvθ〉 is the average of rvθ, we find

δ =
m

qBp

(
vθ − 〈rvθ〉

r

)
. (3.32)

3.5 Drift of Guiding Center in Toroidal Field

Let us consider the drift of the guiding center of a charged particle in a simple
toroidal field (Br = 0, Bϕ = B0R0/R, Bz = 0), using cylindrical coordinates
(R,ϕ, z). The ϕ component Bϕ is called the toroidal field and Bϕ decreases
as 1/R as we move outward. The lines of magnetic force are circles around the
z axis, which is called the major axis of the torus. As described in Sect. 2.4,
the drift velocity of the guiding center is given by

vG = v‖eϕ +
m

qBϕR

(
v2‖ +

v2⊥
2

)
ez ,

where eϕ is the unit vector in the ϕ direction (see Fig. 3.4). Particles in this
simple torus move fast in the toroidal direction and drift slowly in the z
direction with velocity

vdr =
m

qB0R0

(
v2‖ +

v2⊥
2

)
∼
(
ρΩ

R0

)
v . (3.33)

This drift is called toroidal drift . Ions and electrons drift in opposite directions
along the z axis.

As a consequence of the resulting charge separation, an electric field E
is induced, and both ions and electrons drift outward by E × B/B2 drift.
Consequently, a simple toroidal field cannot confine a plasma (Fig. 3.3), un-
less the separated charges are cancelled or short-circuited by an appropriate
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Fig. 3.4. Major axis A and minor axis M of a toroidal field, showing the rotational
transform angle ι

method. If lines of magnetic force connect the upper and lower regions as
shown in Fig. 3.4, the separated charges can be short-circuited, since the
charged particles can move freely along the lines of force.

If a current is induced in a toroidal plasma, a component of the magnetic
field around the magnetic axis (also called the minor axis) is introduced as
shown in Fig. 3.4. This component Bp is called the poloidal magnetic field .
The radius R of the magnetic axis is called the major radius of the torus and
the radius a of the plasma cross-section is called the minor radius. Let r be
the radial coordinate in the plasma cross-section. When a line of magnetic
force circles the major axis of the torus and comes back to cross the plane P,
the crossing point rotates in P through an angle ι around the minor axis O.
We have the relation

rι

2πR
=
Bp

Bϕ
.

The angle ι is called the rotational transform angle and is given by

ι

2π
=
R

r

Bp

Bϕ
. (3.34)

A ≡ R/a is called the aspect ratio.

3.5.1 Guiding Center of Circulating Particles

When a particle circulates around the torus with velocity v‖, it takes T ≈
2πR0/v‖. Accordingly the particle rotates around the minor axis with angular
velocity



40 3 Magnetic Configuration and Particle Orbit

Fig. 3.5. Orbits (solid lines) of guiding center of circulating ions and electrons,
showing magnetic surfaces (dotted lines)

ω =
ι

T
=

ιv‖
2πR0

,

and drifts in the z direction with velocity vdr. Introducing the coordinate
x = R−R0, the orbit of the guiding center of the particle is given by

dx
dt

= −ωz , dz
dt

= ωx+ vdr .

The solution is (
x+

vdr

ω

)2
+ z2 = r2 .

If a rotational transform angle is introduced, the orbit becomes a closed circle
and the center of this circle deviates from the center of the magnetic surface
by the amount

∆ = −vdr

ω
= −mv‖

qB0

2π
ι

(
1 +

v2⊥
2v2‖

)
, |∆| ∼ ρΩ

(
2π
ι

)
, (3.35)

where ρΩ is the Larmor radius. As can be seen in Fig. 3.5, the sign of the
deviation is ∆ < 0 for the case v‖ > 0, q > 0 (ion) since vdr > 0, ω > 0 and
the sign becomes ∆ > 0 for the case v‖ < 0 (opposite to v‖ > 0) q > 0 (ion).

3.5.2 Guiding Center of Banana Particles

When |Bϕ| � |Bp|, the magnitude of the toroidal field is nearly equal to Bϕ

and

B =
B0R0

R
=

B0

1 + (r/R) cos θ
� B0

(
1 − r

R0
cos θ

)
.

Let l denote the length along the line of magnetic force and use coordinates
(r, θ) for the projection of a location on the magnetic line of force onto the
(R, z) plane, as shown in Fig. 3.6. Since
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Fig. 3.6. (r, θ) coordinates

rθ

l
=
Bp

B0
, θ =

l

r

Bp

B0
= κl ,

we find that

B = B0

[
1 − r

R0
cos(κl)

]
.

If v‖ (component parallel to magnetic field) is much smaller than the com-
ponent v⊥ and satisfies the condition

v2⊥
v2
> 1 − r

R
,

v2‖
v2
<
r

R
, (3.36)

the particle is trapped outside in the region of weak magnetic field due to the
mirror effect, as described in Sect. 2.5. [The mirror ratio is (1/R)/

(
1/(R+r)

)
.]

This particle is called a trapped particle. Circulating particles that are not
trapped are also called untrapped particles. Since v2‖ � v2⊥ for the trapped
particle, the r component of the toroidal drift vdr of the trapped particle is
given by

dr
dt

= vdr sin θ =
m

qB0

v2⊥
2R

sin θ .

The parallel motion of the guiding center is given by (see Sect. 2.4)

dv‖
dt

= −µm

m

∂B

∂l
= −µm

m

r

R
κB0 sinκl = − v

2
⊥

2R
Bp

B0
sin θ .

The solution is

d
dt

(
r +

m

qBp
v‖

)
= 0 , r − r0 = − m

qBp
v‖ . (3.37)

Here r = r0 indicates the radial coordinate of the turning point by the mirror
effect. Since the orbit has banana shape, the trapped particle is also called a
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Fig. 3.7. Banana orbit of ion

banana particle (see Fig. 3.7). The width ∆b of the banana is given by

∆b =
m

qBp
v‖ ∼ mv

qB0

v‖
v

B0

Bp
∼ B0

Bp

( r
R

)1/2
ρΩ ∼

(
R

r

)1/2(2π
ι

)
ρΩ . (3.38)

3.6 Orbit of Guiding Center and Magnetic Surface

The velocity of the guiding center was derived in Sect. 2.4 as

vG = v‖b +
1
B

(E × b) +
mv2⊥/2
qB2 (b × ∇B) +

mv2‖
qB2

[
b × (b·∇)B

]
, (3.39)

µm =
mv2⊥
2B

= const.

When the electric field E is static and expressed by E = −∇φ, we have
conservation of energy, i.e.,

m

2
(v2‖ + v2⊥) + qφ = W .

Then v‖ is expressed by

v‖ = ±
(

2
m

)1/2

(W − qφ− µmB)1/2 .

Noting that v‖ is a function of the coordinates, we can write

∇ × (mv‖b) = mv‖∇ × b + ∇(mv‖) × b

= mv‖∇ × b +
1
v‖

(−q∇φ− µm∇B) × b
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and

v‖
qB

∇ × (mv‖b) =
mv2‖
qB

∇ × b +
1
B

(E × b) +
mv2⊥/2
qB2 (b × ∇B) .

Then eq.(3.39) for vG reduces to [3.1]

vG = v‖b +

[
v‖
qB

∇ × (mv‖b) −
mv2‖
qB

∇ × b

]
+
mv2‖
qB2

[
b × (b·∇)B

]
= v‖b +

v‖
qB

∇ × (mv‖b) −
mv2‖
qB

[∇ × b − b × (b·∇)b
]
.

Since we have

∇(b·b) = 2(b·∇)b + 2b × (∇ × b) = 0 ,

because b·b = 1, the square-bracketed part of the third term on the right-
hand side of the equation for vG becomes

(∇ × b) − (∇ × b)⊥ = (∇ × b)‖ =
[
b·(∇ × b)

]
b .

Accordingly, within accuracy of 2nd order of Larmor radius/characteristic
length of b, the velocity of guiding center is reduced to

vG =
1

1 + (mv‖/qB)b · ∇ × b

(
v‖b +

mv‖
qB

∇ × (v‖b)

)
. (3.40)

The first factor in the righthand side of (3.40) is necessary in order to con-
serve the phase space volume in Lagrange-Hamiltonian formulation of guiding
center motion [3.2].

Since
∇ × B = B∇ × b + ∇B × b = µ0j,

we have b ·∇× b = µ0j‖/B. The second term of the denominator in (3.40) is
usually very small compared with 1 (zero in the case of j‖ = 0). If the second
term of the denominator can be neglected, eq.(3.39) for vG is reduced to [3.1]

drG

dt
=

v‖
B

∇ ×
(

A +
mv‖
qB

B

)
. (3.41)

The orbit of (3.40) and (3.41) are identical when the magnetic field does
not depend on time. The orbit of the guiding center is equal to the field line
of the magnetic field B∗ = ∇ × A∗ with the vector potential

A∗ ≡ A +
mv‖
qB

B .

For analogous reasons to those discussed in Sect. 3.2, the orbit surface of the
drift motion of the guiding center is given by

rA∗
θ(r, z) = const. (3.42)
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3.7 Effect of Longitudinal Electric Field
on Banana Orbit

In the tokamak configuration, a toroidal electric field is applied in order to in-
duce the plasma current. The guiding center of a particle drifts by E × B/B2,
but the banana center moves in a different way. The toroidal electric field can
be described by

Eϕ = −∂Aϕ

∂t
,

in (R,ϕ, z) coordinates. Since angular momentum is conserved, we can write

R(mRϕ̇+ qAϕ) = const.

Taking the average of the foregoing equation over a Larmor period, and using
the relation

〈Rϕ̇〉 =
Bϕ

B
v‖ ,

we find

R

(
mv‖

Bϕ

B
+ qAϕ

)
= const. (3.43)

For particles in banana motion (v‖ � v⊥), v‖ becomes 0 at the turning points
of the banana orbit. The displacement of a turning point (R,Z) per period
∆t is obtained from

0 = ∆
[
RAϕ(R,Z)

]
= ∆r

∂

∂r
RAϕ + ∆t

∂

∂t
RAϕ ,

where r is the radial coordinate of the magnetic surface. The derivatives of
RAϕ = const. with respect to ϕ and θ are zero, since RAϕ = const. is the
magnetic surface. By means of the relation

1
R

∂

∂r
(RAϕ) =

1
R

[
∂R

∂r

∂(RAϕ)
∂R

+
∂Z

∂r

∂(RAϕ)
∂Z

]
= cos θBZ − sin θBR = Bp · eθ = −Bp ,

we obtain the drift velocity

∆r
∆t

= −Eϕ

Bp
, (3.44)

where eθ is the unit vector in the θ direction (see Fig. 3.8). When the sign
of Bp produced by the current induced by the electric field Eϕ is taken into
account (Bp > 0, Eϕ > 0 in the case of Fig. 3.8), the sign of ∆r/∆t is
negative and the banana center moves inward. Since |Bp| � |Bϕ| � B, the
drift velocity of the banana center is (B/Bp)2 times as fast as the the drift
velocity EϕBp/B

2 of the guiding center of the particle. This phenomena is
called Ware’s pinch.
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Fig. 3.8. Coordinate system in which the Ware pinch is analyzed

3.8 Polarization Drift

Let us consider the case when E = E0 exp(−iωt)x̂ lies in the x direction and
is time dependent, but B is stationary and constant in the z direction. Then
the equation of motion (3.22) is

v̈x =
q

m
Ėx +

q

m
v̇yB = iωΩ

Ex

B
−Ω2vx ,

v̈y = − q

m
v̇xB = −Ω2Ex

B
−Ω2vy .

When we define
vE ≡ −Ex

B
, vp = i

ω

Ω

Ex

B
,

the equation of motion reduces to

v̈x = −Ω2(vx − vp) , v̈y = −Ω2(vy − vE) .

When Ω2 � ω2, the solution is

vx = v⊥ exp(−iΩt) + vp , vy = v⊥ exp(−iΩt) + vE .

This solution shows that the guiding center motion consists of the usual
E × B drift (but slowly oscillating) and the new drift along E. This new
term is called the polarization drift and is expressed by

vp = − 1
ΩB

∂E

∂t
. (3.45)

Since vp is in opposite directions for ions and electrons, there is a polarization
current



46 3 Magnetic Configuration and Particle Orbit

jp = ene(vpi − vpe) =
ne(mi +me)

B2

∂E

∂t
=
ρm
B2

∂E

∂t
, (3.46)

where ρm is the mass density.



4 Velocity Space Distribution Function
and Boltzmann’s Equation

A plasma consists of many ions and electrons, but the individual behav-
ior of each particle can hardly be observed. What can be observed instead
are statistical averages. In order to describe the properties of a plasma, one
must define a distribution function that indicates particle number density
in the phase space whose ordinates are the particle positions and velocities.
The distribution function is not necessarily stationary with respect to time.
In Sect. 4.1, the equation governing the distribution function f(qi, pi, t) is
derived by means of Liouville’s theorem. Boltzmann’s equation for the distri-
bution function f(x,v, t) is formulated in Sect. 4.2. When the collision term
is neglected, Boltzmann’s equation is called Vlasov’s equation.

4.1 Phase Space and Distribution Function

A particle can be specified by its coordinates (x, y, z), velocity (vx, vy, vz), and
time t. More generally, the particle can be specified by canonical variables
q1, q2, q3, p1, p2, p3 and t in phase space. When canonical variables are used,
an infinitesimal volume in phase space ∆ = δq1δq2δq3δp1δp2δp3 is conserved
(Liouville’s theorem). The motion of a particle in phase space is described by
Hamilton’s equations

dqi
dt

=
∂H(qj , pj , t)

∂pi
,

dpi

dt
= −∂H(qj , pj , t)

∂qi
, i, j = 1, 2, 3 . (4.1)

The variation over time of ∆ is given by

d∆
dt

=
[
d(δq1)

dt
δp1 +

d(δp1)
dt

δq1
]

δq2δp2δq3δp3

+
[
d(δq2)

dt
δp2 +

d(δp2)
dt

δq2
]

δq3δp3δq1δp1

+
[
d(δq3)

dt
δp3 +

d(δp3)
dt

δq3
]

δq1δp1δq2δp2 ,

d
dt

δqi = δ
(
∂H

∂pi

)
=

∂2H

∂pi∂qi
δqi ,

d
dt

δpi = −δ
(
∂H

∂qi

)
= − ∂2H

∂qi∂pi
δpi ,
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Fig. 4.1. Movement of particles in phase space

d∆
dt

=
∑

i

(
∂2H

∂pi∂qi
− ∂2H

∂qi∂pi

)
∆ = 0 . (4.2)

This is a proof of Liouville’s theorem (see Fig. 4.1).
Let the number of particles in a small volume of phase space be δN

given by
δN = F (qi, pi, t)δqδp , (4.3)

where δq = δq1δq2δq3, δp = δp1δp2δp3, and F (qi, pi, t) is the distribution
function in phase space. If the particles move according to the equation of
motion and are not scattered by collisions, the small volume in phase space
is conserved. As the particle number δN within the small phase space is
conserved, the distribution function (F = δN/∆) is also constant, i.e.,

dF
dt

=
∂F

∂t
+
∑

i

(
∂F

∂qi

dqi
dt

+
∂F

∂pi

dpi

dt

)
=
∂F

∂t
+
∑

i

(
∂H

∂pi

∂F

∂qi
− ∂H

∂qi

∂F

∂pi

)
= 0 .

(4.4)
In the foregoing discussion, we did not take collisions into account. If we
denote the variation of F due to collisions by (δF/δt)coll, (4.4) becomes

∂F

∂t
+
∑

i

(
∂H

∂pi

∂F

∂qi
− ∂H

∂qi

∂F

∂pi

)
=
(

δF
δt

)
coll

. (4.5)

4.2 Boltzmann’s Equation and Vlasov’s Equation

Let us use the space and velocity space coordinates x1, x2, x3, v1, v2, v3 in-
stead of canonical coordinates. The Hamiltonian is

H =
1

2m
(p − qA)2 + qφ , (4.6)
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pi = mvi + qAi , (4.7)

qi = xi , (4.8)

and
dxi

dt
=
∂H

∂pi
= vi , (4.9)

dpi

dt
= −∂H

∂xi
=
∑

k

pk − qAk

m
q
∂Ak

∂xi
− q ∂φ

∂xi
. (4.10)

Consequently, (4.5) becomes

∂F

∂t
+
∑

i

vk
∂F

∂xk
+ q
∑

i

(∑
k

vk
∂Ak

∂xi
− ∂φ

∂xi

)
∂F

∂pi
=
(

δF
δt

)
coll

. (4.11)

Using (4.7) and (4.8), independent variables are transformed from (qi, pi, t)
to (xj , vj , t) and

∂vj(xk, pk, t)
∂pi

=
1
m
δij ,

∂vj(xk, pk, t)
∂xi

= − q

m

∂Aj

∂xi
,

∂vj(xk, pk, t)
∂t

= − q

m

∂Aj

∂t
.

We denote F (xi, pi, t) = F
(
xi, pi(xj , vj , t), t

) ≡ f(xj , vj , t)/m3. Then we have
m3F (xi, pi, t) = f

(
xj , vj(xi, pi, t), t

)
and

m3 ∂

∂pi
F (xh, ph, t) =

∂

∂pi
f
(
xj , vj(xh, ph, t), t

)
=
∑

j

∂f

∂vj

∂vj

∂pi
=
∂f

∂vi

1
m
,

m3 ∂

∂xk
F (xh, ph, t) =

∂

∂xk
f
(
xi, vi(xh, ph, t), t

)
=
∂f

∂xk
+
∑

i

∂f

∂vi

∂vi

∂xk

=
∂f

∂xk
+
∑

i

∂f

∂vi

(−q
m

)
∂Ai

∂xk
,

m3 ∂

∂t
F (xh, ph, t) =

∂

∂t
f
(
xi, vi(xh, ph, t), t

)
=
∂f

∂t
+
∑

i

∂f

∂vi

(−q
m

)
∂Ai

∂t
.

Accordingly, (4.11) reduces to

∂f

∂t
+
∑

i

∂f

∂vi

(−q
m

)
∂Ai

∂t
+
∑

k

vk

[
∂f

∂xk
+
∑

i

∂f

∂vi

(−q
m

)
∂Ai

∂xk

]

+
∑

i

(∑
k

vk
∂Ak

∂xi
− ∂φ

∂xi

)
q

m

∂f

∂vi
=
(

δf
δt

)
coll

,
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∂f

∂t
+
∑

k

vk
∂f

∂xk
+
∑

i

(
−∂Ai

∂t
−
∑

k

vk
∂Ai

∂xk
+
∑

k

vk
∂Ak

∂xi
− ∂φ

∂xi

)
q

m

∂f

∂vi

=
(

δf
δt

)
coll

.

Since∑
k

vk
∂Ak

∂xi
=
∑

k

vk
∂Ai

∂xk
+
[
v × (∇ × A)

]
i
=
∑

k

vk
∂Ai

∂xk
+ (v × B)i ,

we have

∂f

∂t
+
∑

i

vi
∂f

∂xi
+
∑

i

q

m
(E + v × B)i

∂f

∂vi
=
(

δf
δt

)
coll

. (4.12)

This equation is called Boltzmann’s equation. The electric charge density ρ
and the electric current j are expressed by

ρ =
∑
i,e

q

∫
fdv1dv2dv3 , (4.13)

j =
∑
i,e

q

∫
vfdv1dv2dv3 . (4.14)

Accordingly, Maxwell’s equations are given by

∇·E =
1
ε0

∑
i,e

q

∫
fdv , (4.15)

1
µ0

∇ × B = ε0
∂E

∂t
+
∑
i,e

q

∫
vfdv , (4.16)

∇ × E = −∂B
∂t

, (4.17)

∇·B = 0 . (4.18)

When the plasma is rarefied, the collision term (δf/δt)coll may be neglected.
However, the interactions of the charged particles are still included through
the internal electric and magnetic fields which are calculated from the charge
and current densities by means of Maxwell’s equations. The charge and cur-
rent densities are expressed by the distribution functions for the electron
and the ion. This equation is called the collisionless Boltzmann equation or
Vlasov’s equation.

When the Fokker–Planck collision term is adopted as the collision term
in Boltzmann’s equation, this equation is called the Fokker–Planck equation
(see Sect. 16.8).



5 Plasma as MHD Fluid

5.1 Magnetohydrodynamic Equations for Two Fluids

Plasmas can be described as magnetohydrodynamic double fluids of ions and
electrons with mass densities ρmi, ρme, charge density ρ, current density j,
flow velocities V i, V e, and pressures pi, pe. These physical quantities can be
expressed by appropriate averages in velocity space using the velocity space
distribution functions fi(r,v, t) of ions and electrons, which were introduced
in Chap. 4. The number density of ions ni, the ion mass density ρmi, and the
ion flow velocity V i(r, t) are expressed as follows:

ni(r, t) =
∫
fi(r,v, t)dv , (5.1)

ρmi(r, t) = mini(r, t) , (5.2)

V (r, t) =
∫

vfi(r,v, t)dv∫
fi(r,v, t)dv

=
1

ni(r, t)

∫
vfi(r,v, t)dv . (5.3)

We have the same expressions for electrons as for ions. Since magnetohydro-
dynamics treats average quantities in the velocity space, phenomena asso-
ciated with the shape of the velocity space distribution function (Chap. 11)
will be neglected. However, the independent variables are r, t alone, and it is
possible to analyze geometrically complicated configurations.

The magnetohydrodynamic equations are:

∂ne

∂t
+ ∇·(neV e) = 0 , (5.4)

∂ni

∂t
+ ∇·(niV i) = 0 , (5.5)

neme
dV e

dt
= −∇pe − ene(E + V e × B) + R , (5.6)

nimi
dV i

dt
= −∇pi + Zeni(E + V i × B) − R . (5.7)

Here R denotes the rate of change of momentum (density) of the electron
fluid by collisions with the ion fluid. The rate of change of momentum of
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Fig. 5.1. Particle flux and force due to pressure

the ion fluid due to collisions with the electron fluid is −R. The change in
the number n(x, y, z, t)∆x∆y∆z of particles within the region ∆x∆y∆z is
the difference between the incident particle flux n(x, y, z, t)Vx(x, y, z, t)∆y∆z
into the surface A in Fig. 5.1 and the outgoing particle flux

n(x+ ∆x, y, z, t)Vx(x+ ∆x, y, z, t)∆y∆z

from the surface A′, that is,[
n(x, y, z, t)Vx(x, y, z, t) − n(x+ ∆x, y, z, t)Vx(x+ ∆x, y, z, t)

]
∆y∆z

= −∂(nVx)
∂x

∆x∆y∆z .

When the particle fluxes of the other surfaces are taken into account, we find
the equations of continuity (5.4) and (5.5), that is,

∂n

∂t
∆x∆y∆z = −

[
∂(nVx)
∂x

+
∂(nVy)
∂y

+
∂(nVz)
∂z

]
∆x∆y∆z .

The term −∇p in (5.6) and (5.7) is the force per unit volume of plasma due to
the pressure p and the second term on the right-hand side of (5.6) and (5.7) is
the Coulomb force and Lorentz force per unit volume. The third term is the
collision term for electron–ion collisions, as mentioned in Sect. 2.8, given by

R = −neme(V e − V i)νei , (5.8)

where νei is the Coulomb collision frequency of electrons with ions.
Let us consider the total time derivative on the left-hand side of the

equation of motion. The flow velocity V is a function of space coordinates r
and time t. Then the acceleration of a small volume of fluid is given by

dV (r, t)
dt

=
∂V (r, t)
∂t

+
(

dr

dt
·∇
)

V (r, t) =
∂V (r, t)
∂t

+
[
V (r, t)·∇]V (r, t) .
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Therefore the equations of motion (5.6) and (5.7) reduce to

neme

[
∂V e

∂t
+ (V e·∇)V e

]
= −∇pe − ene(E + V e × B) + R , (5.9)

nimi

[
∂V i

∂t
+ (V i·∇)V i

]
= −∇pi + Zeni(E + V i × B) − R . (5.10)

Conservation of particle number, (5.4) and (5.5), and the equations of motion
(5.9) and (5.10) can be derived from Boltzmann’s equation (4.12). Integrating
the Boltzmann equation over velocity space yields (5.4) and (5.5). Integrating
the Boltzmann equation multiplied by mv yields (5.9) and (5.10) [5.1].

5.2 Magnetohydrodynamic Equations for One Fluid

Since the ion-to-electron mass ratio ismi/me = 1836A, where A is the atomic
weight of the ion, the contribution of ions dominates the mass density of the
plasma. In many cases it is more convenient to reorganize the equations of
motion for two fluids into the equation of motion for one fluid and Ohm’s
law.

The total mass density of the plasma ρm, the flow velocity of the plasma
V , the electric charge density ρ and the current density j are defined as
follows:

ρm = neme + nimi , (5.11)

V =
nemeV e + nimiV i

ρm
, (5.12)

ρ = −ene + Zeni , (5.13)

j = −eneV e + ZeniV i . (5.14)

From (5.4) and (5.5), it follows that

∂ρm
∂t

+ ∇·(ρmV ) = 0 , (5.15)

∂ρ

∂t
+ ∇·j = 0 . (5.16)

From (5.9) and (5.10), we find

ρm
∂V

∂t
+ neme(V e·∇)V e + nimi(V i·∇)V i = −∇(pe + pi) + ρE + j × B .

(5.17)
The charge neutrality of the plasma allows us to write ne � Zni. Putting
∆ne = ne − Zni, we have

ρm = nimi

(
1 +

me

mi
Z

)
, p = pi + pe , V = V i +

meZ

mi
(V e − V i) ,
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ρ = −e∆ne , j = −ene(V e − V i) .

Since me/mi � 1, the second and third terms on the left-hand side of (5.17)
can be written as (V ·∆)V . Since V e = V i − j/ene � V − j/ene, (5.9)
reduces to

E +
(

V − j

ene

)
× B +

1
ene

∇pe − R

ene
=
me

e2ne

∂j

∂t
− me

e

∂V

∂t
. (5.18)

Using the expression for the specific resistivity η (see Sect. 2.8), the collision
term R reduces to

R = ne

(
meνei
nee2

)
(−ene)(V e − V i) = neeηj . (5.19)

Equation (5.18) is a generalized Ohm’s law. Finally, the equation of motion
for the single fluid model and the generalized Ohm’s law are

ρm

[
∂V

∂t
+ (V ·∇)V

]
= −∇p+ ρE + j × B , (5.20)

E+
(

V − j

ene

)
×B+

1
ene

∇pe−ηj =
me

e2ne

∂j

∂t
−me

e

∂V

∂t
� 0 (|ω/Ωe| � 1) .

(5.21)
The equation of continuity and Maxwell’s equations are

∂ρm
∂t

+ ∇·(ρmV ) = 0 , (5.22)

∂ρ

∂t
+ ∇·j = 0 , (5.23)

∇ × E = −∂B
∂t

, (5.24)

1
µ0

∇ × B = j +
∂D

∂t
, (5.25)

∇·D = ρ , (5.26)

∇·B = 0 . (5.27)

From (5.25) and (5.24), it follows that

∇ × ∇ × E = −µ0
∂j

∂t
− µ0ε0

∂2E

∂t2
.

A typical propagation velocity for a magnetohydrodynamic wave or pertur-
bation is the Alfvén velocity vA = B/(µ0ρm)1/2 as described in Sect. 5.4. This
is much smaller than the speed of light c and ω2/k2 ∼ v2A � c2. Since
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∂t

∣∣∣∣ = |∇ × ∇ × E| ∼ k2|E| ,

and

µ0ε0

∣∣∣∣∂2E

∂t2

∣∣∣∣ ∼ ω2|E|
c2

,

the displacement current ∂D/∂t in (5.25) is negligible. Since the ratio of the
first term (me/e)∂j/∂t on the right-hand side of (5.21) to the term (j × B)
on the left-hand side is ω/Ωe, the first term can be neglected, if |ω/Ωe| � 1.
The second term (me/e)∂V /∂t on the right-hand side of (5.21) is of the order
of ω/Ωe times as large as the term V ×B on the left-hand side. Therefore we
may set the right-hand side of (5.21) almost to zero. When the term j × B
is eliminated by means of (5.20), we find

E + V × B − 1
ene

∇pi − ηj =
∆ne

ne
E +

mi

e

dV

dt
.

The ratio of (mi/e)dV /dt to V × B is around |ω/Ωi|, and ∆ne/ne � 1.
When |ω/Ωi| � 1, we find

E + V × B − 1
ene

∇pi = ηj (|ω/Ωi| � 1) . (5.28)

5.3 Simplified Magnetohydrodynamic Equations

When |ω/Ωi| � 1, |ω/k| � c, and the ion pressure term ∇pi can be neglected
in Ohm’s law, the magnetohydrodynamic equations simplify as follows:

E + V × B = ηj , (5.29)

ρm

[
∂V

∂t
+ (V ·∇)V

]
= −∇p+ j × B , (5.30)

∇ × B = µ0j , (5.31)

∇ × E = −∂B
∂t

, (5.32)

∇·B = 0 , (5.33)

∂ρm
∂t

+ (V ·∇)ρm + ρm∇·V = 0 . (5.34)

We may add the adiabatic equation as an equation of state:

d
dt

(pρ−γ
m ) = 0 ,
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where the quantity γ is the ratio of specific heats and γ = (2 + δ)/δ, with δ
the number of degrees of freedom, is 5/3 in the three-dimensional case δ = 3.
Combined with (5.34), the adiabatic equation becomes

∂p

∂t
+ (V ·∇)p+ γp∇·V = 0 . (5.35)

Instead of this relation, we may use the simpler relation of incompressibility

∇·V = 0 , (5.36)

if |(dρm/dt)/ρm)| � |∇ · V |.
From (5.31) and (5.32), the energy conservation law is

1
µ0

∇·(E × B) +
∂

∂t

(
B2

2µ0

)
+ E·j = 0 . (5.37)

From (5.29), the third term on the left-hand side of (5.37) becomes

E·j = ηj2 + (j × B)·V . (5.38)

Using (5.30) and (5.34), the Lorentz term in (5.38) is expressed by

(j × B)·V =
∂

∂t

(
ρmV

2

2

)
+ ∇·

(
ρmV

2

2
V

)
+ V ·∇p .

From (5.35), it follows that

−∇·(pV ) =
∂p

∂t
+ (γ − 1)p∇·V

and

V ·∇p =
∂

∂t

(
p

γ − 1

)
+ ∇·

(
p

γ − 1
+ p
)

V .

Therefore the energy conservation law (5.37) reduces to

∇·(E × H) +
∂

∂t

(
ρmV

2

2
+

p

γ − 1
+
B2

2µ0

)
(5.39)

+ηj2 + ∇·
(
ρmV

2

2
+

p

γ − 1
+ p
)

V = 0 .

Substituting (5.29) into (5.32) yields

∂B

∂t
= ∇ × (V × B) − η∇ × j = ∇ × (V × B) +

η

µ0
∆B , (5.40)

∂B

∂t
= −(V ·∇)B − B(∇·V ) + (B·∇)V +

η

µ0
∆B . (5.41)
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Here we have used the vector formulas for ∇ × (V × B) and ∇ × (∇ × B)
(refer to Table 5.1). The quantity η/µ0 = νm is called the magnetic viscosity .
Substituting (5.31) into (5.30) yields

ρm
dV

dt
= −∇

(
p+

B2

2µ0

)
+

1
µ0

(B·∇)B . (5.42)

The equation of motion (5.42) and the equation of magnetic diffusion (5.41)
are fundamental equations of magnetohydrodynamics. Equation (5.33), the
equation of continuity (5.34) and the equations of state (5.35) or (5.36) are
additional equations.

The ratio Rm of the first term to the second term on the right-hand side
of (5.40), defined by

|∇ × (V × B)|
|∆B(η/µ0)| ≈ V B/L

(B/L2)(η/µ0)
=
µ0V L

η
≡ Rm , (5.43)

is called the magnetic Reynolds number . The notation L indicates a typical
plasma size. The magnetic Reynolds number is equal to the ratio of the
magnetic diffusion time τR = µ0L

2/η to the Alfvén transit time τH = L/vA
(assuming that v ≈ vA), i.e., Rm = τR/τH. When Rm � 1, the magnetic field
in a plasma evolves according to the diffusion equation. When Rm � 1, it
can be shown that the lines of magnetic force are frozen in the plasma. Let
the magnetic flux within the surface element ∆S be ∆Φ, and take the z axis
in the B direction. Then ∆Φ is

∆Φ = B·n∆S = B∆x∆y .

As the boundary of ∆S moves, the rate of change of ∆S is

d
dt

(∆x) =
d
dt

(x+ ∆x− x) = Vx(x+ ∆x) − Vx(x) =
∂Vx

∂x
∆x ,

Table 5.1. Vector formulas

a·(b × c) = b·(c × a) = c·(a × b)

a × (b × c) = (a·c)b − (a·b)c

(a × b)·(c × d) = a·b × (c × d) = a·[(b·d)c − (b·c)d
]

= (a·c)(b·d) − (a·d)(b·c)

∇·(φa) = φ∇·a + (a·∇)φ

∇ × (φa) = ∇φ × a + φ∇ × a

∇(a · b) = (a · ∇)b + (b · ∇)a + a × (∇ × b) + b × (∇ × a)
∇ · (a × b) = b · ∇ × a − a · ∇ × b
∇ × (a × b) = a(∇·b) − b(∇·a) + (b·∇)a − (a·∇)b

∇ × ∇ × a = ∇(∇·a) − ∇2a (valid only for x, y, z coordinates)
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d
dt

(∆S) =
(
∂Vx

∂x
+
∂Vy

∂y

)
∆x∆y .

The rate of change of the flux ∆Φ is [see (5.41)]

d
dt

(∆Φ) =
dB
dt

∆S +B
d
dt

(∆S)

=
[
dB

dt
+ B(∇·V ) − (B·∇)V

]
z

∆S

=
η

µ0
∆Bz(∆S) . (5.44)

When Rm → ∞, η → 0, the rate of change of the flux becomes zero, i.e.,
d(∆Φ)/dt → 0. This means that the magnetic flux is frozen in the plasma.

5.4 Magnetoacoustic Wave

As usual, we indicate zeroth-order quantities (in the equilibrium state) by
a subscript 0 and first-order perturbation terms by a subscript 1, so that
ρm = ρm0 + ρm1, p = p0 + p1, V = 0+V , B = B0 +B1. The case η = 0 will
be considered here. We find the first-order equations as follows:

∂ρm1

∂t
+ ∇·(ρm0V ) = 0 , (5.45)

ρm0
∂V

∂t
+ ∇p1 = j0 × B1 + j1 × B0 , (5.46)

∂p1
∂t

+ (V ·∇)p0 + γp0∇·V = 0 , (5.47)

∂B1

∂t
= ∇ × (V × B0) . (5.48)

If the displacement of the plasma from the equilibrium position r0 is denoted
by ξ(r0, t), it follows that

V =
dξ

dt
≈ ∂ξ

∂t
, ξ(r0, t) = r − r0 . (5.49)

Substituting (5.49) into (5.48), (5.45), and (5.47) yields

B1 = ∇ × (ξ × B0) , (5.50)

µ0j1 = ∇ × B1 , (5.51)

ρm1 = −∇·(ρm0ξ) , (5.52)

p1 = −ξ·∇p0 − γp0∇·ξ . (5.53)
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Then (5.46) reduces to

ρm0
∂2ξ

∂t2
= ∇(ξ·∇p0 + γp0∇·ξ) +

1
µ0

(∇ × B0) × B1 +
1
µ0

(∇ × B1) × B0 .

(5.54)
Let us consider the case where B0 = const., p0 = const. and the displacement
is expressed by ξ(r, t) = ξ1 exp i(k·r − ωt). Then (5.54) reduces to

−ρm0ω
2ξ1 = −γp0(k·ξ1)k − µ−1

0

{
k × [k × (ξ1 × B0)

]}× B0 . (5.55)

Using the vector formula a × (b × c) (see Table 5.1), we can write (5.55) as[
(k·B0)2 − µ0ω

2ρm0
]
ξ1 +

[
(B2

0 + µ0γp0)k − (k·B0)B0
]
(k·ξ1)

−(k·B0)(B0·ξ1)k = 0 .

Denoting unit vectors along k, B0 by k̂ ≡ k/k, b ≡ B0/B0, respectively, and
introducing

V ≡ ω

k
, v2A ≡ B2

0

µ0ρm0
, β ≡ p0

B2
0/2µ0

, cos θ ≡ k̂·b̂ ,

we find(
cos2 θ − V 2

v2A

)
ξ1 +

[(
1 +

γβ

2

)
k̂ − cos θb

]
(k̂·ξ1) − cos θ(b·ξ1)k̂ = 0 .

(5.56)
The scalar product of (5.56) with k̂ and b, and the vector product of k̂ with
(5.56), yield (

1 +
γβ

2
− V 2

v2A

)
(k̂·ξ1) − cos θ(b·ξ1) = 0 ,

γβ

2
cos θ(k̂·ξ1) − V 2

v2A
(b·ξ1) = 0 ,

(
cos2 θ − V 2

v2A

)
b·(k̂ × ξ1) = 0 .

The solutions of these equations are magnetoacoustic waves. One solution is

V 2 = v2A cos2 θ , (ξ1·k) = 0 , (ξ1·B0) = 0 . (5.57)

Since ξ1 of this solution is orthogonal to k and B0, this is called a torsional
Alfvén wave (see Sect. 10.4). The other solutions are given by(
V

vA

)4

−
(

1 +
γβ

2

)(
V

vA

)2

+
γβ

2
cos2 θ = 0 , B0·(k × ξ1) = 0 . (5.58)

If the velocity of sound is denoted by c2s = γp0/ρm0, (5.58) becomes

V 4 + (v2A + c2s )V
2 + v2

A
c2s cos2 θ = 0
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and

V 2
f =

1
2
(v2A + c2s ) +

1
2

[
(v2A + c2s )

2 − 4v2Ac
2
s cos2 θ

]1/2
, (5.59)

V 2
s =

1
2
(v2A + c2s ) − 1

2

[
(v2A + c2s )

2 − 4v2Ac
2
s cos2 θ

]1/2
. (5.60)

The solution of (5.59) is called a compressional Alfvén wave (see Sect. 10.4)
and the solution of (5.60) is called a magnetoacoustic slow wave. The char-
acteristic velocity

v2A =
B2

µ0ρm0

is called the Alfvén velocity. The plasma with zero resistivity is frozen to
the magnetic field. There is tension B2/2µ0 along the magnetic field line. As
the plasma, of mass density ρm, sticks to the field lines, the magnetoacoustic
waves can be considered as waves propagating along the strings of magnetic
field lines (see Sect. 10.4).
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In order to maintain a hot plasma, we must confine it and keep it away from
the vacuum container wall. The most promising method for such confinement
of a hot plasma is the use of appropriate strong magnetic fields. An equilib-
rium condition must be satisfied for such magnetic confinement systems.

6.1 Pressure Equilibrium

When a plasma is in the steady state and the fluid velocity is zero (V = 0),
the magnetohydrodynamic equation (5.30) yields the equilibrium equation

∇p = j × B , (6.1)

and
∇ × B = µ0j , (6.2)

∇·B = 0 , (6.3)

∇·j = 0 . (6.4)

From (6.1), we have
B·∇p = 0 , (6.5)

j·∇p = 0 . (6.6)

Equation (6.5) indicates that B and ∇p are orthogonal, and the surfaces of
constant pressure coincide with the magnetic surfaces. Equation (6.6) shows
that the current density vector j is everywhere parallel to the constant pres-
sure surfaces. Substituting (6.2) into (6.1) yields

∇
(
p+

B2

2µ0

)
= (B·∇)

B

µ0
=
B2

µ0

(
− 1
R

n +
∂B/∂l

B
b

)
. (6.7)

The vector relations

B × (∇ × B) + (B·∇)B ≡ ∇(B·B/2) ,

(B·∇)B = B2
[
(b·∇)b + b

(b·∇)B
B

]
= B2

(
−n

R
+

b

B

∂B

∂l

)
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are used, where R is the radius of curvature of the line of magnetic force
and n is the unit vector directed toward a point on the line of magnetic force
from the center of curvature. l is the length along the field line. We find that
the right-hand side of (6.7) can be neglected when the radius of curvature
is much larger than the length scale of the pressure gradient, i.e., the size of
the plasma, and the variation of B along the line of magnetic force is much
smaller than the variation of B in the perpendicular direction. Then (6.7)
becomes

p+
B2

2µ0
∼ B2

0

2µ0
,

where B0 is the the value of the magnetic field at the plasma boundary
(p = 0). When the system is axially symmetric and ∂/∂z = 0, (6.7) exactly
reduces to

∂

∂r

(
p+

B2
z +B2

θ

2µ0

)
= − B

2
θ

rµ0
. (6.8)

Multiplying (6.8) by r2 and integrating by parts, we obtain(
p+

B2
z +B2

θ

2µ0

)
r=a

=
1
πa2

∫ a

0

(
p+

B2
z

2µ0

)
2πrdr

and

〈p〉 +
〈B2

z〉
2µ0

= pa +
B2

z(a) +B2
θ (a)

2µ0
, (6.9)

where 〈 〉 is the volume average and pa is the plasma pressure at the plasma
boundary. AsB2/2µ0 is the pressure of the magnetic field, (6.9) is the pressure
equilibrium equation. The ratio of the plasma pressure to the pressure of the
external magnetic field B0, viz.,

β ≡ p

B2
0/2µ0

=
n(Te + Ti)
B2

0/2µ0
, (6.10)

is called the beta ratio. For a confined plasma, β is always smaller than 1,
and is used as a figure of merit for the confining magnetic field. The ratio
of the plasma pressure to the pressure of the poloidal field Bθ is called the
poloidal beta.

When the pressure at the boundary is pa = 0 and |Bz(a) − Bz(r)| �
|Bz(a)| in (6.9), the poloidal beta βp is

βp ≡ 〈p〉
B2

θ (a)/2µ0
= +

B2
z(a) − 〈B2

z(r)〉
Bθ(a)2

≈ 1 +
(

2Bz

B2
θ

)
a

〈Bz(a) −Bz(r)〉 .
(6.11)

Bz(a) is the magnetic field in the direction of z in the case without plasma. In
the case βp > 1, the magnitude of the magnetic field Bz(r) inside the plasma
is smaller than that in the vacuum case [Bz(r) < Bz(a)]. This indicates
that the plasma is diamagnetic. In the case βp < 1, Bz(r) becomes larger
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than Bz(a) [Bz(r) > Bz(a)]. When the plasma current flows along a line
of magnetic force, the current produces the poloidal magnetic field, and a
poloidal component of the plasma current appears and induces an additional
z component of the magnetic field. This is the origin of paramagnetism in
the plasma.

6.2 Equilibrium Equation
for Axially Symmetric Systems

Let us use cylindrical coordinates (r, ϕ, z) and denote the magnetic surface
by ψ. The magnetic surface ψ in an axisymmetric system is given by [see
(3.19)]

ψ = rAϕ(r, z) .

The r and z components of the magnetic field are given by

rBr = −∂ψ
∂z

, rBz =
∂ψ

∂r
. (6.12)

Therefore ψ is also called the flux function. The relation B·∇p = 0 follows
from the equilibrium equation and is expressed by

−∂ψ
∂z

∂p

∂r
+
∂ψ

∂r

∂p

∂z
= 0 .

Accordingly, p is a function of ψ alone, i.e.,

p = p(ψ) . (6.13)

Similarly, from j·∇p = 0 and ∇ × B = µ0j, we may write

−∂p
∂r

∂(rBϕ)
∂z

+
∂p

∂z

∂(rBϕ)
∂r

= 0 .

This means that rBϕ is a function of ψ alone and

rBϕ =
µ0I(ψ)

2π
. (6.14)

Equation (6.14) indicates that I(ψ) is the current flowing in the poloidal
direction through the circular cross-section within ψ = rAϕ (Fig. 6.1). The r
component of j × B = ∇p leads to the equation for ψ :

L(ψ) + µ0r
2 ∂p(ψ)
∂ψ

+
µ2

0

8π2

∂I2(ψ)
∂ψ

= 0 , (6.15)

where



64 6 Equilibrium

Fig. 6.1. Magnetic surfaces ψ = rAϕ and I(ψ)

L(ψ) ≡
(
r
∂

∂r

1
r

∂

∂r
+
∂2

∂z2

)
ψ .

This equation is called the Grad–Shafranov equation. The current density is
expressed in terms of the function of the magnetic surface as

jr =
−1
2πr

∂I(ψ)
∂z

, jz =
1

2πr
∂I(ψ)
∂r

,

jϕ =
−1
µ0

(
∂

∂r

1
r

∂ψ

∂r
+

1
r

∂2ψ

∂z2

)
= −L(ψ)

µ0r
=

1
µ0r

[
µ0r

2p′ +
µ2

0

8π2 (I2)′
]
,

where the prime indicates differentiation with respect to ψ. Using (6.12) and
(6.14), we have

j =
I ′

2π
B + p′reϕ , (6.16)

L(ψ) + µ0rjϕ = 0 . (6.17)

When the unit vectors in the directions of r, ϕ, z are denoted by er, eϕ, ez,
respectively, we have ∇ϕ = eϕ/R, er × eϕ = ez, ez × eϕ = −er. Therefore,
from (6.12) and (6.14), B can be expressed as

B =
µ0I(ψ)

2π
∇ϕ+ ∇ψ × ∇ϕ . (6.18)

p(ψ) and I2(ψ) are arbitrary functions of ψ. When they are linear or quadratic
functions of ψ, (6.15) becomes a linear differential equation. Let us consider a
simple linear case for ψ. At the plasma boundary ψ = ψb, we let pb = p(ψb)
and I2b = I2(ψb), i.e.,

p(ψ) = pb − a

µ0R2 (ψ − ψb) , (6.19)
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I2(ψ) = I2b − 8π2

µ2
0
b(ψ − ψb) . (6.20)

Then (6.15) and (6.17) reduce to

L(ψ) = a
r2

R2 + b = −µ0rjϕ . (6.21)

We set the position of the magnetic axis to (R, 0). The function

ψ − ψ0 =
b+ a
1 + ε

[
1
2

(
1 + c

r2 −R2

R2

)
z2 +

ε

8R2 (r2 −R2)2

+
(1 + ε)b− (1 − c)(b+ a)

24(b+ a)R4 (r2 −R2)3
]

(6.22)

is then the solution of (6.21), which is correct up to the cube of (r−R), z [6.1].
ε, c are constant and ψ0 = ψ(R, 0). When the coefficient of the third term on
the right-hand side of (6.22) is 0, i.e.,

(1 + ε)b− (1 − c)(b+ a) = 0 −→ ε = −(c− 1)
a

b
− c , (6.23)

equation (6.22) becomes the exact Solovev solution of Grad–Shafranov (6.21)
[6.1]. When we set c = R2/(R2 −R2

x), ε becomes

ε = −
(
a

b
+
R2

R2
x

)
R2

x

R2 −R2
x
,

due to (6.23), and then (6.22) reduces to

ψ =
b

2

(
1 − r2

R2
x

)
z2 +

a+ (R2/R2
x)b

8R2

[
(r2 −R2)2 − (R2 −R2

x)
2] . (6.24)

Equation (6.24) is an exact equilibrium solution in the interior region of the
plasma surrounded by the conductive wall specified by ψ(r, z) = ψb. The
surface ψ(r, z) = 0 is the separatrix surface (see Fig. 6.2 and Sect. 16.5). The
separatrix points X are located at (Rx,±Zx), where

Zx =
[
−
(
a

b
+
R2

R2
x

)
1
2

(
1 − R2

x

R2

)]1/2

Rx .

The maximum value Rmax of r within the separatrix surface is

Rmax =
(

2 − R2
x

R2

)1/2

R .

When we set the separatrix surface as the plasma boundary (ψb = 0), the
aspect ratio A, elongation ratio κs, and central poloidal beta βp0 are
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Fig. 6.2. The contour (magnetic surface) of the flux function ψ of (6.24) in the
case a/b = 4.4, R = 3, Rx = 2. X indicates the separatrix points and the magnetic
surface passing through the X points is the separatix surface

1
A

=
Rmax −Rx

2R
=

(2 −R2
x/R

2)1/2 −Rx/R

2
,

κs =
2Zx

Rmax −Rx
=
AZx

R
,

βp0 ≡ p(R, 0) − pb
B2

z(Rx, 0)/2µ0
=

a

a+ (R2/R2
x)b

.

When A and κs are specified, βp0 is fixed. To avoid this inadequacy, Weening
[6.2] added an additional particular solution r2 ln(r2/R2

α)− r2 to the Solovev
solution (6.24), i.e.,

ψ =
b+ d

2

(
1 − r2

R2
x

)
z2 +

a+ (R2/R2
x)(b+ d)

8R2

[
(r2 −R2)2 − (R2 −R2

x)
2]

−d
4

[
r2 ln

r2

R2
x

− (r2 −R2
x)
]
. (6.25)

When the plasma boundary is chosen to be the separatrix ψ(r, z) = 0, the
aspect ratio A, elongation ratio κs and central poloidal beta βp0 are

Z2
x

R2
x

= −1
2

(
a

b+ d
+
R2

R2
x

)(
1 − R2

x

R2

)
,

R2
max

R2 =
(

2 − R2
x

R2

)
+

2d
[
x lnx/(x− 1) − 1

]
a+ (R2/R2

x)(b+ d)
, x ≡ R2

max

R2
x
,
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1
A

=
Rmax/R−Rx/R

2
, κs =

AZx

R
,

βp0 =
a

a+ (R2/R2
x)(b+ d)

{
1 +

2d
[
ln(R2/R2

x) − (1 −R2/R2
x)
][

a+ (R2/R2
x)(b+ d)

]
(1 −R2

x/R
2)

}
.

The magnetic surface ψ, the magnetic field B, and the pressure p in a trans-
lationally symmetric system (∂/∂z = 0) are given by

ψ = Az(r, θ) ,

Br =
1
r

∂ψ

∂θ
, Bθ = −∂ψ

∂r
, Bz =

µ0

2π
I(ψ) ,

p = p(ψ) .

The equilibrium equation reduces to

1
r

∂

∂r

(
r
∂ψ

∂r

)
+

1
r2
∂2ψ

∂θ2
+ µ0

∂p(ψ)
∂ψ

+
µ2

0

8π2

∂I2(ψ)
∂ψ

= 0 , (6.26)

j =
1
2π
I ′B + p′ez , ∆ψ + µ0jz = 0 . (6.27)

It is possible to derive a similar equilibrium equation for a helically symmetric
system.

6.3 Tokamak Equilibrium

The poloidal magnetic field produced by a plasma current Ip inside the
plasma ring is stronger than that outside the plasma ring. For the tokamak
equilibrium, one must therefore add a vertical field to reduce the poloidal field
inside the ring and to inrease the poloidal field outside the ring, as shown in
Fig. 6.3. Let us estimate the required vertical field B⊥.

Fig. 6.3. Poloidal magnetic field due to the combined plasma current and vertical
field
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Fig. 6.4. Equilibrium of forces acting on a toroidal plasma

The hoop force by which the current ring of a plasma tends to expand is
given by

Fh = − ∂

∂R

LpI
2
p

2

∣∣∣∣
LpIp=const.

=
1
2
I2p
∂Lp

∂R
,

where Lp is the self-inductance of the current ring,

Lp = µ0R

(
ln

8R
a

+
li
2

− 2
)
. (6.28)

In this expression, µ0R[ln(8R/a) − 2] is the inductance due to the magnetic
field energy outside the plasma and µ0Rli/2 is the inductance due to the
magnetic field energy inside the plasma, with

li ≡ 2π
∫ a

0 B
2
p(ρ)ρdρ

πa2B2
p(a)

. (6.29)

Accordingly, the hoop force is

Fh =
µ0I

2
p

2

(
ln

8R
a

+
li
2

− 1
)
.

The outward force Fp exerted by the plasma pressure is (Fig. 6.4)

Fp = 〈p〉πa22π .

The inward (contractive) force FB1 due to the tension of the toroidal field
inside the plasma is
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FB1 = −〈B2
ϕ〉

2µ0
2π2a2 ,

and the outward force FB2 due to the pressure caused by the external mag-
netic field is

FB2 =
B2

ϕv

2µ0
2π2a2 .

The force FI acting on the plasma due to the vertical field B⊥ is

FI = IpB⊥2πR .

Balancing these forces gives

µ0I
2
p

2

(
ln

8R
a

+
li
2

− 1
)

+ 2π2a2

(
〈p〉 +

B2
ϕv

2µ0
− 〈B2

ϕ〉
2µ0

)
+ 2πRIpB⊥ = 0 ,

and the amount of B⊥ required is

B⊥ = −µ0Ip
4πR

(
ln

8R
a

+
li
2

− 1 + βp − 1
2

)
= −µ0Ip

4πR

(
ln

8R
a

+ Λ− 1
2

)
,

(6.30)
where

βp =
〈p〉

B2
p(a)/2µ0

, (6.31)

Λ = βp + li/2 − 1 . (6.32)

Equation (6.9) has been used for the derivation. The equilibrium of a tokamak
with circular cross-section is discussed in detail in the references [6.3, 6.4].

6.4 Upper Limit of Beta Ratio

In the last section, the necessary vertical field B⊥ for plasma equilibrium is
given by

B⊥ = Ba
a

2R

(
ln

8R
a

+ Λ− 1
2

)
.

The direction of B⊥ is opposite to that of Bω produced by the plasma current
inside the torus, so that the resultant poloidal field becomes zero at some
points in the inside region of the torus and a separatrix is formed. When the
plasma pressure is increased and βp becomes large, the required amount of
B⊥ is increased and the separatrix shifts toward the plasma. For simplicity, let
us consider a sharp-boundary model in which the plasma pressure is constant
inside the plasma boundary, and in which the boundary encloses a plasma
current Ip. Then the pressure-balance equation is

B2
ω

2µ0
+
B2

ϕv

2µ0
≈ p+

B2
ϕi

2µ0
, (6.33)
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where Bω is the poloidal field outside the plasma and Bϕv, Bϕi are the ϕ
components of the field outside and inside the plasma boundary, respectively.
Bϕv and Bϕi are proportional to 1/r, according to (6.14). If the values of Bϕv,
Bϕi at r = R are denoted by B0

ϕv, B
0
ϕi, respectively, (6.33) may be written as

B2
ω = 2µ0p− [(B0

ϕv)
2 − (B0

ϕi)
2](R

r

)2

.

The upper limit of the plasma pressure is determined by the condition that
the resultant poloidal field at r = rmin inside the torus should be zero, i.e.,

2µ0pmax
r2min

R2 = (B0
ϕv)

2 − (B0
ϕi)

2 . (6.34)

As r is expressed by r = R+ a cosω, (6.33) reduces (using rmin = R− a) to

B2
ω = 2µ0pmax

(
1 − r2min

r2

)
= 8µ0pmax

a

R
cos2

ω

2
.

Here a/R � 1 is assumed. From the relation
∮
Bωadω = µ0Ip, the upper

limit βc
p of the poloidal beta ratio is

βc
p =

π2

16
R

a
≈ 0.5

R

a
. (6.35)

Thus the upper limit of βc
p is half of the aspect ratio R/a in this simple model.

When the rotational transform angle ι and the safety factor qs = 2π/ι are
introduced, we find that

Bω

Bϕ
=
a

R

( ι
2π

)
=

a

Rqs
,

so that β is

β =
p

B2/2µ0
≈ p

B2
ω/2µ0

(
Bω

Bϕ

)2

=
(
a

Rqs

)2

βp . (6.36)

Accordingly, the upper limit of the beta ratio is

βc =
0.5
q2s

a

R
. (6.37)

6.5 Pfirsch–Schlüter Current

When the plasma pressure is isotropic, the current j in the plasma is given
by (6.1) and (6.4) as
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j⊥ =
b

B
× ∇p , (6.38)

∇·j‖ = −∇·j⊥ = −∇·
(

B

B2 × ∇p
)

= −∇p·∇ ×
(

B

B2

)
.

Then the component of the plasma current parallel to the magnetic field j‖ is

∇·j‖ = −∇p·
[(

∇ 1
B2 × B

)
+
µ0j

B2

]
= 2∇p·∇B × B

B3 , (6.39)

∂j‖
∂s

= 2∇p· (∇B × b)
B2 , (6.40)

where s is the length along a line of magnetic force. In the zeroth-order
approximation, we can put B ∝ 1/R, p = p(r), and

∂

∂s
=
∂θ

∂s

∂

∂θ
=

ι

2πR
∂

∂θ
,

where ι is the rotational transform angle. When s increases by 2πR, θ in-
creases by ι. Then (6.40) reduces to

ι

2πR
∂j‖
∂θ

= −∂p
∂r

2
RB

sin θ ,

that is,

j‖ =
4π
ιB

∂p

∂r
cos θ . (6.41)

This current is called the Pfirsch–Schlüter current [6.5]. These formulas are
very important, and will be used to estimate the diffusion coefficient of a
toroidal plasma in Chap. 7. The Pfirsch–Schlüter current is due to the short
circuiting, along magnetic field lines, of toroidal drift polarization charges.
The resulting current is inversely proportional to ι.

6.6 Virial Theorem

The equation of equilibrium j × B = (∇ × B) × B = ∇p can be reduced to∑
i

∂

∂xi
Tik − ∂p

∂xk
= 0 , (6.42)

where

Tik =
1
µ0

(
BiBk − 1

2
B2δik

)
. (6.43)

The symbol δik is the Kronecker delta matrix. This is called the magnetic
stress tensor. From the relation (6.42), we have
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S

[(
p+

B2

2µ0

)
n − B(B·n)

µ0

]
dS = 0 , (6.44)

where n is the outward unit normal to the closed surface surrounding a
volume V. Since∑

i

∂

∂xi

[
xk (Tik − pδik)

]
= (Tkk − p) + xk

∑
i

∂

∂xi
(Tik − pδik) = (Tkk − p) ,

it follows that∫
V

(
3p+

B2

2µ0

)
dV =

∫
S

[(
p+

B2

2µ0

)
(r·n) − (B·r)(B·n)

µ0

]
dS . (6.45)

This is called the virial theorem. When a plasma fills a finite region with p = 0
outside the region, and no solid conductor carries the current anywhere inside
or outside the plasma, the magnitude of the magnetic field is of the order of
1/r3, so the surface integral approaches zero as the plasma surface approaches
infinity (r → 0). This contradicts the fact that the volume integral of (6.45)
is positive definite. In other words, a plasma of finite extent cannot be in
equilibrium unless there exist solid conductors to carry the current.

Let us apply the virial theorem (6.45) to a volume element of an axisym-
metric plasma bounded by a closed toroidal surface St formed by rotating
an arbitrarily shaped contour lt (see Fig. 6.5a). We denote the unit normal
and tangent of the contour lt by n and l respectively and a surface element
of the transverse cross-section by dSϕ. The volume and the surface element
are related by

dV = 2πrdSϕ .

The magnetic field B is expressed by

B = Bϕeϕ + Bp ,

where Bp is the poloidal field, Bϕ is the magnitude of the toroidal field, and
eϕ is the unit vector in the ϕ direction.

Notice the two relations∫
rα(r·n)dSt = (α+ 3)

∫
rαdV , (6.46)

∫
rα(er·n)dSt =

∫
∇·(rαer)dV =

∫
1
r

∂

∂r
rα+1dV

= (α+ 1)
∫
r(α−1)dV

= 2π(α+ 1)
∫
rαdSϕ , (6.47)
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Fig. 6.5. Integration region of the virial theorem: (a) (6.45) and (b) (6.44)

where er is the unit vector in the r direction. Applying (6.45) to the full torus
surrounded by St, we obtain∫ (

3p+
B2

ϕ +B2
p

2µ0

)
dV =

∫ [(
p+

B2
ϕ +B2

p

2µ0

)
(n·r) − Bn(B·r)

µ0

]
dSt

=
∫ [(

p+
B2

l −B2
n

2µ0

)
(n·r) − BnBl

µ0
(l·r)

]
dSt

+
∫
B2

ϕ

2µ0
(n·r)dSt , (6.48)

because Bp = Bll + Bnn (see Fig. 6.5a). When the vacuum toroidal field
(without plasma) is denoted by Bϕ0, this is given by Bϕ0 = µ0I/(2πr),
where I is the total coil current generating the toroidal field. Using (6.47),
(6.48) reduces to∫ (

3p+
B2

p +B2
ϕ −B2

ϕ0

2µ0

)
2πrdSϕ (6.49)

=
∫ [(

p+
B2

l −B2
n

2µ0

)
(n·r) − BnBl

µ0
(l·r)

]
dSt .

Applying (6.44) to the sector surrounded by ϕ = 0, ϕ = ∆ϕ and St (see
Fig. 6.5b) and taking its r component gives [6.6]
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−∆ϕ
∫ (

p+
B2

2µ0
− B2

ϕ

µ0

)
dSϕ

+
∆ϕ
2π

∫ [(
p+

B2

2µ0

)
(n·er) − (B·er)(B·n)

µ0

]
dSt = 0 ,

2π
∫ (

p+
B2

p −B2
ϕ +B2

ϕ0

2µ0

)
dSϕ (6.50)

=
∫ [(

p+
B2

l −B2
n

2µ0

)
(n·er) − BlBn

µ0
(l·er)

]
dSt = 0 .

Equations (6.49) and (6.50) are used to measure the poloidal beta ratio
(6.31) and the internal plasma inductance per unit length (6.29) of arbi-
trarily shaped axisymmetric toroidal plasmas by means of magnetic probes
surrounding the plasma.



7 Plasma Transport

Transport in plasmas is one of the most important subjects in fusion research,
with theoretical and experimental investigations being carried out concur-
rently. Although a general discussion of transport or confinement requires
consideration of the various instabilities (which will be studied in subsequent
chapters), it is also important to consider simple but fundamental diffusion
for the ideal stable cases. A typical example (Sect. 7.1) is classical diffusion,
in which collisions between electrons and ions are the dominant effect. Sec-
tion 7.2 describes the neoclassical diffusion of toroidal plasmas confined in
a tokamak, for both the rare-collisional and collisional regions. Sometimes
the transport in an unstable plasma may be studied in a general way, with-
out recourse to detailed knowledge of instabilities. In this manner, transport
caused by fluctuations in a plasma is explained in Sects. 7.3 and 7.4.

The transport equation for particles is (see Sect. 5.1)

∂

∂t
n(r, t) + ∇·[n(r, t)V (r, t)

]
= 0 , (7.1)

provided that the processes of ionization of neutrals and recombination of
ions are negligible. In many cases, the particle flux Γ = nV is given by

n(r, t)V (r, t) = −D(r, t)∇n(r, t) ,
where D is the diffusion coefficient. (Additional terms may be necessary in
more general cases.)

The diffusion coefficient D and particle confinement time τp are related
by the diffusion equation of the plasma density n as follows:

∇·[D∇n(r, t)] =
∂

∂t
n(r, t) .

Substituting n(r, t) = n(r) exp(−t/τp) into the diffusion equation yields

∇·[D∇n(r)
]

= − 1
τp
n(r) .

When D is constant and the plasma column is a cylinder of radius a, the
diffusion equation reduces to
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1
r

∂

∂r

(
r
∂n

∂r

)
+

1
Dτp

n = 0 .

The solution satisfying the boundary condition n(a) = 0 is

n = n0J0

(
2.4r
a

)
exp
(

− t

τp

)
,

and the particle confinement time is

τp =
a2

2.42D
=

a2

5.8D
, (7.2)

where J0 is the zeroth-order Bessel function. The relation (7.2) between the
particle confinement time τp and D holds generally, with only a slight mod-
ification of the numerical factor. This formula is frequently used to obtain
the diffusion coefficient from the observed values of the plasma radius and
particle confinement time.

The equation of energy balance is given by [7.1]

∂

∂t

(
3
2
nκT

)
+ ∇·

(
3
2
κTnV

)
+ ∇·q = Q− p∇·V −

∑
ij

Πij
∂V i

∂xj
. (7.3)

The first term on the right-hand side is the heat generation due to particle
collisions per unit volume per unit time, the second term is the work done
by pressure, and the third term is viscous heating. The first term on the
left-hand side is the time derivative of the thermal energy per unit volume,
the second term is convective energy loss, and the third term is conductive
energy loss. Denoting the thermal conductivity by κT, the thermal flux due
to heat conduction may be expressed by

q = −κT∇(κT ) .

If the convective loss, the second term in the left-hand side of eq.(7.3), is
neglected and the terms on the right-hand side are also negligible, we find
that

∂

∂t

(
3
2
nκT

)
− ∇·κT∇(κT ) = 0 .

In the case n = const., this equation reduces to

∂

∂t

(
3
2
κT

)
= ∇·

[κT

n
∇(κT )

]
.

When the thermal diffusion coefficient χT is defined by

χT =
κT

n
,
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the same equation in κT is obtained as (7.1). In the case χT = const., the
solution is

κT = κT0J0

(
2.4
a
r

)
exp
(

− t

τE

)
, τE =

a2

5.8(2/3)χT
. (7.4)

The term τE is called the energy confinement time.

7.1 Collisional Diffusion (Classical Diffusion)

7.1.1 Magnetohydrodynamic Treatment

A magnetohydrodynamic treatment is applicable to diffusion phenomena
when the electron-to-ion collision frequency is large and the mean free path
is shorter than the connection length of the inside regions of good curvature
and the outside region of bad curvature of the torus, i.e.,

vTe

νei
<

2πR
ι
, νei > νp ≡ 1

R

ι

2π
vTe =

1
R

ι

2π

(
κTe

me

)1/2

.

The MHD treatment can be applied to plasma diffusion. vTe is the electron
thermal velocity and νei is the electron-to-ion collisional frequency. From
Ohm’s law (5.28),

E + V × B − 1
en

∇pi = ηj ,

the motion of plasma across the lines of magnetic force is expressed by

nv⊥ =
1
B

[(
nE − κTi

e
∇n
)

× b

]
− meνei

e2
∇p
B2

=
1
B

[(
nE − κTi

e
∇n
)

× b

]
− (ρΩe)2νei

(
1 +

Ti

Te

)
∇n , (7.5)

where ρΩe = vTe/Ωe, vTe = (κTe/me)1/2, and η = meνei/e
2ne (see Sect. 2.8).

If the first term on the right-hand side can be neglected, the particle
diffusion coefficient D is given by

D = (ρΩe)2νei

(
1 +

Ti

Te

)
. (7.6)

The classical diffusion coefficient Dei is defined by

Dei ≡ (ρΩe)2νei =
nTe

σ⊥B2 =
βeη‖
µ0

, (7.7)

where σ⊥ = nee
2/(meνei), η‖ = 1/2σ⊥.
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Fig. 7.1. Electric field in a plasma confined in a toroidal field. The symbols ⊗ and
� here show the direction of the Pfirsch–Schlüter current

However, the first term on the right-hand side of (7.5) is not always neg-
ligible. In the toroidal configuration, the charge separation due to toroidal
drift is not completely cancelled along the magnetic field lines due to the
finite resistivity, and an electric field E arises (see Fig. 7.1). Therefore the
E × b term in (7.5) contributes to the diffusion. Let us consider this term.
From the equilibrium equation, the diamagnetic current

j⊥ =
b

B
× ∇p , j⊥ =

∣∣∣∣ 1B ∂p∂r
∣∣∣∣ ,

flows in the plasma. From ∇·j = 0, we find ∇·j‖ = −∇·j⊥. Using the
equation B = B0

[
1 − (r/R) cos θ

]
, j‖ may be written as [see (6.41)]

j‖ = 2
2π
ι

1
B0

∂p

∂r
cos θ . (7.8)

If the electrical conductivity along the lines of magnetic force is σ‖, the par-
allel electric field is E‖ = j‖/σ‖. It is clear from Fig. 7.1 that

Eθ

E‖
≈ B0

Bθ
.

From Bθ/B0 ≈ (r/R)(ι/2π), the θ component of the electric field is given by

Eθ =
B0

Bθ
E‖ =

R

r

2π
ι

1
σ‖
j‖ =

2
σ‖

R

r

(
2π
ι

)2 1
B0

∂p

∂r
cos θ . (7.9)

Accordingly, (7.5) reduces to
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nVr = −nEθ

B
− (ρΩe)2νei

(
1 +

Ti

Te

)
∂n

∂r

= −
[
R

r
2
(

2π
ι

)2
nκTe

σ‖B2
0

cos θ
(
1 +

r

R
cos θ

)
+
nκTe

σ⊥B2
0

(
1 +

r

R
cos θ

)2
]

×
(

1 +
Ti

Te

)
∂n

∂r
. (7.10)

Noting that the area of a surface element depends on θ, and taking the average
of nVr over θ, we find that

〈nVr〉 =
1
2π

∫ 2π

0
nVr

(
1 +

r

R
cos θ

)
dθ

= − nκTe

σ⊥B2
0

(
1 +

Ti

Te

)[
1 +

2σ⊥
σ‖

(
2π
ι

)2
]
∂n

∂r
. (7.11)

The diffusion coefficient of the toroidal plasma is
[
1 + (2π/ι)2

]
times as

large as the diffusion coefficient of (7.6). This value is called the Pfirsch–
Schlüter factor [7.2]. When the rotational transform angle ι/2π is about 0.3,
the Pfirsch–Schlüter factor is about 10.

7.1.2 A Particle Model

The classical diffusion coefficient of electrons given by

Dei = (ρΩe)2νei

is the same as the one for electrons which move in a random walk with step
length equal to the Larmor radius. Let us consider a toroidal plasma. For
rotational transform angle ι, the displacement ∆ of the electron drift surface
from the magnetic surface is (see Fig. 7.2)

∆ ≈ ±ρΩe
2π
ι
. (7.12)

The ± signs depend on whether the direction of electron motion is parallel
or antiparallel to the magnetic field (see Sect. 3.5). As an electron can be
transferred from one drift surface to another by collision, the step length
across the magnetic field is

∆ =
(

2π
ι

)
ρΩe . (7.13)

Consequently, the diffusion coefficient is given by
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Fig. 7.2. Magnetic surface (dotted line) and drift surfaces (solid lines)

DP.S. = ∆2νei =
(

2π
ι

)2

(ρΩe)2νei . (7.14)

The Pfirsch–Schlüter factor has thus been reduced, since we assume that
|2π/ι| � 1. The diffusion coefficient of (7.14) is called the Pfirsch–Schlüter
diffusion coefficient [7.2].

7.2 Neoclassical Diffusion of Electrons in a Tokamak

The magnitude B of the magnetic field of a tokamak is given by

B =
RB0

R(1 + εt cos θ)
= B0(1 − εt cos θ) , (7.15)

where
εt =

r

R
. (7.16)

Consequently, when the perpendicular component v⊥ of an electron’s velocity
is much larger than the parallel component v‖, i.e., when(v⊥

v

)2
>

R

R+ r
,

that is,
v⊥
v‖
>

1

ε
1/2
t

, (7.17)

the electron is trapped outside of the torus, where the magnetic field is weak.
Such an electron drifts in a banana orbit (see Fig. 3.7). In order to complete
a circuit of the banana orbit, the effective collision time τeff = 1/νeff of the
trapped electron must be longer than one period τb of the banana orbit, i.e.,

τb ≈ R

v‖

(
2π
ι

)
=

R

v⊥ε
1/2
t

(
2π
ι

)
. (7.18)
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The effective collision frequency νeff of the trapped electron is the frequency
at which the condition (7.17) for the trapped electron is violated by collision.
As the collision frequency νei is the reciprocal of the diffusion time required to
change the direction of velocity by 1 radian, the effective collision frequency
νeff is given by

νeff =
1
εt
νei . (7.19)

Accordingly, if νeff < 1/τb, i.e.,

νei < νb ≡ v⊥ε
3/2
t

R

( ι
2π

)
= ε

3/2
t

1
R

( ι
2π

)(κTe

me

)1/2

, (7.20)

the trapped electron can travel the entire banana orbit. When the trapped
electron collides, it can shift its position by an amount equal to the banana
width (see Sect. 3.5.2)

∆b =
mv‖
eBp

≈ mv⊥
eB

v‖
v⊥

B

Bp
≈ ρΩeε

1/2
t
R

r

2π
ι

=
(

2π
ι

)
ε
−1/2
t ρΩe . (7.21)

As the number of trapped electrons is ε1/2
t times the total number of electrons,

the trapped-electron contribution to diffusion is

DG.S. = ε
1/2
t ∆2

bνeff = ε
1/2
t

(
2π
ι

)2

ε−1
t (ρΩe)2

1
εt
νei

= ε
−3/2
t

(
2π
ι

)2

(ρΩe)2νei . (7.22)

This diffusion coefficient, introduced by Galeev and Sagdeev [7.3], is ε−3/2
t =

(R/r)3/2 times as large as the diffusion coefficient for the collisional case. This
derivation is semi-quantitative. A more rigorous discussion is given in [7.3].

As discussed in Sect. 7.1, the MHD treatment is applicable if the electron-
to-ion collision frequency is larger than the frequency νp given by

νp =
1
R

ι

2π
vTe =

1
R

( ι
2π

)(κTe

me

)1/2

. (7.23)

When the electron-to-ion collision frequency is smaller than the frequency

νb = ε
3/2
t νp , (7.24)

the electron can complete a banana orbit. The diffusion coefficients are

DP.S. =
(

2π
ι

)2

(ρΩe)2νei , νei > νp , (7.25)
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Fig. 7.3. Dependence of the diffusion coefficient on collision frequency in a toka-
mak. νp = (ι/2π)vTe/R, νb = ε

3/2
t νp

DG.S. = ε
−3/2
t

(
2π
ι

)2

(ρΩe)2νei , νei < νb = ε
3/2
t νp . (7.26)

If νei is in the region νb < νei < νp, it is not possible to treat the diffusion
phenomena of electrons in this region by means of a simple model. In this
region we must resort to the drift approximation of Vlasov’s equation. The
result is that the diffusion coefficient is not sensitive to the collision frequency
in this region and is given by [7.3, 7.4]

Dp =
(

2π
ι

)2

(ρΩe)2νp , νp > νei > νb = ε
3/2
t νp . (7.27)

The dependence of the diffusion coefficient on the collision frequency is shown
in Fig. 7.3. The region νei > νp is called the MHD region or collisional re-
gion. The region νp > νei > νb is the plateau region or intermediate region;
and the region νei < νb is called the banana region or rare collisional re-
gion. These diffusion processes are called neoclassical diffusion. There is an
excellent review on neoclassical diffusion in [7.4].

The reason why the electron–electron collision frequency does not affect
the electron particle diffusion coefficient is that the center-of-mass velocity is
not changed by the Coulomb collision.

The neoclassical thermal diffusion coefficient χTe is of the same order as
the particle diffusion coefficient (χTe ∼ De). Although an ion collision with
the same ion species does not affect the ion’s particle diffusion coefficient,
it does contribute thermal diffusion processes, if a temperature gradient ex-
ists. Even if the ions are the same species as each other, it is possible to
distinguish hot ions (with larger thermal velocity) and cold ions. Accord-
ingly the ion’s thermal diffusion coefficient in the banana region is given by
χTi ∼ ε

−3/2
t (2π/ι)2ρ2Ωiνii, and χTi ∼ (mi/me)1/2Die (Die ∼ Dei). Therefore

the ion’s thermal diffusion coefficient is about (mi/me)1/2 times as large as
the ion’s particle diffusion coefficient.
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7.3 Fluctuation Loss. Bohm and Gyro-Bohm Diffusion.
Convective Loss

In the foregoing sections we have discussed diffusion due to binary collisions
and have derived the confinement times for such diffusion as an ideal case.
However, a plasma will in many cases be more or less unstable, and fluctua-
tions in the density and electric field will induce collective motions of particles
and bring about anomalous losses. We will study such losses here.

Assume the plasma density n(r, t) consists of the zeroth-order term
n0(r, t) and first-order perturbation terms ñk(r, t) = nk exp i(k · r − ωkt)
and

n = n0 +
∑

k

ñk . (7.28)

Since n and n0 are real, the following relations hold:

ñ−k = (ñk)∗ , n−k = n∗
k , ω−k = −ω∗

k ,

where the asterisk denotes the complex conjugate. ωk is generally complex,
with ωk = ωkr + iγk and

ω−kr = −ωkr , γ−k = γk .

The plasma is forced to move by the perturbation. When the velocity is
expressed by

V (r, t) =
∑

k

Ṽ k =
∑

k

V k exp i(k·r − ωkt) , (7.29)

then V −k = V ∗
k and the equation of continuity

∂n

∂t
+ ∇·(nV ) = 0

may be written as

∂n0

∂t
+
∑

k

∂ñk

∂t
+ ∇·

⎛⎝∑
k

n0Ṽ k +
∑
k,k′

ñkṼ k′

⎞⎠ = 0 .

When the first- and second-order terms are separated,∑
k

∂ñk

∂t
+ ∇·

∑
k

n0Ṽ k = 0 , (7.30)

∂n0

∂t
+ ∇·

⎛⎝∑
k,k′

ñkṼ k′

⎞⎠ = 0 . (7.31)
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Here we have assumed that the time derivative of n0 is second order. The
time average of the product of (7.30) and ñ−k becomes{

γk|nk|2 + ∇n0·Re(nkV −k) + n0k·Im(nkV −k) = 0 ,
ωkr|nk|2 + ∇n0·Im(nkV −k) − n0k·Re(nkV −k) = 0 .

(7.32)

Taking the time average of (7.31), we find that

∂n0

∂t
+ ∇·

[∑
k

Re(nkV −k) exp(2γkt)

]
= 0 . (7.33)

The diffusion equation is

∂n0

∂t
= ∇·(D∇n0)

and the particle flux Γ is

Γ = −D∇n0 =
∑

k

Re(nkV −k) exp 2γkt . (7.34)

Equation (7.32) alone is not enough to determine the quantity

∇n0·Re(nkV −k) exp(2γkt) .

Putting

βk =
n0k·Im(nkV −k)

∇n0·
[
Re(nkV −k)

] ,
equation (7.34) reduces to

D|∇n0|2 =
∑

k

γk|nk|2 exp 2γkt

1 + βk

and

D =
∑

k

γk
|ñk|2

|∇n0|2
1

1 + βk
. (7.35)

This is the anomalous diffusion coefficient due to fluctuation loss.
Let us consider the case in which the fluctuation Ẽk of the electric field

is electrostatic and can be expressed by a potential φ̃k. Then the perturbed
electric field is expressed by

Ẽk = −∇φ̃k = −ikφk exp i(k·r − ωkt) .

The electric field results in an Ẽk × B drift, i.e.,

Ṽ k =
Ẽk × B

B2 = −i
(k × b)φ̃k

B
, (7.36)
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where b = B/B. Equation (7.36) gives the perpendicular component of the
fluctuating motion. Substituting (7.36) into (7.30) yields

ñk = ∇n0·
(

b × k

B

)
φ̃k

ωk
. (7.37)

In general ∇n0 and b are orthogonal. Take the z axis in the direction of b
and the x axis in the direction of −∇n, i.e., let ∇n = −κnn0x̂, where κn is
the inverse of the scale of the density gradient and x̂ is the unit vector in the
x direction. Then (7.37) gives

ñk

n0
=
κn

B

ky

ωk
φ̃k = kyκn

κTe

eBωk

eφ̃k

κTe
=
ω∗

k

ωk

eφ̃k

κTe
,

where ky is the y (poloidal) component of the propagation vector k. The
quantity

ω∗
k ≡ kyκn

κTe

eB

is called the drift frequency . If the frequency ωk is real (i.e., if γk = 0), ñk and
φ̃k have the same phase and the fluctuation does not contribute to anomalous
diffusion, as is clear from (7.35). When γk > 0, so that ω is complex, there
is a phase difference between ñk and φ̃k, and the fluctuation in the electric
field contributes to anomalous diffusion. (When γk < 0, the amplitude of the
fluctuation is damped and does not contribute to diffusion.) Using the real
parameters Ak, αk of ωk = ωkr + iγk = ω∗

kAk exp iαk (Ak > 0, αk are both
real), Ṽ k is expressed by

Ṽ k = −i(k × b)
κTe

eB

φ̃k

κTe
= −i(k × b)

κTe

eB

ñk

n0

ωkr + γki
ω∗

k

= −i(k × b)
κTe

eB

ñk

n0
Ak exp iαk ,

Ṽkx = ky
ñk

n0

κTe

eB

γk − ωkri
ω∗

k

= ky
ñk

n0

κTe

eB
(−iAk exp iαk) .

Then the diffusion coefficient may be obtained from (7.34) as follows:

D =
1

κnn0
Re(ñkṼ−kx) =

(∑
k

kyγk

κnω∗
k

∣∣∣∣ ñk

n0

∣∣∣∣2
)
κTe

eB

=

(∑
k

ky

κn
Ak sinαk

∣∣∣∣ ñk

n0

∣∣∣∣2
)
κTe

eB
. (7.38)

The anomalous diffusion coefficient due to fluctuation loss increases with time
[from (7.35) and (7.38)] and eventually the term with the maximum growth
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rate γk > 0 becomes dominant. However, the amplitude |ñk| will saturate
due to nonlinear effects and the saturated amplitude will be of the order of

|ñk| ≈ |∇n0|∆x ≈ κn

kx
n0 .

∆x is the correlation length of the fluctuation and the inverse of the propa-
gation constant kx in the x direction. Then (7.35) yields

D =
γk

κ2
n

∣∣∣∣ ñk

n0

∣∣∣∣2 ≈ γk

k2
x

. (7.39)

When the dimensionless coefficient in brackets in eq.(7.38) is assumed to
be at its maximum of 1/16, we have the Bohm diffusion coefficient

DB =
1
16
κTe

eB
. (7.40)

Equation (7.40) thus gives the largest possible diffusion coefficient.
When the density and potential fluctuations ñk, φ̃k are measured, Ṽ k can

be calculated using (7.36), and the estimated outward particle flux Γ using
(7.34). The diffusion coefficient D can then be compared with the values
obtained by experiment. As the relation between ñk and φ̃k is given by (7.37),
the phase difference will indicate whether ωk is real (oscillatory mode) or
γk > 0 (growing mode), so that this equation is very useful in interpreting
experimental results.

We consider the example of a fluctuation driven by ion-temperature-
gradient drift instability (see Sect. 8.7). The mode is described by

φ(r, θ, z) =
∑

φmn(r) exp(−imθ + inz/R) .

The growth rate of the fluctuation has maximum at around

kθ = − i
r

∂

∂θ
= −m

r

or [7.5]
|kθ| =

m

r
∼ αθ

ρi
, αθ = 0.7–0.8 .

Then the correlation length ∆θ in the θ direction is ∆θ ∼ ρi/αθ, where ρi is
the ion Larmor radius.

The propagation constant k‖ along the line of magnetic force near the
rational surface q(rm) = m/n is

k‖ = −ib·∇ =
Bθ

B

(−m
r

)
+
Bt

B

( n
R

)
≈ 1
R

[
n− m

q(r)

]
=
m

rR

rq′

q2
(r − rm) =

s

Rq
kθ(r − rm) ,
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Fig. 7.4. Upper : the radial width of eigenmode ∆r is larger than the radial sepa-
ration of the rational surfaces ∆rm. A semi-global eigenmode structure ∆rg arises
due to the mode couplings. Lower : the radial width of eigenmode ∆r is smaller
than the radial separation of the rational surfaces ∆rm. Modes with radial width
∆r are mutually independent

where q(r) ≡ (r/R)(Bt/Bθ) is the safety factor, with Bθ and Bt the poloidal
and toroidal fields, respectively, and s is the shear parameter s ≡ rq′/q (see
Sect. 8.3.3). |k‖| is larger than the inverse of the connection length qR of
the torus and is less than the inverse of, say, the pressure gradient scale Lp,
that is

1
qR

< |k‖| < 1
Lp

.

The radial width ∆r = |r− rm| of the mode near the rational surface r = rm
is expected to be roughly

∆r = |r − rm| =
Rq

s

k‖
kθ

=
ρi
sαθ

∼ O(ρi/s) .

The estimated radial width of the eigenmode of ion-temperature-gradient
driven drift turbulence is given by [7.6, 7.7]

∆r = ρi

(
qR

sLp

)1/2(
γk

ωkr

)1/2

.
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The radial separation length ∆rm between adjacent rational surfaces rm and
rm+1 is

q′∆rm = q(rm+1) − q(rm) =
m+ 1
n

− m

n
=

1
n
,

∆rm =
1
nq′ =

m/n

rq′
r

m
∼ 1
skθ

.

When the mode width ∆r is larger than the radial separation of the rational
surface ∆rm, the different modes overlap each other and toroidal mode cou-
pling takes place (see Fig. 7.4). The half-width ∆rg of the envelope of coupled
modes is estimated to be [7.8, 7.9]

∆rg =
(
ρiLp

s

)1/2

.

The radial correlation length becomes a large multiple of ∆rg [∆rg/∆r ∼
(Lp/ρi)1/2] and the radial propagation constant becomes kr ∼ 1/∆rg. In this
case, the diffusion coefficient D is

D = (∆rg)2γk ∼ ρiLp

s
ω∗

k ∼ κT

eB

αθ

s
,

where ω∗
k is the drift frequency (Sects. 8.7 and 9.2). This coefficient is of Bohm

type.
When the mode width ∆r is less than ∆rm (weak shear case), there is no

coupling between different modes and the radial correlation length is

∆r = ρi

(
qR

sLp

)1/2

.

The diffusion coefficient D in this case is

D ∼ (∆r)2ω∗
k ∼ ρ2i

(
qR

sLp

)(
kθκT

eBLp

)
∼ κT

eB

ρi
Lp

(
αθqR

sLp

)
∝ κT

eB

ρi
Lp

. (7.41)

This is called a gyro-Bohm-type diffusion coefficient. The transport in toroidal
systems may be expected to become small in the weak shear region of the
negative shear configuration near the minimum q position (see Sect. 16.7).

Next, let us consider stationary convective losses across the magnetic flux.
Even if fluctuations in the density and electric field are not observed at a
fixed position, the plasma may be able to move across the magnetic field and
escape continuously. When a stationary electric field exists and the equipo-
tential surfaces do not coincide with the magnetic surfaces φ = const., the
E × B drift is normal to the electric field E, which is itself normal to the
equipotential surface. Consequently, the plasma drifts along the equipotential
surfaces (see Fig. 7.5) which cross the magnetic surfaces. The resulting loss
is called stationary convective loss. The particle flux is given by
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Fig. 7.5. Magnetic surface ψ = const. and electric field equipotential φ = const.
The plasma moves along the equipotential surfaces by virtue of E × B

Γk = n0
Ey

B
. (7.42)

The losses due to diffusion by binary collision are proportional to B−2, but
fluctuation or convective losses are proportional to B−1. Even if the magnetic
field is increased, the loss due to fluctuations does not decrease rapidly.

7.4 Loss by Magnetic Fluctuation

When the magnetic field in a plasma fluctuates, the lines of magnetic force
will wander radially. Denote the radial shift of the field line by ∆r and the
radial component of magnetic fluctuation δB by δBr, respectively. Then we
find

∆r =
∫ L

0
brdl ,

where br = δBr/B and l is the length along the line of magnetic force. The
ensemble average of (∆r)2 is given by

〈(∆r)2〉 =

〈∫ L

0
br dl

∫ L

0
br dl′

〉
=

〈∫ L

0
dl
∫ L

0
dl′ br(l) br(l′)

〉

=

〈∫ L

0
dl
∫ L−l

−l

ds br(l) br(l + s)

〉
≈ L

〈
b2r
〉
lcorr ,

where lcorr is
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lcorr =

〈∫∞
−∞ br(l) br(l + s) ds

〉
〈b2r〉

.

If electrons run along the lines of magnetic force with the velocity vTe , the
diffusion coefficient De of the electrons becomes [7.10]

De =
〈(∆r)2〉

∆t
=
L

∆t
〈b2r〉lcorr = vTe lcorr

〈(
δBr

B

)2
〉
. (7.43)

We may take lcorr ∼ R in the case of a tokamak and lcorr ∼ a in the case of
the reverse field pinch (RFP, see Sect. 17.1).



8 Magnetohydrodynamic Instabilities

The stability of plasmas in magnetic fields is one of the primary research
subjects in the area of controlled thermonuclear fusion, and both theoretical
and experimental investigations have been actively pursued. If a plasma is
free from all possible instabilities and if the confinement is dominated by
neoclassical diffusion in the banana region, then the energy confinement time
τE is given by

τE ≈ (3/2)a2

5.8χG.S.
≈ (3/2)

5.8

( ι
2π

)2
ε3/2

(
a

ρΩi

)2 1
νii
,

where a is the plasma radius, ρΩi the ion Larmor radius, and νii the ion–
ion collision frequency. For such an ideal case, a device of a reasonable size
satisfies the ignition condition. (For example, with B = 5 T, a = 1 m, Ti =
20 keV, ι/2π ≈ 1/3, and inverse aspect ratio ε = 0.2, the value of nτE ∼
3.5 × 1020 cm−3s.)

A plasma consists of many moving charged particles and has many magne-
tohydrodynamic degrees of freedom as well as degrees of freedom in velocity
space. When a certain mode of perturbation grows, it enhances diffusion.
Heating a plasma increases the kinetic energy of the charged particles but
at the same time may induce fluctuations in the electric and magnetic fields,
which in turn augment anomalous diffusion.

Therefore, it is very important to determine whether any particular per-
turbed mode is stable (damping mode) or unstable (growing mode). In the
stability analysis, it is assumed that the deviation from the equilibrium state
is small, so that a linearized approximation can be used. In this chapter
we consider instabilities that can be described by linearized magnetohydro-
dynamic equations. These instabilities are called the magnetohydrodynamic
instabilities (MHD instabilities) or macroscopic instabilities.

A small perturbation F (r, t) of the first order is expanded in terms of its
Fourier components,

F (r, t) = F (r) exp(−iωt) , ω = ωr + iωi ,

and each term can be treated independently in the linearized approximation.
The dispersion equation is solved for ω and the stability of the perturbation
depends on the sign of the imaginary part ωi (unstable for ωi > 0 and stable
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Fig. 8.1. Ion and electron drifts and the resulting electric field for interchange
instability

for ωi < 0). When ωr �= 0, the perturbation is oscillatory, and when ωr = 0,
it grows or damps monotonically.

In the following sections, typical MHD instabilities are introduced. In
Sect. 8.1, interchange instability is explained in an intuitive manner. In
Sect. 8.2, the magnetohydrodynamic equations are linearized and the bound-
ary conditions are implemented. The stability criterion is deduced from the
energy principle in (8.45)–(8.48). In Sect. 8.3, a cylindrical plasma is stud-
ied as an important example, and the associated energy integrals are de-
rived. Furthermore, important stability conditions, the Kruskal–Shafranov
limit (8.66) and the Suydam criterion (8.98), are described. Tokamaks with
large aspect ratios are treated approximately as cylindrical plasmas and their
stabilities are examined. The MHD equation of motion in cylindrical co-
ordinates (Sect. 8.4), the energy integral of axisymmetric toroidal systems
(Sect. 8.5), ballooning instability (Sect. 8.6), and the ηi mode due to density
and temperature gradients (Sect. 8.7) are described in this chapter. It should
be understood that there are many other instabilities. General reviews of
MHD instabilities may be found in [8.1].

8.1 Interchange Instabilities

8.1.1 Interchange Instability

Let x = 0 be the boundary between plasma and vacuum and let the z axis
be taken in the direction of the magnetic field B. The plasma region is x < 0
and the vacuum region is x > 0. It is assumed that the acceleration g is
applied in the x direction (see Fig. 8.1). Ions and electrons drift in opposite
directions to each other, due to the acceleration, with drift velocities

vG,i =
M

e

g × B

B2 , vG,e = −m
e

g × B

B2 ,
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where M and m are the masses of the ion and electron, respectively. Let us
assume that, due to a perturbation, the boundary of the plasma is displaced
from the surface x = 0 by the amount

δx = a(t) sin(kyy) .

The charge separation due to the opposite ion and electron drifts yields an
electric field. The resulting (E × B) drift enhances the original perturbation
if the acceleration g is directed outward from the plasma. We see that this
is the same as saying that the magnetic flux originally inside but near the
plasma boundary is displaced so that it is outside the boundary, while the flux
outside moves in to fill the depression thereby left in the boundary. Owing to
this geometrical picture of the process, this type of instability has come to
be called interchange instability . As the perturbed plasma boundary has the
form of flutes along the lines of magnetic force, this instability is also called
a flute instability . Similar phenomena occur in hydrodynamics when a dense
fluid is supported against gravity by a fluid with lower density. Therefore,
interchange instability is also called Rayleigh–Taylor instability.

The drift due to the acceleration produces a surface charge on the plasma,
of charge density

σs = σ(t) cos(kyy)δ(x) (8.1)

(see Fig. 8.1). The electrostatic potential φ of the induced electric field E =
−∇φ is given by

ε⊥
∂2φ

∂y2 +
∂

∂x

(
ε⊥
∂φ

∂x

)
= −σs . (8.2)

The boundary condition is

ε0

(
∂φ

∂x

)
+0

−
(
ε⊥
∂φ

∂x

)
−0

= −σs , φ+0 = φ−0 .

Under the assumption ky > 0, the solution φ is

φ =
σ(t)

ky(ε0 + ε⊥)
cos(kyy) exp(−ky|x|) . (8.3)

The velocity of the boundary d(δx)/dt is equal to E × B/B2 at x = 0, with
E found from the potential (8.3). The velocity is

da(t)
dt

sin(kyy) =
σ(t)

(ε0 + ε⊥)B
sin(kyy) . (8.4)

The charge flux in the y direction is

ne|vG,i| =
ρmg

B
,

where ρm = nM . Accordingly, the rate of change of charge density is
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dσ(t)
dt

cos(kyy) =
ρmg

B
a(t)

d
dy

sin(kyy) (8.5)

and
d2a

dt2
=

ρmgky

(ε0 + ε⊥)B2 a . (8.6)

The solution is in the form a ∝ exp γt and the growth rate γ is given by

γ =
[

ρm
(ε0 + ε⊥)B2

]1/2

(gky)1/2 . (8.7)

In the low-frequency case (compared with the ion cyclotron frequency), the
dielectric constant is given by

ε⊥ = ε0

(
1 +

ρm
B2ε0

)
� ε0 , (8.8)

as will be explained in Chap. 10. Hence, the growth rate γ is [8.2]

γ = (gky)1/2 . (8.9)

When the acceleration is outward, a perturbation with the propagation vector
k normal to the magnetic field B is unstable, as shown in Fig. 8.2a, i.e.,

(k·B) = 0 . (8.10)

However, if the acceleration is inward (g < 0), γ of (8.9) is imaginary and
the perturbation is oscillatory and stable.

The origin of interchange instability is charge separation due to the accel-
eration. When the lines of magnetic force are curved, as shown in Fig. 8.2, the
charged particles are subjected to a centrifugal force. If the magnetic lines
of force are convex outward (Fig. 8.2a), this centrifugal acceleration induces
interchange instability. If the lines are concave outward, the plasma is stable.
Accordingly, the plasma is stable when the magnitude B of the magnetic field
increases outward. In other words, if B is a minimum at the plasma region,
the plasma is stable. This is the minimum-B condition for stability. A more
general treatment of the interchange instability is described in [8.1].

The drift motion of charged particles is expressed by (see Chap. 3)

vG =
E × b

B
+

b

Ω
×
(

g +
(v2⊥/2) + v2‖

R
n

)
+ v‖b ,

where n is the unit normal vector from the center of curvature to a point
on a line of magnetic force, and R is the radius of curvature of the line of
magnetic force. The equivalent acceleration is

g =
(v2⊥/2) + v2‖

R
n . (8.11)
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Fig. 8.2. Centrifugal force due to the curvature of a line of magnetic force

The growth rate becomes γ ≈ (a/R)1/2(vT/a) in this case.
When the growth rate γ ∼ (gky)1/2 is not very large and the ion Larmor

radius ρiΩ is large enough to satisfy

(kyρ
i
Ω)2 >

γ

|Ωi| ,

the perturbation is stabilized [8.3]. When the ion Larmor radius becomes
large, the average perturbation electric field felt by the ions is different from
that felt by the electrons, and the E × B/B2 drift velocities of the ion and
the electrons are different. The charge separation thereby induced has oppo-
site phase from the charge separation due to acceleration and stabilizes the
instability.

8.1.2 Stability Criterion for Interchange Instability.
Magnetic Well

Let us assume that a magnetic line of force has ‘good’ curvature at one place
B and ‘bad’ curvature at another place A (Fig. 8.3b). Then the directions of
the centrifugal force at A and B are opposite, as is the charge separation.
The charge can easily be short-circuited along the magnetic lines of force,
so that the problem of stability has a different aspect. Let us here consider
perturbations in which the magnetic flux of region 1 is interchanged with
that of region 2 and the plasma in region 2 is interchanged with the plasma
in region 1 (interchange perturbations, Fig. 8.3b). It is assumed that the
plasma is low-beta so that the magnetic field is nearly identical to the vacuum
field. Any deviation from the vacuum magnetic field is accompanied by an
increase in the magnetic energy of the disturbed field. This is a consequence
of Maxwell’s equations. We now show that the most dangerous perturbations
are those which exchange equal magnetic fluxes.

The energy QM of the magnetic field inside a magnetic tube is

QM =
∫

dr
B2

2µ0
=
∫

dlS
B2

2µ0
, (8.12)
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Fig. 8.3. Charge separation in interchange instability. (a) The lower figure shows
the unstable part A and the stable part B along a magnetic line of force. The
upper figure shows the charge separation due to the acceleration along a flute. (b)
Cross-section of the perturbed plasma

where l is length taken along a line of magnetic force and S is the cross-
section of the magnetic tube. As the magnetic flux Φ = B · S is constant,
the energy is

QM =
Φ2

2µ0

∫
dl
S
.

The change δQM in the magnetic energy due to the interchange of the fluxes
in regions 1 and 2 is

δQM =
1

2µ0

[(
Φ2

1

∫
2

dl
S

+ Φ2
2

∫
1

dl
S

)
−
(
Φ2

1

∫
1

dl
S

+ Φ2
2

∫
2

dl
S

)]
. (8.13)

If the exchanged fluxes Φ1 and Φ2 are the same, the energy change δQM is
zero, so that perturbations resulting in Φ1 = Φ2 are the most dangerous.

The kinetic energy Qp of a plasma of volume V is

Qp =
nTV
γ − 1

=
pV
γ − 1

, (8.14)

where γ is the specific heat ratio. As the perturbation is adiabatic,

pVγ = const.

is conserved during the interchange process. The change in the plasma energy
is
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δQp =
1

γ − 1

(
p′
2V2 − p1V1 + p′

1V1 − p2V2

)
,

where p′
2 is the pressure after interchange from the region V1 to V2 and

p′
1 is the pressure after interchange from the region V2 to V1. Because of

adiabaticity, we have

p′
2 = p1

(V1

V2

)γ

, p′
1 = p2

(V2

V1

)γ

,

and δQp becomes

δQp =
1

γ − 1

[
p1

(V1

V2

)γ

V2 − p1V1 + p2

(V2

V1

)γ

V1 − p2V2

]
. (8.15)

Setting
p2 = p1 + δp , V2 = V1 + δV ,

we can write δQp as

δQp = δpδV + γp
(δV)2

V . (8.16)

Since the stability condition is δQp > 0, a sufficient condition is

δpδV > 0 .

Since the volume is
V =

∫
dlS = Φ

∫
dl
B
,

the stability condition for interchange instability is written as

δp δ
∫

dl
B
> 0 .

Usually, the plasma pressure p decreases (δp < 0), so that the stability con-
dition is

δ
∫

dl
B
< 0 , (8.17)

in the outward direction [8.4].
The integral is to be taken only over the plasma region. Let the volume

inside a magnetic surface ψ be V and the magnetic flux in the toroidal di-
rection ϕ inside the magnetic surface ψ be Φ. We define the specific volume
U by

U =
dV
dΦ

. (8.18)

If the unit vector of the magnetic field B is denoted by b and the normal
unit vector of the infinitesimal cross-sectional area dS is denoted by n (see
Fig. 8.4), then we have
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Fig. 8.4. Specific volume of a toroidal field

dV =
∫ ∑

i

(b·n)iSidl , dΦ =
∑

i

(b·n)iBidSi .

When lines of magnetic force close upon a single circuit of the torus, the
specific volume U is

U =

∮ [∑
i

(b·n)idSi

]
dl∑

i

(b·n)iBidSi

=

∑
i

(b·n)iBidSi

∮
dl
Bi∑

i

(b·n)iBidSi

.

As the integral over l is carried out along a small tube of the magnetic
field,

∑
i

(b·n)idSiBi is independent of l (conservation of magnetic flux). As∮
dl/Bi on the same magnetic surface is constant, U reduces to

U =
∮

dl
B
.

When the lines of magnetic force close after N circuits, U is

U =
1
N

∫
N

dl
B
. (8.19)

When the lines of magnetic force are not closed, U is given by

U = lim
N→∞

1
N

∫
N

dl
B
.

Therefore, U may be considered to be an average of 1/B. When U decreases
outward, it means that the magnitude B of the magnetic field increases out-
ward in an average sense, so that the plasma region is the so-called average
minimum-B region. In other words, the stability condition for interchange
instability reduces to the average minimum-B condition:
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dU
dΦ

=
d2V

dΦ2 < 0 . (8.20)

When the values of U on the magnetic axis and on the outermost magnetic
surface are U0 and Ua, respectively, we define a magnetic well depth −∆U/U
as

−∆U
U

=
U0 − Ua

U0
. (8.21)

8.2 Formulation of Magnetohydrodynamic Instabilities

8.2.1 Linearization of Magnetohydrodynamic Equations

Plasma stability problems can be studied by analyzing infinitesimal perturba-
tions from the equilibrium state. If the mass density, pressure, flow velocity,
and magnetic field are denoted by ρm, p, V , and B, respectively, the equation
of motion, conservation of mass, Ohm’s law, and the adiabatic relation are

ρm
∂V

∂t
= −∇p+ j × B ,

∂ρm
∂t

+ ∇·(ρmV ) = 0 ,

E + V × B = 0 ,
(
∂

∂t
+ V ·∇

)
(pρ−γ

m ) = 0 ,

respectively, where γ is the specific heat ratio. Maxwell’s equations are then

∇ × E = −∂B
∂t

, ∇ × B = µ0j , ∇·B = 0 .

These are the magnetohydrodynamic equations of a plasma with zero specific
resistivity (see Sect. 5.2). The values of ρm, p, V , and B in the equilibrium
state are ρm0, p0, V 0 = 0, and B0, respectively. The first-order small quan-
tities are ρm1, p1, V 1 = V , and B1. The zeroth-order equations are

∇p0 = j0 × B0 , ∇ × B0 = µ0j0 , ∇·B0 = 0 . (8.22)

The first-order linearized equations are

∂ρm1

∂t
+ ∇·(ρm0V ) = 0 , (8.23)

ρm0
∂V

∂t
+ ∇p1 = j0 × B1 + j1 × B0 , (8.24)

∂p1
∂t

+ (V ·∇)p0 + γp0∇·V = 0 , (8.25)

∂B1

∂t
= ∇ × (V × B0) . (8.26)
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If the displacement of the plasma from the equilibrium position r0 is denoted
by ξ(r0, t), it follows that

ξ(r0, t) = r − r0 , V =
dξ

dt
≈ ∂ξ

∂t
. (8.27)

Equation (8.26) reduces to

∂B1

∂t
= ∇ ×

(
∂ξ

∂t
× B0

)
and

B1 = ∇ × (ξ × B0) . (8.28)

From µ0j = ∇ × B, it follows that

µ0j1 = ∇ × B1 . (8.29)

Equations (8.23) and (8.25) yield

ρm1 = −∇·(ρm0ξ) , (8.30)

p1 = −ξ·∇p0 − γp0∇·ξ . (8.31)

Substituting these equations into (8.24) gives

ρm0
∂2ξ

∂t2
= ∇(ξ·∇p0 + γp0∇·ξ) +

1
µ0

(∇ × B0) × B1 +
1
µ0

(∇ × B1) × B0

= −∇
(
p1 +

B0·B1

µ0

)
+

1
µ0

[
(B0·∇)B1 + (B1·∇)B0

]
. (8.32)

This is the linearized equation of motion in terms of ξ.
Next let us consider the boundary conditions. Where the plasma contacts

an ideal conductor, the tangential component of the electric field is zero, i.e.,
n × E = 0. This is equivalent to n × (ξ × B0) = 0, n being taken in the
outward direction. The conditions (ξ·n) = 0 and (B1·n) = 0 must also be
satisfied.

When the plasma is in contact with the vacuum, the total pressure must
be continuous at the boundary surface between plasma and vacuum and

p− p0 +
B2

in −B2
0,in

2µ0
=
B2

ex −B2
0,ex

2µ0
,

where Bin and B0,in give the internal magnetic field of the plasma and Bex
and B0,ex give the external field. When Bin(r), Bex(r) and p(r) are expanded
in ξ = r − r0, with f(r) = f0(r0)+ (ξ·∇)f0(r)+ f1, the boundary condition
reduces to
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−γp0∇·ξ +
B0,in·[B1,in + (ξ·∇)B0,in

]
µ0

=
B0,ex·

[
B1,ex + (ξ·∇)B0,ex

]
µ0

.

(8.33)
From Maxwell’s equations, we have the following relations:

n0·(B0,in − B0,ex) = 0 , (8.34)

n0 × (B0,in − B0,ex) = µ0K , (8.35)

where K is the surface current. Ohm’s law yields

Ein + V × B0,in = 0 , (8.36)

in the plasma. As the electric field E∗ in coordinates moving with the plasma
is E∗ = E + V × B0 and the tangential component of the electric field E∗

is continuous across the plasma boundary. The boundary condition can be
written as

Et + (V × B0,ex)t = 0 , (8.37)

where the subscript t indicates the tangential component. Since the normal
component of B is given by the tangential component of E by the relation
∇ × E = −∂B/∂t, (8.37) reduces to

(n0·B1,ex) = n0·∇ × (ξ × B0,ex) . (8.38)

The electric field Eex and the magnetic field Bex in the external (vacuum)
region can be expressed in terms of a vector potential:

Eex = −∂A
∂t

, B1,ex = ∇ × A , ∇·A = 0 .

If no current flows in the vacuum region, A satisfies

∇ × ∇ × A = 0 . (8.39)

Using the vector potential, we may express (8.37) as

n0 ×
(

−∂A
∂t

+ V × B0,ex

)
= 0 .

For n0·B0,in = n·B0,ex = 0, the boundary condition is

n0 × A = −ξnB0,ex . (8.40)

The boundary condition at the wall of an ideal conductor is

n × A = 0 . (8.41)

The stability problem now becomes one of solving (8.32) and (8.39) under the
boundary conditions (8.33) and (8.38) or (8.40) and (8.41). When a normal
mode ξ(r, t) = ξ(r) exp(−iωt) is considered, the problem reduces to the
eigenvalue problem ρ0ω

2ξ = −F (ξ). If any eigenvalue is negative, the plasma
is unstable; if all the eigenvalues are positive, the plasma is stable.
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8.2.2 Energy Principle

The eigenvalue problem is complicated and difficult to solve in general. When
we introduce a potential energy associated with the displacement ξ, the sta-
bility problem can be simplified. The equation of motion has the form

ρm0
∂2ξ

∂t2
= F (ξ) = −K̂·ξ , (8.42)

where K̂ is a linear operator. When this equation is integrated, the equation
of energy conservation becomes:

1
2

∫
ρm0

(
∂ξ

∂t

)2

dr +
1
2

∫
ξ·K̂ξ dr = const.

The kinetic energy T and the potential energy W are

T ≡ 1
2

∫
ρm0

(
∂ξ

∂t

)2

dr , W ≡ 1
2

∫
ξ·K̂ξdr = −1

2

∫
ξ·F (ξ)dr ,

respectively. Accordingly, if W > 0 for all possible displacements, the system
is stable. This is the stability criterion of the energy principle [8.5]. W is
called the energy integral .

It is possible to prove that the operator K̂ is Hermitian, i.e., self-adjoint
[8.6, 8.7]. A displacement η and a vector potential Q are introduced which
satisfy the same boundary conditions as ξ and A, i.e.,

n0 × Q = −ηnB0,ex

at the plasma–vacuum boundary and

n0 × Q = 0

at the conducting wall. Substituting (8.32), the integral in the plasma region
Vin is seen to be∫

Vin

η·K̂ξ dr =
∫

Vin

{
γp0(∇·η)(∇·ξ) + (∇·η)(ξ·∇p0)

+
1
µ0

[∇ × (η × B0)
]·∇ × (ξ × B0)

− 1
µ0

[
η × (∇ × B0)

]·∇ × (ξ × B0)

}
dr

+
∫

S

n0·η
[
B0,in·∇ × (ξ × B0,in)

µ0
− γp0(∇·ξ) − (ξ·∇p0)

]
dS .

(8.43)
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Next let us consider the surface integral in (8.43). Due to the boundary
condition n0 × Q = −ηnB0,ex, we find that∫

S

ηnB0,ex·B1,exdS =
∫

S

ηnB0,ex(∇ × A) dS = −
∫

S

(n0 × Q)·(∇ × A) dS

= −
∫

S

n0·
[
Q × (∇ × A)

]
dS =

∫
Vex

∇·[Q × (∇ × A)
]
dr

=
∫

Vex

[
(∇ × Q)·(∇ × A) − Q·∇ × (∇ × A)

]
dr

=
∫

Vex

(∇ × Q)·(∇ × A) dr .

From the boundary condition (8.33), the difference between the foregoing
surface integral and the surface integral in (8.43) reduces to∫

ηn

[
B0,in·B1,in − B0,ex·B1,ex

µ0
− γp0(∇·ξ) − (ξ·∇)p0

]
dS

=
∫

S

ηn(ξ·∇)
(
B2

0,ex

2µ0
− B2

0,in

2µ0
− p0

)
dS

=
∫

S

ηnξn
∂

∂n

(
B2

0,ex

2µ0
− B2

0,in

2µ0
− p0

)
dS ,

where the relation n0 × ∇(p0 + B2
0,in/2µ0 − B2

0,ex/2µ0) = 0 has been used.
The region of integration Vex is the region outside the plasma. Finally, the
energy integral reduces to∫

Vin

η·K̂ξ dr =
∫

Vin

{
γp0(∇·η)(∇·ξ) +

1
µ0

[∇ × (η × B0)
]·[∇ × (ξ × B0)

]
+(∇·η)(ξ·∇p0) − 1

µ0

[
η × (∇ × B0)

]·∇ × (ξ × B0)

}
dr

+
1
µ0

∫
Vex

(∇ × Q)·(∇ × A) dr

+
∫

S

ηnξn
∂

∂n

(
B2

0,ex

2µ0
− B2

0,in

2µ0
− p0

)
dS . (8.44)

The energy integral W is divided into three parts WP, WS, and WV, the
contributions of the plasma internal region Vin, the boundary region S and
the external vacuum region Vex, i.e.,

W =
1
2

∫
Vin

ξ·K̂ξ dr = Wp +WS +WV , (8.45)
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Wp =
1
2

∫
Vin

{
γp0(∇·ξ)2 +

1
µ0

[∇ × (ξ × B0)
]2 + (∇·ξ)(ξ·∇p0)

− 1
µ0

[
ξ × (∇ × B0)

]·∇ × (ξ × B0)

}
dr

=
1
2

∫
Vin

[
B2

1

µ0
− p1(∇·ξ) − ξ·(j0 × B1)

]
dr , (8.46)

WS =
1
2

∫
S

ξ2n
∂

∂n

(
B2

0,ex

2µ0
− B2

0,in

2µ0
− p0

)
dS , (8.47)

WV =
1

2µ0

∫
Vex

(∇ × A)2dr =
∫

Vex

B2
1

2µ0
dr . (8.48)

The stability condition is W > 0 for all possible ξ. The frequency or growth
rate of a perturbation can be obtained from the energy integral. When the
perturbation varies as exp(−iωt), the equation of motion is

ω2ρm0ξ = K̂ξ . (8.49)

The solution of the eigenvalue problem is the same as the solution based on
the calculus of variations δ(ω2) = 0, where

ω2 =
∫

ξ·K̂ξdr∫
ρm0ξ

2dr
. (8.50)

As K̂ is a Hermitian operator, ω2 is real. In the MHD analysis of an ideal
plasma with zero resistivity, the perturbation either increases or decreases
monotonically, or else the perturbed plasma oscillates with constant ampli-
tude.

8.3 Instabilities of a Cylindrical Plasma

8.3.1 Instabilities of Sharp-Boundary Configuration

Let us consider a sharp-boundary plasma of radius a, with a longitudinal
magnetic field B0z inside the boundary and a longitudinal magnetic field Bez
and an azimuthal magnetic field Bθ = µ0I/(2πr) outside. B0z and Bez are
assumed to be constant (see Fig. 8.5). We can consider the displacement

ξ(r) exp(imθ + ikz) . (8.51)

Any displacement may be expressed as a superposition of such modes. Since
the term in ∇·ξ in the energy integral is positive, the incompressible pertur-
bation is the most dangerous. We examine only the worst mode,



8.3 Instabilities of a Cylindrical Plasma 105

Fig. 8.5. Sharp-boundary plasma

∇·ξ = 0 . (8.52)

The perturbation of the magnetic field B1 = ∇× (ξ ×B0) inside the plasma
is

B1 = ikB0zξ . (8.53)

The equation of motion (8.32) becomes(
−ω2ρm0 +

k2B2
0z

µ0

)
ξ = −∇

(
p1 +

B0·B1

µ0

)
≡ −∇p∗ . (8.54)

As ∇·ξ = 0, it follows that ∆p∗ = 0, i.e.,[
d2

dr2
+

1
r

d
dr

−
(
k2 +

m2

r2

)]
p∗(r) = 0 . (8.55)

The solution without singularity at r = 0 is given by the modified Bessel
function Im(kr) of the first kind, so that p∗(r) is

p∗(r) = p∗(a)
Im(kr)
Im(ka)

.

Accordingly, we find

ξr(a) =
kp∗(a)/Im(ka)
ω2ρm0 − k2B2

0/µ0
I ′
m(ka) . (8.56)

As the perturbation of the vacuum magnetic field B1e satisfies ∇ × B = 0
and ∇·B = 0, B1e is expressed by B1e = ∇ψ. The scalar magnetic potential
ψ satisfies ∆ψ = 0 and ψ → 0 as r → ∞. Then
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ψ = C
Km(kr)
Km(ka)

exp(imθ + ikz) , (8.57)

where Km(kr) is the modified Bessel function of the second kind. The bound-
ary condition (8.33) is

p∗(r) = p1 +
1
µ0

B0 · B1 =
1
µ0

Be · B1e + (ξ · ∇)
(
B2

e

2µ0
− B2

0

2µ0
− p0

)
=

1
µ0

Be · B1e + (ξ · ∇)
(
B2

θ

2µ0

)
.

Since Bθ ∝ 1/r and B1e = ∇ψ with (8.57), p∗(a) is given by

p∗(a) =
i

µ0
(kBez +

m

a
Bθ)C − B2

θ

µ0a
ξr(a). (8.58)

Due to B1r = ∂ψ/∂r, the boundary condition (8.38) is reduced to

Ck
K ′

m(ka)
Km(ka)

= i
(
kBez +

m

a
Bθ

)
ξr(a) . (8.59)

From (8.56), (8.58) and (8.59), the dispersion equation is

ω2

k2 =
B2

0z

µ0ρm0
−
[
kBez + (m/a)Bθ

]2
µ0ρm0k2

I ′
m(ka)
Im(ka)

Km(ka)
K ′

m(ka)
− B2

θ

µ0ρm0

1
(ka)

I ′
m(ka)
Im(ka)

.

(8.60)
The first and second terms represent the stabilizing effect of B0z and Bez,
where Km/K

′
m < 0. If the propagation vector k is normal to the magnetic

field, i.e., if
(k·Be) = kBez +

m

a
Bθ = 0 ,

the second stabilizing term of (8.60) becomes zero, so that a flutelike pertur-
bation is dangerous. The third term is the destabilizing term.

m = 0 Mode with Bez = 0

Let us consider the m = 0 mode with Bez = 0. This azimuthally symmetric
perturbation constricts the plasma like a sausage, and the mode is called the
sausage instability . Equation (8.60) reduces to

ω2 =
B2

0zk
2

µ0ρm0

[
1 − B2

θ

B2
0z

I ′
0(ka)

(ka)I0(ka)

]
. (8.61)

Since I ′
0(x)/xI0(x) < 1/2, the stability condition is

B2
0z > B

2
θ/2 .
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m = 1 Mode with Bez = 0

The m = 1 mode perturbation kinks the plasma column and it is call the
kink mode. For the m = 1 mode with Bez = 0, (8.60) is

ω2 =
B2

0zk
2

µ0ρm0

[
1 +

B2
θ

B2
0z

1
(ka)

I ′
1(ka)
I1(ka)

K1(ka)
K ′

1(ka)

]
. (8.62)

For perturbations with long characteristic length, (8.62) becomes

ω2 =
B2

0zk
2

µ0ρm0

[
1 −
(
Bθ

B0z

)2

ln
1
ka

]
. (8.63)

This dispersion equation shows that the kink mode is unstable for perturba-
tions with long wavelength.

Instability in the Case |Bez| > |Bθ|
When |Bez| � |Bθ|, the term including |ka| � 1 predominates. Expanding
the modified Bessel function (m > 0 is assumed), we find

µ0ρm0ω
2 = k2B2

0z +
(
kBez +

m

a
Bθ

)2
− m

a2B
2
θ . (8.64)

Then ω2 becomes minimum when ∂ω/∂k = 0, i.e.,

k(B2
0z +B2

ez) +
m

a
BθBez = 0 .

In this case, ω2 has the minimum value

ω2
min =

B2
θ

µ0ρm0a2

(
m2B2

0z

B2
ez +B2

0z

−m
)

=
B2

θ

µ0ρm0a2m

(
m

1 − β
2 − β − 1

)
, (8.65)

where β is the beta ratio. Accordingly, the plasma is unstable when 0 < m <
(2 − β)/(1 − β). For a low-beta plasma only the modes m = 1 and m = 2
become unstable. However, if (

Bθ

Bz

)2

< (ka)2 (8.66)

is satisfied, the plasma is stable even for m = 1. Usually, the length of the
plasma is finite so that k cannot be smaller than 2π/L. Accordingly, when∣∣∣∣Bθ

Bz

∣∣∣∣ < 2πa
L

,

the plasma is stable. This stability condition is called the Kruskal–Shafranov
condition [8.8, 8.9].
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When a cylindrical conducting wall of radius b surrounds the plasma, the
scalar magnetic potential of the external magnetic field is

ψ =
[
c1
Km(kr)
Km(ka)

+ c2
Im(kr)
Im(ka)

]
exp(imθ + ikz) , (8.67)

instead of (8.57). The boundary condition B1er = 0 at r = b yields

c1
c2

= −I
′
m(kb)Km(ka)
K ′

m(kb)Im(ka)
.

The dispersion equation becomes

ω2

k2 =
B2

0z

µ0ρm0
−
[
kBez + (m/a)Bθ

]2
µ0ρm0k2

I ′
m(ka)
Im(ka)

Km(ka)I ′
m(kb) − Im(ka)K ′

m(kb)
K ′

m(ka)I ′
m(kb) − I ′

m(ka)K ′
m(kb)

− B2
θ

µ0ρm0

1
ka

I ′
m(ka)
Im(ka)

.

Expanding the modified Bessel functions under the conditions ka � 1, kb �
1, we find

µ0ρm0ω
2 = k2B2

0z +
1 + (a/b)2m

1 − (a/b)2m

(
kBez +

m

a
Bθ

)2
− m

a2B
2
θ .

The closer the wall is to the plasma boundary, the more effective is the wall
stabilization.

In toroidal systems, the propagation constant is k = n/R, where n is an
integer and R is the major radius of the torus. Introducing the safety factor
qa at the plasma boundary r = a,

qa =
aBez

RBθ
, (8.68)

(k·B) may be written as

(k·B) = kBez +
m

a
Bθ =

nBθ

a

(
qa +

m

n

)
.

The Kruskal–Shafranov condition (8.66) of the m = 1, n = −1 mode can
then be expressed in terms of the safety factor as

qa > 1 . (8.69)

This is the reason why qa is called the safety factor.
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8.3.2 Instabilities of Diffuse Boundary Configurations

The sharp-boundary configuration treated in Sect. 8.3.1 is a special case. In
most cases the plasma current decreases gradually at the boundary. Let us
consider the case of a diffuse-boundary plasma whose parameters in the equi-
librium state are

p0(r) , B0(r) =
(
0, Bθ(r), Bz(r)

)
.

The perturbation ξ is assumed to be

ξ = ξ(r) exp(imθ + ikz) .

The perturbation of the magnetic field B1 = ∇ × (ξ × B0) is

B1r = i(k·B0)ξr , (8.70)

B1θ = ikA− d
dr

(ξrBθ) , (8.71)

B1z = −
[
imA
r

+
1
r

d
dr

(rξrBz)
]
, (8.72)

where
(k·B0) = kBz +

m

r
Bθ , (8.73)

A = ξθBz − ξzBθ = (ξ × B0)r . (8.74)

Since the pressure terms

γp0(∇·ξ)2 + (∇·ξ)(ξ·∇p0) = (γ − 1)p0(∇·ξ)2 + (∇·ξ)(∇·p0ξ)

in the energy integral are nonnegative, we examine the incompressible dis-
placement ∇·ξ = 0 again, i.e.,

1
r

d
dr

(rξr) +
im
r
ξθ + ikξz = 0 . (8.75)

From this and (8.74) for A, ξθ and ξz are expressed in terms of ξr and A as

i(k·B)ξθ = ikA− Bθ

r

d
dr

(rξr) , (8.76)

−i(k·B)ξz =
imA
r

+
Bz

r

d
dr

(rξr) . (8.77)

From µ0j0 = ∇ × B0, it follows that

µ0j0θ = −dBz

dr
, (8.78)
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µ0j0z =
dBθ

dr
+
Bθ

r
=

1
r

d
dr

(rBθ) . (8.79)

The terms of the energy integral are given by

Wp =
1
4

∫
Vin

[
γp0|∇·ξ|2 + (∇·ξ∗)(ξ·∇p0) +

1
µ0

|B1|2 − ξ∗·(j0 × B1)
]
dr

=
1
4

∫ [
−p1(∇·ξ) +

1
µ0

|B1|2 − j0(B1 × ξ∗)
]
dr , (8.80)

WS =
1
4

∫
S

|ξn|2 ∂
∂n

(
B2

0,ex

2µ0
− B2

0,in

2µ0
− p0

)
dS , (8.81)

WV =
1

4µ0

∫
Vex

|B1|2dr . (8.82)

ξθ and ξz can be eliminated by means of (8.76) and (8.77), and dBz/dr and
dBθ/dr can be eliminated by means of (8.78) and (8.79) in (8.80). Then Wp
becomes

Wp =
1
4

∫
Vin

{
(k·B)2

µ0
|ξr|2 +

(
k2 +

m2

r2

) |A|2
µ0

+
1
µ0

∣∣∣∣Bθ
dξr
dr

+ ξr

(
µ0jz − Bθ

r

)∣∣∣∣2 +
1
µ0

∣∣∣∣ξrBz

r
+Bz

dξr
dr

∣∣∣∣2
+

2
µ0

Re
{
ikA∗

[
Bθ

dξr
dr

+
(
µ0jz − Bθ

r

)
ξr

]
− imA∗

r2

(
ξrBz + rBz

dξr
dr

)}

+2Re
[
ξ∗
r j0z

(
−Bθ

dξr
dr

− ξrµ0jz
2

+ ikA
)]}

dr .

The integrand of Wp reduces to

1
µ0

(
k2 +

m2

r2

) ∣∣∣∣∣∣∣∣A+
ikBθ

(
dξr
dr

− ξr
r

)
− im

Bz

r

(
dξr
dr

+
ξr
r

)
k2 + (m2/r2)

∣∣∣∣∣∣∣∣
2

+
[
(k·B)2

µ0
− 2jzBθ

r

]
|ξr|2 +

B2
z

µ0

∣∣∣∣dξrdr
+
ξr
r

∣∣∣∣2 +
B2

θ

µ0

∣∣∣∣dξrdr
− ξr
r

∣∣∣∣2

−

∣∣∣ikBθ

[
(dξr/dr) − (ξr/r)

]− im(Bz/r)
[
(dξr/dr) + (ξr/r)

]∣∣∣2
µ0
[
k2 + (m2/r2)

] .

Accordingly, the integrand is a minimum when
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A ≡ ξθBz − ξzBθ

= − i
k2 + (m2/r2)

[(
kBθ − m

r
Bz

) dξr
dr

−
(
kBθ +

m

r
Bz

) ξr
r

]
.

Then Wp reduces to

Wp =
π

2µ0

∫ a

0

{∣∣(k·B0)(dξr/dr) + h(ξr/r)
∣∣2

k2 + (m/r)2
(8.83)

+
[
(k·B0)2 − 2µ0jzBθ

r

]
|ξr|2

}
rdr ,

where
h ≡ kBz − m

r
Bθ .

Let us next determine WS. From (6.8), it follows that

d
dr

(
p0 +

B2
z +B2

θ

2µ0

)
= − B

2
θ

rµ0
.

B2
θ is continuous across the boundary r = a, so that

d
dr

(
p0 +

B2
z +B2

θ

2µ0

)
=

d
dr

(
B2

ez +B2
eθ

2µ0

)
.

Accordingly, we find
WS = 0 , (8.84)

as is clear from (8.81).
The expression for WV can be obtained when the quantities in (8.83) for

Wp are replaced as follows:

j → 0 , Bz → Bez = Bs (= const.) , Bθ → Beθ = Ba
a

r
,

B1r = i(k·B0)ξr → Be1r = i(k·Be0)ηr .

This replacement yields

WV =
π

2µ0

∫ b

a

[(
kBs +

m

r

Baa

r

)2

|ηr|2 (8.85)

+
1

k2 + (m/r)2

∣∣∣∣(kBs +
m

r

Baa

r

)
dηr

dr
+
(
kBs − m

r

Baa

r

)
ηr

r

∣∣∣∣2
]
rdr .

By partial integration, Wp is seen to be
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Wp =
π

2µ0

∫ a

0

[
r(k·B0)2

k2 + (m/r)2

∣∣∣∣dξrdr

∣∣∣∣2 + g|ξr|2
]

dr (8.86)

+
π

2µ0

k2B2
s − (m/a)2B2

a

k2 + (m/a)2
|ξr(a)|2 ,

g =
1
r

[
kBz − (m/r)Bθ

]2
k2 + (m/r)2

+ r(k·B0)2 − 2Bθ

r

d(rBθ)
dr

(8.87)

− d
dr

[
k2B2

z − (m/r)2B2
θ

k2 + (m/r)2

]
.

Using the notation ζ ≡ rBe1r = ir(k·Be0)ηr, we find that

WV =
π

2µ0

∫ b

a

{
1

r
[
k2 + (m/r)2

] ∣∣∣∣dζdr
∣∣∣∣2 +

1
r
|ζ|2
}

dr . (8.88)

The functions ξr or ζ that will minimizeWp orWV are the solutions of Euler’s
equation:

d
dr

[
r(k·B0)2

k2 + (m/r)2
dξr
dr

]
− gξr = 0 , r ≤ a , (8.89)

d
dr

{
1

r
[
k2 + (m/r)2

] dζ
dr

}
− 1
r
ζ = 0 , r > a . (8.90)

There are two independent solutions, which tend to ξr ∝ rm−1, r−m−1 as
r → 0. As ξr is finite at r = 0, the solution must satisfy the conditions

r → 0 , ξr ∝ rm−1 ,

r = a , ζ(a) = ia
(
kBs +

m

a
Ba

)
ξr(a) ,

r = b , ζ(b) = 0 .

Using the solution of (8.90), we obtain

WV =
π

2µ0

1
r
[
k2 + (m/r)2

] ∣∣∣∣dζdr ζ∗
∣∣∣∣b
a

. (8.91)

The solution of (8.90) is

ζ = i
I ′
m(kr)K ′

m(kb) −K ′
m(kr)I ′

m(kb)
I ′
m(ka)K ′

m(kb) −K ′
m(ka)I ′

m(kb)
r
(
kBs +

m

a
Ba

)
ξr(a) . (8.92)

The stability problem is now reduced to one of examining the sign ofWp+WV.
For this we use
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Wp =
π

2µ0

∫ a

0

(
f

∣∣∣∣dξrdr

∣∣∣∣2 + g|ξr|2
)

dr +Wa ,

Wa =
π

2µ0

k2B2
s − (m/a)2B2

a

k2 + (m/a)2
|ξr(a)|2 ,

WV =
π

2µ0

−1
r
[
k2 + (m/a)2

] ∣∣∣∣dζdr ζ∗
∣∣∣∣
r=a

,

(8.93)

where

f =
r(kBz + (m/r)Bθ)2

k2 + (m/r)2
, (8.94)

g =
1
r

[
kBz − (m/r)Bθ

]2
k2 + (m/r)2

+ r
(
kBz +

m

r
Bθ

)2

−2Bθ

r

d(rBθ)
dr

− d
dr

[
k2B2

z − (m/r)2B2
θ

k2 + (m/r)2

]
. (8.95)

When the equation of equilibrium (d/dr)(µ0p + B2/2) = −B2
θ/r is used,

(8.95) of g reduces to

g =
2k2

k2 + (m/r)2
µ0

dp0
dr

+ r
(
kBz +

m

r
Bθ

)2 k2 + (m/r)2 − (1/r)2

k2 + (m/r)2

+
(2k2/r)

[
k2B2

z − (m/r)2B2
θ

][
k2 + (m/r)2

]2 . (8.96)

8.3.3 Suydam’s Criterion

The function f in the integrand of Wp in the last section is always f ≥ 0, so
that the term in f is a stabilizing term. The first and second terms in (8.95)
for g are stabilizing terms, but the third and fourth terms may contribute to
the instabilities. When a singular point

f ∝ (k·B0)2 = 0

of Euler’s equation (8.89) is located at some point r = r0 within the plasma
region, the contribution of the stabilizing term becomes small near r = r0,
so that a local mode near the singular point is dangerous. In terms of the
notation

r − r0 = x , f = αx2 , g = β , β =
2B2

θ

B2
0
µ0

dp0
dr

∣∣∣∣
r=r0

,

α =
r0

k2r20 +m2

(
kr

dBz

dr
+ kBz +m

dBθ

dr

)2

r=r0

=
rB2

θB
2
z

B2

(
µ̃′

µ̃

)2

r=r0

,
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with µ̃ ≡ Bθ/rBz, Euler’s equation reduces to

α
d
dr

(
x2 dξr

dx

)
− βξr = 0 .

The solution is
ξr = c1x

−n1 + c2x−n2 , (8.97)

where n1 and n2 are given by

n2 − n− β

α
= 0 , ni =

1 ± (1 + 4β/α)1/2

2
(i = 1, 2) .

When α+4β > 0, n1 and n2 are real. The relation n1 +n2 = 1 always holds.
For n1 < n2, we have the solution x−n1 , called a small solution. When n is
complex (n = γ± iδ), ξr has the form exp

[
(−γ∓ iδ) lnx

]
and ξr is oscillatory.

Let us consider a local mode ξr which is nonzero only in the neighborhood
ε around r = r0, and set

r − r0 = εt , ξr(r) = ξ(t) , ξ(1) = ξ(−1) = 0 .

Then Wp becomes

Wp =
π

2µ0
ε

∫ 1

−1

(
αt2
∣∣∣∣dξdt
∣∣∣∣2 + β|ξ|2

)
dt+O(ε2) .

Since Schwartz’s inequality yields∫ 1

−1
t2|ξ′|2dt

∫ 1

−1
|ξ|2dt ≥

∣∣∣∣∫ 1

−1
tξ′ξ∗dt

∣∣∣∣2 =
(

1
2

∫ 1

−1
|ξ|2dt

)2

,

Wp is

Wp >
π

2µ0

1
4
(α+ 4β)

∫ 1

−1
|ξ|2dt .

The stability condition is α+ 4β > 0, i.e.,

r

4

(
µ̃′

µ̃

)2

+
2µ0

B2
z

dp0
dr

> 0 . (8.98)

r(µ̃′/µ̃) is called the shear parameter . Usually, the second term is negative,
since, most often, dp0/dr < 0. The first term (µ̃′/µ̃)2 represents the stabiliz-
ing effect of shear. This condition is called Suydam’s criterion [8.10]. It is a
necessary condition for stability, but is not always a sufficient condition, as
Suydam’s criterion is derived from consideration of local-mode behavior only.
Newcomb derived the necessary and sufficient conditions for the stability of
a cylindrical plasma. His twelve theorems are described in [8.11].
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8.3.4 Tokamak Configuration

In this case the longitudinal magnetic field Bs is much larger than the poloidal
magnetic field Bθ. The plasma region is r ≤ a and the vacuum region is
a ≤ r ≤ b, with an ideal conducting wall at r = b. It is assumed that ka � 1,
kb � 1. The function ζ in (8.91) for WV is

ζ = i
mBa + kaBs

1 − (a/b)2m
ξr(a)

am

bm

(
bm

rm
− rm

bm

)
,

from (8.92), and WV becomes

WV =
π

2µ0

(mBa + kaBs)2

m
ξ2r (a)λ , λ ≡ 1 + (a/b)2m

1 − (a/b)2m
.

From the periodic condition for a torus, it follows that

2πn
k

= −2πR (n is an integer) ,

so that (k·B) is given by

a(k·B) = mBa + kaBs = mBa

(
1 − nqa

m

)
,

in terms of the safety factor. The Wa term in (8.93) reduces to

k2B2
s −
(m
a

)2
B2

a =
(
kBs +

m

a
Ba

)2

− 2
m

a
Ba

(
kBs +

m

a
Ba

)

=
(
nBa

a

)2[(
1 − nqa

m

)2

− 2
(

1 − nqa
m

)]
.

Accordingly, the energy integral becomes

Wp +WV =
π

2µ0
B2

aξ
2
r (a)

[(
1 − nqa

m

)2
(1 +mλ) − 2

(
1 − nqa

m

)]

+
π

2µ0

∫ [
f

(
dξr
dr

)2

+ gξ2r

]
dr . (8.99)

The first term of (8.99) is negative when

1 − 2
1 +mλ

<
nqa
m

< 1 . (8.100)

The assumption nqa/m ∼ 1 corresponds to ka ∼ mBa/Bs. As Ba/Bs � 1,
this is consistent with the assumption ka � 1. When m = 1, (m2 − 1)/m2

is zero in the second term of (8.96) for g. The magnitude of g is of the
order of k2r2, which is very small since kr � 1. The term in f(dξr/dr)2 can
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Fig. 8.6. Relation between the growth rate γ and nqa for the kink instability [8.9]
−2W/(πξ2

aB2
a/µ0) = γ2a2(〈ρm0〉µ0/B2

a)

be very small if ξr is nearly constant. Accordingly, the contribution of the
integral term in (8.99) is negligible. When m = 1 and a2/b2 < nqa < 1, the
energy integral becomes negative (W < 0). The mode m = 1 is unstable in
the region specified by (8.100), irrespective of the current distribution. The
Kruskal–Shafranov condition for the mode m = 1 derived from the sharp-
boundary configuration is also applicable to the diffuse-boundary plasma.
The growth rate γ2 = −ω2 is

γ2 � −W∫
(ρm0|ξ|2/2)dr

=
1

〈ρm0〉
B2

a

µ0a2

[
2(1 − nqa) − 2(1 − nqa)2

1 − a2/b2

]
, (8.101)

〈ρm0〉 =
∫
ρm0|ξ|22πrdr
πa2ξ2r (a)

.

The maximum growth rate is γ2
max ∼ (1−a2/b2)B2

a/(µ0〈ρ〉a2). When m �= 1,
(m2−1)/m2 in the second term of (8.96) for g is large, and g ∼ 1. Accordingly,
the contribution of the integral term toWp must be checked. The region g < 0
is given by χ1 < χ < χ2, when χ ≡ −krBz/Bθ = nq(r) and

χ1,2 = m− 2
m(m2 − 1)

k2r2 ± 2k2r2

m(m2 − 1)

[
1 − m2(m2 − 1)

2k2r2
µ0rp

′
0

B2
θ

]1/2

.

(8.102)
Since kr � 1, the region g < 0 is narrow and close to the singular point
nq(r) = m, and the contribution of the integral term to Wp can be neglected
in the case m �= 1 too. Therefore, if nqa/m is in the range given by (8.100),
the plasma is unstable due to the displacement ξr(a) of the plasma boundary.
When the current distribution is j(r) = j0 exp(−κ2r2/a2) and the conducting
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wall is at infinity (b = ∞), γ2 can be calculated from (8.101), using the solu-
tion of Euler’s equation. The dependence of γ2 on qa can then be estimated.
The result is shown in Fig. 8.6 [8.9].

When the value of nqa/m is outside the region given by (8.100), the effect
of the displacement of the plasma boundary is not great and the contribution
of the integral term in Wp is dominant. However, the growth rate γ2 is k2r2

times as small as that given by (8.101), as is clear from consideration of
(8.102).

The characteristic of the reversed field pinch (RFP, see Sect. 17.1) is that
Ba and Bs are of the same order of magnitude, so that the approximation
based upon ka � 1 or Ba � Bs can no longer be used. MHD instabilities in
RFP are well analyzed in [8.12].

8.4 Hain–Lüst Magnetohydrodynamic Equation

When the displacement ξ is denoted by

ξ(r, θ, z, t) = ξ(r) exp i(mθ + kz − ωt) ,

and the equilibrium magnetic field B is expressed by

B(r) =
(
0, Bθ(r), Bz(r)

)
,

the (r, θ, z) components of the magnetohydrodynamic equation of motion are
given by

−µ0ρmω
2ξr =

d
dr

[
µ0γp(∇·ξ) +B2 1

r

d
dr

(rξr) + iD(ξθBz − ξzBθ)
]

−
[
F 2 + r

d
dr

(
Bθ

r

)2
]
ξr − 2ik

Bθ

r
(ξθBz − ξzBθ) ,

(8.103)

−µ0ρmω
2ξθ = i

m

r
γµ0p(∇·ξ) + iDBz

1
r

d
dr

(rξr) + 2ik
BθBz

r
ξr

−H2Bz(ξθBz − ξzBθ) , (8.104)

−µ0ρmω
2ξz = ikγµ0p(∇·ξ) − iDBθ

1
r

d
dr

(rξr) − 2ik
B2

θ

r
ξr

+H2Bθ(ξθBz − ξzBθ) , (8.105)

where
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F =
m

r
Bθ + kBz = (k·B) , D =

m

r
Bz − kBθ , H2 =

(m
r

)2
+ k2 ,

∇·ξ =
1
r

d
dr

(rξr) +
im
r
ξθ + ikξz .

When ξθ, ξz are eliminated by (8.104), (8.105), we find

d
dr

{
µ0ρmω

2 − F 2

∆

[
µ0ρmω

2(γµ0p+B2) − γµ0pF
2]1
r

d
dr

(rξr)
}

+

{
µ0ρmω

2 − F 2 − 2Bθ
d
dr

(
Bθ

r

)
− 4k2

∆

B2
θ

r2
(µ0ρmω

2B2 − γµ0pF
2)

+r
d
dr

[
2kBθ

r2∆

(m
r
Bz − kBθ

) [
µ0ρmω

2(γµ0p+B2) − γµ0pF
2]]}ξr = 0 ,

(8.106)

where ∆ is

∆ = µ2
0ρ

2
mω

4 − µ0ρmω
2H2(γµ0p+B2) + γµ0pH

2F 2 .

This equation was derived by Hain and Lüst [8.13]. The solution of (8.106)
gives ξr(r) in the region 0 < r < a. The equations for the vacuum region
a < r < aw, where aw is the radius of the wall, are

∇ × B1 = 0 , ∇·B1 = 0 ,

so that we find
B1 = ∇ψ , ∆ψ = 0 ,

ψ =
[
bIm(kr) + cKm(kr)

]
exp(imθ + ikz) ,

B1r =
∂ψ

∂r
=
[
bI ′

m(kr) + cK ′
m(kr)

]
exp(imθ + ikz) . (8.107)

In the plasma region, B1r is given by

B1r = i(k·B)ξr = iFξr ,

and the boundary conditions at r = a are

B1r(a) = iFξr(a) , (8.108)

B′
1r(a) = i

[
F ′ξr(a) + Fξ′

r(a)
]
, (8.109)

and the coefficients b, c can be fixed.
To deal with this equation as an eigenvalue problem, boundary conditions

must be imposed on ξr. One is ξr ∝ rm−1 at r = 0, and the other is B1r(aw) =
0 for the radial component of the perturbed magnetic field at the perfect
conducting wall. After finding suitable ω2 to satisfy these conditions, the
growth rate γ2 ≡ −ω2 is obtained [8.14].
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8.5 Energy Integral of Axisymmetric Toroidal System

8.5.1 Energy Integral in Illuminating Form

The energy integral (8.46) derived in Sect. 8.2, viz.,

W =
1
2

∫
V

[
B2

1

µ0
+ γp(∇·ξ)2 + (∇·ξ)(ξ·∇p) − ξ·(j × B1)

]
dr , (8.110)

can be further rearranged to the more illuminating form [8.15,8.16]

W =
1
2

∫ [
γp(∇·ξ)2 +

1
µ0

|B1⊥|2 +
1
µ0

∣∣∣∣B1‖ − B
µ0(ξ·∇p)
B2

∣∣∣∣2

− (j·B)
B2 (ξ × B)·B1 − 2(ξ·∇p)(ξ·κ)

]
dr . (8.111)

The first term in the integrand of (8.111) is the sonic wave term. The second
and third terms are Alfvén wave terms. The fourth term is the kink mode term
and the last is the ballooning mode term. κ is the field line curvature vector.
The rearrangement from (8.110) to (8.111) is described in the following. When
ξ is expressed by the sum of the parallel component ξ‖b and the perpendicular
component ξ⊥ to the magnetic field B = Bb

ξ = ξ‖b + ξ⊥ ,

the last two terms of (8.110) reduce to

(∇·ξ)(ξ·∇p) + (j × ξ)·B1

= (ξ·∇p)∇·(ξ‖b) + (ξ·∇p)∇·ξ⊥ + ξ‖(j × b)·∇ × (ξ × B) + (j × ξ⊥)·B1

= (ξ·∇p)(B·∇)
ξ‖
B

+
ξ‖
B

∇·[(ξ × B) × ∇p]+ (ξ·∇p)∇·ξ⊥ + (j × ξ⊥)·B1

= (ξ · ∇p)(B·∇)
ξ‖
B

+
ξ‖
B

∇·[(ξ·∇p)B]+ (ξ·∇p)∇·ξ⊥ + (j × ξ⊥)·B1

= ∇·
[
ξ‖
B

(ξ·∇p)B
]

+ (ξ·∇p)∇·ξ⊥ + (j × ξ⊥)·B1 . (8.112)

The current density j can be expressed as the sum of components parallel
and perpendicular to the magnetic field as follows:

j = σB +
B × ∇p
B2 ,

where
σ =

j·B
B2 .
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The last term of (8.112) is

(j × ξ⊥)·B1 = σ(B × ξ⊥)·B1 − (ξ⊥·∇p)
B2 B·B1 ,

and ∇·ξ⊥ in the second term of (8.112) is

∇·ξ⊥ = ∇ ·
[

B

B2 × (ξ × B)
]

= (ξ × B)·∇ × B

B2 − B

B2 ·∇ × (ξ × B)

= (ξ × B)·∇ × B

B2 − 2(ξ × B)·∇B
B3 × B − B

B2 ∇ × (ξ × B)

= − (ξ·µ0∇p)
B2 + 2(ξ × B)·B × ∇B

B3 − B

B2 ·B1 . (8.113)

Then the energy integral (8.110) reduces to

W =
1
2

∫
V

[
γp(∇·ξ) +

B2
1

µ0
− µ0(ξ·∇p)2

B2 − (ξ·∇p)B·B1

B2

−(ξ⊥·∇p)B·B1

B2 + σ(B × ξ⊥)·B1 + 2(ξ·∇p)(ξ × B)·B × ∇B
B3

]
dr

=
1
2

∫
V

{
γp(∇·ξ) +

1
µ0

∣∣∣∣B1 − µ0(ξ·∇p)
B2 B

∣∣∣∣2 − (j · B)
B2 (ξ⊥ × B)·B1

−2(ξ·∇p)
[
µ0(ξ·∇p)
B2 − (ξ × B)·B × ∇B

B3

]}
dr .

By introducing a vector κ

κ ≡ 1
2B4

[
B × ∇(B2 + 2µ0p)

]× B =
µ0∇p
B2 +

(B × ∇B) × B

B3 , (8.114)

the last ballooning term can be expressed as

−2(ξ·∇p)(ξ·κ) ,

since

(ξ·κ) =
µ0(ξ·∇p)
B2 +

ξ·(B × ∇B) × B

B3 =
µ0(ξ·∇p)
B2 − (ξ × B)·(B × ∇B)

B3 .

(8.115)
Equations (8.113) and (8.114) reduce to

∇·ξ⊥ + 2(ξ⊥·κ) =
µ0(ξ⊥·∇p)

B2 − B·B1

B2 . (8.116)

From (6.7) of Chap. 6, we have

∇(2µ0p+B2) = 2(B·∇)B .
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Fig. 8.7. Orthogonal coordinate system (ψ, χ, ϕ). eψ, eχ, eϕ are unit vectors in
the ψ, χ, and ϕ directions, respectively

Then it becomes clear from (8.114) that κ is equal to the curvature vector
as follows:

κ =
1
B

[
b × (b·∇)(Bb)

]× b =
{

b ×
[
(b·∇)b + b

1
B

(b·∇)B
]}

× b

=
[
(b·∇)b

]
⊥ = −n

R
,

where R is the radius of curvature and n is the unit vector from the center of
curvature to the point on the line of magnetic force (see Fig. 2.4 of Chap. 2).

8.5.2 Energy Integral of Axisymmetric Toroidal System

In any axisymmetric toroidal system, the energy integral may be reduced to
a more convenient form. The axisymmetric magnetic field is expressed as

B =
Î(ψ)
R

eϕ +Bχeχ , Î(ψ) ≡ µ0I(ψ)
2π

, (8.117)

where ϕ is the angle around the axis of the torus and ψ is the flux function
defined by

ψ = −RAϕ . (8.118)

R is the distance from the axis of symmetry and Aϕ is the ϕ component of
the vector potential of the magnetic field. Bχ is the poloidal component of the
magnetic field. eϕ and eχ are the unit vectors in the directions of the toroidal
and poloidal angles, respectively (see Fig. 8.7). The R and Z components of
the magnetic field are given by
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RBR =
∂ψ

∂Z
, RBZ = − ∂ψ

∂R
.

Since ∇ϕ = (1/R)eϕ, the poloidal component of the magnetic field is ex-
pressed by Bp = −∇ψ × ∇ϕ. Hence,

B = −∇ψ × ∇ϕ+ Î(ψ)∇ϕ . (8.119)

We can introduce an orthogonal coordinate system (ψ, χ, ϕ), where ψ =
const. are the magnetic surfaces and χ, ϕ are the poloidal and toroidal angles,
respectively. The metric for these coordinates is

ds2 =
(

dψ
RBχ

)2

+ (JBχdχ)2 + (Rdϕ)2 , (8.120)

where the volume element is dV = J(ψ)dψdχdϕ. A field line is defined by
ψ = const. and

Rdϕ
JBχdχ

=
Bϕ

Bχ
=
Î(ψ)
RBχ

,

that is,
dϕ
dχ

=
J(ψ)Î(ψ)
R2 ≡ q̂(ψ, χ) .

Then the toroidal safety factor is given by

q(ψ) =
1
2π

∮
J(ψ)Î(ψ)
R2 dχ .

The energy integral of an axisymmetric toroidal system is given by [8.17]

W =
1
2

∫
V

[ |B1|2
µ0

+ γp|(∇·ξ)|2 + (∇·ξ∗)(ξ·∇p) − ξ∗·(j × B1)
]
dr

=
∫

V

[
1

2µ0

B2k2
‖

B2
χR

2 |X|2 +
1

2µ0

R2

J2

∣∣∣∣∣∂U∂χ − I
(
JX

R2

)′∣∣∣∣∣
2

+
B2

χ

2µ0

∣∣∣∣inU +X ′ − µ0jϕ
RB2

χ

X

∣∣∣∣2 +
1
2
γp

∣∣∣∣ 1J (JX)′ + iBk‖Y + inU
∣∣∣∣2

−KXX∗
]
Jdψdχdϕ . (8.121)

The derivation of (8.121) is described in the following. The notation in (8.121)
will be explained as we go along.

In a general orthogonal coordinate system (u1, u2, u3) with metric given
by
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ds2 = h2
1(du

1)2 + h2
2(du

2)2 + h2
3(du

3)2 , g1/2 = h1h2h3 ,

the gradient operator on a scalar φ is

∇φ =
∑ 1

hj

∂φ

∂uj
ej ,

and the divergence and rotation operators on a vector

F = F1e1 + F2e2 + F3e3 ,

where ej are unit vectors, are expressed by

∇·F =
1
g1/2

[
∂

∂u1 (h2h3F1) +
∂

∂u2 (h3h1F1) +
∂

∂u3 (h1h2F3)
]
,

∇ × F =
1

h2h3

[
∂

∂u2 (h3F3) − ∂

∂u3 (h2F2)
]

e1

+
1

h3h1

[
∂

∂u3 (h1F1) − ∂

∂u1 (h3F3)
]

e2

+
1

h1h2

[
∂

∂u1 (h2F2) − ∂

∂u2 (h1F1)
]

e3 .

In the coordinate system (ψ, χ, ϕ), (ξ·∇p) reduces to

(ξ·∇p) = ξψRBχ
∂p

∂ψ
= ξψRBχp

′ .

The prime on p means differentiation with respect to ψ. From (6.16) in
Chap. 6, we have

−jϕ = Rp′ +
Î Î ′

µ0R
, (8.122)

that is,

p′ = −jϕ
R

− Î Î ′

µ0R2 .

Note that ψ defined by (8.118) is −RAϕ, while ψ in (6.12) of Chap. 6 is RAϕ.
∇·ξ is expressed as

∇·ξ =
1
J

[
∂

∂ψ
(JBχRξψ) +

∂

∂χ

(
ξχ
Bχ

)
+
∂

∂ϕ

(
Jξϕ
R

)]
.

It is convenient to introduce

X ≡ RBχξψ , Y ≡ ξχ
Bχ

, U ≡ 1
RBχ

(Bχξϕ−Bϕξχ) =
ξϕ
R

−ÎR2Bχξχ ,
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whence

ξψ =
X

RBχ
, ξχ = BχY , ξϕ = RU +

Î

R
Y ,

and

ξ·∇p = Xp′ = X

(
−jϕ
R

− Î Î ′

µ0R2

)
. (8.123)

We analyze an individual Fourier mode ξ = ξ(ψ, χ) exp(inϕ). Then

(Bik‖)Y ≡
(
Bχ

1
JBχ

∂

∂χ
+Bϕ

1
R

∂

∂ϕ

)
Y =

(
1
J

∂

∂χ
+
Î

R2 in

)
Y ,

1
J

∂

∂χ
Y = (Bik‖)Y − in

Î

R2Y .

Since
∇·ξ =

1
J

(JX)′ + iBk‖Y + inU , (8.124)

it follows that

(ξ·∇p)(∇·ξ∗) = X

(
−jϕ
R

− Î Î ′

µ0R2

)(
1
J

(JX∗)′ − iBk‖Y ∗ − inU∗
)
.

(8.125)
We now derive the expression for B1 = ∇ × (ξ × B):

(ξ × B)ψ = ξχBϕ − ξϕBχ , (ξ × B)χ = −ξψBϕ , (ξ × B)ϕ = ξψBχ ,

B1ψ =
1

JBχR

[
∂X

∂χ
+
∂

∂ϕ

(
JBϕ

R
X

)]
=

1
BχR

iBk‖X ,

B1χ = −Bχ

(
inU +

∂X

∂ψ

)
,

B1ϕ =
R

J

[
− ∂

∂ψ

(
JÎ

R2X

)
+
∂U

∂χ

]
.

The components of the current density are

µ0jψ = 0 , µ0jχ = −Bχ
∂

∂ψ
(RBϕ) = −BχÎ

′ , µ0jϕ =
R

J

∂

∂ψ
(JB2

χ) ,

(8.126)
and

(B1 × ξ∗)χ =
R

J

∂U

∂χ
ξ∗
ψ − R

J

(
IJ

R2X

)′
ξ∗
ψ − iBk‖

BχR
Xξ∗

ϕ ,

(B1 × ξ∗)ϕ =
iBk‖
BχR

Xξ∗
χ + (inU +X ′)Bχξ

∗
ψ .
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Then,

ξ∗·(j × B1) = j·(B1 × ξ∗)

= −Bχ
Î ′

µ0

[
R

J

∂U

∂χ
ξ∗
ψ − R

J

(
IJ

R2X

)′
ξ∗
ψ − iBk‖

BχR
Xξ∗

ϕ

]

+jϕ

[
iBk‖
BχR

Xξ∗
χ + (inU +X ′)Bχξ

∗
ψ

]

=
iBk‖
R

X

[
Y ∗jϕ +

Î ′

µ0

(
RU∗ +

Î

R
Y ∗
)]

+
Î ′

µ0J

(
IJ

R2X

)′
X∗

− Î ′

µ0J

∂U

∂χ
X∗ + inUX∗ 1

R
jϕ +X ′X∗ 1

R
jϕ ,

(∇·ξ∗)(ξ·∇p) − (ξ∗ × j)·B1 (8.127)

=

(
−jϕ
R

− Î Î ′

µ0R2

)
(XX∗′ +X ′X∗) +

jϕ
R

(inXU∗ − inX∗U)

+in
Î

R2XU
∗ Î

′

µ0
+ iBk‖XU∗ Î

′

µ0
+

1
J

∂U

∂χ
X∗ Î

′

µ0

+XX∗
(

−J
′

J

jϕ
R

− Î ′2

µ0R2 +
Î Î ′

µ0R2 2
R′

R
− 2

Î Î ′

µ0R2

J ′

J

)
,

and

|B1ϕ|2
µ0

=
R2

µ0J2

∣∣∣∣∣∂U∂χ − I
(
JX

R2

)′
− JX

R2 Î
′
∣∣∣∣∣
2

=
R2

µ0J2

∣∣∣∣∣∂U∂χ − I
(
JX

R2

)′∣∣∣∣∣
2

− Î ′

µ0J

(
∂U

∂χ
X∗ +

∂U∗

∂χ
X

)

+
Î Î ′

µ0R2 (X ′X∗ +X∗′X) + 2
Î Î ′

µ0J

(
J ′

R2 − 2R′

R3 J

)
XX∗ +

Î ′2

µ0R2XX
∗ ,

|B1χ|2
µ0

=
Bχ2

µ0
|inU +X ′|2

=
Bχ2

µ0

∣∣∣∣inU +X ′ − µ0jϕ
RB2

χ

X

∣∣∣∣2 + (inUX∗ − inU∗X)
jϕ
R

+(X ′X∗ +X∗′)
jϕ
R

− µ0j
2
ϕ

R2B2
χ

XX∗ .
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Finally, the energy integral of the axisymmetric toroidal system becomes

W =
1
2

∫
V

[ |B1|2
µ0

+ γp|(∇·ξ)|2 + (∇·ξ∗)(ξ·∇p) − ξ∗·(j × B1)
]
dr

=
∫

V

[
1

2µ0

B2k2
‖

B2
χR

2 |X|2 +
1

2µ0

R2

J2

∣∣∣∣∣∂U∂χ − I
(
JX

R2

)′∣∣∣∣∣
2

+
B2

χ

2µ0

∣∣∣∣inU +X ′ − µ0jϕ
RB2

χ

X

∣∣∣∣2
+

1
2
γp

∣∣∣∣ 1J (JX)′ + iBk‖Y + inU
∣∣∣∣2 −KXX∗

]
Jdψdχdϕ , (8.128)

where

K ≡ Î Î ′

µ0R2

R′

R
+
jϕ
2R

(
J ′

J
+
µ0jϕ
RB2

χ

)
=

Î Î ′

µ0R2

R′

R
+
jϕ
R

(
J ′

J
+
B′

χ

Bχ

)
.

Here we have used (8.126), i.e.,

µ0jϕ =
R

J
(J ′B2

χ + J2BχB
′
χ) .

8.5.3 Energy Integral of High-n Ballooning Mode

The energy integral (8.128) is used for stability analysis of high-n modes and
the ballooning mode [8.17,8.18].

The first step in minimizing δW is to select Y so that the second positive
term in (8.128) vanishes (∇·ξ = 0). The second step is to minimize with
respect to U . The minimizing U is given by

inU +
∂X

∂ψ
+
(
µ0p

′

B2 +
q̂′

q̂

I2

R2B2

)
X +

I2

q̂R2B2 JBk‖

(
1
n

∂X

∂ψ

)
= 0

When we treat ballooning modes, perturbations with large toroidal mode
number n and |m − q̂n| � n are important (see Sect. 8.6). After a long
mathematical calculation, the energy integral withO(1/n) accuracy is derived
as [8.17]

W =
π

µ0

∫
dψdχ

{
JB2

R2B2
χ

∣∣k‖X
∣∣2 +

R2B2
χ

JB2

∣∣∣∣ 1n ∂

∂ψ
(JBk‖X)

∣∣∣∣2
−2Jµ0p

′

B2

[
|X|2 ∂

∂ψ

(
µ0p+

B2

2

)
− iÎ
JB2

∂

∂χ

(
B2

2

)
X∗

n

∂X

∂ψ

]

+
X∗

n
JBk‖(Xσ′) − 1

n
(P ∗JBk‖Q+ c.c.)

}
, (8.129)
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where c.c. means the conjugate complex and

P = Xσ − B2
χ

q̂B2

I

n

∂

∂ψ
(JBk‖X) , Q =

Xµ0p
′

B2 +
Î2

q̂2R2B2

1
n

∂

∂ψ
(JBk‖X) ,

σ =
Îµ0p

′

B2 + Î ′ , iJk‖B =
∂

∂χ
+ inq̂ , q̂(ψ, χ) =

ÎJ

R2 .

δW must be minimized with respect to all periodic functions X subject to
an appropriate normalization

π

∫
Jdψdχρm

[
|X|2
R2B2

χ

+
(
RBχ

B

)2 ∣∣∣∣ 1n ∂X∂ψ
∣∣∣∣2
]

= const. , (8.130)

where ρm is the mass density and (8.130) corresponds to the total kinetic
energy of transverse motion to the leading order in 1/n. The Euler equation
for the minimizing functionX(ψ, χ) can be deduced form (8.129) and (8.130).
As X(ψ, χ) is periodic in χ, it can be expanded in a Fourier series:

X(ψ, χ) =
∑
m

Xm(ψ) exp(imχ) .

A continuous function Xs(ψ) of s, which is equal to Xm(ψ) for s equal to an
integer m, can be constructed and expressed as a Fourier integral:

Xs(ψ) =
∫ ∞

−∞
X̂(ψ, y) exp(isy)dy/(2π) , X̂(ψ, y) =

∫ ∞

−∞
Xs(ψ) exp(−isy)ds.

X̂(ψ, y) is called the ballooning representation of X(ψ, χ). Then X(ψ, χ)
reduces to

X(ψ, χ) =
∑
m

exp(−imχ)
∫ ∞

−∞
X̂(ψ, y) exp(imy)dy/(2π) . (8.131)

Using the delta function δ(x),

1
2π

∑
m

exp
[− im(χ− y)] =

∑
N

δ(y − χ+ 2πN) ,

and the relation between X(ψ, χ) and X̂(ψ, y) is

X(ψ, χ) =
∑
N

X̂(ψ, χ− 2πN) . (8.132)

X(ψ, χ) is expressed as an infinite sum of quasi-modes.
The Euler equation for X(ψ, χ) is converted into an identical equation

for X̂(ψ, y), but with X̂ in the infinite domain of y and free of periodicity
requirements. Let us consider X̂(ψ, y) with the form
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X̂(ψ, y) = F (ψ, y) exp
(

−in
∫ y

y0

q̂dy
)
, (8.133)

in which the amplitude F (ψ, y) is a more slowly varying function as n → ∞.
Then

iJk‖BX̂(ψ, y) =
(
∂

∂y
+ inq̂

)
X̂(ψ, y) =

∂F (ψ, y)
∂y

exp
(

−in
∫ y

y0

q̂dy
)
.

The leading term in the Euler equation for X̂(ψ, y) reduces to [8.17]

1
J

∂

∂y

⎧⎨⎩ 1
JR2B2

χ

⎡⎣1 +

(
R2B2

χ

B

∫ y

y0

q̂′dy

)2
⎤⎦ ∂F0

∂y

⎫⎬⎭
+

[
2µ0p

′

B2

∂

∂ψ

(
µ0p+

B2

2

)
− Îµ0p

′

B4

(∫ y

y0

q̂′dy
)

1
J

∂B2

∂y

]
F0

+
ω2(ψ, y0)
R2B2

χ

⎡⎣1 +

(
R2B2

χ

B

∫ y

y0

q̂′dy

)2
⎤⎦F0 = 0 . (8.134)

The stability of the ballooning mode can be analyzed using this Euler equa-
tion (see Sect. 8.6) [8.18].

8.6 Ballooning Instability

In interchange instability, the parallel component k‖ = (k · B)/B of the
propagation vector is zero and an average minimum-B condition may stabilize
such an instability. Suydam’s condition and the local-mode stability condition
of the toroidal system are involved in perturbations with k‖ = 0. In this
section, we study perturbations where k‖ �= 0 but |k‖/k⊥| � 1. Although the
interchange instability is stabilized by an average minimum-B configuration,
the perturbation with k‖ �= 0 may be able to grow locally in the bad region of
the average minimum-B field. This type of instability is called the ballooning
mode (see Fig. 8.8).

There is a beta limit for the stability of the ballooning mode. It will be
shown that average minimum-B and shear stabilize the ballooning mode.
Therefore measures of the magnetic well and shear are important parameters
in magnetic confinement configurations [8.19].

The energy integral δW is given by

δW =
1

2µ0

∫ {[∇ × (ξ × B0)
]2 − [ξ × (∇ × B0)

]·∇ × (ξ × B0)

+ γµ0p0(∇·ξ)2 + µ0(∇·ξ)(ξ·∇p0)
}

dr .
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Fig. 8.8. Ballooning mode

Let us consider the case where ξ can be expressed as

ξ =
B0 × ∇φ
B2

0
, (8.135)

where φ is considered to be the time integral of the scalar electrostatic po-
tential of the perturbed electric field. Because

ξ × B0 = ∇⊥φ ,

the energy integral reduces to

δW =
1

2µ0

∫ {
(∇ × ∇⊥φ)2 −

[
(B0 × ∇⊥φ) × µ0j0

B2
0

]
∇ × ∇⊥φ

+ γµ0p0(∇·ξ)2 + µ0(∇·ξ)(ξ·∇p0)
}

dr .

∇·ξ is given by

∇·ξ = ∇·
(

B0 × ∇φ
B2

0

)
= ∇φ·∇ ×

(
B0

B2
0

)
= ∇φ·

[(
∇ 1
B2

)
× B +

1
B2 ∇ × B

]
.

The second term in square brackets is negligible compared with the first term
in the low beta case. Using ∇p0 = j0 × B0, δW is expressed as

δW =
1

2µ0

∫ {
(∇ × ∇⊥φ)2 +

µ0∇p0·(∇⊥φ× B0)
B2

0

(
B0·∇ × ∇⊥φ

B2
0

)

−µ0(j0·B0)
B2

0
∇⊥φ·∇ × ∇⊥φ+ γµ0p0

[
∇
(

1
B2

0

)
·(B0 × ∇⊥φ)

]2
+
µ0∇p0·(B0 × ∇⊥φ)

B2
0

[
∇
(

1
B2

0

)
·(B0 × ∇⊥φ)

]}
dr .
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Let us use the z coordinate as a length along a field line, r as radial coordinate
of magnetic surfaces, and θ as poloidal angle in the direction perpendicular to
field lines. The r, θ, z components of ∇p0, B, and ∇φ are given approximately
by

∇p0 = (p′
0, 0, 0) , B =

(
0, Bθ(r), B0

[
1 − rR−1

c (z)
])
,

∇φ =
(
∂φ

∂r
,
∂φ

r∂θ
,
∂φ

∂z

)
, φ(r, θ, z) = φ(r, z)Re(exp imθ) .

Rc(z) is the radius of curvature of the line of magnetic force:

1
Rc(z)

=
1
R0

(
−w + cos 2π

z

L

)
.

When Rc(z) < 0, the curvature is said to be good. If the configuration is
average minimum-B, w and R0 must be 1 > w > 0 and R0 > 0. Since
Bθ/B0, r/R0, r/L are all small quantities, we find

∇⊥φ = ∇φ− ∇‖φ ≈ Re
(
∂φ

∂r
,
im
r
φ, 0
)
,

∇ × (∇⊥φ) ≈ Re
(−im

r

∂φ

∂z
,
∂2φ

∂z∂r
, 0
)
,

B0 × ∇⊥φ ≈ Re
(−im

r
B0φ,B0

∂φ

∂r
, 0
)
,

and δW reduces to

δW =
1

2µ0

∫
m2

r2

{[
∂φ(r, z)
∂z

]2
− β

rpRc(z)
[
φ(r, z)

]2} 2πrdrdz ,

where −p0/p′
0 = rp and β = p0/(B2

0/2µ0). The second term contributes to
stability in the region Rc(z) < 0 and contributes to instability in the region
of Rc(z) > 0. Euler’s equation is given by

d2φ

dz2
+

β

rpRc(z)
φ = 0 . (8.136)

Rc is nearly equal to B/|∇B|. Equation (8.136) is a Mathieu differential
equation, whose eigenvalue is

w = F (βL2/2π2rpR0) .

Since

F (x) = x/4 , x � 1 , F (x) = 1 − x−1/2 , x � 1 ,

we find the approximate relation
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βc ∼ 4w
(1 + 3w)(1 − w)2

2π2rpR0

L2 .

Since w is of the order of rp/2R0 and the connection length is

L ≈ 2πR0(2π/ι) ,

where ι is the rotational transform angle, the critical beta ratio βc is

βc ∼
( ι

2π

)2 (rp
R

)
. (8.137)

If β is smaller than the critical beta ratio βc, then δW > 0, and the plasma is
stable. The stability condition for the ballooning mode in the shearless case
is given by [8.19]

β < βc .

In the configuration with magnetic shear, a more rigorous treatment is
necessary. For ballooning modes with large toroidal mode number n � 1 and
m − nq ∼ 0 (see Sect. 8.5), the stable region in the shear parameter S and
the measure α of the pressure gradient of the ballooning mode is shown in
Fig. 8.9. The shear parameter S is defined by

S =
r

q

dq
dr
,

where q is the safety factor (q ≡ 2π/ι, ι the rotational transform angle) and
the measure α of the pressure gradient is defined by

α = − q2R

B2/2µ0

dp
dr
.

The straight-line approximation to the maximum pressure gradient in the
range of large positive shear (S > 0.8) is α ∼ 0.6S, as shown in Fig. 8.9. Since

β =
1

B2
0/2µ0

1
πa2

∫ a

0
p2πrdr = − 1

B2
0/2µ0

1
a2

∫ a

0

dp
dr
r2dr ,

the maximum ballooning-stable beta is

β = 0.6
a

R

(
1
a3

∫ a

0

1
q3

dq
dr
r3dr

)
.

Under an optimum q profile, the maximum beta is given by [8.20]

βmax ∼ 0.28
a

Rqa
(qa > 2) , (8.138)

where qa is the safety factor at the plasma boundary. In the derivation of
(8.138), it is assumed that qa > 2, q0 = 1.
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Fig. 8.9. Maximum stable pressure gradient α as a function of the shear param-
eter S of ballooning mode. The dotted line is the stability boundary obtained by
imposing a more restricted boundary condition on the perturbation [8.18]

It should be noted that the ballooning mode is stable in the negative shear
region of S, as shown in Fig. 8.9. When the shear parameter S is negative
[q(r) decreases outwardly], the outer lines of magnetic force rotate around
the magnetic axis more quickly than the inner ones. When the pressure in-
creases, the tokamak plasma tends to expand in a direction of major radius
(the Shafranov shift, see the note at the end of this section). This must be
counterbalanced by strengthening the poloidal field on the outside of the toka-
mak plasma. In the region of high pressure gradient, the necessary poloidal
field increases outwardly, so on outer magnetic surfaces the magnetic field
lines rotate around the magnetic axis faster than they do on inner ones and
the shear parameter becomes more negative [8.21].

In reality, the shear parameter in a tokamak is positive for typical oper-
ations. However, the fact that the ballooning mode is stable in the negative
shear parameter region is very important for developing a tokamak configu-
ration that is stable against ballooning modes. Since

r

Rq
=
Bθ

B0
=

1
B0

µ0

2πr

∫ r

0
j(r)2πrdr ,

the profile q(r) of the safety factor is

1
q(r)

=
R

2B0

(
µ0

πr2

∫ r

0
j2πrdr

)
≡ µ0R

2B0
〈j(r)〉r .

Therefore, a negative shear configuration can be realized by a hollow cur-
rent profile. The MHD stability of a tokamak with hollow current profiles is
analyzed in detail in [8.22].
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Shafranov Shift

In the case of a tokamak with large aspect and circular plasma cross-section,
the Shafranov shift ∆(r) of the center of the magnetic surface with radius r
from the center of the plasma boundary with radius a is [8.23]

d∆
dr

=
1

RrB2
θ

(
βpB

2
θa

∫ r

0
r2

d
dr

p

〈p〉dr −
∫ r

0
rB2

θdr
)
, (8.139)

where Bθ is the magnitude of the poloidal field at r and Bθa is the mag-
nitude of the poloidal field at r = a. βp is the poloidal beta and 〈p〉 is the
volume average of the pressure 〈p〉 =

∫ a

0 p2rdr/a
2. In the case of a parabolic

pressure profile, the pressure term on the right-hand side of (8.139) becomes
−(a/R)βp(Bθa/Bθ)2(r/a)3 and in the case of a flat current profile, the sec-
ond term on the right-hand side of (8.139) becomes −(a/4R)(r/a). When the
pressure profile is parabolic and the current profile is flat, the Shafranov shift
is ∆/a = (a/2R)(βp + 1/4)

[
1 − (r/a)2

]
.

8.7 Eta-i Mode
Due to Density and Temperature Gradient

Let us consider a plasma with density gradient dn0/dr and temperature
gradient dTe0/dr, dTi0/dr in a magnetic field in the z direction. Assume
that the ion density becomes ni = ni0 + ñi by disturbance. The equation of
continuity

∂ni

∂t
+ vi·∇ni + ni∇·vi = 0

reduces by linearization to

−iωñi + ṽr
∂n0

∂r
+ n0ik‖ṽ‖ = 0 . (8.140)

It is assumed that the perturbation terms change as exp i(kθrθ + k‖z − ωt)
and kθ, k‖ are the θ and z components of the propagation vector. When the
perturbed electrostatic potential is denoted by φ̃, the E × B drift velocity
is ṽr = Eθ/B = ikθφ̃/B. Since the electron density follows a Boltzmann
distribution, we find

ñe

n0
=
eφ̃

kTe
. (8.141)

The component of the equation of motion parallel to the magnetic field,

nimi
dv‖
dt

= −∇‖pi − en∇‖φ ,

reduces by linearization to
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−iωnimiṽ‖ = −ik‖(p̃i + en0φ̃) . (8.142)

Similarly the adiabatic equation

∂

∂t
(pin

−5/3
i ) + v·∇(pin

−5/3
i ) = 0

reduces to

−iω
(
p̃i
pi

− 5
3
ñi

ni

)
− ikθφ̃

B

(
dTi0/dr
Ti0

− 2
3

dn0/dr
n0

)
= 0 . (8.143)

Let us define the electron drift frequencies ω∗
ne, ω

∗
T e, and the ion drift fre-

quencies ω∗
ni, ω

∗
T i by

ω∗
ne ≡ −kθ(κTe)

eBne

dne

dr
, ω∗

ni ≡ kθ(κTi)
eBni

dni

dr
,

ω∗
T e ≡ − kθ

eB

d(κTe)
dr

, ω∗
T i ≡ kθ

eB

d(κTi)
dr

.

The ratio of the temperature gradient to the density gradient of electrons
and ions is given by

ηe ≡ dTe/dr
Te

ne

dne/dr
=

d lnTe

d lnne
, ηi ≡ dTi/dr

Ti

ni

dni/dr
=

d lnTi

d lnni
,

respectively. The following relations hold among these values:

ω∗
ni = − Ti

Te
ω∗

ne , ω∗
T e = ηeω

∗
ne , ω∗

T i = ηiω
∗
ni .

Then (8.140), (8.141), (8.142), and (8.143) reduce to

ñi

n0
=

ṽ‖
ω/k‖

+
ω∗

ne

ω

eφ̃

κTe
,

ñe

n0
=
eφ̃

κTe
,

ṽ‖
ω/k‖

=
1

mi(ω/k‖)2

(
eφ̃+

p̃i
n0

)
,

p̃i
pi0

− 5
3
ñ

n0
=
ω∗

ne

ω

(
ηi − 2

3

)
eφ̃

κTe
.

The charge neutrality condition ñi/n0 = ñe/n0 yields the dispersion equation:

1 − ω∗
ne

ω
−
(
vTi

ω/k‖

)2 [
Te

Ti
+

5
3

+
ω∗

ne

ω

(
ηi − 2

3

)]
= 0 ,

where v2Ti = κTi/mi. The solution in the case ω � ω∗
ne

is [8.24]

ω2 = −k2
‖v

2
Ti

(
ηi − 2

3

)
. (8.144)
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The dispersion equation shows that this type of perturbation is unstable when
ηi > 2/3. This mode is called the ηi mode or ion temperature gradient (ITG)
mode.

When the propagation velocity |ω/k‖| becomes of the order of the ion
thermal velocity vTi , the interaction (Landau damping) between ions and
wave (perturbation) becomes important, as will be described in Chap. 11,
and the MHD treatment must be modified. When the value of ηi is not large,
a kinetic treatment is needed and the threshold of ηi becomes ηi,cr ∼ 1.5.



9 Resistive Instabilities

In the last chapter, we discussed instabilities of plasmas with zero resistivity.
In such cases, the conducting plasma is frozen to the line of magnetic force.
However, the resistivity of a plasma is not generally zero and the plasma may
therefore deviate from the magnetic line of force. Modes which are stable in
the ideal case may in some instances become unstable if a finite resistivity is
introduced.

Ohm’s law is
ηj = E + V × B . (9.1)

For simplicity we assume here that E is zero. The current density is j =
V × B/η and the j × B force is

F s = j × B =
B(V ·B) − V B2

η
. (9.2)

When η tends to zero, this force becomes infinite and prevents the plasma
from deviating from the line of magnetic force. When the magnitude B of
the magnetic field is small, this force does not become large, even if η is
small, and the plasma can deviate from the line of magnetic force. When we
consider a perturbation with propagation vector k, only the parallel (to k)
component of the zeroth-order magnetic field B affects the perturbation, as
will be shown later. Even if shear exists, we can choose a propagation vector
k perpendicular to the magnetic field B:

(k·B) = 0 . (9.3)

Accordingly, if there is any force F dr driving the perturbation, this driving
force may easily exceed the force F s, which is very small for a perturbation
where (k·B) = 0, and the plasma becomes unstable. This type of instability
is called resistive instability .

9.1 Tearing Instability

Let us consider a slab model in which the zeroth-order magnetic field B0
depends only on x, and B is given as
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B0 = B0y(x)ey +B0z(x)ez . (9.4)

From Ohm’s law (9.1), we find

∂B

∂t
= −∇ × E = ∇ × [(V × B) − ηj] = ∇ × (V × B) +

η

µ0
∆B , (9.5)

where η is assumed to be constant. It is assumed that the plasma is incom-
pressible. Since the growth rate of the resistive instability is small compared
with the MHD characteristic rate (inverse of the Alfvén wave transit time)
and the movement is slower than the sound velocity, the assumption of in-
compressibility is justified and it follows that

∇·V = 0 . (9.6)

The magnetic field B always satisfies

∇·B = 0 . (9.7)

The equation of motion is

ρm
dV

dt
=

1
µ0

(∇ × B) × B − ∇p

=
1
µ0

[
(B0·∇)B1 + (B1·∇)B0 − ∇B2

2

]
− ∇p . (9.8)

Let us consider the perturbation expressed by

f1(r, t) = f1(x) exp
[
i(kyy + kzz) + γt

]
.

Then (9.5) reduces to

γB1x = i(k·B)Vx + ηµ0
(
∂2∂x2 − k2)B1x , (9.9)

where k2 = k2
y + k2

z . The first term on the right-hand side of (9.8) becomes
(B0·∇)B1 = i(k·B0)B1. The rotation of (9.8) is

µ0ρmγ∇ × V = ∇ ×
[
i(k·B0)B1 +

(
B1x

∂

∂x

)
B0

]
. (9.10)

Equations (9.6) and (9.7) reduce to

∂B1x

∂x
+ ikyB1y + ikzB1z = 0 , (9.11)

∂Vx

∂x
+ ikyVy + ikzVz = 0 . (9.12)

Multiply ky and the z component of (9.10) and multiply kz and the y com-
ponent and take the difference. Using the relations (9.11) and (9.12), we
find [9.1]
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Fig. 9.1. Zeroth-order magnetic configuration and magnetic islands due to tearing
instability. Profiles of B1x and Vx are also shown

µ0ρmγ

(
∂2

∂x2 − k2
)
Vx = i(k·B0)

(
∂2

∂x2 − k2
)
B1x − i(k·B0)′′B1x , (9.13)

where the prime denotes differentiation with respect to x. Ohm’s law and the
equation of motion reduce to (9.9) and (9.13). It should be noted that the
zeroth-order magnetic field B0 appears only in the form (k·B0). When we
introduce a function

F (x) ≡ (k·B0) , (9.14)

the location of F (x) = 0 is the position where resistive instabilities are likely
to occur. We choose this position to be x = 0 (see Fig. 9.1). F (x) is equal to
(k·B0) � (k·B0)′x near x = 0. As is clear from (9.9) and (9.13), B1x is an
even function and Vx is an odd function near x = 0.

The term |∆B1x| ∼ |µ0kyj1z| can be large only in the region |x| < ε. Since
the growth rate of a resistive instability is much smaller than the MHD growth
rate, the left-hand side of the equation of motion (9.13) can be neglected in
the region |x| > ε and we have

d2B1x

dx2 − k2B1x =
F ′′

F
B1x , |x| > ε . (9.15)

The solution in the region x > 0 is
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B1x = e−kx

[∫ x

−∞
e2kξ dξ

∫ ξ

∞
(F ′′/F )B1xe−kη dη +A

]
,

and the solution in the region x < 0 is

B1x = ekx

[∫ x

∞
e−2kξ dξ

∫ ξ

∞
(F ′′/F )B1xekη dη +B

]
.

Let us define ∆′ as the difference between B′
1x(+ε) at x = +ε and B′

1x(−ε)
at x = −ε, so that

∆′ =
B′

1x(+ε) −B′
1x(−ε)

B1x(0)
. (9.16)

Then the value of ∆′ obtained from the solutions in the region |x| > ε is
given by

∆′ = −2k − 1
B1x(0)

(∫ −ε

−∞
+
∫ ∞

ε

)
exp(−k|x|)(F ′′/F )B1x dx . (9.17)

For a trial function

F (x) = Fsx/Ls (|x| < Ls) , F (x) = Fsx/|x| (x > |Ls|) ,

we can solve (9.15) and ∆′ reduces to

∆′ =
(

2α
Ls

)
e−2α + (1 − 2α)
e−2α − (1 − 2α)

≈ 2
Ls

(
1
α

− α
)
.

Here α ≡ kLs has been used and Ls is the shear length defined by Ls =
(F/F ′)x=0. For more general cases of F (x), B1x(x) has a logarithmic singu-
larity at x = 0, since F ′′/F ∝ 1/x generally. A method for avoiding difficulties
arising from the corresponding logarithmic singularity is described in [9.2].

Equations (9.9) and (9.13) in the region |x| < ε reduce to

∂2B1x

∂x2 −
(
k2 +

γµ0

η

)
B1x = −i

µ0

η
F ′xVx , (9.18)

∂2Vx

∂x2 −
[
k2 +

(F ′)2

ρmηγ
x2
]
Vx = i

(
F ′x

1
ρmη

− F ′′

µ0ρmγ

)
B1x . (9.19)

The value of ∆′ obtained from the solution in the region |x| < ε is given from
(9.18) as

∆′ ×B1x(0) =
∂B1x(+ε)

∂x
− ∂B1x(−ε)

∂x

=
µ0

η

∫ ε

−ε

[(
γ +

η

µ0
k2
)
B1x − iF ′xVx

]
dx . (9.20)
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The value for ∆′ in (9.20) must be equal to the value for ∆′ in (9.17). This
requirement gives the eigenvalue γ, and the growth rate of this resistive insta-
bility can be obtained [9.1]. However, we shall try to deduce the growth rate
in a qualitative manner in this section. In the region |x| < ε, it is possible to
write

∂2B1x

∂x2 ∼ ∆′B1x

ε
.

It is assumed that the three terms in (9.9), namely the induced electric field
term (left-hand side), the V ×B term (first term on the right-hand side) and
Ohm’s term (second term) are of the same order, i.e.,

γB1x ∼ η

µ0

∆′B1x

ε
, (9.21)

γB1x ∼ iF ′εVx . (9.22)

Then (9.21) yields

γ ∼ η

µ0

∆′

ε
. (9.23)

Accordingly,
∆′ > 0 (9.24)

is the instability condition. In order to get the value of γ, εmust be evaluated.
Equation (9.13) reduces to

µ0ρmγ

(−Vx

ε2

)
∼ iF ′ε

∆′B1x

ε
. (9.25)

If the terms Vx, B1x, and γ are eliminated by (9.21), (9.22) and (9.25), we
find

ε5 ∼
(

η

µ0a2

)2

(∆′a)
ρmµ0

(F ′a)2
a5 ,

ε

a
∼
[(
τA
τR

)2

(∆′a)
(
B0

F ′a2

)2
]1/5

∼ S−2/5(∆′a)1/5
[

B0

(k·B0)′a2

]2/5

,

(9.26)
where the physical quantities

τR =
µ0a

2

η
, τA =

a

B0/(µ0ρm)1/2 ,

are the resistive diffusion time and Alfvén transit time, respectively. The
dimensionless factor

S = τR/τA

is the magnetic Reynolds number and a is a typical plasma size. Accordingly,
the growth rate γ is given by
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γ =
η

µ0a2

a

ε
(∆′a) =

(∆′a)4/5

τ
3/5
R τ

2/5
A

[
(k·B0)′a2

B0

]2/5

=
(∆′a)4/5

S3/5

[
(k·B0)′a2

B0

]2/5 1
τA
. (9.27)

Since this mode very likely breaks up the plasma into a set of magnetic
islands, as shown in Fig. 9.1, this mode is called the tearing instability [9.1].

The foregoing discussion has been based on the slab model. Let us consider
this mode in a toroidal plasma. The poloidal and the toroidal components of
the propagation vector k are m/r and −n/R, respectively. Accordingly, we
have the correspondences ky ↔ m/r and kz ↔ −n/R, and

(k·B0) =
m

r
Bθ − n

R
Bz =

n

r
Bθ

(m
n

− q
)
, q ≡ r

R

Bz

Bθ
.

Therefore weak positions for tearing instability are given by (k·B0) = 0 and
these are rational surfaces satisfying q(rs) = m/n. The shear is given by

(k·B0)′ =
−n
r
Bθ

dq
dr
,

(k·B0)′r2s
B0

= −n
(rs
R

) q′rs
q
.

The tearing mode is closely related to the internal disruption in a tokamak
and plays an important role that we shall describe in Sect. 16.3.

It has been assumed that the specific resistivity η and the mass density
ρm are uniform and there is no gravitation (acceleration) g = 0. If η depends
on x, the resistive term in (9.5) becomes ∇ × (η∇ × B)/µ0. When there is
a temperature gradient (η′ �= 0), the rippling mode with short wavelength
(kLs � 1) may appear on the lower-resistivity side (high-temperature side)
of the x = 0 position. When there is gravitation, the term ρg is added to the
equation of motion (9.8). If the direction of g is opposite to ∇ρm (g is toward
the low-density side), the gravitational interchange mode may appear [9.1].

9.2 Resistive Drift Instability

A finite density and temperature gradient always exists at a plasma boundary.
Configurations including a gradient may be unstable under certain conditions.
Let us consider a slab model. The direction of the uniform magnetic field is
taken in the z direction and B0 = (0, 0, B0). The x axis is taken in the
direction of the density gradient with the positive direction outward from
the plasma. The pressure is p0(x) (see Fig. 9.2). The zeroth-order plasma
current is j0 = (0, p′

0/B0, 0) and we assume that the flow velocity and the
electric field are zero V 0 = 0, E0 = 0 to zeroth order. The flow velocity due
to classical diffusion is neglected here. Electron inertia is also neglected.



9.2 Resistive Drift Instability 143

Fig. 9.2. Slab model of resistive drift wave

The usual relations in this configuration are

Mn
∂V

∂t
= j × B − ∇p , (9.28)

E + V × B = ηj +
1
en

(j × B − ∇pe) , (9.29)

∂n

∂t
+ ∇·(nV ) = 0 , (9.30)

∇·j = 0 , (9.31)

whereM is the ion mass. In this configuration, electrostatic perturbations are
considered here. The first-order electric field E1 is expressed by the electro-
static potential E1 = −∇φ1 and the first-order magnetic field perturbation
is zero B1 = 0 (∂B/∂t = ∇ × E). The characteristics of the electrostatic
perturbation will be explained in detail in Chap. 10. For simplicity, the ion
temperature is assumed to be zero Ti = 0. Let us consider the mode

n1 = n1(x) exp i(ky + k‖z − ωt) , φ1 = φ1(x) exp i(ky + k‖z − ωt) .
Equations (9.28) and (9.29) reduce to

−iωMn0V 1 = j1 × B0 − κTe∇n1 , (9.32)

j1 × B0 − κTe∇n1 = en0(−∇φ1 + V 1 × B0 − ηj1) . (9.33)

Equations (7.32) and (7.33) yield

iω
(
M

e

)
V 1 = ∇φ1 − V 1 × B0 + ηj1 . (9.34)

When η is small (νei � Ωe), the contribution of ηj can be neglected in (9.34),
i.e., we may write
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Vx = −ik
φ1

B0
, Vy =

(
ω

Ωi

)
kφ1

B0
, Vz =

(
−Ωi

ω

)
k‖φ1

B0
,

where Ωi is as usual the ion cyclotron frequency (Ωi = −eB/M). The wave
frequency ω is assumed to be low (ω/Ωi)2 � 1. The x, y components of (9.32)
and the z component of (9.33) are

jx = −ikκTen1

B0
, jy = kn0

(
ω

Ωi

)
eφ1

B0
, jz =

ik‖
eη

(
κTe

n1

n0
− eφ1

)
.

Since (9.31) is j′x + ikjy + ik‖jz = 0, and (9.30) is

−iωn1 + n′
0Vx + n0ikVy + n0ik‖Vz = 0 ,

we find

n1

n0
−
(

1 + i
(
k

k‖

)2
ω

Ωi

en0η

B0

)
eφ1

κTe
= 0, (9.35)

n1

n0
−
((

k‖
ω

)2
κTe

M
+ k2 κTe

eB0Ωi
+
k(−n′

0/n0)κTe

eB0

1
ω

)
eφ1

κTe
= 0. (9.36)

The dispersion equation is given by the determinant of the coefficients of
(9.2) and (9.2):

1 + i

(
k

k‖

)2
ω

Ωi

νei

Ωe
−
(

k‖
ω

)2

c2
s + (kρΩ)2 − ω∗

e

ω
= 0 (9.37)

where η = meνei/ne
2, (n0eη)/B0 = νei/Ωe. c2s ≡ κTe/M , ρΩ ≡ cs/|Ωi|

and ω∗
e ≡ k(−n′

0/n0)(κTe/eB0). The drift velocities vdi and vde of ions and
electrons due to the density gradient ∇n0 are given by

vdi =
−(κTi∇n0/n0) × b

eB0
=

−κTi

eB0

(−n′
0

n0

)
ey ,

vde =
(κTe∇n0/n0) × b

eB0
=
κTe

eB0

(−n′
0

n0

)
ey .

The drift frequencies of ions and electrons are defined by ω∗
i ≡ kvdi and

ω∗
e ≡ kvde, respectively. As n′

0/n0 < 0, ω∗
e > 0 and ω∗

i = −(Ti/Te)ω∗
e < 0.

The dispersion equation reduces to(
ω

ω∗
e

)2

− i
(

1 + (kρΩ)2 −
k2

‖c
2
s

ω2

)
ΩeΩi

νeiω∗
e

(
k‖
k

)2(
ω

ω∗
e

)
+ i
ΩeΩi

νeiω∗
e

(
k‖
k

)2

= 0.

(9.38)
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Fig. 9.3. Dependence of ω/ω∗
e = x + iz on y ∝ k‖/k for resistive drift instability

ρΩ is the ion Larmor radius when the ions are assumed to have the electron
temperature Te. Setting ω/ω∗

e = x+ iz and −(ΩeΩi/νeiω
∗
e )(k‖/k)2 = y2, and

assuming (kρΩ)2 − (k‖cs/ω)2 � 1, the dispersion equation is then

(x+ iz)2 + iy2(x+ iz) − iy2 = 0 . (9.39)

The dependence of the two solutions x1(y), z1(y) and x2(y), z2(y) on
y ∝ (k‖/k) is shown in Fig. 9.3. As z2(y) < 0, the mode corresponding to
x2(y), z2(y) is stable. This wave propagates in the direction of the ion drift.
The solution x1, z1 > 0 propagates in the direction of the electron drift and
it is unstable. If the value of (k‖/k) is adjusted to be y � 1.3, the z1 value
becomes maximum at z1 ≈ 0.25 and the growth rate is Imω ≈ 0.25ω∗

e . If η is
small, the wavelength of the most unstable wave becomes long and the num-
ber of collisions required to interrupt the electron motion along the magnetic
line of force is maintained. If the lower limit of k‖ is fixed by an appropriate
method, the growth rate is

Im(ω/ω∗
e ) ≈ y−2 =

νeiω
∗
e

Ωe|Ωi|
(
k

k‖

)2

,

which is proportional to η ∝ νei. This instability is called resistive drift in-
stability or dissipative drift instability [9.3, 9.4].

If the ion’s inertia term can be neglected (M → 0, |Ωi| → ∞ in eq.(9.37)),
the dispersion equation becomes ω2 − ωω∗

e − (k‖cs)2 = 0. The instability is
therefore also called collisional drift instability.



146 9 Resistive Instabilities

The instability does not appear in the collisionless case in the framework of
MHD theory. However, the instability may occur even in the collisionless case
when it is analyzed by the kinetic theory. This instability is called collisionless
drift instability (see Sects. 12.7 and 12.8).



10 Plasma as Medium of Waves

A plasma is an ensemble of an enormous number of moving ions and elec-
trons interacting with each other. In order to describe the behavior of such
an ensemble, the distribution function was introduced in Chap. 4, and Boltz-
mann’s and Vlasov’s equations were derived with respect to the distribution
function. A plasma viewed as an ensemble of a large number of particles has
a large number of degrees of freedom; thus the mathematical description of
plasma behavior is feasible only for simplified analytical models.

In Chap. 5, statistical averages in velocity space, such as mass density,
flow velocity, pressure, etc., were introduced and the magnetohydrodynamic
equations for these averages were derived. We have thus obtained a mathe-
matical description of the magnetohydrodynamic fluid model, and we have
studied the equilibrium conditions, stability problems, etc., for this model in
Chaps. 6–9. Since the fluid model considers only average quantities in veloc-
ity space, it is not capable of describing instabilities or damping phenomena
in which the profile of the distribution function plays a significant role. The
phenomena which can be handled by means of the fluid model are of low
frequency (less than the ion or electron cyclotron frequency); high-frequency
phenomena are not describable via this model.

In this chapter, we will focus on a model which allows us to study wave
phenomena while retaining the essential features of plasma dynamics, and
at the same time maintaining relative simplicity in its mathematical form.
Such a model is given by a homogeneous plasma of ions and electrons at
0 K in a uniform magnetic field. In the unperturbed state, both the ions and
electrons of this plasma are motionless. Any small deviation from the unper-
turbed state induces an electric field and a time-dependent component of the
magnetic field, and movements of ions and electrons are thereby excited. The
movements of the charged particles induce electric and magnetic fields which
are themselves consistent with the previously induced small perturbations.
This is called the kinetic model of a cold plasma. We will use it in this chap-
ter to derive the dispersion relation which characterizes wave phenomena in
a cold plasma.

Although this model assumes uniformity of the magnetic field and density,
and also zero temperature, the cold plasma model is applicable for a non-
uniform, warm plasma, if the typical length of variation of the magnetic field
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and the density is much larger than the wavelength, and if the phase velocity
of the wave is much larger than the thermal velocity of the particles.

One may treat the plasma as a medium of electromagnetic wave prop-
agation with a dielectric tensor K. This dielectric tensor K is a function
of the magnetic field and the density which may change with the position.
Accordingly, plasmas are in general non-uniform, anisotropic and dispersive
media.

When the temperature of plasma is finite and the thermal velocity of
the particles is comparable to the phase velocity of the propagating wave,
the interaction of the particles and the wave becomes important. A typical
interaction is Landau damping, which is explained in Chap. 11. The general
mathematical analysis of the hot-plasma wave will be discussed in Chap. 12.
The plasma wave is described in more detail in [10.1–10.4].

10.1 Dispersion Equation of Waves in a Cold Plasma

In an unperturbed cold plasma, the particle density n and the magnetic
field B0 are both homogeneous in space and constant in time. The ions and
electrons are motionless.

Now assume that the first-order perturbation term exp i(k·r − ωt) is ap-
plied. The ions and electrons are forced to move by the perturbed electric
field E and the induced magnetic field B1. Let us denote the velocity by
vk, where the suffix k indicates the species of particle (electrons, or ions of
various kinds). The current j due to the particle motion is given by

j =
∑

k

nkqkvk . (10.1)

nk and qk are the density and charge of the k th species, respectively. The
electric displacement D is

D = ε0E + P , (10.2)

j =
∂P

∂t
= −iωP , (10.3)

where E is the electric intensity, P is the electric polarization, and ε0 is the
dielectric constant of the vacuum. Consequently, D is expressed by

D = ε0E +
i
ω

j ≡ ε0K·E . (10.4)

K is called the dielectric tensor . The equation of motion of a single particle
of the k th kind is

mk
dvk

dt
= qk(E + vk × B) . (10.5)
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Here B consists of B = B0 + B1, where vk, E, B1 are the first-order
quantities. The linearized equation in these quantities is

−iωmkvk = qk(E + vk × B0) . (10.6)

When the z axis is taken along the direction of B0, the solution is given by⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

vk,x =
−iEx

B0

Ωkω

ω2 −Ω2
k

− Ey

B0

Ω2
k

ω2 −Ω2
k

,

vk,y =
Ex

B0

Ω2
k

ω2 −Ω2
k

− iEy

B0

Ωkω

ω2 −Ω2
k

,

vk,z =
−iEz

B0

Ωk

ω
,

(10.7)

where Ωk is the cyclotron frequency of the charged particle of the k th kind:

Ωk = −qkB0

mk
, (10.8)

with Ωe > 0 for electrons and Ωi < 0 for ions. The components of vk are the
linear functions of E given by (10.7). Moreover, j of (10.1) and the electric
displacement D of (10.4) are also linear functions of E, so that the dielectric
tensor is given by

K·E =

⎛⎝ K⊥ −iK× 0
iK× K⊥ 0

0 0 K‖

⎞⎠⎛⎝Ex

Ey

Ez

⎞⎠ , (10.9)

where

K⊥ ≡ 1 −
∑

k

Π2
k

ω2 −Ω2
k

, (10.10)

K× ≡ −
∑

k

Π2
k

ω2 −Ω2
k

Ωk

ω
, (10.11)

K‖ ≡ 1 −
∑

k

Π2
k

ω2 , (10.12)

Π2
k ≡ nkq

2
k

ε0mk
. (10.13)

According to the Stix notation, the following quantities are introduced:⎧⎪⎪⎪⎨⎪⎪⎪⎩
R ≡ 1 −

∑
k

Π2
k

ω2

ω

ω −Ωk
= K⊥ +K× ,

L ≡ 1 −
∑

k

Π2
k

ω2

ω

ω +Ωk
= K⊥ −K× .

(10.14)



150 10 Plasma as Medium of Waves

Fig. 10.1. Propagation vector k and x, y, z coordinates

From Maxwell’s equations

∇ × E = −∂B
∂t

, (10.15)

∇ × H = j + ε0
∂E

∂t
=
∂D

∂t
, (10.16)

it follows that

k × E = ωB1 , k × H1 = −ωε0K·E ,

and

k × (k × E) +
ω2

c2
K·E = 0 . (10.17)

Let us define a dimensionless vector

N ≡ kc

ω
,

where c is light velocity in vacuum. The absolute value N = |N | is the ratio
of the light velocity to the phase velocity of the wave, i.e., N is the refractive
index. Using N , we may write (10.17) as

N × (N × E) + K·E = 0 . (10.18)

If the angle between N and B0 is denoted by θ (Fig. 10.1) and the x axis is
chosen so that N lies in the z, x plane, then (10.18) may be expressed as
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iK× K⊥ −N2 0

N2 sin θ cos θ 0 K‖ −N2 sin2 θ

⎞⎠⎛⎝Ex

Ey

Ez

⎞⎠ = 0 . (10.19)

For a nontrivial solution to exist, the determinant of the matrix must be zero,
that is

AN4 −BN2 + C = 0 , (10.20)

A = K⊥ sin2 θ +K‖ cos2 θ , (10.21)

B = (K2
⊥ −K2

×) sin2 θ +K‖K⊥(1 + cos2 θ) , (10.22)

C = K‖(K2
⊥ −K2

×) = K‖RL . (10.23)

Equation (10.20) determines the relationship between the propagation vector
k and the frequency ω, and it is called the dispersion equation. The solution
of (10.20) is

N2 =
B ± (B2 − 4AC)1/2

2A

=

{
(K2

⊥ −K2
×) sin2 θ +K‖K⊥(1 + cos2 θ)

±
[
(K2

⊥ −K2
× −K‖K⊥)2 sin4 θ + 4K2

‖K
2
× cos2 θ

]1/2
}

×
[
2(K⊥ sin2 θ +K‖ cos2 θ)

]−1

. (10.24)

When the wave propagates along the line of magnetic force (θ = 0), the
dispersion equation (10.20) is

K‖
[
N4 − 2K⊥N2 + (K2

⊥ −K2
×)
]

= 0 , (10.25)

and the solutions are

K‖ = 0 , N2 = K⊥ +K× = R , N2 = K⊥ −K× = L . (10.26)

For the wave propagating in the direction perpendicular to the magnetic field
(θ = π/2), the dispersion equation and the solutions are given by

K⊥N4 − (K2
⊥ −K2

× +K‖K⊥)N2 +K‖(K2
⊥ −K2

×) = 0 , (10.27)

N2 =
K2

⊥ −K2
×

K⊥
=
RL

K⊥
, N2 = K‖ . (10.28)
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10.2 Properties of Waves

10.2.1 Polarization and Particle Motion

The dispersion relation for waves in a cold plasma was derived in the previous
section. We consider here the electric field of the waves and the resulting
particle motion. The y component of (10.19) is

iK×Ex + (K⊥ −N2)Ey = 0 ,
iEx

Ey
=
N2 −K⊥
K×

. (10.29)

The relation between the components of the particle velocity is

ivk,x

vk,y
=

i
(−iEx

Ey

ω

ω2 −Ω2
k

− Ωk

ω2 −Ω2
k

)
Ex

Ey

Ωk

ω2 −Ω2
k

− i
ω

ω2 −Ω2
k

=
(ω +Ωk)(N2 − L) + (ω −Ωk)(N2 −R)
(ω +Ωk)(N2 − L) − (ω −Ωk)(N2 −R)

. (10.30)

The wave satisfying N2 = R at θ = 0 has iEx/Ey = 1 and the electric field
is right-circularly polarized. In other words, the electric field rotates in the
direction of the electron Larmor motion. The motion of ions and electrons
is also right-circular motion. In the wave satisfying N2 = L as θ → 0, the
relation iEx/Ey = −1 holds and the electric field is left-circularly polarized.
The motion of ions and electrons is also left-circular motion. The waves with
N2 = R and N2 = L as θ → 0 are called the R wave and the L wave,
respectively. The solution of the dispersion equation (10.25) at θ = 0 is

N2 =
1
2

(
R+ L± |K‖|

K‖
|R− L|

)
, (10.31)

so that R and L waves are exchanged when K‖ changes sign. When K× =
R− L changes sign, R and L waves are also exchanged.

When θ = π/2, the electric field of the wave satisfying N2 = K‖ is
Ex = Ey = 0, Ez �= 0. For the wave safisfying N2 = RL/K⊥, the electric
field satisfies the relations

i
Ex

Ey
= −R− L

R+ L
= −K×

K⊥
, Ez = 0 .

The waves with N2 = K‖ and N2 = RL/K⊥ as θ → π/2 are called the
ordinary wave (O) and the extraordinary wave (X), respectively. It should
be pointed out that the electric field of the extraordinary wave at θ = π/2
is perpendicular to the magnetic field (Ez = 0) and the electric field of the
ordinary wave at θ = π/2 is parallel to the magnetic field (Ex = Ey = 0).
The dispersion relation (10.24) at θ = π/2 is
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N2 =
1

2K⊥
(K2

⊥ −K2
× +K‖K⊥ + |K2

⊥ −K2
× −K‖K⊥|)

=
1

2K⊥
(RL+K‖K⊥ ± |RL−K‖K⊥|) , (10.32)

so that the ordinary wave and the extraordinary wave are exchanged when
RL−K‖K⊥ = 0.

Besides the classification into R and L waves, and O and X waves, there
is another classification, namely, that of fast wave and slow wave, following
the difference in the phase velocity. Since the term inside the square root of
the equation N2 =

[
B ± (B2 − 4AC)1/2

]
/2A is always positive, as is clear

from (10.24), the fast wave and slow wave do not exchange between θ = 0
and θ = π/2.

10.2.2 Cutoff and Resonance

The refractive index (10.24) may become infinity or zero. When N2 = 0, the
wave is said to be a cutoff wave. At cutoff, the phase velocity

vph =
ω

k
=
c

N
(10.33)

becomes infinite. It is clear from (10.20) and (10.23) that cutoff occurs when

K‖ = 0 , R = 0 , L = 0 . (10.34)

When N2 = ∞, the wave is said to be at resonance. Here the phase velocity
becomes zero. The wave will be absorbed by the plasma at resonance (see
Chap. 11). The resonance condition is

tan2 θ = −K‖
K⊥

. (10.35)

When θ = 0, the resonance condition is K⊥ = (R + L)/2 → ±∞. The
condition R → ±∞ is satisfied at ω = Ωe, where Ωe is the electron cyclotron
frequency. This is called electron cyclotron resonance. The condition L → ±∞
holds when ω = |Ωi|, and this is called ion cyclotron resonance.

When θ = π/2, K⊥ = 0 is the resonance condition. This is called hybrid
resonance. When waves approach a cutoff region, the wave path is curved
according to Snell’s refraction law and the waves are reflected (Fig. 10.2a).
When waves approach a resonance region, they propagate perpendicularly
toward the resonance region. The phase velocities tend to zero and the wave
energy will be absorbed (Fig. 10.2b).

10.3 Waves in a Two-Component Plasma

Let us consider a plasma which consists of electrons and one kind of ion.
Charge neutrality is expressed by
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Fig. 10.2. Wave propagation (a) near cutoff region and (b) near a resonance region

niZi = ne . (10.36)

A dimensionless parameter is introduced for convenience:

δ =
µ0(nimi + neme)c2

B2
0

. (10.37)

The quantity defined by (10.13), which was also introduced in Sect. 2.2,

Π2
e = nee

2/(ε0me) (10.38)

is called the electron plasma frequency. We then have the relations

Π2
e

Π2
i

=
mi

me
� 1 ,

Π2
i +Π2

e

|Ωi|Ωe
= δ ≈ Π2

i

Ω2
i
. (10.39)

K⊥, K×, K‖, and R, L are given by⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

K⊥ = 1 − Π2
i

ω2 −Ω2
i

− Π2
e

ω2 −Ω2
e
,

K× = − Π2
i

ω2 −Ω2
i

Ωi

ω
− Π2

e

ω2 −Ω2
e

Ωe

ω
,

K‖ = 1 − Π2
e +Π2

i

ω2 � 1 − Π2
e

ω2 ,

(10.40)

R = 1 − Π2
e +Π2

i

(ω −Ωi)(ω −Ωe)
� ω2 − (Ωi +Ωe)ω +ΩiΩe −Π2

e

(ω −Ωi)(ω −Ωe)
, (10.41)

L = 1 − Π2
e +Π2

i

(ω +Ωi)(ω +Ωe)
� ω2 + (Ωi +Ωe)ω +ΩiΩe −Π2

e

(ω +Ωi)(ω +Ωe)
. (10.42)

The dispersion relations for the waves propagating parallel to B0 (θ = 0) are
found by setting K‖ = 0, N2 = R, and N2 = L. Then
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Fig. 10.3. (a) Dispersion relations (ω–ck‖) for R and L waves propagating parallel
to the magnetic field (θ = 0). (b) Dispersion relations (ω–ck‖) for O and X waves
propagating perpendicularly to the magnetic field (θ = π/2)

ω2 = Π2
e , (10.43)

ω2

c2k2
‖

=
1
R

=
(ω −Ωi)(ω −Ωe)

ω2 − ωΩe +ΩeΩi −Π2
e

=
(ω + |Ωi|)(ω −Ωe)
(ω − ωR)(ω + ωL)

, (10.44)

where ωR, ωL are given by

ωR =
Ωe

2
+

[(
Ωe

2

)2

+Π2
e + |ΩeΩi|

]1/2

> 0 , (10.45)

ωL = −Ωe

2
+

[(
Ωe

2

)2

+Π2
e + |ΩeΩi|

]1/2

> 0 , (10.46)

ω2

c2k2
‖

=
1
L

=
(ω +Ωi)(ω +Ωe)

ω2 + ωΩe +ΩeΩi −Π2
e

=
(ω − |Ωi|)(ω +Ωe)
(ω − ωL)(ω + ωR)

. (10.47)

Note that Ωe > 0, Ωi < 0 and ωR > Ωe. Plots of the dispersion relations
ω−ck‖ in the case ofΩe > Πe are shown in Fig. 10.3a. The dispersion relations
for the waves propagating perpendicularly to B0 are found by setting N2 =
K‖ (ordinary wave) and N2 = (K2

⊥ −K2
×)/K⊥ (extraordinary wave). Then

ω2

c2k2
⊥

=
1
K‖

=
(

1 − Π2
e

ω2

)−1

= 1 +
Π2

e

c2k2
⊥
, (10.48)
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Fig. 10.4. The ω regions of R and L waves at θ = 0, O and X waves at θ = π/2,
and F and S waves, in the case (ωL < Πe < Ωe). Numbers on the right identify
regions shown in the CMA diagram (Fig. 10.5)

ω2

c2k2
⊥

=
K⊥

K2
⊥ −K2×

=
K⊥
RL

=
2(ω2 −Ω2

i )(ω2 −Ω2
e ) −Π2

e
[
(ω +Ωi)(ω +Ωe) + (ω −Ωi)(ω −Ωe)

]
2(ω2 − ω2

L)(ω2 − ω2
R)

=
ω4 − (Ω2

i +Ω2
e +Π2

e )ω2 +Ω2
i Ω

2
e −Π2

eΩiΩe

(ω2 − ω2
L)(ω2 − ω2

R)
. (10.49)

Equation (10.48) is the dispersion equation of an electron plasma wave (Lang-
muir wave).

Let us define ωUH and ωLH by

ω2
UH ≡ Ω2

e +Π2
e , (10.50)

1
ω2

LH
≡ 1
Ω2

i +Π2
i

+
1

|Ωi|Ωe
. (10.51)

ωUH is called the upper hybrid resonant frequency and ωLH is called the lower
hybrid resonant frequency . Using these, we may write (10.49) as

ω2

c2k2
⊥

=
(ω2 − ω2

LH)(ω2 − ω2
UH)

(ω2 − ω2
L)(ω2 − ω2

R)
. (10.52)

We have ωR > ωUH > Πe, Ωe and ω2
LH < Ωe|Ωi|, Ω2

i + Π2. Plots of the
dispersion relation ω–ck⊥ in the case Ωe > Πe are shown in Fig. 10.3b. The
gradient ω/ck in the ω–ck⊥ diagram is the ratio of the phase velocity vph to
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Fig. 10.5. CMA diagram of a two-component plasma. The surfaces of constant
phase are drawn in each region. Dotted circles give the wave front in vacuum. The
magnetic field is directed toward the top of the diagram

c. The steeper the gradient, the greater the phase velocity. The regions (in
terms of ω) of R and L waves at θ = 0, and O and X waves at θ = π/2, and
F and S waves are shown in Fig. 10.4, for the case ωL < Πe < Ωe.

We now explain the CMA diagram (Fig. 10.5), which was introduced by
P.C. Clemmow and R.F. Mullaly and later modified by W.P. Allis [10.3].



158 10 Plasma as Medium of Waves

The quantities Ω2
e/ω

2 and (Π2
i +Π2

e )/ω2 are plotted along the vertical and
horizontal axes, respectively. The cutoff conditions R = 0 (ω = ωR), L = 0
(ω = ωL), K‖ = 0 (ω = Πe) are shown by the dotted lines and the resonance
conditions R = ∞ (ω = Ωe), L = ∞ (ω = Ωi), K⊥ = 0 (ω = ΩLH, ω = ΩUH)
are shown by solid lines. The cutoff and the resonance contours form the
boundaries of the different regions. The boundary RL = K‖K⊥, at which O
wave and X wave are exchanged, is also shown by broken and dotted lines in
Fig. 10.5. The surfaces of constant phase for R, L and O, X waves are shown
for the different regions. As the vertical and horizontal axes correspond to
the magnitude of B and the density ne, one can easily assign waves to the
corresponding regions simply by giving their frequencies ω.

10.4 Various Waves

10.4.1 Alfven Wave

When the frequency ω is smaller than the ion cyclotron frequency (ω � |Ωi|),
the dielectric tensor K is expressed by

K⊥ = 1 + δ , K× = 0 , K‖ = 1 − Π2
e

ω2 , (10.53)

where δ = µ0nimic
2/B2

0 . As Π2
e /ω

2 = (mi/me)(Ω2
i /ω

2)δ, we find Π2
e /ω

2 �
δ. Assuming that Π2

e /ω
2 � 1, we have |K‖| � |K⊥|. Then A, B, C of (10.20)

are given by ⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

A ≈ −Π
2
e

ω2 cos2 θ ,

B ≈ −Π
2
e

ω2 (1 + δ)(1 + cos2 θ) ,

C ≈ −Π
2
e

ω2 (1 + δ)2 ,

(10.54)

and the dispersion relations are

c2

N2 =
ω2

k2 =
c2

1 + δ
=

c2

1 + µ0ρmc2/B2
0

� B2
0

µ0ρm
, (10.55)

c2

N2 =
ω2

k2 =
c2

1 + δ
cos2 θ , (10.56)

where ρm is the mass density. The wave satisfying this dispersion relation is
called the Alfvén wave. We define the Alfvén velocity by

v2A =
c2

1 + δ
=

c2

1 + µ0ρmc2/B2
0

� B2
0

µ0ρm
. (10.57)

Equations (10.55) and (10.56) correspond to modes appearing in region (13)
of the CMA diagram. Substituting (10.55) and (10.56) into (10.19) shows
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that Ez = 0 for either mode, whilst Ex = 0 for the mode (10.55) (R wave,
F wave, X wave) and Ey = 0 for the mode (10.56) (L wave, S wave). From
(10.6), we find for ω � |Ωi| that

E + vi × B0 = 0 (10.58)

and vi = (E × B0)/B2
0, so that vi of the mode (10.55) is

vi ≈ x̂ cos(kxx+ kzz − ωt) , (10.59)

and vi of the mode (10.56) is

vi ≈ ŷ cos(kxx+ kzz − ωt) , (10.60)

where x̂, ŷ are unit vectors along the x and y axes, respectively. From these
last equations, the fast mode (10.55) and (10.59) is called the compressional
mode and the slow mode (10.56) and (10.60) is called the torsional or shear
mode. The R wave (10.55) still exists, although it is deformed in the transition
from region (13) to regions (11) and (8), but the L wave (10.56) disappears
in these transitions.

It is clear from (10.58) that the plasma is frozen to the magnetic field.
There is a tension B2/2µ0 along the magnetic field lines and a pressure
B2/2µ0 exerted perpendicularly to the magnetic field. As the plasma, of
mass density ρm, sticks to the field lines, the wave propagation speed in the
direction of the field is B2

0/(µ0ρm).

10.4.2 Ion Cyclotron Wave and Fast Wave

Let us consider the case where the frequency ω is shifted from low frequency
toward the ion cyclotron frequency andΠ2

e /ω
2 � 1. The corresponding waves

are located in regions (13) and (11) of the CMA diagram. When |ω| � Ωe,
δ � 1, and Π2

e /ω
2 � 1, the values of K⊥, K× and K‖ are

K⊥ = − δΩ2
i

ω2 −Ω2
i
, K× = − δωΩ2

i

ω2 −Ω2
i
, K‖ = −Π

2
e

ω2 . (10.61)

Since Π2
e /ω

2 = (mi/me)(Ω2
i /ω

2)δ � δ, the coefficients A, B, C are⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

A = −Π
2
e

ω2 cos2 θ ,

B =
Π2

e

ω2

δΩ2
i

ω2 −Ω2
i
(1 + cos2 θ) ,

C =
Π2

e

ω2

δ2Ω2
i

ω2 −Ω2
i
.

(10.62)

The dispersion equation becomes (Π2
i = Ω2

i δ, v
2
A = c2/δ)
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N4 cos2 θ −N2 δΩ2
i

Ω2
i − ω2 (1 + cos2 θ) +

δ2Ω2
i

Ω2
i − ω2 = 0 . (10.63)

Setting N2 cos2 θ = c2k2
‖/ω

2, and N2 sin2 θ = c2k2
⊥/ω

2, we may write (10.63)
as

k2
⊥c

2 =
ω4δ2Ω2

i − ω2(2δΩ2
i k

2
‖c

2 + k4
‖c

4) +Ω2
i k

4
‖c

4

ω2(δΩ2
i + k2

‖c
2) −Ω2

i k
2
‖c

2 , (10.64a)

k2
⊥
k2

‖
=

(ω/vAk‖)4 − (ω/vAk‖)2 − (ω/Ωi)2 + 1
(ω/vAk‖)2 − (1 − ω2/Ω2

i )
(10.64b)

=

[
(ω/vAk‖)2 − (1 − ω/Ωi)

][
(ω/vAk‖)2 − (1 + ω/Ωi)

]
(ω/vAk‖)2 − (1 − ω2/Ω2

i )
.

Therefore resonance occurs at

ω2 = Ω2
i

k2
‖c

2

k2
‖c

2 + δΩ2
i

= Ω2
i

k2
‖c

2

k2
‖c

2 +Π2
i
, (10.65a)

(
ω

vAk‖

)2

= 1 −
(
ω

Ωi

)2

. (10.65b)

When |ω| approaches |Ωi|, the dispersion equation (10.63) approaches

N2 ≈ δ

1 + cos2 θ
, (10.66)

N2 cos2 θ ≈ δ(1 + cos2 θ)Ω2
i Ω

2
i − ω2 . (10.67)

The mode (10.66) corresponds to the compressional Alfvén mode (fast wave)
and is not affected by the ion cyclotron resonance. The dispersion relation
(10.67) is that of the ion cyclotron wave, and can be expressed by

ω2 = Ω2
i

(
1 +

Π2
i

k2
‖c

2 +
Π2

i

k2
‖c

2 + k2
⊥c2

)−1

. (10.68)

Note that here ω2 is always less than Ω2
i .

The ions move in a left-circular motion (i.e., in the direction of the ion
Larmor motion) at ω � |Ωi| for both waves [see (10.30)]. The mode (10.66)
satisfies iEx/Ey = 1, i.e., it is circularly polarized, with the electric field
rotating the opposite way to the ion Larmor motion.

The ion cyclotron wave satisfies

iEx

Ey
≈ − ω

|Ωi|
1

1 + k2
⊥/k

2
‖
, (10.69)

i.e., the electric field is elliptically polarized, rotating in the same direction
as the ion Larmor motion.
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Fig. 10.6. Orbits of ions and electrons at lower hybrid resonance

10.4.3 Lower Hybrid Resonance

The frequency at lower hybrid resonance at θ = π/2 is given by

ω2 = ω2
LH ,

1
ω2

LH
=

1
Ω2

i +Π2
i

+
1

|Ωi|Ωe
,

ω2
LH

|Ωi|Ωe
=

Π2
i +Ω2

i

Π2
i + |Ωi|Ωe +Ω2

i
.

(10.70)
When the density is high andΠ2

i � |Ωi|Ωe, it follows that ωLH = (|Ωi|Ωe)1/2.
When Π2

i � |Ωi|Ωe, then ω2
LH = Π2

i + Ω2
i . At lower hybrid resonance, we

have Ey = Ez = 0 and Ex �= 0.
When the density is high (i.e., Π2

i > |Ωi|Ωe), then |Ωi| � ωLH � Ωe
and the analysis of the motions of ions and electrons becomes simple. From
(10.7), the velocity is given by

vk,x =
iεkEx

B0

ω|Ωk|
ω2 −Ω2

k

, (10.71)

and vk,x = dxk/dt = −iωxk yields

xk =
−εkEx

B0

|Ωk|
ω2 −Ω2

k

. (10.72)

At ω2 = |Ωi|Ωe, we find that xi ≈ −Ex/B0Ωe and xe � −Ex/B0Ωe, or
xi ≈ xe (see Fig. 10.6). Consequently, charge separation does not occur and
the lower hybrid wave can exist.

We have been discussing lower hybrid resonance at θ = π/2. Let us con-
sider the case in which θ is slightly different from θ = π/2. The resonance
condition is obtained from (10.24) as follows:
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K⊥ sin2 θ +K‖ cos2 θ = 0 . (10.73)

K⊥ is given by (10.46), (10.50) and (10.51), and (10.73) reduces to

(ω2 − ω2
LH)(ω2 − ω2

UH)
(ω2 −Ω2

i )(ω2 −Ω2
e )

sin2 θ +
(

1 − Π2
e

ω2

)
cos2 θ = 0 . (10.74)

When θ is near π/2 and ω is not much different from ωLH, we find that

ω2 − ω2
LH =

(ω2
LH −Ω2

e )(ω2
LH −Ω2

i )
ω2

LH − ω2
UH

Π2
e − ω2

LH

ω2
LH

cos2 θ

≈ Ω2
eΠ

2
e

ω2
UH

[
1 −
(
Ωi

ωLH

)2
][

1 −
(
ωLH

Πe

)2
]

cos2 θ .

Since ω2
UHω

2
LH = Ω2

i Ω
2
e +Π2

e |Ωi|Ωe, it follows that ω2 is expressed by

ω2 = ω2
LH

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩1 +
mi

Zme
cos2 θ

[
1 −
(
Ωi

ωLH

)2
][

1 −
(
ωLH

Πe

)2
]

(
1 +

|Ωi|Ωe

Π2
e

)
⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭ . (10.75)

When Π2
e /|Ωi|Ωe ≈ δ = c2/v2A � 1, (10.75) becomes

ω2 = ω2
LH

(
1 +

mi

Zme
cos2 θ

)
. (10.76)

Even if θ differs from π/2 by only a slight amount (Zme/mi)1/2, ω2 becomes
ω2 ≈ 2ω2

LH, so that (10.76) holds only in the region very near θ = π/2.

10.4.4 Upper Hybrid Resonance

The upper hybrid resonant frequency ωUH is given by

ω2
UH = Π2

e +Ω2
e . (10.77)

Since this frequency is much larger than |Ωi|, ion motion can be neglected.

10.4.5 Electron Cyclotron Wave

Let us consider high-frequency waves, so that ion motion can be neglected.
When ω � |Ωi|, we find

K⊥ ≈ 1 − Π2
e

ω2 −Ω2
e
, K× ≈ − Π2

e

ω2 −Ω2
e

Ωe

ω
, K‖ = 1 − Π2

e

ω2 . (10.78)
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The solution of the dispersion equation AN4 −BN2 + C = 0, viz.,

N2 =
B ± (B2 − 4AC)1/2

2A
,

may be modified to

N2 − 1 =
−2(A−B + C)

2A−B ± (B2 − 4AC)1/2 =
−2Π2

e (1 −Π2
e /ω

2)
2ω2(1 −Π2

e /ω
2) −Ω2

e sin2 θ ±Ωe∆
,

(10.79)

∆ =

[
Ω2

e sin4 θ + 4ω2
(

1 − Π2
e

ω2

)2

cos2 θ

]1/2

. (10.80)

The ordinary wave and extraordinary wave will be obtained by taking the
plus and minus sign, respectively, in (10.79). In the case

Ω2
e sin4 θ � 4ω2

(
1 − Π2

e

ω2

)2

cos2 θ , (10.81)

we find

N2 =
1 −Π2

e /ω
2

1 − (Π2
e /ω

2) cos2 θ
, (10.82)

N2 =
(1 −Π2

e /ω
2)2ω2 −Ω2

e sin2 θ

(1 −Π2
e /ω

2)ω2 −Ω2
e sin2 θ

. (10.83)

Equation (10.82) becomes N2 = K‖ = 1 −Π2
e /ω

2 at θ ∼ π/2 and does not
depend on the magnitude of the magnetic field. This wave is used for density
measurements by microwave interferometry. In the case

Ω2
e sin4 θ � 4ω2

(
1 − Π2

e

ω2

)2

cos2 θ , (10.84)

with the additional condition

Ω2
e sin2 θ �

∣∣∣∣2ω2
(

1 − Π2
e

ω2

)∣∣∣∣ , (10.85)

the dispersion relations become

N2 = 1 − Π2
e

(ω +Ωe cos θ)ω
, (10.86)

N2 = 1 − Π2
e

(ω −Ωe cos θ)ω
. (10.87)

Equation (10.86) corresponds to the L wave and (10.87) to the R wave. R-
wave resonance occurs near the electron cyclotron frequency. This wave can
propagate in regions (7) and (8) of the CMA diagram, where the frequency
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is less than the plasma frequency. This wave is called the electron cyclotron
wave. It should be noted that the assumptions (10.84) and (10.85) are not
satisfied near K‖ = 1 −Π2

e /ω
2 � 0.

The electron cyclotron wave is also called the whistler wave. Electro-
magnetic disturbances initiated by lightning flashes propagate through the
ionosphere along magnetic field lines. The frequency of a lightning-induced
whistler wave falls in the audio region, and its group velocity increases with
frequency, so that this wave is perceived as a whistle of descending tone. This
is why it is called the whistler wave.

10.5 Conditions for Electrostatic Waves

When the electric field E can be expressed by an electrostatic potential φ,

E = −∇φ = −ikφ , (10.88)

the resulting wave is called an electrostatic wave. The electric field E is
always parallel to the propagation vector k, so that the electrostatic wave is
longitudinal. The magnetic field B1 of the electrostatic wave is always zero:

B1 = k × E/ω = 0 . (10.89)

Alfv́en waves are not electrostatic waves. We will discuss here the conditions
for electrostatic waves. Since the dispersion relation is

N × (N × E) + K·E = 0 ,

the scalar product with N becomes

N ·K·(E‖ + E⊥) = 0 ,

where E‖ and E⊥ are the components of the electric field parallel and per-
pendicular to k. If |E‖| � |E⊥|, the wave is electrostatic and the dispersion
relation becomes

N ·K·N = 0 . (10.90)

Rewriting the general dispersion relation as

(N2 − K)·E⊥ = K·E‖ ,

it follows that |E‖| � |E⊥| holds when

|N2| � |Kij | (10.91)

is satisfied for all Kij . The dispersion relation (10.90) for the electrostatic
wave is then

k2
xKxx + 2kxkzKxz + k2

zKzz = 0 . (10.92)
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The condition (10.91) for the electrostatic wave indicates that the phase
velocity ω/k = c/N of this wave is low. The Kij have already been given
by (10.9)–(10.12) for cold plasmas, and the general formula for hot plasma
will be discussed in Chap. 12. We have stated that the magnetic field B1 of
the electrostatic wave is zero. Disturbances of the magnetic field propagate
with the Alfvén velocity vA � B2

0/(µ0nimi). If the phase velocity of the
wave is much lower than vA, the disturbance of the magnetic field will be
damped within a few cycles of the wave and the propagated magnetic field
disturbance becomes zero. When the electron thermal velocity vTe is taken as
a typical phase velocity for electrostatic waves, then the condition of vA > vTe

reduces to
B2

0

µ0nimiv2Te

=
2me

βemi
> 1 , βe <

2me

mi
.

This measures the extent to which a wave is electrostatic.
At resonance, the refractive index N becomes infinite. As the Kij are

finite for lower hybrid and upper hybrid resonance, the condition (10.91) is
satisfied, and these hybrid waves are electrostatic. Since some of the Kij

become infinite for the ion or electron cyclotron waves, these cyclotron waves
are not always electrostatic.



11 Landau Damping and Cyclotron Damping

The existence of a damping mechanism by which plasma particles absorb
wave energy even in a collisionless plasma was found by L.D. Landau, under
the condition that the plasma is not cold and the velocity distribution is
of finite extent. Energy-exchange processes between particles and waves are
possible even in a collisionless plasma and play important roles in plasma
heating by waves (wave absorption) and in the mechanism of instabilities
(wave amplification). These important processes will be explained in terms
of simplified physical models in this chapter, whilst in Chap. 12, they will be
described more systematically. In hot plasma models, a pressure term and
particle–wave interaction term appear in the dielectric tensor that are absent
in the dielectric tensor for a cold plasma.

11.1 Landau Damping (Amplification)

Let us assume that many particles drift with different velocities in the direc-
tion of the lines of magnetic force. When an electrostatic wave (a longitudinal
wave with k ‖ E) propagates along the lines of magnetic force, an interaction
appears between the wave and a group of particles (see Fig. 11.1). Take the z
axis in the direction of the magnetic field and denote the unit vector in this
direction by ẑ. Then the electric field and the velocity v = vẑ satisfy

E = ẑE cos(kz − ωt) , (11.1)

m
dv
dt

= qE cos(kz − ωt) . (11.2)

The electric field E is a quantity of the first order. The zeroth-order solution
of (11.2) is

z = v0t+ z0

and the first-order equation is

m
dv1
dt

= qE cos(kz0 + kv0t− ωt) . (11.3)

The solution of (11.3) for the initial condition v1 = 0 at t = 0 is
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Fig. 11.1. Propagation of wave and motion of particles in the process of Landau
damping

v1 =
qE

m

sin(kz0 + kv0t− ωt) − sin kz0
kv0 − ω . (11.4)

The kinetic energy of the particle becomes

d
dt
mv2

2
= v

d
dt
mv = v1

d
dt
mv1 + v0

d
dt
mv2 + · · · . (11.5)

From (11.2) and (11.4), we have the relation

m
d(v1 + v2)

dt
= qE cos

[
k(z0 + v0t+ z1) − ωt]

= qE cos(kz0 + αt) − qE sin(kz0 + αt)kz1 ,

z1 =
∫ t

0
v1 dt =

qE

m

[− cos(kz0 + αt) + cos kz0
α2 − t sin kz0

α

]
,

where
α ≡ kv0 − ω .

Using these, we may put (11.5) into the form

d
dt
mv2

2
=
q2E2

m

[
sin(kz0 + αt) − sin kz0

α

]
cos(kz0 + αt)

−kv0q
2E2

m

[− cos(kz0 + αt) + cos kz0
α2 − t sin kz0

α

]
sin(kz0 + αt) .

The average of the foregoing quantity with respect to the initial position z0
is 〈

d
dt
mv2

2

〉
z0

=
q2E2

2m

(−ω sinαt
α2 + t cosαt+

ωt cosαt
α

)
. (11.6)

When we take the velocity average of (11.6) over v0 with the weighting factor,
i.e., distribution function f(v0) (defining α ≡ kv0 − ω),
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f(v0) = f

(
α+ ω
k

)
= g(α) ,

the rate of increase of the kinetic energy of the particles is obtained. The
distribution function is normalized:∫ ∞

−∞
f(v0) dv0 =

1
k

∫
g(α) dα = 1 .

The integral of the second term of (11.6), viz.,

1
k

∫
g(α)t cosαtdα =

1
k

∫
g
(x
t

)
cosxdx , (11.7)

approaches zero as t → ∞. The integral of the third term of (11.6) becomes

ω

k

∫
g(α)t cosαt

α
dα =

ω

k

∫
t

x
g
(x
t

)
cosxdx . (11.8)

The function g(α) can be considered to be the sum of an even and an odd
function. The even function does not contribute to the integral. The contri-
bution of the odd function approaches zero when t → ∞ if g(α) is continuous
at α = 0. Therefore, only the contribution of the first term in (11.6) remains
and we find 〈

d
dt
mv2

2

〉
z0,v0

= −ωq
2E2

2mk
P
∫
g(α) sinαt

α2 dα , (11.9)

where P denotes Cauchy’s principal value. The main contribution to the
integral comes from near α = 0, so that g(α) may be expanded around
α = 0:

g(α) = g(0) + αg′(0) +
α2

2
g′′(0) + · · · .

As sinαt/α2 is an odd function, only the second term of the foregoing equa-
tion contributes to the integral and we find for large t that〈

d
dt
mv2

2

〉
z0,v0

= −ωq
2E2

2m|k|
∫ ∞

−∞

g′(0) sinαt
α

dα

=
−πq2E2

2m|k|
(ω
k

)[∂f(v0)
∂v0

]
v0=ω/k

. (11.10)

If the number of particles moving slightly slower than the phase velocity of the
wave is larger than the number moving slightly faster, i.e., if v0∂f0/∂v0 < 0,
the group of particles as a whole gains energy from the wave and the wave
is damped. On the contrary, when v0∂f0/∂v0 > 0 at v0 = ω/k, the par-
ticles gives their energy to the wave and the amplitude of the wave in-
creases (Fig. 11.2). This mechanism is called Landau damping or amplifi-
cation [11.1]. Experimental verification of Landau damping of waves in a
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Fig. 11.2. (a) Landau damping and (b) Landau amplification

collisionless plasma was demonstrated by J.M. Malemberg and C.B. Whar-
ton [11.2] in 1965, twenty years after Landau’s prediction.

The growth rate (11.10) of the kinetic energy of the particles must be
equal to the damping rate of the wave energy. Therefore the growth rate γ of
the amplitude of the wave field is obtained by (γ < 0 in the damping case)

n

〈
d
dt
mv2

2

〉
z0v0

= −2γW ,

and the growth rate γ is given by

γ

ω
=
π

2

(
Π

ω

)2(
ω

|k|
)[
v0
∂f(v0)
∂v0

]
v0=ω/k

, (11.11)

where Π2 = nq2/ε0m, W ≈ 2ε0E2/4,
∫
f(v)dv = 1.

There is a restriction on the applicability of linear Landau damping. When
this phenomenon runs its course before the particle orbit deviates from the
linear-approximation solution, the reductions leading to linear Landau damp-
ing are justified. The period of oscillation in the potential well of the electric
field of the wave gives the time for the particle orbit to deviate from the linear
approximation (ω2 ∼ eEk/m from mω2x = eE). The period of oscillation is

τosc =
1
ωosc

≈
( m

ekE

)1/2
.

Consequently, the condition for the applicability of linear Landau damping
is that the Landau damping time 1/γ should be shorter than τosc or the
collision time 1/νcoll should be shorter than τosc:

|γτosc| > 1 , (11.12)

|νcollτosc| > 1 . (11.13)

On the other hand, it was assumed that particles are collisionless. The con-
dition that the collision time 1/νcoll is longer than λ/vrms is necessary for the
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asymptotic approximation of the integral (11.9) as t → ∞, where λ is the
wavelength of the wave and vrms is the spread in the velocity distribution:

1
νcoll

>
2π
kvrms

. (11.14)

11.2 Transit Time Damping

We have already described the properties of Alfvén waves in cold plasmas.
There are compressional and torsional modes. The compressional mode be-
comes magnetosonic in hot plasmas, as described in Chap. 5. In the low-
frequency region, the magnetic moment µm is conserved and the equation of
motion along the field lines is

m
dvz

dt
= −µm

∂B1z

∂z
. (11.15)

This equation is the same as that for Landau damping if −µm and ∂B1z/∂z
are replaced by the electric charge and the electric field, respectively. The
rate of change of the kinetic energy is derived similarly, and is equal to〈

d
dt
mv2

2

〉
z0,v0

= −πµ
2
m|k|

2m
|B1z|2

(ω
k

)[∂f(v0)
∂v0

]
v0=ω/k

. (11.16)

This phenomenon is called transit time damping .

11.3 Cyclotron Damping

The mechanism of cyclotron damping is different from that of Landau damp-
ing. Here the electric field of the wave is perpendicular to the direction of
the magnetic field and the particle drift and accelerates the particle perpen-
dicularly to the drift direction. Let us consider a simple case in which the
thermal energy of particles perpendicular to the magnetic field is zero and
the velocity of particles parallel to the magnetic field B0 = B0ẑ is V . The
equation of motion is

m
∂v

∂t
+mV

∂v

∂z
= q(E1 + v × ẑB0 + V ẑ × B1) . (11.17)

As our interest is in the perpendicular acceleration, we assume (E1·ẑ) = 0.
B1 is given by B1 = (k × E)/ω. With the definitions v± = vx ± ivy and
E± = Ex ± iEy, the solution for the initial condition v = 0 at t = 0 is

v± =
iqE±(ω − kV ) exp(ikz − iωt)

mω

1 − exp(iωt− ikV t± iΩt)
ω − kV ±Ω ,

Ω =
−qB0

m
.

(11.18)
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The macroscopic value of v⊥ is obtained by taking the average weighted by
the distribution function f0(V ) as follows:

〈v⊥〉 =
iq exp(ikz − iωt)

2m
[
(c+ + c−)E⊥ + i(c+ − c−)E⊥ × ẑ

]
, (11.19)

c± = α± − iβ± , (11.20)

α± =
∫ ∞

−∞
dV

f0(V )(1 − kV/ω)
[
1 − cos(ω − kV ±Ω)t

]
ω − kV ±Ω , (11.21)

β± =
∫ ∞

−∞
dV

f0(V )(1 − kV/ω) sin(ω − kV ±Ω)t
ω − kV ±Ω . (11.22)

As t becomes large, we find that

α± → P

∫ ∞

−∞
dV

f0(V )(1 − kV/ω)
ω − kV ±Ω , (11.23)

β± → ∓πΩ
ω|k| f0

(
ω ±Ω
k

)
. (11.24)

When
t � 2π

kVrms
, (11.25)

where Vrms = 〈V 2〉1/2 is the spread of the velocity distribution, the approxi-
mations (11.19)–(11.24) are justified. The absorption of the wave energy by
the plasma particles is given by〈
Re
[
qE exp(ikz− iωt)

](
Re〈v⊥〉)〉

z
=
q2

4m
(
β+|Ex + iEy|2 + β−|Ex − iEy|2) .

(11.26)
Let us consider the case of electrons (Ωe > 0). As described in Sect. 10.2,
the wave N2 = R propagating in the direction of the magnetic field (θ = 0)
satisfies Ex + iEy = 0, so that the absorption power becomes

Pe =
q2

4m
β−|Ex − iEy|2 .

When ω > 0, (11.24) indicates that β− > 0. When ω < 0, β− is nearly zero
since f0

[
(ω −Ωe)/k

]� 1.
Let us consider the case of ions (−Ωi > 0). In a similar way, we find that

Pi =
q2

4m
β+|Ex + iEy|2 .

When ω > 0, (11.24) indicates that β+ > 0. When ω < 0, β+ is nearly zero,
since f0 (ω +Ωi/k) � 1.
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The cyclotron velocity Vc is defined so that the Doppler shifted frequency
(the frequency of the wave felt by a particle running with the velocity V ) is
equal to the cyclotron frequency, that is,

ω − kVc ±Ω = 0 , Vc =
ω

k

(
1 ± Ω

ω

)
.

Accordingly, particles absorb the wave energy when the absolute value of the
cyclotron velocity is smaller than the absolute value of the phase velocity
of the wave (±Ω/ω < 0) [see (11.24)]. This phenomena is called cyclotron
damping .

Let us consider the change in the kinetic energy of the particles in the
case of cyclotron damping. Then the equation of motion is

m
dv

dt
− q(v × B0) = qE⊥ + q(v × B1) .

Since B1 = (k × E)/ω and Ez = 0, we have

m
dvz

dt
=
qkz

ω
(v⊥·E⊥) ,

m
dv⊥
dt

− q(v⊥ × B0) = qE⊥

(
1 − kzvz

ω

)
,

so that

mv⊥·dv⊥
dt

= q(v⊥·E⊥)
(

1 − kzvz

ω

)
.

Then
d
dt

(
mv2z

2

)
=

kzvz

ω − kzvz

d
dt

(
mv2⊥

2

)
,

v2⊥ +
(
vz − ω

kz

)2

= const.

In the analysis of cyclotron damping, we assumed that vz = V is constant.
The condition for the validity of the linearized theory is [11.3]

k2
zq

2E2
⊥|ω − kzvz|t3
24ω2m2 < 1 .

We have discussed the case in which the perpendicular thermal energy is zero.
When the perpendicular thermal energy is larger than the parallel thermal
energy, so-called cyclotron instability may occur. The mutual interaction be-
tween particles and wave will be discussed again in Chap. 12 in relation to
heating and instabilities.
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11.4 Quasi-Linear Theory of Evolution
in the Distribution Function

It has been assumed that the perturbation is small and the zeroth-order
terms do not change. Under these assumptions, the linearized equations for
the perturbations can be analyzed. However, if the perturbations grow, the
zeroth-order quantities may change and the growth rate of the perturbations
may change due to the evolution of the zeroth-order quantities. Finally, the
perturbations saturate (growth rate becomes zero) and shift to a steady state.
Let us consider the simple case when B = 0 and there is a one-dimensional
electrostatic perturbation (B1 = 0). Ions are uniformly distributed. Then the
electron distribution function f(x, v, t) obeys the following Vlasov equation:

∂f

∂t
+ v

∂f

∂x
− e

m
E
∂f

∂v
= 0 . (11.27)

Let the distribution function f be divided into two parts, viz.,

f(x, v, t) = f0(v, t) + f1(x, v, t) , (11.28)

where f0 is the slowly changing zeroth-order term and f1 is the oscillatory
first-order term. It is assumed that the time derivative of f0 is the second-
order term. When (11.28) is substituted into (11.27), the first and the second
terms satisfy

∂f1
∂t

+ v
∂f1
∂x

=
e

m
E
∂f0
∂v

, (11.29)

∂f0
∂t

=
e

m
E
∂f1
∂v

. (11.30)

f1 and E may be expressed by Fourier integrals:

f1(x, v, t) =
1

(2π)1/2

∫
fk(v) exp

{
i
[
kx− ω(k)t

]}
dk , (11.31)

E(x, t) =
1

(2π)1/2

∫
Ek exp

{
i
[
kx− ω(k)t

]}
dk . (11.32)

Since f1 and E are real, f−k = f∗
k , E−k = E∗

k , ω(−k) = −ω∗(k), where
ω(k) = ωr(k) + iγ(k). Substituting (11.31) and (11.32) into (11.29) yields

fk(v) =
e

m

[
i

ω(k) − kv
]
Ek
∂f0
∂v

. (11.33)

If (11.32) and (11.33) are substituted into (11.30), we find

∂f0(v, t)
∂t

=
( e
m

)2 ∂

∂v

〈
1
2π

∫
Ek′ exp

{
i
[
k′x− ω(k′)t

]}
dk′

× i
ω(k) − kvEk

∂f0(v, t)
∂v

exp
{
i
[
kx− ω(k)t

]}
dk
〉
. (11.34)
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The statistical average of (11.34) (integration over x) reduces to

∂f0(v, t)
∂t

=
∂

∂v

[
Dv(v)

∂f0(v, t)
∂v

]
, (11.35)

Dv(v) =
( e
m

)2
∫ ∞

−∞

i|Ek|2 exp
[
2γ(k)t

]
ωr(k) − kv + iγ(k)

dk

=
( e
m

)2
∫ ∞

−∞

γ(k)|Ek|2 exp
[
2γ(k)t

][
ωr(k) − kv]2 + γ(k)2

dk .

When |γ(k)| � |ωr(k)|, the diffusion coefficient in velocity space is

Dv(v) =
( e
m

)2
π

∫
|Ek|2 exp

[
2γ(k)t

]
δ
[
ωr(k) − kv]dk

=
( e
m

)2 π

|v| |Ek|2 exp
[
2γ(k)t

]∣∣∣
ω/k=v

. (11.36)

From Poisson’s equation and (11.33), the dispersion equation can be derived:

∇ · E = − e

ε0

∫
f1dv , ikEk = − e

ε0

∫
fkdv ,

1 +
Π2

e

k

1
n

∫ [
1

ω(k) − kv
]
∂f0
∂v

dv = 0 . (11.37)

Under the assumption that |γ| � |ωr| (ω = ωr + iγ), the solution of (11.37)
for γ is given by the same equation as (11.11).

Equation (11.35) is the diffusion equation in the velocity space. When
the electron distribution function is given by the profile shown in Fig. 11.2b,
where v∂f/∂v > 0 has positive gradient near v1, then waves with phase
velocity ω/k ≈ v1 grow due to Landau amplification and the amplitude of
|Ek| increases. The diffusion coefficient Dv in velocity space becomes large
and anomalous diffusion takes place in velocity space. The positive gradient
of ∂f/∂v near ∼ v1 decreases and the profile of the distribution function
eventually becomes flat near v ∼ v1.

Let us consider the other case. When a wave is externally excited (by
antenna) in a plasma with Maxwellian distribution function, as shown in
Fig. 11.2a, the diffusion coefficient Dv at v = ω/k is increased. The gradient
of the distribution function near v = ω/k becomes flat, as can be seen in
Fig. 16.17 of Chap. 16.
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When the temperature of a plasma becomes hot and the thermal velocities
vT = (κT/m)1/2 of electrons or ions become comparable to the phase ve-
locity of waves, Landau damping or amplification may occur, as described
in Chap. 11. In order to study the propagation and absorption (damping)
or excitation (amplification) of waves and perturbation systematically, the
dielectric tensor of a hot plasma must be used. The dielectric tensor of a hot
plasma is explained and derived in Sects. 12.1–12.3 and 12.8.

We discuss wave heating, i.e., wave heating in the ion cyclotron frequency
range (ICRF), in Sect. 12.4, lower hybrid heating (LHH) in Sect. 12.5, and
electron cyclotron heating (ECH) in Sect. 12.6. The physical processes of wave
heating are not simple and the interactions of waves and plasmas display a
great deal of variety, so that various applications are possible depending on
the development of wave heating methods.

Waves are excited in the plasma by antennas or waveguides located out-
side the plasma (excitation of wave, antenna–plasma coupling). When the
electric field of the excited wave is parallel to the confining magnetic field
of the plasma, the electron, which can move along the magnetic field, may
cancel the electric field. However, if the frequency of the wave is higher than
the plasma frequency the electron cannot follow the change in the electric
field, and the wave then propagates through the plasma. When the electric
field of the excited wave is perpendicular to the magnetic field, the electrons
move in the direction of E × B (under the condition ω < Ωe) and so can-
not cancel the electric field. In this case the wave can propagate through the
plasma even if the wave frequency is lower than the plasma frequency. Exci-
tation consists in pumping the high-frequency electromagnetic wave into the
plasma through the coupling system. If the structure of the coupling system
has the same periodicity as the eigenmode wave, the wave can be excited res-
onantly (resonant excitation). Electron cyclotron heating (and neutral beam
injection) can be launched in vacuum and propagate directly into the plasma
without attenuation or interaction with the edge. Consequently, the launch-
ing structures do not have to be in close proximity to the plasma and have
an advantage against thermal load and erosion by the plasma.

Excited waves may propagate and pass through the plasma center with-
out damping (heating) in some cases and may refract and turn back to the
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Fig. 12.1. Fate of excited wave: passing through, refraction and reflection, absorp-
tion near boundary, and absorption at center of plasma

external region without passing the plasma center, or may be reflected by the
cutoff layer (see Fig. 12.1). The wave may be converted to another type by
mode conversion (wave propagation).

The waves propagating in the plasma are absorbed and damped at the
locations where Landau damping and cyclotron damping occur and heat the
plasma. Therefore, the plasma center must be heated so that the waves can
propagate into the plasma center without absorption and be absorbed when
they reach the plasma center (wave heating).

When the velocity distribution function deviates from the stable Maxwell
distribution, the plasma may be unstable due to Landau and cyclotron ampli-
fication. This type of instability is called a velocity space instability . Electron
beam instability is described as an example in Sect. 12.7.

12.1 Energy Flow

Energy transport and the propagation of waves in the plasma medium are
very important in the wave heating of plasmas. The equation of energy flow
is derived by taking the difference between the scalar product of H with
(10.15) and the scalar product of E with (10.16):

∇·(E × H) + E·∂D
∂t

+ H·∂B
∂t

= 0 . (12.1)

P ≡ E × H is called the Poynting vector and represents the energy flow of
the electromagnetic field. This Poynting equation does not include the effect
of electric resistivity by electron–ion collisions.

Plasmas are dispersive media and dielectric tensors are dependent on the
propagation vector k and the frequency ω. Denote the Fourier components
of E(r, t) and D(r, t) by Ek ω(k, ω) and Dk ω(k, ω), respectively. Then we
find

Dk ω =
1

(2π)2

∫
D(r, t) exp

[− i(k·r − ωt)]dr dt ,

Ek ω =
1

(2π)2

∫
E(r, t) exp

[− i(k·r − ωt)]dr dt .
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There is the following relation between them:

Dk ω(k, ω) = ε0K(k, ω)·Ek ω(k, ω) ,

and we have

D(r, t) =
1

(2π)2
ε0

∫
K(k, ω)·Ek ω(k, ω) exp

[
i(k·r − ωt)]dk dω ,

E(r, t) =
1

(2π)2

∫
Ek,ω

(k, ω) exp
[
i(k·r − ωt)]dk dω .

From the formula for the Fourier integral:

D(r, t) = ε0

∫
K̂(r − r′, t− t′)·E(r′, t′) dr′ dt′ ,

where K̂(r, t) is

K̂(r, t) =
1

(2π)4

∫
K(k, ω) exp

[
i(k · r − ωt)]dk dω .

Therefore analysis of general electromagnetic fields in dispersive media is
not simple. However, if the electric field consists of Fourier components in a
narrow region near k0, ω0, and if K changes slowly as k, ω change, then we
can use the relation

D(r, t) = ε0K(k0, ω0) · E(r, t).

From now on, we will discuss only this simple case. The relation between the
magnetic induction B and the magnetic intensity H is B = µ0H.

The quasi-periodic functions A, B may be expressed by

A = A0 exp
[
−i
∫ t

−∞
(ωr + iωi)dt′

]
= A0 exp(−iφr + φi) ,

B = B0 exp
[
−i
∫ t

−∞
(ωr + iωi)dt′

]
= B0 exp(−iφr + φi) ,

where φr and φi are real. Denoting the average of the product of the real part
of A with the real part of B by AB, we find

AB =
1
2

× 1
2

〈[
A0 exp(−iφr + φi) +A∗

0 exp(iφr + φi)
]

× [B0 exp(−iφr + φi) +B∗
0 exp(iφr + φi)

]〉
=

1
4
(A0B

∗
0 +A∗

0B0) exp(2φi) =
1
2
Re(AB∗) . (12.2)
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The average of the Poynting equation becomes

∇·P +
∂W

∂t
= 0 , (12.3)

P =
1

2µ0
Re(E0 × B∗

0) exp 2
∫ t

−∞
ωidt′ , (12.4)

∂W

∂t
=

1
2
Re
[(

B∗

µ0
·∂B
∂t

)
+ ε0E∗· ∂

∂t
(K·E)

]
=

1
2
Re
[
−iω

B∗·B
µ0

+ ε0(−iω)E∗·K·E
]

=
1
2
ωi

B·B∗

µ0
+
ε0
2
[
ωiRe(E∗·K·E) + ωrIm(E∗·K·E)

]
. (12.5)

From the relations
E∗·K·E =

∑
i

E∗
i

∑
j

KijEj ,

E·K∗·E∗ =
∑

i

Ei

∑
j

K∗
ijE

∗
j =

∑
j

E∗
j

∑
i

(KT
ji)

∗Ei

=
∑

i

E∗
i

∑
j

(KT
ij)

∗Ej ,

we find
Re(E∗·K·E) = E∗·K + (KT)∗

2
·E ,

Im(E∗·K·E) = E∗· (−i)
[
K − (KT)∗]

2
·E .

(KT)∗ is the complex conjugate of the transpose matrix KT of K (in which
the columns and rows of components are exchanged), i.e., KT

ij ≡ Kji. When
the matrices M and (MT)∗ are equal, this kind of matrix is called a Hermite
matrix . For the Hermite matrix, (E∗·M ·E) is always real. The dielectric
tensor may be decomposed to

K(k, ω) = KH(k, ω) + iKI(k, ω) .

As we shall explain in Sect. 12.3, KH and KI are Hermite when k, ω are
real. It will be proved that the term iKI corresponds to Landau damping
and cyclotron damping. When the imaginary part of ω is much smaller than
the real part (ω = ωr + iωi, |ωi| � |ωr|), we may write

K(k, ωr + iωi) ≈ KH(k, ωr) + iωi
∂

∂ωr
KH(k, ωr) + iKI(k, ωr),

K + (KT)∗

2
= KH,

−i[K − (KT)∗]
2

= ωi
∂

∂ωr
KH + KI.
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Fig. 12.2. F (x, t) and f(k) cos
[
kx − w(k)t

]
When the Hermite component of W (the term associated with KH in W ) is
denoted by W0, this W0 is given by

W0 =
1
2
Re
[
B∗

0·B0

2µ0
+
ε0
2

E∗
0·KH·E0 +

ε0
2

E∗
0·
(
ωr

∂

∂ωr
KH

)
·E0

]
=

1
2
Re
{

B∗
0·B0

2µ0
+
ε0
2

E∗
0·
[
∂

∂ω
(ωKH)

]
·E0

}
, (12.6)

and (12.3) and (12.5) yield

∂W0

∂t
= −ωr

1
2
ε0E

∗
0·KI·E0 − ∇·P . (12.7)

The first term in (12.6) is the energy density of the magnetic field and the
second term is the energy density of the electric field which includes the
kinetic energy of coherent motion associated with the wave. Equation (12.6)
gives the energy density of the wave in a dispersive media. The first term on
the right-hand side of (12.7) represents the Landau and cyclotron dampings
and the second term is the divergence of the flow of wave energy.

Let us consider the velocity of movement of the wave packet given by

F (r, t) =
∫ ∞

−∞
f(k) exp i

[
k·r − ω(k)t

]
dk , (12.8)

when ω = ω(k) is given. If f(k) varies slowly, the position of the maximum
of F (r, t) at t is the position of the stationary phase of

∂

∂kα

[
k·r − ω(k)t

]
= 0 (α = x, y, z) ,

because the main contribution to the integral (12.8) comes from the region
near the stationary phase, as shown in Fig. 12.2. Consequently, the velocity
of the wave packet is
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x

t
=
∂ω(k)
∂kx

,
y

t
=
∂ω(k)
∂ky

,
z

t
=
∂ω(k)
∂kz

)
,

that is

vg =
(
∂ω

∂kx
,
∂ω

∂ky
,
∂ω

∂kz

)
. (12.9)

This velocity is called the group velocity and represents the velocity of energy
flow.

12.2 Ray Tracing

When the wavelength of waves in the plasma is much less than the charac-
teristic length (typically the minor radius a), the WKB approximation (ge-
ometrical optics approximation) can be applied. Let the dispersion relation
be D(k, ω, r, t) = 0. The direction of wave energy flow is given by the group
velocity vg = ∂ω/∂k ≡ (∂ω/∂kx, ∂ω/∂ky, ∂ω/∂kz), so that the optical ray
can be given by dr/dt = vg. Although the quantities (k, ω) change according
to the change in r, they always satisfy D = 0. Then the optical ray can be
obtained by

dr

ds
=
∂D

∂k
,

dk

ds
= −∂D

∂r
, (12.10)

dt
ds

= −∂D
∂ω

,
dω
ds

=
∂D

∂t
. (12.11)

Here s is a measure of the length along the optical ray. Along the optical ray
the variation δD becomes zero:

δD =
∂D

∂k
·δk +

∂D

∂ω
δω +

∂D

∂r
·δr +

∂D

∂t
δt = 0 , (12.12)

and D(k, ω, r, t) = 0 is satisfied. Equations (12.10) and (12.11) reduce to

dr

dt
=

dr

ds

(
dt
ds

)−1

= −∂D
∂k

(
∂D

∂ω

)−1

=
(
∂ω

∂k

)
r,t=const.

= vg .

Equation (12.10) has the same form as the equation of motion with Hamilto-
nian D. When D does not depend on t explicitly, D = const. = 0 corresponds
to the energy conservation law. If the plasma medium does not depend on z,
kz = const. corresponds to the momentum conservation law and is the same
as Snell’s law, N‖ = const.

When k = kr +iki is a solution of D = 0 for a given real ω and |ki| � |kr|
is satisfied, we have

D(kr + iki, ω) = ReD(kr, ω) +
∂ReD(kr, ω)

∂kr
·iki + iImD(kr, ω) = 0 ,
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hence,
ReD(kr, ω) = 0 ,

ki·∂ReD(kr, ω)
∂kr

= −ImD(kr, ω) . (12.13)

Then the wave intensity I(r) becomes

I(r) = I(r0) exp
(

−2
∫ r

r0

ki·dr

)
, (12.14)

∫
ki·dr =

∫
ki·∂D
∂k

ds = −
∫

ImD(kr, ω)ds = −
∫

ImD(kr, ω)
|∂D/∂k| dl ,

(12.15)
where dl is the length along the optical ray. Therefore the wave absorption
can be estimated from (12.14) and (12.15) by tracing many optical rays. The
geometrical optical approximation can provide the average wave intensity
with a space resolution of, say, two or three times the wavelength.

12.3 Dielectric Tensor of Hot Plasma

In the process of wave absorption by a hot plasma, Landau damping or
cyclotron damping are the most important damping processes, as discussed
in Chap. 11. These are due to the interaction between the wave and so-called
resonant particles satisfying

ω − kzvz − nΩ = 0 , n = 0,±1,±2, . . . .

In coordinates moving with the same velocity, the electric field is static
(ω = 0) or has a cyclotron harmonic frequency (ω = nΩ). The case n = 0
corresponds to Landau damping, whilst n = 1 corresponds to electron cy-
clotron damping and n = −1 corresponds to ion cyclotron damping (ω > 0
is assumed).

Although nonlinear or stochastic processes accompany wave heating in
many cases, the experimental results of wave heating or absorption are usually
well described by linear or quasi-linear theories. The basis of the linear theory
is the dispersion relation with the dielectric tensor K of a finite-temperature
plasma. The absorbed power P ab per unit volume of plasma is given by the
first term on the right-hand side of (12.7):

P ab = ωr

(ε0
2

)
E∗·KI·E .

Since KH, KI is a Hermite matrix for real k, ω, as will be shown later in
this section, the absorbed power P ab is given by

P ab = ωr

(ε0
2

)
Re
[
E∗·(−i)K·E]

ω=ωr
. (12.16)
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It is clear from the expression (12.19) for K that the absorbed power P ab

reduces to

P ab =ω
ε0
2

[
|Ex|2ImKxx + |Ey|2ImKyy + |Ez|2ImKzz (12.17)

+ 2Im(E∗
xEy)ReKxy + 2Im(E∗

yEz)ReKyz + 2Im(E∗
xEz)ReKxz

]
.

Since (10.3) gives j = −iωP = −iε0ω(K − I)·E, (12.16) may be described
by

P ab =
1
2
Re(E∗·j)ω=ωr . (12.18)

The process driving the dielectric tensor K of a finite-temperature plasma is
described in Sect. 12.8. When the plasma is bi-Maxwellian,

f0(v⊥, vz) = n0F⊥(v⊥)Fz(vz) , F⊥(v⊥) =
m

2πκT⊥
exp
(

− mv2⊥
2κT⊥

)
,

Fz(vz) =
(

m

2πκTz

)1/2

exp
[
−m(vz − V )2

2κTz

]
,

the dielectric tensor K is given by

K = I+ (12.19)∑
i,e

Π2

ω2

[∑
n

{
ζ0Z(ζn) −

(
1 − 1

λT

)[
1 + ζnZ(ζn)

]}
e−bXn + 2η2

0λT L

]
,

Xn =

⎛⎜⎜⎜⎝
n2In/b in(I ′

n − In) −(2λT )1/2ηn
n

α
In

−in(I ′
n − In) (n2/b+ 2b)In − 2bI ′

n i(2λT )1/2ηnα(I ′
n − In)

−(2λT )1/2ηn
n

α
In −i(2λT )1/2ηnα(I ′

n − In) 2λT η
2
nIn

⎞⎟⎟⎟⎠ ,

(12.20)

Z(ζ) ≡ 1
π1/2

∫ ∞

−∞

exp(−β2)
β − ζ dβ ,

where In(b) is the n th modified Bessel function and

ηn ≡ ω + nΩ
21/2kzvTz

, ζn ≡ ω − kzV + nΩ
21/2kzvTz

,

λT ≡ Tz

T⊥
, b ≡

(
kxvT⊥

Ω

)2

, α ≡ b1/2 ,
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Fig. 12.3. Real part ReZ(x) and imaginary part ImZ(x) of Z(x)

v2Tz
≡ κTz

m
, v2T⊥ ≡ κT⊥

m
.

The components of the matrix L are zero except for Lzz = 1.
When the plasma is isotropic Maxwellian (Tz = T⊥) and V = 0, then

ηn = ζn, λT = 1, and (12.19) reduces to

K = I +
∑
i,e

Π2

ω2

[ ∞∑
n=−∞

ζ0Z(ζn)e−bXn + 2ζ20L

]
. (12.21)

Z(ζ) is called the plasma dispersion function. When the imaginary part Imω
of ω is smaller than the real part Reω in magnitude (|Imω| < |Reω|), the
imaginary part of the plasma dispersion function is

ImZ(ζ) = i
kz

|kz|π
1/2 exp(−ζ2) .

The real part ReZ(x) (x is real) is shown in Fig. 12.3.
The real part of Z(x) is

ReZ(x) = −2x
[
1 − (2/3)x2 + · · · ] ,

when x � 1 (hot plasma) and

ReZ(x) = −x−1[1 + (1/2)x−2 + (3/4)x−4 + · · · ] ,
when x � 1 (cold plasma) [12.1–12.3]. The imaginary part of Z(ζ) represents
the Landau damping and cyclotron damping terms, as described later in this
section.

When T → 0, that is, ζn → ±∞, b → 0, the dielectric tensor of the hot
plasma reduces to the dielectric tensor (10.9)–(10.13) of a cold plasma.
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When b = (kxρΩ)2 � 1, where ρΩ = vT⊥/Ω is the Larmor radius, e−bXn
can be expanded in powers of b using

In(b) =
(
b

2

)n ∞∑
l=0

1
l!(n+ l)!

(
b

2

)2l

=
(
b

2

)n
[

1
n!

+
1

1!(n+ 1)!

(
b

2

)2

+
1

2!(n+ 2)!

(
b

2

)4

+ · · ·
]
.

The expansion in powers of b and the inclusion of terms up to the second
harmonics in K gives

Kxx = 1 +
∑

j

(
Πj

ω

)2

ζ0

[
(Z1 + Z−1)

(
1
2

− b

2
+ · · ·

)

+ (Z2 + Z−2)
(
b

2
− b2

2
+ · · ·

)
+ · · ·

]
j

,

Kyy = 1 +
∑

j

(
Πj

ω

)2

ζ0

[
Z0(2b+ · · ·) + (Z1 + Z−1)

(
1
2

− 3b
2

+ · · ·
)

+ (Z2 + Z−2)
(
b

2
− b2 + · · ·

)
+ · · ·

]
j

,

Kzz = 1 −
∑

j

(
Πj

ω

)2

ζ0

[
2ζ0W0(1 − b+ · · ·) + (ζ1W1 + ζ−1W−1)(b+ · · ·)

+ (ζ2W2 + ζ−2W−2)
(
b2

4
+ · · ·

)
+ · · ·

]
j

,

Kxy = i
∑

j

(
Πj

ω

)2

ζ0

[
(Z1 − Z−1)

(
1
2

− b+ · · ·
)

+ (Z2 − Z−2)
(
b

2
+ · · ·

)
+ · · ·

]
j

,

Kxz = 21/2
∑

j

(
Πj

ω

)2

b1/2ζ0

[
(W1 −W−1)

(
1
2

+ · · ·
)

+ (W2 −W−2)
(
b

4
+ · · ·

)
+ · · ·

]
j

,
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Kyz = −21/2i
∑

j

(
Πj

ω

)2

b1/2ζ0

[
W0

(
−1 +

3
2
b+ · · ·

)
(12.22)

+(W1 +W−1)
(

1
2

+ · · ·
)

+ (W2 −W−2)
(
b

4
+ · · ·

)
+ · · ·

]
j

,

Kyx = −Kxy , Kzx = Kxz , Kzy = −Kzy ,

where

Z±n ≡ Z(ζ±n) , Wn ≡ −[1 + ζnZ(ζn)
]
, ζn =

ω + nΩ
21/2kz(κTz/m)1/2 .

When x � 1,

ReW (x) = (1/2)x−2[1 + (3/2)x−2 + · · · ] .
The absorbed power by Landau damping (including transit time damping)
may be estimated from the terms associated with the imaginary part G0 of
ζ0Z(ζ0) in (12.22) of Kij :

G0 ≡ Imζ0Z(ζ0) = (kz/|kz|)π1/2ζ0 exp(−ζ20 ) .

Since

(ImKyy)0 =
(
Πj

ω

)2

2bG0 , (ImKzz)0 =
(
Πj

ω

)2

2ζ20G0 ,

(ReKyz)0 =
(
Πj

ω

)2

21/2b1/2ζ0G0 ,

the contribution of these terms to the absorption power (12.17) is

P ab
0 = ω

(
Πj

ω

)2

G0ε0

[
|Ey|2b+ |Ez|2ζ20 + Im(E∗

yEz)(2b)1/2ζ0

]
. (12.23)

The first term is the transit time damping, equal to (11.16). The second term
is the Landau damping, equal to (11.10). The third arises from interference
between the first two terms.

The absorption power due to cyclotron damping and harmonic cyclotron
damping is obtained by the contribution from the terms

G±n ≡ Imζ0Z±n =
kz

|kz|π
1/2ζ0 exp(−ζ2±n) ,

and for the case b � 1,

(ImKxx)±n = (ImKyy)±n =
(
Πj

ω

)2

G±nαn ,
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(ImKzz)±n =
(
Πj

ω

)2

2ζ2±nG±nbαnn
−2 ,

(ReKxy)±n = −
(
Πj

ω

)2

G±n(±αn) ,

(ReKyz)±n = −
(
Πj

ω

)2

(2b)1/2ζ±nG±nαnn
−1 ,

(ImKxz)±n = −
(
Πj

ω

)2

(2b)1/2ζ±nG±n(±αn)n−1 ,

αn = n2(2 × n!)−1
(
b

2

)n−1

.

The contribution of these terms to the absorbed power (12.17) is

P ab
±n = ω

(
Πj

ω

)2

Gn

(ε0
2

)
αn|Ex ± iEy|2 . (12.24)

Since

ζn =
ω + nΩi

21/2kzvTi

=
ω − n|Ωi|
21/2kzvTi

,

the term in +n is dominant for ion cyclotron damping (ω > 0), and since

ζ−n =
ω − nΩe

21/2kzvTe

,

the term in −n is dominant for electron cyclotron damping (ω > 0). The
relative strength of E components can be estimated from the following equa-
tions:

(Kxx −N2
‖ )Ex +KxyEy + (Kxz +N⊥N‖)Ez = 0 ,

−KxyEx + (Kyy −N2
‖ −N2

⊥)Ey +KyzEz = 0 , (12.25)

(Kxz +N⊥N‖)Ex −KyzEy + (Kzz −N2
⊥)Ez = 0 .

For cold plasmas,

Kxx → K⊥ , Kyy → K⊥ , Kzz → K‖ , Kxy → −iK× ,

Kxz → 0 , Kyz → 0 ,

can be substituted into (12.25), and the ratio is

Ex : Ey : Ez = (K⊥−N2)×(K‖−N2
⊥) : −iKx(K‖−N2

⊥) : −N‖N⊥(K⊥−N2) .

In order to obtain the magnitude of the electric field, one must solve the
Maxwell equations with the dielectric tensor of (12.19). In this case the den-
sity, the temperature, and the magnetic field are functions of the coordinates.
Therefore the simplified model must be used for analytical solutions. Other-
wise numerical calculations are required to derive the wave field.
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12.4 Wave Heating
in the Ion Cyclotron Frequency Range

The dispersion relation of waves in the ion cyclotron frequency range (ICRF)
is given by (10.64a) and (10.64c) and reduces to

N2
‖ =

N2
⊥

2[1 − (ω/Ωi)2]

[
−
[
1 −
(
ω

Ωi

)2
]

+
2ω2

k2
⊥v

2
A

±
{[

1 −
(
ω

Ωi

)2
]2

+ 4
(
ω

Ωi

)2(
ω

k⊥vA

)4
}1/2]

.

The plus sign corresponds to the slow wave (L wave, ion cyclotron wave), and
the minus sign corresponds to the fast wave (R wave, extraordinary wave).
When 1 − ω2/Ω2

i � 2(ω/k⊥vA)2, the dispersion relation becomes

k2
z = 2

(
ω2

v2A

)(
1 − ω2

Ω2
i

)−1

(slow wave) ,

k2
z = −k

2
⊥
2

+
ω2

2v2A
(fast wave) .

Since the externally excited waves usually have propagation vectors with
0 < k2

z < (π/a)2, k2
⊥ > (π/a)2 usually, there are constraints for slow wave,

viz.,

ω2

v2
A

2
(1 − ω2/Ω2

i )
<
(

π

a

)2
, n20a

2 < 1.3 × 10−3 A

Z2

Ω2
i

ω2

(
1 − ω2

Ω2
i

)
,

and for fast wave [12.4], viz.,

ω2

2v2
A

>
(

π

a

)2
, n20a

2 > 0.5 × 10−2 A

Z2

Ω2
i

ω2

where n20 is the ion density in 1020 m−3, a is the plasma radius in meters,
and A is the atomic number.

An ion cyclotron wave (slow wave) can be excited by a Stix coil [12.1] and
can propagate and heat ions in a low-density plasma. But it cannot propagate
in a high-density plasma like that of a tokamak.

The fast wave is an extraordinary wave in this frequency range and can
be excited by a loop antenna, which generates a high-frequency electric field
perpendicular to the magnetic field (see Sect. 10.2). The fast wave can prop-
agate in a high-density plasma. The fast wave in a plasma with a single ion
species has Ex + iEy = 0 at ω = |Ωi| in the cold plasma approximation, so
that it is not absorbed by ion cyclotron damping. However, the electric field
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of the fast wave in a plasma with two ion species is Ex +iEy �= 0, so that the
fast wave can be absorbed, i.e., the fast wave can heat the ions in this case.

Let us consider the heating of a plasma with two ion species, M and m,
by a fast wave. The masses, charge numbers, and densities of the M and m
ions are denoted by mM, ZM, nM and mm, Zm, nm, respectively. When we
use

ηM ≡ Z2
MnM

ne
, ηm ≡ Z2

mnm

ne
,

we have ηM/ZM + ηm/Zm = 1 since ne = ZMnM +Zmnm. Since (Πe/ω)2 � 1
in an ICRF wave, the dispersion relation in the cold plasma approximation
is given by (10.2) as follows:

N2
⊥ =

(R−N2
‖ )(L−N2

‖ )

K⊥ −N2
‖

,

R = −Π
2
i

ω2

[
(mM/mm)ηmω
ω + |Ωm| +

ηMω

ω + |ΩM| − ω

|ΩM|/ZM

]
,

L = −Π
2
i

ω2

[
(mM/mm)ηmω
ω − |Ωm| +

ηMω

ω − |ΩM| +
ω

|ΩM|/ZM

]
,

K⊥ = −Π
2
i

ω2

[
(mM/mm)ηmω2

ω2 −Ω2
m

+
ηMω

2

ω2 −Ω2
M

]
,

Π2
i ≡ nee

2

ε0mM
.

Therefore ion–ion hybrid resonance occurs at K⊥ −N2
‖ = 0, that is,

ηm(mM/mm)ω2

ω2 −Ω2
m

+
ηMω

2

ω2 −Ω2
M

≈ − ω
2

Π2
i
N2

‖ ≈ 0 ,

ω2 ≈ ωIH ≡ ηM + ηm(µ2/µ′)
ηM + ηm/µ′ Ω2

m , µ′ ≡ mm

mM
, µ ≡ ΩM

Ωm
=
mmZM

mMZm
.

Figure 12.4 shows the ion–ion hybrid resonance layer K⊥ − N2
‖ = 0, the L

cutoff layer L − N2
‖ = 0, and the R cutoff layer R − N2

‖ = 0 of a tokamak
plasma with two ion species D+ (M ion) and H+ (m ion).

Since the Kzz component of the dielectric tensor is much larger than
the other component, even in a hot plasma, the dispersion relation of a hot
plasma is [12.5] ∣∣∣∣∣Kxx −N2

‖ Kxy

−Kxy Kyy −N2
‖ −N2

⊥

∣∣∣∣∣ = 0 . (12.26)

When we use the relation Kyy ≡ Kxx + ∆Kyy, |∆Kyy| � |Kxx|,
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Fig. 12.4. L cutoff layer (L = N2
‖ ), R cutoff layer (R = N2

‖ ), and ion–ion hybrid
resonance layer (K⊥ = N2

‖ ) of an ICRF wave in a tokamak with two ion components
D+, H+. The shaded area is the region N2

⊥ < 0

N2
⊥ =

(Kxx −N2
‖ )(Kxx + ∆Kyy −N2

‖ ) +K2
xy

Kxx −N2
‖

≈
(Kxx + iKxy −N2

‖ )(Kxx − iKxy −N2
‖ )

Kxx −N2
‖

.

When ω2 is near ω2
IH, Kxx is given by [see (12.22)]

Kxx = −Π
2
i

ω2

[
mM

2mm
ηmζ0Z(ζ1) +

ηMω
2

ω2 −Ω2
M

]
.

The resonance condition is Kxx = N2
‖ . The value of Z(ζ1) that appears in

the dispersion equation is finite and 0 > Z(ζ1) > −1.08. The condition

ηm ≥ ηcr ≡ 2
1.08

mm

mM
21/2N‖

vTi

c

(
ηMω

2

ω2 −Ω2
M

+N2
‖
ω2

Π2
i

)
is required to obtain the resonance condition. This differs from the cold
plasma dispersion equation (note the difference between Kxx and K⊥).

It can be deduced from the dispersion equation (12.26) that the mode
conversion [12.5] from the fast wave to the ion Bernstein wave occurs at the
resonance layer when ηm ≥ ηcr. When the L cutoff layer and the ion–ion
hybrid resonance layer are close to each other, as shown in Fig. 12.4, the
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fast wave propagating from the outside torus penetrates the L cutoff layer
partly by the tunneling effect and is converted to the ion Bernstein wave.
The mode-converted wave is absorbed by ion cyclotron damping or electron
Landau damping. The theory of mode conversion is described in Chap. 10
of [12.1]. ICRF experiments related to this topic were carried out in TFR.

When ηm < ηcr, K⊥ = N2
‖ cannot be satisfied and the ion–ion hybrid res-

onance layer disappears. In this case a fast wave excited by the loop antenna
outside the torus can pass through the R cutoff region (because the width
is small), to be reflected by the L cutoff layer and bounced back and forth
in the region surrounded by R = N2

‖ and L = N2
‖ . In this region, there is a

layer satisfying ω = |Ωm|, and the minority m ions are heated by the funda-
mental ion cyclotron damping. The majority M ions are heated by Coulomb
collisions with m ions. If the mass of M ions is l times the mass of m ions,
the M ions are also heated by the l th harmonic ion cyclotron damping. This
type of experiment was carried out in PLT with good heating efficiency. This
is called minority heating . The absorption power Pe0 due to electron Landau
damping per unit volume is given by (12.23), and it is important only when
ζ0 ≤ 1. In this case we have Ey/Ez ≈ Kzz/Kyz ≈ 2ζ20/

[
21/2b1/2ζ0(−i)

]
and

Pe0 is [12.6]

Pe0 =
ωε0
4

|Ey|2
(
Πe

ω

)2(
k⊥vTe

Ωe

)2

2ζ0eπ1/2 exp(−ζ20e) . (12.27)

The absorption power Pin by n th harmonic ion cyclotron damping is given
by (12.24) as follows:

Pin =
ωε0
2

|Ex + iEy|2
(
Πi

ω

)2(
n2

2 × n!
)(

b

2

)n−1

× ω

21/2kzvTi

π1/2 exp
[
− (ω − n|Ωi|)2

2(kzvTi)2

]
. (12.28)

The absorption power due to second harmonic cyclotron damping is propor-
tional to the beta value of the plasma. In order to evaluate the absorption
power from (12.27) and (12.28), we need the spatial distributions of Ex and
Ey and it is possible to calculate these distributions numerically [12.7].

In the range of the higher harmonic ion cyclotron frequencies, i.e., ω ∼
2Ωi, 3Ωi, the direct excitation of the ion Bernstein wave has been studied by
an external antenna or waveguide, which generates a high-frequency electric
field parallel to the magnetic field [12.8].

12.5 Lower Hybrid Heating

Since |Ωi| � Πi in a tokamak plasma (ne ≥ 1013 cm−3), the lower hybrid
resonance frequency becomes



12.5 Lower Hybrid Heating 193

ω2
LH =

Π2
i +Ω2

i

1 +Π2
e /Ω

2
e + Zme/mi

≈ Π2
i

1 +Π2
e /Ω

2
e
.

We have the relations Ωe � ωLH � |Ωi|, Π2
i /Π

2
e = |Ωi|/Ωe. For a given

frequency ω, lower hybrid resonance ω = ωLH occurs at the position where
the electron density satisfies the condition

Π2
e (x)
Ω2

e
=
Π2

res

Ω2
e

≡ p , p =
ω2

Ωe|Ωi| − ω2 .

When the dispersion equation (10.20) of cold plasma is solved for N2
⊥ using

N2 = N2
‖ +N2

⊥, we have

N2
⊥ =

K⊥K̃⊥ −K2
× +K‖K̃⊥

2K⊥

±
⎡⎣(K⊥K̃⊥ −K2

× +K‖K̃⊥
2K⊥

)2

+
K‖
K⊥

(K2
× − K̃2

⊥)

⎤⎦1/2

,

where K̃⊥ = K⊥ −N2
‖ . The relations

h(x) ≡ Π2
e (x)
Π2

res
, K⊥ = 1 − h(x) , K× = ph(x)

Ωe

ω
, K‖ = 1 − βΠh(x) ,

βΠ ≡ Π2
res

ω2 ∼ O(mi/me) , α ≡ Π2
res

ωΩe
∼ O(mi/me)1/2 , βΠh � 1 ,

reduce this to

N2
⊥(x) =

βΠh

2(1 − h)
[
N2

‖ − (1 − h+ ph) (12.29)

±
{[
N2

‖ − (1 − h+ ph)
]2 − 4(1 − h)ph

}1/2
]
.

The slow wave corresponds to the plus sign in (12.29). In order for the slow
wave to propagate from the plasma edge with low density (h � 1) to the
plasma center with high density (Π2

e = Π2
res, h = 1), N⊥(x) must be real.

We thus require the condition

N‖ > (1 − h)1/2 + (ph)1/2 .

The right-hand side of the inequality has maximum value (1 + p)1/2 in the
range 0 < h < 1, so that the condition of accessibility of the lower hybrid
wave to the resonant region becomes

N2
‖ > N

2
‖,cr = 1 + p = 1 +

Π2
res

Ω2
e
. (12.30)
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Fig. 12.5. Plot of lower hybrid wave in N2
⊥–h(x) (= Π2

e (x)/Π2
res) diagram for the

case p = 0.353, N2
‖cr = 1+p = 1.353. This corresponds to an H+ plasma in B = 3 T,

and f = ω/2π = 109 Hz. The electron density for the parameter βΠ = 7.06 × 103

(= Π2
res/ω2) is nres = 0.31 × 1020 m−3

If this condition is not satisfied, the externally excited slow wave propagates
into the position where the square root term in (12.29) becomes zero and
transforms to the fast wave there. Then the fast wave returns to the low-
density region (see Fig. 12.5). The slow wave that satisfies the accessibility
condition can approach the resonance region and N⊥ can become large, so
that the dispersion relation of a hot plasma must be used to examine the be-
havior of this wave. Near the lower hybrid resonance region, the electrostatic
wave approximation (12.35) is applicable. Since |Ωi| � ω � Ωe, the ion and
electron contribution terms are given by (12.37) and (12.39), respectively,
i.e.,

1 +
Π2

e

k2

me

Te

[
1 + I0e−bζ0Z(ζ0)

]
+Π2

i k
2mi

Ti

[
1 + ζZ(ζ)

]
= 0 ,

where
ζ0 =

ω

21/2kzvTe

and ζ =
ω

21/2kvTi

≈ ω

21/2k⊥vTi

.

Since

I0e−b ≈ 1 − b+
3
4
b2 , ζ0 � 1 , ζ � 1 , 1 + ζZ(ζ) ≈ −1

2
ζ−2 − 3

4
ζ−4 ,

we have(
3Π2

i

ω4

κTi

mi
+

3
4
Π2

e

Ω4
e

κTe

me

)
k4

⊥ −
(

1 +
Π2

e

Ω2
e

− Π2
i

ω2

)
k2

⊥ −
(

1 − Π2
e

ω2

)
k2

z = 0 .

(12.31)
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Using the notation ρi = vTi/|Ωi| and

s2 ≡ 3
( |ΩeΩi|

ω2 +
1
4
Te

Ti

ω2

|ΩeΩi|
)

= 3
(

1 + p
p

+
1
4
Te

Ti

p

1 + p

)
,

we have
3Π2

i

ω4

κTi

mi
+

3
4
Π2

e

Ω4
e

κTe

me
=
Π2

i

ω2

me

mi

v2Ti
s2

Ωi
,

1 +
Π2

e

Ω2
e

− Π2
i

ω2 =
1

1 + p
1 − h
h

Π2
i

ω2 .

Then the dimensionless form of (12.31) is

(k⊥ρi)4 − 1 − h
h

mi

me

1
(1 + p)s2

(k⊥ρi)2 +
(
mi

me

)2 1
s2

(kzρi)2 = 0 . (12.32)

This dispersion equation has two solutions. One corresponds to the slow wave
in a cold plasma and the other to the plasma wave in a hot plasma. The
slow wave transforms to the plasma wave at the location where (12.31) or
(12.32) has equal roots [12.9–12.11]. The condition of zero discriminant is
1/h = 1 + 2kzρi(1 + p)s and

Π2
e (x)
Ω2

e
=
Π2

M.C.

Ω2
e

≡ p

1 + 2kzρi(1 + p)s
.

Accordingly, mode conversion occurs at the position satisfying

ω2

Π2
i

=
(

1 − ω2

|Ωi|Ωe

)
+
N‖vTe2

√
3

c

[
Ti

Te
+

1
4

(
ω2

ΩiΩe

)2
]1/2

,

and the value of k2
⊥ρ

2
i at this position becomes

k2
⊥ρ

2
i

∣∣
M.C.

=
mi

me

kzρi
s
.

If the electron temperature is high enough at the plasma center to satisfy
vTe > (1/3)c/N‖, the wave is absorbed by electrons due to electron Landau
damping.

After mode conversion, the value N⊥ becomes large so that c/N⊥ becomes
comparable to the ion thermal velocity (c/N⊥ ∼ vTi). Since ω � |Ωi|, the
ion motion is not affected by the magnetic field within the time scale ω−1.
Therefore the wave with phase velocity c/N is absorbed by ions due to ion
Landau damping. When ions have velocity vi larger than c/N⊥ (vi > c/N⊥),
they are accelerated or decelerated at each time satisfying vi cos(Ωit) ≈ c/N⊥
and are subjected to stochastic heating.

The wave is excited by the array of waveguides, as shown in Fig. 12.6,
with an appropriate phase difference to provide the necessary parallel index
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Fig. 12.6. Array of waveguides to excite a lower hybrid wave (slow wave)

N‖ = kzc/ω = 2πc/(λzω). In the low-density region at the plasma boundary,
the component of the electric field parallel to the magnetic field is larger
for the slow wave than for the fast wave. Therefore the waveguide directions
are arranged to excite the electric field parallel to the line of magnetic force.
The coupling of waves to plasmas is discussed in detail in [12.12] and the
experiments relating to lower hybrid heating (LHH) are reviewed in [12.13].

For a current to be driven by the lower hybrid wave, the accessibility
condition (12.30) and c/N‖ � vTe are required. If the electron temperature
is high and κTe ∼ 10 keV, then vTe/c is already ∼ 1/7. Even if N‖ is chosen
to be small under the accessibility condition (12.30), the wave is subjected
to absorption by electron damping in the outer part of the plasma, and the
wave cannot be expected to propagate into the central part of the plasma.

When the value of N‖ is chosen to be N‖ ∼ (1/3)(c/vTe), electron heat-
ing can be expected and has indeed been observed experimentally. Under
conditions where mode conversion can occur, ion heating can be expected.
However, the experimental results are less clear than those for electron heat-
ing.

12.6 Electron Cyclotron Heating

The dispersion relation of waves in the electron cyclotron range of frequency
in a cold plasma is given by (10.79). The plus and minus signs in (10.79)
correspond to ordinary and extraordinary waves, respectively. The ordinary
wave can only propagate when ω2 > Π2

e , as is clear from (10.86) (when
θ = π/2). This wave can be excited by an array of waveguides, like the one
used for lower hybrid waves (Fig. 12.6), which emits an electric field parallel
to the magnetic field. The phase of each waveguide is selected to provide the
appropriate value of the parallel index N‖ = kzc/ω = 2πc/(ωλz).

The dispersion relation of the extraordinary wave is given by (10.87).
When θ = π/2, it is given by (10.52). One must satisfy ω2

UH > ω
2 > ω2

L, ω2
LH.
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Fig. 12.7. Locations of electron cyclotron resonance (ω = Ωe), upper hybrid res-
onance (ω = ωLH), and R cut off (ω = ωR), when Ωe0 > Πe0 in tokamak configu-
ration, where Ωe0 and Πe0 are the electron cyclotron resonance frequency and the
plasma frequency at the plasma center, respectively (left). CMA diagram near the
electron cyclotron frequency region (right)

As can be seen from the CMA diagram in Fig. 10.5, the extraordinary wave
can access the plasma center from the high magnetic field side (see Fig. 12.7)
but cannot access from the low field side because of the ω = ωR cutoff. The
extraordinary wave can be excited by the waveguide, which emits an electric
field perpendicular to the magnetic field (see Sect. 10.2).

The ion’s contribution to the dielectric tensor is negligible. When relations
b � 1, ζ0 � 1 are satisfied for the electron, the dielectric tensor of a hot
plasma is

Kxx = Kyy = 1 +Xζ0Z−1/2 , Kzz = 1 −X +N2
⊥χzz ,

Kxy = −iXζ0Z−1/2 , Kxz = N⊥χxz , Kyz = iN⊥χyz ,

χxz ≈ χyz ≈ 2−1/2XY −1 vT

c
ζ0(1 + ζ−1Z−1) ,

χzz ≈ XY −2
(vT

c

)2
ζ0ζ−1(1 + ζ−1Z−1) ,

X ≡ Π2
e

ω2 , Y ≡ Ωe

ω
, ζ−1 =

ω −Ωe

21/2kzvT
, N⊥ =

k⊥c
ω

.

The Maxwell equations are

(Kxx −N2
‖ )Ex +KxyEy +N⊥(N‖ + χxz)Ez = 0 ,

−KxyEx + (Kyy −N2
‖ −N2

⊥)Ey + iN⊥χyzEz = 0 ,

N⊥(N‖ + χxz)Ex − iN⊥χyzEy +
[
1 −X −N2

⊥(1 − χzz)
]
Ez = 0 .
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The solution is

Ex

Ez
= − iN2

⊥χxz(N‖ + χxz) +Kxy

[
1 −X −N2

⊥(1 − χzz)
]

N⊥
[
iχxz(Kxx −N2

‖ ) +Kxy(N‖ + χxz)
] ,

Ey

Ez
= −

N2
⊥(N‖ + χxz)2 − (Kxx −N2

‖ )
[
1 −X −N2

⊥(1 − χzz)
]

N⊥
[
iχxz(Kxx −N2

‖ ) +Kxy(N‖ + χxz)
] .

The absorption power P−1 per unit volume is given by (12.24) as follows:

P−1 = ωXζ0
π1/2

2
exp
[
− (ω −Ωe)2

2k2
zv

2
Te

]
ε0
2

|Ex − iEy|2 .

When ω = Ωe, then

ζ−1 = 0 , Z−1 = iπ1/2 , Kxx = 1 + ih , Kxy = h ,

χyz = χxz = 21/2X
vTe

c
ζ0 =

X

2N‖
, χzz = 0 , h ≡ π1/2 ζ0X

2
.

Therefore the dielectric tensor K becomes

K =

⎛⎜⎝ 1 + ih h N⊥χxz

−h 1 + ih iN⊥χxz

N⊥χxz −iN⊥χxz 1 −X

⎞⎟⎠ .

For the ordinary wave (O wave), we have

Ex − iEy

Ez
=

iN2
⊥(O)N‖(N‖ + χxz) − i(1 −N2

‖ )
[
1 −X −N2

⊥(O)
]

N⊥(O)
[
N‖h+ iχxz(1 −N2

‖ )
] .

When N‖ � 1 and the incident angle is nearly perpendicular, (10.82) gives
1−X−N2

⊥(O) = (1−X)N2
‖ . Since χxz = X/2N‖, then χxz � N‖. Therefore

the foregoing equation reduces to

Ex − iEy

Ez
=

iN⊥(O)N‖χxz

N‖h+ iχxz
.

For the extraordinary wave (X wave), we have

Ex − iEy

Ey
= −

iN2
⊥(X)N‖(N‖ + χxz) − i(1 −N2

‖ )
[
1 −X −N2

⊥(X)
]

N2
⊥(X)(N‖ + χxz)2 − (Kxx −N2

‖ )
[
1 −X −N2

⊥(X)
] .

When N‖ � 1 and ω = Ωe, (10.83) gives 1 −X −N2
⊥(X) ≈ −1 +N2

‖ . Since
χ2

xz = (2π)−1/2(vTe/cN‖)Xh � h, the foregoing equation reduces to
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Ex − iEy

Ey
=

−[1 +N2
⊥(X)N‖(N‖ + χxz)

]
h− i

[
1 +N2

⊥(X)(N‖ + χxz)2
] ∼ − 1

h
.

The absorption power per unit volume [12.14] at ω = Ωe for the ordinary
wave is

P−1(O) ≈ ωε0
2

|Ez|2
hN2

⊥(O)N2
‖χ

2
xz

(N‖h)2 + χ2
xz

exp(−ζ2−1) (12.33)

≈ ωε0
2

|Ez|2 1
(2π)1/2

(
Πe

ω

)2(
vTe

cN‖

)
N2

⊥(O)N2
‖

N2
‖ + (vTe/c)2(2/π)

,

and the absorption power per unit volume for the extraordinary wave is

P−1(X) ∼ ωε0
2

|Ey|2 1
h

=
ωε0
2

|Ey|22
(

2
π

)1/2(
Πe

ω

)−2(N‖vTe

c

)
. (12.34)

Since P (O) ∝ neT
1/2
e /N‖, P (X) ∝ N‖T

1/2
e /ne, the ordinary wave is absorbed

to a greater extent in higher density and for perpendicular incidence, whereas
the extraordinary wave has the opposite tendency.

Experiments with electron cyclotron heating (ECH) have been carried out
by T-10, ISX-B, JFT-2, D-IIID, and so on, and the good heating efficiency of
ECH has been demonstrated. Heating and current drive by electron cyclotron
waves are reviewed in [12.15].

12.7 Velocity Space Instabilities (Electrostatic Waves)

Besides the magnetohydrodynamic instabilities discussed in Chap. 8, there
is another type of instability caused by deviations of the velocity space dis-
tribution function from the stable Maxwell form. Instabilities which depend
on the shape of the velocity distribution function are called velocity space
instabilities or microscopic instabilities. However, the distinction between
microscopic and macroscopic or MHD instabilities is not always clear.

12.7.1 Dispersion Equation of Electrostatic Wave

In this section, we describe the characteristics of the perturbation of electro-
static waves. In this case the electric field can be expressed by E = −∇φ =
−ikφ. The dispersion equation of the electrostatic wave is give by (Sect. 10.5)

k2
xKxx + 2kxkzKxz + k2

zKzz = 0 . (12.35)

When the zeroth-order distribution function is expressed by

f0(v⊥, vz) = n0F⊥(v⊥)Fz(vz) , F⊥(v⊥) =
m

2πκT⊥
exp
(

− mv2⊥
2κT⊥

)
,
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Fz(vz) =
(

m

2nκT⊥

)1/2

exp
[
−m(vz − V )2

2κTz

]
,

the dispersion equation is given by substituting Kxx, Kxz, Kzz expressed by
(12.19) and (12.20), into (12.35),

k2
x + k2

z +
∑
i,e

Π2 m

κTz

{
1 +

∞∑
n=−∞

[
1 +

Tz

T⊥
(−nΩ)
ωn

]
ζnZ(ζn)In(b)e−b

}
= 0 ,

(12.36)
derived in Sect. 12.8, where

ζn ≡ ωn

21/2kzvTz

, ωn ≡ ω − kzV + nΩ ,

b =
(
kxvT⊥

Ω

)2

, v2Tz
=
κTz

m
, v2T⊥ =

κT⊥
m

,

In(b) is the n th modified Bessel function, and Z(ζ) is the plasma dispersion
function. When the frequency of the wave is much higher than the cyclotron
frequency (|ω| � |Ω|) or the magnetic field is very weak (B → 0), then we
find ζn → ζ0, nΩ/ωn → 0,

∑
In(b)e−b = 1, so that the dispersion equation

reduces to

k2
x + k2

z +
∑
i,e

Π2 m

κTz

[
1 + ζ0Z(ζ0)

]
= 0 (|ω| � |Ω|) . (12.37)

When B = 0, the dispersion equation is given by

k2 +
∑
i,e

Π2 m

κT

[
1 + ζZ(ζ)

]
= 0

(
ζ =

ω − kV
21/2kvT

, B = 0
)
. (12.38)

When the frequency of the wave is much lower than the cyclotron frequency,
i.e., |ω| � |Ω|, then we find ζn → ∞ (n �= 0), ζnZn → −1 and

∑
In(b)e−b =

1:

k2
x + k2

z +
∑
i,e

Π2 m

κTz

{
I0e−b

[
1 + ζ0Z(ζ0)

]
+
Tz

T⊥

(
1 − I0e−b

)}
= 0

(|ω| � |Ω|) . (12.39)

When the frequency of the wave is much higher than the cyclotron frequency
or the magnetic field is very small, the dispersion equation (12.35) with
(12.71) reduces to

k2
x + k2

z +
∑
i,e

Π2 m

κTz

[
kz
κTz

m

∫
∂(f/n0)/∂vz

ω − kzvz
dvz

]
= 0 .

Partial integration gives

k2
x + k2

z

k2
z

=
∑
i,e

Π2
∫

f/n0

(ω − kzvz)2
dvz . (12.40)
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12.7.2 Electron Beam Instability

Let us consider the interaction of a weak electron beam of velocity V0 with a
plasma which consists of cold ions and hot electrons. The dispersion equation
(12.40) of an electrostatic wave with kx = 0 (Ex = Ey = 0, Ez �= 0, B1 = 0)
is given by

Kzz = K‖ − Π2
b

(ω − kV0)2

= 1 − Π2
i

ω2 −Π2
e

∫ ∞

−∞

fe(vz)/n0

(ω − kvz)2
dvz − Π2

b

(ω − kV0)2
= 0 . (12.41)

For the limit of a weak beam (Π2
b → 0), the dispersion equation reduces to

K‖(ω, k) ≈ 0, if ω �= kV0. The dispersion equation including the effect of a
weak beam must be in the form

ω − kV0 = δω(k)
[
δω(k) � kV0

]
.

Using δ2ω, (12.41) reduces to

Π2
b

δ2ω
= K‖(ω = kV0, k) +

(
∂K‖
∂ω

)
ω=kV0

δω .

If ω = kV0 does not satisfy K‖ = 0, then K‖ �= 0 holds and the second term
on the right-hand side of the foregoing equation can be neglected:

Π2
b

δ2ω
= K‖(ω = kV0, k) .

The expression for K‖(ω = kV0, k) is

K‖(ωr) = KR(ωr) + iKI(ωr) .

The KI term is the Landau damping term (see Sect. 12.3).
When the condition ω = kV0 is in a region where Landau damping is

ineffective, then |KI| � |KR| and the dispersion equation becomes

Π2
b

(ω − kV0)2
= KR . (12.42)

Therefore if the condition
KR < 0 (12.43)

is satisfied, δω is imaginary and the wave is unstable. When the dielectric
constant is negative, electric charges are likely to be bunched and we can
predict the occurrence of this instability.
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If ω = kV0 is in a region where Landau damping is effective, the condition
of instability is that the wave energy densityW0 in a dispersive medium (12.6)
should be negative, i.e.,

W0 =
ε0
2
E∗

z

∂

∂ω
(ωKzz)Ez < 0 .

In other words, a negative energy wave is the condition for instability, because
the absolute value of W0 increases if ∂W0/∂t is negative:

∂W0

∂t
=
∂

∂t

[
ε0
2
E∗

z

∂

∂ω
(ωKzz)Ez

]
= −ωr

2
ε0E

∗
zKIEz < 0 .

When energy is lost from the wave by Landau damping, the amplitude of
the wave increases because the wave energy density is negative. Readers may
refer to [12.16] for a more detailed analysis of the beam–plasma interaction.

12.7.3 Various Velocity Space Instabilities

In Sect. 12.7.2, a simple case of electron beam instability was described. There
are various velocity space instabilities.

The distribution function of a plasma confined in a mirror field is zero
for the loss cone region (v⊥/v)2 < 1/RM, where RM is the mirror ratio (see
Sect. 2.5). The instability associated with this is called loss-cone instability
[12.17].

Plasmas heated by ICRF have higher ion temperature in the perpendic-
ular direction than in the parallel direction. In this case instabilities with
higher harmonic ion cyclotron frequencies may occur. This type of instability
is called a Harris instability [12.18,12.19]. A Harris instability is electrostatic
and is analyzed by the dispersion relation (12.79).

In general plasmas are hot and dense in the center and cold and low
density on the outside. The instabilities driven by temperature gradient and
density gradient are called drift instabilities. The electrostatic drift instability
of an inhomogeneous plasma can be analyzed by the dispersion equation
(12.84) and (12.85) for the inhomogeneous plasma [12.3, 12.20].

In a toroidal field, trapped particles always exist on the outside, where the
magnetic field is weak. Instabilities induced by trapped particles are called
trapped particle instabilities [12.21].

12.8 Derivation of Dielectric Tensor in Hot Plasma

12.8.1 Formulation of Dispersion Relation in Hot Plasma

The dispersion relation of a cold plasma was derived in Chap. 10. In the un-
perturbed state, both the electrons and the ions are motionless in a cold
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plasma. However, in a hot plasma, electrons and ions move along spiral tra-
jectories, even in the unperturbed state. The motion of charged particles in
a uniform magnetic field B0 = B0ẑ may be described by

dr′

dt′
= v′ ,

dv′

dt′
=
q

m
v′ × B0 . (12.44)

Assuming that r′ = r, v′ = v = (v⊥ cos θ, v⊥ sin θ, vz) at t′ = t, the solution
of (12.44) is obtained as follows:

v′
x(t′) = v⊥ cos

[
θ+Ω(t′−t)] , v′

y(t′) = v⊥ sin
[
θ+Ω(t′−t)] , v′

z(t
′) = vz ,
(12.45)

x′(t′) = x+
v⊥
Ω

{
sin
[
θ +Ω(t′ − t)]− sin θ

}
,

y′(t′) = y − v⊥
Ω

{
cos
[
θ +Ω(t′ − t)]− cos θ

}
,

z′(t′) = z + vz(t′ − t) ,
(12.46)

where Ω = −qB0/m and vx = v⊥ cos θ, vy = v⊥ sin θ. The analysis of the
behavior due to a perturbation of this system must be based on Boltzmann’s
equation. The distribution function fk(r,v, t) for the k th kind of particles is

∂fk

∂t
+ v·∇rfk +

qk
mk

(E + v × B)·∇vfk = 0 . (12.47)

Maxwell’s equation are

∇·E =
1
ε0

∑
k

qk

∫
vfkdv , (12.48)

1
µ0

∇ × B = ε0
∂E

∂t
+
∑

k

qk

∫
vfkdv , (12.49)

∇ × E = −∂B
∂t

, (12.50)

∇·B = 0 . (12.51)

As usual, we indicate zeroth-order quantities (the unperturbed state) by a
subscript 0 and first-order perturbation terms by a subscript 1. The first-order
terms are expressed in the form exp i(k·r − ωt). Using

fk = fk0(r,v) + fk1 , (12.52)

B = B0 + B1 , (12.53)

E = 0 + E1 , (12.54)

we can linearize (12.47)–(12.51) as follows:
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v·∇rfk0 +
qk
mk

(v × B0)·∇vfk0 = 0 , (12.55)

∑
k

qk

∫
fk0dv = 0 , (12.56)

1
µ0

∇ × B0 =
∑

k

qk

∫
vfk0dv = j0 , (12.57)

∂fk1

∂t
+v·∇rfk1+

qk
mk

(v×B0)·∇vfk1 = − qk
mk

(E1+v×B1)·∇vfk0 , (12.58)

ik·E1 =
1
ε0

∑
k

qk

∫
fk1dv , (12.59)

1
µ0

k × B1 = −ω
(
ε0E1 +

i
ω

∑
k

qk

∫
vfk1dv

)
, (12.60)

B1 =
1
ω

(k × E1) . (12.61)

The right-hand side of (12.58) is a linear equation in E1, as is clear from
(12.61), so that fk1 is given as a linear function in E1. The electric tensor of
the hot plasma is defined by K (D = ε0K·E), given by

E1 +
i
εω

j = E1 +
i
ε0ω

∑
k

qk

∫
vfk1dv ≡ K·E1 . (12.62)

The linear relation for E1 is derived from (12.60) and (12.61):

k × (k × E1) +
ω2

c2
K·E1 = 0 , (12.63)

and the dispersion relation is obtained by equating the determinant of the
coefficient matrix of the linear equation to zero. Consequently, if fk1 can
be solved from (12.58), then K can be obtained. As for cold plasmas, the
properties of waves in hot plasmas can be studied using the dispersion relation
of a hot plasma.

12.8.2 Solution of Linearized Vlasov Equation

When the right-hand side of (12.58) is time-integrated along the particle orbit
(12.45) and (12.46) in the unperturbed state, we find

fk1(r,v, t) = − qk
mk

∫ t

−∞

{
E1
(
r′(t′), t′

)
+

1
ω

v′(t′) × [k × E1
(
r′(t′), t′

)]}
·∇′

vfk0
(
r′(t′),v′(t′)

)
dt′ . (12.64)
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Substituting (12.64) into (12.58) yields

− qk
mk

[
E1 +

1
ω

v × (k × E1)
]

·∇vfk0

− qk
mk

∫ t

−∞

[
∂

∂t
+ v·∇r +

qk
mk

(v × B0)·∇v

]
[integrand of (12.64)] dt′

= − qk
mk

(E1 + v × B1)·∇vfk0 . (12.65)

Therefore if it is proven that the second term on the left-hand side of (12.65)
is zero, (12.64) is confirmed to be the solution of (12.58). When the variables
(r,v, t) are changed to (r′,v′, t′) using (12.45) and (12.46), the differential
operators in the second term on the left-hand side of (12.65) reduce to

∂

∂t
=
∂t′

∂t

∂

∂t′
+
∂r′

∂t
·∇′

r +
∂v′

∂t
·∇′

v

=
∂(t′ − t)
∂t

[
∂r′

∂(t′ − t) ·∇′
r +

∂v′

∂(t′ − t) ·∇′
v

]
= −v′·∇′

r − qk
mk

(v′ × B0)·∇′
v ,

v·∇r = v·∇′
r ,

∂

∂vx
=
∂r′

∂vx
·∇′

r +
∂v′

∂vx
·∇′

v

=
1
Ω

{
sinΩ(t′ − t) ∂

∂x′ +
[− cosΩ(t′ − t) + 1

] ∂
∂y′

}
+
[
cosΩ(t′ − t) ∂

∂v′
x

+ sinΩ(t′ − t) ∂
∂v′

y

]
,

∂

∂vy
=

1
Ω

{[
cosΩ(t′ − t) − 1

] ∂
∂x′ + sinΩ(t′ − t) ∂

∂y′

}
+
[
− sinΩ(t′ − t) ∂

∂v′
x

+ cosΩ(t′ − t) ∂
∂v′

y

]
,

q

m
(v × B0)·∇v = −Ω

(
vy

∂

∂vx
− vx

∂

∂vy

)
= v′

x

∂

∂x′ + v′
y

∂

∂y′ −
(
vx

∂

∂x′ + vy
∂

∂y′

)
−Ω

(
v′

y

∂

∂v′
x

− v′
x

∂

∂v′
y

)
= (v′ − v)·∇′

r +
q

m
(v′ × B0)·∇′

v .
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Therefore the second term on the left-hand side of (12.65) is zero.
Since the first-order terms vary as exp(−iωt), the integral (12.64) con-

verges when the imaginary part of ω is positive. When the imaginary part
of ω is negative, the solution can be given by analytic continuation from the
region of the positive imaginary part.

12.8.3 Dielectric Tensor of Hot Plasma

The zeroth-order distribution function f0 must satisfiy (12.55), or

f0(r,v) = f(v⊥, vz) , v2⊥ = v2x + v2y .

Let us consider
E1(r′, t′) = E exp i(k·r′ − ωt′) .

The z axis is taken along the B0 direction and the x axis is taken in the
plane spanned by B0 and the propagation vector k, so that the y component
of the propagation vector is zero (ky = 0), i.e.,

k = kxx̂ + kzẑ .

Then (12.64) reduces to

f1(r,v, t)=− q

m
exp i(kxx+ kzz − ωt)

∫ t

∞

[(
1 − k·v′ω

)
E + (v′·E)

k

ω

]
·∇′

vf0

× exp
{

i
kxv⊥
Ω

sin
[
θ +Ω(t′ − t)]− i

kxv⊥
Ω

sin θ + i(kzvz − ω)(t′ − t)
}

dt′ .

We introduce τ = t′−t and use the following formulas for the Bessel function:

exp(ia sin θ) =
∞∑

m=−∞
Jm(a) exp imθ , J−m(a) = (−1)mJm(a) ,

exp
( )

=
∞∑

m=−∞

∞∑
n=−∞

Jm exp(−imθ)Jn exp
[
in(θ +Ωτ)

]
exp i(kzvz − ω)τ .

Since[(
1− k·v′

ω

)
E +(v′·E)

k

ω

]
·∇′

vf0 =
∂f0
∂vz

[(
1 − kxv

′
x

ω

)
Ez + (v′

xEx + v′
yEy)

kz

ω

]
+
∂f0
pv⊥

[(
1 − kzv

′
z

ω

)(
Ex
v′

x

v⊥
+ Ey

v′
y

v⊥

)
+ vzEz

kx

ω

v′
x

v⊥

]
=
[
∂f0
∂v⊥

(
1 − kzvz

ω

)
+
∂f0
∂vz

kzv⊥
ω

]
×
{
Ex

2

[
ei(θ+Ωτ) + e−i(θ+Ωτ)

]
+
Ey

2i

[
ei(θ+Ωτ) − e−i(θ+Ωτ)

]}
+
(
∂f0
∂v⊥

kxvz

ω
− ∂f0
∂vz

kxv⊥
ω

)
Ez

2

[
ei(θ+Ωτ) + e−i(θ+Ωτ)

]
+
∂f0
∂vz

Ez ,
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we find

f1(r,v, t) = − q

m
exp i(kxx+ kzz − ωt)

×
∑
m,n

[
U

(
Jn−1 + Jn+1

2

)
Ex − iU

(
Jn−1 − Jn+1

2

)
Ey

+
(
W
Jn−1 + Jn+1

2
+
∂f0
∂vz

Jn

)
Ez

]
Jm(a) exp

[− i(m− n)θ]
i(kzvz − ω + nΩ)

,

where

U =
(

1 − kzvz

ω

)
∂f0
∂v⊥

+
kzv⊥
ω

∂f0
∂vz

, (12.66)

W =
kxvz

ω

∂f0
∂v⊥

− kxv⊥
ω

∂f0
∂vz

, (12.67)

a =
kxv⊥
Ω

, Ω = −qB
m
, (12.68)

and

Jn−1(a) + Jn+1(a)
2

=
nJn(a)
a

,
Jn−1(a) − Jn+1(a)

2
=

d
da
Jn(a) .

Since f1 is obtained, the dielectric tensor K of a hot plasma reduces from
(12.62) to

(K − I)·E =
i
ε0ω

∑
j

qj

∫
vfj1dv . (12.69)

Since vx = v⊥ cos θ, vy = v⊥ sin θ, vz = vz, only the terms in ei(m−n)θ = e±iθ

in fj1 can contribute to the x, y components of the integral (12.69) and only
the term in ei(m−n)θ = 1 in fj1 can contribute to the z component of the
integral (12.69). Hence,

K = I −
∑

j

Π2
j

ωnj0

∞∑
n=−∞

∫
dv

Sjn

kzvz − ω + nΩj
, (12.70)

where

Sjn=

⎛⎜⎜⎜⎜⎜⎜⎜⎝
v⊥

(
n
Jn

a

)2

U −iv⊥

(
n
Jn

a

)
J ′

nU v⊥

(
n
Jn

a

)
Jn

(
∂f0
∂vz

+
n

a
W

)
iv⊥J ′

n

(
n
Jn

a

)
U v⊥(J ′

n)2U iv⊥J ′
nJn

(
∂f0
∂vz

+
n

a
W

)
vzJn

(
n
Jn

a

)
U −ivzJnJ

′
nU vzJ

2
n

(
∂f0
∂vz

+
n

a
W

)

⎞⎟⎟⎟⎟⎟⎟⎟⎠
and
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Π2
j =

njq
2
j

ε0mj
.

When we use the relations

vzU − v⊥

(
∂f0
∂vz

+
nΩ

kxv⊥
W

)
kzvz − ω + nΩ

= −vz

ω

∂f0
∂v⊥

+
v⊥
ω

∂f0
∂vz

,

∞∑
n=−∞

J2
n = 1 ,

∞∑
n=−∞

JnJ
′
n = 0 ,

∞∑
n=−∞

nJ2
n = 0 , J−n = (−1)nJn ,

and replace n by −n, then (12.70) reduces to

K = I −
∑

j

Π2
j

ω

∞∑
n=−∞

∫
Tjn

v−1
⊥ Ujn

−1
j0

kzvz − ω − nΩj
dv

− L
∑

j

Π2
j

ω2

(
1 +

1
nj0

∫
v2z
v⊥
∂fj0

∂v⊥
dv

)
,

where

Tjn =

⎛⎜⎜⎜⎜⎜⎜⎜⎝
v2⊥

(
n
Jn

a

)(
n
Jn

a

)
iv2⊥

(
n
Jn

a

)
J ′

n −v⊥vz

(
n
Jn

a

)
Jn

−iv2⊥J
′
n

(
n
Jn

a

)
v2⊥J

′
nJ

′
n iv⊥vzJ

′
nJn

−v⊥vzJn

(
n
Jn

a

)
−iv⊥vzJnJ

′
n v2zJnJn

⎞⎟⎟⎟⎟⎟⎟⎟⎠
and all the components of the matrix L are zero except Lzz = 1. From the
relations

Uj

kzvz − ω − nΩj
= − 1

ω

∂fj0

∂v⊥
+

−nΩj
∂fj0

∂v⊥
+ kzv⊥

∂fj0

∂vz

ω(kzvz − ω − nΩj)
,

∞∑
n=−∞

(J ′
n)2 =

1
2
,

∞∑
n=−∞

n2J2
n(a)
a2 =

1
2
,

another expression for the dielectric tensor is obtained:

K=

(
1 − Π2

j

ω2

)
I−
∑
j,n

Π2
j

ω2

∫
Tjn

kzvz − ω − nΩj

(−nΩj

v⊥
∂fj0

∂v⊥
+ kz

∂fj0

∂vz

)
1
nj0

dv .

(12.71)
Using N ≡ ck/ω, (12.63) becomes

(Kxx −N2
‖ )Ex +KxyEy + (Kxz +N⊥N‖)Ez = 0 ,
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KyxEx + (Kyy −N2)Ey +KyzEz = 0 ,

(Kzx +N⊥N‖)Ex +KzyEy + (Kzz −N2
⊥)Ez = 0 ,

whereN‖ is the z component of N (parallel to B ) andN⊥ is the x component
of N (perpendicular to B ). The dispersion relation is given by equating the
determinant of the coefficient matrix to zero.

12.8.4 Dielectric Tensor of Bi-Maxwellian Plasma

When the zeroth-order distribution function is bi-Maxwellian,

f0(v⊥, vz) = n0F⊥(v⊥)Fz(vz) , (12.72)

F⊥(v⊥) =
m

2πκT⊥
exp
(

− mv2⊥
2κT⊥

)
, (12.73)

Fz(vz) =
(

m

2πκTz

)1/2

exp
[
−m(vz − V )2

2κTz

]
, (12.74)

we find(
−nΩj

v⊥
∂f0
∂v⊥

+ kz
∂f0
∂vz

)
1
n0

= m

[
nΩj

κT⊥
− kz(vz − V )

κTz

]
F⊥(v⊥)Fz(vz) .

The integration over vz can be carried out using the plasma dispersion func-
tion Z(ζ). The plasma dispersion function Z(ζ) is defined by

Z(ζ) ≡ 1
π1/2

∫ ∞

−∞

exp(−β2)
β − ζ dβ . (12.75)

Using the relations∫ ∞

−∞

Fz

kz(vz − V ) − ωn
dvz =

1
ωn
ζnZ(ζn) ,

∫ ∞

−∞

kz(vz − V )Fz

kz(vz − V ) − ωn
dvz = 1 + ζnZ(ζn) ,

∫ ∞

−∞

[
kz(vz − V )

]2
Fz

kz(vz − V ) − ωn
dvz = ωn

[
1 + ζnZ(ζn)

]
,

∫ ∞

−∞

[
kz(vz − V )

]3
Fz

kz(vz − V ) − ωn
dvz =

k2
z(κTz)
m

+ ω2
n

[
1 + ζnZ(ζn)

]
,

ωn ≡ ω − kzV + nΩ , ζn ≡ ω − kzV + nΩ
kz(2κTz/m)1/2 ,∫ ∞

0
J2

n(b1/2x) exp
(

− x
2

2α

)
xdx = αIn(αb)e−bα ,
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∞∑
n=−∞

In(b) = eb ,

∞∑
n=−∞

nIn(b) = 0 ,
∞∑

n=−∞
n2In(b) = beb ,

where In(x) is the n th modified Bessel function, the formula for the dielectric
tensor of a bi-Maxwellian plasma is [12.3]:

K = I +
∑
i,e

Π2

ω2

{∑
n

[
ζ0Z(ζn) −

(
1 − 1

λT

)[
1 + ζnZ(ζn)

]]
e−bXn

+ 2η2
0λT L

}
, (12.76)

where

Xn=

⎛⎜⎜⎜⎝
n2In/b in(I ′

n − In) −(2λT )1/2ηn
n

α
In

−in(I ′
n − In) (n2/b+ 2b)In − 2bI ′

n i(2λT )1/2ηnα(I ′
n − In)

−(2λT )1/2ηn
n

α
In −i(2λT )1/2ηnα(I ′

n − In) 2λT η
2
nIn

⎞⎟⎟⎟⎠ ,

(12.77)

ηn ≡ ω + nΩ
21/2kzvTz

, λT ≡ Tz

T⊥
, b ≡

(
kxvT⊥

Ω

)2

,

α ≡ kxvT⊥

Ω
, v2Tz

≡ κTz

m
, v2T⊥ ≡ κT⊥

m
,

and the matrix components of L are all zero except for Lzz = 1.

12.8.5 Dispersion Relation of Electrostatic Wave

When the electric field E of the waves is expressed by an electrostatic po-
tential E = −∇φ, the waves are called electrostatic waves. The dispersion
relation of the electrostatic wave in a hot plasma reduces from (10.92) to

k2
xKxx + 2kxkzKxz + k2

zKzz = 0 . (12.78)

When Kxx, Kxz, and Kzz of (12.76) and (12.77) are substituted into (12.78),
we find

0 = k2
x + k2

z +
∑
i,e

Π2

ω2

{
k2

z2η2
0λT

+
∞∑

n=−∞

[
n2In
b
k2

x − (2λT )1/2ηn
n

b1/2 In2kxkz + 2λT η
2
nInk

2
z

]

×
[
η0Z(ζn) −

(
1 − 1

λT

)[
1 + ζnZ(ζn)

]]
e−b

}
.
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Using
∑∞

n=−∞ In(b)e−b = 1, we have

0 = k2
x + k2

z +
∑
i,e

Π2

ω2

{
mω2

κT⊥

+
∞∑

n=−∞

mω2

κT⊥
In

[
ζ0Z(ζn) −

(
1 − 1

λT

)[
1 + ζnZ(ζn)

]]
e−b

}
= 0 ,

0 = k2
x + k2

z +
∑
i,e

Π2 m

κTz

{
1 +

∞∑
n=−∞

[
1 +

Tz

T⊥

(−nΩ
ωn

)]
ζnZ(ζn)Ine−b

}
.

(12.79)
When the density and temperature of the zeroth-order state change in the
direction of y, we must resort to (12.59) and (12.64). Since the electrostatic
wave E = −∇φ1, B1 = 0 is considered in this section, (12.59) and (12.64)
reduce to

−∇2φ1 =
1
ε0

∑
k

qk

∫
fk1dv , (12.80)

fk1 =
qk
mk

∫ t

−∞
∇′

rφ1(r′, t′)·∇′
vfk0(r′,v′)dt′ . (12.81)

The zeroth-order distribution function fk0 must satisfy (12.55), i.e.,

vy
∂f0
∂y

−Ω
(
vy

∂

∂vx
− vx

∂

∂vy

)
f0 = 0 . (12.82)

Since v2⊥ = α, (vz − V )2 = β, and y + vx/Ω = γ are the solutions of the
equation for the particle motion, f0(α, β, γ) satisfies (12.82) and we adopt
the following zeroth-order distribution function:

f0

(
v2⊥, (vz − V )2, y +

vx

Ω

)
(12.83)

= n0

{
1 +

[
−ε+ δ⊥

v2⊥
2v2T⊥

+ δz
(vz − V )2

2v2Tz

](
y +

vx

Ω

)}

×
(

1
2πv2T⊥

)(
1

2πv2Tz

)1/2

exp

[
− v2⊥

2v2T⊥

− (vz − V )2

2v2Tz

]
.

The density gradient and temperature gradient of this distribution function
are

1
n0

dn0

dy
= −ε+ δ⊥ +

δz
2
,

1
T⊥

dT⊥
dy

= δ⊥ ,
1
Tz

dTz

dy
= δz .

Let us consider the perturbation φ1(r, t) = φ1(y) exp(ikxx + ikzz − iωt)
and assume |(k2

x + k2
z)φ1| � |∂2φ1/∂y

2|. Following the same approach as
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in Sect. 12.8.3, (12.80) reduces to the following dispersion relation for the
electrostatic wave in an inhomogeneous plasma [12.3, 12.20]:

0 = (k2
x + k2

z) −
∑

j

Π2
j

1
n0j

∫ ∫ ∫
[ ]jdθdv⊥dv⊥dvz ,

0 = k2
x + k2

z +
∑

j

Π2
j

{
1
v2Tz

+
∞∑

n=−∞
In(b)e−b

[(
1
v2Tz

− 1
v2T⊥

nΩ

ωn

)
ζnZ(ζn)

− 1
v2T⊥

n

kx

{[
ε+ δ⊥ − fn(b)δ⊥

] [
1 +

nΩ

ωn
ζnZ(ζn)

]

−δz
2

[
1 +

nΩωn

k2
zv

2
Tz

[
1 + ζnZ(ζn)

]]}

+
1
v2Tz

n

kx

{[
ε+ δz − fn(b)δ⊥

][
1 + ζnZ(ζn)

]
−δz

2

[
1 +

ω2
n

k2
zv

2
Tz

[
1 + ζnZ(ζn)

]]}

+
kx

Ω

{[
ε− fn(b)δ⊥

] ζn
ωn
Z(ζn) − δz

2
ωn

k2
zv

2
Tz

[
1 + ζnZ(ζn)

]}]
n

}
j

,(12.84)

where fn(b) ≡ (1 − b) + bI ′
n(b)/In(b) and we have used the relation∫ ∞

−∞
J2

n(b1/2x) exp
(

−x
2

2

)
x2

2
xdx = fn(b)In(b)e−b .

For low frequencies (ω � |Ω|), we have relations ζn � 1 (n �= 0), ζnZ(ζn) →
−1 (n �= 0) and 1 + ζnZ(ζn) → −(1/2)ζ−2

n (n �= 0), and (12.84) reduces to

0 = k2
x + k2

z +
∑

j

Π2
j

{
1
v2Tz

+ I0(b)e−b

[
1
v2Tz

[
1 + ζ0Z(ζ0)

]− 1
v2T⊥

+
kx

Ωω0

[
ε− f0(b)δ⊥

]
ζ0Z(ζ0) − kx

Ωω0
δzζ

2
0
[
1 + ζ0Z(ζ0)

]]}
j

, (12.85)

using
∑∞

−∞ In(b)e−b = 1.
When an isotropic plasma with vT⊥ = vTz = vT has no temperature

gradient δ⊥ = δz = 0 and V = 0, we have the familiar dispersion relation of
a drift wave due to the density gradient as follows:
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0 = k2
x + k2

z +
∑

j

Π2
j

{
1
v2T

+ I0(b)e−b

[
1
v2T
ζ0Z(ζ0) +

kx

Ωω0
εζ0Z(ζ0)

]}
j

.

We can usually assume be = 0 for electrons. Then it reduces to

0 = (k2
x + k2

z)
v2Te

Π2
e

+ 1 + ζeZ(ζe)
(

1 − ω∗
e

ω

)
+
ZTe

Ti

[
1 + I0(b)e−bζ0Z(ζ0)

(
1 − ω∗

i

ω

)]
, (12.86)

where

ω∗
e = −kxε

v2Te

Ωe
= −kxε

Te

eB
and ω∗

i = −kxε
v2Ti

Ωi
= kxε

Ti

ZeB
.

Note that the x direction is opposite to the electron drift velocity vde, y is
in the direction of the negative density gradient and z is in the direction of
the magnetic field.



13 Instabilities Driven by Energetic Particles

Sustained ignition of thermonuclear plasma depends on heating by highly
energetic alpha particles produced from fusion reactions. Excess loss of the
energetic particles may be caused by fishbone instability and toroidal Alfvén
eigenmodes induced by energetic particles. Such losses do not only reduce
the alpha particle heating efficiency, but may also lead to excess heat loading
and damage to plasma-facing components. These problems have been studied
in experiments and analyzed theoretically. In this chapter, basic aspects of
theories on collective instabilities by energetic particles are described.

13.1 Fishbone Instability

Fishbone oscillations were first observed in PDX experiments with nearly per-
pendicular neutral beam injection. The poloidal magnetic field fluctuations
associated with these instabilities have a characteristic skeletal signature on
the Mirnov coils (see Sect. 16.1), which is what suggested the name of fish-
bone oscillations. Particle bursts corresponding to loss of energetic beam ions
are correlated with fishbone events, reducing the beam heating efficiency. The
structure of the mode was identified as an m = 1, n = 1 internal kink mode,
with a precursor oscillation frequency close to the thermal ion diamagnetic
frequency as well as the fast ion magnetic toroidal precessional frequency.

13.1.1 Formulation

The theoretical analysis of the fishbone instability described here is mainly
due to Chen, White and Rosenbluth [13.1]. The core plasma is treated using
the ideal MHD analysis and the hot component is treated using a gyrokinetic
description. The first-order equation for the displacement ξ is [see (8.24)]

ρmγ
2ξ = j × δB + δj × B − ∇δpc − ∇δph , (13.1)

where δpc is the first-order pressure disturbance of the core plasma (∇δpc =
−ξ·∇pc − γsp∇·ξ) and δph is the first-order pressure disturbance of the hot
component. The following ideal MHD relations hold:

δE⊥ = γξ × B , δE‖ = 0 , δB = ∇ × (ξ × B) , δj = ∇·δB .
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Multiplying (13.1) by
∫

drξ∗ and assuming a fixed conducting boundary, we
have

δWMHD + δWK + δI = 0 , (13.2)

where

δI =
γ2

2

∫
ρm|ξ|2dr , (13.3)

δWK =
1
2

∫
ξ·∇δphdr , (13.4)

and δWMHD is the potential energy of the core plasma associated with the
displacement ξ, discussed in Sect. 8.3.2 and given by (8.80). δWK is the con-
tribution from the hot component.

13.1.2 MHD potential Energy

Let us consider the MHD term of δWMHD, which consists of the contribution
δW s

MHD from the singular region near the rational surface and the contri-
bution δW ext

MHD from the external region. The external contribution δW ext
MHD

from the cylindrical circular plasma is already given by (8.93):

δW ext
MHDcycl

2πR
=

π

2µ0

∫ a

0

(
f

∣∣∣∣dξrdr

∣∣∣∣2 + g|ξr|2
)

dr , (13.5)

where f and g are given by (8.94) and (8.96). When r/R � 1 is assumed, f
and g of the (−m,n) mode are

f =
r3

R2B
2
z

(
1
q

− n

m

)2 [
1 −
( nr
mR

)2
]
,

g =
r

R
B2

z

((
1
q

− n

m

)2(
(m2 − 1) +

n2r2

R2

)(
1 −
(

nr

mR

)2
)

+2

(
1
q2 −

(
n

m

)2
)(

n

m

)(
r

R

)2
)

,

where q(r) ≡ rBz/RBθ(r) is the safety factor. Let us consider the m = 1
perturbation with the singular radius r = rs, q(rs) = m/n. In this case the
displacement is ξr = const. for 0 < r < rs and ξr = 0 for rs < r < a (see
Sect. 8.3.2). Then δW ext

MHDcycl reduces to [13.2]

δW ext
MHDcycl

2πR
=
πB2

θs

2µ0
|ξs|2

(rs
R

)2
[
−βp −

∫ 1

0
ρ3
(

1
q2

+
1
q

− 3
)

dρ
]
, (13.6)

where ρ = r/rs, βp ≡ 〈p〉s/(B2
θs/2µ0) and Bθs ≡ [rs/Rq(rs)]Bz is the poloidal

field at r = rs. The pressure 〈p〉s is defined by
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〈p〉s = −
∫ rs

0

(
r

rs

)2 dp
dr

dr =
1
r2s

∫ rs

0
(p− ps)2rdr . (13.7)

The MHD potential energy δW ext
MHDtor/2πR per unit length of toroidal plasma

with circular cross-section is given by [13.3]

δW ext
MHDtor

2πR
=
(

1 − 1
n2

) δW ext
MHDcycl

2πR
+
πB2

θs

2µ0
|ξs|2δŴT ,

δŴT = π
(rs
R

)2
3(1 − q0)

(
13
144

− β2
ps

)
. (13.8)

For m = 1 and n = 1, δW ext
MHDtor/2πR reduces to just the δŴT term.

Let us consider the contribution from the singular region. In this case we
must solve for the displacement ξr in the singular region near the rational
surface. The equation of motion in the singular surface was treated in Sect. 9.1
on tearing instability. From (9.13) and (9.9), we have (in the limit x � 1)

µ0ρmγ
2 ∂

2ξr
∂x2 = iF

∂2B1r

∂x2 , (13.9)

γB1r = iFγξr +
η

µ0r2s

∂2

∂x2B1r , (13.10)

where

F ≡ (k·B) = −m
r
Bθ +

n

R
Bz =

Bθ

r
(−m+ nq) =

Bθn

r

dq
dr

∆r =
Bθns

rs
x ,

x ≡ r − rs
rs

, s ≡ rs
dq
dr

∣∣∣∣
rs

.

With the normalizations

ψ ≡ iB1rrs
Bθ,ssn

, τAθ ≡ rs
(B2

θ/µ0ρm)1/2 , τR ≡ µ0r
2
s

η
, SR ≡ τR

τAθ
,

we have

γ2
(τAθ

ns

)2
ξ′′
r = xψ′′ , ψ = −xξr +

1
γτAθSR

ψ′′ . (13.11)

In the limit SR → ∞, (13.11) yields[(
γ
τAθ

ns

)2
+ x2

]
ξ′′
r + 2xξ′

r = 0 ,

and the solution is [13.4]
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ξ′
r =

(ξ0/π)(γτAθ/ns)−1

x2/(γτAθ/ns)2 + 1
, ξr(x) = ξ∞ − ξ0

π
tan−1

[
x

γτAθ/(ns)

]
.

(13.12)
Since the external solution of m = 1 is ξr = ξs as x → −∞ and ξr = 0 as
x → ∞, the matching conditions for the external solution yield ξ∞ = ξs/2
and ξ0 = ξs. The term δW s

MHD for the singular region is

δW s
MHD

2πR
=

π

2µ0

∫ rs+∆

rs−∆

r3(k·B)2
(
∂ξr
∂r

)2

dr =
π

2µ0

B2
θs

2π
snγτAθ|ξs|2 .

(13.13)
Equation (13.13) is the expression in the case of a cylindrical plasma. For
the toroidal plasma, τAθ is replaced by 31/2rs/(B2

θ/µ0ρ)1/2, where 31/2 is the
standard toroidal factor (1 + 2q2)1/2 [13.5]. Therefore the total sum of MHD
contributions with m = 1, n = 1 is (assuming γτAθ � 1)

δWMHD + δI = 2πR
B2

θs

2µ0
|ξs|2

(
δŴT + γτAθ

s

2
+ πγ2τ2

Aθ

)
≈ 2πR

B2
θs

2µ0
|ξs|2

(
δŴT + γτAθ

s

2

)
. (13.14)

13.1.3 Kinetic Integral of Hot Component

The perturbed distribution δFh of the hot ion component is given by the gy-
rokinetic equation in the case of low beta and zero gyro-radius approximation
as follows [13.6]:

δFh ≡ e

m
δφ

∂

∂E
F0h +δHh ,

[
v‖
∂

∂l
− i(ω − ω̂dh)

]
δHh = i

e

m
Q(δφ−v‖δA‖) ,

(13.15)
where ∂/∂l ≡ b·∇, δA‖ = (−i/ω)∂δφ/∂l due to E‖ = 0 [see (13.45)] and

E ≡ v2

2
, µ ≡ v2⊥

2B
, ωc ≡ eB

m
, Q ≡

(
ω
∂

∂E
+ ω̂∗h

)
F0h ,

ω̂dh ≡ −ivdh·∇ , vdh ≡
(
v2‖ +

v2⊥
2

)
m

eB
(b × κ) ,

ω̂∗h ≡ −iω−1
c

b × ∇F0h

F0h
·∇ ≈ − m

eBr

1
F0h

∂

∂r
.

vdh is the magnetic drift velocity and |ω̂dh| is the diamagnetic drift frequency
of the hot ions. κ = (b·∇)b is the vector toward the center of curvature of
the magnetic field line and the magnitude is R−1 (see Sect. 2.4). δφ is the
scalar potential such that ∇δφ = −iωξ × B. When we set

δHh = − 1
ω

e

m
Qδφ+ δGh , (13.16)
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we have

v‖
∂δHh

∂l
= i(ω − ω̂dh)δGh + i

ω̂dh

ω

e

m
Qδφ− 1

ω2

e

m
v‖
∂δφ
∂l

.

Taking the average Ā ≡ ∮
(A/v‖)dl/

∮
dl/v‖ of both sides of the foregoing

equation yields

δGh = − e

m
Q

1
ω − ω̂dh

ω̂dhδφ
ω

(13.17)

and

ω̂dhδφ
ω

= − i
ω

m(v2‖ + v2⊥/2)

eB
(b × κ)·∇δφ

= − 1
ω

m(v2‖ + v2⊥/2)

eB
(b × κ)·ω(ξ × B)

=
m(v2‖ + v2⊥/2)

e
(κ·ξ) = −m

e
Jv2 = −m

e
J2E ,

where

J ≡ − 1
v2

(v2‖ + v2⊥/2)(κ·ξ) ≈
v2‖ + v2⊥/2

v2
(cos θξr + sin θξθ)

R

∼
v2‖ + v2⊥/2

v2
e−iθξr
R

(13.18)

(ξ is incompressible).One notes that frequencies ω, ωdh are much smaller than
the hot ion transit and bounce frequencies v‖/R, ε1/2v/qR. For untrapped
particles (δGhu) and trapped particles (δGht), we have

δGhu ≈ 0 , δGht ≈ 2QE
J̄

ω − ω̂dh
. (13.19)

The perturbed pressure tensor due to the hot ion component is

δPh = −ξ⊥·∇[P⊥I + (P‖ − P⊥)bb
]
+ δP⊥I + (δP‖ − δP⊥)bb , (13.20)

where

δP⊥ =
∫
mv2⊥

2
δFh2πv⊥dv⊥dv‖ , δP‖ =

∫
mv2‖δFh2πv⊥dv⊥dv‖ .

The first term on the right-hand side of (13.20) has similar form to the
pressure term of the core plasma. Since the beta of the hot ion component
βh is much smaller than βc for the core plasma, the first term in (13.20) can
be neglected. Since E = v2/2, µ = v2⊥/2B and α ≡ µ/E are defined, we have

v2‖ = 2E(1 − αB) , v2⊥ = 2BαE ,
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2πv⊥dv⊥dv‖ = 22π
BE

v‖
dEdα = 23/2πB

E1/2

(1 − αB)1/2 dα dE .

Then the perturbed pressure of the hot ion component reduces to

δP⊥ = 23/2πB

∫
E1/2

(1 − αB)1/2 dα dEmαBEδFh

= 25/2mB

∫ B−1

B−1
max

dα(1 − αB)1/2
∫ E

0
dEE3/2 αB

2(1 − αB)
δFh , (13.21)

δP‖ = 23/2πB

∫
E1/2

(1 − αB)1/2 dα dEm2E(1 − αB)δFh

= 25/2mB

∫ B−1

B−1
max

dα(1 − αB)1/2
∫ E

0
dEE3/2δFh . (13.22)

The divergence of the second pressure term on the right-hand side of (13.20)
is

(∇δPh)β =
∑
α

∂δP⊥
∂xα

δαβ+
∑
α

∂(δP‖ − δP⊥)
∂xα

bαbβ+(δP‖ − δP⊥)
∑
α

∂(bαbβ)
∂xα

=
∂δP⊥
∂xβ

+bβ(b·∇)(δP‖ − δP⊥)+(δP‖ − δP⊥)
[
(b·∇)bβ + bβ(∇·b)

]
,

(∇δPh)⊥ = ∇⊥δP⊥ + (δP‖ − δP⊥)(b·∇)b = ∇⊥δP⊥ + (δP‖ − δP⊥)κ ,
(13.23)

(∇δPh)‖ = ∇‖δP⊥ + (b·∇)(δP‖ − δP⊥) + (δP‖ − δP⊥)∇·b . (13.24)

The kinetic integral δWK is

δWK =
1
2

∫
ξ∗

⊥·∇δPdr =
1
2

∫
ξ∗

⊥·
[
∇⊥δP⊥ + (δP‖ − δP⊥)κ

]
dr

= −1
2

∫ [
∇·ξ∗

⊥δP⊥ − (δP‖ − δP⊥)ξ∗
⊥·κ
]
dr

= −23/2πm

∫
drB

∫
dαdE

E3/2

(1 − αB)1/2

×
[
∇·ξ∗

⊥
v2⊥
2v2

− (ξ∗
⊥·κ)

v2‖ − v2⊥/2
v2

]
δFh .

Since ∇·ξ⊥ + 2(ξ·k) ≈ 0 [see (8.116)], the term in square brackets in the
integrand is
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−
v2‖ + v2⊥/2

v2
(ξ∗

⊥·κ) ≈ −1
2
(ξ∗

⊥·κ) .

δWK reduces to

δWK

2πR
= −23/2π

2πR
mh

∫
drB

∫
dα dE

E3/2

(1 − αB)1/2

J̄∗QEJ̄2
ω − ω̂dh

= −25/2π2mh

∫
dr r

1
2π

∫
dθB

∫
dα dE

E3/2

(1 − αB)1/2

J̄∗QEJ̄2
ω − ω̂dh

= −27/2π2mh

∫ rs

0
dr r

∫ (1+r/R)

(1−r/R)
d(αB)

∫
dEKbE

5/2 J̄
∗QEJ̄
ω − ω̂dh

≈ 23/2π2mh
|ξ|2
R2

∫ rs

0
dr r

∫
d(αB)

∫
dEE5/2K

2
2

Kb

Q

ω̂dh − ω

≡ B2
θs

2µ0
|ξs|2δŴK , (13.25)

where

Kb =
∮

dθ
2π

1
(1 − αB)1/2 =

∮
dθ
2π

v

v‖
, K2 =

∮
dθ
2π

cos θ
(1 − αB)1/2 .

Therefore the dispersion relation (13.2) reduces to

− iω
ωA

+ δŴT + δŴK = 0 , (13.26)

where ωA ≡ (τAs/2)−1 and γ is replaced by −iω.

13.1.4 Growth Rate of Fishbone Instability

Let us assume a model distribution for slowing down hot ions with initial
velocity v2mx/2 = Emx:

Fh0 = c0
δ(α− α0)
E3/2 (E < Emx) . (13.27)

Then the pressure ph and the density nh of hot ions are

ph =
∫

23/2πB
E1/2

(1 − αB)1/2 dα dE(mE)Fh0

= c0

∫ Emx

0
23/2πB

m

(1 − α0B)1/2 dE = c023/2πBmKbEmx , (13.28)

c0 =
ph

23/2πBmKbEmx
, (13.29)
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nh =
∫ Emx

Tc

23/2πB
E1/2

(1 − αB)1/2 dαdEFh0

= c023/2πBmKbEmx = ph
ln(Emx/Tc)

Emx
. (13.30)

The kinetic integral is

δWK

2πR
=
r2s
R2 |ξs|2

1
r2s

∫ rs

0
dr r

∫
dE23/2π2mBE5/2

(
K2

2

Kb

)
×
[−(3/2)ωc0E−5/2 − (∂c0/∂r)(m/eBr)E−3/2

mE/(2eBRr) − ω
]

=
r2s
R2

B2

2µ0
|ξs|2

1
r2s

∫ rs

0
dr rπ

K2
2

K2
b

1
Emx

×
∫ Emx

0
dE

−(3/2)βh − 2(∂βh/∂r)R(mE/2eBRrω)
mE/(2eBRrω) − 1

=
r2s
R2

B2

2µ0
|ξs|2

1
r2s

∫ rs

0
dr rπ

K2
2

K2
b

ω

ωdh,mx

×
(

−3
2
βh

∫ ymx

0

dy
y − 1

− 2
∂βh

∂r
R

∫
ydy
y − 1

)

=
B2

θs

2µ0
|ξs|2

π

2
K2

2

K2
b

{
− 3

2
〈βh〉 ω

ωdh,mx
ln
(
1 − ωdh,mx

ω

)

−2
〈
∂βh

∂r

〉
R

[
1 +

ω

ωdh,mx
ln
(
1 − ωdh,mx

ω

)]}
. (13.31)

As the second term of 〈(∂βh/∂r)〉R is dominant, the dispersion relation re-
duces to

−iΩ
ωdh,mx

ωA
+ δŴT + π

K2
2

K2
b

〈
−∂βh

∂r

〉
R

[
1 +Ω ln

(
1 − 1

Ω

)]
= 0 , (13.32)

where

Ω ≡ ω

ωdh,mx
, ωdh,mx ≡ mv2mx/2

eBRr
, βh ≡ ph

B2/2µ0
.

Let us consider the case δŴT = 0. Then (13.32) is

−iαhΩ +Ω ln
(

1 − 1
Ω

)
+ 1 = 0 , (13.33)

where

αh ≡ ωdh,mx

ωA

(
πK2

2K
2
b

〈
−∂βh

∂r

〉
R

)−1

.
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Fig. 13.1. Toroidal precession of banana orbit of trapped ions

Under the assumption (1 − 1/Ωr) < 0 and |Ωi| � |Ωr|, (13.33) reduces to

−iαh(Ωr + iΩi) + (Ωr + iΩi)
[
ln
(

1
Ωr

− 1
)

+ πi − Ωi

(1/Ωr − 1)Ω2
r
i
]

+ 1 = 0 .

(13.34)
From the real and imaginary parts of (13.34), we have

Ωi =
π − αh

− ln(1/Ωr − 1) +
[
1 − (1/Ωr)

]Ωr , (13.35)

Ωr =
1 − (π − αh)Ωi

− ln(1/Ωr − 1)
. (13.36)

In the case of a marginally unstable state π = αh, that is, Ωi = 0, Ωr is given
by

Ωr =
1

− ln(1/Ωr − 1)
−→ Ωr =

1
1 + exp(−1/Ωr)

=
1
2

(
1 + tanh

1
2Ωr

)
,

and Ωr ≈ 0.75. A necessary condition for the excitation of a fishbone insta-
bility is Ωi > 0, that is, αh < π and〈

−∂βh

∂r

〉
rs >

rs
R

ωdh,mx

ωA

1
π2

K2
b

K2
2
.

There is a threshold for 〈|∂βh/∂r|〉rs for the instability.
Banana orbits of trapped ions drift in the toroidal direction, as shown in

Fig. 13.1. The toroidal precession velocity and frequency are1

1 The toroidal vertical drift velocity is vd = mv2
⊥/2eBR, so that the poloidal

displacement of particles between bounces is rδθ ∼ vdτd, τd being the bounce
period. Since dφ/dθ = q along the magnetic field line, the associated toroidal
displacement between bounces is Rdφ = Rqvdτd/r, q = 1. Thus the toroidal
precession velocity is given by (13.37).
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vφ =
mv2⊥/2
eBr

, ωφ =
mv2⊥/2
eBRr

. (13.37)

Therefore ωdh,mx is equal to the toroidal precession frequency of trapped ions
with the initial (maximum) velocity. It seems that the fishbone instability
is due to an interaction between energetic particles and the m = 1, n =
1 MHD perturbation. The interaction of resonant type is characterized by
Landau damping. The resonance is between the toroidal wave velocity of the
instability and the toroidal precession of trapped energetic particles.

13.2 Toroidal Alfvén Eigenmode

Alfvén waves in a homogeneous magnetic field in an infinite plasma were
discussed in Sect. 5.4. Shear Alfvén waves and fast and slow magnetosonic
waves appear. In the case of an incompressible plasma (∇·ξ = 0 or specific
heat ratio γ → ∞), only the shear Alfvén wave can exist.

In the case of a cylindrical plasma in an axisymmetric magnetic field, the
displacement of the MHD perturbation ξ(r, θ, z) = ξ(r) exp i(−mθ+kz−ωt) is
given by the Hain–Lüst equations (8.103)–(8.106), as discussed in Sect. 8.4. In
the case of an incompressible plasma, the Hain–Lüst equation (8.106) reduces
to [recalling that the perturbation is assumed to be ξ(r) exp i(mθ+ kz − ωt)
in Sect. 8.4]

d
dr

(
F 2 − µ0ρmω

2

m2/r2 + k2

)
1
r

d
dr

(rξr) +

{
− (F 2 − µ0ρmω

2) + 2Bθ
d
dr

(
Bθ

r

)

+
4k2B2

θF
2

r2(m2/r2 + k2)(F 2 − µ0ρmω2)
+ 2r

d
dr

[
(m/r)FBθ

r2(m2/r2 + k2)

]}
ξr = 0 ,

(13.38)

where

F = (k·B) =
[
−m
r
Bθ(r) +

n

R
Bz(r)

]
=
Bz

R

[
n− m

q(r)

]
, q(r) =

R

r

Bz

Bθ
.

The position at which F 2 −µ0ρmω
2 = 0 → ω2 = k2

‖v
2
A, v2A ≡ B2/µ0ρm holds

is the singular radius. It was shown by Hasegawa and Chen [13.7] that, at this
singular radius (resonant layer), the shear Alfvén wave is mode-converted to
the kinetic Alfvén wave and absorbed by Landau damping. The Alfvén wave
is therefore stable in the cylindrical plasma.

Alfvén waves were also treated in Sects. 10.4.1 and 10.4.2 using the cold
plasma model. The dispersion relation in a homogeneous infinite plasma is
given by (10.64c), showing that Alfvén resonance occurs at ω2 ≈ k2

‖v
2
A and

that the compressional Alfvén wave and shear Alfvén wave cutoffs occur at
ω2 = k2

‖v
2
A(1 + ω/Ωi) and ω2 = k2

‖v
2
A(1 − ω/Ωi), respectively.
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13.2.1 Toroidicity-Induced Alfvén Eigenmode

Let us consider shear Alfvén waves in a toroidal plasma and the perturbation
of the (−m,n) mode given by

φ(r, θ, z, t) = φ(r) exp i
(
−mθ + n

z

R
− ωt

)
, (13.39)

where R is the major radius of the torus and

k‖ =
k·B
B

=
1
R

[
n− m

q(r)

]
.

The resonant conditions of the m and m + 1 modes in a linear cylindrical
plasma are

ω2

v2A
− k2

‖m = 0 ,
ω2

v2A
− k2

‖m+1 = 0 .

However, the m mode wave can couple with m± 1 in a toroidal plasma since
the magnitude of the toroidal field changes as Bz = Bz0

[
1 − (r/R) cos θ

]
, as

will be shown later in this section. Then the resonant condition of m and
m+ 1 modes in a toroidal plasma becomes∣∣∣∣∣∣∣∣

ω2

v2A
− k2

‖m αε
ω2

v2A

αε
ω2

v2A

ω2

v2A
− k2

‖m+1

∣∣∣∣∣∣∣∣ = 0 ,

where ε = r/R, and α is a constant of order of 1. Then the solutions are

ω2
±
v2A

=
k2

‖m + k2
‖m+1 ±

[
(k2

‖m − k2
‖m+1)

2 + 4αε2k2
‖mk

2
‖m+1

]1/2

2(1 − α2ε2)
. (13.40)

The resonant condition (13.40) is plotted in Fig. 13.2.
At the radius satisfying k2

‖m = k2
‖m+1, the difference of ω± becomes min-

imum and the radius is given by

1
R

[
n− m

q(r)

]
= − 1

R

[
n− m+ 1

q(r)

]
, q(r0) =

m+ 1/2
n

, (13.41)

k‖m = −k‖m+1 =
1

2q(r0)R
.

q(r0) = 1.5 for the case m = 1 and n = 1. Therefore Alfvén resonance does
not exist in the frequency gap ω− < ω < ω+.

The continuum Alfvén waves correspond to excitation of shear Alfvén
waves on a given flux surface where the mode frequency is resonant ω2 =
k2

‖mv
2
A(r), and such a resonance leads to wave damping. However, frequencies
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Fig. 13.2. Alfvén resonance frequency ω of toroidally coupled m and m+1 modes

excited within the spectral gaps are not resonant with the continuum and
hence will not damp in the gap region. This allows a discrete eigenfrequency of
the toroidicity-induced Alfvén eigenmode or toroidal Alfvén eigenmode (TAE)
to be established. This TAE can easily be destabilized by the kinetic effect
of energetic particles.

The equations of the TAE will be described here according to Berk, Van
Dam, Guo, and Lindberg [13.8]. The equations of the first-order perturbations
are

∇·j1 = 0 , ρ
dv1

dt
= (j × B)1 , (13.42)

E1 = ∇φ1 − ∂A1

∂t
, B1 = ∇ × A1 . (13.43)

For ideal, low beta MHD waves, we have the relations

E‖ = 0 , B‖1 = 0 , A1 = A‖1b , (13.44)

so that
iωA‖1 = b·∇φ1 , v1 =

E1 × b

B
. (13.45)

From (13.42), we have
∇·j⊥1 + ∇·(j‖1b) = 0 (13.46)

and
−iωρ(v1 × b) = (j⊥1 × B) × b + (j × B1) × b ,

j⊥1 = − iωρ
B2 E⊥1 +

j‖
B

B⊥1 . (13.47)
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Equations (13.43)–(13.45) yield

B⊥1 = ∇ × (A‖1b) = ∇
(
A‖1

B

)
× B +

A‖1

B
∇ × B

≈ − i
ω

∇
(

b·∇φ1

B

)
× B , (13.48)

j‖1 = b·j1 =
1
µ0

b·∇ × B⊥1

= − i
ωµ0

b·∇ ×
{
B2∇⊥

[
(B·∇)φ1

B2

]
× B

B2

}
=

i
ωµ0

(
b· B

B2

)
∇·
[
B2∇⊥

(
B·∇φ1

B2

)]
=

i
ωµ0B

∇·
[
B2∇⊥

(
B·∇φ1

B2

)]
. (13.49)

Then (13.46)–(13.49) yield

0 = ∇·
(

i
ω

µ0

1
v2A

∇⊥φ1

)
+ ∇

(
j‖
B

B⊥1

)
+ ∇

(
j‖1

B
B

)
,

0 = ∇·
(
ω2

v2A
∇⊥φ1

)
+ µ0∇

(
j‖
B

)
·B × ∇

[
(B·∇)φ1

B2

]
+(B·∇)

{
1
B2 ∇·

[
B2∇⊥·

(
B·∇φ1

B2

)]}
. (13.50)

When coordinates (R,ϕ,Z) and (r, θ, ζ) are introduced by

R = R0 + r cos θ , Z = r sin θ , ϕ = − ζ
R
,

with the notation

φ1(r, θ, ζ, t) =
∑
m

φm(r) exp i(−mθ + nϕ− ωt) ,

(b·∇)φm =
i
R0

[
n− m

q(r)

]
φm = ik‖mφm ,

k‖m =
1
R0

[
n− m

q(r)

]
, Em ≡ φm

R
.

equation (13.50) reduces to [13.8]
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Fig. 13.3. Left : toroidal shear Alfvén resonance frequencies Ω corresponding to
(n = 1, m = 1) and (n = 1, m = 2), q(r) = 1 + (r/a)2, a/R = 0.25, Ω ≡
ω/
[
vA(0)/R0

]
. Right : structure of the global mode amplitude as a function of radius

[13.8]

0=
d
dr

[
r3
(
ω2

v2A
− k2

‖m

)
dEm

dr

]
+ r2Em

d
dr

(
ω

vA

)2

(13.51)

−(m2−1)
(
ω2

v2A
− k2

‖m

)
rEm +

d
dr

[
r3
(
ω

vA

)2 2r
R0

(
dEm+1

dr
+

dEm−1

dr

)]
.

As can be seen from Fig. 13.3, the mode structure has a sharp transition of
m = 1 and m = 2 components at the gap location. Therefore m and m + 1
modes near the gap location reduce to(

ω2

v2A
− k2

‖m

)
dEm

dr
+

2r
R0

(
ω

vA

)2 dEm+1

dr
≈ 0 ,

(
ω2

v2A
− k2

‖m+1

)
dEm+1

dr
+

2r
R0

(
ω

vA

)2 dEm

dr
≈ 0 ,

so that the toroidal shear Alfvén resonance frequency is given by∣∣∣∣∣∣∣∣∣
(
ω2

v2A
− k2

‖m

)
2ε
(
ω

vA

)2

2ε
(
ω

vA

)2 (
ω2

v2A
− k2

‖m+1

)
∣∣∣∣∣∣∣∣∣ = 0 . (13.52)

When the Shafranov shift is included in the coordinates (R,ϕ,Z) and (r, θ, ζ),
the coupling constant becomes 2.5ε instead of 2ε [13.8].

The energy integral from (13.51) without the coupling term of the m± 1
modes reduces to the following equation by partial integration:
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G(ω,Em) ≡ P
∫ a

0
dr r

{[
r2
(

dEm

dr

)2

+ (m2 − 1)E2
m

](
ω2

v2A
− k2

‖m

)

− ω2rE2
m

d
dr

1
v2A

}
= Em(r−s )Cm(r−s ) − Em(r+s )Cm(r+s ) , (13.53)

where

Cm(r) =
(
ω2

v2A
− k2

‖m

)
r2

dEm

dr
, Em(a) = 0 .

The radius r = rs is the singular radius at which (ω2/vA)2 − k2
‖m = 0 and

P denotes the principal value of the integral. From this formulation, it is
possible to estimate the damping rate of TAE [13.8]:

δω
ω

= −iπ
sgn(ω0)Cm(rs)2

r3s

∣∣∣∣ ∂∂r
(
ω2

v2A
− k2

‖m

)∣∣∣∣ω0
∂G

∂ω0

. (13.54)

Since ω0∂G/∂ω0 > 0, we have Im(δω) < 0. This is called continuum damping .

13.2.2 Instability of TAE Driven by Energetic Particles

The dynamics of energetic particles must be treated by kinetic theory. The
basic equations are those due to Betti and Freidberg [13.9]:

∂fj

∂t
+ v·fj +

qj
mj

(E + v × B)·∇vfj = 0 , (13.55)

∂nj

∂t
+ ∇·(njuj) = 0 , (13.56)

mj
∂

∂t
(njuj) + ∇·Pj = qjnj(E + uj × B) , (13.57)

Pj = mj

∫
vvfjdv , (13.58)

B1 = ∇ × (ξ⊥ × B) , (13.59)

µ0j1 = ∇B1 = ∇ × ∇ × (ξ⊥ × B) , (13.60)

j1 × B + j × B1 =
∑

j

[
∇P1j − iωmj(n1juj + nju1j)

]
≈
∑

j

(∇P1j − ρω2ξ⊥j

)
. (13.61)
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Fj is the equilibrium distribution function of the axisymmetric torus. Fj(ε, pϕ)
is assumed to be a function of the constants of motion ε and pϕ, where

ε =
mj

2
v2 + qjφ , pϕ = mjRvϕ + qjψ , ψ = RAϕ , (13.62)

RBZ =
∂ψ

∂R
, RBR = −∂ψ

∂Z
.

The first-order perturbation f1j of the distribution function is

∂f1j

∂t
+ v·f1j +

qj
mj

(v × B)·∇vf1j = − qj
mj

(E + v × B1)·∇vFj (13.63)

and

∇vFj = ϕ̂
∂pϕ

∂vϕ

∂Fj

∂pϕ
+ (∇vε)

∂Fj

∂ε
= ϕ̂mjR

∂Fj

∂pϕ
+mjv

∂Fj

∂ε
. (13.64)

The solution is obtained by integrating along the particle orbit:

f1j = − qj
mj

∫ t

−∞
(E + v × B1)·∇vFjdt′ . (13.65)

It is assumed that perturbations have the form

Q1 = Q1(R,Z) exp i(nϕ− ωt) .

The second term mjv(∂Fj/∂ε) on the right-hand side of (13.64) contributes
to the integral

− qj
mj

∫ t

−∞
(E + v × B1)·mjv

∂Fj

∂ε
dt′ = −qj ∂Fj

∂ε

∫ t

−∞
E·vdt′ .

The contribution from the first term mjR(∂Fj/∂pϕ) is

− qj
mj

[∫ t

−∞
EϕmjR

∂Fj

∂pϕ
dt′ +

∫ t

−∞
mjR(v × B1)ϕ

∂Fj

∂pϕ
dt′
]

= −qj ∂Fj

∂pϕ

{∫ t

−∞
EϕRdt′ +

∫ t

−∞

R

iω
[
v × (∇ × E)

]
ϕ
dt′
}

= −qj ∂Fj

∂pϕ

{∫ t

−∞

1
−iω

∂(EϕR)
∂t

dt′ +
∫ t

−∞

[
n

ω
(v·E) − 1

iω
(v·∇)(EϕR)

]
dt′
}

= −qj ∂Fj

∂pϕ

[∫ t

−∞

1
−iω

d(EϕR)
dt

dt′ +
∫ t

−∞

n

ω
(v·E)dt′

]
.

The solution is
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f1j = −qj
ω

[
i
∂Fj

∂pϕ
REϕ +

(
ω
∂Fj

∂ε
+ n

∂Fj

∂pϕ

)∫ t

−∞
(E·v)dt′

]
. (13.66)

Since
E1‖ = 0 , −iωξ⊥ =

E⊥ × B

B2 , E⊥ = iω(ξ⊥ × B) ,

REϕ = iω(ξ⊥ × B)ϕR = iω(ξ⊥RBZ − ξ⊥ZBR)R = −iω(ξ·∇ψ) ,

E·v = iω(ξ⊥ × B)·v = −iωξ⊥·(v × B) = −iωξ⊥·mj

qj

dv

dt

= −iω
mj

qj
ξ⊥·dv

dt
= −iω

mj

qj

[
d(ξ⊥ · v)

dt
− v·dξ⊥

dt

]
,

f1j becomes

f1j = −qj ∂Fj

∂pϕ
(ξ·∇ψ) + imj

(
ω
∂Fj

∂ε
+ n

∂Fj

∂pϕ

)(
ξ⊥·v −

∫ t

−∞
v·dξ⊥

dt
dt′
)

= −qj ∂Fj

∂ψ
+ imj(ω − ω∗j)

∂Fj

∂ε
(ξ⊥·v − sj) , (13.67)

where

sj ≡
∫ t

−∞
v·dξ⊥

dt
dt′ , ω∗j ≡ −n∂Fj/∂pϕ

∂Fj/∂ε
.

sj reduces to

sj =
∫ t

−∞

[
v2⊥
2

∇·ξ⊥ +
(
v2⊥
2

− v2‖
)

ξ·κ
]

dt′ , (13.68)

as will be shown at the end of this section. The perturbed pressure tensor is

P1j =
∫
mjvvf1jdv = P1⊥jI + (P1‖j − P1⊥j)bb , (13.69)

and ∇P1j is given by (13.23) and (13.24). Then the equation of motion is

−ρω2ξ⊥ = F ⊥(ξ⊥) + iD⊥(ξ⊥) , (13.70)

F ⊥(ξ⊥) = j1 × B + j × B1 + ∇(ξ⊥·∇P1) , (13.71)

D⊥(ξ⊥) = mj

∫ [
v2⊥
2

∇⊥ +
(
v2‖ − v2⊥

2

)
κ

]
mj(ω − ω∗j)

∂Fj

∂ε
sjdv . (13.72)

F ⊥(ξ⊥) is the ideal MHD force operator for incompressible displacement.
D⊥(ξ⊥) contains the contribution of energetic particles. Equations (13.70)–
(13.72) describe the low frequency, finite wave number stability of energetic
particle Alfvén waves in an axisymmetric torus.
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The energy integral of (13.70) consists of the plasma kinetic energy nor-
malization KM, the ideal MHD perpendicular potential energy δWMHD, and
the kinetic contribution to the energy integral δWK:

ω2KM = δWMHD + δWK , (13.73)

where

KM =
1
2

∫
ρ|ξ⊥|2dr , δWMHD = −1

2

∫
ξ∗

⊥F ⊥(ξ⊥)dr ,

δWK = − i
2

∫
ξ∗

⊥D⊥(ξ⊥)dr .

After a simple integration by parts, δWK can be written as

δWK =
i
2

∑
j

∫
(ω − ω∗j)

∂Fj

∂ε
sj

ds∗j
dt

dvdr , (13.74)

since
ds∗j
dt

= mj

[
v2⊥
2

∇⊥·ξ∗ +
(
v2⊥
2

− v‖

)
ξ⊥·κ

]
.

On the other hand, ds∗j/dt is given by

ds∗j
dt

= iω∗s∗j +Ds∗j , D ≡ (v·∇) +
qj
mj

(v × B)·∇v .

With the notation sj ≡ aj + icj (aj and cj real), we have

sj
ds∗j
dt

= iω∗|sj |2 + i(cjDaj − ajDcj) +
1
2
D(a2

j + c2j ) .

The contribution of the last term to the integral (13.74) by drdv is zero,
since Fj and ω∗j are functions of the constants of motion ε and pϕ, and

δWK =
1
2

∑
j

∫
(ω − ω∗j)

∂Fj

∂ε
(iωi|sj |2 +Rj)dvdr ,

Rj = cjDaj − ajDcj − ωr|sj |2 .
The desired expression for the growth rate is obtained by setting the real and
imaginary parts of (13.73) equal to zero:

ω2
r =

δWMHD

KM
+O(β) . (13.75)

O(β) is the contribution of the Rj term. In the limit ωi � ωr, the imaginary
part yields
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ωi ≈ WK

KM
, WK ≡ lim

ωi→0

⎡⎣ 1
4ωr

∑
j

∫
(ω − ω∗j)

∂Fj

∂ε
ωi|sj |2dvdr

⎤⎦ .
(13.76)

Let us estimate (13.76). Since ∇·ξ⊥ + 2ξ⊥·κ ≈ 0 [see (8.116)], sj is

sj = −mj

∫ t

−∞

(
v2‖ +

v2⊥
2

)
(κ·ξ⊥)dt′ = mj

∫ t

−∞

(
v2‖ +

v2⊥
2

)
ξR
R

dt′ ,

where

ξR = ξr cos θ − ξθ sin θ = ξr
eiθ + e−iθ

2
− ξθ eiθ − e−iθ

2i
.

Recalling that

∇·ξ =
1
r

∂(rξr)
∂r

− i
m

r
ξθ ≈ 0 ,

ξr and ξθ are

ξr =
∑
m

ξm(r)e−imθ , ξθ = −i
∑
m

[
rξm(r)

]′
m

e−imθ .

Since the leading-order guiding centers of orbits of energetic particles are
given by

r(t′) = r(t) , θ(t′) =
v‖Bθ

rBϕ
(t′ − t) + θ(t) , ϕ(t′) =

v‖
r

(t′ − t) + ϕ(t) ,

perturbations along the orbit become

exp i
[−mθ(t′) + nϕ(t′) − ωt′]

= exp
[
i
(

−mBθ

rBϕ
v‖ +

nv‖
R

− ω
)

(t′ − t)
]

exp i
[−mθ(t) + nϕ(t) − ωt]

= exp
[− i(ω − ωm)(t′ − t)] exp i

[−mθ(t) + nϕ(t) − ωt] ,
where

ωm =
v‖
R

(
n− m

q

)
and

sj =
mj(v2‖ + v2⊥/2)

R

1
2

∑
m

[
ξm−1 + ξm+1 − iξθ(m−1) + iξθ(m+1)

]
× exp i(−mθ + nϕ− ωt)

∫ 0

∞
exp
[− i(ω − ωm)t′′

]
dt′′

= i
mj

2R

(
v2‖ +

v2⊥
2

)∑
m

[
ξm−1 + ξm+1 − i

(rξm−1)′

(m− 1)
+ i(rξm+1)′(m+ 1)

]

×
[
exp i(−imθ + nϕ− ωt)

(ω − ωm)

]
. (13.77)
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It is assumed that the perturbation consists primarily of two toroidally cou-
pled harmonics ξm and ξm+1 and that all other harmonics are essentially
zero. Strong coupling occurs in a narrow region of thickness ∼ εa localized
about the surface r = r0 corresponding to q(r0) = (2m + 1)/2n = q0. The
mode localization implies that ξ′

m±1 terms dominate in (13.77). Substituting
these results into the expression for sj and retaining only those terms which
do not average to zero in θ leads to the expression

|sj |2=
m2

jr
2
0

4R

(
v2‖ +

v2⊥
2

)2
[ |ξ′

(m+1)|2
(m+ 1)2

+
|ξ′

m|2
m2

](
1

|ω − ωm|2 +
1

|ω − ωm−1|2
)
,

since ωm+1 = −ωm and ωm+2 = −ωm−1. KM is given by

KM =
r20ρ

2
0

2

∫ [ |ξ′
m|2
m2 +

|ξ′
m+1|2

(m+ 1)2

]
dr . (13.78)

Using the relations ωr ≈ k‖vA, k‖ = 1/(2q0R), q0 = 2m + 1/2n, we obtain
the following expression for the growth rate:

ωi

k‖vA
= lim

ωi→0

∑
j

µ0m
2
jq

2
0

2B2

∫ (
v2‖ +

v2⊥
2

)2(
ωr
∂Fj

∂ε
+
n

qj

∂Fj

∂ψ

)

×
(

ωi

|ω − ωm|2 +
ωi

|ω − ωm−1|2
)

dv . (13.79)

Using the formula limε→0
∫∞

−∞ ε/(x2 + ε2)dx = π, a short calculation to find
the integral with respect to v‖ yields

ωi

k‖vA
=
∑

j

2π2µ0m
2
jRq

3
0

2B2

∫ (
v2‖ +

v2⊥
2

)2(
ωr
∂Fj

∂ε
+
n

qj

∂Fj

∂ψ

)
v⊥dv⊥

∣∣∣∣∣
v‖=vA

+ · · ·
∣∣∣∣∣
v‖=vA/3

. (13.80)

Note that ωm = v‖/(2q0R), ωm−1 = 3v‖/(2q0R), ωr = vA/2q0R. Equa-
tion (13.80) gives the TAE growth rate for an arbitrary distribution function
Fj(ε, ψ). The second term of (13.80) is due to sideband resonance.

The growth rate is easily evaluated for a Maxwellian distribution

Fj = nj

(
mj

2πTj

)3/2

exp
(

−mjv
2

2Tj

)
.

Here nj = nj(ψ) and Tj = Tj(ψ). Some straightforward calculation leads to(
ωi

k‖vA

)
j

= −q20βj

(
GT

mj − nq0δj
HT

mj + ηjJ
T
mj

1 + ηj

)
, (13.81)
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where

βj =
njTj

B2/2µ0
, δj = −rLpj

dpj/dr
pj

, rLpj ≡ mjvTj

qjBp
, ηj ≡ d lnTj

d lnnj
.

Each of these quantities is evaluated at r = r0. The functions GT
mj , H

T
mj and

JT
mj are functions of a single parameter λj ≡ vA/vTj (vTj ≡ 2Tj/mj) and are

given by

GT
mj = gTmj(λj) + gTmj(λj/3) , gTmj(λj) =

π1/2

2
λj(1 + 2λ2

j + 2λ4
j )e

−λ2
j ,

HT
mj = hT

mj(λj)+hT
mj(λj/3) , hT

mj(λj) =
π1/2

2
(1+2λ2

j+2λ4
j )e

−λ2
j , (13.82)

JT
mj = jTmj(λj) + jTmj(λj/3) , jTmj(λj) =

π1/2

2
(3/2 + 2λ2

j + λ4
j + 2λ6

j )e
−λ2

j .

For alpha particles it is more reasonable to assume a slowing down distribu-
tion

F' =
A

(v2 + v20)3/2 ,

(
0 < v < v' ,

m'v
2
'

2
= 3.5 MeV

)
. (13.83)

A and v0 are related to the density and pressure as follows:

A ≈ nα

4π ln(vα/v0)
, pα ≈ nαmαv2

α/2
3 ln(vα/v0)

,
mjv

2
0

2
≈ κTj .

After another straightforward calculation we obtain an analogous expression
for the alpha particle contribution to the growth rate:(

ωi

k‖vA

)
'

= −q20β'
(
GT

s' − nq0δ'H
T
s'
)
, (13.84)

where

β' =
p'

B2/2µ0
, δ' = −2

3
rL'

dp'/dr
p'

, rLp' =
m'v'
q'Bp

.

The functions GT
s' and HT

s' are functions of the parameter λ' ≡ vA/v' and
are given by

GT
s' = gTs (λ') + gTs (λ'/3) , gTs (λ') =

3π
16
λ'(3 + 4λ' − 6λ2

' − λ4
')H(1 − λ') ,

HT
s = hT

s (λ') + hT
s (λ'/3) , hT

s'(λ') =
3π
16

(1 + 6λ2
' − 4λ3

' − 3λ4
')H(1 − λ') .

(13.85)
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H(1 − λ') is the Heaviside step function [H(x) = 1 for x > 0, H(x) = 0
for x < 0]. The final form of the growth rate is obtained by combining the
contributions of ions and electrons in the core plasma and ' particles:

ωi

k‖vA
= −q20

[
βiG

T
mi + βeG

T
me + β'(GT

s' − nq0δ'H
T
s')
]
, (13.86)

where βi, βe and β' are βj ≡ njTj/B
2/2µ0 of ions and electrons of the core

plasma and ' particles. The contribution of ions and electrons in the core
plasma is to Landau damping. The marginal condition for excitation of TAE
is

β' >
βiG

T
i (λi)

nq0δ'HT
s' −GT

s'
, δ' >

Gs'
nq0HT

s'
. (13.87)

Equation (13.68) is derived as follows:

v·dξ

dt
=
∑

i

vi
dξi
dt

=
∑

i

vi
∂ξi
∂t

+
∑

i

vi(v·∇)ξi =
∑

i

−iωviξi +
∑
i,j

vivj
∂ξi
xj

,

v = v‖b + v⊥ cos(Ωt)ê⊥ − v⊥ sin(Ωt)(b × ê⊥) ,

vv = v2‖bb + v2⊥cos(Ωt)2ê⊥ê⊥ + v2⊥sin(Ωt)2(b × ê⊥)(b × ê⊥)

= (v2‖ − v2⊥/2)bb + (v2⊥/2)
[
bb + ê⊥ê⊥ + (b × ê⊥)(b × ê⊥)

]
= (v2‖ − v2⊥/2)bb + (v2⊥/2)I ,

v·dξ

dt
= −iωv‖ξ‖ + (v2⊥/2)∇·ξ + (v2‖ − v2⊥/2)

∑
i,j

bibj
∂ξi
∂xj

,

∑
i,j

(
bibj

∂ξi
∂xj

+ bjξi
∂bi
∂xj

)
=
∑
i,j

bj
∂

∂xj
(ξibi) ,

∑
i,j

bibj
∂ξi
∂xj

= −ξ·(b·∇)b + (b·∇)(ξ·b) = −κ·ξ + (b·∇)ξ‖ ,

v·dξ

dt
= (v2⊥/2)∇·ξ + (v2⊥/2 − v2‖)κ·ξ⊥ − iωv‖ξ‖ + (v2‖ − v2⊥/2)

∂ξ‖
∂l

.

Since |ξ‖| � |ξ⊥|, we obtain

v·dξ

dt
= (v2⊥/2)∇·ξ + (v2⊥/2 − v2‖)κ·ξ⊥ + a1e−iΩt + · · · .

The third term is rapidly oscillating and the contribution to (13.68) is small.



13.2 Toroidal Alfvén Eigenmode 237

Fig. 13.4. Representative shear Alfvén frequency continuum curves as a function
of minor radius r [13.15]. Horizontal lines indicate the approximate radial loca-
tion and mode width for the toroidal Alfvén eigenmode (TAE), kinetic TAE mode
(KTAE), core-localized TAE mode (CLM), ellipticity Alfvén eigenmode (EAE),
non-circular triangularity Alfvén eigenmode (NAE), and energetic particle contin-
uum mode (EPM)

13.2.3 Various Alfvén Modes

In the last section we discussed the excitation of weakly damped low-n TAE
by super-Alfvénic energetic particles. High-n TAE is analyzed in [13.10].
There are various Alfvén modes.

In high-temperature plasmas, non-ideal effects such as the finite Larmor
radius of the core plasma become important in the gap region and cause the
Alfvén continuum to split into a series of kinetic Alfvén eigenmodes (KTAE)
at closely spaced frequencies above the ideal TAE frequency [13.11].

In the central region of the plasma, a low-shear version of TAE can arise,
called the the core-localized mode (CLM) [13.12].

Non-circular shaping of the plasma poloidal cross-section creates other
gaps in the Alfvén continuum, at high frequency. Ellipticity creats a gap at
about twice the TAE frequency, within which there are ellipticity-induced
Alfvén eigenmodes (EAE) [13.9]; likewise for triangularity-induced Alfvén
eigenmodes (NAE) [13.9] at about three times the TAE frequency.
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The ideal and kinetic TAEs are ‘cavity’ modes, whose frequencies are
determined by the bulk plasma. In addition, a ‘beam mode’ can arise that is
not a natural eigenmode of the plasma, but is supported by the presence of
a population of energetic particles, and also destabilized by them. This so-
called energetic particle mode (EPM) [13.13], which can also exist outside the
TAE gaps, has a frequency related to the toroidal precession frequency and
poloidal transit/bounce frequency of the fast ions. The beta-induced Alfvén
eigenmode (BAE) [13.14] exists in the beta-induced gap. The schematic in
Fig. 13.4 illustrates these different modes.

Close interaction between theory and experiment has led to many new dis-
coveries concerning Alfvén eigenmodes in toroidal plasmas. A great deal of
theoretical work has been carried out on energetic particle drive and compet-
ing damping mechanisms, such as continuum and radiative damping (mode
conversion and Landau damping), ion Landau damping for both thermal and
fast ions, electron damping and trapped electron collisional damping. For
modes with low to moderate toroidal mode numbers n, continuum damping
and ion Landau damping usually dominate, whereas high-n modes, trapped
collisional damping and radiative damping are strong stabilizing mechanisms.
There are excellent reviews on toroidal Alfvén eigenmodes in [13.15,13.16].



14 Computer Simulation

What a plasma really is is a collection of a very large number of indi-
vidual charged particles, all interacting with each other through mu-
tual Coulomb forces and through the electric currents associated with
their motion, while at the same time interacting with (and thereby
modifying) any electromagnetic fields of external origin. It is this
property of collective long-range interactions, of plasma with itself
and of plasma with its electromagnetic environment, that gives rise
to the great complexity of its behavior. (From R.F. Post [14.1])

The use of computers as an aid to understanding the complex nonlinear
behavior of turbulence, such as mode–mode coupling, nonlinear saturation
and self-organization, has continued to grow and has become a dominant
factor in the theoretical component of plasma research. The evaluation of the
saturation level of perturbations is essential in the study of plasma transport,
which is very difficult to estimate in an analytical way.

However, computer simulation of plasma presents many difficulties. It is
a numerically tough problem, since plasma behavior contains a wide range of
length and time scales (see Sect. 2.9):

– resistive diffusion time τR ∼ 103s,
– Coulomb collision time τei ∼ 0.1 ms,
– MHD Alfvén transit time τH ∼ 0.1 µs,
– ion and electron cyclotron periods τci ∼ 30 ns, τce ∼ 7 ps,
– electron plasma oscillation period τp ∼ 10 ps,
– mean free path λei ∼ 10 km,
– plasma radius a ∼ 1 m,
– Larmor radii ρci ∼ 3 mm, ρce ∼ 50 µm,
– Debye length λD ∼ 70 µm for typical fusion grade plasma.

Owing to these difficulties, simulations including all the relevant physics are
not possible even with the help of the most advanced computers, at least in
the near future. It is therefore necessary to use numerically feasible approx-
imate models while retaining the essential features of the relevant plasma
dynamics.

In this chapter, we provide a brief introduction to MHD models, the lin-
earized kinetic model, the gyrofluid or gyro-Landau-fluid model, the gyroki-
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Fig. 14.1. Unstable global n = 1 mode [14.6]. The singular surfaces q = 2, 3 and 4
are visible because of the peaked shear velocity on them. q0 = 1.35, β = 3%

netic particle model, and the full orbit particle model. Numerical algorithms
for simulations are not discussed here. Readers should refer to the excellent
textbooks [14.2–14.4] and references therein.

14.1 MHD model

The first requirement for confined plasma is an ideal MHD stability. To study
the linear growth rate of MHD instability, a variational method with the
energy integral

L =
∫

ξ·K̂ξdr − ω2
∫
ρmξ2dr (14.1)

is used to evaluate the eigenvalue of ω2. The energy integral is described
in (8.45)–(8.48) in Sect. 8.2. The linear growth rate is γ = (−ω2)1/2 when
ω2 < 0 [ξ(r, t) = ξ(r) exp(−iωt)].

To solve the eigenvalue problem, the regular finite element method is
used in ERATO code [14.5] to avoid the introduction of spurious modes of
numerical origin. Troyon et al. [14.6] evaluate the maximum growth rates
of MHD instabilities in many cases for an elongated tokamak plasma and
derive the beta scaling on the upper limit of the stable beta value βc(%) =
βNIp

[
MA/a(m)Bt(T)

]
(see Sect. 16.4). Figure 14.1 shows the poloidal plasma

flow associated with an unstable mode which develops when β exceeds the
limit.
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Fig. 14.2. Time development of the 3D profiles of the plasma pressure and magnetic
field lines in the simulation of internal reconnection events in a spherical tokamak
at the initial time (left) and t = 197τA (right) [14.11]

In the Princeton Plasma Physics Laboratory, the PEST code [14.7] has
been developed, in which ξ is approximated by a linear superposition of finite
linearly independent expansion functions. With this expansion, the calculus
of variations for the energy integral reduces to a matrix eigenvalue problem.

The other method to study the MHD behavior of plasmas is to solve
the MHD equations of motion under the appropriate initial and boundary
conditions. An example of the full nonlinear MHD equations is:

∂ρ

∂t
= −∇·(ρv) ,

∂ρv

∂t
= −∇·(ρvv) − ∇p+ j × B + µ

[
∇2v +

1
3
∇(∇·v)

]
, (14.2)

∂B

∂t
= −∇ × E ,

∂p

∂t
= −∇·(pv) − (γ − 1)p∇·v + (γ − 1)(ηj2 + Φ) ,

j =
1
µ0

∇ × B , E = −v × B + ηj , Φ ≡ 2µ
[
eijeji − 1

3
(∇·v)2

]
,

eij ≡ 1
2

(
∂vi

∂xj
+
∂vj

∂xi

)
.

The µ terms in the equations represent the viscosity effect and Φ is the viscous
heating source term. The other notation is the same as in Sect. 5.3.

The phemonena of the dynamo and the reconnection of reversed pinch
plasma (RFP) are analyzed in [14.8,14.9]. High beta disruption in tokamaks
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is studied using the MH3D code [14.10] and nonlinear behavior of internal
reconnection events in spherical tokamaks (very low aspect tokamaks, see
Sect. 15.4) is simulated in [14.11]. Internal reconnection in a spherical toka-
mak is visualized in Fig. 14.2. In this simulation, the numerical grid consists
typically of 128 × 64 × 128 points in r, φ, z coordinates. The time step is
∆t = τA/2π, τA being the Alfvén transit time encircling the magnetic axis.

14.2 Linearized Kinetic Model

The fundamental equations of the linearized kinetic model are the Maxwell
equations with the dielectric tensor of a hot plasma:

∇ × E = iωB , ε0∇·(K E) = ρext ,

∇ × B = − iω
c2

K·E + µ0jext , ∇·B = 0 ,

∇ × ∇ × E − ω2K E = iωµ0jext , (14.3)

where K is the dielectric tensor given in Sect. 12.3. The vector ik appearing
in the tensor K should be replaced by the operator ∇.

In terms of vector and scalar potentials (A, φ), the Maxwell equations are

B = ∇ × A , E = −∇φ+ iωA ,

−∇ × ∇ × A +
ω2

c2
K A +

iω
c2

K ∇φ = −µ0jext , (14.4a)

∇·(K ∇φ) − iω∇·(K A) = − 1
ε0
ρext , (14.4b)

∇·A = 0 .

It is possible to treat the phenomena associated with Landau damping or
amplification and mode conversion using this analysis.

Ion–ion hybrid resonance in ICRF (see Sect. 12.4) is analyzed using the
LION code [14.12], applying the finite hybrid element method to the varia-
tional form of (14.3). Alfvén waves are analyzed using the PENN code [14.13],
applying the standard finite element method to the variational form of (14.4a)
and (14.4b) without introducing spurious modes of numerical origin. Hydro-
gen minority heating in deuterium majority plasmas is studied using the
PION code [14.14]. Two-ion hybrid resonance heating is studied using the
TASK/WM code [14.15].
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Fig. 14.3. Wave field of n = 3 (toroidal mode number) kinetic Alfvén waves and
the integrated power transfer from AEs to particles in the region from r = 0 to
r = s for an optimized tokamak reactor with deeply reversed magnetic shear and a
large central safety factor q0 = 4.5 [14.16]. A negative value of the integrated power
transfer means that AEs are excited by the particles. The critical energetic particle
pressure for marginal stability is calculated here to be βfast < 0.1%

14.3 Modeling Bulk Plasma and Energetic Particles

Alfvén eigenmodes (AEs) can be excited by energetic particles such as
fusion-produced alpha particles or energetic ions due to NBI or ICRF (see
Sect. 13.2).

When analyzing Alfvén eigenmodes with the PENN code [14.16], the bulk
plasma of the tokamak is treated using the kinetic wave equations as described
in the last section and the energetic ions are treated using the gyrokinetic
Vlasov equation. The power transfer is calculated perturbatively from a global
eigenmode wave field E and the current density jnl estimated from the non-
adiabatic part of the perturbed distribution function. The power transfer P
is obtained from

P =
1
2
Re
∫

jnl·E∗dV .

Figure 14.3 shows the wave field of toroidal mode number n = 3 kinetic
Alfvén waves and the integrated power transfer from AEs to particles in the
region from r = 0 to r = s for an optimized reactor with deeply reversed
magnetic shear and a large central safety factor q0 = 4.5.

In the TASK/WM code, the bulk plasma is treated using the kinetic wave
equations and the effects of energetic ions are calculated from the drift kinetic
equation [14.17].

In the NOVA-K code [14.18], thermal ions and electrons of the bulk
plasma are treated using the MHD or moment equations of the gyrokinetic
Vlasov equation. The perturbed pressure due to energetic ions is calculated
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Fig. 14.4. Time evolution of total TAE (toroidal Alfvén eigenmode) energy and
energetic ion distribution peak value for v = vA [14.19]

using the gyrokinetic equation and combined with the perturbed pressure
terms from the bulk plasma.

A kinetic–MHD hybrid model [14.19] describes the bulk plasma using
the full nonlinear MHD equations and includes the effect of energetic ions
through the current j′

α due to the energetic ions:

j′
α =

∫
(v‖b + vd)fαd3v + ∇ × M , M = −

∫
µbfαd3v ,

where µ is the magnetic moment, vd is the curvature and ∇B drift veloc-
ity. The distribution function of energetic ions fα is calculated from the 4D
(R,ϕ, z, v) Fokker–Planck equation, where v is the parallel component of v.
The momentum equation for bulk plasma (14.2) reduces to

ρ

[
∂v

∂t
+ (v·∇)v

]
=
(

1
µ0

∇ × B − j′
α

)
× B − ∇p .

This simulation reproduces some aspects of the experimentally observed pe-
riodic burst of Alfvén eigenmodes, as shown in Fig. 14.4.

14.4 Gyrofluid/Gyro-Landau-Fluid Models

In the derivation of the gyrokinetic equation, the fast time scale associated
with the gyromotion of charged particles is asymptotically removed from the
kinetic equation. The resulting gyrokinetic Vlasov equation is therefore sim-
pler to solve than the full kinetic Vlasov equation, since it is independent of
the gyroangle phase space coordinate. By multiplying the gyrokinetic Vlasov
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equation by an arbitrary gyrocenter phase space function and integrating
over the velocity phase space, we obtain formulas for the gyrofluid model.
The electrostatic gyrokinetic Vlasov equation for the distribution function
F (R, v‖, µ, t) of the gyrocenter position R, the parallel velocity v‖, and the
magnetic moment µ = v2⊥/2B is

BC(F ) =
∂

∂t
(FB) + ∇·

[
FB(v‖b + vE + vd)

]
+
∂

∂v‖

{
FB

[
− e

m
b·∇J0Φµb·∇B + v‖(b·∇b)·vE

]}
, (14.5)

where C(F ) is the collision term for the test species with other species. The
magnitude B of the magnetic field is the Jacobian of the transformation from
the (v‖, v⊥) variable to (v‖, µ). Since finite Larmor radius effects are retained,
the particles feel the gyroaveraged E×B drift vE = (b×J0Φ)/B, where J0 is
the Bessel function of (k⊥v⊥/Ω). vd is the curvature and ∇B drift velocity.
The gyrokinetic Vlasov equation (14.5) reduces to [14.20]

0 =
∂

∂t
(FB) +B∇‖

(
FBv‖
B

)
+ vΦ·(FBJ0) + 2FBJ0

e

T
iωdΦ

+
e

T
iωd(FBJ1Φk⊥v⊥/2Ω) +

iωd

v2T
FB(v2‖ + µB)

− e

m
∇‖

(
J0ΦB

∂F0

∂v‖

)
+
e

m
J0ΦB

∂F0

∂v‖

(
µB

v2T
− 1
)

∇‖ lnB

−µB ∂

∂v‖
(FB)∇‖ lnB − ∂

∂v‖
(FBJ0v‖)

e

T
iωdΦ , (14.6)

where vΦ ≡ b × ∇Φ/B and iωd ≡ (v2T/Ω
2)B × ∇B·∇.

Taking an integral of the form n〈A〉 = 2π
∫

dv‖dµFBA leads to moment
equations for 1, v‖, m(v‖ − u‖)2, mv2⊥/2, m(v‖ − u‖)3, and mv2⊥(v‖ − u‖)/2
for the density n, particle flux nu‖, pressures p‖, p⊥, and energy fluxes q‖, q⊥,
respectively, with the help of the appropriate closure approximation. The
quasi-neutrality constraint is used to solve for Φ.

The starting equation for the gyro-Landau-fluid model [14.21] is the gy-
rokinetic Vlasov equation [14.22,14.23]

[
∂

∂t
+ (v‖b + vE + vd·∇)

]
h =

q

T

(
∂

∂t
+

iT
qB

k⊥ × b·∇
)
ΦJ0F0

=
q

T

(
∂

∂t
+ iω∗v

)
ΦJ0F0 , (14.7)

where h(R, v‖, µ, t) is the nonadiabatic part of the perturbed distribution
function f = −(q/T )ΦF0 + h and ω∗v = 1 + η(v2/2v2T − 3/2)ω∗, with
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Fig. 14.5. Comparison of the frequency ω and linear growth rate γ of toroidal ion-
temperature-gradient driven (ITG) turbulence for the Sydora (global) and Dimits
(flux-tube) nonlinear gyrokinetic codes, for the Kotschenreuther and Rewoldt (Full)
linear gyrokinetic codes, the Beer nonlinear gyrofluid code, and the Weiland fluid
calculation [14.24]. Lne is the scale of the electron density gradient and vti is the
ion thermal velocity. Good agreement is observed between the gyrofluid code and
the gyrokinetic codes

ω∗ = kθT/eBLn the diamagnetic frequency. Here L−1
n = −d lnn/dr and

η = Ln/LT . vE is the E × B drift velocity, and vd is the curvature and ∇B
drift velocity. The moment equations of the density N , parallel flow velocity
U , and pressures P‖, P⊥ are derived. This model is further generalized to
the moment equations of the ion density Ni, parallel ion flow velocity Ui, ion
pressures P‖, P⊥, trapped electron and untrapped electron densities N t

e , N
u
e ,

trapped electron pressure P t
e and parallel magnetic potential A.

Figure 14.5 compares the calculated frequency and linear growth rate of
toroidal ion-temperture-gradient driven (ITG) turbulence by the gyrokinetic
codes and the gyrofluid code. Good agreement is observed between them
[14.24]. Figure 14.6 compares the ion thermal diffusion coefficient χi of ITG
turbulence in a tokamak in nonlinear phase versus R/LT from the gyrofluid
codes and from the gyrokinetic particle codes (L−1

T = −d lnT/dr, where R
is the major radius). The values of the threshold R/LTcrit of the gyrofluid
codes, from which the ion thermal diffusion coefficient χi increases rapidly,
differ somewhat from that of the LLNL gyrokinetic results [14.24].
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Fig. 14.6. Ion thermal diffusion coefficient χi of ITG turbulence versus R/LT

from the gyrofluid codes 94IFS/PPPl, 97PPPL GFL, 98PPPL GFL and from the
gyrokinetic particle codes of LLNL and U. Colorado flux-tube and UCLA (Sydora)
global codes [14.24]. R/LTexp = 7, χi/(ρ2

i vti/Ln) = 0.16 is the experimental value
from the DIII-D data base. The values of the threshold R/LTcrit of the gyrofluid
code differ somewhat from that of the LLNL gyrokinetic results

14.5 Gyrokinetic Particle Model

The Vlasov equation for a distribution function F (x,v, t) in the space (x,v)
is given by

∂F

∂t
+ v·∂F

∂x
+
q

m
(E + v × B)·∂F

∂v
= 0 .

Let us apply a gyrokinetic change of variables from (x,v) to (R, µ, v‖, ϕ),
where R is the gyrocenter coordinate, µ ≡ v2⊥/2B the magnetic moment, v‖
the parallel component of velocity, ϕ the phase angle, and

x = R + ρ , ρ =
b × v⊥
Ω

, Ω ≡ qB

m
, b ≡ B

B
.

The distribution function F (x,v, t) can be expressed by the sum of the
zeroth-order term f , which is independent of the gyrophase, and the first-
order term g, which does depend on the gyrophase:

F (x,v, t) = f(R, µ, v‖, t) + g(R, µ, v‖, ϕ, t) .

For an electrostatic perturbation E = −∇Φ, f and g are given by [14.25]

0 =
∂f

∂t
+
(
v‖b + vd − 1

B

∂Ψ

∂R
× b

)
· ∂f
∂R

+
(

− q

m

∂Ψ

∂R
·b − µb·∂B

∂R

)
∂f

∂v‖
,

(14.8)
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g =
q

mB

∂f

∂µ

[
Φ(x) − 〈Φ〉] ,

where vd is the curvature and ∇B drift, i.e., vd = b×[µ·∇B+v2‖(b·∇)b
]
/Ω,

and 〈 〉 =
∮

dϕ/2π denotes the gyrophase average. Φ(x) and 〈Φ〉 are ex-
pressed by

Φ(x) =
∑

k

φ(k) exp ik·x =
∑

k

φ(k) exp(k·R) exp ik·ρ ,

〈Φ〉 ≡ 〈Φ(R + ρ)〉 =
∑

k

φ(k)J0

(
k⊥v⊥
Ω

)
exp(ik·R) .

When f is Maxwellian in v⊥, i.e., f ∝ exp(−v2⊥/2v2T )/2πv2T , we find

q

mB

∂f

∂µ
= − q

T
,

T

m
= v2T ,

and Ψ is given by

Ψ(R) ≡ 〈Φ〉 +
1
2
q

T

(〈Φ〉2 − 〈Φ2〉) � 〈Φ〉 − 1
2
q

T

v2⊥
Ω2

∣∣∣∣∂〈Φ〉
∂R

∣∣∣∣2 ,
where we have used the relation

〈Φ2〉 =
∑

k

[∑
k′
φ(k′)φ(k − k′)

]
J0(k⊥v⊥/Ω) exp ik·R .

Then the distribution function F in (x,v) space becomes

F (x,v, t) = 〈f(R, µ, v‖, t)〉
{

1 − q

T

[
Φ(x) − 〈〈Φ〉(R)〉]} , R = x − ρ ,

and Poisson’s equation is given by

∇2Φ(x) = − e

ε0

∫
(Fi − Fe)dv . (14.9)

As f is expressed by

f(R,v⊥, v‖, t) =
∑

k

f̄(k, v‖, t)
1

2πv2T
exp
(

− v2⊥
2v2T

)
exp ik·(x − ρ) ,

it follows that 〈f〉 is

〈f(R,v⊥, v‖, t)〉 =
∑

k

f̄(k, v‖, t)
1

2πv2T
exp
(

− v2⊥
2v2T

)
exp(ik·x)J0(k⊥v⊥/Ω) .

We define f̃(x, v‖, t) by
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f̃(x, v‖, t) ≡
∫

〈f(R,v⊥, v‖, t)〉2πv⊥dv⊥

=
∑

k

f̄(k, v‖, t) exp(−b/2) exp ik·x ,

where ρT = vT /Ω, b ≡ (k⊥ρT )2. Furthermore, Φ̃(x) is defined by

f̃(x, v‖, t)Φ̃(x) ≡
∫

〈〈Φ〉〉〈f〉2πv⊥dv⊥ .

Then we obtain

Φ̃(x) �
∑

k

φ(k)Γ0(b) exp ik·x , Γ0(b) ≡ I0(b) exp(−b) .

The term
∫
Fdv appearing on the right-hand side of Poisson’s equation (14.9)

is expressed by∫
Fdv = n̂(x) − q

T
(Φ− Φ̃)n̂(x) , n̂(x) ≡

∫
f̃(x, v‖, t)dv‖ .

Therefore (14.9) reduces to

∇2Φ(x) = − e

ε0
(n̂i − n̂e) +

Te

Ti

1
λ2

D

n̂i

n0
(Φ− Φ̃) . (14.10)

Here we have assumed a zero electron Larmor radius. λD = (ε0Te/n0e
2)1/2

is the Debye length. The second term on the right-hand side of (14.10) is

Te

Ti

1
λ2

D
(Φ− Φ̃) � Te

Ti

(k⊥ρi)2

λ2
D

Φ ≈ −Π
2
i

Ω2
i
∇2

⊥Φ .

Usually, Π2
i /Ω

2
i = (Te/Ti)(ρi/λD)2 is much larger than 1.

We shall now discuss numerical schemes for solving the gyrokinetic
Vlasov–Poisson systems (14.8) and (14.10). Applying the discrete represen-
tation for the distribution function of N particles, viz.,

f(R, µ, v‖, t) =
N∑

j=1

δ
(
R − Rj(t)

)
δ(µ− µj)δ

(
v⊥ − v⊥j(t)

)
,

to (14.8), the equations of motion in the gyrocenter coordinates for the j th
gyrokinetic particle must satisfy

dRj

dt
= v‖jb + vd − 1

B

(
∂Ψ

∂R
× b

)∣∣∣∣
Rjµj

, (14.11)
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Fig. 14.7. Upper : temporal evolution of the mode amplitude of the drift-wave-
trapped-electron mode (m, n) = (5, −3). The solid line is the linear theory growth
rate. Lower : power spectrum density versus frequency [14.26]

dv‖j

dt
= − q

m

(
∂Ψ

∂R
·b
)∣∣∣∣

Rjµj

− µjB·∇B . (14.12)

Then the function f̃ is given by

f̃(x, v‖, t) =
∫

〈f(R,v⊥, v‖, t)〉2πv⊥dv⊥ =
N∑

j=1

〈δ(x − Rj − ρj)〉δ(v‖ − v‖j) .

In the first term on the right-hand side of (14.10), n̂i and n̂e are

n̂i =
∫
f̃(x, v‖, t)dv‖ =

N∑
j=1

〈
δ(x − Ri

j − ρi
j)
〉
, n̂e =

N∑
j=1

δ(x − Re
j) .

When k⊥ρi < 1, the 4-point average by ϕ = 0, π/2, π, 3π/2 is a good approx-
imation to the gyrophase average 〈 〉.

The drift-wave-trapped-electron mode in a tokamak is studied in [14.26].
Simulation parameters used there include the system size Lx × Ly × Lz =
64∆×64∆×32∆z, where∆ = ρi and∆z = 25ρi. The aspect ratio was R0/a =
4 and n0 = 〈n〉=4 particles/cell (total ions ∼ 0.5×106). 〈Te〉/Ti = 4,mi/me =
1836, Ωi∆t = 0.1, ω∗

e/Ωi = 0.1m, with m the poloidal mode number, where
ω∗

e = kθTe/LneB0. Results from the simulation of the drift-wave-trapped-
electron mode with ηe ≡ d(lnTe)/d(lnne)=1 are shown in Fig. 14.7. The time
evolution of the mode amplitude for (m,n) = (5,−3) is shown in the upper
figure. The saturation amplitude reaches eΦ/Te ≈ 0.035. The linear growth



14.6 Full Orbit Particle Model 251

Fig. 14.8. Plots of the electrostatic potential of ITG turbulence in a poloidal
cross-section during the linear phase (left) and non-linearly saturated steady state
(right) [14.27]

rate in the initial phase and real frequency agree well with the theoretical
linear eigenmode analysis.

The ion temperature gradient (ITG) mode is studied in [14.27]. In this
analysis, the δf/f method is used [14.28]. The electrons are assumed to be
adiabatic (δne/n0 = eφ/Te) and the total of number ions is ∼ 106. Figure 14.8
plots the electrostatic potential during the linear phase and non-linearly sat-
urated steady state.

The ion thermal diffusivity of ITG turbulence in a tokamak is studied
in [14.29]. The number of particles in the simulation is in the range 5×105 to
1.34×108. For 106 or more (2 particles per cell), χi at the later time does not
appear to change with increasing particle number. The thermal diffusivity is
defined formally as χi = 1.5Ln〈ṽrT̃i〉/Ti, where ṽr and T̃i are the fluctuating
components of the radial ion velocity and ion temperature. The dependence
of χi on R/LT is scanned and the fit can be expressed by an offset linear
dependence on R/LT (see Fig. 14.6).

χi

ρ2i vti/Ln
= 15.4

(
1.0 − 6.0

LT

R

)
.

We have discussed the gyrokinetic particle model of electrostatic perturba-
tions. The formulation of the gyrokinetic particle model of electromagnetic
perturbations has also been developed [14.30], in which the effect of magnetic
field fluctuations is included as well as the effect of electric field fluctuations.

14.6 Full Orbit Particle Model

The fundamental equations of the full orbit particle model are simple and
are given as follows [14.2]:
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drsj(t)
dt

= vsj(t) ,
dvsj(t)

dt
=
qs
ms

[
E
(
rsj(t), t

)
+ vsj(t) × B

(
rsj(t), t

)]
,

ρ =
∑
s=e,i

qs
∑

j

δ
(
r − rsj(t)

)
, j =

∑
s=e,i

qs
∑

j

vs,j(t)δ
(
r − rsj(t)

)
,

ε0∇·E = ρ , ∇·B = 0 ,

∇ × E = −∂B
∂t

, ∇ × B = µ0j +
1
c2
∂E

∂t
,

where ms and qs are the mass and charge of species s. The other notation
is as usual. However, the number of particles of real plasma is far beyond
107–108, which is the limit of the most advanced supercomputer, at least in
the near future. In the full orbit particle model, the concept of superparticle
with finite size is introduced instead. Let us consider the system with volume
of V = LxLyLz, which contains Ne electrons and Ni ions. A number Λ
of particles are put together into one superparticle with mass and charge
(Λ � 1)

msp
s = Λms , qsps = Λqs .

The average values of the density and temperature of superparticles are

nsp
s =

ns

Λ
, T sp

s = ΛTs .

Then the plasma frequency Πsp
s , cyclotron frequency Ωsp

s , thermal velocity
vspT , Alfvén velocity vspA , Debye length λsp

Ds, Larmor radius ρspcs , and beta ratio
βsp are the same as in the original system. However, the Coulomb collision
frequency is greatly enhanced, i.e.,

νsp
ei ∼ 0.4

Πsp
e

nsp
e (λsp

De)3
= 0.4

ΛΠe

ne(λDe)3
= Λνei .

The Coulomb collision frequency of superparticles with zero size can be
comparable to 1/10–1/100 of the electron plasma frequency, when N sp

e ≡
nsp

e (λsp
De)

3 is selected to be of order 100–101. Low frequency waves will there-
fore be masked by Coulomb collision. To avoid this effect, a charge density
distribution of finite size with shape factor of S(r) is introduced:

qsps δ(r − rsj) −→ qsps S(r − rsj) ,
∫
S(r − rsj)dr = 1 .

When the effective radius of the shape factor is R, the effective Coulomb
collision frequency is reduced by one to three orders of magnitude depending
on the size R ∼ (1–5)λD and ne(λDe)3 ∼ (10–103) [14.31]. The dispersion
relation with k < R−1 is barely affected. Therefore the simulation using
superparticles with a proper finite size can reproduce wave phenomena with
wavelength greater than R. The equations of motion of superparticles are
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drsp
sj (t)
dt

= vsp
sj (t) ,

dvsp
sj (t)
dt

=
qsps
msp

s

[
E∗(rsj(t), t

)
+ vsp

sj (t) × B∗(rsj(t), t
)]
,

where E∗ and B∗ are the fields felt by finite-size superparticles, i.e.,

E∗(r, t) ≡
∫

E(r′, t)S(r′ − r)dr′ , B∗(r, t) ≡
∫

B(r′, t)S(r′ − r)dr′ ,

ρ =
∑
s=e,i

qsps

Nsp
s∑

j=1

S
(
r − rsj(t)

)
, j =

∑
s=e,i

qsps

Nsp
s∑

j=1

vs,j(t)S
(
r − rsj(t)

)
,

ε0∇·E = ρ , ∇·B = 0 ,

∇ × E = −∂B
∂t

, ∇ × B = µ0j +
1
c2
∂E

∂t
.

When time and length are normalized by

t̃ = tΠe , r̃ = r∆−1 ,

and E, B, ρ and j are normalized by

Ẽ =
E

me∆Π2
e /e

, B̃ =
B

meΠe/e
,

ρ̃ =
ρ

ene
, j̃ =

j

ene∆Πe
, ∆ = grid size ,

then the dimensionless form of the above equations is [14.32]

dr̃sj(t̃)
dt̃

= ṽsj(t̃) , (14.13)

dṽsj(t̃)
dt̃

=
Qs

Ms

[
Ẽ

∗(
r̃sj(t̃), t̃

)
+ ṽsj(t̃) × B̃

∗(
r̃sj(t̃), t̃

)]
, (14.14)

ρ̃ =
L̃xL̃yL̃z

N sp
e

∑
s=e,i

Qs

Nsp
s∑

j=1

S̃
(
r̃ − r̃sj(t̃)

)
, (14.15)

j̃ =
L̃xL̃yL̃z

N sp
e

∑
s=e,i

Qs

Nsp
s∑

j=1

ṽs,j(t̃)S̃
(
r̃ − r̃sj(t̃)

)
, (14.16)

∇̃·Ẽ = ρ̃ , ∇̃·B̃ = 0 , (14.17)

∇̃ × Ẽ = −∂B̃
∂t̃

, c̃2∇̃ × B̃ = j̃ +
∂Ẽ

∂t̃
, (14.18)

c̃ =
c

∆Πe
, S̃

(
r̃ − r̃sj(t̃)

)
= ∆3S

(
r − rsj(t)

)
, (14.19)



254 14 Computer Simulation

Fig. 14.9. Contour plots of mass density in the poloidal cross-section of the field-
reversed configuration (FRC) at periods t/tA = 0.0, 1.0, 3.0 and 5.0 [14.33]

where c is the speed of light and Qs ≡ qs/e (Qe = −1, Qi = qi/e), Ms ≡
ms/me (Me = 1,Mi = mi/me).

The tilt stability of a field-reversed configuration (FRC) is studied by full
orbit particle ions and electrons in [14.33]. The grid number is 49 × 49 × 32
and the total number of superparticles is 106. Furthermore, Πe∆t = 1.5,
c∆t/∆ < 1. The ion and electron mass ratio is set to be mi/me = 50 and
Ωe ∼ Πe/5. Figure 14.9 shows contour plots of mass density in the poloidal
cross-section at periods of t/τA = 0.0, 1.0, 3.0 and 5.0. τA is the Alfvén
transit time. In this simulation, |Ωi| < τ−1

A . The stabilizing effect on the
tilting by cycling ions which cross the separatrix is discussed. Tilt stability of
FRC is also discussed using the hybrid model of full orbit particle ions and
fluid electrons [14.34]. The stabilizing effect due to finite ion Larmor radius
is analyzed.

When |Ωi| � τ−1
A , full orbit particle simulation of electromagnetic per-

turbation is very difficult due to the excess amount of computer run time.
The toroidal particle code (TPC) has been developed for electrostatic turbu-
lence [14.35]. TPC solves Poisson’s equation
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Fig. 14.10. Potential structure in poloidal cross-section at three different times for
a reversed magnetic shear configuration of a tokamak [14.36]. In the quasi-steady
state (c), the discontinuity of the potential structure across the qmin surface is
recovered

∇2Φ = − 1
ε0
ρ = − e

ε0

∑
j

[qi
e
S(r − ri

j) − S(r − re
j)
]
. (14.20)

The ion motion is given by the Lorentz equation

dri

dt
= vi ,

dvi

dt
=
qi

mi

(
E + vi × B

)
, (14.21)

and the electron motion is given by the drift equation

dve‖
dt

= − e

me
E‖ − µ(b·∇)B . (14.22)

In [14.36], the ion temperature gradient (ITG) turbulences in the tokamak
configuration are analyzed using TPC. In these simulations, electrons are
treated as an adiabatic fluid (δne/ne = eΦ/Te). The effects of the reversed
magnetic shear configuration on ITG turbulence are studied (see Sect. 16.7)
and discontinuities and/or gaps in the structure of the ITG perturbed poten-
tial across the qmin surface are observed, as shown in Fig. 14.10.
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15 Development of Fusion Research

The major research effort in the area of controlled nuclear fusion focuses on
the confinement of hot plasmas by means of strong magnetic fields. Magnetic
confinements are classified into toroidal and open end configurations. Confine-
ment in a linear mirror field may have advantages over toroidal confinement
with respect to stability and anomalous diffusion across the magnetic field.
However, the end loss due to particles leaving along magnetic lines of force
is determined solely by diffusion in the velocity space, i.e., the confinement
time cannot be improved by increasing the intensity of the magnetic field or
the plasma size. Ways must be found to suppress end loss.

Toroidal magnetic confinements have no open ends. In the simple toroidal
field, ions and electrons drift in opposite directions due to the gradient of
the magnetic field. This gradient B drift causes the charge separation that
induces the electric field E directed parallel to the major axis of the torus.
The subsequent E ×B drift tends to carry the plasma ring outward. In order
to reduce the E × B drift, the upper and lower parts of the plasma must be
connected by magnetic lines of force and the separated charges short-circuited
along these field lines. Accordingly, a poloidal component of the magnetic field
is essential to the equilibrium of toroidal plasmas, and toroidal devices may
be classified according to the method used to generate the poloidal field. The
tokamak (Chap. 16) and the reversed field (Sect. 17.1) pinch devices use the
plasma current along the toroid, whereas the toroidal stellarator (Sect. 17.2)
has helical conductors or equivalent winding outside the plasma to produce
the appropriate rotational transform angles.

Besides the study of magnetic confinement systems, inertial confinement
approaches are being actively investigated. If a very dense and hot plasma
could be produced within a very short time, it might be possible to com-
plete the nuclear fusion reaction before the plasma starts to expand. An
extreme example is a hydrogen bomb. This type of confinement is called
inertial confinement. In laboratory experiments, high-power laser beams or
particle beams are focused onto small solid deuterium and tritium targets,
thereby producing very dense, hot plasma within a short time. Because of the
development of the technologies of high-power energy drivers, the approaches
along this line have some foundation in reality. Inertial confinement will be
discussed briefly in Chap. 18.
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The various kinds of approach that are actively investigated in controlled
thermonuclear fusion are classified as follows:

Magnetic
confinement

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Toroidal
system

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

Axially
symmetric

⎧⎨⎩Tokamak
Reversed field pinch
Spheromak

Axially
asymmetric

⎧⎨⎩Stellarator system
Heliac
Bumpy torus

Open end
system

⎧⎨⎩Mirror, Tandem mirror
Field reversal configuration
Cusp

Inertial
confinement

{
Laser
Ion beam, Electron beam

15.1 From Secrecy to International Collaboration

Basic research into controlled thermonuclear fusion probably began right af-
ter World War II in the United States, the Soviet Union, and the United
Kingdom in strict secrecy. There are on record many speculations about re-
search into controlled thermonuclear fusion even in the 1940s. The United
States program, called Project Sherwood, has been described in detail by
Bishop [15.1]. Bishop states that Z pinch experiments for linear and toroidal
configurations at the Los Alamos Scientific Laboratory were carried out in
an attempt to overcome sausage and kink instabilities. The astrophysicist
L. Spitzer Jr. started the figure-eight toroidal stellarator project at Prince-
ton University in 1951. At the Lawrence Livermore National Laboratory,
mirror confinement experiments were conducted. At the Atomic Energy Re-
search Establishment in Harwell, United Kingdom, the Zeta experiment was
started [15.2] and at the I.V. Kurchatov Institute of Atomic Energy in the
Soviet Union, experiments on a mirror called Ogra and on tokamaks were
carried out [15.3].

The first United Nations International Conference on the Peaceful Uses
of Atomic Energy was held in Geneva in 1955. Although this conference
was concerned with peaceful applications of nuclear fission, the chairman,
H.J. Bhabha, hazarded the prediction that ways of controlling fusion energy
that would render it industrially usable would be found in less than two
decades. However, as we have seen, research into controlled nuclear fusion
encountered serious and unexpected difficulties. It was soon recognized that
the realization of a practical fusion reactor was a long way off and that
basic research on plasma physics and the international exchange of scientific
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information were absolutely necessary. From around that time articles on
controlled nuclear fusion started appearing regularly in academic journals.
Lawson’s paper on the conditions for fusion was published in January 1957
[15.4] and several important theories on MHD instabilities had by that time
begun to appear [15.5, 15.6]. Experimental results of the Zeta [15.7] (Zero
Energy Thermonuclear Assembly) and Stellarator [15.8] projects were made
public in January 1958. In the fusion sessions of the second United Nations
International Conference on the Peaceful Uses of Atomic Energy, held in
Geneva, 1–13 September 1958 [15.9,15.10], many results of research that had
proceeded in secrecy were revealed.

L.A. Artsimovich expressed his impression of this conference as “some-
thing that might be called a display of ideas.” The second UN conference
marks the beginning of open rather than secret international cooperation
and competition in fusion research.

In Japan, controlled fusion research started in the Japan Atomic Energy
Institute (JAERI) under the ministry of science and technology and in the
Institute of Plasma Physics, Nagoya University, under the ministry of educa-
tion and culture, in the early 1960s [15.11].

The First International Conference on Plasma Physics and Controlled
Nuclear Fusion Research was held in Salzburg in 1961 under the auspices of
the International Atomic Energy Agency (IAEA). At the Salzburg confer-
ence [15.12] the big projects were fully discussed. Among these were Zeta,
Alpha, Stellarator C, Ogra, and DCX. Theta pinch experiments (Scylla,
Thetatron, etc.) appeared to be more popular than linear pinches. The pa-
pers on the large scale experimental projects such as Zeta or Stellarator C
all reported struggles with various instabilities. L.A. Artsimovich said in his
summary of experimental results: “Our original beliefs that the doors into
the desired regions of ultra-high temperature would open smoothly [. . .] have
proved as unfounded as the sinner’s hope of entering Paradise without passing
through Purgatory.” The importance of the PR-2 experiments of M.S. Ioffe
and others was soon widely recognized [15.12, Vol. 3, p. 1045]. These experi-
ments demonstrated that the plasma confined in a minimum-B configuration
is MHD stable.

The Second International Conference on Plasma Physics and Controlled
Nuclear Fusion Research was held at Culham in 1965 [15.13]. The stabilizing
effect of minimum-B configurations was confirmed by many experiments.
An absolute minimum-B field cannot be realized in a toroidal configuration.
Instead of this, the average minimum-B concept was introduced [15.13, Vol. 1,
pp. 103, 145]. Ohkawa and others succeeded in confining plasmas for much
longer than the Bohm time with toroidal multipole configurations [15.13,
Vol. 2, p. 531] and demonstrated the effectiveness of the average minimum-
B configuration. Artsimovich and others reported on a series of tokamak
experiments [15.13, T-5, Vol. 2, p. 577; T-3, p. 595; T-2, p. 629; TM-2, p. 647;
TM-1, p. 659]. Further experiments with Zeta and Stellarator C were also
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reported. However, the confinement times for these big devices were only of
the order of the Bohm time, and painful examinations of loss mechanisms
had to be carried out. Theta pinch experiments were still the most actively
pursued. The ion temperatures produced by means of theta pinches were
several hundred eV to several keV, and confinement times were limited only
by end losses. One of the important goals of the theta pinch experiments had
thus been attained, and it marked the turning point from linear theta pinch
to toroidal pinch experiments.

In this conference, the effectiveness of minimum-B, average minimum-
B, and shear configurations was thus confirmed. Many MHD instabilities
were seen to be well understood experimentally as well as theoretically.
Methods of stabilizing against MHD instabilities seemed to be becoming
gradually clearer. The importance of velocity-space instabilities due to the
non-Maxwellian distribution function of the confined plasma was recognized.
There had been and were subsequently to be reports on loss-cone instabili-
ties [15.17], Harris instability [15.18] (1959), drift instabilities [15.19] (1963,
1965), etc. The experiment by J.M. Malmberg and C.B. Wharton [15.13,
Vol. 1, p. 485] was the first experimental verification of Landau damping.

L. Spitzer Jr. concluded in his summary talk at Culham that: “most of
the serious obstacles have been overcome, sometimes after years of effort by a
great number of scientists. We can be sure that there will be many obstacles
ahead but we have good reason to hope that these will be surmounted by the
cooperative efforts of scientists in many nations.”

15.2 Artsimovich Era

The Third International Conference [15.14] was held in 1968 at Novosibirsk.
The most remarkable topic in this conference was the report that Tokamak
T-3 [15.14, Vol. 1, p. 157] had confined a plasma up to 30 times the Bohm
time (several milliseconds) at an electron temperature of 1 keV. In Zeta exper-
iments a quiescent period was found during a discharge and MHD stability
of the magnetic field configuration of the quiescent period was discussed.
This was the last report on Zeta, and HBTX succeeded this reversed field
pinch experiment. Stellarator C [15.14, Vol. 1, pp. 479, 495] was still only con-
fining plasmas to several times the Bohm time at electron temperatures of
only several tens to a hundred eV. This was the last report on Stellarator
C; this machine was converted into the ST tokamak before the next confer-
ence (Madison 1971). However, various aspects of stellarator research were
still pursued. The magnetic coil systems of Clasp [15.14, Vol. 1, p. 465] were
constructed accurately, and the confinement of high-energy electrons was ex-
amined using the β decay of tritium. It was demonstrated experimentally
that the electrons ran around the torus more than 107 times and that the
stellarator field had good charged-particle confinement properties. In WII
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the confinement of the barium plasma was tested, and resonant loss was ob-
served when the magnetic surface was rational. Diffusion in a barium plasma
in non-rational cases was classical. In 2X [15.14, Vol. 2, p. 225] a deuterium
plasma was confined up to an ion temperature of 6–8 keV at a density of
n < 5 × 1013 cm−3 for up to τ = 0.2 ms. Laser plasmas appeared at this
conference.

At the Novosibirsk conference, toroidal confinement appeared to have the
best overall prospects, and mainstream research shifted toward toroidal con-
finement. L.A. Artsimovich concluded this conference by saying: “We have rid
ourselves of the gloomy spectre of the enormous losses embodied in Bohm’s
formula and have opened the way for further increases in plasma temperature
leading to the physical thermonuclear level.”

The Tokamak results were seen to be epoch-making if the estimates of the
electron temperature were accurate. R.S. Pease, the director of the Culham
Laboratory, and L.A. Artsimovich agreed to the visit of the British team of
researchers to the Kurchatov Institute to measure the electron temperature
of the T-3 plasma by laser scattering methods. The measurements supported
the previous estimates by the tokamak group [15.20]. The experimental re-
sults of T-3 had a strong impact on the next phase of nuclear fusion research
in various nations. At the Princeton Plasma Physics Laboratory, Stellara-
tor C was converted to the ST tokamak device. Newly built were ORMAK
at Oak Ridge National Laboratory, TFR at the Center for Nuclear Research,
Fontaney aux Rose, Cleo at the Culham Laboratory, Pulsator at the Max
Planck Institute for Plasma Physics, and JFT-2 at the Japan Atomic Energy
Research Institute.

The Fourth International Conference was held in Madison, Wisconsin,
in 1971 [15.15]. The main interest at Madison was naturally focused on the
tokamak experiments. In T-4 [15.15, Vol. 1, p. 443], the electron temperature
approached 3 keV at a confinement time around 10 ms. The ions were heated
to around 600 eV by collision with electrons. ST [15.15, Vol. 1, pp. 451, 465]
produced similar results.

15.3 The Trek to Large Tokamaks Since the Oil Crisis

Since then the IAEA conference has been held every two years: Tokyo in
1974 [15.16], Berchtesgarden in 1976, Innsburg in 1978, Brussels in 1980,
Baltimore in 1982, London in 1984, Kyoto in 1986, Nice in 1988, Washington
D.C. in 1990, Würzburg in 1992, Seville in 1994, Montreal in 1996, Yokohama
in 1998, Sorrento in 2000, and Lyon in 2002. Tokamak research has made
steady progress as the mainstream of magnetic confinement. Pease stated in
his summary talk of the IAEA conference at Berchtesgarden in 1976 that:
“one can see the surprisingly steady progress that has been maintained. Fur-
thermore, looked at logarithmically, we have now covered the greater part
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of the total distance. What remains is difficult, but the difficulties are fi-
nite and can be summed up by saying that we do not yet have an adequate
understanding or control of cross-field electron thermal conduction.”

After the tokamaks of the first generation (T-4, T-6, ST, ORMAK, Al-
cator A, C. TFR, Pulsator, DITE, FT, JFT-2, JFT-2a, JIPP T-II, etc.),
second generation tokamaks (T-10, PLT, PDX, ISX-B, Doublet III, ASDEX,
etc.) began appearing around 1976. The energy confinement time of ohmi-
cally heated plasmas was approximately described by the Alcator scaling law
(τE ∝ na2). The value of nτE reached 2 × 1013 cm−3s in Alcator A in 1976.
Heating experiments using neutral beam injection (NBI) in PLT achieved an
ion temperature of 7 keV in 1978, and effective wave heating in an ion cy-
clotron range of frequency was demonstrated in TFR and PLT around 1980.
The average β value of 4.6% was realized in the Doublet III non-circular toka-
mak (κ = 1.4) in 1982 using 3.3 MW NBI. Non-inductive drives for plasma
current have been pursued. Current drive by tangential injection of a neutral
beam was proposed by Ohkawa in 1970 and demonstrated experimentally
in DITE in 1980. Current drive by a lower hybrid wave was proposed by
Fisch in 1978 and demonstrated in JFT-2 in 1980 and in Versator 2, PLT,
Alcator C, JIPP T-II, Wega, T-7, and so on. Ramp-up experiments increas-
ing the plasma current from 0 were succeeded by WT-2 and PLT in 1984.
TRIAM-1M with superconducting toroidal coils sustained a plasma current
of Ip = 22 kA (ne ≈ 2 × 1018 m3) during 70 minutes by LHW in 1990.

The suppression of impurity ions by a divertor was demonstrated in JFT-
2a (DIVA) in 1978 and investigated in detail by ASDEX and Doublet III
(1982). At that time the energy confinement time had deteriorated compared
with the ohmic heating case as the heating power of NBI was increased (ac-
cording to the Kaye–Goldston scaling law). However, the improved mode
(named H mode) of the confinement time, increased by a factor of about
2 compared with the ordinary mode (L mode), was found in the divertor
configuration of ASDEX in 1982. The H mode was also observed in Doublet
III, PDX, JFT-2M, and DIII-D. Much progress had thus been made to solve
many critical issues of tokamaks.

On the basis of these achievements, experiments started on the third
generation of large tokamaks, with TFTR (United States) at the end of
1982, JET (European Community) in 1983 and JT-60 (Japan) in 1985.
Originally these large tokamaks were planned in the early 1970s. TFTR
achieved nDT(0)τE ∼ 1.2 × 1019 m−3s, κTi(0) = 44 keV by supershot (H
mode-like). JET achieved nD(0)τE ∼ 3.2 × 1019 m−3s, κTi(0) = 18.6 keV by
H mode with divertor configuration. JT-60 drove a plasma current of 1.7 MA
(n̄e = 0.3×1013 cm−3) by lower hybrid wave (PRF = 1.2 MW) in 1986 and up-
graded to JT60U in 1991 [15.21]. JT60U achieved nD(0)τE ∼ 3.4×1019 m−3s,
κTi(0) = 45 keV by high βp H mode. A high performance confinement mode
with negative magnetic shear was demonstrated in TFTR, DIII-D, JT60U,
JET, Tore Supra [15.22] and T10.
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Fig. 15.1. Development of confinement experiments represented in a n̄eτE–κTi(0)
diagram, where n̄e is the line average electron density, τE is the energy confinement
time τE ≡ W/(Ptot − dW/dt − Lthr), and Ti(0) is the ion temperature. Tokamak
(black circle), stellarator (white triangle), RFP (white circle), tandem mirror, mir-
ror, theta pinch (black triangle). Q = 1 is the critical condition. W is the total
energy of the plasma, Ptot the total heating power, and Lthr the shine-through of
neutral beam heating

JET performed a preliminary tritium injection experiment in 1991
[nT/(nD + nT) � 0.11] [15.23] and produced 1.7 MW (Q ∼ 0.11) of fusion
power using 15 MW of NBI. An extensive deuterium–tritium experiment was
carried out on TFTR in 1994 [15.24]. Fusion power of 9.3 MW (Q ∼ 0.27) was
obtained using 34 MW of NBI in supershot (Ip = 2.5 MA). JET set records
of DT fusion output of 16.1 MW (Q ∼ 0.62) using 25.7 MW of input power
(22.3 MW NBI + 3.1 MW ICRF) [15.25] in 1998. Pumped divertors were in-
stalled in JET, JT60U, DIIID, ASDEX-U and others in attempt to suppress
impurity ions and the heat load on the divertor plate. These large tokamaks
are now aiming at the scientific demonstration of required conditions with
regard to several critical issues in fusion reactors, including plasma transport,
steady operation, divertor and impurity control, and so on.

Based on the development of tokamak research, the design activities of
tokamak reactors have been carried out. The International Tokamak Reactor
(INTOR) [15.26] (1979–1987) and The International Thermonuclear Exper-
imental Reactor (ITER) [15.27] (1988–2001) are collaborative efforts among
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Euratom, Japan, The United States of America and the Russian Federation
under the auspices of the IAEA. The status of ITER in 2000 [15.28] is de-
scribed in Sect. 16.10.

15.4 Alternative Approaches

Potential theoretical advantages of the spherical tokamak have been outlined
by Peng and Strickler [15.29], in which the aspect rato A = R/a of the stan-
dard tokamak is substantially reduced toward unity. Predicted advantages
include a naturally high elongation (κs ∼ 2), high toroidal beta and tokamak-
like confinement. These predictions have been confirmed experimentally, in
particular by the START device [15.30] at Culham (R/a ≈ 0.3/0.28 = 1.31,
Ip ≈ 0.25 MA, Bt ≈ 0.15T). The toroidal beta reached 40% and observed
confinement times follow similar scaling to standard tokamaks. Spherical
tokamak (ST) experiments were also conducted by Globus-M (Ioffe Physico-
Technical Inst.), Pegasus (Univ. Wisconsin), TST, TS-3 (Univ. Tokyo). The
next generation ST projects MAST (Culham) and NSTX (Princeton PPL)
started experiments in 1999–2000 [15.31]. Potential merits of possible ST
reactors are also discussed in [15.32].

Non-tokamak confinement systems have been investigated intensively to
catch up with the achievements of tokamaks. The stellarator program pro-
ceeded from small-scale experiments (Wendelstein IIb, Clasp, Uragan-1, L-1,
JIPP-I, Heliotron D) to middle-scale experiments (Wendelstein VIIA, Cleo,
Uragan-2, L-2, JIPP T-II, Heliotron E). Plasmas with Te ∼ Ti roughly several
hundred eV to 1 keV, ne ∼ 1013 cm−3 were sustained by NBI heating with-
out an ohmic heating current, and the possibility of steady-state operation of
stellarators was demonstrated by WVIIA and Heliotron E. Confinement time
scaling in a currentless plasma was studied in Heliotron E, CHS, ATF and
WVII AS. The large helical device LHD started experiments in 1998 [15.33]
and an advanced stellarator WVII-X is under construction.

The reversed field pinch (RFP) configuration was found in the stable
quiescent period of Zeta discharge just before the shutdown in 1968. In
1974, J.B. Taylor pointed out that the RFP configuration is the minimum
energy state under the constraint of the conservation of magnetic helicity
in 1974 (see Sect. 17.1). RFP experiments have been conducted in HBTX-
1B, ETA-BETA 2, TPE-1RM, TPE-1RM15, TPE-1RM20, ZT-40M, OHTE,
REPUTE-1, STP-3M, MST. An average β of 10–15% was realized. ZT-40M
demonstrated that the RFP configuration can be sustained by relaxation
phenomena (the so-called dynamo effect) as long as the plasma current is
sustained (1982). The next-step projects RFX and TPE-RX are currently
underway.

Spheromak configurations have been studied by S-1, CTX, and CTCC-
1, and field reversed configurations have been studied by FRX, TRX, LSX,
NUCTE and PIACE.
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In mirror research, 2XIIB confined a plasma with an ion temperature of
13 keV and nτE×1011 cm−3s in 1976 [15.34]. However, suppression of end loss
is absolutely necessary. The concept of a tandem mirror, in which end losses
are suppressed by electrostatic potential, was proposed in 1976–1977 [15.35,
15.36]. TMX, TMX-U and GAMMA 10 are typical tandem mirror projects.
Mirror research is reviewed in [15.37]. The bumpy torus is the toroidal linkage
of many mirrors to avoid end loss and this method was pursued in EBT and
NBT.

Inertial confinement research has made great advances in the implosion
experiment by using an Nd glass laser as energy driver. Gekko XII (30 kJ, 1 ns,
12 beams), Nova (100 kJ, 1 ns, 10 beams), Omega X (4 kJ, 1 ns, 24 beams),
and Octal (2 kJ, 1 ns, 8 beams) investigated implosion using λ = 1.06 µm
laser light and its higher harmonics λ = 0.53 µm and 0.35 µm. It was shown
that a short wavelength is favorable because of the better absorption and less
preheating of the core. A high-density plasma, 200–600 times as dense as the
solid state, was produced by laser implosion (1990). Based on Nova results,
the Lawrence Livermore National Laboratory is preparing the National Igni-
tion Facility (NIF) [15.38,15.39] (1.8 MJ, 20 ns, 0.35 µm, 192 beams, Nd glass
laser system).

Controlled nuclear fusion research has been making steady progress
through international collaboration and competition. A summary of the
progress of magnetic confinement is given in Fig. 15.1 which shows the n̄eτE–
Ti(0) diagram. TFTR demonstrated Q ∼ 0.27 DT experiments and JET
demonstrated Q ∼ 0.62 DT experiments. JET and JT60U achieved the
equivalent break-even condition with a D–D plasma, that is, the extrapo-
lated D–T fusion power output would be the same as the heating input power
(Qequiv = 1).



16 Tokamaks

The word ‘tokamak’ is said to be a contraction of the Russian words for cur-
rent, vessel, magnet, and coil. Tokamaks are axisymmetric, with the plasma
current itself giving rise to the poloidal field essential to the equilibrium of
toroidal plasmas. In a tokamak, the toroidal field used to stabilize against
MHD instabilities is strong enough to satisfy the Kruskal–Shafranov con-
dition. This characteristic is quite different from that of the reversed field
pinch, with its relatively weak toroidal field. There are excellent reviews and
textbooks on tokamak experiments [16.1, 16.2], equilibrium [16.3], and diag-
nostics [16.4, 16.5].

16.1 Tokamak Devices

The constructions of the large tokamak devices JET, JT60U and TFTR are
shown in Figs. 16.1, 16.2, and 16.3 as typical examples.

The toroidal field coils, equilibrium field coils (also called poloidal field
coils, which produce the vertical field and shaping field), ohmic heating coils
(primary windings of the current transformer), and vacuum vessel can be
seen in the figures. Sometimes the term ‘poloidal field coils’ means both the
equilibrium field coils and the ohmic heating coils. By raising the current
of the primary windings of the current transformer (ohmic heating coils), a
current is induced in the plasma, which acts as the secondary winding. In
the JET device, the current transformer is of the iron-core type. The air-
core type of current tranformer is utilized in JT60U and TFTR. The vacuum
vessel is usually made of thin stainless steel or inconel so that it has enough
electric resistance in the toroidal direction. Therefore the voltage induced by
the primary windings can penetrate it.

The thin vacuum vessel is called the liner. Before starting an experi-
ment, the liner is outgassed by baking at a temperature of 150–400◦C for a
long time under high vacuum. Furthermore, before running an experiment, a
plasma is run with a weak toroidal field in order to discharge-clean the wall
of the liner. Inside the liner there is a diaphragm made of tungsten, molyb-
denum, or graphite that limits the plasma size and minimizes the interaction
of the plasma with the wall. This diaphragm is called a limiter. Recently
a divertor configuration was introduced instead of the limiter. In this case
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Table 16.1. Tokamak parameters. R, a, b in [m], Bt in [T], and Ip in [MA]

R a(×b) R/a Bt Ip Remarks

T-4 1.0 0.17 5.9 5.0 0.3

T-10 1.5 0.39 3.8 5.0 0.65

PLT 1.32 0.4 3.3 3.2 0.5

TFTR 2.48 0.85 2.9 5.2 2.5 Compact

JET 2.96 1.25(×2.1) 2.4 3.45 7 Non-circular

JT60U 3.4 1.1(×1.4) 3.1 4.2 6 Non-circular, JT60 upgraded

the magnetic surface, including the separatrix point, determines the plasma
boundary (see Sect. 16.5). A conducting shell surrounds the plasma outside
the liner and is used to maintain the positional equilibrium or to stabilize
MHD instabilities during the skin time scale. The magnitude of the vertical
field is feedback-controlled to keep the plasma at the center of the liner at
all times. Many improvements have been made in tokamak devices over the
years. The accuracy of the magnetic field is also important to improve the
plasma performance in tokamak and other toroidal devices. The parameters
of typical tokamak devices are listed in Table 16.1.

Measurements by magnetic probes surrounding the plasma are a simple
and useful way to monitor plasma behavior. As the magnetic probes detect
MHD fluctuations, they are indispensable in the study of MHD instabilities.
These small magnetic coils are called Mirnov coils. The loop voltage VL and
the plasma current Ip can be measured by the magnetic loop and Rogowsky
coil, respectively [16.4]. Then the electron temperature can be estimated by
the Spitzer formula from the resistivity of the plasma, which can be evaluated
using VL and Ip. From (6.11), the poloidal beta ratio βp is given by

βp ≈ 1 +
2Bϕ

B2
ω

〈BϕV −Bϕ〉 , (16.1)

where |BϕV − Bϕ| � |Bϕ| and Bω = µ0Ip/2πa. Since the diamagnetic flux
δΦ is

δΦ = πa2〈BϕV −Bϕ〉 , (16.2)

we have
βp =

p

B2
ω/2µ0

≈ 1 +
8πBϕ

µ2
0I

2
p

δΦ . (16.3)

Therefore measurement of the diamagnetic flux δΦ yields βp and the plasma
pressure. Magnetic probes g1, g2 located around the plasma, as shown in
Fig. 16.4a, can be used to determine the plasma position. Since the necessary
magnitude B⊥ of the vertical field for equilibrium is related to the quantity
Λ = βp + li/2, the value of Λ can be estimated from B⊥ (li is the normalized
internal inductance). The fluctuations in the soft X-ray (bremsstrahlung)



16.1 Tokamak Devices 271

Fig. 16.1. Artist’s drawing of JET (Joint European torus), JET Joint Undertaking,
Abingdon, Oxfordshire, England. The toroidal field coils (TFC) are arranged around
the vacuum vessel (VV). The outer poloidal field coils (Outer PFC, equilibrium field
coils) and inner poloidal field coils (Inner PFC, ohmic heating coils) are wound in
the toroidal direction outside the toroidal field coils (TFC). JET uses an iron-core
current transformer (TC). The mechanical structures (MS) support the toroidal
field coils against the large torque due to the equilibrium field

signal follow the fluctuations in electron temperature. The fluctuations occur
at the rational surfaces [qs(r) = 1, 2, . . .]. The mode number and direction of
propagation can be estimated by arrays of solid-state detectors, as shown in
Fig. 16.4b. When the positions of the rational surfaces can be measured, the
radial current profile can be estimated for use in studies of MHD stability.
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Fig. 16.2. Schematic view of JT60U, Japan Atomic Energy Research Institute

Fig. 16.3. Schematic view of TFTR (Tokamak Fusion Test Reactor), Plasma
Physics Laboratory, Princeton University

16.2 Equilibrium

If the vertical field B⊥ is uniform in space, the equilibrium is neutral with
regard to changes in plasma position. When the lines of the vertical field are
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Fig. 16.4. (a) Locations of magnetic probes around the plasma (∆ shown in the
figure is negative). (b) Array of soft X-ray solid-state detectors. The main contribu-
tion of each detector to a signal comes from the emission at the peak temperature
along the line of sight of the detector. The fluctuation in the electron temperature
at this point can be detected

curved, as shown in Fig. 16.5, the plasma position is stable with regard to up
and down motion. The z component Fz of the magnetic force applied to a
plasma current ring with mass M is

Fz = −2πRIpBR .

From the relation (∂BR/∂z) − (∂Bz/∂R) = 0,

M
d2z

dt2
= −2πRIp

∂BR

∂z
z = 2πIpBz

(
− R

Bz

∂Bz

∂R

)
z .

As IpBz < 0, the stability condition for decay index n is

n ≡ − R

Bz

∂Bz

∂R
> 0 . (16.4)

The horizontal component FR of the magnetic force is

M
d2(∆R)

dt2
= FR = 2πRIp(Bz −B⊥)∆R .

The amount of B⊥ necessary for plasma equilibrium [see (6.30)] is

B⊥ =
−µ0Ip
4πR

(
ln

8R
a

+ Λ− 1
2

)
, Λ =

li
2

+ βp − 1 .

When the plasma is ideally conductive, the magnetic flux inside the plasma
ring is conserved and

∂

∂R
(LpIp) + 2πRB⊥ = 0 .
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Fig. 16.5. Vertical field for plasma equilibrium

Here the self-inductance is Lp = µ0R
[
ln(8R/a) + li/2 − 2

]
. Therefore the

equation of motion is

M
d2(∆R)

dt2
= 2πIpB⊥

(
3
2

− n
)

∆R ,

under the assumption ln(8R/a) � 1. Then the stability condition for hori-
zontal movement is

3
2
> n . (16.5)

The poloidal beta limit of a circular tokamak is βp = 0.5R/a, as given
by (6.37). The same poloidal beta limit is derived by similar considerations
for the elongated tokamak with horizontal radius a and vertical radius b.
When the length of the circumference along the poloidal direction is de-
noted by 2πaK for the elongated plasma and the average poloidal field is
B̄p = µ0Ip/(2πaK), the ratio of the poloidal and toroidal fields is B̄p =
µ0Ip/(2πaK), where K is given approximately by K =

{[
1 + (b/a)2

]
/2
}1/2.

The beta limit of an elongated tokamak is therefore

β ≤ 0.5K2 a

Rq2I
, (16.6)

which is K2 times as large as that of a circular one. In order to elongate the
plasma cross-section, the decay index n of the vertical field must be negative,
and the elongated plasma is positionally unstable in the up–down motion.
Therefore feedback control of the variable horizontal field is necessary to
keep the plasma position vertically stable [16.6].

16.3 MHD Stability and Density Limit

A possible MHD instability in the low-beta tokamak is kink modes, which
were treated in Sect. 8.3. Kink modes can be stabilized by tailoring the cur-
rent profile and by appropriate choice of the safety factor qa. When the
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Fig. 16.6. Magnetic islands of m = 1, m = 3/2, m = 2 appear at q(r) = 1, 3/2, 2

plasma pressure is increased, the beta value is limited by the ballooning
modes (Sect. 8.5). This instability is a mode localized in the bad curvature
region driven by a pressure gradient. The beta limit of the ballooning mode
is given by βmax ∼ 0.28(a/Rqa) of (8.138). The β limit by kink and bal-
looning modes depends on the radial profile of the plasma current (shear)
and the shape of the plasma cross-section. The limit of the average beta,
βc = 〈p〉/(B2/2µ0), of the optimized condition is derived by MHD simula-
tion codes to be βc(%) = βNIp (MA)/a(m)Bt(T) (βN = 2 ∼ 3.5) [16.7, 16.8].
βmax of (8.138) is consistent with the result of MHD simulation.

Even if a plasma is ideally MHD stable, tearing modes can be unstable
for a finite resistive plasma. When ∆′ is positive at the rational surfaces
(see Sect. 9.1) in which the safety factor q(r) is rational q(r) = 1, 3/2, 2,
tearing modes grow and magnetic islands are formed, as shown in Fig. 16.6.
When the profile of the plasma current is peaked, the safety factor at the
center becomes q(0) < 1 and the tearing mode with m = 1, n = 1 grows at
the rational surface q(r) = 1. The hot core of the plasma is then pushed out
when the reconnection of magnetic surfaces occurs (Fig. 16.7) and the current
profile is flattened. The thermal energy in the central hot core is lost in this
way [16.2, 16.9]. Since the electron temperature in the central part is higher
than in the outer region and the resistance in the central part is smaller, the
current profile peaks again and the same process is repeated. This type of
phenomenon is called internal disruption or minor disruption.

The stable operational region of a tokamak with plasma current Ip and
density ne is limited. With Greenward density defined by

nG (1020m−3) ≡ Ip (MA)
πa (m)2

, (16.7)
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Fig. 16.7. The hot core in the center is expelled by the reconnection of magnetic
surfaces

an empirical scaling of the normalized Greenward density or Greenward–
Hugill–Murakami parameter NGHM

NGHM ≡ 〈ne〉
nG

< 1 (16.8)

holds for most tokamak experiments [16.10], where n20 is the electron density
in units of 1020m−3. NGHM can be expressed in the alternative form [see
(16.11)]

NGHM =
0.628
K2

〈n20〉
Bt(T)/R(m)

qI . (16.9)

The upper limit of the electron density depends critically on the plasma wall
interaction and tends to increase as the heating power increases, although the
scaling NGHM < 1 does not reflect the power dependence. When hydrogen
ice pellets are injected into a plasma for fueling from the high field side of
ASDEX-U with advanced divertor [16.11], NGHM goes up to ∼ 1.5. Therefore
there is a possibility of further increasing NGHM. The safety factor qa at the
plasma boundary is qa > 3 in most cases.

Beyond the stable region (NGHM < 1, 1/qa < 1/3–1/2), a strong in-
stability, called disruptive instability , occurs in typical operations. Negative
spikes appear in the loop voltage due to the rapid expansion of the current
channel (flattened current profile), that is, the rapid reduction of the internal
inductance. The thermal energy of the plasma is suddenly lost. The electron
temperature drops rapidly and the plasma resistance increases. A positive
pulse appears in the loop voltage. Then the plasma discharge is terminated
rapidly. In some cases, the time scale of disruption is much faster than the



16.4 Beta Limit of Elongated Plasma 277

time scale (9.27) predicted by the resistive tearing mode. Possible mechanisms
of disruptive instability under discussion are overlapping of magnetic islands
of m = 2/n = 1 [q(r) = 2] and m = 3/n = 2 [q(r) = 1.5], or reconnection of
m = 2/n = 1, m = 1/n = 1 magnetic islands. Reviews of MHD instabilities
in tokamak plasmas and plasma transport are given in [16.12–16.15].

16.4 Beta Limit of Elongated Plasma

The output power density of nuclear fusion is proportional to n2〈σv〉. Since
〈σv〉 is proportional to T 2

i in the region near Ti ∼ 10 keV, the fusion out-
put power is proportional to the square of the plasma pressure p = nκT .
Therefore, the higher the beta ratio β = p/(B2/2µ0), the more economical
the possible fusion reactor. The average beta of 〈β〉 ∼ 3% was realized by
NBI experiments in ISX-B, JFT-2, and PLT. All these tokamaks have a cir-
cular plasma cross-section. The theoretical upper limit of the average beta
βc of an elongated tokamak plasma due to kink and ballooning instability
is [16.7, 16.8]

βc(%) � βNIp(MA)/a(m)Bt(T) . (16.10)

βN is called the Troyon factor or normalized beta (βN = 2–3.5). Using the
definitions

B̄p ≡ µ0Ip
2πaK

, qI ≡ K
a

R

Bt

B̄p
, (16.11)

the critical beta reduces to

βc(%) = 5βNK
2 a

RqI
, (16.12)

where 2πKa is the the length of the circumference of the plasma boundary,
K is given approximately by

K2 � 1
2
(1 + κ2

s ) ,

and κs is the ratio of the vertical radius b to the horizontal radius a. The
safety factor qψ at a magnetic surface ψ is given by

qψ =
1
2π

∮
Bt

RBp
dl =

1
2πdψ

∮
Bt

dψ
RBp

dl =
1

2πdψ

∮
Btdsdl =

1
2π

dΦ
dψ

,

where Φ is the toroidal flux through the magnetic surface ψ. It should be
noted that qI differs from qψ in the finite aspect ratio. The approximate
formula used for the effective safety factor at the plasma boundary is

qeff =
a2B

(µ0/2π)RI
1 + κ2

s

2

[
1 + ε2

(
1 +

Λ̄2

2

)]
×[1.24 − 0.54κs + 0.3(κ2

s + δ2) + 0.13δ
]
, (16.13)
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Fig. 16.8. Observed beta versus I/aB for DIII-D. Various β limit calculations
are summarized in the curves with different assumptions on the location of the
conducting wall (rw/a) [16.17]

including the divertor configuration (see Sect. 16.5) [16.16]. The notation is
ε = a/R, Λ̄ ≡ βp + li/2 [see (6.21)] and δ = ∆/a is the triangularity of the
plasma shape (see Fig. 16.9 and Sect. 16.10).

In the non-circular tokamak DIII-D, 〈β〉 = 11% was realized in 1990
[16.17], in which a = 0.45 m, Bt = 0.75 T, Ip = 1.29 MA, Ip/aBt =
3.1 MA/Tm, βN ∼ 3.6, κs = 2.35, and R = 1.43 m. Figure 16.8 shows the
experimental data for DIII-D on the observed beta versus Ip/aBt.

16.5 Impurity Control, Scrape-Off Layer and Divertor

Radiation power loss Pbrems by bremsstrahlung due to electron collisions with
ions per unit volume is

Pbrems = 1.5 × 10−38Zeffn
2
e

(
κTe

e

)1/2

(W/m3) .

The loss time due to bremsstrahlung defined by τbrems = (3/2)neκTe/Pbrems
is

τbrems = 0.16
1

Zeffn20

(
κTe

e

)1/2

(s) ,
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Fig. 16.9. Divertor configuration using the separatrix S of the magnetic surface
(left). Definition of the triangularity δ = ∆/a (right)

where n20 is in units of 1020 m−3 and κTe/e is in units of eV. When
ne ∼ 1020 m−3 and κTe ∼ 10 keV, then we have τbrems ∼ 16/Zeff(s). There-
fore if radiation losses such as bremsstrahlung, recombination radiation, and
line spectrum emission are much enhanced by impurity ions, the fusion core
plasma cannot be realized even due to radiation losses alone. When the tem-
perature of the plasma increases, the ions from the plasma hit the walls of
the vacuum vessel and impurity ions are sputtered. When the sputtered im-
purities penetrate the plasma, the impurities are highly ionized and yield a
large amount of radiation loss, which causes radiation cooling of the plasma.
Therefore impurity control is one of the most important subjects in fusion
research.

Light impurities such as C and O can be removed by baking and discharge-
cleaning the vacuum vessel. The sputtering of heavy atoms (Fe, etc.) of the
wall material itself can be avoided by covering the metal wall with carbon
tiles. Furthermore a divertor, as shown in Fig. 16.9, is very effective in re-
ducing the plasma–wall interaction. Plasmas in the scrape-off layer (SOL)
flow at the velocity of sound along the lines of magnetic force just outside
the separatrix S into the neutralized plates, where the plasmas are neutral-
ized. Even if the material of the neutralized plates is sputtered, the atoms
are ionized within the divertor regions near the neutralized plates. Since the
thermal velocity of the heavy ions is much smaller than the flow velocity of
the plasma (which is the same as the thermal velocity of hydrogen ions), they
are unlikely to flow back into the main plasma. In the divertor region the elec-
tron temperature of the plasma becomes low because of impurity radiation
cooling. Because of pressure equilibrium along the lines of magnetic force,
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Fig. 16.10. Left : configuration of the scrape-off layer (SOL) and divertor. (Right):
coordinates of the slab model

the density in the divertor region near the neutralized plates becomes high.
Therefore the velocity of ions from the plasma into the neutralized plates is
collisionally damped and sputtering is suppressed. A decrease in the impurity
radiation in the main plasma can be observed using a divertor configuration.

However, the scrape-off layer of the divertor is not broad and most of the
total energy loss is concentrated in the narrow region of the target divertor
plate. The severe heat load to the divertor plate is one of the most critical
issues of reactor design. Physical processes in the scrape-off layer and divertor
region are being actively investigated both experimentally and theoretically
[16.18].

Let us consider thermal transport in the scrape-off layer. It is assumed
that thermal transport parallel to the magnetic line of force is dominated
by classical electron thermal conduction, whilst thermal transport perpen-
dicular to the magnetic field is anomalous thermal diffusion. We use a slab
model, as shown in Fig. 16.10 and omit the Boltzmann constant in front of
the temperature. Then we have

∇q‖ + ∇q⊥ +Qrad = 0 , (16.14)

q‖ = −κc
∂Te

∂s
= −κ0T

5/2
e
∂Te

∂s
= −2

7
κ0
∂T

7/2
e

∂s
, (16.15)

q⊥ = −n
(
χe

⊥
∂Te

∂r
+ χi

⊥
∂Ti

∂r

)
− 3

2
D(Te + Ti)

∂n

∂r
, (16.16)

κc ∼ nλ2
eiνei = 2.8 × 103m−1W (eV)−7/2T 5/2

e (eV)5/2 .

Here q‖ and q⊥ are heat fluxes in the directions parallel and perpendicular to
the magnetic field and Qrad is the radiation loss. κc is the heat conductivity,
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χe
⊥, χi

⊥ are thermal diffusion coefficients, and D is the particle diffusion
coefficient. The stagnation point for heat flow is set at s = 0 and the X
point of the separatrix and divertor plate are set at s = Lx and s = LD,
respectively. Then the boundary conditions at s = 0 and s = LD are

q‖0 = 0 , (16.17)

q‖D = γTDnDuD +
1
2
miu

2
DnDuD + ξnDuD

= nDMDcs
[
(γ +M2

D)TD + ξ
]
, (16.18)

where uD is the flow velocity of the plasma at the divertor plate and MD
is the Mach number MD = uD/cs. The sheath energy transfer coefficient is
γ ≈ 7 and the ionization energy is ξ ≈ 20 ∼ 27 eV. The sound velocity is
cs = c̃sT

1/2
D , c̃s = 0.98(2/Ai)1/2104 ms−1(eV)−1/2, where Ai is the ion atomic

mass. The first and second terms of (16.18) are the power flux into the sheath
and the third term is the power consumed within the recycling process. The
equations of particles and momentum along the magnetic lines of force are

∂(nu)
∂s

= Si − Scx,r − ∇⊥(nu⊥) ≈ Si − Scx,r , (16.19)

mnu
∂u

∂s
= −∂p

∂s
−muSm , (16.20)

where Sm = nn0〈σv〉m is the loss of momentum of the plasma flow by collision
with neutrals, Si = nn0〈σv〉i is the ionization term, and Scx,r = nn0〈σv〉cx,r
is the ion loss by charge exchange and radiation recombination. Equations
(16.19) and (16.20) reduce to

∂(nmu2 + p)
∂s

= −mu(Sm + Scx,r) +muSi . (16.21)

The flow velocities at s = 0 and s = LD are u0 = 0 and uD = MDcs, MD ≈
1, respectively. Equations (16.14) and (16.15) and the boundary conditions
(16.17) and (16.18) reduce to

2κ0

7
∂2

∂s2
T 7/2

e = ∇⊥q⊥ +Qrad , (16.22)

2κ0

7
[
T 7/2

e (s) − T 7/2
eD

]
=
∫ s

LD

ds′
∫ s′

0
(∇⊥q⊥ +Qrad)ds′′ . (16.23)

When ∇⊥q⊥ = const., Qrad = 0 in 0 < s < Lx and ∇⊥q = 0, Qrad = const.
in Lx < s < LD, we have

2κ0

7
[
T 7/2

e (s) − T 7/2
eD

]
= 0.5(−∇⊥q⊥)(2LxLD −L2

x − s2) + 0.5Qrad(LD −Lx)2
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for (0 < s < Lx). When the radiation term is negligible, Te0 ≡ Te(0) becomes

T
7/2
e0 = T

7/2
eD +

7
4κ0

(
2LD

Lx
− 1
)

(−∇⊥q⊥)L2
x .

If TeD < 0.5Te0 and LD − Lx � Lx, we have

Te0 ≈ 1.17
[
(−∇⊥q⊥)L2

x

κ0

]2/7

= 1.17
(
q⊥L2

x

κ0λq

)2/7

, (16.24)

where 1/λq ≡ −∇⊥q⊥/q⊥. When the scale lengths of the temperature and
density gradients are λT and λn respectively, where T (r) = T exp(−r/λT ),
n(r) = n exp(−r/λn), and assuming χi

⊥ � χe
⊥ and D ∼ χe

⊥, equation (16.16)
becomes

q⊥ = nχe
⊥
Te

λT

[
1 +

3
2

(
1 +

Ti

Te

)
λT

λn

]
. (16.25)

Consequently, if χe is known as a function χe(Te, n,B), then λT is given as
λT (Te, n,B, q⊥).

Let us consider the relations between ns, Tes, and Tis at the stagnation
point s = 0 and nD, TD at the divertor plate s = LD. The momentum flux in
the divertor region decreases due to collisions with neutrals, charge exchange
and ionization, and becomes smaller than at the stagnation point:

fp ≡ 2(1 +M2
D)nDTD

ns(Tes + Tis)
< 1 . (16.26)

The power flux to the divertor plate is reduced by radiation loss from the
power flux q⊥Lx into the scrape-off layer through the separatrix with length
Lx: ∫ ∞

0
q‖dr = (1 − frad)q⊥Lx , (16.27)

where frad is the fraction of radiation loss. Equations (16.27) and (16.18)
reduce to

MDnDc̃sT
1/2
D

[
(γ +M2

D)TD

3/2λT + 1/λn
+

ξ

1/(2λT ) + 1/λn

]
= (1 − frad)q⊥Lx ,

that is,

(1 − frad)q⊥Lx =
c̃sfpλT

1.5 + λT /λn
ns
Tes + Tis

2
G(TD) , (16.28)

G(TD) ≡ MD

1 +M2
D

(γ +MD)T 1/2
D

(
1 +

1
γ +MD

ξ̄

TD

)
. (16.29)

The curve of G(TD) as a function of TD is shown in Fig. 16.11 and G(TD) has
a minimum at TD = ξ̄/(γ +M2

D). When MD ≈ 1, γ ≈ 7, ξ = 24 eV, G(TD) is
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Fig. 16.11. Dependence of G(TD) (eV)1/2 on TD(eV)

GD = 4T 1/2
D

(
1 +

4.5
TD

)
.

G(TD) is roughly proportional to T 1/2
D when TD > 15 eV in this case. Since Tes

depends on ns through λ−2/7
q , as can be seen from (16.24), the dependence

of Tes on ns is very weak. From (16.28) and (16.26), we have roughly the
following relations:

TD ∝ n−2
s , nD ∝ n3

s , (16.30)

and the density nD at the divertor increases non-linearly with the density ns
of the upstream scrape-off layer.

When the upstream density ns increases while keeping the left-hand side
of (16.28) constant, the solution TD of (16.28) cannot exist beyond a threshold
density, since G(TD) has the minimum value (Fig. 16.11). This is related to
the phenomenon of detached plasma above a threshold of upstream density
[16.18].

The heat load φD of the divertor normal to the magnetic flux surface is
given by

φD ≈ (1 − frad)Psep

2πR2λφD
= (1 − frad)πK

a

λT
q⊥

(
1.5 +

λT

λn

)
BθD

Bθ
, (16.31)

where Psep is the total power flux across the separatrix surface and λφD is
the radial width of heat flux at the divertor plate, i.e.,

Psep = 2πaK2πRq⊥ , λφD = λT
1

1.5 + λT /λn

Bθ

BθD
.

The term Bθ/BθD = 2 ∼ 3 is the ratio of separations of magnetic flux
surfaces at the stagnation point and the divertor plate. If the divertor plate
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Fig. 16.12. Energy flow of ions and electrons in a plasma. Bold arrows: thermal
conduction (χ). White arrows: convective loss (D). Dashed arrows: radiation loss
(R). Dot-dashed arrows: charge exchange loss (CX)

is inclined at an angle α relative to the magnetic flux surface, the heat load
of the inclined divertor plate becomes sinα times that of the divertor normal
to the magnetic flux surface.

16.6 Confinement Scaling of L Mode

The energy flow of ions and electrons inside the plasma is shown in Fig. 16.12.
If we denote the heating power into the electrons per unit volume by Phe and
the radiation loss and the energy relaxation of electrons with ions by R and
Pei, respectively, then the time derivative of the electron thermal energy per
unit volume is given by

d
dt

(
3
2
neκTe

)
= Phe −R− Pei +

1
r

∂

∂r
r

(
χe
∂κTe

∂r
+De

3
2
κTe

∂ne

∂r

)
,

where χe is the electron thermal conductivity and De is the electron diffusion
coefficient. Concerning the ions, the same relation is derived, but instead of
the radiation loss, the charge exchange loss Lex of ions with neutrals must
be taken into account, whence

d
dt

(
3
2
niκTi

)
= Phi − Lcx + Pei +

1
r

∂

∂r
r

(
χi
∂κTi

∂r
+Di

3
2
κTi

∂ni

∂r

)
.

The experimental results for ohmic heating and heating by neutral beam
injection can be explained by classical processes. The efficiency of wave heat-
ing can be estimated fairly accurately by theoretical analysis. Radiation and
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Fig. 16.13. Comparison of confinement scaling τ ITER−P
E with experimental data

on the energy confinement time τEXP
E for the L mode [16.20]

charge exchange loss are classical processes. In order to evaluate the energy
balance of the plasma experimentally, the fundamental quantities ne(r, t),
Ti(r, t), Te(r, t), etc., must be be measured. According to the many experi-
mental results, the energy relaxation between ions and electrons is classical,
and the observed ion thermal conductivities in some cases are around 2–3
times the neoclassical thermal conductivity,

χi,nc = nif(q, ε)q2(ρΩi)2νii ,

where f = 1 in the Pfirsch–Schlüter region and f = ε
−3/2
t in the banana

region, and the observed ion thermal conductivities in some other cases are
anomalous. The electron thermal conduction estimated from the experimen-
tal results is always anomalous and is much larger than its neoclassical coun-
terpart (by more than one order of magnitude). In most cases the energy
confinement time of the plasma is determined mainly by electron thermal
conduction loss. The energy confinement time τE is defined by

τE ≡
∫

(3/2)(neκTe + niκTi)dV
Pin

.

The energy confinement time τOH of an ohmically heated plasma is well
described by Alcator (neo-Alcator) scaling as follows (units are 1020 m−3):

τOH(s) = 0.103q0.5n̄e20a
1.04R2.04 .

However, the linear dependence of τOH on the average electron density n̄e
deviates in the high-density region ne > 2.5 × 1020 m−3 and τOH tends to
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saturate. When the plasma is heated by high-power NBI or wave heating,
the energy confinement time degrades as the heating power increases. Kaye
and Goldston examined many experimental results for NBI heated plasmas
and derived the so-called Kaye–Goldston scaling on the energy confinement
time [16.19], i.e.,

τE =
(

1
τ2
OH

+
1

τ2
AUX

)−1/2

, τAUX(s) = 0.037κ0.5
s IpP

−0.5
tot a−0.37R1.75 ,

(16.32)
where the units are MA, MW, and m, and κs is the elongation ratio of non-
circularity and Ptot is the total heating power in MW.

The ITER team assembled data from larger and more recent experiments.
Analysis of the data base of L mode experiments (see next section) led to the
proposal of the following ITER-P scaling [16.20],

τ ITER−P
E (s) = 0.048I0.85

p R1.2a0.3n̄0.1
20 B

0.2
(
Aiκs

P

)1/2

, (16.33)

where units are MA, m, T, MW, and the units of n̄20 are 1020 m−3. P is the
heating power corrected for radiation PR (P = Ptot − PR). A comparison of
confinement scaling τ ITER−P

E with experimental data for the L mode is pre-
sented in Fig. 16.13. For burning plasmas, the heating power is roughly equal
to ' particle fusion output power P' ≈ 0.04n2

DT20T
2Aa3κs (MW, 1020m−3,

keV, m) at around T ∼ 10 keV (see Sect. 16.8). It is interesting to note that
nDTTτE depends mainly only on the product of AIp for the Goldston and L
mode scalings (A = R/a is the aspect ratio).

16.7 H Mode and Improved Confinement Modes

An improved confinement state, the so-called H mode, was found in the AS-
DEX [16.21, 16.22] experiments with divertor configuration. When the NBI
heating power is larger than a threshold value in the divertor configuration,
the Dα line of deuterium (atom flux) in the edge region of the deuterium
plasma decreases suddenly (time scale 100 µs) during discharge, and recy-
cling of deuterium atoms near the boundary decreases. At the same time
there is a marked change in the edge radial electric field Er (toward the
negative). Furthermore, the electron density and the thermal energy density
increase, and the energy confinement time of NBI heated plasma is improved
by a factor of about 2. The H mode was observed in PDX, JFT-2, DIII-
D, JET, JT60U, and so on. The confinement state following Kaye–Goldston
scaling is called the L mode. In the H mode, the gradients of electron tem-
perature and electron density become steep just inside the plasma boundary
determined by the separatrix. In the spontaneous H mode, Er becomes more
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Fig. 16.14. Plots of various edge plasma profiles at times spanning the L–H tran-
sition in DIII-D. (a) Er profile. (b) Profiles of the ion temperature measured by
CVII charge exchange recombination spectroscopy. (c) and (d) Profiles of electron
temperature and electron density measured by Thomson scattering [16.24]

negative (inward) (see Fig. 16.14) [16.23, 16.24]. Theoretical and experimen-
tal studies on the L–H transition or bifurcation have been actively carried
out [16.25,16.26]. The radial electric field near the plasma boundary is driven
by several mechanisms such as momentum injection due to NBI, or ion orbit
loss near the plasma boundary, or non-ambipolar flux.

The radial electric field causes plasma rotation with velocity vθ = −Er/B
in the poloidal direction and velocity vφ = −(Er/B)(Bθ/B) in the toroidal
direction. If a gradient of Er exists, sheared poloidal rotation and sheared
toroidal rotation are generated. The importance of sheared flow for sup-
pression of edge turbulence and for improved confinement was pointed out
in [16.27].
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Let us consider the following fluid model:[
∂

∂t
+ (v0 + ṽ)·∇ + Ld

]
ξ̃ = s̃ ,

where ξ̃ is the fluctuating field, v0 is taken to be the equilibrium E × B
flow, s̃ represents a driving source of the turbulence, and Ld is an operator
responsible for dissipation of turbulence. The mutual correlation function
〈ξ̃(1)ξ̃(2)〉 of the fluctuating field ξ̃(1) at a point 1 and ξ̃(2) at a point 2 is
given by [16.28][

∂

∂t
+ (v′

θ − vθ/r+)r+
∂

∂y−
− ∂

∂r+
D(r+, y−)

∂

∂r+
+ Ld

]
〈ξ̃(1)ξ̃(2)〉 = T ,

(16.34)
where D is the radial diffusion coefficient of turbulence, T is the driving term
and r+ = (r1 + r2)/2, θ− = θ1 − θ2, y− = r+θ−. The decorrelation time τd in
the poloidal direction is the time in which the relative poloidal displacement
between point 1 and point 2 due to sheared flow becomes the space correlation
length of the turbulence k−1

0k , that is,

k0kδy ∼ 1 , δy = v′
θ(∆r)τd , τd =

1
v′

θ∆rk0k
.

The decorrelation rate ωs in the poloidal direction is

ωs =
1
τd

= (∆rk0k)v′
θ .

When ∆r is the radial correlation length of the turbulence, the radial decor-
relation rate ∆ωt is given by

∆ωt =
D

(∆r)2
.

Since there is strong mutual interaction between radial and poloidal decor-
relation processes, the decorrelation rate 1/τcorr becomes a hybrid of two
decorrelation rates, that is,

1
τcorr

= (ω2
s ∆ωt)1/3 =

(
ωs

∆ωt

)2/3

∆ωt . (16.35)

The decorrelation rate 1/τcorr becomes (ωs/∆ωt)2/3 times as large as ∆ωt,
where ∆ωt is the decorrelation rate of the turbulence in the case of shearless
flow. Since the saturation level of the fluctuating field ξ̃ is

|ξ̃|2 ∼ T × τcorr ,
the saturation level of the fluctuating field reduces to
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Fig. 16.15. Snapshot of the equidensity contours for shearless (top) and strongly
sheared (bottom) flows [16.27]. The vertical axis represents the radial coordinate
r/a and the horizontal axis represents the poloidal angle θ (in degrees)

|ξ̃|2
|ξ̃0|2

∼
(

∆ωt

ωs

)2/3

∼
[

1
(dvθ/dr)t0

]2/3 1
(k0y∆r)2

, t−1
0 ≡ 〈k2

0y〉D ,

where |ξ̃0| is the level in the case of shearless flow. The effect of sheared flow
on the saturated resistive pressure-gradient-driven turbulence is shown in
Fig. 16.15. The coupling between poloidal and radial decorrelation in shearing
fluctuation is evident in this figure. Since the thermal diffusion coefficient is
proportional to |ξ̃|2, the thermal diffusion is reduced, i.e., a thermal barrier
is formed near the plasma edge.

Theoretical studies on H mode physics are being actively pursued. In ad-
dition to the standard H mode as observed in ASDEX and elsewhere, other
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types of improved confinement modes have been observed. In the TFTR
experiment [16.29], outgassing of deuterium from the wall and the carbon
limiter located on the inner (high-field) side of the vacuum torus was ex-
tensively carried out before the experiments. Then balanced neutral beam
injections of co-injection (beam direction parallel to the plasma current) and
counter-injection (beam direction opposite to that of co-injection) were ap-
plied to the deuterium plasma, and an improved confinement ‘supershot’
was observed. In supershot, the electron density profile is strongly peaked
[ne(0)/〈ne〉 = 2.5–3].

In the DIII-D experiment, the VH mode [16.30] was observed, in which
the region of strong radial electric field was expanded from the plasma edge
to the plasma interior (r/a ∼ 0.6), and τE/τ ITER−P

E becomes 3.6.
In the JT60U experiment, the high beta-poloidal H mode [16.31] was

observed, in which βp was high (1.2–1.6) and the density profile was peaked
[ne(0)/〈ne〉 = 2.1–2.4]. Furthermore the edge thermal barrier of the H mode
was formed.

Hinton et al. [16.32] pointed out that the peaked pressure and density pro-
files induce a gradient in the radial electric field. From the radial component
of the equation of motion (5.7) of the ion fluid or (5.28), we have

Er � Bput −Btup +
1
eni

dpi
dr

. (16.36)

The derivative of Er with respect to r is

dEr

dr
∼ − 1

en2
i

dni

dr
dpi
dr

,

since the contribution from the other terms is small in typical experimental
conditions for the H mode.

Recently, a high performance mode of negative magnetic shear config-
uration has been demonstrated in DIII-D, TFTR, JT60U, JET and Tore
Supra [16.33]. As described in Sect. 8.5, the ballooning mode is stable in the
negative shear region:

S =
r

q

dq
dr
< 0 . (16.37)

An example of radial temperature and density profiles and q profile of JT60U
is shown in Fig. 16.16. Combining the central heating and magnetic negative
shear, steep gradients in temperature and density appear at around the q
minimum point. This internal transport barrier is formed by the effects of
the negative magnetic shear (see Sects. 7.3 and 14.6) and E × B flow shear.
As a measure of the high performance of the improved confinement mode, the
ratio of observed energy confinement time τEXP

E to ITER-P scaling τ ITER−P
E ,

known as the HL factor, is widely used:

HL ≡ τEXP
E

τ ITER−P
E

. (16.38)
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Fig. 16.16. Radial profiles of ion and electron temperatures, and density and q
profiles in the negative magnetic shear configuration of JT60U

Observed HL factors are in the range 2–3.
The ITER H mode database working group assembled standard experi-

mental data for the H mode from ASDEX, ASDEX-U, DIII-D, JET, JFT-
2M, PDX, PBX, Alcator C-Mod, and so on. Results of regression analy-
sis of H mode experiments led to the following thermal energy confinement
time [16.34]:

τ IPB98y2
E,th = 0.0562I0.98

p B0.15
t P−0.69M0.19

i R1.97n̄0.41
e19 ε

0.58κ0.78 , (16.39)

where units of s, MA, T, MW, amu, m, 1019m−3 are used and the total
heating power corrected for shine-through of NBI heating, orbit loss and
charge exchange loss, less the time derivative of stored energy. This scaling is
used when edge-localized-modes (ELM) exist. The heating power threshold
scaling PLH, which defines the lowest boundary of the H mode operating
window, is

PLH = 2.84M−1
i B0.82

t n̄0.58
e20 R

1.00a0.81 . (16.40)

In most hot plasma experiments, neutral beam injections are used to heat
the plasma. With improved confinement mode operations, such as H mode,
supershot and high βp mode in large tokamaks, fusion grade plasmas are
produced by neutral beam injection. The plasma parameters of typical shots
of JET [16.35], JT60U [16.31] and TFTR [16.29] are listed in Table 16.2.
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Table 16.2. Plasma parameters of large tokamaks JET [16.35], JT60U [16.31],
and TFTR [16.29]. ni(0)τ tot

E Ti(0) is the fusion triple product. κs is the ratio of
the vertical radius to the horizontal radius. q is the effective safety factor near the
plasma boundary with different definitions. q95 is the safety factor at the 95% flux
surface. qeff and q∗ are defined in (16.13) and [16.29], respectively. qI is the factor
defined in (16.11). ENB is the particle energy of neutral beam injection

JET JT60U TFTR
ELM free ELMy supershot
No. 26087 No. E21140

Ip (MA) 3.1 2.2 2.5

Bt (T) 2.8 4.4 5.1

R/a (m/m) 3.15/1.05 3.05/0.72 ∼2.48/0.82

κs 1.6 1.7 1

q q95 = 3.8 qeff = 4.6 q∗ = 3.2

qI 2.8 3.0 2.8

ne(0) (1019m−3) 5.1 7.5 8.5

ne(0)/〈ne〉 1.45 2.4 –

ni(0) (1019m−3) 4.1 5.5 6.3

Te(0) (keV) 10.5 10 11.5

Te(0)/〈Te〉 1.87 – –

Ti (keV) 18.6 30 44

Wdia (MJ) 11.6 7.5 6.5

dWdia/dt (MJ/s) 6.0 – 7.5

Zeff 1.8 2.2 2.2

βp 0.83 1.2 ∼1.1

βt (%) 2.2 ∼1.3 ∼1.2

g (Troyon factor) 2.1 ∼1.9 2

PNB (MW) 14.9 24.8 33.7

ENB (keV) 135, 78 95 110

τ tot
E = W/Ptot (s) 0.78 0.3 0.2

H = τ tot
E /τ ITER−P

E ∼3.0 ∼2.1 ∼2.0

ni(0)τ tot
E Ti(0) (1020keVm−3s) 5.9 5 5.5

nT(0)/
[
nT(0) + nD(0)

]
0 0 0.5

Pfusion (MW) – – 9.3
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In the present neutral beam source, the positive hydrogen ions are ac-
celerated and then passed through the cell filled with neutral hydrogen gas,
where ions are converted to a fast neutral beam by charge exchange (elec-
tron attachment). However, the conversion ratio of positive hydrogen ions to
neutrals becomes small when the ion energy is larger than 100 keV (2.5% at
200 keV of H+). On the other hand, the conversion ratio of negative hydro-
gen ions (H−) to neutrals (electron stripped) does not decrease in the high
energy range (∼60%). A neutral beam source with a negative ion source is
being developed as a high-efficiency source.

Wave heating is another method of plasma heating, described in detail in
Chap. 12. A similar heating efficiency was observed for wave heating in ICRF
(ion cyclotron range of frequency) and for NBI in PLT. In the JET ICRF
experiments, the parameters κTi(0) = 5.4 keV, κTe(0) = 5.6 keV, ne(0) =
3.7 × 1013 cm−3, τE ∼ 0.3 s were obtained by PICRF = 7 MW.

16.8 Non-Inductive Current Drive

As long as the plasma current is driven by electromagnetic induction of the
current transformer in a tokamak device, the discharge is necessarily a pulsed
operation with finite duration. If the plasma current can be driven in a non-
inductive way, a steady-state tokamak reactor is possible in principle. Current
drive by neutral beam injection has been proposed by Ohkawa [16.36] and
current drive by traveling wave has been proposed by Wort [16.37]. The
momenta of particles injected by NBI or of traveling waves is transferred to
the charged particles of the plasma and the resulting charged particle flow
produces the plasma current. Current drive by NBI was demonstrated by
DITE, TFTR, etc. Current drive by a lower hybrid wave (LHW), proposed
by Fisch, was demonstrated by JFT-2, JIPPT-II, WT-2, PLT, Alcator C,
Versator 2, T-7, Wega, JT-60, and so on. Current drive by electron cyclotron
waves was demonstrated by Cleo, T-10, WT-3, Compass-D, DIII-D, TCV,
and others.

16.8.1 Lower Hybrid Current Drive

The theory of current drive by waves is described here according to Fisch
and Karney [16.38]. When a wave is traveling along the line of magnetic
force, the velocity distribution function near the phase velocity of the wave is
flattened by the diffusion in velocity space. Denoting the diffusion coefficient
in the velocity space of the wave by Drf , the Fokker–Planck equation is given
by [16.39]

∂f

∂t
+ v · ∇rf +

(
F

m

)
·∇vf =

∂

∂vz

(
Drf

∂f

∂vz

)
+
(

δf
δt

)
F.P.

, (16.41)
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where (δf/δt)F.P. is the Fokker–Planck collision term(
δf
δt

)
F.P.

= −
∑
i,e

[
1
v2
∂

∂v
(v2Jv) +

1
v sin θ

∂

∂θ
(sin θJθ)

]
, (16.42)

Jv = −D‖
∂f

∂v
+Af , Jθ = −D⊥

1
v

∂f

∂θ
. (16.43)

When the velocity v of a test particle is greater than the thermal velocity v∗
T

of field particles (v > v∗
T ), the diffusion tensor in velocity space D‖, D⊥ and

the coefficient of dynamic friction A reduce to

D‖ =
v∗2

T ν0
2

(
v∗

T

v

)3

, D⊥ =
v∗2

T ν0
2

v∗
T

2v
, A = −D‖

m

m∗
v

v∗2
T

,

where v∗
T and ν0 are given by

v∗2
T =

T ∗

m∗ , ν0 =
(
qq∗

ε0

)2
n∗ lnΛ

2πv∗3
T m

2 = Π∗4 lnΛ
2πv∗3

T n
∗ ,

and Π∗2 ≡ qq∗n∗/(ε0m). (v, θ, ψ) are spherical coordinates in velocity space.
v∗

T , q∗, n∗ are the thermal velocity, charge, and density of field particles,
respectively, and v, q, n are the quantities relating to test particles. Let us
consider the electron distribution function in a homogeneous case in space
without external force (F = 0). Electron–electron and electron–ion collision
terms (ion charge number Z) are taken into account. When dimensionless
quantities τ = ν0et, u = v/v∗

Te
, w = vz/v

∗
Te

, D(w) = Drf/v
∗2
Te
ν0e are intro-

duced, the Fokker–Planck equation reduces to

∂f

∂τ
=

∂

∂w

[
D(w)

∂f

∂w

]
+

1
2u2

∂

∂u

(
1
u

∂f

∂u
+ f
)

+
1 + Z
4u3

1
sin θ

∂

∂θ

(
sin θ

∂f

∂θ

)
.

When Cartesian coordinates in velocity space (vx, vy, vz) = (v1, v2, v3) are
used instead of spherical coordinates in velocity space, the Fokker–Planck
collision term in Cartesian coordinates is given as follows (assuming v > v∗

T ):

Ai = −D0v
∗
T

m

m∗
vi

v3
, (16.44)

Dij =
D0

2
v∗

T

v3

[
(v2δij − vivj) +

v∗2
T

v2
(3vivj − v2δij)

]
, (16.45)

Ji = Aif −
∑

j

Dij
∂f

∂vj
, (16.46)

D0 ≡ (qq∗)2n∗ lnΛ
4πε20m2v∗

T

=
v∗2

T ν0
2

, (16.47)
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Fig. 16.17. The electron distribution function f(v‖) is flattened in the region from
v1 = c/N1 to v2 = c/N2 due to the interaction with the lower hybrid wave, for
which the spectrum of the parallel index N‖ ranges from N1 to N2

(
δf
δt

)
F.P.

= −∇v·J .

Ai is the coefficient of dynamic friction and Dij is the component of the
diffusion tensor . Let us assume that the distribution function of the velocities
vx, vy perpendicular to the line of magnetic force is Maxwellian. Then the one-
dimensional Fokker–Planck equation on the distribution function F (w) =∫
fdvxdvy of the parallel velocity w = vz/v

∗
Te

can be deduced by integrating
over (vx, vy):∫ ∫ (

δf
δt

)
F.P.

dvxdvy =
∫ ∫

(−∇v·J)dvxdvy

=
∫ ∫

∂

∂vz

⎛⎝−Azf +
∑

j

Dzj
∂f

∂vj

⎞⎠dvxdvy .

When |vz| � |vx|, |vy|, the approximation v ≈ |vz| can be used. The resulting
one-dimensional Fokker–Planck equation for F (w) is

∂F

∂τ
=

∂

∂w

[
D(w)

∂F

∂w

]
+
(

1 +
Z

2

)
∂

∂w

(
1
w3

∂

∂w
+

1
w2

)
F (w) .

The steady-state solution is
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F (w) = C exp
∫ w −wdw

1 + w3D(w)/(1 + Z/2)
,

which is shown schematically in Fig. 16.17. When D(w) = 0, this solution is
Maxwellian. F (w) is asymmetric with respect to w = 0, so that a current is
induced. The induced current density J is

J = env∗
Te
j ,

where j =
∫
wF (w)dw, and

j ≈ w1 + w2

2
F (w1)(w2 − w1) . (16.48)

On the other hand, this current tends to dissipate by Coulomb collisions.
Dissipated energy must be supplied by the input energy from the wave in
order to sustain the current. The required input power Pd is

Pd = −
∫
nmv2

2

(
δf
δt

)
F.P.

dv =
∫
nmv2

2
∂

∂vz

(
Drf

∂f

∂vz

)
dv

= nmv∗2
Te
ν0

∫
w2

2
∂

∂w

[
D(w)

∂F

∂w

]
dw = nmv∗2

Te
ν0pd ,

where pd is given by use of the steady-state solution of F (w), under the
assumption w3D(w) � 1, as follows:

pd =
(

1 +
Z

2

)
F (w1) ln

(
w2

w1

)
≈
(

1 +
Z

2

)
F (w1)

w2 − w1

w1
,

j

pd
=

1.5
1 + 0.5Zi

2
3
w2 . (16.49)

More accurately, this ratio is [16.38]

j

pd
=

1.12
1 + 0.12Zi

1.7w2 . (16.50)

The ratio of the current density J and the input power Pd per unit volume
required to sustain the current is given by

J

Pd
=
env∗

Tej

nTeν0pd
= 0.16

(κTe)keV
n19

〈w2〉 1.12
1 + 0.12Zi

(
A/m2

W/m3

)
(16.51)

where (κT )keV is the electron temperature in keV units and

ICD

WLH
=

1
2πR

∫
J2πrdr∫
Pd2πrdr

.

The current drive efficiency ηT
LH of LHCD is
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ηT
LH ≡ Rn19ICD

WLH
=
∫
ηLH(r)Pd(r)2πrdr∫
Pd(r)2πrdr

(
1019 A

Wm2

)
,

where ηLH(r) is the local current drive efficiency given by

ηLH(r) =
Rn19J(r)
2πRPd(r)

= 0.026(κTe)keV〈w2〉 1.12
1 + 0.12Zi

(
1019 A

Wm2

)
,

(16.52)
and R is the major radius in meters. The average square 〈w2〉 of the ratio
of the phase velocity (in the direction of the magnetic field) of traveling
waves to the electron thermal velocity is of the order of 20–50. In the JT60U
experiment (1994), a plasma current of Ip = 3 MA was driven by a lower
hybrid wave with WLH = 4.8 MW when n = 1.2 × 1019 m−3, 〈κTe〉 ∼ 2 keV,
R = 3.5 m and Bt = 4 T (ηLH ∼ 2.6). These results are consistent with the
theoretical results.

The required current drive power is proportional to the density, and the
current cannot be driven beyond a threshold density in the case of lower hy-
brid current drive because of the accessibility condition (see Sect. 12.5). Other
possible methods, such as drive in the electron cyclotron range of frequencies
(see Sect. 16.8.2), fast wave, and neutral beam injection (see Sect. 16.8.3) are
also being studied.

A ramp-up experiment taking the plasma current from zero was first
carried out by WT-2 and PLT and others by applying a lower hybrid wave
to the target plasma produced by electron cyclotron heating and other types
of heating. When the plasma current is ramped up in the low-density plasma
and the density is increased after the plasma current reaches a specified value,
all the available magnetic flux of the current transformer can be used solely
to sustain the plasma current, so that the discharge duration can be increased
several times.

16.8.2 Electron Cyclotron Current Drive

Electron cyclotron current drive (ECCD) relies on the generation of an asym-
metric resistivity due to the selective heating of electrons moving in a partic-
ular toroidal direction. N.J. Fisch and A.H. Boozer [16.40] suggested that the
collisionality of the plasma might be altered in such a way that, for example,
electrons moving to the left collide less frequently with ions than electrons
moving to the right. A net electric current would result, with electrons mov-
ing, on average, to the left and ions moving to the right.

Consider the displacement in velocity space of a small number, δf , of
electrons from coordinates with subscript 1 to coordinates with subscript 2
as shown in Fig. 16.18. The energy expended to produce this displacement is
given by

∆E = (E2 − E1)δf ,
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Fig. 16.18. Displacement in velocity space of a small number, δf , of electrons from
coordinates with subscript 1 to coordinates with subscript 2

where Ei is the kinetic energy associated with velocity-space location i. Elec-
trons at different coordinates will lose their momentum parallel to the mag-
netic field, which is in the z direction, at a rate ν1, but now lose it at a rate
ν2. The z-directed current density is then given by

j(t) = −eδf
[
vz2 exp(−ν2t) − vz1 exp(−ν1t)

]
. (16.53)

Consider the time-smoothed current J over a time interval δt which is large
compared with both 1/ν1 and 1/ν2, so that

J =
1

∆t

∫ ∆t

0
j(t)dt = −eδf

∆t

(
vz2

ν2
− vz1

ν1

)
.

Therefore the input power density Pd required to induce the current density
is

Pd =
∆E
∆t

=
E2 − E1

∆t
δf .

The ratio J/Pd becomes

J

Pd
= −evz2/ν2 − vz1/ν1

E2 − E1
=⇒ −es·∇(vz/ν)

s·∇E , (16.54)

where s is the unit vector in the direction of the displacement in velocity
space. Let us estimate ν of (16.54). The deceleration rate of the momentum
of a test electron by collision with electrons and ions is expressed by [see
(2.14) and (2.17)]

dp
dt

= − p

τee‖
− p

τei‖
= −

(
1 +

Zi

2

)
ν0
u3 p ,

where

ν0 =
(
e2ne

ε0me

)2 lnΛ
2πnev3Te

, u ≡ v

vTe

,
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and vTe = (κTe/me)1/2 is the electron thermal velocity. Therefore we have

dp
dt

= −νMp , νM ≡ (2 + Zi)
ν0
2u3 .

In order to estimate du/dt, we must use the energy relaxation time τ ε
ee [see

(2.27)]
dE
dt

= − E

τ ε
ee
, E =

me

2
u2v2Te

,

that is
du
dt

= − u

2τ ε
ee

= − ν0
2u3u .

Each term in (16.53) for j(t) must be modified as follows:

j(t) = j0 exp
(

−
∫
νMdt

)
= j0

[
u(t)
u0

]2+Zi

, (16.55)

because

−
∫
νMdt = −

∫
νM

dt
du

du = (2 + Zi)
∫

du
u

= (2 + Zi) ln
u(t)
u0

.

Then the integral of j(t) in (16.55) reduces to∫ ∞

0
j(t)dt = j0

∫ 0

u0

[
u(t)
u0

]2+Zi dt
du

du =
j0
ν0

2u3
0

5 + Zi
.

Accordingly, ν in (16.54) is

ν = ν0
5 + Zi

2u3 , (16.56)

and
J

Pd
=
enevTe

neTeν0

j

pd
,

j

pd
≡ 4

5 + Zi

s · ∇(u3w)
s·∇u2 ,

where w ≡ vz/vTe . In the case of ECCD, we have j/pd ≈ 6wu/(5 + Zi) and

J

Pd
=
enevTe

neTeν0

〈6wu〉
5 + Zi

= 0.096
(κTe)keV
n19

〈6wu〉
5 + Zi

. (16.57)

The ratio of driven current ICD to ECCD power WEC is

ICD

WEC
=

1
2πR

∫
J2πrdr∫
Pd2πrdr

,

and the current drive efficiency ηT
EC of ECCD is

ηT
EC ≡ Rn19ICD

WCD
=
∫
ηEC(r)Pd(r)2πrdr∫

Pd2πrdr
,

where ηEC(r) is the local current drive efficiency given by

ηEC(r) =
Rn19J(r)
2πRPd

= 0.015(κTe)keV
〈6wu〉
5 + Zi

(
1019 A

Wm2

)
. (16.58)
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16.8.3 Neutral Beam Current Drive

When a fast neutral beam is injected into a plasma, it changes to a fast ion
beam by charge exchange or ionization processes. When the fast ions have
higher energy than Ecr = mbv

2
cr/2 given by (2.33), they are decelerated,

mainly by electrons in the plasma, while the fast ions with E < Ecr are
decelerated mainly by ions in the plasma. The distribution function of the ion
beam can be obtained by solving the Fokker–Planck equations. The Fokker–
Planck collision term (16.42) of the fast ions with E � Ecr is dominated by
the dynamic friction term in (16.43) due to electrons. The dynamic friction
term due to electrons on the fast ions in the case v < v∗

T is given by [16.39]

A = − v

2τ ε
be
.

Then the Fokker–Planck equation reduces to

∂fb
∂t

+
∂

∂v

(−vfb
2τ ε

be

)
= φδ(v − vb) , (16.59)

where vb is the initial injection velocity and τ ε
be is the energy relaxation time

of beam ions and electrons as described by (2.34). The right-hand side is the
source term of beam ions. The steady-state solution of the Fokker–Planck
equation is

fb ∝ 1/v .

However, the dynamic friction term due to ions or the diffusion term dom-
inates the collision term in the region v < vcr. Therefore the approximate
distribution function of the ion beam is given by fb ∝ v2/(v3 + v3cr), i.e.,

fb(v) =
nb

ln
[
1 + (vb/vcr)3

]1/3

v2

v3 + v3cr
(v ≤ vb) , (16.60a)

fb(v) = 0 (v > vb) . (16.60b)

The ion injection rate φ per unit time per unit volume required to maintain
the steady-state condition of the beam is derived by substituting the solution
for fb(v) into the Fokker–Planck equation:

φ =
nb

2τ ε
be

[
1 + (vcr/vb)3

]−1{
ln
[
1 + (vb/vcr)3

]}1/3 .

The required power is then

Pb =
mbv

2
b

2
φ ≈ mbv

2
bnb

4 ln(vb/vcr)τ ε
be
. (16.61)

The average velocity of the decelerating ion beam is
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v̄b = vb
[
ln(vb/vcr)

]−1
. (16.62)

Then the current density J driven by the fast ion beam consists of terms due
to fast ions and bulk ions and electrons of the plasma:

J = Zieniv̄i + Zbenbv̄b − enev̄e , ne = Zini + Zbnb ,

where v̄i and v̄e are the average velocities of ions with density ni and electrons
with density ne, respectively. The electrons of the plasma receive momentum
by collision with fast ions and lose it by collision with plasma ions, i.e.,

mene
dv̄e
dt

= mene(v̄b − v̄e)νeb‖ +mene(v̄i − v̄e)νei‖ = 0 ,

so that
(Z2

i ni + Z2
bnb)v̄e = Z2

bnbv̄b + Z2
i niv̄i .

Since nb � ni,

nev̄e =
Z2

b

Zi
nbv̄b + Ziniv̄i ,

so that [16.36]

J =
(

1 − Zb

Zi

)
Zbenbv̄b . (16.63)

The driven current density consists of the fast ion beam term Zbenbv̄b and
the term corresponding to electrons dragged by the fast ion beam, viz.,
−Z2

benbv̄b/Zi. Then the ratio J/Pd becomes

J

Pd
= (1 − Zb/Zi)

Zbenbv̄b
mbnbvbv̄b/4τ ε

be
=

2eZb(2τ ε
be)

mbvb

(
1 − Zb

Zi

)
. (16.64)

When the charge number of the beam ions is equal to that of the plasma ions,
that is, when Zb = Zi, the current density becomes zero for linear (cylindrical)
plasmas. For toroidal plasmas, the motion of circulating electrons is disturbed
by collision with the trapped electrons (banana electrons), and the dragged
electron term is reduced. Thus J/Pd becomes [16.41]

J

Pd
=

2eZb(2τ ε
be)

mbvb

{
1 − Zb

Zi

[
1 −G(Zeff , ε)

]}
, (16.65)

G(Zeff , ε) =
(

1.55 +
0.85
Zeff

)
ε1/2 −

(
0.2 +

1.55
Zeff

)
ε , (16.66)

where ε is the inverse aspect ratio. When the effect of the pitch angle of the
ionized beam is taken into account, (16.65) must be multiplied by the factor
ξ ≡ v‖/v = Rtang/Rion, where Rtang is the minimum value of R along the
neutral beam path and Rion is the R value of the ionization position.

The driving efficiency calculated by the bounce average Fokker–Planck
equation [16.41] becomes
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J

Pd
=

2eZb(2τ ε
be)

mbvb

{
1 − Zb

Zi

[
1 −G(Zeff , ε)

]}
ξ0FncxbJ0(xb, y) ,

J

Pd
=

2eZb(2τ ε
be)

mbvcr

{
1 − Zb

Zi

[
1 −G(Zeff , ε)

]}
ξ0FncJ0(xb, y) , (16.67)

where

xb ≡ vb
vcr

, y = 0.8
Zeff

Ab
, J0(x, y) =

x2

x3 + (1.39 + 0.61y0.7)x2 + (4 + 3y)

and Fnc = 1 − bεσ is the correction factor [16.42]. Finally, we have

J

Pd

(
Am
W

)
=

15.8(κTe)keVξ0
Zbne19

[
1 − Zb

Zi
(1 −G)

]
(1 − bεσ)J0(xb, y) . (16.68)

The local current drive efficiency ηNB of the neutral beam current drive
(NBCD) is

ηNB ≡ Rne19J

2πRPd

(
1019 A

Wm2

)
= 2.52(κTe)keVξ0

[
1 − Zb

Zi
(1 −G)

]
(1 − bεσ)J0(xb, y) . (16.69)

When Zb = 1, Zeff = 1.5, Ab = 2, x2
b = 4, then (1 − bεσ)J0 ∼ 0.2. When

〈ε〉 ∼ 0.15, then ηNB ∼ 0.29(κTe)keV(1019A/Wm2). Current drive by NBI
has been demonstrated by the DITE, TFTR JT60U and JET experiments.

When the application of a current drive to a fusion grade plasma with
ne ∼ 1020 m−3 is considered, the necessary input power for any current drive
of the full plasma current occupies a considerable amount of the fusion output.
Therefore a substantial part of the plasma current must be driven by the
bootstrap current, as described in the next section.

16.8.4 Bootstrap Current

It was predicted theoretically that radial diffusion induces a current in the
toroidal direction and that the current can be large in the banana region
[16.43–16.46]. This current, known as the bootstrap current , was later well
confirmed experimentally. This is an important process which can provide
the means to sustain the plasma current in the tokamak in a steady state.

As described in Sect. 7.2, electrons in the collisionless region νei < νb
make a complete circuit of the banana orbit. When a density gradient exists,
there is a difference in particle number on neighboring orbits passing through
a point A, as shown in Fig. 16.19.

The difference is (dnt/dr)∆b, where ∆b is the width of the banana orbit.
As the component of velocity parallel to the magnetic field is v‖ = ε1/2vT ,
the current density due to trapped electrons with density nt is
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Fig. 16.19. Banana orbits of trapped electrons which induce the bootstrap current

jbanana = −(ev‖)
(

dnt

dr
∆b

)
= −ε3/2 1

Bp

dp
dr
.

The untrapped electrons start to drift in the same direction as the trapped
electrons due to the collisions between them and the drift becomes steady
state due to the collisions with ions. The drift velocity Vuntrap of untrapped
electrons in the steady state is given by

meVuntrapνei =
νee
ε
me

(
jbanana

−ene

)
,

where νee/ε is the effective collision frequency between trapped and un-
trapped electrons. The current density due to the drift velocity Vuntrap is

jboot ≈ −ε1/2 1
Bp

dp
dr
. (16.70)

This current is called the bootstrap current . When the average poloidal beta
βp = 〈p〉/(B2

p/2µ0) is used, the ratio of the total bootstrap current Ib to the
plasma current Ip to form Bp is given by

Ib
Ip

∼ c
( a
R

)1/2
βp , (16.71)

where c ∼ 0.3 is constant. This value can be near 1 if βp is high (βp ∼ R/a)
and the pressure profile is peaked. Experiments on the bootstrap current
have been carried out in TFTR, JT60U and JET. 70–80% of Ip = 1 MA was
bootstrap driven in high βp operation.

As the bootstrap current profile is hollow, it can produce a negative mag-
netic shear q profile, which is stable against ballooning. The MHD stability
of the hollow current profile is analyzed in detail in [16.47].
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16.9 Neoclassical Tearing Mode

Much attention has been focused on tokamak operational pressure limits im-
posed by non-ideal MHD instabilities, such as the effects of bootstrap-current-
driven magnetic islands. At high βp (poloidal beta) and low collisionality,
the pressure gradient in the plasma gives rise to a bootstrap current (see
Sect. 16.8.4). If an island develops, the pressure within the island tends to
flatten out, thereby removing the drive for the bootstrap current. This gives
rise to a helical ‘hole’ in the bootstrap current, which increases the size of
the island (see Fig. 16.22).

Tearing instability was treated in the slab model in Sect. 9.1. The zeroth-
order magnetic field B0 depends only on x and is given by

B0 = B0y(x)ey +B0zez , |B0y(x)| � |B0z| , B0z = const.

The basic equations are

ρ

[
∂v

∂t
+ (v·∇)v

]
= −∇p+ j × B , (16.72)

−E = v × B − ηj =
∂A

∂t
, A = (0, 0,−ψ) , (16.73)

Bx = −∂ψ
∂y

, By =
∂ψ

∂x
,

−∂ψ
∂t

= (vxBy − vyBx) − ηjz = (v·∇)ψ − ηjz , (16.74)

∇2ψ = µ0jz . (16.75)

Since

v =
E × B

B2 =
(
Ey

B0z
, − Ex

B0z
, 0
)

=
(

− 1
B0z

∂φ

∂y
,

1
B0z

∂φ

∂x
, 0
)
,

a stream function ϕ can be introduced such that

vx = −∂ϕ
∂y

, vy =
∂ϕ

∂x
.

Furthermore, if the z component wz = (∇×v)z of the vorticity is introduced,
then wz = ∇2ϕ. The rotation of (16.72) yields

ρ
∂wz

∂t
+ (v·∇)wz =

[∇ × (j × B)
]
z

= (B·∇)jz − (j·∇)Bz = (B·∇)jz .

(16.76)
The relations ∇·B = 0, ∇·j = 0 were used here. The zeroth-order flux
function ψ0 and the first-order perturbation ψ̃ are
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Fig. 16.20. Tearing mode structure in the singular layer

ψ0(x) = B′
0y

x2

2
, B0 = (0, B′

0yx,B0z) ,

ψ̃(y, t) =
B1x(t)
k

cos ky , B1 =
(
B1x(t) sin ky, 0, 0

)
, ψ̃A(t) ≡ B1x(t)

k
,

ψ = ψ0(x) + ψ̃(y, t) = B′
0y

x2

2
+
B1x(t)
k

cos ky . (16.77)

x = 0 is the location of the singular layer. The separatrix of islands is given
by

B′
0y

x2

2
+
B1x(t)
k

cos ky =
B1x(t)
k

, xs = 2

(
B1x

kB′
0y

)1/2

,

and the full width w of the island is

w = 4

(
B1x

kB′
0y

)1/2

= 4

[
ψ̃A(t)
B′

0y

]1/2

. (16.78)

The perturbation B1x(t) sin ky growing with the growth rate γ induces a cur-
rent j1z = E1z/η = γB1x/ηk, which provides the x direction linear force
f1x = −j1zB

′
0yx indicated in Fig. 16.20. This drives the flow pattern of nar-

row vortices. Moving away from the resistive singular layer, the induced elec-
tric field produces a flow vx = −Ez/By = −γB1x cos ky/(kB′

0yx). For in-
compressible flow (in strong equilibrium field B0z), this requires a strongly
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Fig. 16.21. Nonlinear forces decelerating vy flow in tearing mode

sheared flow vy(x) over the layer x ∼ xT, that is the narrow vortex pattern
shown in Fig. 16.20, and we have

vyxT ∼ vx

k
, vy ∼ vx

kxT
∼ γB1x

k2B′
0yxT

.

If this shear flow is to be driven against inertia by the torque produced by
the linear forces, we require

xTj1zB0y =
γρvy

k
, B0y = B′

0yxT −→ x4
T =

γρ

j1zkB′
0y

γB1x

k2B′
0y

=
γρη

(kB′
0y)2

,

since j1z = Ez/η = γB1x/ηk. Thus the width of the perturbation is [16.48]

xT =
(γρη)1/4

(kB′
0y)1/2 . (16.79)

This is consistent with the results (9.26) and (9.27) obtained by the linear
theory of the tearing instability, described in Sect. 9.1. (Note that ε was used
in Sect. 9.1 instead of xT.)

Rutherford showed that the growth of the mode is drastically slowed
down and perturbation grows only linearly in time when non-linear effects
are taken into account [16.48]. The vortex flow will induce the second-order
y-independent eddy current δj1z = −vyB1x/η ∼ γB2

1x/(ηk
2B′

0yx
2
p). The y-

direction third-order non-linear forces δfy ∼ δjzB1x indicated in Fig. 16.21
provide a torque opposing vortex flow and decelerate the vy flow.

We restrict ourselves to the case where the inertia may be neglected in
(16.76):
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(B·∇)jz = −∂ψ
∂y

∂jz
∂x

+
∂ψ

∂x

∂jz
∂y

= 0 −→ jz = jz(ψ) .

Equation (16.74) yields

∂ψ0

∂t
+
∂ψ̃

∂t
= −vxB

′
0yx+ ηj1z ,

∂ψ0

∂t
= ηj0z ,

−→ ∂ψ̃

∂t
= −∂ϕ

∂y
B′

0yx+ ηj1z − ηj0z . (16.80)

We may eliminate ϕ from (16.80) by dividing by x and averaging over y at
constant ψ. From (16.77), x is given by

x =

(
2
B′

0y

(ψ − ψ̃)

)1/2

=

(
2
B′

0y

)1/2

ψ̃
1/2
A (W − cos ky)1/2 , W ≡ ψ

ψ̃A
,

(16.81)
and 〈

1
(ψ − ψ̃)1/2

〉[
ηj1z(ψ) − ηj0z(ψ)

]
=

〈
∂ψ̃(y, t)/∂t[
ψ − ψ̃(y, t)

]1/2

〉
,

j1z(ψ) = j0z(ψ) +
1
η

〈
∂ψ̃/∂t

(ψ − ψ̃)1/2

〉〈
(ψ − ψ̃)−1/2

〉−1
, (16.82)

where

〈f〉 ≡ k

2π

∫ 2π/k

0
fdy .

For the outer solution we require the discontinuity in the logarithmic deriva-
tives across the singularity. We must match the logarithmic discontinuity
from the solution within the singular layer to that of the outer solution:

∆′ ≡
(
∂ψ̃A

∂x

∣∣∣∣∣
+0

− ∂ψ̃A

∂x

∣∣∣∣∣
−0

)
1
ψ̃A

=
∂

∂x
ln ψ̃A

∣∣∣∣+0

−0
.

We utilize ∇2ψ̃ = µ0j1z, together with ∂2ψ̃/∂x2 ≈ µ0j1z and

∆′ψ̃A =
∂ψ̃A

∂x
= 2µ0

〈
cos ky

∫ ∞

−∞
j1zdx

〉
, (16.83)

dx =

(
1

2B′
0y

)1/2
dψ

(ψ − ψ̃)1/2
.

Inserting (16.82) into (16.83) yields
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Fig. 16.22. Coordinates in the slab model and coordinates in the toroidal plasma.
The coordinates (x, y, z) correspond to the radial direction (r − rs), the poloidal
direction (∼ rθ), and the direction of the magnetic field at the rational surface in
the toroidal plasma, respectively. Arrows in the island indicate the direction of the
magnetic field Bp − (nr/mR)Bt [see (16.86)]

∆′ψ̃A = 2
µ0

η(2B′
0y)1/2

∫ x=∞

x=−∞

〈
∂ψ̃/∂t

(ψ − ψ̃)1/2

〉〈
(ψ − ψ̃)−1/2〉−1

〈
cos ky

(ψ − ψ̃)1/2

〉
dψ

=
4µ0

η(2B′
0y)1/2

∫ ∞

ψmin

dψ

〈
∂ψ̃A cos ky/∂t

(ψ − ψ̃)1/2

〉〈
(ψ − ψ̃)−1/2〉−1

〈
cos ky

(ψ − ψ̃)1/2

〉
.

Since∫
dψ
〈

cos ky
(ψ − ψ̃)1/2

〉2 1〈
(ψ − ψ̃)−1/2

〉
=
∫ 〈

cos ky
(W − cos ky)1/2

〉2 dWψ̃1/2
A〈

(W − cos ky)−1/2
〉 ≡ Aψ̃

1/2
A ,

we obtain

∆′ψ̃A =
4µ0A

η(2B′
0y)1/2

∂ψ̃A

∂t
ψ̃

1/2
A

and
∂

∂t
ψ̃

1/2
A =

η(2B′
0y)1/2

8µ0A
∆′ .

Taking note of (16.78), the time variation of the island width reduces to
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dw
dt

=
1

21/2A

η

µ0
∆′ ≈ η

µ0
∆′ , τR

d
dt
w

rs
= ∆′rs , τR ≡ µ0r

2
s

η
. (16.84)

Let us consider a toroidal plasma as shown in Fig. 16.22. The magnetic field

Bp − nr

nR
Bt =

[
1
q(r)

− 1
qs

]
r

R
Bt

(
qs =

m

n

)
corresponds to B0y in the slab model near the singular radius. The coordi-
nates (x, y, z) in the slab model correspond to the radial direction (r − rs),
the poloidal direction (∼ rθ), and the direction of the magnetic field at the
rational surface in the toroidal plasma, respectively. The flux function is

ψ(x, y) =
∫ r−rs

0

[
1
q(r)

− 1
qs

]
r

R
Btdx+

B1x

k
cos ky (16.85)

and the magnetic field is given by

B1x = −∂ψ
∂y

= B1x sin ky ,

B0y =
∂ψ

∂x
=
[

1
q(r)

− 1
qs

]
r

R
Bt = −q

′

q
Bpx = B′

0yx . (16.86)

Equation (16.85) reduces to

ψ(x, y) = B′
0y

x2

2
+
B1x

k
cos ky . (16.87)

The change δjb1z in the bootstrap current induces the change δψb in the flux
function and the electric field Ez given by

Ez =
∂ψb

∂t
= ηδjb1z .

The discontinuity of the logarithmic derivative due to δjb1z is

∆′
b =

1
ψ̃A

(
∂ψ̃b

A

∂r

∣∣∣∣∣
rs+

− ∂ψ̃b
A

∂r

∣∣∣∣∣
rs−

)
=

1
ψ̃A

∫ rs+

rs−
µ0δjb1zdr ,

where

ψ̃A =
B1x

k
=
w2B′

0y

16
,

so that

∆′
b =

16
w2B′

0y

∫ rs+

rs−
µ0δjb1zdr .

Due to the flattening of the pressure profile caused by formation of the island,
δjb1z is given by [see (16.70)]
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Fig. 16.23. The curve of (16.90). wth is the threshold width of the island for the
onset of the neoclassical tearing mode, and wsat is the saturated width

δjb1z = 0 −
(

−ε
1/2
s

Bp

dp
dr

)
=
ε
1/2
s

Bp

dp
dr
. (16.88)

This is called the helical hole of the bootstrap current. Thus the discontinuity
of the logarithmic derivative due to δjb1z reduces to

∆′
brs =

16µ0

w2B′
0y

(
ε
1/2
s

Bp

dp
dr

)
rs

wrs =
8rs
w

p

B2
p/2µ0

ε1/2
s
Lq

Lp
,

B′
0y = −q

′

q
Bp ≡ −Bp

Lq
,

dp
dr

≡ − p

Lp
.

Then the time variation of the island width is given by

τR
d
dt
w

rs
= ∆′rs + aε1/2

s βp
Lq

Lp

rs
w
, a ∼ 8 . (16.89)

The first term of right-hand side of (16.89) is the Rutherford term and the
second is the destabilizing term of the bootstrap current. This is the equation
for the neoclassical tearing mode. When transport and the effect of the ion
polarization current across the island are taken into account, a reduction
in the bootstrap current takes place. Then the term due to the bootstrap
current is modified to

τR
d
dt
w

rs
= ∆′rs + a1βpε

1/2
s
Lq

Lp

rsw

w2 + w2
c

+ a2βp

(
Lq

Lp

)2
rsρ

2

w3 , (16.90)

where wc is the effect of transport across the island, parametrizing the magni-
tude of the contribution of the χ⊥/χ‖ model [16.49] and given by the relation
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wc = 1.8rs

(
8RLq

r2sn

)1/2(
χ⊥
χ‖

)1/4

.

The third term of the ion polarization current on the left-hand side of (16.90)
is given in [16.50]. Figure 16.23 shows the curve of (16.90). When the effect
of wc is included, there is a threshold wth for the onset of the neoclassical
tearing mode. When w becomes large, the destabilizing term in the bootstrap
current becomes weak and the island width is saturated. The neoclassical
tearing mode can be controlled by local current drive in the rational (singular)
surface [16.51].

16.10 Tokamak Reactors

Although many parameters are needed to specify a tokamak device, there are
also many relations and constraints between them [16.52]. If the plasma radius
a, toroidal field Bt and ratio Q of fusion output power to auxiliary heating
power are specified, the other parameters of the tokamak are determined by
means of scaling laws for the electron density, beta, energy confinement time
and burning condition, when the cylindrical safety factor qI (or effective safety
factor at the plasma boundary qeff , defined later), the elongation ratio κs, and
triangularity δ of the plasma cross-section are given. From the definition of
qI, we have

qI ≡ Ka

R

Bt

Bp
=

5K2aBt

AIp
, Bp =

µ0Ip
2πKa

=
Ip

5Ka
,

and the plasma current is

Ip =
5K2aBt

AqI
,

where K2 = (1 + κ2
s )/2 (Ip in MA, Bt in T, and a in m). The aspect ratio

A = R/a will be given as a function of a and Bt in (16.97). The effective
safety factor qeff at the plasma boundary is given approximately by [16.16]

qeff = qIfAs(A) ,

fAs(A) ≈
(

1 +
1 + Λ̄2/2
A2

)[
1.24 − 0.54κs + 0.3(κ2

s + δ2) + 0.13δ
]
,

where Λ̄ = βp + li/2. The volume average electron density n20 in units of
1020 m−3 is

n20 = NG
Ip
πa2 , (16.91)

where NG is the Greenward normalized density. The beta ratio of the thermal
plasma, viz.,
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βth ≡ 〈p〉
B2

t /2µ0
= 0.0403(1 + fDT + fHe + fI)

〈n20T 〉
B2

t
,

is expressed by

βth = 0.01βN
Ip
aBt

, (16.92)

where βN is the normalized beta. The symbols fDT, fHe and fI denote the
ratios of fuel DT, He and impurity density to electron density, respectively,
and the unit of T is keV. 〈X〉 indicates the volume average of X. The thermal
energy of the plasma W is

W =
3
2
βth

B2
t

2µ0
V = 0.5968βthB

2
t V ,

where W is in units of MJ and the plasma volume V is in units of m−3. The
plasma shape with elongation ratio κs and triangularity δ is given by

R = R0 + a cos(θ + δ sin θ) , z = aκs sin θ .

The plasma volume V is given by

V ≈ 2π2a2Rκsfshape ,

where fshape is a correction factor due to the triangularity, viz.,

fshape = 1 − δ

8
+
δ4

192
− a

4R

(
δ − δ3

3

)
.

We utilize the thermal energy confinement scaling of IPB98y2 [16.34]:

τE = 0.0562 × 100.41Hy2I
0.93B0.15

t M0.19n0.41
20 a1.97A1.39κ0.78

s P−0.69 , (16.93)

where M(= 2.5) is the average ion mass unit and P is the power loss in MW
due to transport, equal to the necessary absorbed heating power subtracted
from the radiation loss power Prad. The total ' particle fusion output power
P' is

P' =
Q'
4

〈n2
DT〈σv〉v〉V ,

where Q' = 3.515 MeV. 〈σv〉v is a function of T and a fitting equation for
〈σv〉v is given in (1.5). Since the fusion rate σv near T = 10 keV is approxi-
mated by

〈σv〉v ≈ 1.1 × 10−24T 2
keV (m3/s) ,

the following Θ ratio is introduced:

Θ(〈T 〉) ≡ 〈n2
DT〈σv〉v〉

1.1 × 10−24〈n2
DTT

2〉 .
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Fig. 16.24. Θ is function of the average temperature 〈T 〉 (keV) in cases with profile
parameters (αT = 1.0, αn = 0.0), (αT = 2.0, αn = 0.0), (αT = 1.0, αn = 0.5) and
(αT = 2.0, αn = 0.3)

Θ is a function of the average temperature 〈T 〉 in keV and the density and
temperature profiles have a peak of around 1 near 〈T 〉 ≈ 8–10 keV. The curves
of Θ versus 〈T 〉 for

n(ρ) =
〈n〉(1 − ρ2)αn

1 + αn
, T (ρ) =

〈T 〉(1 − ρ2)αT

1 + αT

are shown in Fig. 16.24 [16.53]. Then P' reduces to

P' = 0.9551
fproff

2
DT

(1 + fDT + fHe + fI)2
β2

thB
4
tΘV , (16.94)

where fprof ≡ 〈n2T 2〉/〈nT 〉2 ≈ (αn +αT + 1)2/(2αn + 2αT + 1) is the profile
effect of temperature and density. When the absorbed auxiliary heating power
is denoted by Paux and the heating efficiency of ' heating is f', the total
heating power is f'P' +Paux. When the ratio of radiation loss power to total
heating power is fR, the heating power to sustain the burning plasma is given
by

P = (1 − fR)(f'P' + Paux) .

When theQ ratio is defined as the ratio of total fusion output power Pn+P' =
5P' (Pn is the neutron output power) to absorbed auxiliary heating power
Paux, Q is
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Q =
5P'
Paux

.

Then P reduces to

P = (1 − fR)
(
f' +

5
Q

)
Pα .

Therefore the burning condition is

W

τE
= (1 − fR)

(
f' +

5
Q

)
P' . (16.95)

and (16.93)–(16.95) reduce to [16.53]

a = 3.22f1.64
shape

[
(1 + fDT + fHe + fI)2

(1 − fR)(f' + 5/Q)fproff2
DTΘ

]0.738

(16.96)

× β0.905
N

[
qeff/fAs(A)

]2.29

H2.36
y2 N0.976

G κ0.214
s K4.57

A0.619

B1.74
t

.

Therefore the aspect ratio A is given as a function of

A = C1.616a1.616B2.81
t , (16.97)

where C is the coefficient of A0.619/B1.74
t in (16.96). When the distance be-

tween the plasma separatrix and the conductor of the toroidal field coil is
∆ and the maximum field of the toroidal field coil is Bmax (see Fig. 16.25),
there is a constraint

Bt

Bmax
=
R− a−∆

R
= 1 −

(
1 +

∆

a

)
1
A

and
1 − 2

A
<

Bt

Bmax
< 1 − 1

A
,

under the assumption a > ∆ > 0. By specification of ∆ and Bmax, Bt is a
function of a.

The ratio ξ of the flux swing ∆Φ of the ohmic heating coil and the flux
of the plasma ring LpIp is given by

ξ ≡ ∆Φ
LpIp

=
5Bmax(T)

[
(ROH + dOH)2 + 0.5d2OH

][
ln(8A/κ1/2

s ) + li − 2
]
RIp(MA)

,

where ROH = R−(a+∆+dTF+ds+dOH), dTF and dOH being the thickness of
the TF and OH coil conductors, respectively, and ds the separation of the TF
and OH coil conductors in meters (see Fig. 16.25). The average current den-
sities jTF and jOH of the TF and OH coil conductors in MA/m2=A/(mm)2

are
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Fig. 16.25. Geometry of plasma, toroidal field coil, and central solenoid of the
current transformer in a tokamak

jTF(MA/m2) =
2.5
π

Bmax(T)
dTF

1
1 − 0.5dTF/(R− a−∆)

,

jOH(MA/m2) =
2.5
π

Bmax(T)
dOH

.

When parameters a, Bt, A and the other dimensionless parameters are spec-
ified instead of a, Bt, Q as is shown in Table 16.3, then the Q value and the
other parameters can be evaluated and are shown in Table 16.4.

The conceptual design of tokamak reactors has been actively pursued in
the wake of tokamak experimental research. INTOR (International Tokamak

Table 16.3. Specified design parameters. The specified value of βN is the normal-
ized beta of a thermal plasma which does not include the contribution of energetic
ion components. (Hy2 = 1.0, αT = 1.0, and αn = 0.1 are assumed)

a(m) Bt(T) A qeff κs δ fR fα βN NG fDT fHe fI

2.0 5.3 3.1 3.38 1.7 0.35 0.3 0.95 1.63 0.85 0.82 0.04 0.02

Table 16.4. Reduced parameters. Unit of 〈T 〉 is keV and units of Pn, Pα, Paux and
Prad are MW.

Q R(m) Ip(MA) τE(s) n20 〈T 〉 Pn Pα Paux Prad qI Θ

10.2 6.2 15.0 3.8 1.01 8.1 324 81 40 35 2.22 0.99
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Table 16.5. Parameters of ITER in the outline design of 2000

Ip 15MA Zeff 1.65
Bt 5.3 T fDT ∼ 82%
R 6.2 m fHe 4.1%
a 2.0 m fBe 2%
R/a 3.1 fAr 0.12%
κs 1.7 fR 0.39
〈ne〉 1.01 × 1020m−3 βt 2.5%
〈0.5 × (Te + Ti)〉 8.5 keV βp 0.67
Wthermal 325MJ βN 1.77
Wfast 25MJ NG 0.85
τ tr
E 3.7 s Hy2 = τ tr

E /τ IPB98y2
E 1.0

Pfus(Pα) 410MW (82MW) q95 3.0
Paux 41MW qI 2.22
Prad 48MW li 0.86

Reactor) [16.54] and ITER (International Thermonuclear Experimental Re-
actor) [16.55, 16.56] are representative of international activity in this field.
ITER aims [16.56] to achieve extended burn in inductively driven plasmas
with Q ∼ 10 and to demonstrate steady-state operation using non-inductive
drive with Q ∼ 5.

The main parameters of ITER in 2000 are given in Table 16.5. τ tr
E is

the energy confinement time corrected for radiation loss, Q = 10, κs is the
ratio of the vertical radius to the horizontal radius, and q95 is the safety fac-
tor at the 95% flux surface. The maximum field of the toroidal field coils is
Bmax = 11.8 T. The number of toroidal field coils is 18 and the configuration
involves a single null divertor. The one-turn loop voltage is Vloop = 89 mV.
The inductive pulse flat-top under Q = 10 condition is several hundred sec-
onds. Pfus is the total fusion output power. NG is defined in (16.7). fR is the
fraction of radiation loss and fDT, fBe, fHe, and fHe are the ratios of the DT,
Be, He, and Ar densities to the electron density.

A cross-section of the ITER outline design in 2000 is shown in Fig. 16.26.
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Fig. 16.26. Poloidal cross-section of ITER outline design in 2000 [16.56]



17 RFP Stellarator

17.1 Reversed Field Pinch

17.1.1 Reversed Field Pinch Configuration

Reversed field pinch (RFP) is an axisymmetric toroidal field used as a toka-
mak. The magnetic field configuration is composed of the poloidal field Bp
produced by the toroidal component of the plasma current and the toroidal
field Bt produced by the external toroidal field coil and the poloidal compo-
nent of the plasma current. The particle orbit loss is as small as in a tokamak.
However, RFP and tokamaks have quite different characteristics. In RFP, the
magnitudes of the poloidal field Bp and the toroidal field Bt are comparable
and the safety factor

qs(r) =
r

R

Bz(r)
Bθ(r)

is much less than 1 [qs(0) ∼ a/(RΘ), Θ ∼ 1.6]. The radial profile of the
toroidal field is shown in Fig. 17.1. The direction of the boundary toroidal
field is reversed with respect to the direction of the on-axis field, and the
magnetic shear is strong. Therefore high-beta (〈β〉 = 10–20%) plasmas can
be confined in an MHD stable way. Since the plasma current can be larger
than the Kruskal–Shafranov limit (q < 1), there is a possibility of reaching
the ignition condition by ohmic heating alone (although it depends on the
confinement scaling).

RFP started in an early phase of nuclear fusion research. A stable qui-
escent phase of discharge was found in Zeta in Harwell in 1968 [17.1]. The
configuration of the magnetic field in the quiescent phase was the reversed
field pinch configuration, as shown in Fig. 17.1. The electron temperature,
the energy confinement time, and the average beta of Zeta were κTe = 100–
150 eV, τE = 2 ms, 〈β〉 ∼ 10% at the time of the IAEA conference at Novosi-
birsk. However, the epoch-making result of tokamak T-3 with high electron
temperature (κTe = 1 keV, τE = several ms, β ∼ 0.2%) was also presented in
the same conference, and Zeta was shut down because of the better confine-
ment characteristics in tokamaks. On the other hand, RFP can confine higher
beta plasma and has been actively investigated to improve the confinement
characteristics (ZT-40 M, OHTE, HBTX1-B, TPE-1RM 20, MST and RFX,
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TPE-RX) [17.2–17.5]. The important issues of RFP are confinement scaling
and impurity control in the high-temperature region.

17.1.2 MHD Relaxation

Even if the plasma is initially MHD unstable in the formation phase, it has
been observed in RFP experiments that the plasma turns out to be a stable
RFP configuration irrespective of the initial condition. J.B. Taylor pointed
out in 1974 that the RFP configuration is a minimum energy state by relax-
ation processes under certain constraints [17.6].

We introduce a physical quantity referred to as magnetic helicity to study
this subject. Using the scalar and vector potentials φ, A of the electric and
magnetic fields E, B, the magnetic helicity K is defined by the integral of the
scalar product A·B over the volume V surrounded by a magnetic surface:

K =
∫

V

A·B dr , (17.1)

where dr ≡ dxdy dz. Since

E = −∇φ− ∂A

∂t
, B = ∇ × A ,

we find from Maxwell’s equations [17.7]

∂

∂t
(A·B) =

∂A

∂t
·B + A·∂B

∂t
= (−E − ∇φ)·B − A·(∇ × E)

= −E·B − ∇·(φB) + ∇·(A × E) − E·(∇ × A)

= −∇·(φB + E × A) − 2(E·B) .

When the plasma is surrounded by a perfect conductive wall, then the condi-
tions (B·n) = 0, E ×n = 0 hold, where n is the unit outward vector normal
to the wall, and we find

∂K

∂t
=
∂

∂t

∫
V

A·Bdr = −2
∫

V

E·Bdr . (17.2)

The right-hand side of (17.2) is the loss term of the magnetic helicity. When
Ohm’s law

E + v × B = ηj

is applicable, the loss term reduces to

∂K

∂t
= −2

∫
V

ηj·Bdr . (17.3)

When η = 0, the magnetic helicity is conserved. In other words, if a plasma
is perfectly conductive, the integral of K over the volume surrounded by



17.1 Reversed Field Pinch 321

Fig. 17.1. (a) Toroidal field Bz(r) and poloidal field Bθ(r) of RFP. The radial
profiles of the Bessel function model (BFM) and the modified Bessel function model
(MBFM) are shown. (b) F–Θ curve

arbitrary closed magnetic surfaces is constant. However, if there is small
resistivity in the plasma, local reconnections of the lines of magnetic force
are possible and the plasma can relax to a more stable state, whereupon
the magnetic helicity may change locally. However, J.B. Taylor postulates
that the global magnetic helicity KT integrated over the whole region of the
plasma changes much more slowly. It is assumed that KT is constant within
the time scale of relaxation processes. Under the constraint of invariant KT,

δKT =
∫

B·δAdr +
∫

δB·Adr = 2
∫

B·δAdr = 0 ,

the condition of minimum energy of the magnetic field, viz.,

(2µ0)−1δ
∫

(B·B) dr = µ−1
0

∫
B·∇ × δAdr = µ−1

0

∫
(∇ × B)·δAdr ,

can be obtained by the method of undetermined multipliers, and we have

∇ × B − λB = 0 . (17.4)

This solution is the minimum energy state in the force-free or pressureless
plasma (j × B = ∇p = 0, j‖B). The axisymmetric solution in cylindrical
coordinates is

Br = 0 , Bθ = B0J1(λr) , Bz = B0J0(λr) , (17.5)

and is called a Bessel function model (BFM). The profiles of Bθ(r) and Bz(r)
are shown in Fig. 17.1a. In the region λr > 2.405, the toroidal field Bz is
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reversed. The pinch parameter Θ and the field reversal ratio F are commonly
used to characterize the RFP magnetic field as follows:

Θ =
Bθ(a)
〈Bz〉 =

(µ0/2)Ipa∫
Bz2πr dr

, F =
Bz(a)
〈Bz〉 , (17.6)

where 〈Bz〉 is the volume average of the toroidal field. The values of F and
Θ for the Bessel function model are

Θ =
λa

2
, F =

ΘJ0(2Θ)
J1(2Θ)

, (17.7)

and the F–Θ curve is plotted in Fig. 17.1b. The quantity

λ =
µ0j·B
B2 =

(∇ × B)·B
B2 = const.

is constant in the Taylor model. The RFP fields observed in experiments
deviate from the Bessel function model due to the finite beta effect and the
imperfect relaxation state. The λ value is no longer constant in the outer
region of the plasma and tends to 0 on the boundary. The solution of the
relation ∇ × B − λB = 0 with λ(r) is called the modified Bessel function
model (MBFM).

The stability condition of the local MHD mode [17.8] is

1
4

(
q′
s

qs

)2

+
2µ0p

′

rB2
z

(1 − q2s ) > 0 . (17.8)

This formula indicates that the strong shear can stabilize the RFP plasma in
the p′(r) < 0 region, but that the flat pressure profile, p′(r) ∼ 0, is preferable
in the central region of weak shear. When q2s < 1, the local MHD mode is
unstable near q′

s = 0 (pitch minimum).
When the effect of finite resistivity of a plasma is taken into account, ac-

cording to the classical process of magnetic dissipation, the RFP configuration
is expected to be sustainable only during the period τcl = µ0σa

2, where σ is
the specific conductivity. However, ZT-40M experiments [17.9] demonstrated
that RFP discharge was sustained more than three times (∼ 20 ms) as long
as τcl. This is clear evidence that a regeneration process of the toroidal flux
exists during the relaxation process, which is consumed by classical magnetic
dissipation, so that the RFP configuration can be sustained as long as the
plasma current is sustained.

When there are fluctuations in plasmas, the magnetic field B in the
plasma, for example, is expressed by the sum B = 〈B〉t + B̃ of the time
average 〈B〉t and the fluctuation term B̃. The time average of Ohm’s law
ηj = E + v × B reduces to

〈ηj〉t = 〈E〉t + 〈v〉t × 〈B〉t + 〈ṽ × B̃〉t , (17.9)
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where 〈 〉t denotes the time average. A new term 〈ṽ × B̃〉t appears due to
fluctuations. Since the time average of the toroidal flux Φz =

∫
BzdS within

the plasma cross-section is constant during the quasi-stationary state, the
time average of the electric field in the θ direction is 0 (

∮
Eθdl = −dΦz/dt =

0) and 〈vr〉t = 0. Steady-state RFP plasmas require the condition

〈ηjθ〉t = 〈(ṽ × B̃)θ〉t . (17.10)

In other words, resistive dissipation is compensated by the effective elec-
tric field due to the fluctuations. This process is called the MHD dynamo
mechanism. Active research has been carried out on the relaxation pro-
cess [17.10–17.12].

When the electron mean free path is very long, local relations such as
Ohm’s law may not be applicable. To replace the MHD dynamo theory, the
kinetic dynamo theory has been proposed [17.13], in which anomalous trans-
port of electron momentum across magnetic surfaces plays an essential role
in sustaining the RFP configuration.

Magnetic fluctuations of the dynamo sustaining the poloidal plasma cur-
rent, on the other hand, enhance electron diffusion, since the electron diffusion
coefficient is given by De ∼ vTea〈(δBr/B)2〉 (see Sect. 7.4) and the energy
confinement of RFP deteriorates. In MST devices, a pulsed poloidal current
drive (PPCD) is applied [17.14] and the poloidal plasma current (between
the magnetic axis and the plasma edge) Iθ = 2πRa〈jθ〉 is increased tran-
siently. The spatial distribution of the plasma current density is flattened
and MHD fluctuations decrease. As a result, the energy confinement time is
greatly improved (by a factor of ∼ 5).

17.1.3 Confinement

The energy confinement time τE in an ohmically heated plasma can be ob-
tained from the energy balance equation:

(3/2)〈nκ(Te + Ti)〉v2πRπa2

τE
= VzIp ,

where Vz is the loop voltage and Ip is the plasma current. The notation 〈 〉v
indicates the volume average. Using the definition of the poloidal beta,

βθ ≡ 〈nκ(Te + Ti)〉v
B2

θ/2µ0
=

8π2a2〈nκ(Te + Ti)〉v
µ0I2p

,

the energy confinement time is given by

τE =
3µ0

8
Rβθ

Ip
Vz
. (17.11)

Therefore the scalings of βθ and Vz are necessary for the scaling of τE. In order
to apply a loop voltage to the RFP plasma, a cut in the toroidal direction
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is necessary in the shell conductor surrounding the plasma. In this case, the
contribution of the surface integral must be added to the equation (17.1)
giving the magnetic helicity:

∂K

∂t
= −2

∫
E·B dr −

∫
(φB + E × A)·n dS .

The induced electric field in the (conductive) shell surface is zero and is
concentrated between the two edges of the shell cut. The surface integral
consists of the contribution 2VzΦz from the shell cut and the contribution
from the other part of the surface S−, i.e.,

∂K

∂t
= −2

∫
ηj·B dr + 2VzΦz −

∫
S−

(φB + E × A)·n dS , (17.12)

where Φz is the volume average of the toroidal magnetic flux Φz = πa2〈Bz〉v.
In the quasi-steady state, the time average 〈∂K/∂t〉t is zero. Then the time
average of (17.2) yields

Vz =

∫ 〈ηj·B〉tdr + (1/2)
∫
S−

〈φB + E × A〉t·n dS

〈Φz〉t =
2πR
πa2 η0Ipζ + VB ,

VB =
2πR
a

〈〈(φB + E × A)·n〉t〉S−

〈〈Bz〉t〉v ,

where 〈 〉S− is the average in the surface region S−. The notation ζ is a
dimensionless factor determined by the radial profiles of the specific resistivity
and magnetic field as follows:

ζ ≡ 〈〈ηj·B〉t〉v
η0〈〈jz〉t〉v〈〈Bz〉t〉v =

〈〈ηj〉t·〈B〉t〉v + 〈〈(̃ηj)·B̃〉t〉v
η0〈〈jz〉t〉v〈〈Bz〉t〉v .

Here η0 is the specific resistivity at the plasma center. When the fluctuation
term is negligible, the value ζ of the modified Bessel function model is ζ ∼ 10,
but the value is generally ζ > 10 due to fluctuations. The value of VB is 0
when the whole plasma boundary is a conductive shell. In reality, the plasma
boundary is a liner or protecting material for the liner. Lines of magnetic
force can cross the wall by the magnetic fluctuation or shift of plasma position
(B·n �= 0, E �= 0). Then the term VB has a finite value. Substituting Vz into
the equation for the energy confinement time τE gives

1
τE

=
8

3βθ

[(
η0
µ0a2

)
2ζ +

VB/2πR
aBθ(a)

]
.

When plasmas become hot, the resistive term becomes small and the fluc-
tuation term and contribution from VB are no longer negligible. The experi-
mental scaling in the region Ip < 0.5 MA is Ip/πa2〈n〉v = (1–5) × 10−14A m,
βθ ∼ 0.1, [κTe(0)]keV ∼ Ip(MA).
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17.1.4 Oscillating Field Current Drive

RFP plasmas tend to be modelled by the modified Bessel function model due
to the non-linear phenomena of MHD relaxation. Oscillating field current
drive (OFCD) was proposed [17.15] to sustain the plasma current, and pre-
liminary experiments have been done [17.16]. If the terms Vz and Φz of the
second term on the right-hand side of the magnetic helicity balance equation
(17.12) are modulated according to Vz(t) = Ṽz cosωt, Φz(t) = Φz0+Φ̃z cosωt,
a direct current component ṼzΦ̃z appears in the product 2VzΦz and compen-
sates the resistive loss of the magnetic helicity. The period of the oscillating
field must be longer than the characteristic time of relaxation and shorter
than the magnetic diffusion time. Furthermore, the disturbing effect of the
oscillating field on the RFP plasma must be evaluated.

17.2 Stellarator

A stellarator field can provide a steady-state magnetohydrodynamic equilib-
rium configuration of the plasma only by the external field produced by the
coils outside the plasma. The rotational transform, which is needed to con-
fine the toroidal plasma, is formed by the external coils so that the stellarator
has the merit of steady-state confinement. Although Stellarator C [17.17] was
rebuilt as the ST tokamak in 1969 at the Princeton Plasma Physics Labo-
ratory, confinement experiments by Wendelstein 7A, 7AS, Heliotron-E, and
ATF are being carried out, for the benefits of steady-state confinement with-
out current-driven instabilities. The large helical device LHD started experi-
ments in 1998 and the advanced stellarator WVII-X is under construction.

17.2.1 Helical Field

Let us consider a magnetic field with helical symmetry. Using cylindrical
coordinates (r, θ, z), we can express the field in terms of (r, ϕ ≡ θ − δαz),
where α > 0, δ = ±1. A magnetic field in a current-free region (j = 0) can
be expressed in terms of a scalar potential φB , satisfying ∆φB = 0, and we
can write

φB = B0z +
1
α

∞∑
l=1

blIl(lαr) sin(lϕ) , (17.13)

ϕ ≡ θ − δαz .
The field components (Br, Bθ, Bz) of B = ∇φB are given by

Br =
∞∑

l=1

lblI
′
l(lαr) sin(lϕ) , (17.14)
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Fig. 17.2. Current of helical coils

Bθ =
∞∑

l=1

(
1
αr

)
lblIl(lαr) cos(lϕ) , (17.15)

Bz = B0 − δ
∞∑

l=1

lblIl(lαr) cos(lϕ) . (17.16)

The vector potential corresponding to this field has components

Ar = − δ

α2r

∞∑
l=1

blIl(lαr) sin(lϕ) , Aθ =
B0

2
r − δ

α

∞∑
l=1

blI
′
l(lαr) cos(lϕ) ,

Az = 0 .

Using these, we can write

Br = −∂Aθ

∂z
, Bθ =

∂Ar

∂z
, Bz =

1
r

∂(rAθ)
∂r

− 1
r

∂Ar

∂θ
.

The magnetic surface ψ = Az + δαrAθ = δαrAθ = const. is given by

ψ(r, ϕ) = B0
δαr2

2
− r

∞∑
l=1

blI
′
l(lαr) cos(lϕ) = const. (17.17)

Such a helically symmetric field can be produced by a helical current distribu-
tion, as shown in Fig. 17.2. Let the magnetic fluxes in the z and θ directions
inside the magnetic surface be denoted by Φ and X, where X is the integral
over the pitch along z, i.e., over 2π/α. Then these may be expressed by

Φ =
∫ 2π

0

∫ r(ϕ)

0
Bz(r, ϕ)r dr dθ ,

X =
∫ 2π/α

0

∫ r(ϕ)

0
Bθ(r, ϕ) dr dz =

1
α

∫ 2π

0

∫ r(ϕ)

0
Bθ(r, ϕ) dr dθ .
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Since αrBz − δBθ = α∂(rAθ)/∂r = δ∂ψ/∂r, we find that

Φ− δX =
2πψ
δα

.

Let us consider only one harmonic component of the field. The scalar potential
and the magnetic surface are expressed by

φB = B0z +
b

α
Il(lαr) sin(lθ − δlαz) ,

ψ =
B0

2δα

[
(αr)2 − 2δ(αr)b

B0
I ′
l(lαr) cos(lθ − δlαz)

]
=
B0

2δα
(αr0)2 .

The singular points (rs, θs) in the z = 0 plane are given by

∂ψ

∂r
= 0 ,

∂ψ

∂θ
= 0 .

Since the modified Bessel function Il(x) satisfies

I ′′
l (x) +

I ′
l(x)
x

− (1 + l2/x2)Il = 0 ,

the singular points are given by

sin(lθs) = 0 , αr

{
1 − δbl

B0

[
1 +

1
(αrs)2

]
ll(lαrs) cos(lθs)

}
= 0 ,

or

θs =

⎧⎪⎪⎨⎪⎪⎩
2π
l

(j − 1) , δb/B0 > 0 ,

2π
l

(
j − 1

2

)
, δb/B0 < 0 ,

j = 1, . . . , l ,

∣∣∣∣δblB0

∣∣∣∣ = 1[
1 + (αrs)−2

]
Il(lαrs)

.

The magnetic surfaces for l = 1, 2, 3 are shown in Fig. 17.3. The magnetic
surface which passes through the hyperbolic singular point or X point is
called the separatrix . When x � 1, the modified Bessel function is

Il(x) ≈ 1
l!

(x
2

)l

.

The magnetic surfaces in the region αr � 1 are expressed by

(αr)2 − δb(l/2)l−1

B0(l − 1)!
(αr)l sin l(θ − δαz) = const.

The magnitude B is given by
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Fig. 17.3. Magnetic surfaces of the helical field, showing X points and separatrices

(
B

B0

)2

=1−2
δlb

B0
Il cos(lϕ)+

(
lb

B0

)2{
I2l

[
1 +

1
(αr)2

]
cos2(lϕ) + (I ′

l)
2 sin2(lϕ)

}
.

The magnitude B at the X point (rs, θs) is given by(
B

B0

)2

= 1 − (αr)2

1 + (αr)2
,

and at the point (rs, θs + π/l) by(
B

B0

)2

= 1 +
(αr)2

1 + (αr)2
.

Therefore the magnitude B is small at X points.
Let us estimate the rotational transform angle ι. As the line of magnetic

force is expressed by
dr
Br

=
rdθ
Bθ

=
dz
Bz

,

the rotational transform angle is given by

rι

2πR
=
〈
rdθ
dz

〉
=
〈
Bθ

Bz

〉
=
〈

(1/αr)lbIl(lαr) cos l(θ − δz)
B0 − lbIl(lαr) cos l(θ − δz)

〉
.

Here r and θ are the values on the line of magnetic force and are functions
of z, and 〈 〉 denotes the average over z. In a vacuum field,∮

Bθdl =
∫

(∇ × B)·dS = 0 ,

so that the rotational transform angle is 0 to first order in b/B0. However
the first-order components of Bθ and Bz resonate to yield the second-order
rotational transform angle. The average method gives the formula for the
rotational transform angle [17.18,17.19]:
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Fig. 17.4. Cross-sectional views of helical coils in the l = 2 case. (a) standard
stellarator. (b) heliotron/torsatron

Fig. 17.5. (a) Arrangement of elliptical coils used to produce an l = 2 linear helical
field. (b) twisted toroidal coils that produce the l = 2 toroidal helical field

ι

2π
= δ

(
b

B

)2
l3

2

[
d
dx

(
IlI

′
l

x

)]
x=lαr

R

r
. (17.18)

Using the expansion

Il(x) =
(x

2

)l
[

1
l!

+
1

(l + 1)!
x2 +

1
2!(l + 2)!

x4 + · · ·
]
,

we find

ι

2π
= δ

(
b

B

)2( 1
2ll!

)2

l5(l − 1)αR
[
(lαr)2(l−2) + · · ·

]
(l ≥ 2) . (17.19)

An example of the analysis of the toroidal helical field is given in [17.20].

17.2.2 Stellarator Devices

Familiar helical fields are of pole number l = 2 or l = 3. The three-dimensional
magnetic axis system of Heliac has the l = 1 component. When the ratio of
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Fig. 17.6. Upper : schematic view of the LHD device in Toki (R = 3.9 m, a ∼
0.6 m, B = 3 T) [17.44]. Lower : modular coil system and a magnetic surface of the
optimized stellerator Wendelstein 7-X under construction in Greifswald (R = 5.5 m,
a = 0.55 m, B = 3 T) [17.43]
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the minor radius ah of a helical coil to the helical pitch length R/m (R is
the major radius and m the number of field periods) is much less than 1,
i.e., mah/R � 1, the rotational transform angle is ι2(r) = const. for l = 2
and ι3(r) = ι(r/a)2 for l = 3. In this case the shear is small for the l = 2
configuration, and ι3(r) is very small in the central region for the l = 3
configuration. However, if mah/R ∼ 1, then ι2(r) = ι0 + ι2(r/z)2 + · · ·, so
that the shear can be large even when l = 2.

The arrangement of coils in the l = 2 case is shown in Fig. 17.4. Figure
17.4a is the standard type of stellarator [17.21, 17.22] and Fig. 17.4b is a
heliotron/torsatron type [17.23, 17.24]. Helical fields are usually produced
by the toroidal field coils and the helical coils. In the heliotron/torsatron
configuration the current directions of the helical coils are the same, so that
the toroidal field and the helical field can be produced by the helical coils
alone [17.27,17.28]. Therefore, if the pitch is properly chosen, closed magnetic
surfaces can be formed even without toroidal field coils [17.29, 17.30]. The
typical devices of this type are Heliotron E, ATF and LHD. The device LHD
is shown in the upper part of Fig. 17.6.

When elliptical coils are arranged as shown in Fig. 17.5a, an l = 2 helical
field can be obtained [17.25]. The currents produced by the twisted toroidal
coil system shown in Fig. 17.5b can simulate the currents of the toroidal
field coils and the helical coils taken together [17.26]. Typical devices of this
modular coil type are Wendelstein 7AS and 7X. The modular coil system of
Wendelstein 7X is shown in the lower part of Fig. 17.6.

For linear helical fields, the magnetic surface Ψ = rAθ exists due to its
helical symmetry. However, the existence of magnetic surfaces in toroidal
helical fields has not yet been proven in the strict mathematical sense. Ac-
cording to numerical calculations, the magnetic surfaces exist in the central
region near the magnetic axis, but in the outer region the lines of magnetic
force behave ergodically and the magnetic surfaces are destroyed. Although
the helical coils have a relatively complicated structure, the lines of magnetic
force can be traced by computer, and the design of helical field devices be-
comes less elaborate. The effect of the geometrical error on the helical field
can be estimated and accurate coil windings are possible with numerically
controlled devices (∆l/R < 0.05–0.1%).

17.2.3 Neoclassical Diffusion in Helical Field

To analyze classical diffusion due to Coulomb collision, one must study the
orbits of charged particles. In a helical field, or even in a tokamak, the toroidal
field is produced by a finite number of coils, and there is an asymmetric
inhomogeneous term in the magnitude B of the magnetic field,

B

B0
≈ 1 − εh cos(lθ −mϕ) − εt cos θ , (17.20)
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Fig. 17.7. Variation of the magnitude B along the length l of the line of magnetic
force

Fig. 17.8. Orbit of a helical banana ion trapped in a helical ripple

in addition to the toroidal term −εt cos θ. The variation of B along lines of
magnetic force is shown in Fig. 17.7. Particles trapped by the inhomogeneous
field of helical ripples drift across the magnetic surfaces and contribute to
the particle diffusion in addition to the banana particles, as was discussed
for tokamaks. The curvature of the line of magnetic force near the helically
trapped region is convex outward and is denoted by Rh. Helically trapped
particles drift in the poloidal direction (θ direction) due to ∇B drift with the
velocity vh ≈ mv2⊥/(qBRh) (see Fig. 17.8). The angular velocity of poloidal
rotation is

wh =
vh
r

≈ r

Rh

kT

qBr2
. (17.21)

In the case of a linear helical field (εt = 0), helically trapped particles rotate
along the magnetic surface. However, in the case of a toroidal helical field, the
toroidal drift is superposed and the toroidal drift velocity is vv = kT/(qBR)
in the vertical direction (see Sect. 3.5). When the effective collision time
(νeff)−1 = (ν/εh)−1 is shorter than one period (ωh)−1 of poloidal rotation,
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the deviation of the orbit of the helical banana ion from the magnetic surface
is

∆h1 = vv
εh
ν

= εh
kT

qBR

1
ν
.

Then the coefficient of particle diffusion becomes [17.31]

Dh1 ∼ ε
1/2
h ∆2

h1νeff = ε
3/2
h

(
kT

qBR

)2 1
ν

= ε2t ε
3/2
h

(
kT

qBr2
1
ν

)(
kT

qB

)
.

Since Rh ∼ r/εh, the other expression is

Dh1 ∼ γhε
1/2
h ε2t

(ωh

ν

)(kT
qB

)
(ν/ε > ωh) , (17.22)

where γh is a coefficient of order O(1) (Fig. 17.9).
When the effective collision time (νeff)−1 is longer than (ωh)−1, the devi-

ation ∆h2 of the orbit from the magnetic surface is

∆h2 ≈ vv
ωh

≈ Rh

R
r ∼ εt

εh
r ,

and the particle diffusion coefficient Dh2 in this region becomes (Fig. 17.9)

Dh2 ≈ ε
1/2
h ∆2

h2νeff =
(
εt
εh

)2 1

ε
1/2
h

r2ν (ν/εh < ωh) .

When a particle is barely trapped in a local helical mirror, the particle moves
very slowly near the reflection point where the magnetic field is locally maxi-
mum and the field line is concave outward. The effective curvature, which the
particle feels in time average, becomes negative (concave). The orbit of the
trapped particle in this case becomes the so-called superbanana [17.31]. How-
ever, this theoretical treatment is based on the assumption concerning the
longitudinal adiabatic invariant J‖ = const. along the orbit of the helically
trapped particle. The adiabatic invariance is applicable when the poloidal ro-
tation angle, during one period of back and forth motion in the helical local
mirror, is small. As the single period of back and forth motion of the barely
trapped particles becomes long, the adiabatic invariance may not be appli-
cable in this case. The orbit plotted from numerical calculations shows that
the superbanana does not appear [17.32] in the realistic case when εh ∼ εt. If
a particle orbit crosses the wall, the particle is lost. This is called orbit loss.
A loss region in velocity space appears due to orbit loss in some cases [17.33].
When a radial electric field appears, the angular frequency of the poloidal
drift rotation becomes ωh + ωE (ωE = Er/B0) and the orbit is affected by
the radial electric field.

The thermal diffusion coefficient χh1 due to helically trapped particles in
the region ν/εh > ωh is given by
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Fig. 17.9. Dependence of the neoclassical diffusion coefficient of the helical field
on the collision frequency. νp = (ι/2π)vTe/R, νb = ε

3/2
t νp, ωh = εhκTe/(qBr2)

χh1 ∼ γTε
2
t ε

3/2
h

(
kT

qBr

)2 1
ν

(γT ∼ 50) . (17.23)

Since ν ∝ T−1.5, this means χh1 ∝ T 3.5. This may suggest that the thermal
conduction loss becomes large in hot plasmas and the suppression of helical
ripple loss is very important [17.31–17.36].

Since toroidal helical systems lose helical symmetry as well as axisym-
metry, the generalized momentum correponding to the cyclic coordinate is
no longer conserved [angular momentum mr2θ̇ + qrAθ = const. for the ax-
isymmetric system A(r, z) and m(ż+αr2θ̇) + q(Az +αrAθ) = const. for the
helically symmetric system A(r, θ−αz)]. Therefore the orbit loss of energetic
ions produced by heating or fusion-produced alpha particles with 3.5 MeV
becomes large and heating efficiencies may deteriorate.

There are active efforts to design quasi-axisymmetric [17.37], quasi-
helically symmetric [17.38] and quasi-omnigenous [17.39] stellerators by use
of Boozer magnetic coordinates [17.40].

17.2.4 Confinement of Stellarator System

After Stellarator C [17.41], the basic experiments were carried out in small
but accurate stellarator devices (Clasp, Proto Cleo, Wendelstein IIb, JIPP I,
Heliotron D, L1, Uragan 1). Alkali plasmas, or afterglow plasmas produced
by wave heating or gun injection, were confined quiescently. The effect of
shear on the stability and confinement scaling were investigated.

The l = 2 stellarators with long helical pitch, such as Wendelstein IIa or
JIPP I-b, have nearly constant rotational transform angles and the shears are
small. When the transform angle is rational, ι/2π = n/m, a line of magnetic
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force comes back to the initial position after m turns of the torus and is
closed. If electric charges are localized in some place, they cannot be dispersed
uniformly within the magnetic surface in the case of rational surfaces. A
resistive drift wave or resistive MHD instabilities are likely to be excited, and
convective loss is also possible [17.42]. An enhanced loss is observed in the
rational case. This is called resonant loss. Resonant loss can be reduced by
the introduction of shear.

Medium-scale stellarator devices (Wendelstein VIIA, Cleo, JIPP T-II,
Heliotron-E, L2, Uragan 2, Uragan 3) have been constructed. The confine-
ment time of the ohmically heated plasmas (Te < 1 keV) is similar to that of
tokamaks with the same scale. When the rotational transform angle is larger
than ιh/2π > 0.14, the major disruption observed in tokamaks is suppressed
(W VIIA, JIPP T-II). NBI heating or wave heatings, which were developed
in tokamaks, have been applied to plasma production in helical devices. In
Wendelstein VIIA, a target plasma was produced by ohmic heating; then
the target plasma was sustained by NBI heating while the plasma current
was gradually decreased, and finally a high-temperature plasma with κTi ∼
several hundred eV, ne ∼ several 1013 cm−3 was confined without plasma
current (1982). In Heliotron-E, a target plasma was produced by electron cy-
clotron resonance heating with κTe ∼ 800 eV, ne ∼ 0.5 × 1013 cm−3, and the
target plasma was heated by NBI heating with 1.8 MW to the plasma with
κTi ∼ 1 keV, ne = 2 × 1013 cm−3 (1984). The average beta, 〈β〉 ∼ 2%, was
obtained for B = 0.94 T and NBI power PNB ∼ 1 MW. These experimental
results demonstrate the possibility of steady-state confinement by stellarator
configurations [17.43]. Experimental scaling laws of energy confinement time
are presented from Heliotron-E group [17.44] as follows;

τLHD
E = 0.17a2.0R0.75n0.69

20 B0.84P−0.58 , (17.24)

where the units of n20 are 1020 m−3. W7AS group presented W7AS confine-
ment scaling [17.45] of

τW7AS
E = 0.115A0.74a2.95n0.5

19 B
0.73P−0.54(ι/2π)0.43 . (17.25)

The scaling law of the international stellarator database is [17.45]

τ ISS95
E = 0.079a2.21R0.65n0.51

19 B0.83P−0.59(ι/2π)0.4 , (17.26)

where the units of n19 are 1019 m−3 and ι/2π is the value at r = (2/3)a.
Units are s, m, T, MW.

High confinement operation by NBI was observed in WV7-AS and an
improvement factor of about 2 is obtained in H mode and HDH mode (Hig
Density H mode) [17.46]. The advanced stellarator Wendelstein 7-X [17.47]
with superconductor modular coils is under construction (refer the lower
figure of fig.17.6). Large helical device (LHD) [17.48] with superconductor
helical coils started experiments in 1998 (refer the upper figure of fig.17.6).
The relations of observed radial electric field and the transition or bifurcation
of improved confinement mode are actively investigated [17.49].
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Open End Systems

Open end magnetic field systems [17.50–17.52] have a simpler configuration
than toroidal systems. The attainment of absolute minimum-B configurations
is possible with mirror systems, whereas only average minimum-B configu-
rations can be realized in toroidal systems. Although absolute minimum-B
configurations are MHD stable, the velocity distribution of the plasma be-
comes non-Maxwellian due to end losses, and the plasma confined in mirrors
will be prone to velocity-space instabilities.

The particle confinement time τp of a mirror field is essentially determined
by the diffusion time to the loss cone in the velocity space, i.e., the ion–ion
Coulomb collision time τii, and is given by [17.53]

τp = τii lnRM , (17.27)

where RM is the mirror ratio. Therefore the most critical issue for open-end
systems is the suppression of end loss. The end plug of the mirror due to
electrostatic potential has been studied by tandem mirrors [17.54–17.56].
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The characteristic of inertial confinement is that the extremely high-density
plasma is produced within a short period by means of an intense energy
driver, such as a laser or particle beam, so that fusion reactions can occur
before the plasma starts to expand [18.1]. Magnetic confinement plays no part
in this process, which has come to be called inertial confinement. For fusion
conditions to be reached by inertial confinement, a small solid deuterium–
tritium pellet must be compressed to a particle density 103–104 times that of
the solid pellet particle density ns = 5 × 1022 cm−3. One cannot expect the
laser light pressure or the momentum carried by the particle beam to com-
press the solid pellet: they are too small. A more feasible method of compres-
sion involves irradiating the pellet from all sides, as shown in Fig. 18.1. The
plasma is produced on the surface of the pellet and heated instantaneously.
The plasma expands immediately. The reaction of the outward plasma jet
accelerates and compresses the inner pellet inward like a spherical rocket.
This process is called implosion. The study of implosion processes is one of
the most important current issues, and theoretical and experimental research
is being carried out intensively.

18.1 Pellet Gain

The pellet gain Gpellet is the ratio of the output nuclear fusion energy ENF to
the input driver energy EL delivered to the pellet. The heating efficiency ηh
of the incident driver is defined as the conversion ratio of the driver energy
EL to the internal energy Efuel of the compressed pellet core. Denote the
density and volume of the compressed core plasma by n and V , respectively,
and assume that 〈εfuel〉 is the average energy of a fuel particle. Then we have
the following relation:

Efuel = 〈εfuel〉nV = ηhEL . (18.1)

The densities nD and nT of the deuterium and tritium are decreased by the
D–T fusion reaction (nD = nT = n/2) and

1
nD

dnD

dt
= −nT〈σv〉 , n(t) = n0

1
1 + n0〈σv〉t/2 .
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Fig. 18.1. Conceptual drawing of implosion. (a) Irradiation from all sides by laser
or particle beam. (b) Expansion of plasma from the pellet surface and implosion
due to the reaction of the outward plasma jet

When the plasma is confined during the time τ , the fuel-burn ratio fB is
given by

fB ≡ n0 − n(τ)
n0

=
n0〈σv〉τ/2

1 + n0〈σv〉τ/2 =
n0τ

2/〈σv〉 + n0τ
, (18.2)

and the fusion output energy ENF is

ENF = fBnV
QNF

2
. (18.3)

When the core gain Gcore is defined by

Gcore ≡ ENF

Efuel
, (18.4)

the pellet gain Gpellet is

Gpellet ≡ ENF

EL
= ηhGcore , (18.5)

which reduces to

Gpellet = ηh

(
QNF

2〈εfuel〉
)

n0τ

2/〈σv〉 + n0τ
. (18.6)

Let us consider the energy balance of a possible inertial fusion reactor. The
conversion efficiency of the thermal-to-electric energy is ηel, and the conver-
sion efficiency of the electric energy to output energy of the driver is denoted
by ηL. Then at least

ηelηLGpellet > 1
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Fig. 18.2. Energy flow diagram of an inertial confinement reactor

is necessary to obtain usable net energy from the reactor (see Fig. 18.2).
(When ηL ∼ 0.1, ηel ∼ 0.4 are assumed, Gpellet > 25 is necessary.) Therefore
we find from (18.6)

nτ >
4〈εfuel〉

ηelηLηhQNF〈σv〉
1

1 − 2〈εfuel〉/(ηelηLηhQNF)
. (18.7)

The confinement time τ is the characteristic expansion time, expressed by
[18.2]

τ ≈ r

3cs
, c2s =

5
3
p

ρm
=

10
3
κT

mi
, (18.8)

where cs is the sound velocity. Since the volume V of the core is

V =
4πr3

3
,

equation (18.1) reduces to

EL =
4π
ηh
nr3〈εfuel〉 . (18.9)

Equations (18.2) and (18.8) yield

τ =
fB

(1 − fB)
2

n〈σv〉 , (18.10)

r = 5.5
(
κT

mi

)1/2

τ . (18.11)

The fuel-burn ratio fB now reduces to

fB =
ρmr

6csmi/〈σv〉 + ρmr
, β(T ) ≡ 6csmi

〈σv〉 , (18.12)

where mi is the average mass of D and T particles (mi = 2.5mp, where mp is
the proton mass). When κT = 10 keV, then 〈σv〉 � 1.1 × 10−16 cm3s−1 and
β(T ) ≈ 26 g/cm2. The plasma density is expressed by the ratio with respect
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Fig. 18.3. Pressure, temperature and density profiles for the isobar model ignition
configuration

to the solid density nsolid = 5 × 1022 cm−3 or the mass density ρm solid =
minsolid = 0.21 g/cm3. Equations (18.10), (18.11) and (18.9) yield

τ = 0.36 × 10−6f ′
B

(nsolid

n

)
(s) , (18.13)

r = 1.2f ′
B

(nsolid

n

)
× 102 (cm) , (18.14)

EL =
1
ηh

〈εfuel〉4π
3
nV ∝ 〈εfuel〉

ηh

(nsolid

n

)2
f ′
B

3
, (18.15)

Gpellet ∼ ηhfB
QNF/2
〈εfuel〉

∼
( ηh

0.1

)( fB
0.1

)
88

〈εfuel〉 eV
× 103 , (18.16)

where
f ′
B ≡ fB

1 − fB =
ρmr

β(T)
.

Equation (18.14) is equivalent to

rρm ∼ 26f ′
B g/cm2 .

Let us estimate the internal energy of the fuel Efuel. At the time of com-
pression, almost all the inward-going energy has been converted into internal
energy and the pressure is nearly uniform over the total (hot and cold) fuel
region at ignition (isobar model) [18.3]. But the central spark region becomes
hot and is surrounded by the cold compressed fuel (see Fig. 18.3). The inter-
nal energy of solid cold DT fuel per unit volume is given by the product of the
Fermi energy εF = (h̄2/2me) × (3π2n)2/3, where h̄ = h/2π is Planck’s con-
stant and me is the electron mass, and the density with a factor of 3/5. The
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Fermi energy of electrons with solid density n = 5×1022 cm−3 is εF,s = 4.9 eV.
If preheating occurs before compression starts, the energy density of the cold
fuel is

n〈εfuel〉 =
3
5
αnεF =

3
5
αn

(
h̄2

2me

)
(3π2n)2/3 . (18.17)

α = 2–3 is called the preheating factor. Then the fuel energy is

Efuel = 3nsκTsVs +
3
5
αεFncVc =

3
5
αεFncVf , (18.18)

because of the pressure balance 2nsκTs = (2/5)αεF, where Vs, rs and Vf , rf
are the volumes and radii of the spark region and the total region of the fuel,
respectively. Vc is the volume of the cold compressed region Vc = Vf − Vs.
Ts and ns are the temperature and density of the spark region and nc is the
density of the cold compressed region. Then the fusion output is

ENF ∼ fB
2
ncVcQNF , fB ∼ ρc(rf − rs)

β(T ) + ρc(rf − rs) . (18.19)

Here the contribution from the spark region is neglected (nsVs � ncVc). The
core gain Gcore is

Gcore ∼
[

ρc(rf − rs)
β(T ) + ρc(rf − rs)

]
QNF/2

(3/5)αεF
Vc

Vf
. (18.20)

The ignition condition is given by [18.4, 18.5]

ρsrs > 0.3–0.4 g/cm2 when κT ≈ 5 keV , (18.21)

and the slowing-down length λ' of alpha particles is given by [18.6, 18.7]
ρλ' = 0.015T 5/4

keV g/cm2 and ρsrs > ρλ' is required.
Let us take the example of nc = 2000nsolid. In this case ρc = 420 g/cm3

and εF = 786 eV. The mass density of the spark region is ρs = αεFρc/5κTs =
26.4 g/cm3 (κTs = 5 keV, α = 2). From the ignition condition we choose
rs = 0.015 cm. The value of the fuel radius is chosen as rc = 0.03 cm. Then
we have 〈εfuel〉 = 0.6αεF = 943 eV, assuming α = 2 and Efuel = 1.7 MJ. The
driver energy becomes EL = 17 MJ under the assumption that ηh = 0.1 and
the pellet gain is Gpellet = 3.2 × 102 for fB ∼ 0.34 (β(T) ∼ 12g/cm3) for
T ∼ 17 keV.

The critical issue for an inertial fusion reactor is how to produce extremely
high-density plasmas by implosion. Hence, the optimum design of fuel pellet
structures and materials is important. Technological issues for energy drivers
involve increasing the efficiency of laser drivers and improving the focusing
of light ions or heavy ion beams.
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Fig. 18.4. Pellet structure. A: ablator, P: pusher, D-T: solid D–T fuel, V: vacuum

18.2 Implosion

A typical pellet structure is shown in Fig. 18.4. Outside the spherical shell
of deuterium–tritium fuel, there is a pusher cell, which plays the role of a
piston during compression; an ablator cell with low-Z material surrounds the
pusher cell and the fuel. The heating efficiency ηh is the conversion ratio of
the driver energy to the thermal energy of the compressed core fuel. The
heating efficiency depends on the interaction of the driver energy with the
ablator, the transport process of the particles, and the energy and motion of
the plasma fluid. The driver energy is absorbed on the surface of the ablator
and the plasma is produced and heated.

The plasma then expands and the inner deuterium–tritium fuel shell is
accelerated inward by the reaction of the outward plasma jet. The implosion
takes place at the center. Therefore the heating efficiency ηh is the product of
three terms, i.e., the absorption ratio ηab of the driver energy by the ablator,
the conversion ratio ηhydro of the absorbed driver energy to the kinetic energy
of hydrodynamic fluid motion, and the conversion ratio ηT of the kinetic
energy of the hydrodynamic motion to the internal energy of the compressed
core:

ηh = ηabηhydroηT.

The internal energy of the solid deuterium–tritium fuel per unit volume is
given by (3/5)nεF. The internal energy of solid deuterium–tritium per unit
mass w0 can be estimated to be w0 = 1.1× 108 J/kg. If the preheating occurs
before the compression starts, the initial internal energy is increased to αpw0,
and then the solid deuterium–tritium fuel is compressed adiabatically. Using
the equation of state for an ideal gas, the internal energy w after compression
is

w = αpw0

(
ρ

ρ0

)2/3

,
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where ρ0 and ρ are the mass densities before and after compression. If the
preheating is well suppressed and αp is of the order of 2–3, the internal energy
per unit mass after 2000× compression is w ∼ (4.5)×1010 J/kg. This value w
corresponds to the kinetic energy of unit mass with velocity v ∼ 3 × 105m/s
(w = v2/2). Therefore, if the spherical fuel shell is accelerated to this velocity
and if the kinetic energy is converted with good efficiency ηT into the internal
energy of the fuel core at the center, then compression with 2000 times mass
density of the solid deuterium–tritium is possible.

When the pellet is irradiated from all sides by the energy driver, the
plasma expands with velocity u from the surface of the ablator. Then the
spherical shell with mass M is accelerated inward by the reaction with the
ablation pressure Pa. The inward velocity v of the spherical shell can be
analyzed by the rocket model with an outward plasma jet [18.8, 18.9]:

d(Mv)
dt

= −dM
dt
u = SPa , (18.22)

where S is the surface area of the shell. When the average mass density and
the thickness of the spherical shell are denoted by ρ and ∆, respectively, the
mass M is M = ρS∆. The outward velocity u of the expanding plasma is
usually much larger than the inward velocity v of the spherical shell, and u is
almost constant. The change in the sum of the kinetic energies of the plasma
jet and the spherical shell is equal to the absorbed power of the energy driver:

ηabILS =
d
dt

(
1
2
Mv2

)
+

1
2

(
−dM

dt

)
u2 , (18.23)

where IL is the input power per unit area of the energy driver. From (18.22)
and (18.23), the absorbed energy Ea reduces to

Ea =
∫
ηabILS dt ≈ 1

2
(∆M)u2 , (18.24)

where the approximations u � v, and u = const. are used. The quantity
∆M is the absolute value of the change in the mass of the spherical shell.
The pressure Pa is estimated from (18.22) and (18.23) as follows:

Pa =
u

S

(
−dM

dt

)
≈ 2ηabIL

1
u
. (18.25)

Then the conversion ratio ηhydro of the absorbed energy to the kinetic energy
of the spherical shell is

ηhydro =
1

2Ea
(M0 − ∆M)v2 =

M0 − ∆M
∆M

( v
u

)2
.

Since the rocket equation (18.22) implies v/u = − ln
[
(M0 − ∆M

]
/M0), the

conversion ratio ηhydro is
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ηhydro =
(
M0

∆M
− 1
)[

ln
(

1 − ∆M
M0

)]2
≈ ∆M
M0

, (18.26)

assuming that ∆M/M0 � 1.
The final inward velocity of the accelerated spherical shell must still be

larger than v ∼ 3 × 105 m/s. The necessary ablation pressure Pa can be
obtained from (18.22) with the relation S = 4πr2, and the approximation
M ≈ M0Pa ≈ const. as follows:

dv
dt

=
4πPa

M0
r2 =

Pa

ρ0r20∆0
r2 , v = −dr

dt
.

Integration of vdv/dt gives

Pa =
3
2
ρ0v

2 ∆0

r0
, (18.27)

where ρ0, r0, and ∆0 are the mass density, the radius, and the thick-
ness of the spherical shell at the initial conditions, respectively. When
r0/∆0 = 20 and ρ0 = 0.21 g/cm3, the necessary ablation pressure is
Pa = 1.4×1012 Newton/m2 = 14 Mbar (1 atm = 1.013 bar) in order to achieve
the velocity v = 3 × 105 m/s. Therefore the energy flux intensity IL required
from the driver is

ηabIL =
Pau

2
. (18.28)

For the evaluation of the velocity u of the expanding plasma, the interaction
of the driver energy and the ablator cell must be taken into account. In this
section the case of the laser driver is described. Let the sound velocity of
the plasma at the ablator surface be cs and the mass density be ρc. The
energy extracted by the plasma jet from the ablator surface per unit time
is 4ρcc3s and this must be equal to the absorbed power ηabIL. The plasma
density is around the cutoff density corresponding to the laser light frequency
(wavelength), i.e.,

u ∼ 4cs , ηabIL ∼ 4mDTncc
3
s ,

where mDT = 2.5 × 1.67 × 10−27 kg is the average mass of deuterium and
tritium, and the cutoff density is nc = 1.1 × 1027/λ2 (µm) m−3, with λ the
wavelength of the laser in units of µm. From (18.28), we have

Pa = 13
[
(ηabIL)14
λ(µm)

]2/3

(Mbar) , (18.29)

where (ηabIL)14 is the value in 1014 W/cm2. This scaling is consistent with
the experimental results in the range 1 < (ηabIL)14 < 10.

Most implosion research is carried out by the laser driver. The observed
absorption rate ηab tends to decrease according to the increase in laser light
intensity IL.
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The absorption rate is measured for an Nd glass laser with wavelength
1.06 µm (red), second harmonic 0.53 µm (green), and third harmonic 0.35 µm
(blue). The absorption is better for shorter wavelengths, and it is ηab ≈ 0.9–
0.8 for λ = 0.35 µm in the range IL = 1014–1015 W/cm2. The conversion
ratio ηhydro determined by experiment is 0.1–0.15. The conversion ratio ηT
is expected to be ηT > 0.5. In order to compress the fuel to extremely high
density, it is necessary to avoid the preheating the inner pellet during the
implosion process, since the pressure of the inner part of the pellet must be
kept as low as possible before compression. When laser light with a long wave-
length (CO2 laser λ = 10.6 µm) is used, high-energy electrons are produced
by the laser–plasma interaction and these penetrate into the inner part of
the pellet and preheat it. However, the production of high-energy electrons
is much lower in short-wavelength experiments.

18.3 MHD Instabilities

In the accelerating phase of the implosion process, the low density plasma
ablating from the surface of the ablator accelerates the high density fuel, so
that Rayleigh–Taylor (RT) instability is likely to occur at the ablation front.
Furthermore, the boundary of the central spark region (low density) and main
pusher fuel (high density) can be unstable in the decelerating phase near the
stagnation time of the implosion process. The resulting RT instability may
cause mixing of the fuel and ablator material in the accelerating phase, and
mixing of the pusher fuel into the central spark region in the decelerating
phase, thereby severely degrading the pellet performance.

Let us consider the case where a fluid with mass density ρh is supported
against acceleration g by a fluid with lower density of ρl. In this case the
growth rate of Rayleigh–Taylor instability is given by [18.10]

γ = (αAgk)1/2 , αA =
ρh − ρl
ρh + ρl

, (18.30)

where k is the wave number of the perturbation in the direction perpendicular
to the acceleration. When ρh � ρl, the growth rate is γ = (gk)1/2. When
the density gradient is finite with scale length L, the growth rate becomes
γ ∼ (αAg/L)1/2 when kL � 1.

The dispersion relations of the RT perturbation near the ablation front
that are widely used constitute an analytical fit to numerical simulation and
are given by [18.11,18.12]

γ =
(

kg

1 + kL

)1/2

− β̂kVa , (18.31)

where β̂ is a constant with β̂ = 1–3 and Va is the flow velocity across the
ablation front in the frame moving with the ablation front. The first term in
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Fig. 18.5. Numerical simulation of the side-on image of the spatial distribution of
a perturbed sample of planar target [18.2]. The ablated low density plasma is in
the upper region and the acceleration is upward

(18.31) is the usual one with the correction for the finite density gradient,
and the second one is a stabilizing term due to the convective effect, as will
be seen in the following.

Let us consider the case where the region of high density is x < 0 and
the acceleration g is in the positive x direction. The wave number in the y
direction is k. The irrotational incompressible flow velocity (vx, vy) is given
by

vx =
∂φ

∂y
, vy = −∂φ

∂x
, ∆φ = 0 ,

so that the stream function φ is

φ = φ0 exp(−k|x| + iky) exp γ0t ,

in the frame moving with the ablation front. When the fluid flows with veloc-
ity Va (positive x direction), the coordinate of the fluid element is x = x0+Vat
and φ is expressed by (x > 0)

φ = φ0 exp
[− k(x0 + Vat) + iky

]
exp γ0t

= φ0 exp(−kx0 + iky) exp(γ0 − kVa)t . (18.32)

This equation demonstrates the stabilizing effect of the convective fluid. Fig-
ure 18.5 shows the results of numerical simulation [18.13], in good agreement
with experiment.

When a shock encounters a fluid discontinuity, transmitted and reflected
shocks are generated. These are then refracted by any perturbations at the
fluid interface. The modulated shocks produce pressure variations in the up-
stream and downstream fluids that reinforce the initial interfacial perturba-
tions and cause them to grow. This type of instability is called a Richtmyer–
Meshkov instability [18.14,18.15].
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Fig. 18.6. Growth of perturbation due to Rayleigh–Taylor instability and
Richtmyer–Meshkov instability [18.17]

When an impulse of acceleration g(t) = ∆Uδ(t) is applied, a single si-
nusoidal perturbation ξ obeys dξ/dt = α∗

Ak∆Uξ
∗
0 , where α∗

A and ξ∗
0 are the

post-shock values at t = 0+. With a constant k, the amplitude grows linearly
in time and eventually saturates when the amplitude becomes large, kξ ∼ 1.
Thus, short wavelength modes grow quickly, but they saturate and will be
overtaken by longer wavelength, slower-growing modes [18.16].

When a shock encounters the perturbed fluid discontinuity, the pressure
gradient ∇p and density gradient ∇ρ are not necessarily parallel and a flow
vortex can be induced. The equation for an ideal fluid is

du

dt
= −1

ρ
∇p . (18.33)

Noting the vortex ω = ∇ × u, the rotation of (18.33) reduces to

dω

dt
= (ω · ∇)u − ω(∇ · u) +

1
ρ2

∇ρ× ∇p . (18.34)

The third term on the left-hand side of (18.34) induces the vortex and helps
the growth of the perturbation of RT instability [18.17], as shown in Fig. 18.6.

In conclusion, effective implosion requires high quality spherical symmetry
of the irradiating laser light intensity and target structures. Moreover, the
limit of the radius, the density of the compressed fuel core, and the required
laser input energy are determined by the extent to which RT mixing can be
minimized.

18.4 Fast Ignition

Ultra-high intensity lasers with petawatt output (1015 W) have been devel-
oped by the technology of chirp pulse amplification [18.18] and a new ap-
proach called fast ignition [18.19] is being actively studied. One scenario for
hot ignition has three phases. First a fuel capsule is imploded as in the usual
approach to assemble a high density fuel configuration. Second, a hole is



348 18 Inertial Confinement

Fig. 18.7. A configuration for efficient heating of the imploded core plasma using
an ultra-intense laser as fast ignitor

bored through the capsule corona composed of ablated material, as the crit-
ical density is pushed close to the high density core of the capsule by the
ponderomotive force associated with the high intensity laser light. Finally,
the fuel is ignited by suprathermal electrons, produced in the high-intensity
laser–plasma interactions, which then propagate from critical density to this
high density core (see Fig. 18.7). This new scheme, if realized, could separate
the process of implosion and self-spark of the central spot and also drasti-
cally reduce the difficulties involved with implosion, allowing lower quality
fabrication and less stringent beam quality and symmetry requirements from
the implosion driver.

Fuel ignition requires the hot spot to reach an average temperature of
5 keV within a fuel areal density of (ρr)hs = 0.3–0.4 g/cm2 (see Sect. 18.1).
The mass of the hot spot region is

Mhs(g) =
4πρhsr

3
hs

3
= 4π

(ρr)3hs

3ρ2hs
∼ 4.2

(0.4)3

ρ2hs
=

0.27
ρ2hs(g)

,

where ρhs, rhs are the mass density and radius of the hot spot region, respec-
tively. The thermal energy of the heated fuel is

Ehs =
Mhs

mi
3κT = 31

TkeV

ρ2hs
(MJ) .

The energy Ef of the cold imploded fuel before fast ignition is
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Ef =
3
5
αεF

Mf

mi
= 0.33αρ2/3

f Mf (MJ) ,

where Mf is the mass of the main fuel in units of g and the mass density ρf
is in units of g/cm3.

When the ignition energy is injected sufficiently rapidly, the hot spot and
main fuel are not in pressure equilibrium and the uniform density model can
be used. Then the total energy Efuel of the fuel is given by

Efuel = 31
Ths

ρ2
+ 0.33αρ2/3Mf (MJ) , (18.35)

and the fusion output energy ENF is

ENF = fB
Mf

mi

QNF

2
= 334 × 103fBMf (MJ) . (18.36)

Therefore the core gain Gcore reduces to

Gcore =
334Mfρrf/

[
β(T ) + ρrf

]
31Ths/ρ2 + 0.33αρ2/3Mf

. (18.37)

Let us consider the example of ρf = 1000ρsolid = 210 g/cm3. We choose
rhs = 0.002 cm and rf = 0.01 cm. Then we have Mf = 0.88 × 10−3 g, Efuel =
(3.5 + 20.5) = 24 kJ, fB = 0.22, ENF = 65.3 MJ, Gcore = 2.7 × 103, assuming
α = 2, κThs = 5 keV, β(T ) ∼ 7 g/cm2, where β(T ) is about 7 g/cm2 for
κT = 30–40 keV, and EL = 240 kJ, Gpellet = 2.7×102, under the assumption
that ηh = 0.1.

Let us estimate the laser power required for fast ignition. The energy
needed to ignite the hot spot region (ρmr > 0.4 g/cm2, ρm ∼ 103ρsolid,
κT ∼ 5 keV) is at least 7–8 kJ, taking heating efficiency into account. The
confinement time τ = r/(3cs) is of the order of 8 ps. Therefore a power of
1015 W = 1 petawatt is necessary. When the radius of the hot spot is 0.02 mm,
the intensity of the laser beam becomes 1020 W/cm2.

The ponderomotive force F p of the laser beam is given by [see (18.40) at
the end of this chapter]

F p = −ω
2
p

ω2 ∇ε0〈E2〉
2

. (18.38)

A laser beam of finite diameter causes a radially directed ponderomotive
force in a plasma. This force moves plasma out of the beam, so that the
plasma frequency ωp is lower and the dielectric constant ε is higher inside the
beam than outside. The plasma acts as a convex lens resulting in the self-
focus of the laser beam. The ponderomotive force will also push the critical
surface forward, resulting in the laser channel forming an over-dense plasma
[18.20]. The pressure of the cold imploded fuel with density of n = 103nsolid
is 2/5αεFn ∼ 3.2 × 1015 Pa (1 bar = 105 Pa ∼ 1 atm) and the pressure due to
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Fig. 18.8. Configuration of Hohlraum target

the ponderomotive force of the laser beam with intensity IL = 1024 W/m2 is
ε0〈E2〉/2 = IL/c ∼ 3 × 1015 Pa. The critical surface can therefore be pushed
into the core plasma. Once the channel is created in the plasma with a critical
(cutoff) density, the laser light heats the plasma by J ×B heating [18.21], in
which the oscillating component of the ponderomotive force [see (18.39)] can
lead to heating, and also by ‘not-so-resonant’ resonance absorption [18.22].
The interaction of dense plasma and ultra-high intensity laser light is being
actively studied in experiments [18.23] and computer simulations.

Hohlraum Target

The implosion process just described is for directly irradiated pellets. The
other case is indirectly irradiated pellets. The outer cylindrical case surrounds
the fuel pellet, as shown in Fig. 18.8. The inner surface of the outer cylindrical
case is irradiated by the laser light, and the laser energy is converted into X-
ray energy and plasma energy. The converted X-rays and the plasma particles
irradiate the inner fuel pellet and implosion occurs. The X-ray and plasma
energy is confined between the outer cylindrical case and the inner fuel pellet
and is used for effective implosion. This type of pellet is called a Hohlraum
target [18.2]. In this configuration, the possibility of using a heavy ion beam
as energy driver is being examined [18.24].

Recent activities in inertial confinement fusion including the NIF (Na-
tional Ignition Facility) are well described in [18.25].

Ponderomotive Force

The electron equation of motion in the electromagnetic wave E(r, t) =
Ê(r) cos(k·r − ωt) is

m
dv

dt
= −e(E + v × B) .
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Here we assume that Ê(r) varies slowly on the scale of the wavelength. Using
the notation α ≡ k·r − ωt, the magnetic field B is given by

∂B

∂t
= −∇ × E = ∇ × Ê cosα+ k × Ê sinα ,

B =
∇ × Ê

ω
sinα+

k × Ê

ω
cosα .

To first order, we neglect the second-order term v × B, whence

m
dv1

dt
= −eE(r0, t) = −eÊ(r0) cos(k·r0 − ωt) ,

v1 =
eÊ(r0)
mω

sin(k·r0 − ωt) , r1 =
eÊ(r0)
mω2 cos(k·r0 − ωt) ,

where r0 is the initial position. We expand E(r, t) about r0:

E(r, t) = E(r0, t) + (r1·∇)E(r, t)|r0

= E(r0, t) + (r1·∇)Ê cosα0 − Ê(r1·k) sinα0 ,

where α0 ≡ k·r0 − ωt. To second order, we must add the term v1 × B :

m
dv2

dt
= −e

[
(r1·∇)Ê cosα0 − Ê(r1·k) sinα0

]
−ev1 ×

(
∇ × Ê sinα0 +

k × Ê

ω
cosα0

)

= − e2

mω2

[
(Ê·∇)Ê cos2 α0 + Ê × ∇ × Ê sin2 α0

]
− e2

mω2

[
−(Ê·k)Ê + Ê × k × Ê

]
sinα0 cosα0

= − e2

2mω2

{
∇Ê

2

2
[
1 − cos 2(k·r0 − ωt)]+ 2(Ê·∇)Ê cos 2(k·r0 − ωt)

+kÊ
2
sin 2(k·r0 − ωt) − 2(k·Ê)Ê sin 2(k·r0 − ωt)

}
. (18.39)

Here we have used the formulas

Ê × (∇ × Ê) =
1
2
∇(Ê·Ê) − (Ê·∇)Ê ,

Ê × (k × Ê) = kÊ
2 − (k·Ê)Ê .
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In the case of a transverse electromagnetic wave, the terms (Ê·∇)Ê and
(k·Ê)Ê are negligible and the terms due to the Lorentz force dominate. The
time average of mdv2/dt becomes

m

〈
dv2

dt

〉
= − e2

4mω2 ∇Ê
2
.

This is the effective nonlinear force on a single electron. The nonlinear force
on the plasma per unit volume is

nm

〈
dv2

dt

〉
= −ω

2
p

ω2 ∇ε0Ê
2

4
= −ω

2
p

ω2 ∇ε0〈E2〉
2

, (18.40)

where ωp is the electron plasma frequency. This force is called the pondero-
motive force.
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Greenward density 275
Greenward–Hugill–Murakami parame-

ter 276
group velocity 182
guiding center 16
gyro-Bohm diffusion coefficient 88
gyro-Landau-fluid model 245
gyrofluid model 245
gyrokinetic particle model 249

H mode 286
Hain–Lüst MHD equation 118
Hamiltonian equation of motion 36
Harris instability 202
helical hole 304
helical symmetry 34, 325
Hermite matrix 180
high beta-poloidal H mode 290
Hohlraum target 350
hollow current profiles 132
hoop force 68
horizontal positional stability 274
hybrid resonance 153



Index 369

ICRF heating 189
ignition condition 11
implosion 342
inertial confinement 337
interchange instability 93, 345
intermediate region 82
internal disruption 275
INTOR 315
ion Bernstein wave 192
ion cyclotron resonance 153, 160
ion cyclotron wave 160
ion drift frequency 134
ion temperature gradient mode see

ITG mode
ion–ion hybrid heating 191
ion–ion hybrid resonance 190
isobar model 340
ITER 315
ITG mode 135

kinetic Alfvén eigenmodes (KTAE)
237

kinetic Alfvén wave 225
kink instability 107
Kruskal–Shafranov condition 107

L mode 286
L wave 152
Lagrange equation of motion 35
Landau damping 169, 187
Langmuir wave 14
Larmor motion 15
Larmor radius 15
laser plasma 337
LHCD see lower hybrid current drive
LHH see lower hybrid heating
line of magnetic force 33
linearized equation of MHD 99
linearized Vlasov equation 203
Liouville’s theorem 47
longitudinal adiabatic invariant 21
Lorentz condition 32
loss cone 20
loss-cone instability 202
lower hybrid current drive 293
lower hybrid heating 196
lower hybrid resonance 161, 192

macroscopic instabilities 91

magnetic
axis 39
fluctuation 89, 99, 204
helicity 320
induction 31
intensity 31
moment 19
probe 270
Reynolds number 57
surface 33
viscosity 57
well depth 99

magnetoacoustic slow wave 60
magnetoacoustic wave 59
magnetohydrodynamic equation 51
magnetohydrodynamic instability 91
major axis 38
major radius 39
Maxwell distribution function 13
Maxwell’s equations 31
mean free path 23
MHD equation see magnetohydrody-

namic equation
MHD instability see magnetohydro-

dynamic instability
MHD model 240
MHD region 82
microscopic instability 199
minimum-B condition 94
minor axis 39
minor disruption see internal

disruption
minor radius 39
minority heating 192
Mirnov coil 270
mirror 19, 336
mirror ratio 19
mode conversion 178, 192
modified Bessel function model 322

NBCD see neutral beam current drive
NBI see neutral beam injection
negative dielectric constant 201
negative energy wave 202
negative shear 132, 290
neoclassical diffusion

of stellarator 333
of tokamak 82

neoclassical tearing mode 310



370 Index

neutral beam current drive 301
neutral beam injection 26

of negative ion source 293
normalized beta see Troyon factor
nuclear fusion reactions 7

Ohm’s law 54
ohmic heating 28
open end system 336
orbit surface 43
ordinary wave 152
oscillating field current drive 325

paramagnetism 63
particle confinement time 75

of mirror 336
pellet gain 337
permeability 32
PEST code 241
Pfirsch–Schlüter factor 79
Pfirsch–Schlüter current 71
pitch minimum 322
plasma dispersion function 185, 209
plasma frequency 149
plasma parameter 5
plateau region 82
Poisson’s equation 248, 254
polarization 152

current 45
drift 45

poloidal beta 62, 66, 70
poloidal magnetic field 39
ponderomotive force 352
Poynting vector 178
preheating 342
pulsed poloidal current drive (PPCD)

323

quasi-linear theory of evolution in the
distribution function 174

R wave 152
radiation loss 9, 284
rare collisional region 82
ray tracing 182
Rayleigh–Taylor instability see

interchange instability
resistive drift instability 145
resistive instability 137

resonance 153, 160, 163
reversed field pinch 319
RFP see reversed field pinch
Richtmyer–Meshkov instability 346
rippling mode 142
Rogowsky coil 270
rotational transform angle 39, 328
runaway electron 27
Rutherford term 310

safety factor 108, 142, 277
sausage instability 106
scalar potential 31
scrape-off layer 279
separatrix 279, 327
Shafranov shift 133
shear Alfvén wave see torsional

Alfvén wave
shear parameter 114
sheared flow 288
slow wave 153
slowing down time of ion beam 27
small solution 114
SOL see scrape-off layer
solid-state X-ray detector 271
specific electric resistivity 28
specific volume 97
spherical tokamak 266
stationary convective loss 88
stellarator 325
strongly coupled plasma 6
superbanana 333
superparticle 252
supershot 290
Suydam’s criterion 114

TAE see toroidal Alfvén eigenmode
tandem mirror 336
tearing instability 142
thermal conductivity 76
thermal diffusion coefficient 76
thermal flux 76
tokamak device 269
tokamak reactor 315
toroidal Alfvén eigenmode 226
toroidal drift 38
toroidal precession velocity 224
toroidicity-induced Alfvén eigenmode

see toroidal Alfvén eigenmode
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torsional Alfvén wave 59, 159, 225
transit time damping 171, 187
translational symmetry 34
transversal adiabatic invariant 21
trapped particle see banana particle
trapped particle instability 202
triangularity-induced Alfvén eigen-

modes (NAE) 237
Troyon factor 277

untrapped particle 41
upper hybrid resonance 162

vector potential 31
velocity space distribution function

13

velocity space instability see
microscopic instability

vertical positional stability 273
VH mode 290
virial theorem 72
Vlasov’s equation 50

Ware’s pinch 45
wave heating 178
wave propagation 178
weakly coupled plasma 6
whistler wave 164

X point 327
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