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PREFACE

This book is not meant to be a textbook of the theory of atomic
nuclei. It is merely a selection of certain topics in the theory,
and even-these topics are treated in only an elementary way.
Until a more complete textbook is written, the reader who wishes
to obtain a thorough knowledge of nuclear theory will have to
consult the original literature, or for certain topics the articles
of the present author in Reviews of Modern Physics (Vol. 8, p. 83,
1936; Vol. 9, pp. 69 and 245, 1937).

The emphasis in this book is placed on the problem of nuclear
forces. This problem is the central problem of nuclear physics.
The problem is treated entirely from the empirical point of view,
and I have made an effort to present the evidence available on
nuclear forces from the behavior of the simplest nuclear systems.
Purely theoretical considerations about nuclear forces, particularly
the meson theory of these forces, are treated with the greatest
brevity, because they are not yet in a form in which they would
permit useful predictions.

As a second field of nuclear physics which is sufficiently well
developed and fundamental, I have chosen the theory of beta
disintegration.

The theory of the compound nucleus and its consequences for
the prediction of the probabilities of nuclear reactions I have
treated only very briefly. The reason for this was partly a matter
of time: the lecture course on which these chapters are based
contained only t\venty lectures, and it seemed more profitable
to treat part of the theory thoroughly than to treat all of it superfi­
cially. Partly, however, the brevity of treatment of the more com­
plicated nuclei was purposeful; in the last ten years the workers
in this field have shown an inclination to devote a large proportion
of their effort to the study of the complicated nuclei, and the
danger exists that the right perspective may be forgotten. The
wartime research in the atomic energy project tended further to
emphasize the usefulness of the predictions from the theory of the
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vi PREFACE

compound nucleus. To correct this tendency, it seemed even
more important to put special emphasis on the fundamental
theory of nuclear forces and off the theory of the complicated
nuclei.

The theory of the fission process has been left out entirely for
the same reason: this process is, after all, only a very special
phenomenon in nuclear physics.

The theory of alpha radioactivity could be left out ,vith a good
conscience because it is given in many elementary textbooks on
wave mechanics. With some regrets I also had to leave out the
theory of nuclear systems containing from 3 to 60 nuclear par­
ticles, especially the successful calculations of binding energies
on the basis of group theory by Wigner.

H. A. BETHE

CORNELL UNIVERSITY

July, 1947



CONTENTS

A. DESCRIPTIVE THEORY OF NUCLEI

I. Basic Facts about Nuclei 1
II. The Size of Nuclei 6

III. Beta Disintegration (Descriptive) 10
IV. Further Facts on Nuclear Disintegrations 13
V. Spin and Statistics 15

VI. Beta Disintegration and the Neutrino 20

B. QUANTITATIVE THEORY OF NUCLEAR FORCES

VII. Physical Properties of Proton, Neutron, and Deuteron 23
VIII. Ground State of the Deuteron 29

IX. Scattering of Neutrons by Free Protons 37
X. Scattering of Neutrons by Protons Bound in Molecules 47

XI. Interaction of the Deuteron with Radiation 56
XII. Scattering of Protons by Protons 64

XIII. Non-Central Forces 73
XIV. Saturation of Nuclear Forces 80

XV. Sketch of the Meson Theory of Nuclear Forces 94

c. TOPICS NOT RELATED TO NUCLEAR FORCES

XVI. Beta Disintegration 97
XVII. The Compound Nucleus 109

ApPENDIX: TABLE OF NUCLEAR SPECIES 123

INDEX 141





A. DESCRIPTIVE THEORY OF NUCLEI

I. BASIC FACTS ABOUT NUCLEI

Each atomic nucleus has a charge Ze, a mass M, and a mass num­
ber A. Ze is an integral multiple of the charge e of the proton. M
is very close to an integral multiple of the proton mass. The integer
A ,vhich gives the multiple closest to M is the mass number.

The nuclear charge Z determines all the chemical properties
associated with an element. It has values from Z = 0 (neutron)
to Z = 96 (curium) for observed nuclei. Some of these do not
occur in nature: Z = 0, 43, 61, 85, 87 (87 occurs in very small
abundance as a member of a branch of the radioactive family
of Ac), 93, 94, 95, 96.

rl"he mass number A ranges from A = 1 (proton or neutron)
to A = 242 (curium). N early every mass number in this range
is found in nature. The notable exceptions A = 5 and A = 8
have good reasons for not being stable long enough to be observed
even in the laboratory. The mass numbers of form 4n + 1 beyond
209 (Bi) are not found in nat ure but many of them have been pro­
duced in the laboratory. These nuclei belong to a radioactive
series ,vhich does not contain any long-lived members and, there­
fore, could not have survived on earth.

Isotopes. Nuclei of the same Z but different A are called iso­
topes. On the average there are about three stable isotopes for
each Z. To distinguish isotopes A is usually ,,"ritten as a right
superscript and for convenience Z is sometimes written as a left
superscript. To illustrate: Si28

, Si29
, and Si30 are the stable iso­

topes of Si. In addition to the stable isotopes, most elements also
possess radioactive isotopes, e.g., Si has the known isotopes Si27

and Sial. Of these, Si27 is {3+ radioactive (having too little mass
for its charge) and decays ,vith a half-life of 4 seconds to Al27 and
a positron

Si27 = {3+ + A127

Si31 (having too little charge for its mass) decays with a half-life
of 170 minutes to p31 and an electron

Si31 = {3- + p31

1



2 DESCRIPTIVE THEORY OF NUCLEI

Isobars. For a given A, there may well be several possible
values of Z (isobars). There are many instances of stable isobaric
pairs, e.g., 22Ti5o 24Cr50, or 44Rul04 46Pd104, and some stable iso-
baric triples, e.g., 40Zr96 42Mo96 44Ru96, as well as numerous radio­
active isobars.

Regularities. There are several striking regularities in a table
of the stable nuclei. Nuclei of even Z are much more numerous
than those of odd Z. Nuclei of even A are more numerous than
those of odd A. Nearly all nuclei with even A have even Z; the
exceptions are IH2, 3Li6, 5B10, and 7N14• (There are also 19K40

and 71Lu176 but these are not properly stable, being /3-radioactive
with very long lifetimes.) The fact that nuclei with odd Z cannot
have even A ,vith the listed exceptions is what makes stable nuclei
with even Z more numerous than those with odd Z, for a nucleus
with even Z may have A either odd or even. Table 1 illustrates

TABLE 1

SAMPLE OF ISOTOPE STATISTICS

Z
48
49
50
51

Number of
Stable Isotopes

8
2

10
2

Number with
Odd A

2
2
3
2

Nunlber with
Even A

6
o
7
o

all three rules. For odd A, there is apparently no preference
bet\veen even Z and odd Z.

Energy. In considerations involving the energy of nuclei the
mass M is important. According to Einstein's relation, the energy
equivalent of a change in mass dM is

ilE = dMc2

Such changes in mass occur when protons and neutrons are changed
from one configuration to another in which they are bound more
or less strongly. There is no evidence at present for the total
annihilation of heavy particles (protons or neutrons). Such a
thing might happen if an "antiproton" (Z = -I, A = +1) met
a proton (Z = +1, A = +1) but the antiproton has not as yet
been observed. On the other hand, the total annihilation of elec-
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trons and positrons with the emission of two light quanta does
occur.

Modem mass spectrographic techniques permit the determina­
tion of M to better than one part in 105 (an improvement by
another order of magnitude would just make possible the deter-
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FIG. 1. Packing fractions of atomic nuclei.

mination of the decrease in the atomic weight of a heavy atom due
to the binding of the electrons in the field of the nucleus). From
such data the binding energies of nuclei can be calculated. For
example, using the atomic weight scale based on 0 16

M(OI6) = 16.00000

there results (using the masses given in the Appendix) M(IH1
)

= 1.00812, M(n) = 1.00893. Supposing that the 0 16 nucleus
is made up of 8 protons and 8 neutrons, the binding energy is
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8M(H1)+8M(n) - 16.00000 = 0.13640 mass unit. It is to be
noted that the masses of the neutral atoms 0 16 and HI are used
here (and will be used throughout the book). The justification
for this is that the masses of 8 electrons of the 0 16 are canceled
in the calculation by the masses of the 8 electrons of the hydrogen.
(The change in the mass of the 8 electrons, due to their stronger
binding around the 0 16 nucleus, is beyond the experimental error
in the mass determinations.)

Two quantities useful in describing the binding energy of nuclei
are:

Mass excess == ~ == AI - A

Packing fraction == f == t1/A
The packing fraction is plotted as a function of A in Fig. 1.

Consider now a nuclear reaction

3Li7 + IH1~ 2He4 + 2He4

Both the mass number and charge balance. In addition, mass­
energy conservation must hold. rrhe balance sheet is as follo\vs:

Initial mass:

M(3Li7)

.ill(IlIt)

Total

Final mass:

2M(2He4)

= 7.01822
= 1.00812

= 8.02634

= 8.00780

Mass decrease = 0.01854 mass unit

To get the energy equivalent in electron volts ~E = t:.Mc2, the
conversion factor

1 milli-mass unit = 0.931 Mev

is used (see Nuclear Physics A,* p. 86). ,This gives 17.26 Mev
which is released as kinetic energy. If the 3Li7 and IH1 had little

• The three papers by H. A. Bethe in Reviews of Modern Physics, namely,
Vol. 8, 83, 1936 (with R. F. Bacher); Vol. 9, 69, 1937; and Vol. 9, 245, 1937
(with M. S. Livingston), are hereinafter referred to as Nuclear Physics A,
B, and C.



BASIC FACTS ABOUT NUCLEI 5

velocity, the a-particles will fly off in nearly opposite directions,
each carrying 8.63-Mev kinetic energy. Systematic observations
of reactions such as this have verified the Einstein relation very
accurately over a great range of nuclear phenomena and are one
of the strongest bulwarks of the special theory of relativity. In
all nuclear reactions involving heavy particles only, energy has
been found to be strictly conserved.

Stability. For a nucleus to be stable it must have a mass which
is less than the combined masses of any pair of nuclei made by
subdividing it. For example, 3Li7 is stable against the sub­
division

because M(3Li7) = 7.01822 and M(2He4) + 1\f(lH3) = 4.00390
+ 3.01702 = 7.02092. 2He5 is unstable becauRe the decom­
position

is energetically possible. The maRS of IIe5 can be found by study­
ing the reaction

Knowing the maRses M(Li7
), M(H2

), and M(He4
), and measuring

the kinetic energy and momentum of I.Ji7, H 2, and He4
, the mass

of Re5 can be determined. It is 5.0137 mass units. This is 0.9
milli-mass unit greater than M(He4

) + M(no). (There is the
possibility that the measured mass of Re5 might not be for the
ground state, but in all kno,vn nuclear reactions involving heavy
particles, whenever a reaction yields an excited state, it also yields
the ground state. Since the experiment gives a unique mass it is
presumed to correspond to the ground state.) Li5 is unstable to
the decomposition Li5 ~ 2He4 + HI, and Be8 to the decomposi~

tion Be8
---) He4 + He4

• This explains the absence of nuclell of
mass numbers 5 and 8 which was mentioned above. I"

Fundamental Particles in Nuclei. Present ideas are that a
nucleus is composed of protons and neutrons: Z protons and
(A - Z) neutrons. This replaces older conceptions which let a
nucleus be made up of protons and electrons. Thus the binding
energy of any nucleus will be M - (A - Z)M(nO) - (Z)M(H1).



II. THE SIZE OF NUCLEI

METHODS OF DETERMINING SIZE

There are four main methods of determining the size of nuclei.
1. Lifetimes for Alpha Radioactivity. Nuclei with a mass num­

ber A greater than 208 are found to emit helium nuclei (a-parti­
cles) spontaneously according to the equation

ZA ~ (Z - 2)A-4 + 2He4

The lifetimes of such radioactive nuclei are found to vary over
a wide range and to depend strongly on the amount of energy
available for the reaction. r!'his is illustrated by the tabulation:

Element
Th
RaC'

Lifetime
2 X 1010 years
10-3 second

Energy
4.34 Mev
7.83 Mev

Radius
8.7 X 10-13 em
9.4 X 10-13 em

A factor of 2 in energy is thus seen to be equivalent to a factor
of the order of 1020 in lifetime. This strong energy dependence

V(r)

E

R R' ,.
FIG. 2. Nuclear potential barrier for a-particles.

was explained by Gamow, and simultaneously by Gurney and
Condon, to result from the necessity of the a-particle to penetrate
a potential barrier before escaping.

At large distances, the potential is that due to Coulomb repul­
sion between a nucleus of charge Z - 2 and one of charge 2. At
some very short distance, attractive nuclear forces predominate.
The potential as a function of separation r between a-particle and
residual nucleus is shown in Fig. 2.

6



SIZE OF NUCLEI 7

The inner radius R at which nuclear forces come into play is
defined as the nuclear radius. The probability of an a-particle of
energy E penetrating the barrier is given by the Wentzel-Brillouin­
Kramers method to be proportional to

exp [ - ~LR

' V2M[V(r) - E] drJ (1)

This is called the transmission coefficient of the barrier.
Comparison of this formula \vith experimental lifetimes shows

that the enormous variation of lifetime ,vith energy is indeed ex­
plained by the theory, using very nearly the same radius for all
radioactive nuclei. Moreover, the formula permits a determina­
tion of nuclear radii. With three exceptions, all of these lie between
8.4 and 9.8 X 10-13 cm. The success of this first application of
quantum mechanics to nuclear phenomena gives us confidence in
the general use of quantum mechanics for the description of the
motion of heavy particles in nuclei.

2. Cross Section for Fast Neutrons. The cross section presented
by a nucleus to a fast neutron should approach the geometrical
cross ~ection for neutron wave lengths small compared to the
nuclear 'radius: "A/2r = A « R. (This condition is required in
order to make a geometrical point of vie\v permissible.) Under
this condition every neutron hitting the nucleus strongly interacts
with it and should, therefore, cause some reaction.

The geometrical cross section is rR2
, thllS permitting a calcula­

tion of the nuclear radius from the observed cross sections for fast
neutrons. ("Shadow scattering" must be excluded.)

Heavy elements Pb, U, etc., are found to have cross sections of
about 3 X 10-24 cm2 so that their radius is 10-12 cm. Middle
clements such as Fe are found to have cross sections of about
1 X 10-24 cm2, corresponding to radii of about 6 X 10-13 cm.

3. Electrostatic Interaction of Protons in the Nucleus. If the
binding energies of a pair of nuclei which differ only in the inter­
change of neutrons and protons are compared, a difference in
binding energy ,vhich increases ,vith the charge of the nuclei is
found. Examples of such "mirror" nuclei are:
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If neutrons and protons are assumed to be the same as far as
nuclear forces alone are concerned, this difference in binding
energy is the result of the additional Coulomb repulsion of tIle
extra proton in the field of the original Z protons. To calculate
this, all protons are assumed to be uniformly distributed over a
sphere of radius R. Then the extra Coulomb repulsion energy
due to the replacement of a neutron by a proton is

(2)

Using this formula and the observed differences in binding
energy to determine nuclear radii leads to the empirical formula

R = 1.5 X 10-13A~ cm (3)

This is a reasonable result since it implies that there is roughly a
constant volume for each nuclear particle. It further supports the
original assumption that neutrons and protons have similar nuclear
forces. Furthermore, extrapolation of the result to high atomic
weight is in very good agreement with radii given by the a-activity
and the neutron-scattering Inethod.

4. Cross Sections for Nuclear Reactions Involving Charged Par­
ticles. These reactions also involve the penetration of a barrier.
The cross sections, in comparison with neutron cross sections, give
the transmission of the barrier. Nuclear radii can be computed
from these transmissions, thus extending the "a-activity method"
down to non-radioactive nuclei. The results are in agreement
with the empirical formula 3.

CONCLUSIONS REGARDING THE CONSTITUENTS OF NUCLEI

The size of nuclei is a strong argument for the presence of protons
and neutrons in the nucleus rather than protons and electrons.
The de Broglie wave length of a neutron or a proton in the nucleus
can be estimated to be:

~ = nip = n/V2ME r--.I 1.5 X 10-13 em (4)

if we use a kinetic energy E of 8 Mev, in other ,vords of the same
order of magnitude as the binding energy per nucleon.
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On the other hand, for electrons at this relativistic energy, we
would have

~ = nip ~ nclE~ 2.5 X 10-12 cm (5)
'If

Thus the neutron or proton wave length is of the right order of
magnitude for the space available in the nucleus, whereas the
electron wave length is much too large.

Another argument against the presence of electrons is the long
lifetime found for ~-emitting nuclei. The long lifetime is not
explainable by a potential barrier, because the low electron mass
would result in a high transmission coefficient in any barrier the
width of which is reasonable considering the nuclear size. More­
over, no barrier at all should be expected for electrons because
they are attracted by the Coulomb field of the nucleus. Finally,
great difficulties would be encountered in any relativistic theory
of the electron if barriers of height greater than 2mc2 (m = electron
mass) ,vcre assumed.



m BETA DISINTEGRATION (DESCRIPTIVE)

1. Nuclei are found in nature (and more can be produced arti­
ficially) that emit electrons spontaneously according to the reac­
tion scheme:

ZA ~ (Z + l)A + ~-

The energy available for such a reaction is given by:

E = Mn(Z"~) - Mn(Z + l)A - m(e)

== Ma{ZA) - Zm(e) - Mq,(Z + l)A + (Z + l)m(e) - m(e)

= Ma{ZA) - Ma(Z + l)A (6)

where the subscript n denotes nuclear mass and the subscript a
atomic Itlass.

2. Artificially radioactive substances are found which emit
positrons:

ZA ~ (Z - l)A + ~+

Writing out the mass-energy equation as before, it is now found
that the energy available is

E = Ma(ZA) - Ma(Z - l)A - 2m(e) (7)

3. Whenever positron emission occurs, electron capture (usually
from the K-shell) can also occur, according to the scheme:

ZA + {3K- -+ (Z - l)A

leading to the same nucleus. Clearly, the energy available for
electron capture is

E = Ma(ZA) - Ma(Z - l)A (8)

or greater than that available for positron emission by 2 electron
masses..

Whenever energy is available for a disintegration process, i.e.,
E > 0, this process can be expected to Occur-although, in some
eases, the probability will be small due to nuclear selection rules.

It should be noted that the energies just computed neglect the
binding energies of the electrons in the atom since these are usually

10



BETA DISINTEGRATION (DESCRIPTIVE) 11

small compared with nuclear binding energies. ThiB &88umption,
of course, is not completely valid for K-electron capture in the
heavier elements but becomes increasingly valid for electrons from
the outer shells of the atom.

STABILITY OF ISOBARS

The criteria for {j-decay account for the rules for existence of
isobars in nature: of two nuclei ZA and (Z - l)A, the one with
greater atomic mass is unstable against (j-decay to the other. This
makes the existence in nature of isobars of neighboring Z unlikely.
There are, however, many (about fifty) isobar pairs in nature of
the type ZA and (Z - 2)A, \vith both Z and A even. The intel"-
mediate nucleus, (Z - l)A, of odd charge, decays to one or the
other of its neighbors, or sometimes to both.

The occurrence of the exceptional pairs ZA, (Z - l)A is accounted
for by a very long half-life of the unstable partner for p-decay.
These pairs are discussed in the follo'ving.

A = 40 18A40 19K 40 --+ 20Ca40
fJ-

Spin 0 Spin 4 Spin 0

K40 occurs only in 1 part to 4000 of stable K. It has a haJf­
life of about 4.5 X 1016 seconds for decay by fj--emission to Ca40•

Its decay to A40 has not been observed. The long half-life is ac­
counted for in the theory by sho\ving that the probability of such
a large nuclear spin change is very small.

A = 87 37Rb87 --+ 38Sr87
fJ-

Spin % Spin ~

Each of these elements is a common isotope; the half-life is
6 X 1018 seconds. The radioactivity of Rb has been known for a
considerable time. rfhe identification of the radioactive isotope
came from the discovery of a small quantity of Sr87, without any
other isotope of Sr, in a mineral containing Rb. The long half­
life is again accounted for by large nuclear spin change.

Some of the details of the remaining exceptional isobar pairs
are not known.

A = 113

It is known that Cdl13 has spin % and In1I3 has spin %. The
large spin change will undoubtedly correspond to a long lifetime.·
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The disintegration has not been observed here but the high rela­
tive abundance of Cdl13 and the low relative abundance of Inl13

lead to the conclusion that the transformation is probably
K-electron capture by Inl13

•

A = 115

The spin of 49Inl15 is known to be %; the spin of 50Snl15 is un­
known.

A = 123

The spin of 51Sb123 is ~ ; the spin of 52Te123 is unknown. In these
two pairs, the high value of the known spin makes it probable that,
like the known decay processes just referred to, they have long
half-lives because of large spin change.

A = 187 760S187~ 75Re187

This was the first case in which K-capture (by osmium) was actually
observed with a natural isotope (as described in Nature, 1945).

APPLICATION TO NUCLEAR ABUNDANCE

In Chapter I it was stated that (1) with very few exceptions
the stable nuclei with even A had even Z, and (2) the number of
species with even A is larger than with odd A. These facts can
now be interpreted. It need only be assumed that for even A the
energy (atomic mass) is generally smaller for even Z than for
odd Z, whereas for odd A there is no such alternation. Then, a
nucleus with even A and odd Z will have an atomic mass greater
than one or both of its neighbors and may decay to one or both
by p-emission and K-capture. rrhis explains rule 1. Both neigh­
bors of the above-mentioned nucleus, however, may be stable,
giving the possibility of isobars differing by two units of nuclear
charge: for even A, there are therefore many pairs of isobars. For
any given odd A, on the other hand, there is usually only one possi­
ble nucleus-either of even Z or of odd Z. This explains rule 2.

Moreover, for a given even Z, the isotopes with even A are more
stable and therefore generally extend farther away from the mean
value of the mass number. For instance, xenon has the stable
isotopes

A == 124 126 128 130 132
129 131

134 136



IV. FURTHER FACTS ON NUCLEAR DISINTEGRATIONS

'Y-RAYS

Nuclei not only emit particles (heavy particles and electrons),
but also ~-radiation (light quanta). Such emission is possible
only when a nucleus goes from an excited energy state to a lower
energy state. The half-lives for dipole radiation (nuclear spin
change t:&I = 0, or ±1) are generally of the order of 10-17 second
to about 10-13 second. Quadrupole radiation (tJ.I = ±2) also
often gives lifetimes of the order of 10-13 second, in contrast to
the situation in atomic spectra where the lifetimes are much longer
for quadrupole than for dipole radiation. However, for lower fre­
quency (hv ~ 20-200 kev) the lifetime for quadrupole radiation
is much longer (10-10 to 10-3 second). For octopole radiation
(d! = ±3) of similarly lo,v energy the half-life may be from 10-5

second to several hours, and for aI = ±4 from 1 second to many
years.

When the lowest excited state of a nucleus has a sufficiently
different spin from the ground state that the half-life is very long,
the excited state is called metastable, or an isomer of the nucleus.
The excited isomer is usually denoted by an asterisk; In* was
the first observed.

SUMMARY OF DECAY PROCESSES

Consider a nucleus ZA in some quantum state.
1. It may be unstable to the emission of heavy particles.
Neutrons. The lifetime will be 10-21 to 10-18 second, except

if the energy available to the neutron is exceedingly small (a few
electron volts), when it may be as long as 10-12 second. A lower
limit can be calculated roughly by finding the time for a neutron of
average velocity to travel the nuclear radius, i.e., 10-12 cm/(109 cm
per second) = 10-21 second; thus a nucleus unstable to neutron
emission is scarcely observable.

13



14 DESCRIPTIVE THEORY OF NUCLEI

Protons. If the protons have enough energy to go over the
Coulomb barrier, the lifetimes are about equal to the lifetimes for
neutrons. If the protons must penetrate the Coulomb barrier
because their kinetic energies are low, then the Gamow penetra­
tion factor leads to much longer lifetimes.

a-Particles. In general, the same rule applies as for protons
except that for a given energy, longer half-lives are to be expected
because of the larger mass and charge of the a-particle. In par­
ticular, to get observable half-lives (as short as 1014 years), the
energy of the a-particle in the nucleus must be greater than 3.5
Mev for Z = 92, greater than 1 key for Z = 4.

2. It may be unstable to the cmis~ion of light quanta. Half­
lives are in general from 10-17 second to 10-10 second, but occa­
sionally (in isomers, for instance) run from seconds to years.

3. Emission of {3-rays or K-electron capture. Half-lives are
0.02 second to 1011 years, and more.

Thus the unstable nuclei can be put into three groups:
Group I. Lives unobservably short:
First, from 10-21 to 10-18 second: The very unstable nuclei

Hes and Li5 in their ground states, or any nucleus in an excited
state of high enough energy so that a fast neutron, fast proton, or
a-particle can be emitted.

Second, from 10-17 to about 10-6 second: Nearly all excited
states of nuclei not contained in the group just described. rrhese
nuclei will in general lose their energy by 'i'-emission, or sometimes
by emission of slow neutrons, protons, etc.

Group II. Lives observable (10-6 second to 1012 years): Nearly
all l3-radioactive nuclei, many a-radioactive ones, and many
"nuclear isomers" emitting ,,-rays.

Group III. Lives unobservably long: If a radioactive nucleus
has a half-life greater than about 1014 years, its activity will be
unobservable. For a-radioactivity, this sets a lower limit on the
energy of the a-particles which will make the activity observable
for a given nuclear charge Z as follows:

Emm. (a) == 0.13

z == 10 30

0.8

50

1.7

70

2.7

90

3.7 Mev



v. SPIN AND STATISTICS

SPIN

Each nucleus has an intrinsic angular momentum which inter­
acts with angular momenta of electrons or other nuclei. It is
measured in units of Ii and, according to quantum mechanics, can
take on only integral or half-integral values. Three methods of
determining nuclear spin are:

1. Hyperjine Structure of Spectra. The interaction of the mag­
netic moments of the electrons and the nucleus may separate in
energy the states of the atom corresponding to various values of
the angular momentum and result in splitting of spectral lines.

2. Band Spectra. Intensity variations of alternate lines in
band spectra of molecules with identical nuclei yield nuclear spins.

3. Molecular Beams. The magnetic moment associated with
the nuclear spin is used to perform a Stern-Gerlach experiment.
splitting a beam of atoms in an inhomogeneous magnetic field
according to the component of their nuclear magnetic moments
in the direction of the field. First measurements were by Stem
and Rabi. Important modifications were made by Rabi, by
Purcell, and by Bloch and Hansen and their collaborators.

Table 2 gives the observed spins of some nuclei.

TABLE 2

SAMPLE SPINS

Electron J.2
HI J1
H2 1
He4 0

Li6 1 0 16 0
Li7 %
Cl2 0
N 14 1

Nuclear Ctm8titue:nts. These observed spin values are another
reason for rejecting a nuclear model composed of electrons and
protons. Such a model for the nucleus ZA has A protons and A - Z
electrons or 2A - Z particles.. On this basis nuclei with odd Z
(and therefore an odd total number of particles) should have half­
integer spin and nuclei with even Z integer or zero spin. 1Nl4r

15



16 DESCRIPTIVE THEORY OF NUCLEI

(9)

with spin 1 was the first contradiction found, but there are many
more, e.g.,

IH2, 3Li6 have spin 1

48Cdll1, 48Cdl13 have spin 72

On the other hand, the model ZA = (A - Z) neutrons + Z pro­
tons gives A particles in all, and, assuming half-integer spin for
the neutron, the rule becomes: even A, integer or zero spin; odd A,
half-integer spin. This agrees with all measured spins.

STATISTICS

Identical particles obey either Fermi statistics or Bose statistics,
that is, a wave function 1/I(Pl, P2), depending on the space and
spin coordinates PI and P2 of particles 1 and 2, will be either
symmetrical or antisymmetrical under exchange of PI and P2

I+1/I(PIP2) Bose
1/I(P2 , PI) =

-1/I(P1P2) Fermi

Electrons obey Fermi statistics. To determine the statistics of
nuclei, we shall investigate how an exchange of identical nuclei
will affect the sign of the wave function for a molecule.

Consider a diatomic molecule with identical nuclei. Its wave
function may be written

1/1 = 1/1elec.~vibrationProtation(1 nuel. spin (10)

Let the operation of exchanging nuclear coordinates and spins be
denoted by P. Then

P1/Ielec. = ±1/Ielec.

The sign may be plus or minus; it is known from molecular spec­
troscopy and is usually + for the ground state. Further,

P <Pvibration = +~vibration

because ~ depends on R (the distance of the nuclei) alone and
PR= R.

Now

Plm(x) is an associated Legendre polynomial, and (J and cP are the
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polar coordinates of the two nuclei. P means replacing the direc­
tion (J, cP by the opposite direction, Le.,

O--:'1r-8

Now

Further,

so that

Thus p is symmetrical for even land antisymmetrical for odd l.
The analysis of ['>Unucl. spin can be carried out for arbitrary spin

but is particularly simple for spin zero in ,vhich case PUnucl. spin

= +anucl. spin. Thus for spin zero (and symmetrical 1/Ielec), the
total wave function'" is antisymmetrical for odd l and symmetrical
for even l. Now the nuclei must certainly obey either Bose or
Fermi statistics. Therefore, either only the states with even l,
or only those with odd l, can exist. Evidence for thi.'3 conclusion
is obtained from the band spectra. These show indeed that if
the nuclei have spin zero, every second rotational state of the mole­
cule is absent. Indeed, it is found in every instance that only the
even rotational states exist, indicating that all the nuclei of zero
spin (which have been found previously to have even A) obey
Bose statistics. Similarly, it has been found that all nuclei of even
A (including those with a spin that is not zero) obey Bose statistics
and all those of odd A obey Fermi statistics.

This result throws light on the nature and statistics of the elemen­
tary particles in the nucleus. Suppose each elementary particle
obeys Fermi statistics, then t/I must be antisymmetrical to inter­
change of a pair of elementary particles. Therefore, if each of
the two identical nuclei contains an even number of particles the
exchange of the nuclei is equivalent to an even number of changes
of sign; and'" must be symmetrical to an interchange of nuclei
(Bose statistics); if each nucleus contains an odd number of
particles then exchange of the nuclei is equivalent to an odd
number of changes of sign, i.e., 1/1 is antisymmetrical to nuclear
lllterchange (Fermi statistics).
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Now it was found experimentally that nuclei with even A obey
Bose statistics, those with odd A Fermi statistics.. This can be
explained if the total number of elementary particles in a nucleus
is A-as is the case if neutrons and protons are considered the
fundamental particles-and if, further, each of the elementary
particles obeys Fermi statistics. This proves that the neutron
must obey Fermi statistics, just as the proton for which this fact
is known experimentally. The electron-proton hypothesis fails
again becau.se, in this case, the number of elementary particles is
2A - Z, so that nuclei with even/odd Z would have to obey Bose/
Fermi statistics, whereas A rather than Z was found to be the
actual criterion.

NUCLEI OF NON-ZERO SPIN

A nucleus of total angular momentum I can have a component
M in any prescribed direction, taking any of the values I, I - 1,
· .., -I a total of 21 + 1 states. Ji'or two identical nuclei
(21 + 1)2 wave functions of the form 1fM l(A)1/IM2(B) can be
constructed. If the two nuclei are identical, these simple products
must be replaced by linear combinations of these products which
are symmetric or antisymmetric for interchange of the nuclei.

If M 1 = M 2 the products themselves are (21 + 1) symmetric
wave functions. The remaining (21 + 1) (21) functions where M 1

and M 2 are unequal have the form 1/IMl(A)1/IMs(B) and "MICA)
t/tM l(B). Each such pair is to be replaced by one symmetric and
one antisymmetric wave function of the form

(12)

Thus half of the 21(21 + 1) functions are antisymmetric, giving
1(21 + 1) antisymmetric functions. A similar number of sym­
metric functions exist, to which the (21 + 1) symmetric functions
with M 1 = M 2 must be added. Thus the ratio of the number of
symmetric to antisymmetric functions is

(1 + 1)(21 + 1) I + 1
=--

1(21 + 1) 1
(13)

If the electronic wave function for the molecule is symmetric,
it was shown on page 17 that interchange of nuclei produces a
factor (-1)1 in the total molecular wave function, where Z is the



SPIN AND STATISTICS 19

rotational quantum number. Thus, if the nuclei obey Bose
statistics, symmetric nuclear spin functions must be com~,ined

with even l rotational states, and antisymmetric spins ,vith odd l.
Because of the statistical weights attached to the spin states the
intensity of even rotational lines will be (I + 1)/1 as great as
that of neighboring odd rotational lines.

For Fermi statistics of the nuclei, the spin and the rotational
states combine in a manner opposite to that previously stated,
and the odd rotational lines are more intense in the ratio (1 + 1)//.

Thus, by determining which lines are more intense, even or odd,

...
.E
E
~
c:
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~
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~
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FIG. 3. Intensity alternation in band spectra.

the nuclear statistics is determined, and by measuring the ratio
of intensities of adjacent lines the nuclear spin is obtained.

The reason why adjacent lines must be compared is that the
rotational lines vary in intensity with l (neglecting nuclear spin),
according to the occupation numbers of the rotational states; in
other words, according to a Boltzmann distribution

(2l + 1) exp [-E(l)/(kT)] (14)

where E(l) = B l(l + 1), and B is a constant (about 0.01 ev in H2).

This Boltzmann distribution provides a smooth intensity varia­
tion about which the even and the odd states alternate in intensity
(Fig. 3).

The experimental results of band spectra measurements, as
already pointed out, are that nuclei of even A obey Bose statistics
and nuclei of ~dd A obey Fermi statistics. Experimental deter­
minations of nuclear spin are tabulated in the Appendix. One
empirical rule from these data is that, with no known exceptions,
all nuclei of even Z and even A have total nuclear spin zero.



VI. BETA DISINTEGRATION AND THE NEUTRINO

Negative ~-disintegrationconsists in the conversion of a neutron
into a proton and an electron. Since all three particles are assumed
to have spin 72 and Fermi statistics, this reaction will not conserve
spin and statistics unless it is assumed that an additional particle
of spin ~ and Fermi statistics is emitted. To conserve charge
this particle must be neutral. It is al~o clear that its mass must
be small, and it is therefore called the neutrino (Italian for "the
small neutral one").

DISTRIBUTION OF ELECTRON ENERGIES

'fhe emitted Ii-particles are found to have a continuous distri­
bution of energies, up to a certain maximum Eo, rather than a
single energy (Fig. 4). The neutrino is therefore also needed to

N(E>

E Eo
FIG. 4. Energy distribution in {j-spectrum.

conserve energy; it is assumed to take the remaining energy,
Eo - E, where E is the electron energy. This hypothesis is
strongly supported by the fact that the maximum electron energy
is found within experimental error to be equal to the energy avail­
able for the reaction, as determined from mass data. This shows
also that the neutrino mass must be assumed negligible.

Experimental data supporting this assertion may be found, for
instance, in the p-disintegration of N I3 into CI3 with a maximum
positron energy of 1.20 Mev.

The mass difference between N I3 and CI3 was determined by
measuring the threshold of the reaction (Haxby, Shoupp, Stevens,
and Wells, Phys. Rev. 68, 1035, 1940):

Cl3 + HI --+ Nl3 + n.
20
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The incident proton energy for threshold was measured and cor­
rected to center of mass coordinates by the factor 13/14. The
mass-energy equation then became:

or
2.98 Mev + Cl3 + HI = NI3 + n (15)

N I3 - Cl3 = 2.98 - (n - HI)

= 2.98 - 0.75

N I 3 - Cl3 = 2.23 Mev

where a neutron-proton mass difference of 0.75 Mev is used.
According to equation 7, the energy available for positron

emission is the difference in mass N 13
- CI3

, minus the mass of
2 electrons, so that

E available = 2.23 - 2(0.51) = 1.21 Mev (16)

This checks with the maximum positron energy and proves that
the neutrino mass must be small if not zero.

EXPERIMENTAL EVIDENCE FOR THE NEUTRINO

The only process which a free neutrino can be expected to cause
with certainty is the inverse ~-process which is fundamentally (let­
ting JJ indicate the neutrino) of the form

n + JJ -+ HI + {3-

Actually, to observe this process, it is necesRary, of course, to use
neutrons bound in some nucleus, for instance:

Li7 + JJ --1- Be7 + {3-

This process can occur only if the incident neutrinos have suffi­
cient energy to supply the mass difference between Be7 and Li7•

In any case the cross section for such a reaction would be ex­
tremely small; its order of magnitude is given by the cross section
for striking the nucleus (about 10-24 cm2) and the probability
of ~-decay within a nucleus (about 10-2°), so that the cross sec­
tion would be of the order of 10-44 cm2

, or completely unobserv­
able.

Recoil. The most likely way of verifying the neutrino existence
is to obtain further evidence for its participation in (j-emission.
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For example, the neutrino energy can be determined in two ways:
first, by measuring the electron energy and subtracting it from
the total energy available, and second, by measuring the electron
and nuclear momentum and using conservation of momentum to
obtain the neutrino momentum and energy:

E(lI) = E (available) - E(e)

P(v) = P (nucleus) + pee)

E(,,) = cp(v)

(17)

(18)

where c is the velocity of ligllt (and of the neutrino).
This method, unfortunately, requires measurement of both the

nuclear recoil energy and its direction \vith respect to the electron
momentum. Both of these are very difficult measurements to
make because of the small recoil energy.

A method which avoids these difficulties (J. Allen, Phys. Rev.
61, 692, 1942) is to use K-capture by a light nucleus:

Be7 + {jK --+ Li7 + II

Since the K-electron has negligible momentum, the momentum of
the recoil nucleus will be equal to that of the neutrino. Further,
the emitted neutrinos are monochromatic, having an energy equal
to the difference in mass available. The recoil energy can thus be
easily computed (p = neutrino momentum):

p2 [E(v)/C]2
B' (recoil) = 2Al = 2.NI

[llf(Be7) - M(I.Ji7)]2c4

2Mc2

Using t:&M = 0.85 Mev, and M = mass of J~i7, we get E (re­
coil) = 45 volts.

The measured recoil energies had various values up to a maxi­
mum of 45 volts. The values less than 45 volts may be explained
by a loss in energy of the recoil nuclei on leaving the beryllium
layer.

Further evidence for the existence of the neutrino comes from
the detailed theory of p-disintagration that is described in Chap­
ter XVI.



B. QUANTITATIVE THEORY OF NUCLEAR
FORCES

VII. PHYSICAL PROPERTIES OF PROTON,
NEUTRON, AND DEUTERON

The theory of nuclei is to be contrasted with the theory of
atoms. In the latter, the principal force between the constituent
particles, electrons and nuclei, was known when the theory got
under way, and the problem was to find the proper mechanics to
describe the motion of those particles under the given force i quan­
tum mechanics is the answer to this problem. In nuclei, there are
good reasons to believe that quantum mechanics is correct (the
success of the Gamow theory of a-particle decay is one example),
but the forces are unknown.

In investigating these forces, the crucial test of any theoIy is
the deuteron, which is the simplest stable combination of the
heavy particles (neutrons and protons) which compose nuclei.
The position of the deuteron problem in nuclear theory is similar
to that of the problem of the hydrogen atom in atomic theory.
It tests the theory without aggravating the computational situa­
tion which is already complicated enough in the theory of the
simplest nuclei.

First of all, a tabulation of existing information concerning the
proton, the neutron, and the deuteron may be helpful.

PROTON

Charge: e (makes it easily observable by its ionization in matter).
Ma88: 1.00812 (includes mass of an electron).
Range-kinetic energy relationship.
Protons of a given energy have a definite range in matter of

given density and atomic number (see Nuclear Physics C, p. 269,
for a graph). For example, to-Mev protons have a range of about
1 mm of water.

Spin: ~.

Statistics: Fenni.
~{agneticmoment: +2.7896 nuclear magnetons.

The most accurate measurement is by Rabi, Kellogg, Ramsey,
and Zacharias (Phys. Rev. 56,728, 1939). This magnetic moment

23
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is different from 1 nuclear magneton (= eli/2Mc), which is tne
magnetic moment which it would have if it obeyed the Dirac
equation. The meson theory of nuclear forces gives a qualitative
but as yet no quantitative account of the proton moment. The
positive sign of the magnetic moment indicates that it points in
the same direction as the spin or mechanical moment, which is what
would be expected from a rotating positive distribution of charge.

NEUTRON

-Charge: O.
Mass: 1.00893.
No range-kinetic energy relation~hip.

The neutron can only ionize matter by means of its small mag­
netic moment, which gives practically no ionization at all. It is
detectable only by means of the products of its collisions with
nuclei. Instead of a range-energy relationship the neutron has a
mean free path (of 2 to 20 cm in solids, depending on the velocity
and material). rrhe neutron diffuses through matter.

Spin: half-integral. (Reasons for presuming the spin to be pre-
cisely 72 are given below.)

Statistics: Fermi.
Magnetic moment: -1.9103 ± 0.0012 nuclear magnetons.
The first measurement was by Alvarez and Bloch (Phys. Rev.

57, 111, 1940). A beam of neutrons was passed through a block
of iron saturated by a magnetic field. This polarized the neutrons
with magnetic moments parallel to the field. Then, still in a con­
stant steady field but no,v out of the iron, it was acted on by a
radio-frequ'ency field perpendicular to the steady field. Finally
it p~ed through another iron block, the analyzer, with its satu..
rated magnetic field parallel to the former one, and into a neutron
detector. If the radio frequency were close to the Larmor pre­
cession frequency of the neutron, the beam would be strongly
depolarized in the radio-frequency field and strongly sc~ttered

in the analyzer block. Thus the Larmor precession frequency
was the radio frequency at which fewest neutrons were trans­
mitted. The Larmor frequency divided by H, the steady magnetic
field, is proportional to the gyromagnetic ratio of the neutron, i.e.,

J1 (magnetic moment)
-~ (19)
H (angular momentum)
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The measurement by Alvarez and Bloch gave a value of
1.935 ± 0.02 nuclear magnetons (for a spin of ~).

Recently a much more accurate determination of the neutron
moment was made by Arnold and Roberts (Phys. Rev. 70, 766,
1946). The method was similar to that of Alvarez and Bloch
except that the magnetic field was calibrated by a measurement of
the proton moment in the same field. The experiment therefore
gives directly the ratio of the moments of neutron and proton,
which is exactly the quantity needed in the theory (see Chapter
VII). The value obtained by Arnold and Roberts is the one given
above.

DEUTERON

Charge: e.
Mass: 2.01472 (includes 1 electron).
Spin: 1.
Statistics: Bose.
Magnetic moment: +0.8565 ± 0.0004 nuclear magneton.
All quantities are stated for the ground state of the deuteron.

The magnetic-moment measurement is also published in the paper
on the proton by Rabi and collaborators (Phys. Rev. 66, 728, 1939).

In the quantum mechanical description of the deuteron, it is
reasonable to assume the ground state to be an S state, i.e., a state
of no orbital angular momentum, L = O. This means that the
wave function has no angular nodes. (With plausible assumptions
on the forces it can be proved theoretically that the ground-state
,vave function has no nodes ,vhatever.) With L = 0,1/1 is spherically
symmetrical and the angular momentum of the nucleus is entirely
attributable to spin. Assuming that the neutron has spin ~ the
deuteron spin of 1 implies that the proton and the neutron spins
are parallel. In such a case the magnetic moments should also~dd:

Proton moment = 2.7896 ± 0.0008.

Neutron moment = -1.9103 ± 0.0012.

Sum of the two moments = 0.8793 ± 0.0015.

Deuteron moment = 0.8565 ± 0.0004.

Difference = 0.0228 ± 0.0016.
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It is seen that the deuteron mQlIlent agrees almost but not quite
with the sum of the moments of proton and neutron. The reason
for the small difference will be indicated below.

The approximate agreement can only be achieved by assuming,
as has been done here, that the neutron spin is Y2 and the orbital

TABLE 3

CALCULATED MAGNETIC MOMENT OF THE DEUTERON

A. If the Neutron Moment 18 Negative:

SN ~
SOl 1

L
o
1
2

0.500
0.854
0.677
0.323

-6.232
-2.866

3.866
-2.512
-0.504

B. If the Neutron Moment 18 Positive:

SN ~

SOl 1 2

L
o
1
2

0.500
4.721
2.610

-1.6

3.436
1.968

-0.968
6.190
2.397

SN == assumed spin of the neutron.
S == resultant spin of the deuteron.
L == orbital momentum of the deuteron.
1 == total angular momentum == 1. A dash (-) indicates that these

combinations cannot lead to I = 1.

angular moment of the deuteron is o. This is shown by Table 3,
in which the magnetic moment of the deuteron is calculated for a
great number of different assumptions on the neutron spin, the
sign of the magnetic moment of the neutron, and the value of L,
the orbital momentum in the deuteron ground state. Because
these calculations were made before Roberts' experiments, the
magnetic moment of the neutron was assumed to be 1.93 rather
than 1.91. The results are given in the table.
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It is seen that only S = 1, L = 0 leads to a result that is not very
far from the measured one; all other combinations, especially
those for S = ~~ or for positive neutron moment, are completely
different from the measured moment of the deuteron.

Thus the magnetic-moment measurements are good evidence
for the follo\ving:

1. In the ground state of the deuteron the spins of proton and
neutron are parallel (triplet state).

2. 1"he neutron spin is %.
3. In the ground state of the deuteron the orbital angular

momentum is zero (S-state).
Quadrupole moment. Rabi and his co-,vorkers have shown that

the deuteron also possesses an electric quadrupole moment such
that it appears as a spheroid prolate along the spin axis:

~ = average Z2 for proton = ! . (1.14)
r2 average r2 for proton 3

instead of % as it would be for a spherically symmetrical charge

distribution: (r2 = x2 + y2 + Z2). Thus the wave function 1/1
cannot be independent of the angle 8 between the total spin and
the line joining the nuclei. If 1/1 be expanded in spherical harmonics,
a dependence such as

(21)

must be assumed, ,vhere P2 is a normalized Legendre polynomial.
(No PI term appears because the electric dipole moment is zero.)
In order to obtain the functions u and w, the deuteron problem
must be solved with an explicit assumption about the nuclear
forces. This was done by Rarita and Schwinger (see Chapter
XIII). The most important result of their calculations is the
fraction of the time during which the deuteron has orbital mo­
ment 2, viz.,'

(22)
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Alvarez and Bloch. With this measurement the deuteron moment
was almost exactly the sum of the neutron and the proton mo­
ments. On the other hand, the experimental error was too large
to permit definite conclusions.

This situation has been relieved by the work of Arnold and
Roberts. According to this measurement, the deuteron moment
is smaller than the sum of the moments of the individual particles
by 0.0228 ± 0.0016 nuclear magneton. From this figure it is
possible to calculate the percentage of time during ,vhich the
deuteron is in tIle D state (L = 2). If this state were pure, Lande's
formula would give for the deuteron moment the value 0.3104, on
the basis of the measured moments for proton and neutron. If
the fraction of time in the D state is p, the moment should be

JL = 0.8793(1 - p) + 0.3104p (23)

Setting this equal to the measured moment, p = 4.0 ± 0.3 per
cent is obtained. This value is in excellent agreement ,vith the
theoretical value (equation 22); in fact, the agreement is much
better than is ,varranted by the assumptions made in the theory.
Relativistic corrections may reduce the value of p deduced from
experiment to about 3 per cent (according to calculations of
Schwinger).

In order to account for the electric quadrupole moment, forces
must be introduced which depend on the angle 8 between the line
joining the nuclei and the axis of total spin (purely central forces
give no mixing of states with different L). These are called tenAor
forces; Wigner has established their general characteristics. Ho'v­
ever, in the next few chapters a potential VCr) ,vill be assumed
(r distance between nuclei). This ,vill enable a qualitative account
of the principal features of the deuteron without giving such fine
details as the quadrupole moment.



VIII. GROUND STATE OF THE DEUTERON

Binding Energy. The most important experimental basis for
the theory of the deuteron is its binding energy. This was first
measured by Chadwick and Goldhaber in 1934, using the photo-dis­
integration of deuterons by the 2.62-Mev -y-rays from thorium C':

H2 + h"~ HI + n (24)

This reaction takes place when hv is greater than the binding
energy of the deuteron; the difference between hv and the binding
energy appears as kinetic energy of the neutron and the proton.
Because the momentum of the 'Y-ray is so small, the momenta of
proton and neutron are very nearly equal and opposite, and since
their masses are almost exactly equal, they share the excess energy,
h" minus binding energy, very nearly equally. The energy E of
the proton can be determined by measuring the total ionization
it produces or by measuring its range. The binding energy is
then hv - 2E.

One of the best direct measurements of the deuteron binding
energy is that of Stetter and Jentschke who (by measuring ioni­
zation) obtained a value 2.19 ± 0.03 Mev. (The probable error
has been increased somewhat over that given by the authors.)
Another accurate determination ,vas made by Wiedenbeck and
Marhoefer (Phys. Rev. 67, 54, 1945), who studied the excitation
of the deuteron by ~-rays which were artificially produced by
letting high-energy electrons from a Van de Graaff machine fall
on a heavy target. The authors observed the yield of neutrons
as a functio~ of the electron energy and found a linear relation
which they extrapolated to find the threshold. Although plau­
sible, the linear extrapolation does not seem established beyond
doubt and the result should, therefore, be stated with a conserva­
tive margin of error. It is then 2.185 ± 0.02 Mev. A similar
method was used by Myers and Van Atta, and a similar r~ult

was obtained by Kimura, using a different method.
l\nother accurate determination can be obtained by taking the

difference in mass of the deuteron and of the free constituent
29
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particles. The masses of deuteron and proton are known accu­
rately from mass spectrographic data, and the mass difference of
neutron and proton is known accurately from' measurements on
the reaction chain

C13 (p, n)N13(13+)C 13

(see Chapter VI). The equation

Binding energy = [2M(H l
) + {M(n) - M(R l

)} - M(H2
)]

gives the result 2.19 ± 0.03 Mev. *
Nature of Forces. In order to discuss the deuteron quantum

mechanically, we must know or guess something about the nature
of the "nuclear" force holding neutron and proton together. l~his

force cannot be electrical as the neutron is uncharged; nor can it
be gravitational, for assuming a gravitational force gives an inter­
action potential too small by about a factor 1038

• So we must
accept the nuclear force as a new type of force and try to find out
more about it.

We shall first of all assume a central force, Le., the interaction
potential of neutron and proton is some function VCr), where r is
the distance between the particles. This is only in slight disagree­
ment with known facts; for a central force ,vould yield a ground
state with angular momentum 0, ,vhereas it ,vas shown in Chapter
VII, that the deuteron ground state has a small fraction of the
state l = 2 in addition to the predominant state l = o.

Second, it was Ahown by Wigner that the nuclear force has a
short range. This assumption must be made to explain the low
binding energy (2.19 Mev; about 1 Mev per particle) of the
deuteron compared to that of H 3 (8.5 Mev; about 3 Mev per
particle) and of He4 (28 Mev; about 7 Mev per particle) which
cannot be explained by a long range force (e.g., VCr) '" -l/r) ..
Wigner's argument was essentially that the nuclei with more
particles have more nuclear bonds per particle (D2 has ~, H3 has
%, He4 has % bonds per particle). This in itself is not sufficient
to explain the ratios of binding energy per particle; however, the
larger number of bonds per particle in the heavier nuclei causes
these particles to be pulled within the (short) range of the nuclear

• An exhaustive discussion of the determinations of the binding energy of
the deuteron was given by Stevens (Rev. Mod. Phys. 19, 19, 1947). He
adopts as the best value 2.187 ::I:: O.011.-Note added in prool.
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forces a greater percentage of the time, increasing the binding
energy by a large amount. Thomas has shown by a rigorous
mathematical proof that it is possible to get as large a ratio of
the binding energy of H3 to that of H2 as desired by choosing
the range of forces small enough (and simultaneously adjusting
the depth of the hole to yield the correct binding energy). From
this argument, one would expect that the binding energy of the
deuteron is small compared to the total depth of the potential
hole and that the particles in the deuteron spend a great part of
the time outside the range of the nuclear forces-i.e., the "radius"
of the deuteron is considerably greater than the range of nuclear
forces.

Wave Equation. If the potential V(r) is known, the binding
energy is determined by the Schrodinger equation

V2y;(r, 8, c/» + (2m/li2 )[E - V(r)]y;(r, 8, c/» = 0 (25)

where r is the distance between neutron and proton and m is the
reduced mass

MnAfp
m = ~ ~M (of proton or neutron)

]tIn + Mp

E is negative and numerically equal to the binding energy. Con­
versely, if E is known, equation 25 determines, in principle, one
parameter relating to V(r).

Since l = 0 is being taken for the ground state, '" must be spher-·
ically symmetrical. Making the substitution 1/1 = u(r)jr, equa­
tion 25 takes on the simpler form

d2u M
dTJ + h2 [E - V(r)]u = 0 (26)

We must. now assume a shape for the potential function VCr).
One shape which certainly represents a short range force and also
makes for easy solution of the dif- 0 0] ,
ferential equation is the rectangu- v<) [ 1'0 r~
lar potential well shown in Fig. 5. r - _..t
Here there are t\VO parameters, FIG. 5. Potential "well" of
width and depth of the well; since deuteron.

the SchrOdinger equation with a given E will determine only one
parameter, we expect only to find a relation between Vo and a,
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not definite values for them. With E = - W, where W is posi­
tive, equation 26 becomes for the potential well

d2u M
d~ + h2 (Vo - W)u = 0

for T > a (27b)

til must be continuous and bounded and have a continuous de­
rivative everywhere. Therefore, u = T1/; must llRve the same con­
tinuity condition, must go to zero at r = 0, and must not diverge
faster than r as r --+ ex) • To satisfy the conditions at zero and in­
finity the solution of equation 27 must be

l u=Asinkr for r < a (28a)

u = Be-ar for T > a (28b)
where

k = v'M(Vo - W)/li (29a)

a = v'MW/n (29b)

Relation between Range and Depth of Potential. Now, if u and
its derivative are continuous, then also the derivative of In u must
be continuous; applying this at T = a gives

k cot ka = -a (30)

which conveniently does not involve A and B, but only the two
unknowns a and Yo, W being known = 2.19 Mev. Vo and a are
not restricted further. Thus equation 30 is the relation anticipated
between a and Vo.

Equation 30 can be put in a simpler but approximate form. As
seen above, W is small compared to Vo and can be neglected in
equation 29a. Thus

cotka = -a/k ~ -v'W/Vo (31)

Thus cot ka is negative and small in absolute value. Therefore,
ka is only slightly larger than 7/2. (ka slightly larger than 311'"/2
is not the correct solution, for then there would be a radial node
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tn the wave function 1/1 at kr = 1f', indicating that this'" is not the
lowest energy level, which contradicts our hypothesis.) Using
ka ~ 1r/2 and again neglecting W in the expression for k gives

Voa2 ~ 1r
2n2/4M (32)

Actually Voa2 is slightly greater than the quantity on the right;
but we can be virtually certain that

V oa2 < ~h2/M or ka < 1(' (33)

a result which will be needed later. The expression Voa2 frequently
occurs in nuclear calculations, it often being not necessary to
know Vo an"d a separately.

Other types of short-range potential function give about the
same results as the rectangular well. Potentials of the form
e-r and e-r2 are treated in Nuclear Physics A, and the function
e-r/r is discussed in Phys. Rev., 53, 991, 1938, by Goppert-Mayer
and Sachs.

Discussion of Wave Function. Another result ,vhich does not
depend on the form of the potential (as long as it has a short range)
is the exponential decrease of u(r) for r greater than the range of
nuclear forces. In fact, the function

u = Ce-ar (34)

is close enough to the true u(r) over the whole region to be useful
in many calculations. This is seen clearly by considering Fig. 6.

o

Correct u (r), normalized

u (r) = Ce-ar, normalized

FIG. 6. Exact and approximate wave functions of deuteron ground state.

The quantity l/a can be taken as a measure of the size of the
deuteron. It was shown above that the "radius" of the deuteron
is considerably larger than the range of nuclear forces, i.e.:

I/a» a (35)

Thus most of the area under u(r) occurs for r > a. Using another
form for the potential function changes u(r) appreciably only for
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r < a. Therefore, independent of the shape of the potential,
Ce-ar is close to the true wave function over most of space. This
approximation does not give a bounded 1/1 at r = 0; however,
'" is normalizable, and fortunately the main contribution to the
normalization integral comes from r > a, so the infinity intrC?duces
little error.

QC) co 21l"C2

f \fI2 d T= 411" fo u2 dr = 411"C2 fo e-2ar dr = -- = 1
a

or

C = Va/211"
~'herefore

u(r) = Va/21l" e-ar (36)

is the normalized approximate form of u(r).
If definite values are assigned to a and Vo, then A and B of the

true u(r) given by equation 28 can be found from the continuity
condition and normalization. B is a little greater than C of the
approximate u(r). In fact,

B = Va/2r(1 + >-2aa) (37)

~s a good approximation.
Excited States of the Deuteron. On the basis of the preceding

theory the possibility of other bound states of the deuteron may

Sin k'r .~Sin kr
,~.&~ LGround state

~ , -------
, I ---o ' Ir----=====---

V(r)

FIG. 7. Wave function of the excited state of the deuteron (it it existed).

be investigated. For l = 0 there are no other bound states. For
in the extreme case, binding energy W ~ 0, ka is still only slightly
greater than 1('/2, since W of the ground state was already negligible
compared to Vo in equation 27a. But for the first excited state ka
would have to be greater than 31r/2 since the wave function '"
would have to have a radial node (Fig. 7). But from equation 33,
ka is certainly less than 1r for all positive binding energies. There-
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fore, there is no bound excited state for l = O. There are, of course,
free states.

We shall now prove that the deuteron has no bound excited
states for states of higher l. It will be assumed in this proof that
the force between neutron and proton is the same for higher l as
it was in the case l = o. (The possibility of excited states with
other total spins, especially S = 0, and with a different neutron­
proton force will turn out to be of importance in our future dis­
cussions of neutron-proton scattering.)

To prove that no bound state exists for l ~ 0 we will compute
the minimum well depth V just required to produce a bound state,
Le., one for ,vhich the binding energy W is just zero. This re­
quired well depth will be found to be considerably larger than the
actual well depth as determined above from the binding energy
in the ground state. Since the actual depth is less than the mini­
mum required for binding for states of angular momentum l r!= 0
no such bound states exist.

The differential equation 26, generalized to angular momenta
l ¢. 0 becomes

d2u M l(l + 1)- + - (E - V)u - u = 0 (38)
dr2 h2 r2

The procedure to be followed in a general proof is as follows:
Assume a square well of depth V = - Vo and radius r = a. Find
the solutions to differential equation 38 inside and outside the
well. Match these solutions at r = a. This ,vill give a relation
between well depth Voand binding energy W = - E. Setting W = 0
will give the minimum ,veIl depth.

Only the proof for the case l = 1 will be carried out here, as an
illustration. For this case, the solutions to differential equation 38
are found to be:

u = (sin kr)/kr - cos kr r<a (39a)

u = e-ar[(l/ar) + 1] r>a (39b)

where k2 = M(Vo - W)/h2 (40a)

a.2 = MW/h2 (40b)
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It will be simpler to set W = 0 before satisfying the boundary
conditions. As a ~ 0, the outside solution (3gb) becomes (except
for a multiplying factor)

u = liT r ~ a (41)

This outside solution satisfies

(dldr)(ru) = 0 r~a (42)

The inside solution, in order to match, must satisfy the same condi­
tion at r = a

or

_d_ (kr u) = kr sin kr I
d(kr) T=a

= kasinka = 0 (43)

ka = 1r (43a)

Using the definition of k ,vith IV = 0 from equation 50a:

MVoa2/n2 = 1r
2 (44)

This required ,vell depth V o is almost four times as large as the
actual well depth in the ground state (equation 32). The latter
satisfied an equation like 43a, in ,vhich ka ,vas slightly greater
than 7r/2 but definitely less than 1r (equation 33).

Similar proofs with larger values of l would lead to even larger
required values of ka.
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IX. SCATTERING OF NEUTRONS BY FREE PROTONS

The theory of scattering developed by Born and others is pre­
sented in Mott and Massey, Theory of Atomic Collisions (1933).
The most important result of this theory is the cross section for
scattering in the center-of-mass coordinates:

21r sin 8 dOl . 1
2

do- = 2 L(2l + l)Pl(cos O)(e2~8z - 1)
4k l

The cross section du is defined as the number of neutrons scat­
tered per unit time by one proton through an angle between 8
and 8 + dO, if there is a primary beam intensity of one neutron
per unit area and per unit time. dO = 2r sin 8 dO is the solid angle
in center-of-maRA coordinates, lh is the angular momentum of the
system around its center of mass. The de Broglie wave number
in these coordinates is given by:

k = 21r/X = l/X = P/h = V2mE/h (46)

The relations between center-of-mass coordinates (c.m.) and
laboratory coordinates (lab.) for t,vo particles of equal mass are
given by:

MpMn M
m= ~-

M p + M n 2

8c .m . = 201ab .

E c.m • = ~~Elab.

(47)

(48)

(49)

Equation 47 merely gives the reduced mass of the system in center...
of-mass coordinates. Equation 49 states that only half of the
neutron energy in the laboratory system is available in the center­
of-mass system, the other half representing the kinetic energy of
the center of mass. Equation 48 can be obtained from simple
geometrical considerations.

The phase shifts ~l are measured in radians, and their physical
significance may be seen as follows: At large distances bt)yond the
range of nuclear forces V(r), equation 38 for the radial function

37
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uz(r) associated with angular momentum l and angular distribu­
tion P z (cos 8) reduces to the equation of a free wave. The asymp­
totic solution uz(r) of equation 38 will therefore behave in the same
manner, except for a possible shift in phase, as vl(r), the radial
wave function of a free particle which has angular momentum l:

vz(r) "'-J sin (kr - %lr)

ul(r) "'-J sin (kr - ~lr + Ot)

(large r)

(large r)

(50a)

(50b)

If all the phase shifts Ol ,vere zero, the total \vave u obtained
by adding up all the components of angular momentum l \vould
appear at large distances to add up to the incident plane ,,,ave
with no waves traveling in other directions. This result is veri­
fied if we set Ol = 0 in equation 45 for the scattering crORA
section.

It should also be noted that if the two waves Uz and Vl differ in
phase by Ol = 1l", they are again indistinguishable, and the cross
section (45) vanishes.

The actual computation of 0l for a square-well potential will be
carried out later. This calculation is based, as usual, on matching
solutions inside and outside the well.

PHASE SHIFTS Ol AS A FUNCTION OF ANGULAR MOMENTUM l

Classical Argument. If p is the momentum and b the impact
parameter (classical distance of closest approach) then the angular
momentum is given by:

or

Ir X pi = bp = lh

l = b(p/h) = b/X

(51)

An interaction will only take place if this closest approach distance
b is smaller than the range of nuclear forces a, i.e., if

l < a/~ (52)

Thus for a given energy and definite wave length, only a finite
number of l's contribute to the cross section for collision. The
corresponding quantum mechanical 8tatement is that for any
integral value of l greater than a/X. the phase shift Ol will be
negligibly small.
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According to (52) ~ = a corresponds to the energy below which
only the l = 0 term is of importance; this energy is

E1ab• = 2Ec.m . = 2h2 jMX2 = 2h2/Ma2

2 X 10-54

- (1.6 X 10-24) (2.8 X 10-13)2

= 1.6 X 10-5 erg = 10 Mev (53)

Quantum Mechanical Argument. The quantum mechanical
argument is based on an approximate calClllation of at (see Nuclear
Physics A, p. 119).

sin ~t = (M/b.2k)!o" V(r)Ut(r)Vt(r) dr (54)

The potential well is assumed to be effective only to a distance
r = a, the range of the nuclear forces. On the other hand, in
Nuclear Physics A (p. 115) the functions Ul and Vz are shown to be
small unless r > l"-. rl"he integral will be negligible unless these
ranges overlap, i.e., l < a/-':", which is just the condition found
by the classical argument.

SPHERICAL SYMMETRY OF SCATTERING

The result of these arguments is that 00 is the only important
phase shift for energies up to 10 Mev. If all higher terms in
equation 45 are dropped, the cross section becomes

where
du = dnA2 sin 200

dn = 211" sin (J dO = the solid angle

(55)

(55a)

Thus the cross sect~on (55) is found to be independent of direc­
tion, or spherically syinmetric for neutrons below 10 Mev. This
conclusion is based chiefly on the short-range nature of the forces.
Thus, if spherical symmetry is found experimentally, this will verify
that the forces are short range, and test the applicability of quan­
tum mechanics to such scattering problems.

The best experimental determination of the angular distribution
of scattered neutrons is based on measuring the energy distribu­
tion of the recoil protons. An elementary consideration shows
that uniform angular distribution corresponds to uniform distri-
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bution in energy of the recoil protons from zero to the incident neu­
tron energy (in the laboratory system).

Early cloud-chamber measurements of the angular distribution
showed preferential neutron 'scattering in the forward direction,
i.e., most of the recoil protons were at large angles to the beam.
The energy of the protons is smaller if they are emitted at'large
angles. No'v it could be sho'vn that high energy tracks ,vere often
missed in the experiments because they were long enough to leave
the chamber except ,vhen they \vcre almost in the plane of the
chamber. A check on the azimuthal distribution, for which there
can be no asymmetry, verified this by revealing that most of the
measured long tracks ,vere in the plane of the chamber. Careful
cloud-chamber experiments by Dee and Gilbert produced an ex­
actly spherical symmetry.

Measurements of proton recoil energy by ionization chamber
methods by Ladenburg and his co-,vorkers gave an almost uniform
distribution in energy. Experiments at Los Alamos by Staub and
others indicate uniformity even more accurately to ,vithin an
experimental error of about 1 per cent.

One of the problems for further experimental work is to measure
the deviations from spherical symmetry at higher energies. (See
also Chapter XIV.)

TOTAL CROSS SECTION

The total cross section for seattering of neutrons by protons
follows from integration of equation 55:

(f = 41r ~2 sin 2~O (56)

for energies of the incident neutrons less 'than 10 Mev, where
21r~ is the de Broglie wave length of the neutron in the center-of­
mass system, and 00 is the phase shift of the scattered wave func­
tion for l = o. Outside the range of the nuclear forces, the wave
function, u (a solution of equation 38 with l = 0 and E positive),

will be proportional to sin (kr + 80), where k = v'ME/n
(E = neutron energy in the center-of-mass system = %Elab.;

M = mass of neutron).
The phase shift 80 is determined from the condition that the

logarithmic derivative of the wave function must be continuoll~



(57)

(58)
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at the boundary of the nuclear forces, T = a. For the outside
wave function this derivative is:

d/dr (log U)! = k cot (ka + ao)
a+

The logarithmic derivative of the inside wave function can be
calculated for any given energy from the nuclear potential. How­
ever, it is most desirable to make the calculation as free as possible
from the details of the potential funetion used. This can be done
because it can be sho\vn that, independently of the shape and the
range of the potential, and independently of the energy of the
neutrons (up to about 10 Mev), the logarithmic derivative of the
inside function has the same value as for the ground state, viz.,

d/dr (log U)!a_ = -01

1."0 prove this, ,ve ,vrite the ,vave equations for the t,vo states:
Ground state:

State of energy E:

d2 u/dr2 + (llf/n2)[E - V(r)]u = 0 (60)

Multiplying the first by u, the second by uo, subtracting, and
integrating from 0 to r1 gives

[
u duo _ Uo dU]r' _ ]I,[ (E + W) rr'uuo dr = 0

dr dr 0 h2 Jo

Since u(O) = uo(O) = 0, dividing by u(a)uo(a) and setting r1 = a
gives

(
dUO/ dr _ du/dT) = (d log Uo _ d log u)

Uo U a dr dr a

a ,

M fo uUo dr
= h2 (E + W) u(a)Uo(a) (62)

Now.r: uuo dr = a(uUO)max.~, where 0 < ~ < 1, and since the
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maximum value of UUo is not much larger than the value at a
(this follows, e.g., from Fig. 6),

.r UoU dr = 'YaUo(a)u(a), 0 < 'Y < 1 (63)

For the rectangular-well potential an approximate calculation.gives
'Y = 72. Inserting (d log uo/dr)a = -0:, we get:

(d log u/dr)a == -a - (ME/h2 + MW/h2)l'a

= -a - (k2 + a2)'Ya (64)

Thus the equation for 00 is

k cot(ka + 00) = -0: - (0:2 + k2)(ya) (65)

A first approximation to the correct solution of this equation
neglects the second term on the right and the term ka in the co­
tangent. This is equivalent to setting the range, a, of the nuclear
forces equal to zero. Then \ve get

eot(oo) = -ex/k (66)

Setting ka = 0 is not a bad approximation for neutrons '\Tith
,vave lengths greater than a few times a, Le., with energies less
than a fe\v Mev. The neglect of the last term (0:2 + k2)'Ya, com­
pared to ex, involves an error of the same order as that of ka; but
it should be remembered that for the actual range of the forces
(a r-v 3 X 10-13 em), the product eta is not very small but has a
value of about ~'2.

Substituting (66) into (56) we get

1 k2

sin 2~0 = = (67)
1 + cot 280 k2 + 0.

2

411" 2 411" 4wli2 1
IT = - sin 00 = = -.- (68)

k2 a2 +k2 M E+W
The next approximation (see Nuclear Physics-' A, p. 119) takes
account of a ~ 0 and leads, for the rectangular-well potential, to
an additional factor 1 + aa in the cross section.

EXPERIMENTAL RESULTS ON NEUTRON-PROTON SCATTERING

The first experiments on neutron-proton scattering used 2.5­
Mev D-D neutrons. The cross section measured ,vas within 20
to 30 per cent of the theoretical value which was then within
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experimental error. Ho,vever, the cross section was then also meas­
ured for thermal neutrons (very slow) for which equation 68 gives

0' ~ 2.4 barns (1 barn = 10-24 cm2) (69)

The experimental result ,vas "",50 barns.
Two reasons for this discrepancy are:
1. The finite range, a, of the nuclear forces required the correc­

tion factor (1 + aa) as mentioned. When this ,vas included, the
theoretical cross section rose to 3.8 barns.

2. Fermi sho,ved that protons bound in molecules should have
a U larger than that for free protons by a factor of about 2.5.
This second correction brings the experimental value for free
protons do,vn to "'20 barns. This ,vas checked by measuring the
scattering at neutron energies bet\veen 1 and 10 ev, where the
molecular binding \vould presumably have no effect. The measured
value at 10 ev was 21 barns, still a long way from 3.8 ba~\

SINGLET STATE OF THE DEUTERON

In 1935 Wigner made a suggestion ,vhich closed the gap. He
pointed out that the ground state of the deuteron gives information
about the interaction of neutrons and protons only if their spins
are parallel, and that there must also be a state of the deuteron
in which the spins of neutron and proton are antiparallel (singlet
state). We are still free to make assumptions about this singlet
state, and a small energy W for this state would lead to a large
scattering cross section at low neutron energy E, since u is propor­
tional to l/(W + E). Since W is not kno,vn it must be deduced
from the observed cross section. Writing

Us = scattering cross section due to singlet state; spins anti­
parallel

Ut = scattering cross section due to triplet state; spins parallel
0' = total scattering cross section, ,ve get

(J' = %us + %Ut (70)

The ~ and ~~ are the statistical weights of the singlet state and
the triplet state, respectively.

To prove that these are the correct statistical weights, it is
necessary only to construct the sets of wave functions of the two
particles (1) and (2) corresponding to the two situations. Let a
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be the eigenstate of spin +72 and 13 of spin - ~ along some fixed z
axis for a single particle. Then for two particles, 1 and 2,

a(1)a(2) has M = +1

(M = z component of total spin)

~(1)~(2) has M = -1

[a(1)13(2) + 0:(2),8(1)]/0 has M = 0

[0:(1),8(2) - 0:(2)13(1)]/0 has M = 0

The first three functions have total spin 1; the last has total spin 0;
there are no more linearly independent functions. Therefore, the
statistical \veights 3 and 1 are justified.

Inserting the ,veights from equation 70, and denoting the energies
of triplet and singlet state by W t and WB, respectively, equation
68 for the cross section becomes

?rU2 (3 1)
(1 = M E + W t + E + IWsl (71)

Inserting the measured 0', and Wt = 2.19 Mev, it is deduced that
lWal = 0.064 Mev, very much smaller than W t -

One test of Wigner's hypothesis is by measurement of the cross
section over the range 0 to about 5 Mev, where the theoretical

o ------
2.8 x lO"13cm

~"13
2.8)( 10 em

FIG. 8. Potential well of the deuteron giving the best fit to scattering
experiments.

expression for (f should hold. This is not an easy measurement.
It was done very carefully by Williams and collaborators * at
Minnesota and Los Alamos. The calculations were carried out
by Bohm and Richman. With a rectangular potential hole of
width a = 2.8 X 10-13 em and depth adjusted to give the binding

• Bailey, Bennett, Bergstralh, Nuckolls, Richards, and Williams, Phys.
Rev. '10, 583 (1946); for lower energies D. H. Frisch, Phys. Rev. 70, 689
(1946).
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energy of the deuteron and the scattering cross section at very low
energy, there ,vas complete agreement save at the upper end near
5 Mev. There better agreement was achieved with a potential
of the form indicated in Fig. 8, i.e., a deep narrow well, plus a
shallow ,veIl of double width.

Evidence for N culron Spin. These experiments are also strong
evidence that the neutron spin is exactly 72. If it ,vere %, there
,vould be t,vo states of the deuteron contributing to the scattering:
a quintet, S = 2, with statistical weight 5, and a triplet, S = 1,
with statistical \vcight 3. This ,vould give

(J __1t"ll_2 ( 3 + __5_)
2M E + tVt E + lVq

If this is made to agree with the measured u at low energies by a
choice of Wq , then it gives results for 2E r'-I 400 to 800 kev, which
are too large by a factor greater than 1.5, far outside the experi­
mental error. For spin of the neutron greater than %, one must
use l ~ 0 in order to get the right total spin for the ground state
of the deuteron. As ,vas pointed out in Chapter VIII, l r!= 0 is
very unlikely on general I>rinciples.

Sign of E'nergy in Singlet State. l"he measurement of the cross
section does npt give information as to ,vllether the singlet state
is bound or virtual (only (32 = Ml Wsl/112 occurs in the cross sec­
tion; see equation (8). All evidence favors its being virtual. The
most important evidence is the scattering of neutrons in ortho­
and para-hydrogen (Chapter X), ,vhich also constitutes a good

FIG. 981. Wave function of the
singlet state of the deuteron

(virtual).

~-~~~
~...._---

FIG.9b. Wave function of the triplet
state for low neutron energy. (Bro­

ken line: free particle.)

check on Wigner's hypothesis that the scattering depends strongly
on spin.

Assuming that the singlet state is virtual, its wave function will
look like Fig. 9a, for large ~, i.e., slow neturons, because the phase
shift 80 approaches zero. On the other hand, for the triplet state,
as E ~ 0, ~o goes to 1r (see equation 66) and the wave function will
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have the shape of Fig. 9b. In either case the scattered amplitude
of the neutron is proportional to e2

'L80
- 1. Therefore, for low

energies, the scattered amplitude is:
For the triplet state, setting

00 = 1r - 0', with 0' small,

e2ifJo
- 1 = -2ia'

For the singlet state (assumed virtual):

e2i6o
- 1 = 2ioo (74)

Thus for small energies, the scattered amplitudes have opposite
signs for real and virtual states (a' > 0 since 1r/2 < 00 < 1r).

Assuming a virtual singlet state, the singlet scattering cross
section should be corrected for finite range by a factor (1 - (ja),

,vhere ~ = v'MlwBI/h.



x. SCATTERING OF NEUTRONS BY PROTONS BOUND
IN MOLECULES

The scattering of neutrons by free protons has been discussed
in the last chapter. It is now worth while to investigate the
effects of binding of the proton in molecules.

THREE EFFECTS OF BINDING OF PROTON IN MOLECULES

1. Chemical Bond Effect. If it is assumed that the scattering
may be treated in Born's approximation, then the differential cross
section is

dcr = constant X m2 X If1/11 * V 1/1212 dO (75)

where m is the reduced mass of scattered particle and scatterer,
and V is their interaction potential. r~rhe quantity within the
absolute value signs is the matrix element of V between the initial
and the final states. Equation 75 comes from treating as a per­
turbation the term (2m/h2

) V in tIle Schrodingcr equation

(76)

Solution of the problem gives the cross section proportional to
the square of the matrix element of the perturbation which leads
to equation 75.

Now the reduced mass m depends on ,,,,hether the proton is
free or fixed. (The integral in equation 75 does not.) The t,vo
limiting cases are:

1. Proton free: m = ~M.

2. Proton bound to heavy molecule (e.g., paraffin): m = M.
We therefore expect

(1 (bound) = 4(1 (free) (77)

In order to use this argument it is necessary to:
(1) be able to say when a proton is free and when bound, and
(2) justify the use of Born's approximation.

Fermi (as reported in Nuclear Physics B, p. 122) examined the
47
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first of these problems and showed that essentially the proton is
bound if

En « hv( ~O.4 ev for eH bond in paraffin) (78)

where En is the neutron energy and 11 is the frequency of vibration
of the proton in the subgroup of the molecule. Figure 10 ·shows
the ratio of the actual to the free cross section as a function of En

For En < hv, the neutron cannot lose energy to the vibration
at En, = hv the abrupt rise in the cross section comes from a can..
tribution due to the possibility of losing one quantum of energy

to the vibration. Similar
breaks occur at En = 2hv, etc.
For En much larger than tIle

...!l- 2 vibration energy of the proton
crf,.. in the molecule, the proton is

1 easily dislodged from its posi-
O"--------..a.--~--.-J fo 1 2 3 4 tion and acts as a ree pro-

En ton: u ~ q (free).
7W

Neutrons \vith En < hv ,viII
FIG. 10. Cross section for scattering be more difficult to slo,v do,vn
of neutrons by elastically bound

protons. than those ,vith En > hv, be-
cause they cannot lose energy

to the vibration of the proton in the subgroup of the molecule.
They can, llo,vever, lose energy to vibrations of ,vllole CH2 sub­
groups, ,vhicll have smaller quantum energies. Speaking practi­
cally, it can be said that neutrons are easily "cooled" to room tem­
perature (~:4:o ev), but are ,vith difficulty "cooled" to 20° !{ or
lower.

Of course, Born's approximation is not directly justifiable for
neutrons ,vith En of the order of 1 ev, as the perturbation (,vhich
is considered "small") is of the order of 10 Mev (interaction
potential of neutron and proton). Ho,vever, it has been shown
(Nuclear Physics B, p. 123) that it is possible to construct an arti­
ficial interaction potential ,vhich would give physically the same
scattering and yet satisfy the conditions for Born'R approximation.
The magnitude of the artificial potential is chosen small enough
to justify Born's approximation, and the range is increased to
maintain the same scattering. This is justifiable because the wave
function of the proton in the molecule occupies a much larger
region of space than both the true and the artificial potentials.
The results quoted hold using this artificial potential.
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2. Molecular Velocity Effect. When the neutron energy is of
the order of thermal energies or smaller, it is certainly not permis­
sible to neglect the thermal motion of the proton. Consider a
neutron with velocity v which passes through a thickness L of
scattering material, and consider collisions \vith protons which
are moving with velocity u. Then the cross section 0"1 is a function
of Iv - ul and the number of collisions per second is proportional
to (T1 X tv - ut. The number of collisions in the scatterer will
then be proportional to (L/V)0"1\V - ul. The effective scattering
cross section, defined as proportional to the number of collisions
per unit thickness of the scatterer, is

(Teff.(U) = [O'l(V - u)] X Iv - uljv (79)

To obtain the actual effective cross s~ction this expression must
be averaged over the distribution in u (for the case ,vhen 0'1 is
independent of the magnitude and the direction of (v - u) see
Schwinger, Phys. Rev. 58, 1004).

3. Scattering of Neutrons by Ortho- and Para-Hydrogen. An ex­
perimental comparison of tIle scattering from ortho- and from para­
hydrogen was first suggested by Teller in 1936 to test the spin
dependence of the nel.ltron-proton interaction. An ortho-hydrogen
molecule has a total proton spin of 1, ,vhereas a para-hydrogen
molecule has a total proton spin of o. Thus ortho-hydrogen has
a \vave function symmetric in the proton spins and has a statis­
tical weight of three, \vhereas para-hydrogen has an antisymmetric
nuclear spin function and a statistical weight of onc. Since protons
obey Fermi statistics, the total molecular ,vave function *

'" = '" (electronic) · 1/1 (nuclear spin) · 1/1 (rotation) (80)

must change sign on interchanging positions and spins of the pro­
tons (cf. Chapter V). For H 2 , it is known from molecular theory
that this interchange of protons does not change the sign of
",(electronic). 'l'herefore 4'(rotation) must be symmetric ,vhen
"'(nuclear spin) is antisymmetric, and vice versa. Consequently,
ortho-hydrogen can have only odd rotattonal quantum numbers
(j = 1, 3, ... ) and para-hydrogen can have only even rotational
quantum numbers (j = 0, 2, ... ). The lo\vest energy level

* The vibrational part has been left out in 80 because it is always sym­
metric in the two protons.
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(j = 0) is therefore in para-hydrogen. The rotational energy is
proportional to j(j + 1)/2[, where I = the moment of inertia.
Because of the statistical weights, there is three times as much
ortho- as para-hydrogen in an equilibrium mixture at ordinary
tennperatures. .

Normally, there is practically no conversion between ortho­
and para-hydrogen because the spin of one proton must be turned
over for this purpose, and the forces acting on the proton spin
(magnetic forces) are extremely small. Thus a 3-to-l mixture can
be preserved at low temperature. Ho,vever, in the presence of a
suitable catalyst conversion can occur; then at very low tempera­
tures practically all of the molecules go to the lowest energy state­
the para j = 0 form. Comparing experiments on the separated
para-form \vith those on the quenched 3-to-1 mixture will give
also the results for ortho-hydrogen alone.

We shall no,v derive an expreRsion for the scattered intensity
from a molecule of ortho- or para-hydrogen when the incident
neutron energy is so small that An is much greater than the diH­
tance bet,veen the atoms in the H 2 molecule ~ 0.75 angstrom unit.
This is true for neutrons at temperatures of 20° K or lo,ver. The
derivation follo\vs that of Sch,vingcr and Teller (Phys. Rev. 52,
286, 1937).

Let the Pauli spin operators of neutron and proton be (TN and
Up. (These are t,vice the spin operators SN and Sp in units of h.)
We wish to investigate the eigenvalues of the operator aN . ap.
Let S be the total nuclear spin of the neutron and the proton

Therefore
(81)

(82)

since SN and Sp commute.
Now we already know that 8 2, SN2, and Sp2 are constants of

motion and we know their eigenvalues: S(S + 1), SN(SN + 1),
and Sp(Sp + 1), respectively, where S is 0 and 1 for the singlet
and the triplet states of the deuteron, respectively, and SN and Sp
are each Y2. Equation 82 can therefore be used to determine

SN · Sp = %[8(8 + 1) - 8 N (8N + 1) - 8p(Sp + 1)]

= S(S + 1)/2 - ~~
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and therefore

aN · ap = 28(8 + 1) - 3

= 1 for S = 1 (triplet) (83)

= -3 for S = 0 (singlet)

Now let ao be the amplitude of the scattered neutron wave in
the singlet state (for the scattering by a free proton) and let at be
the corresponding triplet amplitude, so that

(is = 41rao2, (it = 41ra12, (i = 740'8 + %O't = rao2 + 3rat2 (84)

Then the formula
ao + 3al al - ao

scattered amplitude = + aJ.v·up (85)
4 4

is easily seen to be correct for both triplet and singlet states, by
direct substitution from equation 83.

Since the distance between protons in the molecule is assumed
to be much smaller than ~n, it is permissible to neglect the small
phase difference in tIle scattering from the t,vo protons and add
amplitudeA directly. Therefore the scattered amplitude from a
molecule of H2 is

ao + 3al at - ao
A = + aN· (UPl + ap2)

2 4:

ao + 3al at - ao
= + uN-SH (86)

2 2

where PI and P2 denote the t,vo protons and ~«TPl + ap2) = Sa
is the total spin of the two protons in the H2 molecule. The scat­
tered intensity (or differential cross section) is then

A 2 = ~(ao + 3al)2 + 7~(aO + 3al)(al - ao) aN - SH

+ ~~(al - ao)2(aN • 8H)2 (87)

for a beam of neutrons with spin aN- rl"his must be averaged over
all polarizations of the beam. The average of aN • SH is zero.
Furthermore, writing the scalar product out in Cartesian com­
ponents,

(aN • SH)2 = U Nz
2SII:x;2 + ... + (fNx(fN7ISH:x;SH1/ -t- ... ,

the average of t1NzUN'II is zero and t1Nz
2 = QNy2 = (fNz

2 = 1. There-
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fore, on averaging

(frN • 8 H )2 = 8Hx
2 + 8 I1y

2 + 811%2 = SH2 = SII(SH + 1)

With these results, the differential croHH-section becomes

du = }~[(ao + 3al)2 + (al - ao)2S1/(SII + 1)] dO (88)

Unless al = ao, there is more scattering from ortho- than from
para-hydrogen. Since all the experiments indicate that there is
more ortho scattering than para scattering, al ~ ao; this proves
lVigner's hypothesis that the neutron-proton force is spir~ dependent.

It ,vas sho,vn in the previou:-; chapter that if the singlet state
of the deuteron is virtual, al and ao }lavc opposite sign, and vice
versa. NO,va12 = Ut/411'" can be deduced froIn the binding energy
of the deuteron, and ao2 = us/41r can then be determined from the
scattering of slo,v neutrons by free protons (see Chapter IX). The
results are ao2 ~ 18/1r barns, 3a12 ~ 3/1[" barns. So (al( ~ 1/-Y;,
(aol ~ 4.2j-Y;; this gives no check on relative sign of ao and al"

But, because of the form of equation 88, opposite signs of ao and al
,viII give a much larger ratio of the ortho to the para cross sections
than the same signs. In fact, if al and ao have the same sign, the
values of lall and laol just quoted give by equation 88 about 1.4
for the ratio of the ortho cross seetion to the para cross section,
,vhereas if al and ao have opposite signs the ratio is about 35.
This great difference is easily checked by experiment. All experi­
ments indicate that the signs of ao and al are opposite; therefore,
the singlet state is a virtual state.

COMPARISON WITH EXPERIMENT

Before comparison of equation 88 with experiment, corrections
must be made for the chemical bond effect, the molecular motion
effect, and the slight phase shift because the scattering protons are
a finite though small fraction of a wave length apart.

According to the chemical bond effect, the cross section for low­
energy neutron scattering is proportional to the square of the
reduced mass of tIle system. Since this reduced mass is 31M for a
neutron and a hydrogen molecule, whereas it is 72M for a neutron
and a proton, the result given by equation 88 must be increased
by a factor 1~'9.
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The molecular velocity effect which takes into account the
change in effective number of collisions produced by the relative
neutron-molecule velocity was given in equation 79. Evaluatioh
for H2 gas at 20° K, and for neutrons of a kinetic energy corre­
sponding to kT at 20° K, gives a correction factor of 1.247.

The phase shift effect decreases the results by about 7 to 10
per cent. Taking the entire solid angle of 4r, the formulas to be
compared with experiments are:

O'para = 6.47(3al + ao)2 (89)

O'ortho = 6.29[(3al + ao)2 + 2(ao - al)2] + 1.45(ao - al)2 (90)

together with the free proton cross section (equation 84). The
last term in CTortho was added to take into account inelastic scatter­
ing by conversion of ortho to para. This process is energetically
possible but its cross section is small.

Experiments ,vere made first by Brickwedde, Dunning, and
others (Phys. Rev. 64, 266, 1938), and later by Alvarez and Pitzer
(Phys. Rev. 58, 1003, 1940) using a neutron velocity selector. In
1946 the experiment was repeated with improved technique by
DeWire, Sutton, and others at the Los Alamos Laboratory. The
results of the two last experiments are:

Alvarez
Los Alamos

and Pitzer

tTpara. 5.2 4.0

tTortho 100 125

The ortho and para cross sections together are sufficient to
determine ao alld at. This was done by Schwinger and Hamer­
mesh for the experiments of Alvarez and Pitzer. "fhe result was a
very small value for al. From al it is possible to derive the range
of the nuclear forces using the theory developed in Chapters IX
and X which gives the approximate result

(91)
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When the observed at ,vas inserted into equation 91, the result
was 0 or a slightly negative value for the range of the nuclear
forces, a. This result was clearly unacceptable.

The same evaluation applied to the Los Alamos results gives
a much more reasonable vulue for the range. The improvement
is mostly attributable to the increase of the ortho-scattering cross
section. It ,vas observed in the Los Alamos experiments that some
conversion of ortho- into para-hydrogen ,vas constantly taking
place. At frequent intervals the composition of the hydrogen was
therefore determined. It is believed that the lo,v value reported
by Alvarez and Pitzer might have been due to an unexpectedly
low content of ortho-hydrogcn in their scatterer.

Probably the most accurate evaluation is based on the usc of
the scattering cross section of free protons together ,vith the para
cross section, using equations 8-1: and 89. ThiH procedure ,vith the
Los Alamos experiments leads to a range of tIle forces in the triplet
state of

a = 1.8 X 10-13 em (92)

This range is considerably smaller than the usually assumed value
of 2.8 X 10-13 em, which is derived from the rather accurate
experiments on the scattering of protons by protons. If the
nuclear forces are the same for protons and neutrons, for ",~hich

there is good reason (see Chapter XII), then the range of the
proton-proton scattering must also be valid in the singlet state of
proton-neutron scattering. However, it is very well possible that
the range in the triplet state is different, and there may even be
some slight indications from the meson theory of nuclear forces
that the triplet range should be smaller. Although the scattering
experiments are not yet as precise as would be desirable, it still
seems that the difference bet,veen the t,vo ranges is outside the
experimental error.

The results from ortho- and para-hydrogen scattering justify
these definite conclusions:

1. The neutron-proton force is spin dependent. This follows
from the definite experimental fact that the ortho and para
cross sections are different, which implies at ~ ao and the spin
dependence of the forces.

2. The singlet state of the deuteron is virtual. This follo,vs
from the fact that the singlet scattering amplitude ao must have
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opposite (and therefore positive) sign from that of al in order to
give a large ratio of ortho to para scattering, as observed.

3. The spin of the neutron is~. This follows again from the
fairly large observed ratio of ortho to para cross sections, viz.,

(fortho ~ 30
(fpara

A spin of SN = % or higher would require a much smaller ratio,
say 2, or less. rro see this, we rewrite the scattering amplitude for a
free proton (equation 85) for SN = %:

(3al + 5a2)/8 + (a2 - at) UN • up/8 (93)

The scattering by a hydrogen molecule (88) is then changed to:

00/4'11" = (3al + 5a2)2/16 + (a2 - al)2S(S + 1)/16 (94)

\vhere S = 0 for para, 1 for ortho as before.
Since the coefficients in the firHt term are no\v different from

before, there is no longer near-cancellation of the a1 and tlle a2
term, even if the quintuplet state is virtual. Indeed, a2 must be
considerably larger (about twice) than at to explain the scattering
of slo,v neutrons by protons, and, moreover, a2 has the larger
coefficient. An additional reason is that the second term in equa­
tion 94 has a relatively smaller numerical coefficient.

Thus a spin of SN = ~~ is ruled out. Higher values of the
neutron spin ,vould be inconsistent ,vith the deuteron spin of 1
and the proton spin of ~.

4. The range of the nuclear forces in the triplet state seems to
be significantly smaller than in the singlet state, namely,
1.8 X 10-13 cm in the triplet as compared ,vith 2.8 X 10-13 em
in the singlet. Ho\vever, this conclusion may be in conflict with
the accurate measurements of the cross section at higher neutron
energies.



XI. INTERACTION OF THE DEUTERON WITH RADIATION

PHOTODISINTEGRATION

Photodisintegration has been uRed to obtain the binding energy
of the deuteron (Chapter VIII). It ,viII no\v be discussed from
the point of vic\v of its cross section. The discussion is restricted
to lo,v energies (several Mev) so that all the needed constants can
be obtained from deuteron binding energy and neutron-proton
scattering results. Furthermore, at these energies, the transition
probability is attributable almost entirely to the dipole (electric
and magnetic) moment. Quadrupole and higher multipole transi­
tions would be important at high energies (100 Mev).

'l"he cross section for ,,-ray absorption is (compare Reitler,
Quantum Theory of Radiation, pp. 121, 122)

wm2v
(J' = 2 -.-(MI2 (95)

t13C

where w = 21rV is the (circular) frequency of the incoming photon,
m is the reduced mass of the system = Y2M, and v is the velocity
of the emitted particle. M is the matrix element, for the transition,
of the electric or magnetic dipole moment.

Electric Interaction. We first discuss the effect due to electric
interaction. Since the z-component of the electric dipole moment
of the proton in the center-of-mass system is ez/2, if z is the co­
ordinate of the proton relative to the neutron, ,ve have

(96)

where t/li is the wave function of the deuteron in the ground state.
This was shown to be equal to

1/Ii = Va/21r e-ar (1 + 7-'2aa) (97)

over most of space.
The final state must be a p-state to produce a non-vanishing

matrix element. Since no stable p-states exist (Chapter VIII), it
must be a p-state of the continuous spectrum. For energies small

56
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compared to the well depth, the wave function of the p-state will
be practically zero inside the well. Thus the potential energy of
the p-state will be small, and the state will be only very slightly
distorted from that of a p-state with no potential well. In the
calculation of the matrix element, therefore, the wave function
of a free particle of angular momentum 1 may be used for 1/1/.
If this is inserted into equations 96 and 95, the result is

,vhere k is the wave number of the system after absorption of the
quantum, so that:

E of system = hv - Wi = n2k2/M I
(99)

Deuteron binding energy = W l = n2a 2/M

X is the angle bet\veen the direction of polarization of the "'Y-ray
and the direction of motion of the proton. The factor C08

2 X arises
from the ,vave function of the final state. If the beam is unpolar­
ized, and we average over all directions of polarization

(100)

when 8 is the angle of the emitted proton with the direction of
propagation of the incident photon. On the other hand, if ,ve hold
the direction of polarization fixed and average over all proton
directions, ,ve get

f cos2 X dO = 4"./3 (101)

Using equations 98, 99, and 101, the total cross section becomes

8-n- e2 h2 Wl~E~

lTei. = ""3 he M (E + W
1
)3 (1 + aa) (102)

where the factor (1 + aa) arises from the normalization of the
ground-state wave function (equation 97).

The photomagnetic disintegration makes use of the magnetic
dipole moment. If Jl.p and JJ.N are the moments of proton and
neutron, respectively, in units of the nuclear magneton, then the
nlagnetic dipole moment of the system is

(en/2Mc)(ppCJ"p + P,NCJ"N) (103)
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The initial state is, as before, the 381 ground state of the deuteron
the spatial dependence of which is given approximately by equa­
tion 97. The final state must also be an S-state, or the integration
over angles will vanish. However, all excited 3S-states are orthog­
onal to the ground state since they are produced by the same
potential well. The only possibility, therefore, is that the" final
state be the virtual ISO state. Since this final state is an S-state
the emitted protons will sho,v isotropic distribution in angle, in
contrast with the result (eq\lation 98) for photoelectric disinte­
gration in ,vhich the final state ,vas a P-state.

The matrix element for the transition is therefore given by:

M m = (cnj2Mc) :E Xo (p,pup + J-LNUN)XlfY;l1f, dr (104)
spin

where Xl and Xo are the spin functions of the triplet and the singlet
states, and 1/Ii is the ,vave function for the ground Rtate ,vhich is
approximated by equation 97. 1/11 is the ,vave function for the
singlet S-stute in the continuous spectrum, and is normalized per
unit energy interval.

If the matrix element (104) is computed and substituted into
formula 95 for the cross section, the result is:

27r e2 h2 ~VE(~ + ~)2 2

Um = 3" he M (E + W1)(E + W
O
)Mc2 (l4p - JJ.N) (105)

,vhere E and lVI are defined as in the case for photoelectric disinte­
gration (equation 99): E = hv - WI, WI = deuteron binding
energy. Wo is the fictitious binding energy for the singlet state
the numerical value of which is determined from the low-energy,
singlet-scattering cross section

0"0 = 41rao2 = 41r(1 - ~a)/({32 + k2)

= 41rn2 (1 - .Ba)jM(Wo + E) (106)

The factor (#J.p - J.LN)2 in equation 105 can be understood if we
write the operator J.LpUp + J.LNUN in the form

Y2(J.LP + J.LN)(CTp + «TN) + Y2(J.Lp - #IN)(O'p - CTN) (107)

and note that the first term gives no contribution to the matrix
element (104). l"his follo,vs from the fact that (ap + «TN), operat­
ing on the spin function Xl, reproduces Xl multiplied by a constant
factor, whereas we wish to produce Xo.
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Both the electric and magnetic cross sections decrease as E-%
at high energies E» WI = 2.19 Mev, but the magnetic cross
section is smaller by a factor of about

Um I'oJ 1 WI 2
-- - -4 7I[ 2 (Jlp - JJN) (108)
uel. 1. C

12.19
~ - - (2.79 + 1.91)2 = 0.013 = 1.3 per cent

4 931

The smallness of this factor results from the smallness of the
magnetic dipole moment en/2Mc compared with the electric

2 )( 10 -27 cm 2

C1

Wi 2Wi
Energy hl1

FIG. 11. Photoelectric and photoInagnctic cross sections of thc deuteron
as a function of energy.

dipole moment ez/2, because the deuteron is large in size compared
to a proton Compton ,vave length.

At low energies (E « WI = 2.19 Mev) the electric cross section
behaves as E~2, ,vhereas the magnetic cross section behaves as
E~/(E+ Wo). Thus, for energies sufficiently near the threshold,
the magnetic cross section ,viii dominate by a factor

Um [1 WI 2] WI WI
O"el. = :4 Mc2 (~p - ~N) E Wo + E

W W
= 0.013 _1 1 (109)

E Wo+E

For the 2.62-Mev "Y-rays of The' the theoretical ratio of mag­
netic to electric cross sections is 0.27 (Sch,vinger and Rarita,
Phys. Rev. 59, 436). Approximate computation using equation
109 gives 0.29.

A rough plot of these cross sections as a function of energy is
~ho,vn in Fig. 11. The maximum photoelectric cross section, at
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hv = 2W1, is about 2 X 10-27 cm2
, and the cross section at 100

Mev is somewhat under 10-28 cm2
•

EXPERIMENTS ON PHOTODISINTEGRATION

The first observations of the photodisintegration of the deu·teron
were made in a cloud chamber, using the 2.62-Mev ,,-rays from
The' (Chad\vick and Goldhaber, Nature 134, 237, 1935). The
determination of the cross section in this way is difficult: the
sensitive time of a cloud chamber is hard to determine, and also a
large error in the measured ,,-ray intensity is possible. As more
measurements ,vere made the total cross Hection for photodisinte­
gration gre\v from a value, 5 X 10-28 cm2

, in the initial experi­
ments to 10 X 10-28 cm2 (Halban, Compt. Rend. 206, 1170, 1938).
This is still not in satisfactory agreement ,vith the theoretical
value 15 X 10-28 cm2 (Rarita and Schwinger, Phys. Rev. 59, 436).

Chad,vick, Feather, and Bretscher found in 1937 (Proc. Roy.
Soc. (London) A163, 366) that the angular distribution of the 65
recoiling proton tracks in their cloud-chamber photographs ,vas
compatible ,vith a sin2 0 law (equation 100). This ,vas slightly
disconcerting because meanwhile it had been sho\vn that the
photomagnetic effect, which leads to a uniform distribution in
angle, gives an appreciable contribution to the cross section at 2.62
Mev. Later measurements by Halban (1938) of the intensity of
neutrons in the for,vard direction gave an upper limit for the photo­
magnetic cross section 0.9 X 10-28 cm at 2.62 Mev, as compared
to a theoretical value of about 3 X 10-28

• Ho,vever, in 1945
Graham and IIalban (Rev. Modem Phys. 17, 297) found slightly
more neutrons in the forward direction than the theory just given
predicts. Therefore, there is no,v sufficient agreement bet,veen
experiment and the theory of Rarita and Schwinger. rI'hcse authors
have also pointed out further isotropic contributions arising from
the tensor forces. The accuracy of present measurements \vould
have to be improved by a factor of 100 to detect these small cor­
rections.

CAPTURE OF NEUTRONS BY PROTONS

This is the process inverse to photodisintegration. The cross
section for capture can be obtained from that for photodisintegra­
tion by statistical considerations such as those which will follow.
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Consider a box containing protons, neutrons, deuterons, and
1'-rays in equilibrium. Let state 1 consist of deuteron and 'Y-ray
and state 2 of neutron and proton. Then at equilibrium

Vl(1"l--+2 X [number of states 1]

= V20"2--+1 X [number of states 2] (110)

This equation ,vill still llold if the brackets are replaced by the
density of states per unit energy. This quantity is in general

411"p2 dp

(211"0)3 dE 9

per unit volume of the box, ,vhere p is the momentum and g is the
statistical lveight of the states. Using the relativistic relations

E 2 dp E Eu
71 = p2 + m

2
c
2
, dE = c2p and 71 = p (112)

equation 110 becomeH

0"2-+1 gl Plv1E1 01 P12
------ = ---- =-2
0"1-+2 g2 P2V2E2 U2 P2

This is a general relation. rro apply it to the definitions of states
1 and 2, set

gl = gd~uterong-y-ray, PI = P-y = nw/c, w = 211" X ,,-ray frequency.
g2 = gneutronYprotoru P2 = PN ,p = Mv/2, M = proton or neutron

mass.
v = relative velocity of proton and neutron.

gdeuteron is 3 for the state S = 1, corresponding to the three possible
directions of the spin. g-y-ray is 2, corresponding to the two pos­
sible directions of polarization of the photon. gncutron and Yproton

are each 2, corresponding to the t,vo directions of spin. Using
expression 105 for Um, ,ve get

c2 h ~2Wl (~+VW;;- )2(W1+Y~o) 2

O'eapture=1l" Me2 Me Eo (Wo+.72Eo)Mc2 (p.p-P.N)
(114)

where Eo/2 = E = Mv2/4 = energy of neutron and proton in the
center-of-mass 8ystem. The Urn has been used instead of the total
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photodisintegration cross section of the deuteron because O'capture

will be appreciable only at low energies and here (jel. is small com­
pared to um • At very lo\v energies Ucapture is proportional to
Eo -M, Le., to l/v. But O"captureV is proportional to the number of
capture processes per unit time; therefore, the probability (per
second) of capture of slow neutrons by protons is independent oj
the neutron velocity (also of the proton velocity, if any). At Eo t'"

0.025 ev, cTcapture~ 0.3 bam according to theory; experiment agrees.
This is a rather large capture cross section as capture cross sections
go. This accounts for the fact that hydrogen is not used as a
moderator in "piles," operating with normal uranium. Carbon and
deuterium have capture cross sections about 1/100 of that of
hydrogen. One reason for the large value for hydrogen is the large
size of (p,p - JlN); another is the small size of Wo (near-resonance
at zero energy).

INFORMATION FROM LOW-ENERGY AND HIGH-ENERGY
PHENOMENA

The account given so far of nuclear phenomena at lo,v energips
hangs together pretty well. Although at times during the develop­
ment of the theory it Hcemed that every effect required a new ad hoc
assumption, it no\v appears that the only a~sumptions needed are
the binding energies of the triplet and the singlet states of the
deuteron. The phenomena which can be explained quantitatively
by these two constants are:

1. Binding energy of the ground state of the deuteron.
2. Cross section for neutron-proton scattering as a function of

energy.
3. Angular distribution of neutron-proton scattering.
4. Scattering of neutrons by ortho- and para-hydrogen.
5. Photodisintegration cross section of the deuteron as a func­

tion of energy.
6. Angular distribution of resultant particles from photodisinte­

gration of deuteron.
7. Capture cross section of neutrons and protons as a function of

energy.
The success of the theory justifies the use of quantum mechanics

for heavy particles and the use of a potential function V(r) , at
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least at low energies. Within limits the results at low energy were
independent of the shape of VCr) as long as it decreased rapidly
with increasing T. If more information is wanted about the nuclear
forces, the particles or pllotons must be given higher energies.

At higher energies the states of angular momentum l ¢ 0 will
enter into calculations of cross sections for scattering and photo­
disintegration. From the cross sections and the angular distribu­
tions of the resultant particles, one may hope to obtain:

1. V(r) for l = 0 in more detail.
2. VCr) for l ~ 0 as a function of l.

The energy necessary to give such information is sometimes higher
than would appear from the simple arguments in Chapter IX.

For example, in neutron-proton scattering the energy 10 Mev
might be presumed sufficient to determine the phase shift 01. This
must be raised to 20 Mev for the follo\ving reason: the scattering
cross section is proportional to the absolute value squared of

f(8) = e2ilJo - 1 + 3(e2t(h - 1) cos 8 (115)

If 01 is small, e2~81 - 1 = 2io l and the cross section becomes
\(cos 200 - 1) + i(sin 200 + 601 COS 8)\2 = (cos 200 - 1)2 + (sin
200 + 601 COS 8)2. The term of first order in 01 is proportional to
sin 200, and, unfortunately, at 10 Mev 00!"J ?r/2(cot 00 = a/Ii
"-I 0). Therefore, it is only for larger k, corresponding to perhaps
20 Mev, that the 01 terms in the cross section contribute appre­
ciably. The situation is further aggravated by the fact that around
10 Mev the cos () terms in triplet and singlet scattering have
opposite sign and cancel approximately.

rfhere ,vill be some difficulty in interpreting the results of scatter­
ing experiments at high energies because the different phases must
be disentangled from each other, but this cannot be llelped. The
photodisintegration at high energies ought to give some clean-cut
evidence on the transitions 3S~ 3p because for dipole transi­
tion8 the spin does not change and the orbital momentum changes
by one. Above about 70 Mev, one might expect to get an appre­
ciable number of quadrupole transitions to the 3D-state because
the wave length ~ of the ')'-rays becomes comparable to the range
of the forces. These could be distinguished from the dipole transi­
tions by the angular distributions of resulting protons and neu­
trons.
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No stable state of He2 is observed, and this is supported theo­
retically by the fact that the potential energy function for the
proton-proton interaction ,vhich is derived from proton-proton
scattering experiments leads to no bound state. Thus proton­
proton scattering is the only way to get direct evidence on proton­
proton forces. Proton-proton scattering experiments are easier to
perform and interpret than proton-neutron experiments, for the
follo,ving reasons:

1. Protons are readily available.
2. Protons can be made monochromatic in energy. Neutrons

made by the reaction D + D ~ IIe3 + n can be expected to be
monochromatic only up to about 6 Mev, ,vhere it begins to be
possible to leave Re3 disintegrated into H + D. The best reaction
to produce monochromatic neutrons is D + H 3 ~ He4 + n; this
would be good to about 20 Mev, but at present tritium is not
generally available.

3. Protons can be produced in ,veIl-collimated beams. Fast
neutron beams are very hard to collimate.

4. Protons are easily detected by their ionization, \vhich makes
possible more accurate measurements of angular distribution than
for neutrons.

5. Protons undergo Coulomb scattering simultaneously with
nuclear scattering. rl'his might seem to be a disadvantage, but
actually it permits a determination of the interference between
nuclear and Coulomb scattering and this makes for greater ~ensi­

tivity (in case one of the scattering probabilities is small) and also
allows a determination of the sign of the phase shifts resulting
from the nuclear scattering. Further, the Coulomb scattering is
well known theoretically and experimentally and can be used to
calibrate the nuclear scattering measurements.

6. The proton-proton combination obeys Fermi statistics,
whereas in the neutron-proton combination, states symmetric
with respect to particle interchange as well as antisymmetric states

64
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occur. This simplifies the analysis of proton-proton scattering,
but of course neutron-proton scattering still must be measured in
order to get complete information.

THEORY OF PROTON-PROTON SCATTERING

The theory of proton-proton scattering is more complicated
than that of neutron-proton scattering because of the presence
of the Coulomb potential in addition to the nuclear potential.
The Coulomb potential requires a rather special wave-mechanical
treatment of the scattering problem because of the slow variation
of the potential ,vith distance.

Scattering by Coulomb Field. Rutherford first investigated the
scattering by a Coulomb field from the classical standpoint. His
result is well known:

where Z1e and Z2e are the charges of the particles, v is the velocity
of the incident particle, m is the reduced mass, and 0 is the scatter­
ing angle in the center-of-mass HyHtcm. For t,vo protons,
Z1 = Z2 = 1, m = M/2, 0/2 = 01 (laboratory system). In the
laboratory system equation 116 then becomes:

The term containing cos4 81 is added because each proton at angle
81 in the laboratory system is accompanied by a recoil proton at
angle (1r/2 - ( 1) and these recoil protons are not counted in
equation 116. A factor 4 cos flt arises from the transformation
of the solid angle from the center-of-mass system to the laboratory
system. Eo = 7~Mv2 is the kinetic energy in the laboratory
system.

As is ,veIl kno,vn, the Rutherford equation (116) agrees ,vith
the experimental results for the scattering of low-energy a-particles
or protons by nuclei, the effect of the nuclear potential being
negligible at these lo'v energies. Ho,vever, even at fairly low ener­
gies, the classical equation (117) does not give the correct scattering
of protons by protons. One reason for this is the neglect of sym­
metry requirements by the classical theory. The ,vave-mechanica.l
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treatment of scattering in a Coulomb field by Mott showed that
the correct result for identical scatterer and incident particle is:

e
4
(1 1d(f=- --+--

Eo2 sin4 81 cos4 ()1

(118)

(see Mott and Massey, Theory of Atomic Collisions, p. 75). The
extra term comes in because the identity of scattered particle and
scatterer places symmetry requirements on the wave function.
This term represents interference between the two parts of the
wave function describing the t\vo-proton system. The sign is
negative because protons obey Fermi statistics. For unlike par­
ticles these terms drop out and the equation agrees exactly with
the Rutherford equation (116).

For proton energies of 1 Mev and higher (v > c/20), e2/nv < >-:7,
so cos [(e2/hv) In tan2 01] is nearly unity except for 81 nearly zero
or nearly 7r/2. Except in these regions, equation 118 is approxi­
mately

an =~ (_1_+__1_
E0

2 sin4 01 cos4 81

- • 2 1 2 ) COS 01 211" sin 01 dOl (119)
SIn 81 cos 01

However, experimentR of White, and of Tuve, Heydenburg, and
Hafstad in 1936 indicated considerably more protons at 45° than
given by equation 119 at proton energies of about 1 Mev. l"his
indicates that the nuclear potential already has an appreciable
effect.

Effect of Nuclear Potential. It is reasonable to assume that the
nuclear potential between two protons has the same characteristics
as that between neutron and proton. The Wigner argument about
short-range forces (Chapter VII) involves both proton-proton and
neutron-proton forces. The main difference between proton and
neutron seems to be the electric charge, and the nuclear force
apparently does not arise from charge. We assume therefore that
the potential between two protons is confined within some short
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range a as before, although the value of a need not neceAsarily be
the same.

Therefore, in proton-proton scattering at low energies it is
expected that only the l = 0 scattering processes ,viII be affected
by the nuclear potential, just as in neutron-proton scattering.

We shall no,v merely outline the solution of the problem. (See
Mott and Massey, Theory of Atomic Collisions, for a more cOInplete
development.)

In a purely Coulomb field, and in the center-of-mass system,
an asymptotic solution of the Schrodinger equation for the scatter­
ing of t,vo particles of equal mass "AI, one of ,vhich has an energy
~MV2, is:

y;(r) = exp [ikz + ia In k(r - z)]

+ (g(O)/r) exp (ikr - ia In 2kr + ir + 2i 1]0) (120)

,vhere

g(O) = [e2
/ M v2 sin2 (0/2)] exp [-ia In sin2 (0/2)] (120a)

and

a = e2/nv, k = Mv/211, eif10 = r(l + ia)/lr(1 + ia)1 (120b)

The first term in equation 120 is the incident ,vave: an almost
plane ,vave with a small space-dependent phase shift caused by
the long-range nature of the Coulomb potential. 'Tlhe second
term is the spherical scattered ,vavc. The square of the absolute
value of g(8) gives the cross section per unit solid angle, duldQ,
when there are no symmetry requirements on 1/1. Note that
19(0)\2 agrees exactly ,vith equation 11G, ,vhich is, therefore, cor­
rect for scattering of unlike particles ,vith a pure Coulomb field.

No,v if the effect of the nuclear force is considered ,vithout tak­
ing into account the identity of the particles, it is necessary to
correct only the l = 0 component of the ,vave 1/I(r), equation 120.
Let ..p(r) be expanded in Legendre polynomial~s of cos 8:

1/I(r) = (l/r) L:vz(r)Pz(cos 8) (121a)
l

and let the true wave function x(r), ,vhich includes the effect of
the nuclear forces, be also expanded:

x(r) = (l/r) L:uz(r)Pz(cos 8) (121b)
I



V(r)

oI---a-l--"':'===r=~======--

68 QUANTITATIVE THEORY OF NUCLEAR FORCES

No ¢ dependence is required because the incident wave is along
the z axis (axis of the polar coordinate system). Such expansions
are possible because both the Coulomb and the nuclear potentials
are central. The lth term in the sums is the component of the

wave ,,,ith angular momentum
l. vl(r) and ul(r) are solutions
of the radial Schrodinger equa­
tion ,vith pure Coulomb poten-
tial and with Coulomb-pIus­
nuclear potential, respectively.

FlO. 12. Combined Coulomb poten-
tial and nuclear well. (Coulomb (See Fig. 12.) 'l"hus vo(r} and

ignored inside well.) uo(r) can be foun<}; ,vhen they
are calculated, it is found that

asymptotically as z ~ 00, uo(kr) = vo(kr + 00), ,vhcre 00 is a con­
stant phase shift.

Since ,vo are correcting only the l = 0 term, \ve may \vrite

x(r) = y;(r) + (l/r)[uo(r) - vo(r)] (122)

(125b)

When uoCr) and vo(r) are normalized correctly, it i~ found that

xCr) = exp [ikz + iOl In k(r - z)]

+ (l/r) cxp [ikr - ia In 2kr + i1r + 2i1JoJ!(O) (123)
,vhere

e2 exp [-ia In sin2 (8/2)] i 2°<5

f(8) = Mv2 8m2 (8/2) + 2k (e • 0 - 1) (124)

The difference between this f{O) and the g(O) of equation 120b is
the added term containing 50 which describes the nuclear scatter­
ing.

Symmetry of Wave Function. Equations 123 and 124 give the
correct results for the scattering of unlike particles ,vith a Coulomb
potential. We must no,v correct these equations to account for
the identity of the t,vo protons. The spatial ,vave function must
be either symmetrical, with total spin = 0, or antisymmetrical,
with total spin = 1. Now x(r) of equation 123 is neither sym­
metrical nor antisymmetrical. But

Xs = (l/¥2)[x(r) + x( -r)] (125a)

is obviously symmetrical and

Xa = (l/¥2)[x(r) - xC -r)]
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is obviously antisymmetrical. Replacing (r) by (-r) is equivalent
to replacing r by T, Z by -z, and 8 by (71'" - 8). If the expansion
(121h) is considered and it is remembered that

Pl[cos (1r - 0)] = (-l)l Pl (cos 8) (126)

it is seen that in 125a components with odd l drop out, whereas
in 125b components with even l drop out. The 1(8)'8 for x, and
Xa are:

e2 {exp [-ia In sin2 (8/2)]
!a(9) = Mv2 sin2 (9/2)

exp [-ia In cos2 (8/2)]} i 2i6

+ cos2 (9/2) +k(e 0 7 1)

e2 {exp [-ia In sin2 (0/2)]
fa(9) = Mv2 sin2 (9/2)

(127a)

(127b)
_ exp [-ia In C08

2 (O/2)]}

. (;OS2 (8/2)

/8(0) comes from singlet (8 = 0) scattering, and faCe) comes from
triplet (8 = 1) scattering. The singlet and the triplet scattering
add incoherently. Therefore, the total differential cross section is

dO' = [%lfa(fJ)12 + >~lf8(0)(2] • 21r sin (J dO

= F (0) • 21r sin (J dO (~.28)

(definition of F).

To go to the laboratory system, replace (J by 281 :

dO' = F(281)· 4 cos 01 • 21r sin 81 dOl (129)

From equations 127 to 129, and neglecting again the small ex­
ponents (a complete formula, including these terms, was given by
Breit, Thaxton, and Eisenbud, Phys. Rev. 55, 1018, 1939) in
equation 127, the cross section per unit solid angle is

dO' e4 [1 1 1
an = E

0
2 sin· 91 + cos· 91 - 8in2 91-c-OS-2-O-1

2hv sin 00 cos 00 (2hV)2 · 2 ]
- -2 · 2 2 + 2 sm 00 cos 81 (130)

e tun 81 cos 81 e .
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Note that equation 130 reduces to the Mott formula (119) for a
pure Coulomb field when 00 is zero, i.e., when there is no nuclear
scattering.

1"he fourtll term in the bracket in equation 130 is an interfer­
ence term bet,veen Coulomb and nuclear scattering. This is a
very useful term as it makes posHible the experimental detection
of quite small oo's because of the linear instead of quadratic
dependence on 00.

The linearity in 00 of the interference term also permits determi­
nation of ,vhcther the nuclear potential is repulsive or attractive,
as attractive potentials cause pOHitive 00 and repulsive potentials
cause negative 00. The experimental results indicate that the
potential for l = 0 is attractive.

The last term in the bracket in equation 130 is exactly the
scattering that would result if only the nuclear potential were
present. For large energies tllis pure nuclear scattering becomes
the most important because of the v2 coefficient.

EXPERIMENTS ON PROTON-PROTON SCATTERING

Experiments thus far * have been published for energies up to
2.4 Mev. At this energy there is 43 times as much total scattering
at 45° as Coulomb scattering. The mOHt extensive experiments
were carried out by Herb, !(erst, Parkinson, and Plain (Phys.
Rev. 55, 998) and analyzed by Breit, Thaxton, and Eisenbud
(Phys. Rev. 55, 1018).

F'rom the observed angular diRtribution, the value of 00 is ob­
tained, and an excellent check on the theory is provided by the
requirement that the entire angular distribution must be fitted
by a single parameter 00. This condition was found to be fulfilled
within a fraction of a per cent, demonstrating again the applica­
bility of quantum mechanics to such problems.

IIaving obtained ~o as a function of energy, Breit and his collab­
orators then derived a potential to fit these data. The potential
is, of course, not uniquely determined. However, the experi­
mental data were of sufficient accuracy to specify the well depth
to ± 1 per cent for any assumed range. On the other hand, the
range can only be fixed to about ± 15 per cent, similarly to the

* R. R. Wilson et ale have investigated the scattering at 10 and 14.5 Mev
(Phys. Rev. 71, 384 and 560, 1947). See Chapter XIV.-Note added in proof.
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neutron-proton scattering. Assuming a rectangular well, the
best fit is obtained for a range a = 2.8 X 10-13

; for this range
the depth is Vo = 10.5 ± 0.1 Mev. The exact shape of the well
cannot be deduced oat all from the experimental data.

More information about range and shape can be expected at
higher energies, as shown in Fig. 12 of Breit's paper. At higher
energies, alAo higher l components ,viII be affected by the nuclear
potential. For these cases the preceding theory must be extended
to include the phase shifts 01, 02, etc., which are defined similarly
to ~o. r!"he sign of 01 will indicate ,vhether the potential for l = 1
is attractive or repulsive. 01 is still quite small ("'0.1) at
10 Mev.

Lo,ver proton energies are also useful for the determination of
the range. In particular, at energies around 400 key, the
scattering at 45° is much less than the Coulomb scattering
and very sensitive to the range. Ilagan, !{anne, and Tashek
(Phys. Rev. 60, 621, 1941) have carried out such experiments and
found a = 2.8 X 10-13 em ± 15 per cent.

From the ,veIl depth 10.5 Mev found above for the IS potential
(as stated before, symmetry requirements exclude a 3S-state) it
can be sho\vn that there is no bound state for t,vo protons. l"'hus
He2 is not stable against disintegration into two protons.

It is no,v ,vorth while to compare the proton-proton ,veIl depth
\vith the neutron-proton ,veIl depth for the IS-state. For

a = 2.8 XlO~::::~_proton lIS Vo = 11.9 l\1ev

38 VI = 21.3 Mev

}:>roton-proton IS 112 = 10.5 Mev

lfor the IS-state, for which a comparison is possible, the potential
V2 for proton-proton is a little smaller than Vo for neutron-proton.
Breit has shown that this difference may almost be removed if
the Coulomb potential is allowed to continue inside of the well
(as it must be expected to do) instead of ignoring it, as in Fig. 12.
We then conclude that neutron-proton forces and proton-proton
forces are equal (except for Coulomb force), at least in the singlet
S-st.ate.

There is also evidence that neutron-neutron forces and proton­
proton forces are equal (barring the Coulomb force) because of
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the success of this assumption in predicting the size of nuclei
from the observed difference in binding energies of mirror nuclei.
(See Chapter II, paragraph 3.) Thus the forces

(Neutron - Neutron) = (Proton - Neutron)

= (Proton - Proton)
in the IS-state.



XIII. NON-CENTRAL FORCES

Central forces, Le., forces which depend only on the distance
between particles, have been adequate, so far, to explain binding
energy and scattering experiments involving neutrons and protons.
rrhe existence of an electric quadrupole moment for the deuteron
indicates a cigar-shaped dif'3tribution of charge which is not
explainable by a central force. A force is needed \vhich not only
depends on the separation bet,veen neutron and proton, but also
depends on the angle \vhich their spins make ,vith the line joining
the t,vo particles. This interaction potential must have the form
8 12 V(r), ,vhere

(131)

rrhe first term gives the dependence of the interaction on spin
angles. The second term has been subtracted so that the average
of 8 12 over all directions r is zero. Formula 131 has the same
dependence on direction as the interaction of t,vo dipoles at and CT2.

rrhe non-central or tensor interaction (131) has been justified on
very general grounds by Wigner (Proc. Nat. Acad. Sci. 27, 282,
19~1l). He has sho\vn that if the interactions are assumed to be
invariant with respect to displacement, rotation, and inversion
of the observer's coordinate system, as ,veIl as independent of the
particle velocities, the most general interaction can be ,vritten in
the form

(132)

where the potentials V may depend on the orbital momentum of
the two particle system, as ,veIl as on the charge of the particles.
(8ee also Rarita and Sch,vinger, Phys. Rev. 69, 436, 1941.)

'l"'he reason for such a limited choice of interactions comes from
the requirement of invariance against rotation and inversion
(change of sign of all spatial coordinates). Thus the Cartesian com­
ponents of at and a2 are not invariant against rotation, but at ·a2 is.
On the other hand, (CT·r) is invariant against rotation, but not
against inversion since r ~ -r and CT ~ a on inver~ion. (a behaves

73
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like an angular momentum r X p --+ (-r) X (-p». Because of
this, only even powers of (a . r) may occur such as (cr1 • r) (0'2 · r).
Ho,vever, higher powers than the second may be sho\vn from the
commutation relationships of the spin operators to be reducible
to the second po\ver or less, provi<led the spin of each particle is 72.
Thus equation 132 constitutes the most general interaction.

STATES OF THE DEUTERON

Central forces of the form

(133)

are invariant with respect to rotations of space and spin coordinates
separately. Since Land S correspond to infinitesimal rotation
operators for space and spin coordinates (see Kemble, Quantum
Mechanics, 1937, p. 306) these operators commute with the
Hamiltonian formed by using the expression 133 as the potential.
Since L z and Sz commute ,vith H, both mL and ms represent good
quantum numbers, or constants of the motion. AltllOUgh Lx and
Lv commute ,vith II, they do not commute \vith L z and thus
cannot be quantized simultaneously ,vith it. On the other hand
L2 commutes ,vith both II and L z and has the quantized cigen..,
values h2 L(L + 1). Similar statements apply to 8 2• Thus
the quantum numbers of a state, ,vith a Hamiltonian containing
only central forces, are L, S, mL, and ms •

If non-central forces of the type 8 12 are present the IIamiltoniaIl
is invariant only under the coupled rotation of space and spin
coordinates (rotation of the observer's point of vie,v). rrhus L
and S are not in general expected to commute ,vith the I-Iamilto­
nian, but J = L + S still must. Therefore J and mJ will be good
quantum numbers.

Although S is not in general expected to be a good quantum
number, it will be in this particular case involving two particles,
both of spin ~, for the Hamiltonian is symmetric in the spins of
the two particles. From this, it follows, in a manner analogous
to the discussion of parity given later, that the wave functions must
be either symmetric or antisymmetric in the spin coordinates of the
two particles. Thus the spin ,vave functions correspond to triplet
or singlet states, and S is a good quantum number, even though
m, is not.
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Parity. The IIamiltonian is also invariant with respect to
inversion, Le., replacement of r = rl - r2 by -t. Thus the space
wave-functions must be either even or odd with respect to inver­
sion. This fact is commonly denoted as even or odd parity of the
,vave function. The statement that parity is a good quantum
number will now be proven, in general, for a system containing
any number of particles, assulning invariance of the Hamiltonian
for inversion

(134)

where the coordinates rk of all the particles are inverted simul­
taneously. This assumption merely corresponds to the fact that
all physical results should be independent of ,vhcther the observer
uses a right- or left-handed coordinate system.

If ,ve \vrite Schrodinger's equation

(135)

and relabel all the coordinates rk by -rk, we obtain:

(136)

Using the symmetry of the Hamiltonian, ,ve find

(137)

or "'( - rk) satisfies the sanie differential equation as ",(rk). Dis­
regarding degeneracies, for a given energy, the two solutions must
be proportional to each other

,vhere K is a constant. Applying this operation twice,

1/I(rk) = K2l/1(rk)

K= ±1

(138)

(139)

(140)

Thus according to equations 138 and 140 parity is a good quantum
number, i.e., all wave functions are either even or odd on inversion
(Le., they either remain unchanged or change sign). For the
deuteron, therefore, there are four good quantum numbers: J, mJ,
S, and parity.

Absence of Electric Dipole Moments. An interesting consequence
of the fact that parity is a good quantum number is that nuclei
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cannot have electric dipole moments. The definition of the dipole
moment is

D = fL:eJrJ 1,y(rk)12 dTk

J

(141)

If in this formula ,ve introduce nc,v variables rk --+ - rk, the first
factor changes Rign ,vhereas the second one, because of parity,
remains identically the samc. Thus D = -D, or D == O.

For a t,vo-particle syHtem even parity corre~ponds to a super­
position of even L's and odd parity corrcRponds to a Ruperposition
of odd £'s. l'huH states of even and odd L do not mix. N o,v the
only posRiblc values of S are S = 0 and S = 1. 13ut if S = 0,
L = J and thus IJI in this inHtunco is a good quantum number.
On the other hand, if S = 1, the h1'V8 of addition of angular mo­
menta permit IJI = J - I, J, J + 1. Ho,vever, L = J has oppo­
site parity to that of 1.J = J - 1, J + 1, ~o that S = 1, L = J
defines a ~tatc hy itself, and the state of opposite parity ,vill have
S = 1 'Yith a mixture of I.J = J + 1 and L = J - 1. rrherefore,
for a given J thc possible states arc in ~pectro:scopic notation:
IJJ, 3JJ, and the mixture 3(./ - 1).1 + 3(J + l)J. In particular,
,YO have the follo\ving stateH of HffiUU J:

J = 0

J = 1

J = 2

The ground Rtate of the deuteron ha~ a meaRured total angular
momentum of./ = 1, and consists primarily of the triplet state 381.

'Vhen non-central forces are taken into account, therefore, it
becomes the 381 + 3D 1 state.

DETERMINATION OF FORCE CONSTANTS

In order to obtain quantitative reHultH, Itarita and Schwinger
(Phys. Rev. 59, 436, 1941) have made extensive calculations using
the potential

1
-Vo[(1 - g/2) + (gj2)O'l • 0'2 + 1'812] r < a

V = (142)
o r>a

with the constants g and 1', in addition to Vo and a, to be deter­
mined from experiment. This potential uses square wells of the
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(1 - g/2) : g/2 : 'Y

same radius a, for each of the potentials VI, V 2 , and Va of equation
132, but of depths in the ratios

II

Some restriction like that of equal radius a has to be made on the
form of VI, V2 , and V3 , in order to make calculations possible.
'rhe experimental data \vere and are at present sufficiently limited
so that it is possible to determine only a small number of arbitrary
parameters in V; here thcHe are a, Vo, g, and 1'. (The usc of the
particular definition in equation 142, especially of Va(l - g/2)
for the spin-independent term rather than simply Vo, is devoid of
physical meaning.) For the calculations, Rarita and Schwinger
chose a = 2.80 X 10-13 em, in accord ,vith proton-proton scatter­
ing * (Chapter XII). The remaining parameters are determined
from

(1) the binding energy of the ground state of the deuteron,
(2) the scattering of slo\v neutrons by free protons, and
(3) the quadrupole moment of the deuteron, Q.
14"irst, Vo and l' are determined from (1) and (3); g does not enter

the calculation since, for the 381 and 3D1 states, ,vhich are mixed
to form the deuteron ground state, (7'1 • (7'2 = +1; and the terms
in g in the potential V rancel each other. For a given Vo, the 'Y
is chosen so that the ground state has the proper binding energy
then the ground-state ,vave function yields the relative percentages
of 381 and 3D1 state and a value of Q. For example,

Vo (Mev)

21
14
o

-15

"y ITo (Mev)

o
10
20
29

Q(lO-27 cm2)

o
2.67
3.71
4.26

(For further values, see Rarita and Schwinger, Phys. Rev. 69, 436
1

Table II, 1941.)

The observed value of Q, 2.73 X 10-27 cm2, gives Vo = 13.8 Mev
and l' = 0.775, and corresponds to 3.9 per cent of D state in
probability or ,......,20 per cent in amplitude. (This was the value
used in Chapter VII in the discussion of the magnetic moments.)
The ground state can be made stable even when the central force

* In "iew of the results of ortho- and para-hydrogen scattering (Chapter X)
the assumption of equal range for all three potentials is somewhat doubtful.
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is repulsive (Vo < 0), by the use of a sufficient amount of non­
central force. The value of Q is not particularly sensitive to the
value of 'Y and therefore does not permit a very accurate deter­
mination of l' and Vo. The percentage of D state is nearl, pro­
portional to Q, and is therefore relatively ,veIl determined, once
the assumption of rectangular ,veIls of equal ,vidth is accepted.

Next, g is determined from the depth, 11.9 Mev, of the potential
,veIl for the singlet state. This depth comes from the observed
scattering of slo\v neutrons in hydrogen (see Chapter IX). For
the singlet state, 0"1 • 0"2 = -3 and 8 12 = O. Thus,

V = 11.9 Mev = Vo(1 - 2g)

Using Vo = 13.8 Mev, \ve get g = 0.07; thiR g is quite close to
zero. g can be made exactly zero, if a be changed to 2.70 X 10-13

cm (,vhich is certainly compatible ,vith other evidence) ,vhereas
Vo is determined to hold Qat 2.73 X 10-27 cm2• [If ,ve put g = 0
but retain a = 2.80 X 10-13 em, then Vo = 11.9 and Q = 2.95
X 10-27 cm2

• This value of Q is some,vhat outside the experi­
mental error of ±0.05. It is an attractive idea to make g = 0
because this reduces the number of independent forces that have
to be assumed.

Having no'v determined the values of the constantA,

Vo -= 13.8 Mev, 'Y = 0.775, g = 0.0715 (143)

the theory can be checked against the experiments of the list
given at the end of Chapter XI. It ,vill be remembered that the~e
,"'ere in adequate agreement ,vith the theory \vith central forces
alone: therefore, the tensor forces must be proved to have no
appreciable influence on the results. \Ve are follo\ving in this proof
the paper of Ranta and Sch,vinger; a more general proof, free
from numerical calculations, has been given by Kepner and Peierls
(Proc. Roy. Soc. 181, 43, 1943).

NEUTRON-PROTON SCATTERING

At low energies, the scattering is almost the same as ,vithout
tensor forces. The triplet scattering is attributable mainly to the
381 part of the triplet state because the 3D1 \vave is small at smah
distances, for low energy. The quantitative results are:

E = 0, O'triplet = 4.21 barns as compared with 4.30 with central
forces.
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E = 2.8 Mev, O"total = 2.53 barns as compared with 2.56 with
central forces. The old experimental value (quoted by Ranta
and Schwinger) ,vas 2.40 barns; ne,ver experiments agree perfectly
\vith theory. The tensor forces reduce the cross section slightly,
for the presence of the 3D state component decreases the per­
centage of 3S state in the wave function without itself contributing
appreciably to the scattering. The angular dependence of the
total cross section is (1 + 0.00559 cos2 8), ,vhich is isotropic as
far as any experiments are concerned.

CAPTURE OF NEUTRONS BY PROTONS

For magnetic dipole capture, which is the only process of im­
portance at lo\v energies, the results are about the same as with
central forces but agree slightly better with experiment.

For E = 0.025 ev (thermal neutrons), (1' = 0.302 barn, as com­
pared \vith 0.312 ,vith central forces and 0.30 observed.

PHOTODISINTEGRATION OF THE DEUTERON

The photoelectric cross section at 2.62 Mev is 11.99 X 10-28 cm2

H.H compared \vith 12.31 with central forces and about 8 according
to the very inaccurate experiments. l"he angular dependence is
sin2 8 + 0.0007. The isotropic term results from transitions
3D 1 ~ 3P and is so small that it ,vill probably never be observed.

The photomagnetic cross section at 2.62 l\lev is 3.28 X 10-28

cm2
, \vith an angular distribution (1 - 0.0035 cos2 8). rrhe non­

isotropic term results from 3D to ID transitions and is \vell beyond
experimental detection.

The total cross section at 2.62 l\fev is 15.27 X 10-28 cm2 \vith
an angular dependence of (sin2 8 + 0.182). Graham and Halban
give 10 X 10-28 cm2 \vith an angular dependence sin2 8 + 0.26
±0.08.

Thus for lo\v energies, the usc of non-central forces gives no
appreciable change from the central force theory. To give a
theory for higher energies at \vhich states of l ~ 0 contribute
essentially, the exchange properties of nuclear forces must be con­
~idercd.



XIV. SATURATION OF NUCLEAR FORCES

The binding energy and volume of nuclei are proportional to A,
the mass number. This is not in accord with a law of force ,vhich
gives equal interactions bet\veen all pairs of particles in the nucleus,
for there are then A(A - 1)/2 distinct interacting pairs and a
binding energy at least proportional to A(A - 1)/2 might be
expected, if not to a higher po,ver of ./!. due to increased packing
,vith more interaction. Instead, the nuclear binding energies
seem similar to the internal energies of bulk matter, in ,vhich 2
pounds haR t,vice as much energy and volume as 1 pound.

To account for this phenomenon of "saturation of nuclear
forces," in ,vhich one particle apparently interacts ,vith only a
limited number of others, various hypotheses have been made.,
and various other assumptions about the nature of the forces can
be sho,VD to be imposRible.

Among the impossible assumptions is that ,vhich has been used
in this book so far, namely, an ordinary potential independent of
the angular momentum, because it is easily sho,vn that suell a
potential does not give saturation. This is so even if the Coulomb
repulsion of the protons is taken into account. rI'he proof can be
carried out ,vith various degrees of exactness, using the variational
method. This method is based on the Schrodinger variational
theorem which states that the quantity

(144)

is a minimum when 1/1 is the correct eigenfunction of the lo\vest
eigenvalue Eo of H, and the minimum value of n is Eo. Thus, if
the assumed Hamiltonian operator representing the interaction
of the particles in a given nucleus is sandwiched bet\veen any
arbitrary 1/1 in the expression for U, the value of n must be greater
(i.e., less negative) than the correct energy of that nucleus. The
simplest 1/1'8 are plane \vaves inside a box representing the nucleus.
If the size of the box is adjusted to give as Iowan n as possible,
this size comes out about equal to the range of nuclear forces,
which is clearly much too small. Further, it gives a potential

80
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energy proportional to A2, and a kinetic energy proportional to
A%. The size of the coefficients of these powers is such that the
potential energy dominates for A > 50; for A = 238 the binding
energy is greater than 238 mass units. This is convincing evidence
that the ordinary potential will not work, and this is true inde­
pendently of the shape of the potential (square well, exponential,
Gaussian, etc.).

What is needed is a potential ,vhich prevents the particles from
getting too close together. A potential repulsive at short distances,
originally used by Morse for molecules, has been explored by
Schiff and Fisk; the only ohjection is that the high repulsive
potential may give relativistic difficulties if it gets above
211lc2

t'J 1800 Mev, for a proton in such a state would have nega­
tive kinetic energy. Ho\vever, the idea of a repulsive potential
has not been folIo\ved up sufficiently.

EXCHANGE FORCES

In the first paper on nuclear forces, IIeiRenberg proposed, in
order to explain the Raturation of nuclear forces, that these forces
are "~xchange" force~, ~imilar to the force that binds ordinary
chemical molecules. \Vithout inquiring into the origin of these
exchange forces, let us ,vrite do,vn the various types of exchange
forces that can exist bct\veen t,vo particles, and then examine the
effcctH of these forc(\s on the properties of the deuteron, and on the
saturation of the binding energy.

For an ordinary (non-exchange) central force the Schrodinger
equation for t\VO particles is (in the center-of-mass system) :

[(t12/M)V2 + E]\f(rl' r2, 0"1, 0"2) = V(r)\f(rt, r2, 0"1, 0"2) (145)
Wigner

In nuclear physics, such forceR are called 'Vigner forces. The
interaction do~s not raURe any exchange bet,veen coordinates of
the t,vo partic}E:'R. Another type of interaction is one that inter­
changes the space coordinates of the t,vo particles in addition to
multiplication of '" by some V(r); for such an interaction, the
Schrodinger equation is:

[(n2/~I)V2 + E]ljt(r}, r2, 0"1, 0"2) = V(r)\jI(r2' r1, 0'1, 0'2) (146)
Majorana
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Such a force is called a Majorana force. Two other possibilities
are: (1) the Bartlett force, with interchange of spin coordinates,
and (2) the Heisenberg force, with interchange of both space and
spin coordinates. The SchrOdinger equations are respectively:

[(li2jM)V2 + E]1f(rt, r2, O"t, 0'2) = V(r)1/t(rt, r2, 0'2, 0'1) (147)
Bartlett

[(li2/1l-f)v2 + E]~(rt, r2, O't, 0'2) = V(r)1/t(r2, rt, 0"2, 0'1) (148)
Heisenberg

Effects of Exchange Forces. Exchange forces, ,vith a VCr), are
central forces and do not cause nlixing of l's. However, if a tensor
force is used instead of V(r) as the rnultiplying potential, l's are
mixed and the quadrupole moment of the deuteron may be ex­
plained as before. It should be pointed out that the tensor force
does not by itself lead to saturation; thit; ,vaH proved by Volkoff
(Phys. Rev. 62, 134).

Jjfajorana Force. The l\Iajorana interaction replaces (r) by
(-r) in 1/1. Using the ,,"ell-kno\vn hehavior of the ,vayc function
on such an inversion, the ~chr()dillger e<luution (146) may be
re\vrittcn

[(t12/:Jf)V2 + E]lf(r) = (-l)lJ~(r)lf(r) (149)

This is equivalent to having an ordinary potential that cllanges
sign according to ,vhether l is even or odd, and iH independent of
spin. Since the experimental data discussed so far give informa­
tion on the potential only for l = 0, ,ve have a~ yet no direct evi­
dence as to whether the potential is "ordinary" or of the l\1:ajorana
t:rpe. Since the potential is attracti,'"e for l = 0, it ,vould be
equally repulsive for l = 1 if the interaction ,vere totally of the
Maiorana type.

Bartlett Force. Considering still a system of t\VO particles, the
spin function is symmetric if the total spin S is 1, and antisym­
metric if the total spin is o. Thus, the Schrodinger equation (147)
for the Bartlett force may be rc\vritten:

[(h2 jM)V 2 + Elt/J(r) = (-I)S+lV(r)1/I(r) (150)

This is equivalent to an ordinary potential \\rhich changes sign
between S = 0 and S = 1. Since we kno'v from neutron-proton
scattering data that both the 3S and IS potentials are attractive,
the nuclear. force cannot be totally of the Bartlett type.
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Heisenberg Force. Combining the arguments of the two last
paragraphs, the Schrodinger equation (148) may be rewritten for
the Heisenberg force:

[(h2/M)V 2 + E],p(r) = (-I)'+8+1V(r)1f(r) (151)

This is equivalent to an ordinary potential which changes sign
according to whether l + S is even or odd. For example, the
effective potential is:

for

potential + V(r) - V(r)

3p

- V(r)

Ip

+V(r)
(152)

The reversal of sign between 3S_ and IS-states indicates, as for
tho Bartlett force, that the nuclear force cannot be wholly of the
IIeisenberg type. Ho,vever, the difference between the 3S and IS
neutron-proton ,veIl depths (about 21 and 12 Mev, respectively,
for a = 2.8 X 10-13 em) can be explained by assuming that the
intpraction is about 25 per cent Heisenberg or Bartlett and 75 per
cent 'Vigner or l\lajorana.

Exchange /?orc('s and Saturation. The Bartlett spin-exchange
force does not lead to saturation of the binding energy per particle.
If the nuclear force ,vere of the IJartlett type, heavy nuclei should
exist \vith all spins alibrned \vhere the number of interacting pairs
is A(A - 1)/2, \vhieh leads to Linding energy proportional to at
least the Rquare of .tl.

Ho\vever, the space exchange in the IVlajorana and the Heisen­
berg forces does lead to saturation becn,uHe of the alternation in
sign of the potential bet,,"een odd and even l. For example, assume
the nuclear force is the l\'1ajorana type C\ve already know it cannot
be more than about 25 per cent IJeiscnberg). Then saturation
should not be apparent in nuclei up to He4

, for in He4 the spatial
wave function can ~till be symmetrical in all four particles, without
violating the Pauli principle. We need only give antiparallel
spins (antisymmetric spin \vave functions) to the two neutrons,
and likc\vise to the t\VO protons. Thus the Majorana force does not
alter the Wigner argument about the short range of the forces
based on the binding energies of He4 and lighter nuclei.

In the next heavier nucleus-Re5 or Li5-the Pauli principle
can no longer be satisfied by spin ,vave functions alone; there­
fore, the spatial ,vave function must have at least one node. In
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other ,vords, only four particles can be in an s-state, whereas the
last has to be put in a p-state, and "rill therefore be repelled by
the other particles. He5 and Li5 should thus be unstable, in
agreement \vith experiment. This is a first sign of saturation.

To investigate saturation in heavy nllclei, one may use the
same variational method used at the beginning of the present
chapter to prove that ordinary forces do not give saturation.
It is satisfactory that thi8 calculation, in the case of the Majorana
force, does not lead to non-saturation. On the other hand, since
the variational method gives only a maximum to the true energy,
it cannot be used to prove that the l\1ajorana force docs give
saturation. But 'Vigner has given a concluHivc argulnent that
saturation is achieved with the space-exchange l\Iajoruua force
(Proc. Nat. Acad. Sci. 22, 662, 1936). The spacp-exchange part
of the Heisenberg force ,vould also cau~c ~uturation.

SPIN AND ISOTOPIC SPIN

It is often convenient to \vritc exchange forces In a slightly
different ,yay. Since for t,vo particlcti

0'1 • <1'2 = +1 for S = 1

= ~3 for S = 0, (153)

the Bartlett force bet,veen t,vo particles can obviously be \",ritten as

1
+fT(r), S = 1

~V(r)(l + 0"1 • 0"2) =
-l"(r), S = 0

(154)

(155)

The spin-exchange part of the Heisenberg force could be written'
in the same way.

In order to be able to use a similar notation for the space­
exchange part of forces, we introduce the concept of the charge'
of a particle as a coordinate, Le., neutron and proton are regarded
as different eigenstates of the same particle, called a nucleon. We
choose the symbol T for this charge coordinate and we define

M" == 72 for the proton 1
M" == -31 for the neutron

T == 72 for both
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using ± 72 in analogy with the spin coordinate. We also define
the charge functions

()harge function = 'Y for the proton

= 0 for the neutron
(156)

in analogy \vith the spin functionH €X and {3.
The nucleons mUHt obey J1"ermi statistics in order to be con­

sistent with the ordinary theory (this ,viII become apparent
shortly, if it is not hnmediatcly obvious). l'hus the total wave
function (including the charge function) for t,vo or more particles

(157)

nlust be antisymmetric \vith respect to interchange of all coordi­
nates of two nueleonH. We therefore look for symmetric and anti­
Rynlffictric cllarge functions for t,vo particles. There are four vf
these, a~ given in "fablc 4.

Tl\BLE 4

T\vo-PAUTICLl'~ CHAUGE FUNCTIONS

Repre- Net
Rtatc Function senting Symrnctry Charge

I 1'(1)1'(2) He2 Rymillctric 2e
II 0(1)0(2) n2 ~Ylnnlctric 0

111 (1 / V~)[I'(l )0(2) + 1'(2)0(1)1 112 ~Ylnmetric e
IV (l/v:!)l'Y(1)0(2) - 1'(2)0(1)] H2 antisymlnctric c

Again, in analogy to spin, t,vo quantum numbers are defined to
deReribe these functions: ']1 to describe symmetry, and MT to
deseribe the net charge. TheHe quantities have the values given
in rrable 5.

TABLE 5

QUANTUM NUMBERS FOR CUARGE STATES

State

I
II

III
IV

T
1
1
1
o

MT

1
-1

o
o
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T is 1 for symmetric functions, 0 for the antiAymmetric function,
in analogy to spin. M.,. is the sum of the M.,'H for the two nucleons.

In the literature T i~ called the "isotopic spin," 7"' is called "the
total isotopic spin," and ]yf.,. may be called the "component of T

in the direction of positive charge." T is analogous to total spin S,
and M.,. to Sz. For a given T, M.,. can have the values T, T - 1,
... , -T.

From Table 4 it is seen that a system containing t,vo neutrons
or t\VO protons has a symmetric charge function. Sinee \Vo are
assuming nucleons to obey Ferlni statistics, the remainder of the
wave function (147) must be antisymmetric. This implieH (cor­
rectly) Fenni statistics for neutrons and protollR, diHregarding
charge as a coordinate. But in a system containing a neutron and
a proton the charge function can be either symmetric or anti­
symmetric, and so also can the rctuainder of the \vave function.
Therefore, the treatment of proton and neutron aR t,vo eigenstates
of the same particle does not in this case introduce any restric­
tions, consistent \\'ith the ordinary theory of statistics.

It is also convenient to introduce an operator T in analogy to
the a operator, defined by its effect on the "charge coordinate"
M.,. The eigenvalue of its absolute square is, again in analogy
"ith spin:

(158)

Then, just as for spin, in a sy~tem of t\VQ nucleons

Tl • T2 = +1 for T = 1
(159)

-3 for T = 0

Now the Heisenberg interaction can he \vritten (letting V(r)
absorb the factor -1) as

(160)

To prove this, we note that equation 160 changes sign according
to whether the charge part of the wave function (equation 157)
is symmetric or antisymmetric, Le., according to ,vhether the
product of space and spin functions i'i antisymmetric or symmetric,
which is just what is required according to equations 151 and 152.

The types of interaction between the t,vo particles discussed so
far may now be summarized by listing the various types of oper-
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ators, which when multiplied by some VCr) give the interactions
listed in Table 6.

Eisenbud and Wigner (Proc. Nat. Acad. Sci. 27,281) have shown
that these interactions and their linear combinations are the only

TABLE 6

TYPES OF INTERACTIONS

Ordinary
Spin exchange
Space-spin exchange
Space exchange
Tensor
Tensor exchange

1
crt . cr2

"'1· T2

(VI·V2)(TI·T2)
(VI •r) (cr2· r)
(Vl •r) (0-2· r) ("'1· "'2)

ones possible under certain reasonable invarianre requirements,
namely, excluding interactions depending on total charge or on
the momentum. (The interaction (Ut + (2) • L depends on the
momentum.)

QUANTITATIVE THEORY OF EXCHANGE FORCES

In the laAt chapter, it ,vas sho,vn that the ground state of the
deuteron, the neutron-proton scattering, and the quadrupole
moment of the deuteron could be obtained quantitatively by
as~uming a neutron-proton interaction of the form

V(even) = - (1 - ~g + ~g crl . (12 + 'YS12)J(r) (161)
with

J(r) = Vo

J(r) = 0

g = 0.0715

y = 0.775

r<a

r>a

Vo = 13.89 Mev

a = 2.80 X 10-13 em
-Rarita and Schwinger.

The neutron-proton interaction (161) applies only to states of
L = O. The potential for other L is as yet arbitrary. If we assume
in particular a force of the type discussed in this chapter, i.e.,
depending only on the product of the isotopic spins Tl · T2, the
potential will depend only on the parity of the state. The poten­
tial for states of odd parity can only be determined from that for
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states of even parity by making some assumption regarding the
exchange character (or dependence on Tl · T2) of the forces.
Rarita and Schwinger chose to investigate three potentials whicll
were suggested by three types of meson theory (see Chapter XV):

I. Symmetric meson theory.
II. Exchange forces, or charged meson theory.

III. Ordinary forces, or neutral meson theory.
These potentials are:

I.

II.

III.

v = - }--3T l • T2 CTl • CT2 Veven 1
V = (_1)l Veven

V = lTeven

(162)

(163)

where Veven is given in equation 161.
For ordinary forces III, the potential in odd Rtates is the same

as for even. Exchange forces II, on the other hand, have opposite
sign in odd states. To determine the behavior of the force sug-

TABLE 7

PROPERTIES OF A NEUTRON-PROTON SYSTEM

Isotopic
State Parity Spin S Spin T 0"1' CJ"2 'rl . 'r2

18 even 0 1 -3 1
38 even 1 0 +1 -3
Ip odd 0 0 -3 -3
3p odd 1 1 +1 +1

gested by the symmetric theory I, Table 7 of values of 001 • 0'"2

and Tl • T2 has been constructed for even and odd states of both
the singlet and the triplet types.

From equation 162 and Table 7, the symmetric theory (I) gives:

3Vodd= -~~3Veven

The three types of forces may now be compared with experi­
ments by computing neutron-proton scattering at high energy.
The energy chosen by Rarita and Schwinger was 15.3 Mev, for
which P-\vave scattering begins to be important. The P-wave
scattering is to be computed with the aid of equations 162 and 163,
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which give the potentials acting in the P-state. It should be noted
that in contrast to the usual theory in which a single phase shift 01
is computed for scattering in the P-state, three phase shifts 11o,
111, and 112 must be computed for scattering by the 3Po-, 3P t -, and
3P2-states, respectively. The reason for this is that the effective
potential well for each of these three states differs because of the
presence of the non-central tensor force 812 . In fact, the operator
812 has definite values (-4 and 2) for the states 3Po and 3PI

TABLE 8

WELL DEPTHS IN THE NEUTRAL THEORY

Effective Well Depth with
State "Ordinary Forces"
3po 29.2 Mev (repulsive)
3Pt -35.4 Mev (attractive)
3P2 - 9.6 Mev (attractive)

which occur unmixed and must therefore be eigenfunctions of 8 12­

The 3P2-state has a fairly definite value of ~~12 (-~&), since at
15.3 Mev it is only slightly coupled to the 3]?2-state. (See Chapter
XIII for a discussion of ho'v 8 12 couples states of different L but
the same J.)

Rarita and Sch,vinger (Phys. Rev. 59,556, 1941), using equation
161 and the values of 8 12 just quoted, give the effective ,veIl depths
for the 3P-states in the neutral theory III as ShO\Vll_ in Table 8.

TABLE 9

PHASE SHIFTS IN 3Po, 3Pi, AND 3P2 STATES

Theory

I
II

III

770

0.074
0.531

-0.102

771

-0.054
-0.114

0.995

'72

-0.017
-0.046

0.073

The potentialH of the charged theory II have opposite sign to the
tabulated values; those of the symmetric theory I have opposite
sign and arc one-third as large. (See equations 162, 163.) The
phase shifts for each of the three theories, using these ,veIl depths,
are given in rl'able 9.

Note that the phase shifts in Table 9 for theory I are small be­
cause potentials are used which are only one-third as large as for the-
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ories II and III. (See equation 163.) Note also that the signs of the
phase shifts are opposite in theories II and III because this is
also true of their potentials. (See equation 162.) Note further that
really large phase shifts occur only for strong attractive potentials,
i.e., '110 in theory II and '71 in theory III.

If the scattering contributions from the 3P-states are added up
with the proper statistical ,veight (2J + 1) the total scattering
for 3P-states at 15.3 Mev is found to be:

I.

II.

III.

0'(8) = X2 (0.0038 + 0.0045 cos2 8)]
0'(8) = X2 (0.103 - 0.002 cos2 0)

0'(0) = ~2 (0.487 + 0.687 cos2 8)

(164)

with 41r~2 = 0.082 X 10-24 cm2
•

The scattering is also computed for the (lSI + 3D 1) state. ThiH
is added to equation 164, taking proper account of interference
terms ,vith the result that the total triplet scattering in barn:.;
becomes:

I. cr(fJ) = 0.680 (0.983 + 0.002 cos (] + 0.051 cos2 (J)]

II. u(8) = 0.746 (0.986 + 0.193 cos (] + 0.041 cos2 8)

III. q(O) = 1.165 (0.857 + 0.849 cos 0 + 0.429 cos2 0)

(165)

(166)

The quantities in equation 165 are so normalized that the numbers
outside the parentheses represent the total cross sections.

A corresponding calculation for the 1P and IS scattering gives:

I. a(8) = 0.444 (0.939 - 0.438 cos 8 + 0.182 cos2 (J)]

II. (T~8) = 0.424 (0.985 - 0.240 cos (J + 0.044 cos2 8)

III. (f(8) = 0.437 (0.955 + 0.498 cos (J + 0.134 cos2 0)

where the potentials used in the Ip state were:

I.

II.

III.

V(lp) = -3V(IS) = +35.7 Mev]

V(lp) = - vetS) = +11.9 Mev

V(lp) = vetS) = -11.9 Mev

(167)

Note that the difference between a repulsive force (I and II) and
an attractive force III is shown by the sign of the term in cos (J in
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equation 166, which represents interference between the Ip and
the IS states.

The total cross section can be obtained by adding the triplet
and the singlet scattering in a 3-00-1 ratio. l'he three theories
give in fractions of a barn the values shown in Table 10.

l'he totul crOHH section should not be used by itself to make a
definite decision between the three theories since it is influenced

TABLE 10

THEORETICAL NEUTRON-PROTON SCATTERING AT 15.3 MEV

Theory 1'otal Cross Section

I 0.621 barn
Il 0.666 barn

III 0.983 barn

Angular Distribution
1 - 0.080 cos 8 + 0.077 cos2 8
1 + 0.126 cos 8 + 0.042 cos2 8
1 + 0.932 cos 8 + 0.457 C082 8

by the range and the shape chosen for the interaction potential.
On the other hand, the angular distribution is good evidence for
the existence or non-existence of strong P-scattering, and also
gives the ~ign of that scattering-thus providing direct informa­
tion about the exchange nature of the neutron-proton force.

For comparison with experiment, ,ve may note from rrable 10
that at 15.3 Mev, theory I gives a weak back\vard maximum,
theory II a ,veak forward maximum, and theory III a strong
forward maximum.

EXPERIMENTS ON NEUTRON-PROTON SCATTERING

Total cross sections can be obtained by measuring the absorption
of neutrons in paraffin and correcting for the presence of carbon.
Angular distributions llave been measured by Amaldi and others
(Naturwissenschaften 30, 582, 1942; also Ricerca scientifica
1942), using the recoil protons projected from a paraffin foil.
The proton directions are determined by the use of a coincidence­
counter "telescope." Proton ranges, hence energies, are deter­
mined by the simultaneous use of absorbing foils.

In the center-of-mass system, conservation of momentum re­
quires that the netltron and proton leave each other in opposite
directions-Le., at angles (J and 1800

- 8 to the incident neutron,
respectively. In the laboratory system, the two particles }puve
at right angles to each other, and the angle between proton and
incident neutron is 90° - 0/2.
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Amaldi found that the number of protons projected for,vard
was small, corresponding to ,veak neutron scattering in the back­
ward direction, 8 = 180°. This is in agreement with ordinary
forces III and in contradiction to exchange and symmetric theories
II and I. Amaldi measured R = 00(180°)/(7'(90°), the angles
being the neutron scattering in the center-of-mass system. IIis
results are given in 'fable 11 together with their quoted accuracy_

TABLE 11

HIGH-ENERGY NEUTRON-PUOTON SCATTERING (AMALDI)

E (in Mev)

12.5
13.3
14.0

R = 0-(180°) /0-(90°)

0.71 ± 0.04
0.53 ± 0.03
0.52 ± 0.03

The values of R at 15.3 l\fcv computed from the cross-section
formulas in Table 10 give for the three theories:

I. R = 1.157 II. R = 0.916 III. Ii = 0.525 (168)

On the other hand, Champion and Po\vell (extension of experi­
ments reported in Proc. Roy. Soc. 183, 64, 1944), using neutrons
of similar energy and using photographic techniques, find that the
scattering is practically isotropic. Ho,vever, their experimental
data have less good statistics and greater correction factors than
Amaldi's. *

More definite evidence contradicting Amaldi's results comes from
measurements of the proton-proton scattering at energies of 14.5
Mev by R. R. Wilson and collaborators (Phys. Rev. 1947). Al­
though these experiments are preliminary, they indicate a slight
repulsion in the P-state. l'hey might be reconcilable \vith ex­
change forces or ,vith zero forces in the P-state, but they appear
to fit best to a force of the a1 ·0-2 type and they certainly contradict
an ordinary force such as would be required by Amaldi's experi­
ments. There is, of course, the logical possibility that neutron­
proton and proton-proton scattering are different, but in any case
the present state of this subject is inconclusive and more accurate
measurements are urgently needed.

• Laughlin and Kruger (Phys. Rev. 71, 736, 19(7) also find isotropic dis­
tribution (at 12-13 Mev).-Note added in proof.
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If Amaldi's results are correct they imply that the forces in the
P-state are attractive, and they support the theory of ordinary
forces III. Unfortunately, this result cannot be easily reconciled
,vith the saturation property of nuclear forces.*

*Experiments carried out with the 184-inch cyclotron of the University of
California at the end of 1946 demonstrate definitely the exchange nature of
the forces between neutron and proton. I t was shown in these experiments
that a neutron of about 100 Mev \vill produce protons nlostly in the forward
direction and with energies nearly equal to 100 Mev. This had been predicted
by Wick for high energy collisions between neutrons and protons. If the
forces were ordinary forces the proton would in general receive an energy
of the order of the depth of the nuclear potential well, i.e., about 10 Mev. On
the other hand, if the interaction is of the exchange type, then neutron and
proton will ('hange roles: the neutron will retain an energy of the order of
10 Mev and the proton will take almost t.he entire energy. When this note
was written it had not heen established whether the forces are of the pure
exchange type or of the type corresponding to the symmetrical meson theory.­
Note added in prool.



xv. SKETCH OF THE MESON THEORY
OF NUCLEAR FORCES

This theory is presented although it has so far not given any
results in quantitative agreement \vith empirical facts on nuclear
forces. Ho\vever, it may give a valuable point of vie\v.

The Coulomb force bet\veen t\VO charged particles can be ex­
plained in terms of the interaction of these particles \vith the elec­
tromagnetic field. Similarly, the force acting bet\veen t\VO nucleons
might be described by a meson field surrounding the first particle
,,~hich acts on the second.

Moving charges produce a radiation field ,vhich can be quantized
and described in terms of photons. l"he "quanta" surrounding
a nuclear particle are called mesons. Yuka,va, in initiating the
meson theory (Proc. Physico-Math. Soc. Japan 17, 48, 1935),
suggested that if the mesons are given a finite rest mass m, the
range of forces arising from the meson field \vill be li./mc, the
Compton ,vave length for the mcson. If the range of nuclear
forces is assumed to be 2.8 X 10-13 em, the mCHon rest mass
should be about 140 electron masses. Particles ,vith about this
rest mass \vere discovered in cosmic rays t\VO years later. In the
meantime, Brode and }1'rctter have determined the rest mass to
be 202 ± 10 electron masses, giving a range of 2 X 10-13 cm.

To determine the nature of the meson field and the correspond­
ing nuclear forces, an equation analogous to V21/1 = -41l"p must be
\vritten for the static part of the electromagnetic field. A rela­
tivistic equation suited for particles ,vith no spin and a finite rest
mass m is the Klein-Gordon equation:

V2,p + (1/n2c2)[(E - V)2 - (mc2)2],p = 4'1l"p (169)
with

E = to(iJ/at) (169a)

where p in this case is proportional to the density of nucleons. In
free space, V = o. For a static meson field, according to equation
169a, \ve must put E = o. Furthermore, if there is one point­
nucleon at the origin, the Klein-Gordon equation becomes

V 21b - (mc/h)21/1 = 4'l1"y1a(r) (170)
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where a represents the Dirac o-function, and gl is a constant
replacing the electronic charge in electrodynamics.

The solution of this equation is

1[1 = - (gl/r) exp [- (mc/li)r] (171)

and the potential acting on a second nucleon is given by:

v~ = 021[1 (172)

where gl and g2 are the effective nucleonic "charges" or coupling
constants.

The Yukawa scalar meson theory just described produces the
required range for nuclear forces. Since in this theory the nuclear
particle does not change its nature (i.e., charge) we find that
according to the theory the neutron-neutron, neutron-proton and
proton-proton forces are all equal. IIo\vever, the theory does not
explain the spin-dppendence of nuclear forces. }i'urthermore, the
forces are all "ordinary," ,vhereas exchange forces \vere found to
be necessary to explain the saturation of nuclear forces.

Since the mesons discovered in cosmic rays ,vere all charged
either positively or negatively, a theory of charged mesons was
developed. According to this theory, the following reactions can

take place: p p N + p,+ or N p P + p,- (173)

Thus protons and neutrons can transform into each other by the
emission or absorption of positive or negative mesons. The
interaction bet,veen t,vo particles, 1 and 2, can take place, for
instance, by the follo\ving scheme:

PI --) Nt + p.+ N 2 + p.+~ P2 (174)

It is clear that such an interaction can only occur between a
proton and a neutron, not bet\vcen t,vo like particles. This is in
contradiction to experimental evidence aIld rules out the charged
meson theory, at least in the case of ,veak coupling bet,veen
nucleons and meson field (snlall value of g). Further, the charges
of particles 1 and 2 are exchanged in the process of emission and
reabsorption of the meson; therefore, this meson theory leads to a
force of the charge exchange or IIeisenberg type. This, ,vhile giv­
ing saturation, is in contradiction ,vith experiment (Chapter XIV).

rro explain the neutron-neutron and proton-proton forces which
are missing in the charged theory, a symmetric scalar meson theory
was developed, containing neutral, positive and negative mesons
described by three functions 1/11, 1/12, and 1/13. To get spin-dependent
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Vouclear forces, the meson field must further depend on the spin of
tte nucleon ,vhich generates the field. This is achieved by intro­
ducing into the Hamiltonian of nucleon plus meson field, an inter­
action energy containing the factor a · grad'" ,vhere a is the

~ nucleon spin. In this case tit must be a "pseudoscalar" since a is
an axial and grad a polar vector. (A pseudoscalar changes sign
when the sign of the time is reversed, or on inversion of the spatial
coordinates; under Lorentz transformations, it is invariant.)

Solution of the symmetric pseudoscalar meson field equation
led to an interaction energy between t,vo nucleons of the form

1 [(3 3 2) 2]V = g2 - T 1 ·T2 8 12 - + -.!!:. + ~ e-p.r + 0'1·0"2 ~ e-lAr (175)
3 r3 .r r r

where p, = me/li.
The term in 0"1 • 0"2 provides the spin dependence of nuclear

forces, and the tensor force 8 12 explains the existence and sign of
the quadrupole moment. All these features are in qualitative
agreement ,vith experiment, as sho,vn in the preceding chapters.
Unfortunately, the high singularity of V at r = 0 makes it impos­
sible to solve the Schrodinger equation.

T,vo ,vays of saving the situation have heen Auggested: (1) to
cut off the interaction at some finite radius TO, i.e., to give the
neutrons and the protons a finite size, or (2) to mix t,vo meson
theories in such a ''lay as to eliminate the undesirable singularity.

The assumption of finite sources (1) unfortunately eannot be
formulated in a relativistic invariant ,vay. Furthermore, usc of
the rigorous relativistic interaction between nucleon and meson
field leads to the reappearance of terms in 1/r2 and 1/r3 in the
"mixed" theories, in higher approximations. Therefore there are at
present no trust,vorthy results of the meHon theory of nuclear forces.

It should be noted that many of the statements made about the
spin and charge dependence of the nuclear forces have to be modi­
fied if the coupling bet,veen nucleon and meson field is strong, i.e.,
if many mesons are emitted simultaneously. The coupling con­
stant for an electromagnetic field is e2 Inc = .Y137, a small value,
whereas that for the meson field g2/nc ~ Y1 or % is considerably
larger. The divergence of the interaction at small distances
makes the interaction effectively even stronger. For this reason,
much effort has been spent to treat the strong coupling problem
in meson theory, but so far no results have been obtained which
thro,v light on the problem of nuclear forces.



c. TOPICS NOT RELA TED TO NUCLEAR
FORCES

XVI. BETA DISINTEGRATION

In Chapter VI, experimental evidence ,vas given for the hy­
pothesis of the production of neutrinos of rest mass 0 and spin ~
in J3-decay processes. rrhis assumption made possible the conserva­
tion of energy and spin. l"he first detailed theory of the process
,vas given by Fermi (Zeitschrift fur Physik 88, 161, 1934). A
modification ,vhich seemed necessary but ,vas later abandoned
,vas the work of I{onopinski and Uhlenbeck (Phys. Rev. 48, 7,
1935). A summary is given by Konopinski (Rev. Modern Phys.
15, 209, 1943).

Fermi introduced a ne,v interaction bet,veen the nucleon and
the t,vo light particles, electron and neutrino. I-lis interaction
,vas chosen in analogy ,vith the interaction bet,veen charges and
electromagnetic field in quantum electrodynamics. (This analogy
,vas also uRed in the last chapter in connection ,vith the meson
theory of nuclear forces.) rrhe heavy particles are to act as sources
and sinks of the light particles.

If the Hamiltonian of tIle interaction bet,veen the proton,
neutron, and electron-neutrino fields is H, then the number of
transition processes per unit time is

(176)

,vhere peE) = the number of final states of the system per unit
energy interval

..yIn = initial state of the system
= UU1. = initial state of the nucleon.

Y;fin. = Ufin • ~e1cc. • 'Pn. = final Htatc of the system
= (final state of nucleon) . (final state of electron)

· (final state of neutrino).

Fermi's assumption for H ,vas essentially

f 1/Ifin.* HVtin. dr = gfUfin.* 1/Ielec.* lI'n.Uin. dr (177)

(neglecting relativistic corrections ,vhich are important only if the
heavy particle has high velocity) \vhere 1/Ic1ec. and lPn . are to be

97
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evaluated at the position of the nucleon, and therefore the integral
is over the coordinates of the nucleon alone. This is similar to
the case of electrons and light: a charge can only interact with a
light quantum when they are at the same place. The constant g
,vhich determines the strength of the interaction must be found
from experiment. It has the dimensions erg · cm3

, since 1/Ielec.

and f{Jn. are to be normalized per unit volume.
Note that we use 1/Ielec.*, but f{Jn. (,vithout a star). This corre­

sponds to the emission of an electron but the absorption of a
neutrino. However, this absorbed neutrino can be taken from a
state of negative energy \vhich corresponds to the emission of an
"antineutrino." \ O,,~ing to the absence of charge and magnetic
moment, an antineutrino is equivalent to a neutrino~ The formu­
lation (177) is therefore equivalent to the emission of an electron
and a neutrino, and it is a mathematical convenience to have
formally one particle absorbed and one created. The positron
emission ,vould be described by l/Ielec.CfJn *.

Since the neutrino has very little interaction ,vith anything, its
wave function may be taken as a plane ,vave. If Pn is the mo­
mentum of the emitted antineutrino, then -Pn. is that of the
absorbed neutrino of negative energy, and

<Pn. = V- H exp (-i Pn . r/n) (178)

where V is the volume of a box in ,vhich the ,vave function is
normalized. The factor V- ~2 may be omitted if a unit volume is
used for the normalization. 1/1£>1('0. should be a Coulomb \vavc func­
tion; but if Z the charge number is small, the Coulomb energy of
the electron can be neglected in comparison \vitil its kinetic energy
and a plane ,vave can be used for the electron wave function.
The number of final states per unit energy is

(Volume element of mo- X (Volume element of mo-
p(E) = mentum space of electron) mentum space of neutrino)

(Volume of phase Hpace per X (Volume of phase space per
electron energy state) neutrino energy state) X dE

= (Pelec.
2

dpelec. dWelecj(Pn.2 dPn. dwn)/(21rh)6 dEn. (179)

where dWelec.dwn. are elements of solid angle.
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(181)

The result for the transition probability of an clectron into
dEe1ec. and solid angle dn/41r (integration over all directions of the
neutrino has been carried out) is

G
2

mc
2 jf * [. r] 1

2
2 1-' "2 dO211'"3 h ufin uin. exp -~(Pn.+Pelec)·h dr E(E -1)/2(Eo-E) dE 41("

(180)

,vith G = (g,lmc2
) (li/mc)-3, E = Eelec/mc2,~ = Pclec/mc,

EO = Eavailablc/mc2. A planc ,vavc has been substituted for the
electron wave function.

JURt as in the theory of atomic transitions, there ,vill be selection
rules for ,B-decay proceSHes. If Pelec and Pn. are both of the order
of magnitude me, as is usually the casc, the exponent (Pn. + Pelec)
· r/h ,vill be of the order of magnitude:

R 4 X 10-13 em 1
-- ~ 1"..1--

ll/mc 3.86 X 10-11 em 100

(R = nuclear radius; medium-\","cight nuclei have h(\en chosen.)
Thus, exp [i(Pn. + Pelec) · r/h] ,viII be nearly 1, and the matrix
element in equation 180 reduces to M = f Ufin.*Uin. dr, Le., to an
expresHion deppnding only on the state of the nucleon before and
after the transition. ill is determined by the nuclea,r wave func­
tions. In particular, the orthogonality of the nuclear \vave func­
tions for states of different angular momentunl I gives the selection
rule:

M ~ 0 implies dI = 0 (182)

Such tranHitions are called allo\ved. Transitions for \vhich M = 0
are called forbidden; in this case the exponential in equation 180
must be expanded in a po,ver R~ries; the order of the forbidden
transition iR the number of the firRt term in thiA po\ver series ,vhieh
gives a non-vanishing result for the Inatrix clcment. Because of
the estimate (181), the probabilities should decrease by a factor
of about 104 ,vith each order.

ALLOWED TRANSITIONS

The only dependence of the allowed transition probability on
the electron energy is through the volume element in momentum
space. The energy spectrum of electrons is therefore

J.V(E) dE 1"..1 E~(EO - E)2 dE (183)
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Since EO is unkno'vn, the experiments have to yield a value of EO,

,v~ving a check on the theoretical spectrum. 1'his is easily
done by making a "I(urie plot." In this plot, the quantity

(184)

(as observed) iR plotted against the energy E. According to
equation 183, F(E) t'..I EO - E; therefore the plot should yield a
straight line \vhich cuts the E-axis at EO.

The only nucleus ,vhich checks thiH proportionality exactly is
Inl14

, measured by La\vson and Cork (Phys. Rev. 57, 982, 1940).
Here EO = 1.99 Mev (,vhic}l is
high enough to make the cx-

F(f,) pcriments on the p-rays fairly
easy) and the lifetime is 72
seconds. LtlCkily this short­
lifetime l3-decay follo'YS a 50­
day-lifetime 7-dccay (isomeric

0.615 Mev E transition; see Chapter IV).
rl'here are experiInental dif­

FIG. 13. Kurlc plot of the positron ficulties in the measurement
spectrum from CuM.

of the energy spectra of most
other l3-radioactive nuclei which result from either the lo,v energy
of the electrons or the short lifetinlcs. CU64 measured by A. W.
Tyler (Phys. Rev. 66, 125, 1939) cmit~ both positrons and elec­
trons. The positron spectrum ,vas measured both for thick target
and thin target (thick and thin relative to the electron range).
The Kurie plots are sho,vn in Fig. 13. It is not kno\vn ,vhctllcr
the portion AB of the thin target curve is spurious or results
from another decay process (to an excited state of Ni64

) ,vith a
very lo,v energy limit.

l'he thick target curve iA typical of the experimental evidence
,vhich lead Konopinski and Uhlenheck to introduce their alterna­
tive theory (Phys. Rev. 48, 7, 1935). l'hey proposed using the
time derivative of the neutrino ,vave function iJcpjat in the transi­
tion probability instead of cpo Since ocpj at I'.J (EO - e) 'P this led to
spectrum

(185)

thereby moving the maximum of the spectrum to lower electron
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energies. To make a Kurie plot of this, the fourth root must be
used in equation 184 instead of the second. Many of the experi­
mental data on thick targets then give straight lines but very high
values of EO. Later experiments using thin targets sho\ved that
the Kurie plots according to the Konopinski-Uhlcnbeck theory
dropped off, as sho\vn in Fig. 14, which demonstrated that the
straight-line portion was accidental. Also, when the mass differ­
ences of nuclei became better kno\vn, the values of EO given by
the Konopinski-Uhlenbeck theory ,vere shown to be much too
high in all cases but that those given by the Fermi theory agreed
\vith the measured mass difference.

N 13 measured by I{ikuchi et al. (Proc. Physico-Math. Soc.
Japan, 21, 52, 1939); I.Jyman (Phys. Rev. 55, 1123, 1939); and

E

FIG. 14. Typical Kurie plot of the Konopinski-Uhlenbeck theory.

Townsend (Proc. Roy. Soc. A177, 357, 1941), is one case in ,vhich
the use of very thin targets still did not give a Fermi distribution.
To account for suell spectra it is usually assumed that several
decay processes are taking place simultaneously, leading to various
energy levels of the residual nucleus. 'Vith N 13 ~ C13 + {3+
this is confirmed by the observation of a j'-ray of about 280 key
by Richardson (l>hys. Itcv. 56, G09, 1939). This ')'-ray is attributed
to tIle transition of the residual nucleus C13 from its excited to
the ground state. Unfortunately, various experimenters disagree
on the relative intensities of the -y-rays and of the two compo­
nents of the ,a-spectrum, and on the value of the upper limit of its
lovver-energy component.

Coulomb Field. In expression 183 for the electron energy
spectrum no account has been t.aken of the Coulomb field. The
correct spectrum has a greater electron density at lo,v energies.

There is no zero for E = 1 because the factor~ ,,",' v
(velocity) in the density of states is canceled by a l/v in the charge
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density of electrons at the nucleus. The resulting electron spectrum
is shown in Fig. 15.

For positrons, fe,ver of low energy should be expected than the
number given by expression 183 because of the repulsion of the

positrons in the Coulomb field:
N The Coulomb wave function of .

the electron in expression 177
has a factor exp (-21l"Zc2/hv) ,
,vhich lowers the transition
probability considerably for lo,v

, velocities.
FIG. 15. Energy distribution of l."here are some disturbing

l3-rays with Coulomb field. measurements by Backus (Phys.
Rev. 68, 59, 1945) on the ratio

of positrons to electrons, N+/N_, in the CU64 p-transitions:

jNi64 + {3+
CU64:~

Zn64 + f3-

N+/N_ should be smallest and behave in a calculable way at
lo,v energies; the experimental values \vere compared with the
theoretical prediction but the value of N+/N_ ,vas found to be
ten times greater than predicted. These measurements should be
repeated. The disagieement can hardly be attributed to a failure
of {3-ray theory because the ratio of positron emission to K-electron
capture was found to be in exact agreement with theory (Scherrer
et al., Phys. Rev. 68, 57, 1945), and this ratio involves parts of
the theory very similar to those in Backus' experiment.

LIFETIMES IN ALLOWED TRANSITIONS

The total transition probability, or reciprocal of the lifetime,
for {j-ray emission is found by integrating over the energy distribu­
tion (equation ISO} to be

1fT = (G2/27r3 ) • (mc2/h)\M\2F(Eo) (186)

,.,- .....J"." ." • ..,..... ,..,...,. ...... "'--..., -~-_.. "" -

Rev. 68, 59, 1945) on the ratio
of positrons to electrons, N+/N_, in the CU64 p-transitions:
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F(Eo) is the integral of the distribution in energy

F(Eo) = £E

oEVE2 - l(Eo - E)2 dE

103

(188)

where EO is the total energy available for neutrino and electron,
including rest mass, in units of the electron rest energy. F(Eo)
varies rapidly with EO, being approximately equal to (1/30)Eo5 for
EO» 1 acd to O.216(Eo - 1)~~ for EO nearly unity. Thus T de­
creases rapidly ,vith increaHing EO, hut not as fast as in the case of
a-deca:r, where the transition probability is proportional to an
exponential of the energy. In Chapter II it ,vas pointed out that
in natural a-decay a factor of 2 in energy is equivalent to a factor
of 10-20 in lifetime.

The matrix element M is in general not kno\vn because \ve have
very Hcant kno\vlcdge of nuclear \vave functions. Even if \VC know
that the tranHition is allo\ved, \ve can in general :-,ay only that Illli
is bet\vecn zero and one.

Ho\vcver, in some cases the value of llJ can be guessed to some­
\vhat better than order of magnitude. 1·'01' allo\ved transitions
(ill = 0), \ve have

(189)

AI will be near unity \vhen the \vavc functions Ufin and Uin. arc
nearly alike. Such iH the case for {3-transition bet\veen mirror
nuclei (Chapter II) (for \vhich also the selection rule J11 = 0 is
likely to be fulfilled). Three examples of allo\ved transitions in
mirror nuclei are given in Table 12. The product tF( EO) is remark-

TABLE 12

ALLOWED TRANSITIONS IN MIRROR NUCLEI

Reaction
113 ~ He3 + {3- + v
ell ~ Btl + {3+ + v

Se4t -+ Ca41 + (3+ + v

t = half-life
109 sec

1200 sec
0.9 sec

EO

1.03
2.86

10.68

tF(EO)

1400
3500
2500

Source: Konopinski, Rev. Modern Phys. 15, 209.

ably constant, confirming the theory underlying equation 186.
'l'his constancy exists in spite of t varying by a factor as large a..q

109
• Furthermore, it is reasonable that tF is sOInewhat smaller

for the first situation than for the other t\VO, for in a nucleus
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containing only three particles we would expect Ufin. and Uin to
be more nearly alike than in the heavier nuclei, so that 1.1l11 would
be closer to unity in the light nucleus.

It is interesting to note that the I{onopinski-Uhlenbeck theory
of J3-decay predicts variation by a factor of 105 bet,veen the prod­
ucts tF for the various reactions in Table 12.

For nuclei of intermediate mass, the Coulonlb repulsion already
introduces considerable a~ymnletry bct,vecn tIle number~ of pro-

TABLE 13

ALLOWED TRANSITIONS IN INTERMEDIATELY HEAVY NUCLEI

Reaction
S35 ---t C135 +(j- + v

Cu64 -+ Zn64 + fJ- + II

Cu64 --+ Ni64 + 13+ + II

In1l7 -+ Sn1l7 + 13- + II

tfl' (EO)

10,000
66,000
22.000

140.000

tons and neutrons (there are no more mirror nuclei), and pre­
sumably even greater differences bet,vccn neutron and proton
,vave functions in the nucleus. ThuH, even for allo\vcd transitions,
smaller matrix elenlents are expected for internlediately heaV)f
nuclei than for light, mirror nuclei. 1"'his is borne out by the data
in Table 13.

In the heavy, naturally radioactive nuclei the matrix elements

TABLE 14

ALLOWED TRANSITIONS IN NATURALLY RADIOACTIVE NUCLEI

Emitter
RaB
UX2

tl/(Eu)

50, ()()()
270,000

are in general still smaller. This is horne out by the data in
Table 14.

Assuming 11lfl ~ 1 for the lighteAt mirror nuclei, G can be cal­
culated from [i't. The result is

(190)

This corresponds to g ~ 10-48 erg · cm3• The smallness of this
coupling het,veen electron-neutrino and the heavy particle i:-;
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what makes (j-decay take place so slo,vly compared to other
nuclear reactions, except some a-radiation. It is safe to say that
(j-rays are not emitted during nuclear collisions, but only at com­
paratively long times after,vardH. For example, the lifetime of
protons in the sun due to the reaction

H + H ~ D + {3+ + 11 (191)

is about lOll yearR, even ,vith a density of about 100 and a tem­
perature of 2 X 107 degrees C. (See Rethe and Critchfield, Phys.
Rev. 54, 248.) Even so, thiA reaction presents about the best
opportunity for (j-decay during a collision. rrhe long lifetime of
the proton in the Hun indicates an extremely lo,v probability of
(j-decay per collision.

l'he most fundamental ~-decay is that of the neutron

n ~ Ii + /3- + 11 (192)

The matrix element for this reaction should be exactly unity, as
the ,vavc function for a single proton ought to be the same as that
of a single neutron. Measuring the lifetime of this reaction
should give an exact value of G. Ho\vever, this reaction is hard
to observe as the neutrons are removed much more rapidly by
other nleans (capture, diffusion) than by the above reaction.
Using the value of G found above, the half-life for the reaction
(192) should be about 15 minutes. There is hope of making the
measurement with the large neutron fluxes no\v available in piles.

LIFETIMES IN FORBIDDEN TRANSITIONS

The second term in the Taylor expansion of the exponential
in the matrix elenlcnt (187) ,vill give a non-vanishing integral ,vhen
ill = ±1, ,vhich transition ,vas forbidden in the first approxima­
tion. Similarly, ill = ±2 transitions become possible ,vith the
third term in the expansion, and so on. For EO = 2, the argument
of the exponential averages about 1/100 over the range of the
heavy particle ,vave function, so that 11lf(LlI = ±1)12 might be
expected to be about 10-4 times IM(~I = 0)1 2

• Actually, the true
\vave function for an electron in the Coulomb field varies faster
than the plane ,vave approximation used in equation 187, and the
factor 10-4 becomes about 10-2 for medium and heavy nuclei.
This correction does not help the higher forbidden transitions so
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much as the first. Higher EO makes all forbidden transitions more
probable. Table 15 quotes experimental data from I{onopinski
for forbidden transitions in light nuclei.

TABLE 15

HALF-LIVES IN FORBIDDEN TRANSITIONS

Emitter t = Half-hfe

First Forbidden Transitions

0.9 sec
40 sec

24.5
9

2.8 X 10&
105

Second Forbidden Transitions

p32 1.2 X 106 sec 4.37 8.6 X 107

Higher Forbidden Transitions

1014 sec 2.1
5.1016 sec 2.4

Source: Konopinski, Rev. Modern Phys. 15, 209.

GAMOW-TELLER SELECTION RULES

There iH good evidence that the selection rule III = 0 for allo,ved
transition8 is not generally adhered to. One example is the K-

capture reaction Be7 + I(~ Li7 + v (193)

Ij7 is produced hoth in its grouIld state and in an excited state
about 440 key above the ground Rtatc. 'fhe experimental ratio of
number of transitions to the ground state to number of transitions
to the excited state is about 10 to 1. 'This is about equal to the
calculated ratio, using equation 186 and assuming Ill!1 equal for
the t,vo cases. From this and the absolute lifetime it may be
concluded that both transitions are allov;ed. Ho,vever, ,ve do
not expect both states of Li7 to have the Rame value for 1. The
best assumption is that the two states form a P-doublet, with
I = Y2 and I = ~~ for excited and ground states, respectively.
Thus AI can certainly not be zero for both transitions.

Another example is the reaction:

He6 ~ Li6 + ~- + v (194)

Li6 can be thought of as an a-particle pluR a deuteron. The
a-particle has I = 0, and the deuteron has I = 1. We expect,
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therefore, that Li6 has I = 1, in agreement \vith experiment. In
the same picture, He6 is an a-particle plus two neutrons. In the
"ground state," the double neutron should have spin zero (cf.
Chapter XII), so that the same argument gives I = 0 for He6 •

An additional argument for this is that all nuclei containing even
numbers of neutronH and protons have zero spin aR far as they have
been investigated. Thus ~l = 1, and the transition is forbidden.
But the experimental lifetime of the reaction sho,vs that it is
"allowed." There are sinlilar Rituations in the J3-decay of C10

,

FIB, and Na22 •

So it seems that tllere can be allo,ved transitions with dl = 1.
Gamow and l"eller first showed h(nv this can come about. They

said that in conRidcring possible interactions, one ought to include
all relativistically invariant combinations of the fOUf ,vavc func­
tions, Uin., Ufin, 1/Ielec, and <Pll.. For two ,vave functions, let us say
1/1 and <P, there are five combinations ,vhich are covariant under
Lorentz transformations:

1. Scalar: 1/J* 13 cP (Fermi theory).
2. Polar four vector, ,vith components: 1/1* cP, 1/1* Q, cP-
3. Tensor: 1/1* 13 a <P, 1/1* 13 a. </>-
4. Axial vector: 1/J* a <P, 1/1* 1'5 cP-
5. Pseudoscalar: 1/1* 13 1'5 cP-

,vhere 13, a., and 1'5 are Dirac operators and CT is the usual spin
operator. (For details, see Konopinski's article.) rro obtain a
relativistically invariant interaction, the corresponding combina­
tions of the ,vave functions of the light and of the heavy particles
must be multiplied; for example, the tensor combination of the
light particle ,vave functions ,vith the tensor combination of the
,vave functions U m and Ufin. of the heavy particles. In this case
the Hamiltonian becomes:

V(tensor) = (1/J*J3CTcP) • (Ufin.*f3CTU1nJ (195)

(The transition is still treated as though an antineutrino is
emitted.) Since the heavy particles are non-relativistic, the Dirac
operator ~ for them is equivalent to unity; therefore, the net effect
of equation 195 is to place the operator CT bet,veen the heavy
particle wave functions Uin. and Ufin.- Therefore, the matrix
element for allo,ved transitions is now f Ufin.*auin. dr, and this
lnay be different from zero if the total spin I changes by one unit,
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or by zero, in the transition. Thus ~I = ± 1, 0 can be "allo\ved"
for the tensor interaction.

l"he axial vector interaction gives the same selection rule as the
tensor,

tJaI = 0, ±1 (19u)

From the experimental data it seems that these Gamo\v-Teller
selection rules are correct. For instance, they explain the results
for He6, CIO, F I8, and Na22 • Ho\vever, the reaction

(197)

differs from (194) only by the addition of an a-particle, so that
~l = 1 may again be expected for thiH reaction. But expcrirnent
sho\vs that this is forbidden. The same is true for the reaction

(198)

\vhich differs from (194) by t\VO a-particles. rrhus the Gamo\v­
Teller selection rules, \vhile explaining more than the Fermi rules,
still are in contradiction \vith nlany of the data.

K-capturc. l'he theory for K-capture has been \vorked out,
and is in good agreement ,vith experiment. Scherrer et al. (Phys.
Rev. 68, 57) have meaRurcd the ratio of [{-capture processes to
positron-emission processeR for C~d107 (or 109?), ,vith the result:
320 ± 20. l~he }i"crmi theory predicts 340. (The I{onopinski­
Uhlenbeck theory gives 20,000, and is conclusively ruled out.)



XVII. THE COMPOUND NUCLEUS

In this chapter, we are no longer concerned ,vith the determina­
tion of fundamental nuclear forces, but ,vith the more practical
problern of predicting cross sections for nuclear reactions, par­
ticularly those involving lleavier nuclei the quantum states of
,vhich are not kno,vn precisely. On the other hand, the presence
of many nuclear particles ,vill make Rtatistical methods practical,
and these arc uHcd in thc theory of the eompound nucleus.

r-rhe concept of the compound nucleus ,vas initiated by Bohr in
1935. In order to get a clear picture of this concept we shall
examine tIle difference bct\veen nuclear collisions and atomic
collisions.

For collisions bet,Yeen an atom and a particle of high or moderate
energy, the Born approximation is valid because the incident
particle paSHCS right through the atom practically undisturbed.
Slight deflections, inelastic collisions, and emission of radiation
are progressively leHs likely processes. The reason that particles
are likely to pass right tilrough is that the atom is a loosely bound
structure. Anotllcr ,vay of saying this is tllat the interaction of
atomic electrons ,vith, sayan incident electron of several thousand
volts, is much Rmaller than the incident energy-\vhich is precisely
the condition for validity of Born's approximation.

Nuclear interactions, on the other hand, are of the order of 20
Mev, ,vhich is much greater than the kinetic energy of tIle incident
particle normally used, Le., several l\1ev or less. 'This is precisely
the opposite of the conditions required for Born's approximation.
fIerc, the interaction energy is more important than the kinetic
energy.

Another difference: An electron striking an atom can be re­
garded as interacting ,,,,ith the average "IIartree" field of the atom.
rl"his approximation is valid because the interaction with a single
electron is much smaller than the average interaction ,vith all the
electrons. On the other hand, the short range and the saturation
character of nuclear forces require that nucleons interact only
,vith a small number of neighbors. Thus individual interactions

109
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will be of the same order of importance as the average total inter­
action-and it ,viII not be permissible to replace the nucleus by an
average field.

The Bohr picture takes advantage of these large interactions
and describes them in terms of a compound nucleus. 1"he theory
makes the follo\ving statements:

1. Any particle 'lvhich hits the nucle11s is caught. A neVi nucleus
is formed called the compound nucleus. The reason for this is
that an incident particle ,vill interact ,vith one or t,vo nucleons,
transferring much of its energy to them and thus to the nucleus,
before penetrating it appreciably. Then it may no longer have
sufficient kinetic energy to escape the attractive nuclear forccH,
and is therefore caught.

2. The compound nucleus is long-lived compared to the natural
nuclear time. ('Illis is the time for a neutron to cross the nucleus­

cm
say 10-12 cm/109

- ~ 10-21 second.) The reason for this is
sec

that the compound nucleus, ,vhich is in an excited state (excitation
energy above the ground state = incident energy + binding
energy of one particle), will live until this excitation energy, or a
reasonable fraction of it, is concentrated again on one particle.

3. The final break-up of the nucleus is independent oj the mode
of formation, Le., regardless of ho,v the nucleus ,vas formed there
\vill be definite probabilities for decay into each of several possible
residual nuclei. This can he explained in terms of the long life­
time of the compound nucleus during ,vhich complete statistical
equilibrium is assumed to be established-thus the nucleus forgets
how it ,vas formed; formation and disintegration can be regarded
as independent events.

For example, the ordinary Al nucleus (13A127
) can be formed as

a "compound nucleus" in a highly excited state from any of the

reactions: lIN 23 + 2FI 4 13Al27 ·t da e ~ excl e

12Mg25 + IH2 -+ 13A12 7 excited

12Mg26 + H l -+ 13A127 excited

13A127 + l' ~ 13Al27 excited

(199)

The compound nucleus can then decay back, reversing the reac­
tion, into any of the nuclei jUHt mentioned, or also into Al26 + n,



THE COMPOUND NUCLEUS III

(201)

with a definite probability for each ,vhich is the same for all modes
of formation. The residual nuclei may also be left in excited
states, with probabilities \vhich are also independent of the manner
of formation.

p1ormation of Compound Nucleus. The cross section for forma­
tion of the compound nucleus Uf may be ,vritten in the form

Uf = 1rR2e (200)

""here R is the nuclear radiuA, and t is a useful parameter, called
the sticking probability, ,vhich is defined by this equation.

For fast nuclear particles, Le., ~ « R("'A ~ 10-12 em for 200-kv
neutrons), the classical geometrical approach is valid since the
uncertainty in position of the particle is only X. The crOSA section
for capture of fast nuclear particles is certainly not greater than
1rR2 since the interaction is negligible if the particle passes at a
distance from the nucleus. For slo,v neutrons, ho,vever, cross
sections greater than 1rR2 are possible since the pORition of the
particle is poorly defined. 1~o get a sticking probability ,vhich is
al\vays ~ 1, the definition is revised. 'Ve define the contribution
Ul to the cross section due to particles of orbital momentum l,
and set

Then from general principles of quantum mechanics, ~l must be
less than (or equal to) 1. Moreover, equation 201 reduces to
equation 200 for high energy since all values of l up to Ii/A ,,,ill
contribute appreciably (cf. Chapter IX, p. 38); ~ is a \veighted
average of tz. Neutrons ,vere uRed in the above discussion to
avoid questions involving penetration of the potential barrier
,vhich ,vould arise for protons and a-particles.

rfhe Bohr statement, that any particle ,vhich hits the nucleus
is caught, is given more precisely by the equation

~ ~ 1 as AIR --" 0 (202)

In other words, the sticking probability approaches 1 at high
energies. l"his statement has been checked experimentally with
high-energy neutrons especially by Amaldi and co-workers, by
Sherr, and by Graham and Seaborg. They find cross sections of
about Uf ~ 'lrR2 , ,vith R given by a formula similar to equation 3,
in good agreement with other methods of determining nuclear
radii (see Chapter II).
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Disintegration of Compound Nucleus. The probability that the
compound nucleus will disintegrate in a particular ,vay is related
to the cross section for the corresponding inverse capture process
,vith some factors containing the density of initial and final states.
This follo\vs from considering a statistical equilibrium condition
bet,veen the compound nucleus and all the possible states of all
the residual nuclei into \vhich it can disintegrate (similar to
Chapter XI, p. 60). In equilibrium, the number of nuclei present
in a small energy range bet,veen E and E + dE \yill be proportional
to the density of states p(E) in that energy range, and to a Boltz­
mann factor. Since energy is conserved in the total system, the
Boltzmann factors cancel out and the condition for equilibrium
takes the form

PA lVA-+B = PB lVB~A. (203)

,vhere PA and PH are the densitieR of initial and final states of the
system at corresponding energies, and th~ lV's represent prob­
abilities for the direct and inverse proccsseH.

For our process, A is the excited compound nucleus ,vith a
density of states PA (EA ) = l/DA , ,vhere [) is the average separa­
tion bet,veen neighboring stateR, at an energy E.4. ahove t.he ground
state of A. (Each state iH counted according to its statistical
\veight.) WA~B is the probability of disinte~r[l,tion of the com­
pound nucleus into a definite state of the re~idual nucleus B ,vith
energy EB above its ground state, \vith tIle emission of a particle
(say neutron) of energy E. W 8-...1 is the probability that nucleus
B ,vill capture this particle of energy E and produce a compound
state of excitation EA. Finally, pn(En) gives the number of states
bet,veen E and E + dE available for the outgoing particle, viz.

41T"p2

PB = v(2n-hrl (203a)

with p and v the momentum and velocity of the outgoing particle.
We now use the relation between the capture probability and the
capture cross section, \vhich is

(204)

for one neutron in a box of unit volume moving ,vith velocity
v = (2E/m) Y2, and the relation bet,veen the excitation energies E A

and EB, EB = E A - E - B (205)
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where E is the energy of the outgoing particle and B its binding
energy in the unexcited nucleus A.

Using all the relations just given, and setting l = 0 in equation
201 (other l give very similar results), we now have a relation by
means of which the disintegration probability WA-+B == rB/h can
be computed in terms of the sticking probability tB for the inverse
capture reaction:

(1/DA)(rB/li) = PBV 7rX2~B

or, inserting 203a and simplifying:

fB/DA = ~B/21r

(206)

(206a)

This important equation relates the disintegration probability
rB, leading to a definite state of the residual nucleus, to the level
spacing DA • For high energies, ~B approaches 1; for low energies
it is proportional to the velocity v of the emitted particle. Both
DA and rB can be deduced from experiment; DA and ~B can also
be estimated from various statistical models for heavy nuclei
(Nuclear Physics B; Wei.sskopf, Phys. llev. 52, 295, 1937; 57,
472, 1940).

The disintegration probahilities fBln are also related to the
\",idths of the reRonances observed in these reactions: since the
total decay probability is

rln = (l/n):Ern
B

the time dependence of the \vave function is of the form

c-tEf/ne-rt/2tl = e-i(E-7~tr)t/h

(207)

(208)

(Note that the absolute square of the ,,,,ave function gives the
occupation of the 8tate and decays according to equation 207.)
Equation 208 has a Fourier transform * the absolute square of
\vhich is:

1

(E' - E)2 + (r/2)2
(209)

Thus r has the same dimensions as E and gives the width at half­
maximum of the level, or resonance line. l-'he quantity rB repre-

• Taking the Fourier tranf"iform 'with respect to time of a timc-depend(-'nt
wave funetion gives the wave function t/;(E') in energy space.
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sents a partial level width, i.e., the contribution to r arising from
the disintegration into a definite end state B.

Since the compound nucleus must eventually decay, the cross
section for a reaction ending in state B is given by the cross section
for forming the compound nucleus, times rB/r. Thus

UJB = U/ rB/r (210)

and for fast particles:

(211)

CONCLUSIONS ABOUT NUCLEAR REACTIONS

Energy Distribution of Emitted Particles. From equation 206a
we see that rB is almost the same for any final state B, since the
sticking probability tB is a slo\vly varying function of the energy
of the outgoing particle. This information is useful in predicting
the energy distribution of the emitted particles. ~"'or example,
if ,ve consider the inelastic scattering of neutrons

ZA + n ~ ZA+l ~ ZA + n (212)

and make use of the fact that the density of states in the residnal
nucleus increases rapidly \vith excitation energy, then \ve see that
the residual nucleus ,viII most likely be left in a fairly high excited
state and the emitted neutron \vill come out \vith low energies.

The fact that emitted neutrons come out ,vith greatly reduced
energies has been experirnentally confirlned for lunny target nuclei.
Lead forms a notable exception to tllis rule. l"he reason for thiH
may be that the first excited state in this instance is quite high­
so that this rule \vould not be confirmed unlcsR higher energy
incident neutroDH are uRed. In fact, the incident energy mURt
be high enough so that the residual nucleus B posseRses a great
many levels with an excitation energy less than the incident
kinetic energy Eo, in order that the statistical considerations u~ed

may be valid.
Shadow Scattering. In neutron-scattering experiments a purely

\vave-optical effect must be considered at high incident energies
(A « R), for which \ve have Raid the capture cross section is rR2•

In this case, the nucleus can be regarded as a black sphere of
radius R which casts a shadow. This is described in the language
of wave optics by saying that just enough light is scattered in the
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for,vard direction to cancel the incident beam. This would mean
a cross section for shadow scattering of 1rR2

• Furthermore, to
cancel the incident beam behind the sphere, this shadow scattering
must be of the same energy, i.e., it represents elastic scattering.
According to an elementary wave-optical argument, the shado\v
scattering will be mostly confined to an angle AIR from the
for,vard direction.

In the case of light, for which normally A« R, the shado\v
scattering is not eaHily measurable since the shadow extends prac­
tically to infinity. In the nuclear case '1\/R is, say, ~3 or 7'5, so
that the umbra or region of cOInplete Rhado\v extends onl)T a short
distance back of the nue-Ieus, c~rtainly not as far back as the
measuring apparatu~. 1"hus it is pORRiblc to make measurements
outside the main beanl but still at small enough angles to it to
obtain the elaHtic Hhad<Hv scattering. The existence and general
features of 8hado\v Rcat,tering have been confirmed experimentally
by ]~ikuchi et al., Amaldi ct al., and Bacher.

('Yhargcd [.Jarticles. The emis~ion of charged particles such as
proton~ requires the penetration of a potential barrier. This
penetration probability is siluilar to that given in the theory of
a-deeay and is quite ~mall unlesR the emitted protons have energy
nearly equal to, or greater than, the barrier height B. Thus, in a
rough ,yay, ,ve nlay Hay that the protons must leave \vith a mini­
mum energy B. ThiH \vould leave the rCHidual nucleus at a lo\ver
energy than if neutronH \vere emitted. Since the density of residual
nueleus states decreases rapidly ,,'ith decreasing energy, the
probability for proton emission ,vill be much smaller than that for
neutron emisHion because of the fe\\"er nunlber of states available,
especially if the nuelear charge is high and the available energy lo\v.

'Y-ray8. 1"'he emiHsion of 'Y-rays ,,'"ill in general be small com­
pared to heavy particle emission ,vhen the latter is energetically
possible because the coupling of the nucleus \vith the radiation
field involves the small factor e2Inc = 1/13~.

DENSITY OF NUCLEAR ENERGY LEVELS­
NUCLEAR TEMPERATURE

The density of nuclear energy levels increases rapidly as a
function of energy. To see ho\v this comes about a model ,vhich
is only a crude approximation is uAed. We coneider the nuclear
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particles as independent of each other, and suppose each of them
has a set of equally spaced energy levels spaced by an energy
difference 4. Then, the excited states of the system ,viII also be
spaced by the interval ~, and will have a greater statistical weight
the greater the excitation energy, because of the greater number
of ,vays of dividing the energy among the particles. When an
interaction among the particles iR then introduced, there will be
splitting of each energy level; and the statistical ""eight of an energy
level of the non-interacting system is a measure of the energy level
density in the sn,nle region of the spectrum, after tIle interaction
has been introduced.

To calculate the level density a model of t.he nucleus mURt he
used. Four models ,viII be mentioned. (For Illorc details spe
Nuclear Physics B, p. 79.)

1. Free Particles in a Box of the Size of the J.Vuclcus. l"'he level
spacing D is proportional to exp( -VI~), \vhere E is the excitation
energy of the nucleus. For A = 120, E = 8 Mev, ,ve get D I"wI 10
ev, \vhich is about \vhat is observed.

2. Free Particle in a Box, with Correlations. Bardecn has
pointed out that the free particle model must he modified to be
in accord with the assumption of exchange forces. The result
gives a level spacing depending on excitation energy in about the
same way as before, but the level spacings are SOIne\vhat ,vider:
D I".J 100 ev for A = 120, E = 8 Mev.

3. Lattice Model. l"'his model is the opposite extreme of models
1 and 2, for the particles are here supposed to be firmly bound
and capable only of small vibrations ahout equilibriunl. l'he re­
sults are similar to those for models 1 and 2. The level spacing is
proportional to exp( -E~'). For A = 120 and E = 8 Mev,
D I".J 100 ev.

4. Liquid Drop Model. For heavy nuclei this model is quite a
good approximation. The level spacing if'3 proportional to
exp( -W"r) for small E and exp( -W4) for larger E. For A = 120
and E = 8 Mev, D t"-I 10 ev.

All these models give a level spacing which is a decreasing func­
tion of the energy of the form exp[ -feE)], where feE) iH a slowly
variable function of the energy.

If the density of states, p(E) = liD, of any system is given
as a function of energy then an entropy can be defined as
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S = k log peE), and a temperature as as/aE = l/T(E). Each of
the four models mentioned will therefore define a nuclear tempera­
ture as a function of excitation energy. It turns out that for
10 Mev excitation energy, kT is of the order of 1 Mev, Le.,
T = 10100 !{.

The most satisfactory treatment of nuclear thermodynamics
(\Veisskopf, Phys. Rev. 52, 295, 1937) avoids a model and supposes

D = C exp( -BVE) (213)

The constants Band C are determined from experiment: For lo,v
excitation energies the exponential is close to 1 so that D is about
equal to C. From the ohHcrved position of the lo\vcst excited levels,
it is found that:

For light nuclei CA. ,"-I 20)

For heavy nuclei (A ~ 200)
(214)

(215)

(216)

B ran then be det(lrmined from neutron resonance levels near
E ~ 8 Mev (binding energy of neutron in nucleus); this gives
about:

B = 2 for light nuclei

B = 4: for heavy nuclei

if E is meaRured in Mev.
Any of the level density functions lead approximately to a

Boltzmann diRtribution for inelastically scattered neutrons. If
the incident energy of the neutrons i~ Eo and the energy of the
emitted neutrons is W then the excitation energy of the residual
nucleu8 is l!Jo - lV. Supposing that the level density of the
residual nucleus is exp[+f(E)] and expanding,

f(E) = f(Eo) - f'(Eo)W + ...
,ve get a level density

exp f(E) = exp I(Eo) X exp( -f'W) (217)

Therefore, setting I' = l/kT (\vhich is exactly the expression
demanded by iJS/iJE = liT) gives a Boltzmann distributioIl for
the level density of the residual nucleus as a function of Wand
therefore for the kinetic energies of the emitted neutrons. A more
car(~ful consideration gives a probability of emission proportional
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to VW exp( - W/kT) or lV exp( - W/kT) but experitnent has
not as yet given enough data to make it possible to distinguisll
between them.

RESONANCE PHENOMENA

Let the energy levels of a nucleus ZA be as sho,vn in Fig. 16 and
consider the process ZA-l + n ~ ZA. If the incident neutron
has exactly the right energy to form ZA in one of its excited states,
the probability of capture iR large. Such energies are called
resonance energies of the compound nucleus. The experimental

t1

~§~Btnding energy_= "4-of neutron

--~,.....=-Ground state

FIG. 16. Enel'~Y lev(?!s
of a nucleus.

Neutron
1...- energy

FIG. 17. Typical expcl'imental
cross section of a nucleus for

slow neutrons.

evidence (see l~ig. 17) for neutron resonance energies in capture
processes led to the first theories of the compound nucleus. Ex­
perimentally, for A "-J 100, tile level spacing D is about 10 ev, if
E is about the binding energy of the neutron, i.e., 8 Mev. D is
about the same at A r-v 200, and the appropriate binding energy
E "'-I 5 Mev. l"his can be understood because, on the one hand,
the number of particles is greater (and thus there are more pORsi­
bilities of distributing the energy); on the other hand the excita­
tion energy (binding energy of the particle) is smaller. F'or A
smaller than 100, the level spacing increases rapidly.

There are several nuclei for which more than one resonance is
kno,vn: Among elements having only one (abundant) isotope,
In has 3 resolved resonances, I has 5, and Ta 7. In addition,
many other elements sho\v more resonances than isotopes. Most
of the experimental evidence ,vas obtained by ltain\vater, Havens,
and their collaborators, in several papers in Phys. Rev. 71 (1947).
In some cases, only one resonance is observed; the level spacing
is then not directly kno,vn but it can be taken as of the same order
of magnitude as the kinetic energy of the neutrons corresponding
to the first resonance.
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For protons, capture resonances have been observed only for
the very light nuclei. The level spacings are of the order of 10
to 100 key with an excitation energy of ",,10 Mev. For heavier
nuclei, the Coulomb barrier prevents capture resonances for
protons because the excitation energies which result after a proton
has been given sufficient energy to get over the Coulomb barrier
are so high that the resonance levels overlap. A few resonances
have also been observed for a-particles, the reactions of which
lead mostly to the emission of protons or neutrons.

The \vidth r of a nuclear energy level is defined as r == hiT,
\vhere T is the lifetime of the level. For most of the slow neutron
capture levels the width i~ about 0.1 eVe This can be decomposed

(218)

into the neutron ,vidth and the ,,-ray ,vidth. Almost all of r is
r,.o ,vhich means that eapture i~ far more probahle than scattering
for slow neutron resonances. * r n may be determined separately
in t,vo different ways. First, the capture cross section at exact
resonance is given by

(219)

r is the \vidth of the reAonance at half-maximum; therefore, r n

can be determined from (T at resonance, rand Er • Second, the
ratio of scattering to capture cross sections at resonance is r n/r..o
and r" is very nearly equal to r. Unfortunately, in order to get
the scattering crOBS section at resonanee it must be disentangled
from the potential scattering (Nuclear Ph~ysics B, p. 152) so that
this second method is ordinarily not of much use.

The first experiments on neutron capture \yere done by Fermi
and his collaborators, and by Moon and Tillman, using an ingen­
ious hut rather complicated method: a neutron beam from which
the thermal neutrons had been removed hy a cadmium absorber
impinged on an indium detector. Comparison of the radioactivi­
ties produced in this detector with and without an indium absorber
intervening, sho\ved that neutrons which activated the indium
detector were strongly captured by the indium absorber. If a
silver absorber was used instead, the absorption was small. On

* Mn has a strong resonance at about 300 f'V which gives mostly scatterin~

and therefore has r n» r 'Y. This is to be expected for li~ht nuclei because
of their large level spacing; see equation 206a.-Note added in proof.



(220)

120 TOPICS NOT RELATED TO NUCLEAR FORCES

the other hand, a silver detector showed about as much radio­
activity with and without the indium absorber, but with a silver
absorber the beam ,vas very strongly attenuated. The conclusion
,vas that indium and silver were activated by neutrons of t,vo
different energies. At present, the most satisfactory nlethod con­
sists in using a modulated cyclotron beam and determining the
velocity of the neutrons by their time of flight to the target. For
very slow neutrons, a pile and a crystal spectrometer are often
preferable.

THE DISPERSION FORMULA

Breit and Wigner ,vere the first to develop a theory of nuclear
resonance processes. 'l'he result ,vas analogous to that in the
theory of optieal dispersion

1
(f I"'.J

(E - Er )2 + (r/2)2

The measurements using velocity selection can check the shape of
this curve and at the same time determine Er and r. rro get tIle
coefficient of proportionality in equation 220, suppose that the
cross section q is for the production of B ,vith A incident. r.rhen,
since the cross section is proportional to the half-width for disinte­
gration into B, it must contain lB. It also must contain r A for
symmetry reasons. This follo,vs from the principle of detailed
balance: apart from statistical weights and a factor depending on
the ratios of momenta, UA--+B should be equal to UB-+A- (See
Chapter XI.)

Finally we know that for the simplest case in ,vhich only one
kind of particle can be emitted or absorbed, r}t = rB = r, and
,ve know further that in this instance the largest possible crot:)s
section for particles with l = 0 is 41rA2

• Clearly, in the general
case, the wave length of the incident particle Inust occur. Collect­
ing all information,

2 rArB

CT = 1I"~A (E _ E
r
)2 + (r/2)2 (221)

This is known as the one-level Breit-Wigncr formula. It gives
the correct dependence on momentum, in accord with the prin­
ciple of detailed balance

CTB-+A/O'A-tB = ~B2/~ ..4.2 = PA 2 /PB 2 (222)
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For the dependence on the spin of the compound nucleus and
the generalization to more than one resonance level see Nuclear
Physics B, p. 101. There is only one instance in ,vhich the many­
level formula has bcen of usc, namely,

(223)

,vhich has t,vo partly overlapping resonances near 1 Mev.
The dispersion formula has been derived many times. "The

derivation must be quite different from the treatment in optics,
where the interaction of the incident light and tile atom can be
taken as a small perturbation.

For high-energy neutron~ the dispersion theory goes over into
the statistical theory given previously. The partial widths of
the levels become of the order of magnitude of the level spacing
and the resonances are no longer observable.

For extremely slo,v neutrons, ,veIl belo,v the first resonance,
r A is proportional to v (this follo,vs from the fact that r A is propor..
tional to the density of states in momentum space, p2(dp/dE) ,......, p)
and so the Breit-Wigner formula reduces to

(224)

This is the well-kno"TJl l/v la,v for the cross section at very low
energy. It makes the number of processes per second, ,vllich is
uv, independent of the energy distribution and proportional only
to the total particle density. For very light nuclei, the spacing D
is very large and the l/v law holds up considerable energies. For
]~IO + n ~ Btl it is valid to 50,000 eVe Absorption by B IO is
therefore used for mea.suring neutron velocities.





APPENDIX: TABLE OF NUCLEAR SPECIES

EXPLANATION OF THE TABLE

Column 1: "Z." Atomic number of the element.
Column 2: "E~lemcnt." Chemical symbol of element.
Column 3: "A." Mass number of the isotope.
Column 4: "Abund., per cent." Per cent abundance of isotope in the

naturally occurring element.
Column 5: "Disintegrat.ion." Symbols for nuclear processes arc:

I Isomeric transition. (Enlission of ')'-rays or conversion
electrons.)

K Electron capture.
e- Internal conversion electrons.

fj-, ~+ NegatIve, pOBitive beta-particle emission.
ex Alpha-particle emission.

n, II Elnission of neutrons, protons.
U Denotes that the particular isotope has not been identi­

fied with cornplete certainty. Parentheses enclosing
one or more activities denote uncertainty in these, but
not in the identification of the isotope to which they
are assigned. Thus, 47AgI08 has been classified and found
definitely to have {3- activity; however, it is not certain
that 47Agl08 also has K-capture and conversion elec­
trons. A comma setting off 1e- from one or more
symbols indicates that the conversion electrons belong
to the isomeric transition.

Columns 6 and 7: Masses, with probable errors. A value in parentheses
indicates that the mass has been estimated from theory, the
isotope not huving been produced as yet.

Column 8: Spin of the designated isotope.

MAIN REFEH.~NC}JS

G. T. Seaborg, Tahle of Isotopes, Rev. Modern Phys. 16, 1, 1944.
E. Segre, Isotope Chart, issued by Los Alamos Scientific Laboratory, 1946.
In general, isotopes classified as A to D by Seaborg and Segre have been

included in this table, i.e., all those for which at least the assignment to a
definite clement is certain.

123
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Abund., Disinte- Error
Z Element A per cent gration Mass X 106 Spin

0 n 1 1.008 93 3 ~

H 1 99.98 1.008 123 0.6 72
2 0.02 2.014 708 1.1 1
3 {3- 3.017 02 3.4 %

2 He 3 ~10-5 3.017 00 4
4 100 4.003 90 3 0
5 n 5.013 7 35
6 ~- 6.020 9 50

3 Li 5 H (5.013 6) 60
6 7.5 6.016 97 5 1
7 92.5 7.018 22 6 %
8 ~- 8.025 02 7

4 Be 6 (6.021 9) 100
7 K 7.019 16 7
8 a 8.007 85 7
9 100 9.015 03 6 %

10 ~- 10.016 77 8
11 (11.027 7)

5 B 9 9.016 20 7
10 18.4 10.016 18 9 1
11 81.6 11.012 84 8 ~2

12 ~- 12.019 0 70
13 (13.020 7)

6 C 10 ~+ 10.021 0 30
11 ~+ 11.014 U5 9
12 98.9 12.003 82 4 0
13 1.1 13.007 51 10 ~2

14 {3- 14.007 67 5
15 (15.016 5)

7 N 12 (12.023 3)
13 ~+ 13.009 88 7
14 99.62 14.007 51 4 1
15 0.38 15.004 89 21 72
16 (j- >16.00n 5

<16.011
17 (17.014)

8 0 14 (14.013 1)
15 p+ 15.007 8 40
16 99.757 16.000 000 Standard 0
17 0.039 17.004 50 6
18 0.204 18.004 9 40
19 p- 19.013 9
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Abund., Disinte- Error
Z Element A per cent gration Mass X 105

• Spin
9 1" 16 (16.017 5)

17 tJ+ 17.007 5 30
18 {3+ 18.006 5 60
19 100 19.004 50 26 ,~

20 (3- >20.004 2
<20.009 2

21 (21.005 9)

10 Nc 18 (18.011 4)
19 ~+ HL007 81 20
20 90.00 19.998 77 10 0
21 0.27 20.999 63 22
22 U.73 21.998 44 36 0
23 {3- 23.001 3

11 Na 21 ~+ 21.00~ 5
22 {j+ 21.~)9B 9 50
23 100 22.096 18 31 %
24 {3- 23.997 5 45
25 U~- (24.906 7)

12 Mg 22 (22.006 2)
23 {j+ 23.000 2 40
24 77.4 23.UB2 5 60 0
25 11.5 24.9U3 8 90
26 11.1 25.989 8 50
27 {3- 26.992 8 150

13 Al 25 {3+ 24.998 1 100
26 {3+ 25.992 9 150
27 100 26.980 9 80 9~
28 (3- 27.990 3 70
29 (3- 28.9H9 3 80
30 (29.9U5 4)

14 Si 27 {j+ 26.994 9 90
28 80.6 27.986 6 60
29 6.2 28.986 6 70
30 4.2 2H.983 2 90
31 (3- 30.986 2 60
32 (31.984 9)

15 P 29 fJ+ 28.991 9 100
30 (3+ 29.987 3 10
31 100 30.984 3 50 ~~
32 (3- 31.982 7 40
33 (32.982 6)
34 {3- 33.982 6 40
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Abund., Disinte- Error
Z Element A per cent gration Mass X 106 Spin

16 S 31 ~+ 30.989 9
32 95.1 31.980 89 7 0
33 0.74 32.980 0 60
34 4.2 33.977 10 33
35 f3- 34.978 8 80
36 0.016 35.978 100
37 f3- 36.982 1 30

17 CI 33 ~+ 32.986 0
34 fJ+ 33.980 1 200
35 75.4 34.978 67 21 %
36 ~+ ~- K 35.H78 8 100
37 24.6 36.B77 50 14 %
38 {j- 37.B81 300
39 (38.979 4)

18 A 35 {j+ 34.085 0
36 0.307 35.978 0 100
37 K 36.977 7
38 0.061 37.974 250
39 (38.975 5)
40 99.632 39.975 6 60
41 (3- 40.977 0 60

19 K 37 (36.983 0)
38 ~+ 37.979 5
39 93.38 38.974 7 %
40 0.012 (3- K 39.976 0 100 4
41 6.61 40.974 %
42 (3-
43 U (3-

20 Ca 39 U (3+

40 96.96 39.975 3 150 0
41 U Ke-
42 0.64 41.971 1
43 0.15 42.972 3
44 2.06
45 (3-
46 0.0033
48 0.19
49 {j-

21 Se 41 (:1+

43 r;+
44 I e-
45 100 44.966 9 60 %
46 (:1-K
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Abund., Disinte- Error
Z Element A per cent gratioll Mass Xl()i Spin
21 Sc 47 U {j-

(cont.) 48 ~-

49 p-

22 Ti 45 ~+

46 7.95 45.966 1 100
47 7.75 46.964 7 100
48 73.45 47.963 1 50
49 5.51 48.964 6 (iO
50 5.34 49.962 1 40
51 {j- 50.958 7 100

23 V 47 U {i+

48 (j+ K
49 lJ K
50 {j+

51 100 50.957 7 50 %
52 (j-

24 Cr 4~) {i+

50 4.49
51 U Ke- 50.95R
52 83.78 51.956
53 B.43 52.956
54 2.30
55 U

25 Mn 51 {j+

52 {i+ K
54 K
55 100 54.957 %
56 {3-

26 Fe 53 {3+
54 6.04 53.957
55 Ke-
56 91.57 55.956 8 170
57 2.11 56.957
58 0.28
59 {3-

27 Co 55 {3+
56 {3+ K
57 fJ+ K e-
58 p+ K
59 100 %
60 {j-, I e-
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Abund., Disinte- Error
Z Element A per cent gration Mass X 106 Spin

28 Ni 57 ~+

58 67.4 57.959 4 40
59 Ufj+
60 26.7 59.949 5 40
61 1.2 60.953 7 150
62 3.8 61.949 3 40
63 {3-

64 0.88 63.947 1 60

29 eu 58 13+
60 13+
61 fJ+ K
62 fJ+
63 70.13 62.957 400 '-264 fJ- fJ+ K
65 29.87 64.955 400 ~2
66 {j-

30 Zn 63 (:1+

64 50.9 63.955 400 0
65 ~+ K e-
66 27.3 65.954 400
67 3.9 66.954 400 ~~
68 17.4 67.955 300
69 {3- I
70 0.5 69.054 300

31 Ga 64 U/i+
65 K e-
66 13+
67 K e-
68 ~+

69 61.2 68.952 800 %
70 p-
71 38.8 70.952 !lOD %
72 p-
74 U~-

32 Ge 69 U
70 21.2
71 {j+ K e-
72 27.3
73 7.9
74 37.1
75 (3-
76 6.5
77 (j-

78 U {j-
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Abund., Disinte- Error
Z Element A per cent gration Mass X 106 Spin

33 As 72 U fJ+
73 lJ 13+ K e-
74 fJ- {j+

75 100 %
76 fJ- fJ+ K
77 lJ fJ-
78 fJ-

34 Sc 74 0.9
75 K e-
76 9.5
77 8.3 %
78 24.0
79 U fJ-, I e-
80 48.0 0
82 9.3
83 fJ-

35 Dr 78 13+ e-
79 50.6 %
80 fj-, I e-
81 49.4 %
82 fJ-
83 fJ-
84 {j-

85 fJ-
87 U fJ-

36 Kr 78 0.35
79 U fJ+
80 2.01
81 U I e-
82 11.53
83 11.53 I e- %
84 57.11
85 fJ-
86 17.47
87 U 13-
88 fJ-
89 fJ-
90 U fJ-
91 U 13-
92 U fJ-
94 lJ fJ-
95 U fj-
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Abund., Disinte- Error
Z Element A per cent gration Mass X 106 Spin

37 Rb 82 U
84 U
85 72.8 ~~
86 (3-
87 27.2 fJ- 9~

88 (j-

89 (3-
90 U (3-

91 U {3-

92 U p-
94 U {3-

95 U p-

38 Sr 84 0.56
85 I e- K
86 9.86
87 7.02 I e- ~2
88 82.56 0
89 (j-

90 U {3-

91 U ~-

92 U {j-

94 U ~-

95 U {J-

39 Y 86 UK
87 (1 e-) K

88 (j+ (K)
89 100
90 (3-

91 U /3-, I e-
92 Ufj-
94 U~-

95 U/3-

40 Zr 89 ~+, I or K, e-
90 48.0
91 11.5
92 22.0
93 U {3-

94 17.0
95 U {i-

96 1.5
97 U (3-

41 Cb 90 U (3+

91 UKe-
92 (3-
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Abund., Disinte- Error
Z Element A per cent gration Mass X 106 Spin
41 Cb 93 100 %

(cont.) B4 fJ-
95 U /3-, I e-
96 U
97 U (j-

42 Mo 92 14.9
93 U /3+
94 B.4 93.945 800
95 16.1 94.946 800 72
96 ]6.6 95.944 800
97 n.65 96.945 900 72
98 24.1 97.943 900
99 U 13-

100 9.25
101 V 13-
102 U fJ-

43 Tc 96 UK
98 U Ke-
UH (J, I e-

101 U fJ-
102 U {3-

44 Ru H6 5.68 95.945 1100
98 2.22 97.943 1100
99 12.81 98.944 1100

100 ]2.70 99.942 1100
101 ]6.98 100.946 1100
102 31.34 101.941 1100
103 (j-

104 18.27
105 13-
106 U 13-
107 U (j-

45 Rh 102 /3- tJ+
103 100 I 102.941 1100
104 /3-, I e--
105 /3-
106 U {3-

107 U fJ-

46 Pd 102 0.8 101.941 1100
104 9.3 103.941 1100
105 22.6 104.942 900
106 27.2 105.941 1000
108 26.8 107.941 1000
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Abood., Disinte- Error
Z Element A per cent gration Mass X 105 Spin
46 Pd 109 U ~-

(cont.) 110 13.5 109.941 1000
111 ~-

112 {j-

47 Ag 105 UK
106 ~+ Ke-
107 51.9 (I e-) 106.945 600 ~
108 13- (K e-)
109 48.1 108.944 700 72
110 ~-

111 {j-

112 ~-

48 Cd 106 1.4
107 UK
108 1.0
110 12.8
111 13.0 ~
112 24.2
113 12.3 72
114 28.0
115 fJ-
116 7.3
117 ~-

118 U,le-

49 In 110 U(3+
111 U fi+e-
112 U, I e-, K e-
113 4.5 I e- ~~
114 I e-, {j-

115 95.5 I e- %
116 (j-

117 ~-e-

50 Sn 112 1.1
113 Ke-
114 0.8
115 0.4 114.940 1400 Y2
116 15.5 115.939 1400
117 9.1 116.937 1400 72
118 22.5 117.937 1400
119 9.8 118.938 1400 }2
120 28.5 119.937 1400
121 U fJ-
122 5.5 121.945 1400
123 U (3-
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Abund., Disinte- Error
Z Element A per cent gration Mass X 105 Spin
50 Sn 124 6.8 123.944 1400

(cont.) 125 U fJ-
127 U ~-

128 U p-

51 Sb 120 f3+
121 56 %
122 fJ-
123 44 %
124 fJ-
126 U {j-

127 {J-

128 lJ fJ-
129 8--

132 {J-

133 U fJ-
136 U fJ-

52 Te 120 0.088
121 (K e-)
122 2.43 (1 e-)
123 0.85
124 4.59
125 6.U3
126 18.71
127 fJ-, I e-
128 31.86
129 fJ-, I e-
130 34.52
131 fJ-, I e-
132 (T {J-

133 [J {J-

135 (3-
136 U fJ-
137 U tJ-

53 I 124 p+
126 fJ- K
127 100 %
128 fJ-
130 {J-

131 fJ-
132 U {J-

133 {J-

135 fJ-
136 U {3-

137 U fJ-
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Abund., Disinte- Error
Z Element A per cent gration Mass X 106 Spin

54 Xc 124 0.094
126 0.088
127 U, I e-
128 1.90
129 26.23 7~

130 4.07
131 21.17 %
132 26.96
133 (fj-) 16-
134 10.54
135 ~- I
136 8.95
137 U ~-

138 U {j-

139 ~-

140 /i-
141 (i-

143 U{3-

144 U ~-

55 Cs 130 U
132 U Ke-
133 100 %
134 (i-

136 ~- K e-
137 U ~-

138 U {j-

139 {3-

140 U {j-

141 fJ-
142 U (j-

143 U

56 Ba 130 0.101
132 0.097
133 I e-
134 2.42
135 6.59 %
136 7.81 0
137 11.32 %
138 71.66 0
139 fJ-
140 13-
141 fJ-
142 U ~-

143 U (i-

145 U fJ-
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Abund., Disinte- Error
Z Element A per cent gration Mass X lOG Spin
57 La 137 UK

139 100 138.953 800 >2
140 {j-

141 p-
143 U /3-
144 U 13-
145 U fJ-

58 Ce 136 <1
138 <1
140 89 (J)
141 ~-

142 11
143 U fJ-
144 U /3-
145 U 13-
147 U fJ-

59 Pr 140 (j+

141 100 %
142 (j-

143 U (j-

144 U (j-

145 U {3-

147 U fJ-

60 Nd 141 (j+

142 25.95
143 13.0
144 22.6
145 9.2 144.962 400
146 16.5 145.962 400
148 6.8 147.962 400
150 5.95 149.964 400

61 61 143 U fJ-
144 U lorK
145 U fJ-
146 U
147 U f3-

62 Sm 144 3
146 UI
147 16.1
148 14.2 a
149 15.5
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Abund., Disintc- Error

Z Element A per cent gration Mass X 106 Spin

62 Sm 150 11.6
(cont.) 151 U /3-

152 20.7
154 18.9

63 Eu 151 49.1 %
152 U ~-e-

153 50.9 ~~

154 U (3-

155 U fJ-
156 U fJ-
157 U~-

158 U (j-

64 Gd 152 0.2
154 1.5 153.971 600

155 18.4 154.H71 600

156 19.9 155.972 000
157 18.9 156.973 (JOO

158 20.9 157.973 600
160 20.2 159.974 600

65 Tb 159 100 %
160 fj-

66 Dy 158 >0.1
160 0.1
161 21.1
162 26.6
163 24.8
164 27.3
165 ~-

67 Ho 165 100 %
166 U (3-

68 Er 162 0.1
164 1.5
166 32.9
167 24.4
168 26.9
169 U (3-

170 14.2

69 Tm 169 100
170 (ft-)
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Abund., Disinte- Error
Z Element A per cent gration Mass X 105 Spin

70 Yb 168 0.06
170 4.21
171 14.26 72
172 21.49
173 17.02 ~~

174 29.58
175 U
176 13.38

71 Lu 175 97.5 ~
176 2.5 ~-K ?7
177 U {3-

72 Hf 174 0.18
176 5.30
177 18.47 ~~2

178 27.10
179 13.85 ~~2

180 35.11
181 {3-

73 Ta 180 (fJ-) K e-
181 100 I }'2
182 {3-

74 W 180 ""0.2
182 22.6
183 17.3 Y2
184 30.1
185 U fJ-
186 29.8
187 U {3-

75 Re 184 UK
185 38.2 %
186 U~-

187 61.8 %
188 U~-

76 Os 184 0.018
186 1.59
187 1.64 K
188 13.3
189 16.1 189.04 2000 72 or %
190 26.4 190.03 2000
191 Up-
192 41.0 192.04 2000
193 U~-
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Abund., Disintc- Error
Z Element A per cent gration Mass X 106 Spin

77 Ir 191 88.5 191.04 2000 3-2
192 ~-

193 61.5 193.04 2000 %
194 {3-

78 Pt 192 0.8
194 30.2 194.039 1400
195 35.3 195.039 1400 ~

196 26.6 (1 e-) 196.039 1400
197 U ~-

198 7.2 198.05 2000
199 {3-

79 Au 196 U fJ- e-
197 100 I 197.04 1000 %
198 ~- e-

199 p-
200 U /3-

80 Hg 196 0.15
197 Ke-
198 10.1 0
199 17.0 I e- 72
200 23.3 0
201 13.2 %
202 29.6 0
203 U ~-

204 6.7 0
205 p-

81 TI 198 UK e-
199 UK e-
202 U Ke-
203 29.1 203.05 2000 ~
204 Up-
205 70.9 205.05 2000 Y2
206 U fJ-

Ace" 207 fJ-
The" 208 fJ-
Tl 209 fJ-
Rae" 210 fJ-

82 Ph 203 U fJ+
204 1.5 204.05 2000
205 U, I e-
206 23.6 206.05 2000 0
207 22.6 207.05 2000 72
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Abund., Disinte- Error
Z Element ,,1 per cent gration Mass X 106 Spin
82 Pb 208 52.3 208.05 2000 0

(cont.) 209 f3-
RaD 210 {j-

AcB 211 f3-
ThB 212 fJ-
Pb 213 fj-

RaB 214 {j-

83 Bi 207 Ke-
209 100 209.05 2000 %

RaE 210 f3-
Ace 211 {3- at

The 212 fj- at

Bi 213 13- a
Rae 214 (3- at

84 Po 210 a:

AcC' 211 a:

The' 212 a

Po 213 a:
RaC' 214 a

AcA 215 at

ThA 216 fj-a

Po 217 at

RaA 218 fj- a

85 At 211 Kat

86 An 219 at

Tn 220 at

Rn 221 a

Rn 222 a

87 87(AcK) 223 U (j-

88 AcX 223 a

ThX 224 a:

Ra 225 at

Ra 226 at

MaTh! 228 (3-

89 Ac 227 f3- a

MsTh2 228 P- a

90 RdAc 227 a
RdTh 228 a
Th 229 a
10 230 at

Uy 231 13-
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Abund., Disinte- Error
Z Element A per cent gration Mass X 105 Spin
90 Th 232 100 a 232.11 3000

(cant.) Th 233 f3-
UXl 234 {j-

91 Pa 231 a %
232 {j-

233 ~- e-
UZ 234 ~-

UX2 234 {j- 1

92 U 233 a

Ull 234 0.00518 a

AcU 235 0.719 a

U 237 {j-

UI 238 99.274 a 238.12 3000
U 239 {j-

93 Np 234 K
235 K
236 ~-

237 a
238 {j-

239 Ii-

94 Pu 238 a

239 a

95 Am 241 a

96 em 240 a

242 a
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Allen, 22
Allowed transitions ({j-decay), 97

in intprlnediately heavy nuclei, 104
in Dlirror nuclei, 103
in naturally radioactive nuclei, 104
lifetimes in, 102

a-particle, role of, 84
a-particle emission, 14
a-radioactivity, lIfetimes for, 6
Alternation, intensity, in band spec-

tra, 18
Alvarez, 24, 53, 54
Amaldi, 91, 93, 115
Angular distrIbution, of neutron­

proton HcaUpring, 39
at high en('rgy, 63

of proton-proton scattering, 69
Ang;ular mOlnentulll, 38
Annihilation, of electrons and posi­

trons,2
of heavy particles, 2

Arnold, 25, 28
Atomic \veight, 3
Atoms, theory of, 23
Axial vector, 107

Bacher, 115
Barkus, 102
Baili'y, 44
Band spectra, 15
Barrier, potential, 7

penetration of, 115
Bartlett force, 82
Beams, Inolecular, 15
Bennett, 44
Bergstralh, 44
Be8,5
p-disintcgration, 10, 97

and neutrino, 20
Fermi theory of, 97

{3-disintegration, Konopinski-Uhlen-
beck theory of, 100

I(urie plot of, 100
of neutron, 105
selection rules in, 99

{3-lifetimes, 102
{j-spectrum, 20
Bethe, 105
Binding energy, of deuteron, 29

of neutron in heavy nuclei, 117
Binding of proton in molecule, effect

of, 47
Bloch, 15, 24
Bohm,44
Born, 37
Born's approxitnation, 48, 109
Bose statist.ics, 16
Bre'it, 69, 70, 71, 120
Breit-Wigner formula, 120
Bretschl'r, 60
Brirku'edde, 53
Brillouin, 7
Brode, 94
Bulk Inattcr, internal energies of, 80

Capture of neutrons, by protons, 60,
79

in heavy nuclei, 118
Center-of-nlaRS coordinates, 37
Chadwick, 29, 60
Cha,,~pion, 92
Char~e, 1
Charged meson theory, 88, 95
Charged particles, nuclear reactions

involving, 8
Chemical bond effect on neutron

scattering, 47
Chemical properties, 1
Compound nucleus, 109

disintegration of, 112
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Compound nucleus, formation of, 111
lifetime of, 110

Compton wave length, 94
Condon, 6
Conservation of energy, 5
Constituents of nuclei, 8
Cork, 100
Coulomb field, 101
Coulomb repulsion, 6, 8
Coulomb scattering, 64, 65
Critchfield, 105
Cross section, for nuclear reactions,

8, 114
for capture of neutrons by protons,

60, 79
for photoelectric disintegration of

deuteron, 56, 79
for scattering, of neutrons by heavy

nuclei, 7, 114
of neutrons by protons, 37, 40, 79
of protons by protons, 64

geometrical, 7
for capture by heavy nuclei, 111

total, 40

D-D neutrons, 42
de Broglie wave length, 8

of electrons, 9
of neutron or proton, 8

de Broglie wave number, 37
Decay, {j-, see ,s-disintcgration
Decay processes, 13
Dee, 40
Density of nuclear energy levels, 115
Depth of nuclear potential well, 32, 70
Determination of force constants, 76
Deuteron, excited states of, 34

ground state of, 29
interaction of, with radiation, 56
magnetic moment of, 25
photodisintegration of, 79
physical properties of, 25
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singlet state of, 43
states of, with tensor forces, 74
virtual state of, 45
wave function of, 33

DeWire, 53

Dipole radiation, 13
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Disintegration, (j, 10, 97

nuclear, 13
of CODlpound nucleus, 112

Disintegration probabilities, 113
Dispersion formula, 120
Dispersion theory, 121
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63
Dunning, 53
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Eisenbud, 69, 70, 87
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f:J-disintegration, 18
Electrons, annihilation of, 2
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spontaneous (:lmission of, 10

Electrostatic interaction of protons, 7
Emission, of a-particles, 14
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of 1'-rays, 13
of heavy particles, 13
of light quanta, 14
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conserved, 5
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Energy distribution in inelastic scat-
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Energy levels, nuclear, density of, 115
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84
Exchange forces, 81
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effects of, 82
quantitative theory of, 87

Excited states, of deuteron, 34
of nucleus, 111
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tering, 42, 91
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on scattering by para-hydrogen, 49
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Feather, 60
[i'ertni, 43
Fermi interaction, 97
Fcrlni statistics, 16
[i'isk, 81
Forbidden transftions, half-lives, 106
Force, Bartlett, 82

Heisenberg, 82
Majorana, 82
Wigner,82

Force constants, d(ltermination of, 76
Forces, exchange, 81

quantitative theory of, 87
non-central, 73
nuclear, meson theory of, 94
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saturation of, 80
short-range, 66

ForIllula, dispersion, 120
Free particle nlodel, 116
Frisch, 44
Froetter, 94
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Gurney, 6
Gyromagnetic ratio, 24

Hafstad, 66
Halban, 60
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Havens, 118
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[leisenberg, 81
Heisenberg force, 82
Heitler, 56
He5,5
lIerb, 70
IIeydcnburg, 66
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with, 91
High-energy phenomena, information

from, 62
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Coulomb scattering, 64
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relativistic, 107
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Isobars, 2, 11
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stability of, 11
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Isotopic spin, 84 v""
Isotopic spin functions, 85

J ent8chke, 29

K electron capture, 10, 14, 22, 108
Kanne, 71
Kellogg, 23
Kemble, 74
Kepner, 78
Kerst, 70
Kikuchi, 101, 115
Kimura, 29
Kinetic energy, 5
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Klein-Gordon equation, 94
Konopinski, 97, 103
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Kramer8, 7
Kruger, 92
Kurie plot, 100

Ladenburg, 40
Lande's formula, 28
Laughlin, 92
Lawson, 100
Levels, nuclear energy, density of, 115
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Lifetimes, (3-, 102
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in forbidden traIl.';itions, 105

Light quanta, emission of, 14, 119
Liquid-drop model, 80
Li', 5
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from, 62
Lyman, 101

Magnetic moments, 15
of deuteron, 25

Maiorana force, 82
Alarkoefer, 29
Mass, reduced, 37
Mass excess, 4
Mass number, 1
Mass spectrograph, 3
Massey, 37, 66, 67
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Meson theory of nuclear forces, 88, 94
Metastable state of nucleus, 13
Molecular beams, 15
Molecular velocity effect on neutron
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Moment, magnetic, 15
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Moon, 119
Morse, 81
Mott, 37, 66, 67
Myer8, 29

Neutral meson theory, 88
Neutrino, 20

Neutrino, p-disintcgration and, 20
experimental evidence for, 21

Neutrino mass, 20
Neutron, J3-dccay of, 105

physical properties of, 24
slow, cross section of, 43
wave length of, 7

Neutron cluission, 13
Neutron-proton scattering, 78

experimental results on. 42, 69
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Neutron spin, 45
evidence for, 45
from scattering, 45

Ncutrona, capture of, by protons, 60,
79

D-D, 42
fast, 7
in nucleus, 5, 8
scattering of, by ortho-hydrogen,

49
by para-hydrogcn, 49
by protons, 37, 78

at high energies, 91
by protons bound in molecules,

47
thermal, 43

Non-central forces, 73
Non-saturation of ordinary forc('s,

81
Non-zero spin, nuelei of, 18
Nuclear abundance, 12
Nuclear charge, 1
Nuclear constituents, 15
Nuclear disintegration, 13
Nuclear energy levels, density of, 115

width, 119
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neutron, 18, 71
between neutron and proton, 30
between proton and proton, 64, 71
meson theory of, 94
saturation of, 80
spin dependence of, 45

Nuclear reactions, cross section for,
114

general theory of, 110, 114
involving charged particles, 8, 115
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Nuclear scattering, 7, 64, 67, 114
interference between Coulomb scat-

tering and, 64
Nuclear species, table ofJ 123
Nuclear spin, 15, 23
Nuclear temperature, 115
Nucleus, absence of electric dipole

moments in, 75
basic facts on, 1
compound, 109

disintegration of, 112
formation of, 111
lifetime of, 110

constituents of, 8
excited states of, 111
fundamental particles in, 5
isomer of, 13
magnetic moment of, 15, 25
metastable state of, 13
quadrupole moment of, 27
residual, 111
size of, 6
stable, regularitics in, 2

NuckollB, 44
Number, mass, 1

Octopole radiation, 13
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trons by, 49
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Para-hydrogen, scattering of neu-
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Parity of wave function, 75
Parkinson, 70
Partial width of level, 114
l>articlcs, charged, nuclear reactions

involving, 8
heavy, annihilation of, 2

emission of, 13
?auli principle with isotopic spin, 86
Deier18,78
?enetration of potential barrier, 115
:>hase shifts, 37

for l ~ 0, 38
?hotQdisintegration, 56, 79

experiments on, 60
:>hotoelectric effect, 56

Photomagnetic effect, 57
Physical properties, of deuteron, 25

of neutron, 24
of proton, 23

Pitzer, 53, 54
Plain, 70
Polar four vector, 107
Position of fast nuclear particles, un­

certainty in, 111
Positrons, annihilation of, 2

spontaneous emission of, 10
Potential, relation between range and

depth of, 32, 70
Potential barrier, penetration of,

115
Potential well, rectangular, between

two protons, 70
of deuteron, al

[:lowell, 92
Probability, disintegration, 113

penetration, 115
sticking, 111

Proof of saturation, 84
Properties, chemical, 1
Proton, phYRical properties of, 23
Proton emission, 14
Proton-proton experiments, advan­

tages of, 64
Proton-proton forces, 64
Proton-proton scattering, 64

~xperimcnts on, 70
theory of, 65

Proton resonances, 119
Protons, bound in molecules, scatter-

ing of neutrons by, 47
capture of neutrons by, 60, 79
in nucleus, 5, 8
scattering of, by protons, 64
scattering of neutrons by, 37

Pseudoscalar, 107
Purcell, 15

Quadrupole moment, 27
Quadrupole radiation, 13
Quantitative theory, of exchange

forces, 87
of nuclear forces, 23

Quantum mechanics, 23
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proof of, 84
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angular distribution of, 69

shadow, 114
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Shadow scattering, 114
Short range of nuclear force, 30, 66
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Slow neutron cross section, 43
Spectra, band, 15
Spectrallines, splitting of, 15
Spin, 15

and exchange, relation
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isotopic, 86
nuclear, 15

Spin dependence of nuclear force, 45
Splitting of spectral lines, 15
Spontaneous emission, ofa-particles, 6
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Stability, of isobars, 11
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