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I.  INTRODUCTION

Many problems of interest to the defense
community involve fluid-structure interaction
(FSI).  Such problems include underwater blast
loading of structures, bubble dynamics and
jetting around structures, and hydrodynamic
ram events.  These problems may involve gas,
fluid, and solid dynamics, nonlinear material
behavior, cavitation, reaction kinetics,
material failure, and nonlinearity that is due
to varying geometry and contact conditions
within a structure or between structures.

To model such problems in two-dimensions we
developed the FSI2D code by coupling
MFICE2D [1, 2], a Los Alamos finite volume
computation fluid dynamics (CFD) code, with
PRONTO2D [3], a SANDIA finite element
solid dynamics code.  Details on this coupling
approach and current implementations are
discussed in Section III.

In this report we use FSI2D to model the
response of "Jumbino," a water-filled spherical
steel vessel (63.4 cm i.d., 6.1 cm wall thickness),
to an internal explosion caused by detonating 30
grams of C-4  at the center of the vessel.

Predictions from a fully coupled model were
compared to experimental results in the form of
strain gauge traces.  Agreement was reasonably
good.  Additionally, the calculation was run in
an uncoupled mode to understand the
importance of fluid-structure interaction in this
problem.  The uncoupled model results in an
accumulation of nonphysical energy in the
vessel.

II.  PROBLEM DESCRIPTION

A drawing of the Jumbino vessel shown in Fig.
2.1.  One end of the vessel (the right end in the
figure) was sealed with a one inch thick
Plexiglas plug.  A steel plug was bolted in the
other end as shown in the figure.  The vessel is

made of A537 structural steel, with an
estimated yield strength of 40,000 psi.
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Fig. 2.1  Engineering sketch of the Jumbino
vessel.  The steel plug inserted into the left
(as shown) end is shown below the sketch.
All dimensions are in inches.
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Figure 2.2  An engineering sketch of the
Jumbino vessel indicating strain gauge
locations.  Two strain gauges were at each
location shown, one latitudinal (or hoop)
gauge and one longitudinal gauge.

One-quarter inch strain gauges were placed on
the outside of the vessel to record the
azimuthal and meridional components of the
vessel motion.  These strains, referred to here as
the hoop and longitudinal components,
respectively, are principal strains in an ideally
axisymmetric problem.  Gauges were affixed a t
seven locations along the q = 0 meridian at 15° f
intervals from -45° to +45° and at three



locations around the equator (z = 0) at 120° q
intervals as indicated in Fig. 2.2.

III.  NUMERICAL FSI METHODOLOGY

A fully implicit numerical coupling of the fluid
and solid solutions facilitates a physically
coupled solution.  The  CFD algorithm is
discussed in Kashiwa et al. [1, 2] and by Lewis
et al. [4] and details of the solid dynamics
algorithm are discussed in Taylor and Flanagan
[3].

Nodes on the surface of the structural domain
are required to be coincident with vertices on
the surface of the fluid domain.  Pressure and
velocity data are exchanged on the faces
defined by these points and at these points.

A new feature of FSI2D, demonstrated in the
present analysis, is the capability of running a
problem in either a fully coupled mode (coupled
for short) or in an uncoupled mode.  In the
coupled mode, where the particle normal
velocity is continuous across the interface, an
iterative approach is used to force the pressure
field and the structural accelerations to be
compatible.  In this mode, the physical fluid-
structure interface moves; that is, the fluid
domain changes as the structure deforms,
translates, and rotates.  Momentum and energy
are conserved.  In the uncoupled mode, the
fluid-structure interface is treated as a rigid
boundary when the fluid equations are solved.
Pressures so calculated are then used as
boundary conditions to the structure, which
then deforms.  Momentum and energy are not
conserved.

IV.  COMPUTATIONAL MODEL

A. Fluid Domain.  An axisymmetric cylindrical
coordinate system is used to describe the
geometry of the Jumbino experiment where (r, q,
and z) are the radial, azimuthal, and axial
coordinates that form a right-handed
coordinate system.  The angle f, measured
counterclockwise from the r-axis in the
meridional plane, denotes the angle of
latitude.

The interior of  the vessel, known hereafter as
the fluid domain, is discretized with 4279

quadrilateral cells in eight logically
rectangular blocks as shown in Fig. 4.1.
At the instant of detonation, the water is
motionless and in hydrostatic equilibrium with
the ambient atmosphere.  A Us-Up equation of
state is used to model the water [5, p. 391] and a
Becker-Kistiakowsky-Wilson (BKW)-gas
equation of state is used to model the explosive
[5].

Fig. 4.1 Computational mesh for fluid and
solid domains.

Boundary conditions are straightforward.
Along the z-axis the axisymmetric condition is
modeled as a reflective surface, the water-
Plexiglas interface at the top of the port is
modeled as an outflow (zero normal gradient)
surface and the water-vessel interface is
modeled with the FSI model described in
Section III.

B. Jumbino Vessel.  The steel vessel, shown
radially offset from the fluid in Fig. 4.1, is
discretized with 765 quadrilateral finite
elements.  Compliance of the support structure
is modeled by including elements that provide



an additional mass of 1.997 kg and an axial
stiffness of 30.873 x 104 N/cm.

V. TWO-DIMENSIONAL FSI
CALCULATIONS AND EXPERIMENTAL

RESULTS

In this section we describe the results of the
Jumbino experiment and compare them with a
pair of two-dimensional numerical simulations.
In Sections V.A and V.B is a description of the
time and space dynamics of the coupled
calculation.  Comparison and analysis follow in
Sections V.C and V.D.  Unless noted otherwise,
reported quantities are for the coupled
calculation.

A. Fluid Time Evolution.  The dynamics of the
problem are driven by the high explosive.
During the time period of interest the bubble
expands, contracts, and then expands again as a
function of its own energy and the momentum of
the  surrounding water (Fig. 5.1).  In turn, the
motion of the water is then affected by
resistance and motion of the Jumbino vessel.
During the initial bubble expansion the water
motion is outward nearly everywhere; during
the subsequent bubble contraction the water
motion is inward nearly everywhere.
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Fig. 5.1 HE-gas bubble radius.

In the first 0.310 ms, the high temperature and
pressure HE cylinder rapidly expands 112-fold
at an average rate of 20 cm/ms to its maximum
size, a nearly spherical gas bubble with a
radius of 7.9 cm (V = 2042 cm3).  During this
time the temperature and pressure drop from
2714 K and 152.7 kbars to 300 K and 15 bars,

driving a quasi-spherical shock into the
surrounding water.  The water shock reflects off
the vessel wall, generating peak pressures of
about 680 bars (t = 0.190 ms).  The expanding
bubble generates a second pressure wave tha t
reaches the wall at t = 0.420 ms, producing peak
pressures of about 450 bars.  The bubble expands
until t = 0.310 ms, contracts briefly when h i t
with the now converging first shock, re-expands
until t = 0.458 ms, and then collapses because
the water is moving inward nearly
everywhere.  

Away from the port (the Plexiglas covered
opening at the top of vessel) the flow remains
approximately spherical until the problem end
time (t = 1.0 ms).  Figure 5.2 shows the pressure
at the vessel wall at the time of the first and
second maxima on the equator.  Away from the
port, p vs. f for the first shock is spherically
symmetric; that is, the top curve in Fig. 5.2
should be horizontal.  For the fluid mesh used
here (Fig. 4.1), an expanding spherical wave
first traverses a f-dependent thickness of
square mesh cells before reaching the outer
cylindrical mesh.  The dip in p (-35° < f < +35°)
is thus an artifact of mesh geometry.  Although
a smoother mesh would produce a more nearly
one-dimensional solution, the asymmetry of the
present calculation (6% at the equator) is not
large enough to alter the principal dynamics of
interest here.
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Fig. 5.2 Fluid pressure at the vessel wall
(at the time of maxima on the equator).

At midradius the water accelerates to a
maximum velocity of  6.1  cm/ms (t = 0.100 ms, r
= 15 cm), and the shock front reaches the top of
the circular port at t = 0.200 ms.  Water is



pushed through the port opening during the
next 0.8 ms at an average rate of 1.9 cm/ms,
giving a net mass egress of 588 g at t = 1.0 ms.
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Fig. 5.3 Fluid pressure at the vessel wall
(z = 0).

Figure 5.3, which shows the pressure time-
history of the fluid adjacent to the vessel wall
at f = 0, is typical of other wall locations.

B. Vessel Time Evolution.   The primary
dynamical response of the vessel is radialÑa
sequence of expansions and contractions
initiated by the nearly spherical internal
shock and maintained by a balance of fluid
pressure and elastic forces.  Three maxima are
observed in the outward motion of the vessel
with outward radial displacements at the
equator of 0.0165 cm (t = 0.275 ms), 0.0133 cm (t =
0.518 ms), and 0.0053 cm (t = 0.774 ms).  The
motion of the fluid and the vessel are clearly
coupled until t = 0.7 ms as evidenced by
sustained wall pressures above 100 bars.  For t >
0.7 ms sufficient relief, caused mostly by the
bubble contraction and to a lesser degree by
water egress, allows the remaining water to
move around without forced contact with the
vessel.

C.  Comparison of Measured and Computed
Vessel Strains.  Typical strain time-histories,
at (f = -45°, q = 0°), are shown in Figures 5.4 and
5.5.  Both plots show three curves representing
the measured,  coupled and uncoupled computed
values.  The time scale is keyed to the
calculated values where the HE detonation
occurs at t = 0.  The measured values lag the
computed values by 0.060 ms at the +f locations
and by about 0.020 ms at -f locations.  For

purposes of comparison, all measured values
were shifted by -0.060 ms.
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Fig. 5.4 Hoop strain at f = -45°
and q = 0°.
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Fig. 5.5 Longitudinal strain at
f = -45° and q = 0°.

Generally, the calculated strains compare well
with the measured values. Analysis of the
hoop strain data reveals the observations tha t
follow.

1.  The computed peak-to-peak timing is very
nearly the same as the measured values on a l l
plots, a fact which indicates that the FSI
model adequately models the timing of the
hydrodynamics and the hoop forces in the
vessel.

2.  All three traces show the initial expansion
caused by the first shock, contraction to near
the original radius, re-expansion caused by the
bubble surge, and a third peak.  The time
between the second and third peaks, 0.287 ms,
compares well with the estimated natural
period of the vessel, 0.253 ms.



3.  All three traces show that peak strains are
smallest on the equator and get progressively
larger away from the axis.  The traces also
correlate between plus and minus f locations.

4.  During the first oscillation, the uncoupled
strains compare better with the measured
values than do the coupled strains; however,
the reverse is true at later times.  An
explanation for this turnaround is offered in
Section V.D.  For the time up to the first peak
and for a short time thereafter, the dynamics
are almost purely one-dimensional and
unaffected by the complex interaction and
reflection of shocks that occur later and by the
vessel vibration modes excited by asymmetric
structural boundary conditions.  

5.  After the first peak, uncoupled strains are
damped less than the coupled and measured
values; this is especially notable for t > 0.6 ms.
The reason for this difference in damping
becomes clearer if we consider the time-
dependent energy balance in the elastic vessel
(Section V.D).

Generally speaking, these trends are also
evident in the longitudinal strain data (Fig.
5.5).  The longitudinal waveforms have more
structure because (a) there is additional mass at
the poles and (b) the vessel is clamped to the
support frame at the poles.  The major
dynamical effect is to lower longitudinal
strains (compare with hoop strains) and to
introduce higher frequencies into the
longitudinal motion.  The latter is especially
apparent for the computed values.

D.  Vessel Energy.  For the coupled calculation,
Fig. 5.6 shows the internal and kinetic energies
of the vessel as a function of time.  The vessel
energies are due to the mechanical work done
by the fluid on the vessel wall (lower curve).
During the loading period (t < 0.7 ms) the
vessel oscillates twice as is readily apparent in
the two prominent cycles in the internal energy
and pdV work curves.  After t = 0.7 ms, fluid
pressure at the surface is essentially zero and no
further energy is exchanged between the fluid
and vessel; hence, the pdV curve is constant.
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Fig. 5.6 Structural energy balance for
 coupled calculation.

The total vessel energies (internal + kinetic)
are plotted in Fig. 5.7 for both cases.  The
difference between the uncoupled and coupled
calculations (dEt) is shown in the bottom curve.
For t < tm, p(t) is the initial shock wave and
dEt increases steadily.  For later times, p(t) is a
complicated function of wave interactions and
FSI; moreover, it is not at all apparent from
looking at the two p(t) curves (Fig. 5.3) what
form of dEt to expect.  During the first vessel
contraction, dEt actually decreases, nearly
compensating for all the previously
accumulated error.  However, during the second
oscillation, dEt increases on both expansion and
contraction so that by the time p(t) = 0, the
steady-state vessel energy for the uncoupled
case is nearly 3 times the coupled energy.  Thus,
we expect steady-state stresses to differ by
approximately a factor of   3 .
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and two uncoupled calculations.



For the Jumbino experiment, the large
differences in late-time vessel energy are the
most dramatic illustration of the importance of
modeling fluid-structure interaction in a fully
coupled manner, compared with a more
traditional uncoupled treatment.  Even though
the uncoupled strains are closer to the measured
values (which are assumed to be accurate) than
are the coupled strains during the first
oscillation, the accumulation of nonphysical
energy causes the uncoupled values to diverge
significantly from the measured values at later
times.  An uncoupled method is always
nonconservative, and the vessel will acquire
nonphysical energy for any p(t) scenario of the
general type considered here.

VI.  CONCLUSIONS

In this report we have examined the dynamical
response of a water-filled spherical steel
vessel, having a nominal radius of 34.8 cm, a
wall thickness of 6.1 cm, and a fundamental
period of 0.253 ms, subjected to a centrally
detonated 30 g charge of C-4 high explosive.
The resultant pressure loading in the range of a
few hundred bars lasted 0.550 ms and pushed
the vessel radially outward about 0.02 cm,
generating peak strains of about 6 x 10-4.  Vessel
hoop strain time-histories computed by the
FSI2D hydrodynamics code compared well
with experimental data.

Our computational analysis focused on the
fluid-structure interaction aspects of the
problem, specifically, on two models.  The first
model treats the motion of the fluid and solid
together in a physically based manner giving a
fully coupled solution.  The second modelÑthe
uncoupled caseÑcomputes the fluid field with
a rigid wall boundary condition.  The resulting
fluid pressure at the wall is then applied to
the vessel as a boundary condition.  The coupled
model conserves momentum and energy,
continuously exchanging both quantities
between the fluid and solid during vessel
expansion and contraction.  The uncoupled
model, by contrast, does none of these things.

The uncoupled loading resulted in a
nonphysical accumulation of energy in the
vessel as evidenced by strain traces that were

less damped than and diverged from
experimental traces.  After the pressure
loading, the steady-state vessel energy in the
uncoupled model was three times greater than
the coupled vessel energy.

Further, results were consistent with a pair of
simple one-dimensional models [6].

REFERENCES

1.  B. A. Kashiwa, N. T. Padial, R. M.
Rauenzahn, W. B. VanderHeyden, "A Cell-
Centered ICE Method for Multiphase Flow
Simulations," Los Alamos National Laboratory
document LA-UR-93-3922 (rev.), presented a t
the ASME Symposium on Numerical Methods
for Multiphase Flows, Lake Tahoe, Nevada,
June 19-23, 1994 .

2.  B. A. Kashiwa, R. M. Rauenzahn, "A
Multimaterial Formalism," Los Alamos
National Laboratory document LA-UR-94-771,
presented at the ASME Symposium on
Numerical Methods for Multiphase Flows,
Lake Tahoe, Nevada, June 19-23, 1994.

3  L. M. Taylor and D. P. Flanagan,
"PRONTO2D: A Two-Dimensional Transient
Solid Dynamics Program," Sandia National
Laboratories report SAND86-0594 (March
1987).

4  M. W. Lewis, B. A. Kashiwa, R. W. Meier,
and S. Bishop, "Nonlinear Dynamic Fluid-
Structure Interaction Calculations with
Coupled Finite Element and Finite Volume
Programs," presented at the ASME Winter
Annual Meeting, Chicago, Illinois, November
6-11, 1994, Los Alamos National Laboratory
document LA-UR-94-2443.

5.  C. L. Mader, Numerical Modeling of
Detonations (University of California Press,
Berkeley, 1979).

6.  M.W. Lewis and T.L. Wilson, "Response of a
Water-Filled Spherical Vessel to an Internal
Explosion,"  Los Alamos National Laboratory
report LA-13240-MS (1997).


	I. INTRODUCTION
	II. PROBLEM DESCRIPTION
	III. NUMERICAL FSI METHODOLOGY
	IV. COMPUTATIONAL MODEL
	A. Fluid Domain.
	B. Jumbino Vessel.

	V. TWO-DIMENSIONAL FSICALCULATIONS AND EXPERIMENTALRESULTS
	A. Fluid Time Evolution.
	B. Vessel Time Evolution.
	C. Comparison of Measured and ComputedVessel Strains. 
	D. Vessel Energy.

	VI. CONCLUSIONS
	REFERENCES

