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ABSTRACT

A behavioral, top-downforced-equilibrium market model of long-ter(r2100)

global energy-economics interactionsas been modified with a “bottom-up”
nuclear energy model anged to construct consistent scenarios descritoiuge
impacts of civil nuclear materiafows in an expandingnulti-regional(13) world
economy.The relativemeasures and tradaffs between economi¢GNP, tax
impacts, productivityetc.), environmental (greenhouggms accumulations, waste

accumulation, proliferation risk), and energy (resources, energy mixes, supply-side

versusdemand-side attributes) interactiotimat emergefrom these analyses are
focused herein on advancing understandinghefrole that nucleaenergy (and

other non-carbon energy sources) can play in mitigating greenhouse warming. Two

ostensibly opposing scenario driverare investigated: a) demand-side

improvements in (non-price-induced) autonomous energy efficiency improvements;

and b) supply-side carbon-tax inducements to shift energy roxesdsreduce-

or non-carbon forms. Iterms of stemming greenhouse warmiag minimal cost

of greenhouse-gas abatement, a symbicbimbination of theséwo approaches
may offer advantages not found if each is applied separately.

For the opportunity to use aecentversion ofthe ERB(Edmonds, Reilly, Barnsylobal B

(energy, economicsgnvironmental)model, J. Edmonds and MVise of Battelle Pacific
NorthwestLaboratory(WashingtonDC) are gratefully acknowledged; thse and misuse of
the ERB model reported herein, particularly with respethéomodifications madtherein, are

solely the responsibility of the author.
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I. INTRODUCTION

The Los Alamos Nuclear Vision Projééis investigating a range of possible futufesnuclear
energy using the construct of scenario buildifignd an establishedglatively transparent global

energy mode?.Both nuclear energy demand and the flow of nuclear materials are examined over a
~100-yrtime horizonthat is characterized by a range sakenario descriptors or attributes.g,
population growth, work-force productivifgsDP), autonomousnergy efficiency improvements
(AEEI, or non-price improvements in transforming primary and secondary energy to energy
services),energy resource constraints, carltamation schedules,capital- and operating-cost
constraints imposed on a range of nuclear entgglynologiesetc]. While the focus of past

analytical support ofthe Nuclear Vision ProjegtlO (this string of references describes the
evolution of work in progress) has been on issues and concerns related to global implementation of
an expanding nuclear fuelcle, the “top-down” behavioralmodel of an equilibriun{supply =

demand) energy market embodied in the E@8monds, Reilly, Barn8)model adopted and
modified for this study also delivergstimates ofgreenhouse-gas (GHG) emissions. Hence,

coupled with the “bottom-up” nuclear energy médeahat has been matched to teeursive, top-
down formalism of the ERBmodel, with thisnuclear modelproviding regional andemporal

tracking of plutonium inventories and forms anclative measures of nuclear proliferatioisk10
based onearlier work,11-14 top-level energy/economic/environmental3(Brade offs become
possible/-9 Furthermore, bymplementing (intoERB) integral-response functidi¥sthat have

been calibrated against a global atmospheric-ocean climate-chravag16 the GHG emission
rates reported by ERB for an array of scenario attributes carpbessed in terms @tmospheric

CO, accumulations, W(GtonneC), and increases in average global temp&&{te, Within the

limitations of the modified ERB model, and wiittle additionaleffort, the role of nuclear energy
in mitigating greenhouse warming can be examined under the above-mentioned scersanat,

with all three of the Es in¥being touched at some level.

Nuclearenergy,like solar and (equilibrated) biomassergies, is a non-carbon (N@pergy
source that has clear GHG-mitigating potential. The role played by non-nuclear NC energy sources

is limited to the economiconstraintghat form the basis ofthe original ERBmodel? although
recent studies of the GHG-mitigating potential of (equilibrabedinass energy sources Haeen



reportedt’ The present study focuses thie nuclear-energgption, and efforts to consider other
NC energy sources in the context of the present effort remains asviitkeThis present focus
on a bottom-up nuclear model without comparable examinations of othephi&)s is a serious
limitation. Furthermore, onlyelectricity generation igonsidered forthe nuclearoptions being

considered; since 60% of all primary energy is applied fiossil-basecthon-electric applications,

this too is a seriouBmitation of the presentstudy. Lastly,mitigation of greenhouse warming
through the implementation of NC energy souraiacks the probleranly from the supply side.

Increased demand-side energy efficiencies represent the othefasstinf theprobleml7-20 This
(demand-side) approach @HC mitigation is examined herethroughthe aforementionedEEI
parameter; in the context of the ERBbdel, AEEI is changed parametricalfgxogenously)More

elaborate (long-term) models reflect endogenous increases in eithe? Rt concept isised,
or induced reallocations @ésources among key sectorstioé world economies as non-energy

sectors adjust to increased energy prééekhe ERB model igapableonly of exogenous changes

in the AEEI-like parameterg,. A fourth limitation of this analysis centers otme merits of

economy-based “top-down” modelersustechnology-base “bottom-upthodels?3 the former
generally reflects market penalties associatgd GHG mitigation schemes, wheredhe latter
solution-oriented (and generally market-free) approsufigests cosbenefits for changing to
reduced- or non-carbon fuels and using those fuels more efficiently.

With thesefour limitations in mind {.e., nuclear-energy-focus; application only étectricity
generationexogenousAEEI; “top-down” approach)the results summarized iRefs. 8and 24,

along with the associated technical support docufhars,directed at understandibgtter the role
nuclear energy can play in abatiggeenhouse warminghfter a synoptic narrative describing the
ERB model inSec. Il., resultsare given inSec. lll., which is organized intthe following four
subsections: a) description thfe BasisScenario; b) impacts on global warming éyogenously
varying AEEI (e.g, demand-side impacts); c) the impacts of increased nuclear-eseagy
fractions induced by imposing a range of carbon-tax schedelgs gupply-sidempacts); and d)
the compositeémpact on globawarming of simultaneous demand-side (increaseAEEI) and
supply-side (imposition of carbon taxes) forces. On the basis of these parametric results, a nuclear-
energy scenarithat mitigatesgreenhouse warming is suggestedSec. IV. This “strawman”
scenario combines both supply-side (carbon-tax indumedase in nuclear-energy demand) and
demand-sid€AEEI increases) approacheSection V. givednterim summary ancdconclusions,
and Appendix A elaborates on the “strawman” scenario.



IIl. MODEL

Four basic approaches to modeling energy planning have ex®lweerthe years: a) simulations

of the technicalsystem per se26 b) econometric estimates of price-demand relation3fips;
c) sectoral descriptions of whole economies with energy being one of a numinseradnnected

sectors?2,28 d) optimization modelsthat combine elements of thethers into aLinear

Programming (LP) or a Mixed Integer Programming (MIP) formuledio??-30 The ERB modél

uses arecursive approach to describe a behavioral market equilibitam internally balances
energy production and usage. As such, the simplified ERB formulation models energy from within
using econometric price-demand relationships. While simplified compared to the sectoral and/or LP
optimizing models,the ERB model targets adequately the (eamgds ofthe presenstudy, is
available to thepublic, is adaptable to modification, and is generally transparent and well

documented. While presenting a “top-downgconomist's(market) view of B interactions, an

approximate bottom-up technology view of nuclear energy has beenfdded.

The ERB model is comprised ébur main parts: supply, demandgnergy balance and GHG
emissions (a postprocessofppropriate carbon coefficients (Gtonne/lad¢ applied apoints in
the energyflow where carbon iseleased to the atmosphere; cariows whereoxidation does
not occur aralso taken intaccount. Supply andemand are determinddr six primary energy
categories: oil(conventional and nonconventional); gas(conventional and nonconverdiuias);
(coal and biomass); resource-constrained renewables (hydroelectric and geothauoied)y;
(fission, with fusion being included as a form of solar erfefdy and solar (excluding biomass;
includes solar electric, wind, tidal, ocean thermal, fusion,aaivéince renewable; soldrermal is
included as a form of energy conservation). The energy balance in ERB dkatsapply equals
demand in each globatgions, withprimarily electricalenergy is assumed not to be tradedy(
assumed to be generated and used within a given global region).

Figure 1 gives the structure of the ERB model, as modi@ethe purposes othe presenstudy.
The energy and economic (market-clearing) balances indicat&dgorl are performedor 13
global regions depicted schematically on Fig. 2 and listélchible | (increased fronthe nineused

in the original ERB mode) and for nine times separated by 15-year intenveis start in thdase

year 1975 and moves out to 2095. Endrglanceacross regions is established by a set of Pules
for choosingthe respective pricebat arerequired for supply tequal demand in eaamergy-
service group for each fuel. The specific test of convergence requires that the difference in regional



sums of demand and supply for each of the three fossil primary fuelggsigand solids) be less
than a specified value.

The demand for energy is determined separately for each of the above-mentioned six primary fuels,
for each of 13 global regions, and fach of nindimes. Five exogenous inputiscluding taxes
and tariffs) determine the locakenergy demandThe base (exogenousIsNP (labor-force

productivity X population) is used as amdicator of both (regional) economaztivity and as an
index of regional incomelhe baseGNP ismodified throughprice elasticities to model energy-
economy interactions, wit@NP [ pricefor energy-rich regions an@NP [ 1/price for global

regions that must import energy. More specifically, the demandor energy servicese(g,
residential/commercial, industrial, and transportation) for each of thirteen (Fig. 2) global regions is
determined in ERB by: a) the cost of providing these services; gvisleof income(~GNP); and

c) the regional population. Energy services are fueled by an array of four secondaggiuidis,

gases, solidsand electricity). The mix of thessecondary fuels used to providegi@en energy

service is determined by a cost-based market-share alg8risns the demanidr fuels used to
produceelectricity and theshare ofoil and gas transformed fromoal and biomass. The four

secondary energy sourcage generateffom the six primary fuels, with nuclear, hydroelectric,
and solar providing onlglectrical secondary energy; non-electsolar istreated in ERB as a
conservation technology to reduce the demimmdhe three marketetiels €.g, oil, gas, and

solids). Modeling of the PE. SE - ES transformation usesl&ontief-typeformulation32 As is
elaborated in Ref. 6, the nuclear energy module add&RR) for purposes ahe presenstudy,

replaces the Leontief equatifor nuclear, whicloriginally> was based only on scaled cost of
uranium extraction (treated in ERB in this reglké a fossil fuel), withone based on capital,
operating and maintenance (O&M), and decontamination and decommisgD&iDy costs. The
resulting nuclear energy cost is then fed backh® ERB demand module to determine the
respective market-share fraction as a function of time and region. As noted above, this modification
lends a “bottom-uptharacter to the nuclear energy part of the ERBiputation.The uranium

resource model originally used in EREor purposes of the present study, baen replaced with
that suggested in Ref. 33, as interpreted in Ref. 34.

Non-price induced improvements in end-use eneffigiency areexpressed as tamne-dependent
index of energy productivity that is independent of energy priceseahshcome. Thisparameter
is similar to the Autonomous Energy Efficiency Improvement (AEESBd inother more elaborate



(inter-temporal) “top-down’models?1 This approach allows scenarios toes@mined thaspan
the rangdrom continued improvement to technologisshgnation,rrespective ofworld energy
prices and real income; the limitationstbfs approaclarediscussed in Refs. 28nd35. World
energy prices for all fossil fuels are established through energy balance, with réossiglfuel
prices being determined by local taxes, tariffs, and transport charges. Interregion&lavesier,
does notoccur for solar, nuclear, ohydroelectricpower. In modeling the GHG-mitigating

potential of nuclear energy, the AEEI-like parameggs varied to express the impacts of demand-

side solutions, and carbaaxes are applied as a means to allow NC ensogyces to assume a
larger market share and to reflect supply-side approaches to abating global warming.

Ill. RESULTS

Nine of the key scenario attributes varied in the Ref.-9 study are summarize on Table II, along with
respective ranges of variations. That study adopted a point-of-departure “Basis Scenario” to which
these attribute variationsere referencedlhe nuclear-energy part of th&8asis Scenario was
based on once-throughWR operation, a uranium resource and cost scaling described by a

Known Resource (KR) catego?y,and a breeder reactor capital cost that is 50% more than that for
LWRs. Without a strong carbdax to stimulate increased demdod nuclear energyaswell as

other reduced- or non-carbon energyurces),these conditions were sufficient fmush the
economic introduction of breeder reactors leyond the time frame of this computation

(2100)8.9.24 For the purposes ofhe present investigation of the raleat nuclearenergy might
play in reducing theemission of GHGs, the Ref.-9 BasisScenario with plutonium (mixed
plutonium-uraniumoxide, MOX) recycle inLWRs is adopted athe Basis Scenario. As for the
Ref.-9 study,other (non-nuclear) attributes remain as given in the origieedion ofthe ERB
model.

Almost by definition, an “investigation othe role nuclear energy might play in reducing the
emission of GHGs” must adopt a supply-sidgpproach. As was shown in Ref. 9, however,
simply reducing the cost of nuclear enef(gyer reasonablimits) to increase markeshare has a
minor impact onGHG emissionsimplementation of a carbon takat grows atsome rate
($/tonneClyr) hashe compounding effects of reducirige use of carbon-basegrimary energy,
increasing theise of NC energy sourcgsarticularlynuclear), and decreasir@WP because of
increases in overall energy prices. In tiisdy, implementation otarbon taxes is adopted as the
main market forcdor increasing NC energy supplies whigtigating GHG emission. On the
demand side othe equation, increasedEEI is used as ameans to examine theelative



effectiveness of non-price drivers in reducif@HG emissionsThesetwo supply-sideversus
demand-side approaches to reducing greenhouse waranegthen compared. From this
comparison, a “nuclear energy scenario” for reduced greenhouse warrsinggessted. (Sec. IV.
and Appendix A)

A. Basis Scenario

The Basis Scenario adopted for this study is largely that used in Ref. 9, but with pluteoyata

in fI]:/IOX = 0.3 ofthe LWR reactor corgolume. Figures 3-12 descriltiee essential elements of

this MOX/LWR Basis Scenario. The population &\d/P driversbehind this scenariare given

in Fig. 3, which also includgser-capita GWP, per-capitaprimary energy(PE) demand, and the
evolution of the global energy intensity, EI(MJ/$)PE/GWP.Population growth is exogenously
input from U.N. projections, whereathe exogenous base GWiRAput is modified toreflect
changes in the prices of fostilels. The dependence of E¢sults from endogenous shifts in PE
and (to a lesser extent) GWP. The evolving mix of primary energy defoatite basisscenario

is given on Fig. 4; the diminishingarketshares foiwoil and gas,and the increasing markshare
for solids (mainly coal, and some biomasggflect the resource structure used the ERB

model>:17 A somewhat disaggregated view of primary- and nuclear-energy demand is depicted in
Figs. 5and 6, respectively. In terms of primagnergy, the developingregions become
comparable users to OECD countries by ~2025, with a similar condition being réachadlear
energy by2050. The strong growth in primary- anduclear-energygrowth for the developing

countries after ~2050 is driven largely by BEIINA™ region, as igxplicity shown fornuclear
energy in Fig. 6B.

The consequences of this strong growthnmuclear energyor global plutonium inventories is
shown in Fig. 7, which also gives total plutonium inventoriegtercase of néOX recycle. In

these computations, all 13 regions assume the same level of MOX recycle. Some regions ultimately
operate with a plutoniurfdeficit” in order tomeet theexogenouslydeterminedgrowth in f,0x

and approach to the asymptotic valt,Iﬁox. In the presenversion ofthe model, thisdeficit is

assumed to be met by regions with a plutongurplus;the difference betweetyross” and“net”
total plutonium inventories depicted orrig. 7 reflects these supply-demand requirements.
Generally, MOX recycle reduces global plutonium relative to the OT/LWR Basis Scendtaf.of

9 by a factor oR-3. This reduction, along witthe primary- and nuclear-energy demastdswn



on Figs. 5 and 6 are imgreementvith recentlAEA studies36 which in turn derive from aecent
IIASA/WEC study37

The global evolution of plutonium inventories lbgrm is shown in Fig. 8,where: ACC =
accumulatedspent-fuel plutoniumthat remains efficiently recyclable in LWREC = fully
recycled (N = 4 in these computations) and usable only in a fast (neutron) spectrun(FEsB)er

SEP = separated plutonium in fuel fabrication (FF) and reprocessing (REP); and REA = plutonium
actively undergoing fission imperatingLWRs. The plutonium inventories in each of thdser

forms are used in a multi-attribute utility (MAU) analyt¥sthat hasbeen synthesized froearlier

workl1-14for use in the ERB nuclear model, to yield relative measures of a utility for proliferation,
<u>, and a proliferationrisk index, PRI.These relative(and highly subjective) measures of
proliferationrisk arealsoshown adunction of time onFig. 8. The PRI proliferation metric is
adopted as the primary non-economic “colii’ nuclear energy againsthich any benefit of
reduced GHG emission is measured. The integrated carbon-dioxide release,

M co, (GtonneC), since the beginning of the computation (1975) is also shown on Fig. 8

The rate of CQ emission,Rco, (GtonneC/yr), for this no-carbon-tax Basis Scenaricsfsown
on Fig. 9. The impact of this carbon-dioxide emission rate on integrated emissig@phivieC),
accumulated atmospheric gQcarbon), W(GtonneC)and average global temperaturese,

AT(K), is also shown on Fig. 9. The integrated emissiong, i¥/referenced to atmospheric £0
inventories since the dawn of the industrial revolution, which is takémag = 1800, when the
atmospheric C@inventorywas Wgry = 594 GtonneCThe relativelyslow increase of the ratio
AT/(W/W Rry), as determined frorthe linear integral-response modeded!® is also included on

Fig. 9. Carbon dioxide emissions from each of the 13 regions tracked by then&RBisshown

in Fig. 10; the CHINA region becomethe dominant contributor d6HGs bythe year2025 for
this Basis Scenario.

Figure 11 correlatethe buildup of global plutonium inventoriékig. 7) with the relative CQ@
(carbon) accumulation, W/\,, or the average global temperatuse, AT(K), thatresults. The

latter is computedrom the year fy. The correlations depicted ofig. 11 are central to

subsequent correlations gfobal climate change(GCC), nuclear-proliferation, andeconomic
impacts.The Fig.-11 graphslescribe an “operating curvehat reflects increaseidventories of



nuclear materials (if nuclear energy is to play any roleroviding energy andnitigating GHC
emissions) and increased atmospheric carbon inventtivésinevitably accompany world
population that is expanding both in numbers amkmcapitaenergy use.

Therisks associated with increased global inventories of plutonium@ids are expressed in

terms of the PRI anfiT parameters and are correlated in a reduced “operating curvtiefBasis

Scenario on Fig. 12. As important aghe need to translateoth PRIandAT into economic and

socialconsequenceshe presenstudy does noadvancebeyondthe correlationshown given in
Fig. 12. This “operating curve’per seis not as important to understanding proliferation-
risk/ GCC/GWP connectivities as are relative shifts in the slopes and magnitudes at targives
key scenario driverse(g, carbon tax rates or exogenously drivieEl trajectories) arehanged.
Figure 12 also compardbe PRI impacts (for the no-carbon-tax case) of plutoniuracycle

(f,':,,ox = 0.30) and the use of the once-through (LWR) fuel cycle. Plutonium recycle increases the
PRI by ~10% whilehavelittle impact onreducingGCC impacts €.g, AT). Actually thelines of
constantime (an isochrone for 2095 shown on Fig. 12are almost verticalith a slight off-
vertical orientation indicating that the small addmx$t associated witthe fl]:/IOX =0.0- 0.3

transition, which slightly increasdke cost of nuclear energy and reduces (slighttgmand,

results in a small increase in fossil-fuel use, and leads to slightly larger val\iesdi.05 K) for

the fI]:/IOX = 0.30 caseSignificantly larger impacts are computét enhanceduse ofnuclear

energy (and other reduced- or non-carbon ensmyces) forced by imposing carbtaxes,
however.Before results ofimplementingthis supply-side driveare reportedSec. IlI.C.), the
impact of variations in the demand-side parameter AEEI are first reported.

B. Demand-Side Impacts: AEEI

The parameteg;,(1/yr) represents a non-price-induced reductiorthia amount ofsecondary

energy j (j =liquids, gases, solidgnd electricityy needed to provide an energy service k (k =
residential/commercial, industrial, and transportation).tRebase casegy (the jsubscript is not

used) after the second time period (1990) is 0.0100 1/wllfoegions andall times. Asnoted in
Ref. 35, the parameter AEEI is not well named; as a measure of non-price induced changes in El, it
may neither be autonomous ra@alsolely with energy efficiency.The AEEI parameter attempts



to accountfor the impacts of technologicalevelopments, (economy) structudianges, and
policy-driven inducements in the move towards increased energy efficidfanyy of thesdorces
reflected in AEEIl-like effects arendogenous teéhe economic-energy evolutionapyocess, and
cannot be specified as an external driver. Refer2Bcén fact,reportedAEEI-like effectsfrom a
sectoral model of the economy without explicitly introducing the AEEI parameter.

The scenarios considered undeé®EEI variations” examine impactsover the range

gk = (0.0,0.015), where again g is regionally and temporally (aftet990) constant at the

designated value. One casgr= 0.015(RAMP), linearly ramps, from 0.015 (in 1990) t00.0 in

2095. These impacts are summarized feigs. 13-18.Specifically, theimpact onprimary- and
nuclear-energy demand is depictedFogs. 13and 14, and the(same-basis) fraction of primary
energy provided by nuclear energysisown in Fig. 15The reflection of these changes in end-

usedefficiency on the energy intensifggain, starting in 1990) ishown on Fig.16; g, values

much below ~0.0050 1/yr, in a globally aggregated sense, freeze any improvegedée¢rease)
in the global energy intensity, EI(MJ/$).

The range ofy values considered not only hassignificantimpact onprimary-energy demand
(Fig. 13), but leads to wideswings incarbon-dioxideemissions, as is shown on Fig. 17. The
average global temperature rises that result are depicted on Fidnat8ecreases ig, below the
0.0100 1/yr basis-scenario valumake an alreadgeriousproblem moreseriouscomes as no
surprise; that 50% increases irg, have such relatively weak impact on globalwarming is.

Essentially, across-the-board increase®\HEI result in needed, but insufficient, decreases in
GHG emissions; this parameter alone cannot induce changes in the primaryreixengygded to
move aggressively to NC energy sources. The implementatithe sfipply-side forceembodied

in energy taxes based on carboontent can caussuch a shift. Unfortunately, i&pplied
regressivelythe increased pricebat result can drive decreasg@doductivity. Thesassues are
examined, within the limitations of the ERB model, in the following section.

C. Supply-side Impacts: Carbon Taxes

A carbon tax is applied tfwssil fuels in proportion to carbarontent per unit of releaseshergy.
Beginning in2005, this carbortax is appliedfor linearly increasingates,raning from 0 to 50
$/tonneC/15yr; hence, forrate of 40%/tonneC/15yrthe carbon tax at the lasine step (2095)



would be 240 $/tonneC. This carbon tax schedule puts the heaviest penzigl @3.8 kgC/GJ)
and the least penalty on natugals (13.7 kgC/GJ)with oil being intermediat€19.2 kgC/GJ).
According to the ERElgorithms, carbon taxascrease the price of the affected enesgyrce,
decrease the markshare forthatenergysource,and reduce the price-based adjustments to the
(exogenous) bas€NPs. The relationship between energy prices &MdP used inthe ERB
model derive from the oil shocks of the 1970s, and, as a rém{BNP losseseported by ERB

“are unreliable and excessiv&” In spite of a warning againgse ofthe GNP figuresgenerated

by ERB, GNP decrement&GNP, are reported here, along with total cost (tax) figures.

In its present form, collected carbon taxes are not returned ®Nife but are simply allowed to
“disappear”. Analgorithmwasadded to ERB to monitor botiactualand present-valued carbon
taxes andGNP decrements related thereto; these are reported here fiest atep towards
developing a more sophisticated.q, revenue-neutral, import tariffs based on carbon content,
etc) carbon tax schedule. For the purposes of the pretgty, the imposition of carbon taxes is
used primarily as a means to increase the pridessil fuels and tancrease the markshare of

NC energy sources.

The impact ofcarbon taxes on primary energge is shown on Figl9; at the highestate of
carbon taxation, primary energyse in 2095could be reduced by ~25%elative to theBasis
Scenario.The shift in marketshares fothe six primary energysources fronthe Basis Scenario
(no carbon tax) to the case of maximum carbon tax rate (50 $/tonneC/15yr) is illustiaiggd20;

coal looses the greatest market share (~6522% in2095), nuclear andsolar (electric) energies

show a strong increase in market share (~19%6% and ~5-6%- 13% in 2095 respectively),

resource-limited hydroelectrishows only a moderatencrease, andyas, while diminishing
somewhat in time, shows relatively little change from the Basis Scembhé&ashift towardsmore
solar andnuclear energynfers an increase ithe use ofelectricity, which isshown explicitly in
Fig. 21; the fraction of primary enerdlyat isused togenerate electricitincreases from ~16% to
22% in 2095 for the maximum carbon tax rate.

Focusing omuclearenergy, Fig. 23jivesthe dependence of annual nuclear energy demand on
carbon taxrate. Forthe 50 $/tonneC/15yr carbon taate, nuclear energy demand increases in
2095 by ~43% relative to theasis scenariolhe required deployment rafter this case increases
from ~85 GWelyr to ~75 GWel/\for an 80%plant availabilityfactor). Similar deployment rates
are required in the out yediar the no-carbon-takase. Figure 23 givabe (saméasis)fraction

10



of primary energy demand satisfied by nuclear energy, which in the out years increases from ~18%
for the Basis Scenario to ~45% for the strongest carbon tax rate.

Under these circumstances, nuclear energy becomes a major pléyeworld energymix. The
reduction in atmospheric GO(carbon) emissionshat accompanieghis carbon-tax-induced

increase in nuclear (and solar) energy demand is illustrated in Fig. 24, which alspegicapita
and per-primary-energy carbon emission fbe Basis Scenario. Fothe latter, while carbon
release per unit of primary energy decreasmaewhat,more of this reduced-carbon energy is
being used on per-capitabasis as prosperity drivesgibbal per-capitaappetitefor energy. The
second frame in Fig. 24 elaborates on tmipact ofcarbon taxes on reducing these specifier{

capitaand per-primary-energy) G@mission rates.

Figure 25 gives a composite curvefigfctional reduction of C®emissions ARc/R¢, relative to

the zero-carbon-taBasis Scenario) as a function tfe carbontax, UGrx($/tonneC), as
assembled from the five carbon tax rates being considghedvnalso on this figure ishe result
of a regressiorfit to seven econometric, optimization, and hybmnibdels, as igeported in
Ref. 38.

Using the integral-response formulation reportedRef. 15, and adoptingky, = 1800 as the
beginning of the industrial revolution and the beginning of anthroprogenic global warmjgg (W

= 594 GtonneCAT = 0), the CGQ emission rates given oRig. 24A are used toestimate

atmospheric carbon accumulations and related global tempetiakseAT(K). These parameters
are shown as a function of time fie zero-carbon-taBasis Scenario and fane highest carbon

tax rate(HT, 50 $/tonneC/15yr) orFig. 26. Figure 27@gives AT(K) as afunction of time and

carbon tax rate. In the out years, the application to a strong darboaducedT(K) from 2.4 K

to 1.4 K; these temperature rises are referencgg\te-t1800 and, based dhe modelused, has
already reached ~0.4 K by the start of this computation (1975).

Whatever “benefits” accruédrom the mitigation of global temperatumese (through carbon
taxation), these benefits must be compared to “costs” associatethattivers of this reduced
globalwarming. Inthe presentontext, some of theseostsare economicd.g, reduced GNP

(note caveats given previoudd and an (aget) unallocated tastream], somare environmental
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(e.g, waste streams associated wviltb increasedise of NC energgources, whiclare primarily

solar and nuclear), and sorage social-political €.g, increasedisks and altered sociatructures
associated with nuclear proliferation). The following discussions deal first with trade off associated
with proliferation risk that accompany increased use of nuclear energy, and then is followed by an
illumination if some aspects of adverse economic impacts of imposing unallocated carbon taxes.

At the level of this analysis, the culmination of the comparaisleassessment the PRI versus

AT relationship(Fig. 12) forthis special set of carbon-tax-drivésupply-side) scenarios. In the

context of the presestudy, the evolution of thé®RI versusAT “operating curves” depicted on
Fig. 28 represents the final result. As discussed above, with or without a GHC-abating@arbon

both PRIandAT will increase withtime aspopulations in number and living standatevelop.

Thefirst frame ofFig. 28gives this PRWersusAT evolution with increasing carbdax rates,

whereaghe secondframe stressesnore the increased nuclear-enesfiare under imposition of
carbon taxation by giving the fractional increase in PRI relative to the zero-tax case as a function of

AT. The added sensitivity of plottindPRI/PR}, reveals that, for a given taxationrate

($/tonneC/15yr), the fractional increase in BRbws amaximum at~2065that is independent of
the rate at which the carbon tax is applied. Generally, increased ngeledr energyhrough the
imposition of a carbon taglows the rate of globalvarming while increasing proliferationsk a
few percent relative to the zero-carbon-tax Basis Scenario.

Resolution of the economicosts of thisparticular set odrivers, asmonitored through GNP
impacts and unallocated carbon taxes, remains as futuretiarkust ultimately relate abatement

costs to achieve a given reductionAh to damagecostsassociated with accommodation to GCC

impacts; these costs are generally expressed as percent&a® 89.40 For presenpurposes, a
unit cost of CQ abatement, Ug($/tonneC), isdefine as the ratio of reduced €@missions

relative to the Basis ScenaridRco, = Rco, (No C-TAX) — Rco, (C-TAX), to either the total
carbon taxes collected for that year, TAX tloe sumTAX + AGWP, where AGWP = GWP(No

C-TAX) — GWP(C-TAX). Figure 29 givethe timedependence AT, TAX, AGWP, and these

two ways of calculating Ug. Also shown isthe ratioTAX/AGWP varying from2.4 in 2020 to

0.6 in 2095.Attempts to correlatboth measures aibatement unitost withthe unit carbonax,
UXtx, are reported oifrig. 30 forthe range of carbon tax rates becwnsidered. Based on

12



UCa 1ax = TAX/ ARco, , high tax rates favor loweabatementosts” by a factor of2. On the
other hand, for Ugtax + acwp = (TAX + AGWP)/ARco, , higher carbon taxes result in ~15%

higher “abatementcosts”. If a “revenue-neutral” carbon tax scheme could be devised and

implemented, then TAX AGWP could be reduced in magnitude (and possibly sign).

Some wouldargue thaboth TAX(t) andAGWP(t) should beliscounted at aate DR(1/yr) to a

referenceyear, summed oveithe computationaperiod, and expressed in present-valiggem.
Figure 31 giveshe decrease iworld GNP as dunction of the rate otarbon taxation. These
GWP percentage decreases apgressed in two forms: @fie percent decrease in the last-year
(2095) GWP with and without a carbon tax imposed at a giatenand b) the percent decrease in
the present worth of all GWPs over the study period, using a constant pure distewitDR =

0.04 1/yr; the formemives AGWP/GWP)qg5 = 4%, and thelatter gives AGWP/GWPpy, =

~0.7%. The ratio of the present value of incremental GWRe@resent value @l carbon taxes
collectedover the computatiorperiod, againusing DR = 0.04 1/yr, i:ominally constant in the
range 0.6-0.7; the present valueatifcarbon taxesollectedover the computation period is about
twice the present value of ti@VP decrement. Agaithe previously statedaution aboutising
price-adjustedsNP values from ERB should bdeept inmind. Also shown on Fig.31A is the
decrease in atmospheric g@ccumulation (again, \W; = 594 Gtonne ishe atmospheric carbon

inventory for gy = 1800). This reduction in global warming might be considered a benefit against
which the decrease@WP could balance, albeit, a more careful and consistent accounting of the

collected carbon taxes, as well as a weaker price-GNP séalkag)d reduce or reversee GWP
decrements computed from the present model.

The percentage increase in proliferation risk evaluated in thgdast APRI/PRIpog5 associated

with the increased implementation of nucleaergy is alsshown on Fig. 31AWhile APRI is

small relative toPRI, no quantitative statement can be madah respect to this increased
proliferation risk attendant to increased use of nuclear energy to abatement GHG accumulation until
the consequences of PRI withooarbon taxes are fullpssessed. Lastlyhe secondframe in

Fig. 31 eliminates the carbon tax rate and plots directly the “beneditg; (educeAT or reduced

W/W,ry) against the “costs’e(g, decreased GWP and increased PRI). This (relative) “benefit-to-

cost” assessment, howeveemains heuristic until thedeRIl, GWP,and temperature increments
can be related to quantitative social and economic consequences.
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D. Composite Demand-Side/Supply-Side Impacts

The relative impacts on stemming greenhouse warming through demand-side (increasesj AEEI,

= 0.0100 - 0.0150 1/yr), supply-sidécarbon taxrates, 0 - 50 $/tonneC/15yr), and a
combination of both are given a cursory examination in this section. Along with theS8asiario
(¢x = 0.0100 1/yr, no carbon tax), the four cases listed in Table Ill are compared. Figures 32 and

33 give the time dependence of primary-energy and nuclear-energy demand, respectitredgefor
four case.The nuclear-energy fractions and the energy intensities are displayejon34 and
35, respectively. Figure 36 givethe rates of C® emission forthese four cases,and the

relationship between unit carbdax, UGy ($/tonneC), andhe relative(to the basis scenario)
decrease in C&emissions is given in Fig. 37. It is noted from Fig. 37 that for a gim@ncarbon
tax, the 25%ncrease irg, results in ~10%additional decrease in the relative £€mission rate.
The average global temperature rise for all four casesummarized oRig. 38. The bulk of the
~45% decrease IAT comes fromthe supply-side carbomax, with AEEI contributions being

relatively minor. The impact of AEElI on theapproximate measures adbatementcost,
UCa ($/tonneC,Fig. 30), however,can amount to ~33% reductiofeg the case of Ug based

only on TAX, as is illustrated in Fig 39. Ftre case of Ug based omTAX + AGWP, the cost
reductionfor superposinghe demand-sidabatementsolution ontothe supply-side solution
amounts to ~23%. Hence, while the latter has only a minor impact on rediiqieg se a strong
economicsymbiosis incombining thetwo may exist. Lastly, adirect comparison of increased
proliferationrisk (PRI)that accompanies the decrease@C risk QAT) is given inFig. 40; the

combined C-TAX +AEEI attack onglobal warming reduces somewHaRI relative to a purely
supply-side (carbotax) strategy,while giving an added (slight) reduction in gloerming. A
central question, however, ishe abatementost associated with demand-side approaches to

reducing GHG emissiori$,40

Whenexpressed imormalizedform, the impacts ofboth the demand-side and tlseipply-side

drivers in decreasing globally averagegmperature rise and increasing (C-TAX increases) or
decreasing (AEEI increases) nuclear-energy demand are shown on Figs. 41 and 42. Both the Basis
Scenario and the combined carbon-tax/AEEI scenarislawen. Lastly, bycombining the end

points on Figs. 22 and 27, the explicit dependenéd ion the demand for nuclear energy in 2095
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given in Fig. 43 resultghe increase ifPRI relative to theBasis Scenario is alsocluded on the
last frame of this figure.

IV. SYNTHESES: Scenarios for Stemming Greenhouse Warming

The combination ofAEEI (g, = 0.0125 1/yr)and carbon-tax(40 $/tonneC/15yr) scenarios

attributes described ifrigs. 32-43 isadopted here as a “strawman” scendoo stemming
greenhouse warming. This basecase scenario provides essential input to the database schema being
developedor the 1997 Intergovernmental Panel d@limate Control (IPCC) Emission§$cenario

Project46 The IPCC database schema is being builtound commercial software?? Before
formally entering this or otheemissions scenariagto this commercialsoftware package, the
basecase scenario is first translated fthaFig. 32-43graphical (and parametric) format into a
form that approximates the requirements of the commercial software package, as desBdfed in
46. Appendix A presents this basecase scenario in athatfollows andelaborates ofRef. 46.
Figures 44-51give graphical presentations of much of the tabular input required of the formal

relationaldatabasé/ as listed in Appendix A. Specificallfig. 44 givesthe maindrivers and

derived parameters for the basecase scenario. The fossil-fuel resources used in the ERBenodel
displayed according to grade and unit cosEimn 45. Figure 4@jivesthe world-market-clearing
fossil primary energy prices to which the ERB model has iterated to meet the coritiatodsfine
the basecase scenario; th@senary-energy, world-market pricese shown in Fig. 47 for the

range of carbon tax rates considered previously (F8331), including the(40 $/tonneC/15yrg

= 0.0125 1/yr)basecase scenario being evaluated according tdoPthE€ scenario schema in
Appendix A. The evolution of primary energy deméhdt results forthe basecase scenario is
shown incomparison to théasis Scenario ifrig. 48. Figure 49gives the electricalenergy
fractions (of primary energy) for this basecase scenario. The emission réte &6fGs followed

by the ERB model (C& CHy, and NO) for the basecase scenasi@ shown in Fig. 50and the

consequences of these emissions (based only gf) @@rms of atmospher@ccumulations and
associated average global temperature rises, are depicted on Fig. 51.

Pertinent parts of Figs. 44-51 are expressed in tabular form (Appendix A) inaténspt tomeet

the requirements of the database schema described in Ref. 46 and Appendix A. Although the ERB
model generates the required information ofl3) regional basis, only global aggregates are
reported in Appendix A. Ogqual, if not greateimportance to the specific characteristics of this
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specificscenario, aslistilled in the Appendix-Aables,are the parametric sensitivities atmdde
offs presented in Figs. 13-51.

V. SUMMARY AND CONCLUSIONS

A range of long-term futurefor nuclear energy have been examinedRief. 9 by building

“surprise-free” scenarios using a consistent, but simplifilrdgeling tool.> Defining scenario
attributes are placed in a hierarchy that divides determinants of nuclear emergy intoexternal
forces and forcethat originatefrom within nuclear energper se By varying the formeupper-
level scenario attributese(g, population, workforce productivity, energy intensity or end-use
transformation efficiency, globabxes, top-level nuclear energgconomics), a wide range of
nuclear energy demand scenartan begenerated. Although these scenarios represent only
possibilities, andare not predictions, they nevertheless provide a quantitatibasis and
connectivityfor examining impacts of the lower-level interrdavers that influence directly the
economic and operational character of nucfeaver. The OT/LWR Basis Scenari@dopted in
Ref. 9 as a point-of-departucasewas modified to includeMOX recycleand providedhe Basis
Scenario foithe presenstudy ofthe impacts of nuclear energy greenhouse warming. Carbon
taxes wheraised as a supply-side “forcirignction” to increase markehare of key NC energy
sources (mainly solar and nuclear energies). Top-level economic and proliferation-risk implications
of this demand-side approach to reduclBgG emissionsvere examined. As a representative
demand-side driver of GHG abatemeht AEEI-like parameteused todefine the no-carbon-tax

MOX/LWR Basis Scenaricef, = 0.0100 1/yr) was varied. It was foutitat while (exogenously)

increased AEEI has only minor impacts gneenhouse warminger se(Tablelll), when used in
conjunction with carbomaxes,important decreases in (the highly approximate) measuresiof
abatementosts (UG, Fig. 39) resultSimilar symbiotic effects maylso come into play in

attempts to mitigate proliferation risks along with GCC risks (Fig. 40).

A central theme othis study isthe relationship between economi&.d, AGWP, TAX, UG,,
etc), environmental €.g, GCC, proliferation), and energye(g, AEEI, PE mixes, Eletc)
elements of the ¥ equation. While the relationships demonstrated quantitatively herein are
generally based on relative metr{€@RI, AT, UC,, etc) and are fafrom being comprehensive,
this investigation representsstart. Specifically, usinghe proliferationrisk index (PRI) and the

estimate of globalvarming generated from linear integral-response moéelthat relates GHG
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emission rates to global temperatuse, AT, a range of carbon-tax-driven scenamass created

to examinetradeoffs between increas&RI that accompanies increasade ofnuclearenergy,
decreased global warming, and reduced GWP caused by increased (fossil) enerdiFigaces
and?29). It was foundhat while strong carbortaxes rate40-50 $/tonneC/15yr, beginning in
2005) can return C&emission rates in ~2100 to present levels, the rate of global tempeisgure
while significantly diminished, remains positive (~0.5 K/yr, compared to 2.8 K/100yhdarase

of no carbortaxes). Inthe 2100 time frame, GWP would beeduced by3-4% (~0.8% on an
integrated present-valuEasis using a 4%/yr pure discount rag@mary energyused would be
reduced by20-25%, and nuclear energyould experience a ~80% increase (necessitating a
deployment rate of ~8GWelyr in the ouyears around 2100Yhe ratio of present value of all
carbon taxes to present value of IG&P (again, using a 4%/yr pure discousie) amounts to
~1.3 over most of the computational period. The PRI is increased byp-@¥y forthe maximum
nuclear-energy implementatioa.g, strongest carbotax rate) in~2100. Specifically, theexplicit
relationship between these relative measures of (increased) proliferation risk and (decreased) global

temperature rise (Fig. 28) indicates that for this 5-6% increase iAPR1,2100 isreduced form

2.4 K for the no-carbon-tax case to 1.4-1.5 K, but aggghal temperature continues to rise at a
rate of 0.5 K/yr in 2100 forthe strong carborntax rates. These correlativeresults between
proliferationrisk andGCC impacts, howeveproject onlyrelativetrends; the'real” implications

of the based.g, for no carbortax) PRI growing to ~0.14;+ 5-6% with or withoutcarbon-tax-

induced growths in nuclear energy, along with the assessment of “actual” impacts of decreasing the
global temperature rise by ~ 1 K over ~100 years needs resolution.

Finally, an emissions scenario base case was synthesized from the Basis Scenario by implementing
both supply-side (carbon tax rate increased from 0 to 40 $/tonneC/15yr) and demdAd:Eide

like parametegy increased fron®.01001/yr to 0.0125 1/yr) drivers. As iindicated nFig. 43,

this 25%increase in (globalpAEEI reduces the amount of nuclear energy requiceda ~90%
reduction in global warming (i8095) by ~30%. Thisymbiotic combination o$upply-side and
demand-side approaches to stemming greenhouse warming is pre$entgeliminary

consideration by the IPCC New Emissions Scenario Préfeas js reported in Appendix A.

Throughout the narrative leading to the “strawman” scenario described in Appendix A, a number of
shortcomings and areas of future work were identified, many of whiatelated to differences in
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“top-down” versus“bottom-up” modelingapproachesd3:3> These shortcomings and areas of
future work are summarized as follows:

* AEEI Parameter: The simplified, exogenousariation of the parameteg, only

crudely approximates complex, endogenougeractions between technology
improvements, (economy) structural (sectoral) interactions, and policy-driven

behavioral change® schemes to endogeniz&EEI-like parametersshould be
investigated.

* GNP Feedback: As approximate as thprice-GNP feedback in ERBis, the
calibration of this feedback izased on responsestte oil crises ofthe 1970sand,

hence,may be overlyresponsiveé®> re-calibration and parametric sensitivisjudies
need to be performed.

» Carbon Taxation: The impact of carbon taxes @NP, asmodeled inERB, isonly
thoughthe above-describegrice-GNPfeedback; no attemgtasbeen made in these
computations in enforce revenue-neutral (or better) schemes to return these taxes to the
regional GNP streams; higher-fidelity taxation and (carbon) rights-trading schemes
must be investigated.

* Regional Variations: Theresults presented herepertain to a generally uniform
globe; no attempivas made to tailor rates afarbon taxationAEEI improvements, or

nuclear-energy deployment on a regiobakis tooptimize all elements of the ¥
eqguation on a global basis; region-based growth scenarios must be developed.

* Quantitative Metrics: While the GNP impacts are quantitative, in spite of the
limitations listedabove,the GCC metric AT) and the proliferationisk metric (PRI)
remain qualitative in terms of real economic welfare impacts; attempts mosidaeto
guantify economic impacts of PRI aAd.

* Non-Carbon Energy SourcesThe focus of this study hd®en on nuclear energy as
a NC energy source, and even then only in so fatexdricity generation is concerned;

improved modeling of both solar aiibmas$’ sources irthe context of the present
version of the ERB model is needed.

* Nuclear Energy Model: While attempts were made to introduce a “bottom-up” flavor

into the nuclear modelsed in the “top-down” ERB model, more remains to be 8one:
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Nuclear Costing: Attempts to fit a “bottom-up” feature in theosting of
nuclear energy to the genericafiypp-down” ERB model needexpansion to
include more detail iboth the fuel cycleand thecapital cost inputs to the
composite unit cost of energysed in ERBultimately to determine nuclear
energy markeshares andelated proliferatiorversusclimate-changeradeoffs;
central to improving fuel-cycle costing algorithms is the need to select regional
and temporal plutonium recycle options based on economics rather than (region-
dependent) exogenous drivers.

Nuclear Materials Flows/Inventories: While resolution intoACC, REC,

SEP = FF + RP, and REA forms with which proliferation risks can be assessed
is adequate, a rule-based algorithfor inter-regional transport and
accumulations of plutonium based both costs and sanctions needs to be
developed to resolve and optimize local plutonium demand and supply; as noted
below, consideration of bottcommercial Liquid Metal (Breeder) Reactors
(LMRs) and LWR-supportive Fast-Spectrum Burners (FSBs) exfiegtope

of this issue.

Breeder Requirements: Integration of plutonium requirements of an evolving
breeder economyis a visa coupling of regional and temporal breeding ratios to
other parts othe nuclear fuel cycle is needédr any studythat seriously
evaluates and optimizes the potential and rieetireeder reactors; th&rong
introduction of carbon-tax-induced nucleanergy, depending on which

uranium-resourcéreality” is adopted?-33 may advance the dafer economic
introduction of breeder reactors;

Fast Spectrum Burners: Commentgnade in connectiomith the last three
items as related to improveshderstanding ofhe short- andong-term role of
FSBs in closing the nuclear fuel cycle apply here also.

Neutronics: The neutronics model used to feted nuclear materiabow and
inventory modelrepresents a highly approximate description tiog time-
averaged reactor core isotopics; the relationships between the many parameters
listed on Fig. 3B and in Table IV of Ref. 9 need a firmer connection ‘vadi’
neutronics computationparticularly with regard toéhe averaged relationships
between beginning- and end-of-life plutonium concentratiangrall fuel

burnup, MOX core volume fractions, and fissions occurring in bred material.
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— Fuel Cycle: The impact of innovative/emerging fuel cycl@sgh-burnup,
partial separations, non-agueous processing, supportive transnmugacr
integration,etc on cost and proliferatiorisk needsdetailed technological and

economic assessment.
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NOMENCLATURE

ACC recyclable (to LWRSs) accumulated plutonium; also, accelerator

AEEI Autonomous Energy Efficiency Improvement

AFR (Mhalyr) aforestation rate

ANI(M) animal numbers

AWA animal waste emission source

ATW Accelerator Transmutation of Waste

BAU business as usual

BIB biomass burning emission source

BMT (EJlyr) total biomass

CCV (tonneC/ha) carbon content for vegetation

C-TAX carbon tax

CAN Canada

CHINAT China

CIS Commonwealth of Independent States (FSU)

COA (EJlyr) coal

COE(mill’lkweh)  cost of electricity

CON (EJlyr) consumption

CR conventional uranium resources

D&D decontamination and decommissioning

DEF deforestation emission source

DEV developing countries (ME + NAFR + SAFR + LA + IND + SEA)

DFR (Mhalyr) deforestation rate

DR(1/yr) discountrate (for proliferation risk discountingl.12.38 or for estimating
present worths of GWP or carbon taxes)

E(kWeh) annual electrical generation

E3 economics/energy/environmental

EEU Eastern Europe

EGE (EJ/yr) electricity generation

EI(GJ/$) energy intensity, ratio of primary or final energy to GNP

EIN industrial sector EUP emission source

EQV (Mtonnelyr)  CQG equivalent

ERB Edmonds, Reilly, Barns mo@&el

ERE residential EUP emission source

ES energy services (residential/commercial, transportation, industrial)

ETR transport EUP emission source

EUP energy use and production GHG emission source

EXI (EJdlyr) export/import

FC nuclear fuel cycle

FER fertilized soil emission source

FF fuel fabrication

FP fission product

FSB fast spectrum burner (LMR/IFR, ATW)

FSU Former Soviet Union

fMox volume fraction of LWR core that is MOX

fI{on final (asymptotic) volume fraction of LWR core that is MOX

GAG gain in agriculture emission source

G(B9%) gross world product, also GWP

GCC global climate change

GDP(3%) gross domestic product

GHG greenhouse gas
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GNP($)
GWP($)
HT

HV
HYDRO
HYD (EJlyr)
l;(kgPu)
IAEA

ID

IFR
[IASA
IND
IPCC
IRV

J

k

LA

LFI
LMR

LV

LWR
KR

I

Mco, (Gtonne)

gross national product

gross world product

high carbon tax rate (50 $/tonneC/15yr)

high (nuclear energy growth) variant
hydroelectric

hydroelectric

plutonium inventory (j = ACC, REC, REA, SHE®;)
International Atomic Energy Agency
identification

Integral Fast Reactor

International Institute for Applied Systems Analysis
India

Intergovernmental Panel on Climate Change
industrial revolution

ERB index for secondary energy (SE)

ERB index for energy services (ES)
Latin America

landfill emission source

liquid metal reactor
low (nuclear energy growth) variant

light water reactor

known uranium resources

ERB index for region

accumulated G@missions

I\7I002 (Gtonnelyr) rate of C&emissions

MAU

ME

MM

MIP

MIT

MOX

MV

m

N

NA

NAFR

NAT

NE

NGA (EJ/yr)
NGP (EJ/yr)
NM

NT

NUB (EJ/yr)
NUE (EJ/yr)
NUCL

NUN (EJ/yr)
nl

O&M
OECD

OECD-E
OECD-P

multi-attribute utility (analysis)

Middle East

(uranium) mining and milling

mixed integer programming
Massachusetts Institute of Technology
mixed (uranium, plutonium) oxide fuel
medium (nuclear energy growth) variant
ERB index for time

number of MOX recycles; nonintervention scenario class
not available

Northern Africa

nature emission source

nuclear energy

natural gas

produced natural gas

nuclear materials

no carbon taxes

nuclear breeder electric

non-breeder nuclear electric generators
nuclear

nuclear non-electric

number of regions modeled in ERB (nl = 13)
operation and maintenance

Organizationfor Economic Co-operation aridevelopment{USA + CAN +

OECD-E + OECD-P)
OECD-Europe
OECD-Pacific
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OIL (EJlyr)
OIP (EJ/yr)
OIS (EJlyr)
ORNL

oT

P

Pe(MWe)
Per(MWe)
PE

POP
PRI
PRI,

PRO (EJlyr)
PRP

PV

ppmv
Pr

oil

produced oil

synoil

Oak Ridge National Laboratory
once-through (LWR)

parametric variation scenario class

net electric generation capacity

total electric generation capacity

primary energy[oil, gas, solids (coal
hydroelectric]

population

proliferation risk index

proliferation risk index without carbon taxes

production

production process emission source

present value computed using discount rate DR
volume parts per million
plant capacity factor

+ biomass), nuclear solar,

Rco,,(Gtonne/yr) carbon emissioate from th region; for world total, (I = nl+1), same as

RAC (Mha)

REA

REC

REF

REL (EJ/yr)
RFI

RNE (EJ/yr)
R

RYE (tonne/ha)
SAFR

SE

SEW

SE/PE
SEA

SEP

SF

SFT

SLD (EJ/yr)
SLE (EJ/yr)
SLT (EJfyr)
SPU

TAX
TEG (EJlyr)

TH
TPE (EJlyr)
TOT

TOT
TR

Mco,
rice acerage
reactor plutonium
fully recycle (N recycles to LWRS) plutonium
(economically) reforming countries (EEU + FSU); also, reference time (1975)
renewable electric generation
rice fields emission source
renewable non-electric
reprocessing
reactor plutonium
repository
world regions
rice yield
Southern Africa
secondary energy (liquids, gases, solids, electricity)
sewage emission source

PE- SE conversion efficiency
South and East Asia
separated plutonium

spent fuel

total spent fuel

solid fuels (coal + biomass)
solar electric

solar non-electric

separated plutonium (RP + FF)
carbon tax case designator
total electric generation
thermal - electric conversion
total primary energy

total, world

total emiss_ion source
transportation, total uranium resources
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X
t(yr)
try

tREF
USA

UTC;($/We)

<u>
W(GtonneC)
W, (GtonneC)

W |ry(GtonneC)

We
Wt
WEC
ZIm

AT(K)
&(Liyr)

gx(Llyr)
NTH

present worth of carbon taxes over period to 2095
time

time industrial revolution commences, 1800
reference time or base year for ERB, 1975

United States of America

unit total cost off] nuclear energy system

grand utility functioA®
atmospheric carbon-dioxide (carbon) accumulation
integrated atmospheric carbon-dioxide (carbon) emissions,s{neelt800

atmospheric carbon-dioxide (carbon) at tjgyg+ 1800 (594 Gtonne, or 289

ppmv, given 2.13 GtonneC/ppniv)
electrical Watt

thermal Watt

World Energy Council

population in region | at time interval m

average global temperature rise, referenced to {igge=t 1800
annual growth rate of entity i (i = POP, EI, PE, Nt

annual growth rate of SE(}) ES(K) transformation efficiencies
thermal-electric conversion efficiency
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APPENDIX A. Database Schema for the 1997 IPCC Emission Scenario Projéet

This Appendix follows the database schema report&kin 46 in goreliminary application to the

basecase scenario developed in Sec. Ill.D. The “graphical database” for this basecase, as embodied

in Figs. 32-43, igranslated into th&®ef.-46 schema, which is composedtioé following eight

tables arrayed in a relational databaseved bythe commerciakoftware product ACCESS:

1) Source Table; 2) Scenario Table; 3) Source RegionTable; 4) Region Definition Table;
5) Assumption Table; 6) Energy Sector Table; 7) Emissi@ide;and 8) Consequence Table. In
the spirit of a “strawmanapproachjnformation is presented only at a globally aggregated level,
even though results frorthe ERB model are generatéml each of 13regions (Fig. 2). The
materialpresented in this Appendiwllows the format that will eventually beequired forentry

into the commercial relational datab&for use by the IPCC Emission Scenario Préfect

1. Source Table (Seyq9: ERB

1.1. Reference: J. Edmonds and J. M. Reilly, Global EneAggessinghe Future, Oxford
University Press, NewYork (1985); M. A. Wise, private communicationBattelle
Pacific Northwest Laboratory, Washington D.C. (1995).

1.2. Authors: J. Edmonds, J. M. Reilly, D. W. Barns

1.3. Update: M. A.Wise, private communicationBattelle PacificNorthwest Laboratory,
Washington D.C. (1995).

1.4. Model Type (Modetyy,¢): top-down recursive equilibrium with bottom-up nuclear-energy
module.

1.5. Database: update of Edmonds and J. M. Reilly, as describedtechnical support

document LA-UR-97-3826 (September 24, 19%fd the main body of this report.
2. Scenario (Sggg9 Table (Scegge - SOUoge

2.1. Scenario Class (Sggsq: nonintervention (N), parametric variations (P)
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2.2.

Scenario Description (Sggscription: described irtechnicalsupport documentsA-UR-

97-3826 (September 24, 1999nd themain body of thisreport; underlyingstory line:
Starting in 1975 andnarching t02095 throughnine recursively equilibrateavorld
market equilibria, the impacts of demand-sidautonomous energyefficiency
improvements (AEEI) andsupply-side carbon taxes (C-TAX) ostemming global
warming isexamined parametrically; a symbiotic combination of these demand-side and
supply-sided approaches is selected as the basis scenario for this IPCC-1997 submittal.

3. Source Region (Sadg Table: 13RW (13 world regions)

4. Region DefinitiongRegiorpefinition) Table [% population(5271 M in 1990) / %dand area

(134x106 km?2, excluding antarctica) persons/km (39.1 persons/kinaverage)]; refer to

Fig. 2 in technical support document LA-UR-97-3826 (Septembet @37 P, andFig. 44 in
the main body of this report.

4.1.

4.2.

4.3.

4.4,

4.5.

Region;sa: United States of America (4.72/6.79/27.17)
RegionaN: Canada (0.51/7.40/2.67)

Regiorhecp-g Andorra, Austria, Azores, Belgium, Denmark, Faelislands, Finland,

France, Germany, Gibraltar, Greece, Greenland, Guernsey, Iceland, Idslandf
Man, Italy, Jerseyliechtenstein, Luxembourg, Madeinslalta, Monaco,Netherlands,
Norway, Portugal, Spain, Sweden, Switzerland, Turkdypited Kingdom
(8.22/4.94/65.07)

Regiorpecp.p Australia, Japan, New Caledonia, Newealand, South Korea
(3.55/6.26/22.26)

Region:g: Albania, Slovenia, Bulgaria, Czechoslovaki@zech Republic, Slovakia,

Hungary, Poland, Romania, Yugoslavagoslavia[Fed. Rep.],Bosnia-Herzegovina,
Croatia, Macedonia (2.34/0.87/105.78)
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4.6.

4.7.

4.8.

4.9.

4.10.

4.11.

4.12.

4.13.

Regiorgg; Armenia, AzerbaijanBelarus, Estonia, Georgia, Kazakhstan, Krygystan,

Latvia, Lithuania, MoldovaRussia, Tadzhikistan, Turkmenistan, Ukraingzbekistan
(5.50/16.18/13.28)

Regioreyna™  Cambodia, China, Laos, Mongolia, North Korea/ietnam
(23.80/8.89/101.44)

Region,e: Bahrain, Gaza Strip, Iran, Iraq, Israellsraeli-held Territories, Jordan,

Kuwait, Lebanon, OmarQatar, Saudi ArabiaSyria, United Arab Emirates, Yemen
(2.51/4.07/24.13)

Regionapr: Algeria, Chad, Egypt, LibyaMali, Mauitania, Morocco, Niger,Sudan,
Tunisia, Western Sahara (3.12/9.89/9.89)

Regiorkapr: Angola, Benin, BotswanaBurkina Faso, Burundi, CameroorCape

Verde, Central AfricanEmpire, Comoros, Congd®jibouti, Equitorial Guinea, Eritrea,
Ethiopia, Gabon, Gambia, Ghana, Guine@uinea Bissau, Ivory CoastKenya,

Lesotho, Liberia, Madagascar, Malawi, Mauritivdayotte, Mozambique, Namibia,
Nigeria, Reunion, Rwanda, Sao Tome, Senegal, Seych8lies Leone, Somalia,
South Africa, Swaziland, Tanzanidlogo, Uganda, Zaire,Zambia, Zimbabwe
(8.07/12.56/25.11)

Region 5: Anguilla, Antigua and Barbuda, Argentine, Aruba, Bahamda3arbados,
Belize, Bermuda, Bolivia, Brazil, Cayman Islands, Chile, Colombia, Costa Ridza,
Dominica, Dominican Republic, Ecuador, El Salvador, Falkland Islands, French Guiana,
Grenada, Guadeloupe, Guatamalyyana, Haiti, HondurasJamaica, Martinique,
Mexico, Montserrat, Netherlands Antilles, Nicaragua, Pan&aeguay, PerwRuerto

Rico, St. Kitts and Nevis, St. Lucia, Stincent, Surinam, Trinidad, Turkand Caicos
Islands, U.K. Virgin Islands, Uruguay, Venezuela (8.37/15.24/21.47)

Regionyp: India (16.05/2.36/265.79)
Regiorsea: Afghanistan, Bangladesh, Bhutan, Brunei, Fiji, French Polynétag

Kong, Indonesia, KiribatiMacau, Malaysia, MaldivesMarshall Islands, Marshall
Islands, Micronesia, Myanmar, Nepal, PakistaRalauIslands, Papua New Guinea,
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Philippines, Singapore, Solomon Islands, Sri Lanka, Taiwan, Thailand, T\dagatu,
Western Samoa (12.95/4.56/110.97)

5. Assumption Table: (Sedge — SC&ode » R€Gode — Year)

5.1. Gross World Product, GWP(B$): refer to Fig. 44the mainbody of thisreport; these
values represent recursively energy-price-adjusted values of a set oGbiaigalues;
thesebasis valuesire usedunaltered fronthe dataset originally provide withthe ERB

model48

year GWPR®@)
(T39)
1975 13.15
1990 21.67
2005 32.44
2020 46.68
2035 64.22
2050 86.92
2065 114.25
2080 152.26
2095 204.60

(@) available for each of 13 global regions (re: Item 4.)

5.2  World population, POP(M): refer to Fig. 44 in main body of this report:

year PORa)
(B)
1975 3.97
1990 5.22
2005 6.46
2020 7.63
2035 8.70
2050 9.64
2065 10.45
2080 11.14
2095 11.70

(@) available for each of 13 global regions (re: Item 4.)
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5.3 International Crude Qil Price, COP($/bbl):

5.3.1. Fossil fuel resources: the resources of oil, gas, coal, and unconventiaral taken
directly from the database that accompanies EHRB model. These resources are
displayed as a function of (5) grade and as a function of cost (1975 $) in Fig. 45, and
are used unaltered in the present analysis.

5.3.2. The world prices for the three primaigssil energy sourcegoil, gas,and coal) are
determined in ERBhrough amarket-clearing algorithm intavhich is factored all
regional taxes (including carbon taxes) andriffs, resource costs, and
environmentally related extractiocosts. The convergence that leads swupply
equaling demand is forced @ach of the nine times analyzed BRRB. Figure 46
gives theseworld prices, pim(1975%/GJ), asfanction of time (m) and primary
fossil energy source i (oil, i = 1; gas, i =ahd coal, E3), for the base case being

considered (carbon tax rate = 40 $/tonneC/18yr 0.01251/yr); Figure 47 gives

the time-evolution opim(1975%$/GJ) fothe Basis Scenaridzero carbortax, & =
0.0100 1/yr), and a range of carbon tax rates. The basis of Fig. 46 is listed below (42
GJ/toex 0.136 tonne/bbll 5.712 GJ/bbl).

year World Fossil Energy Prices (1975%/GJ)
oll gas coal

1975 1.84 0.63 0.51
1990 2.35 1.03 0.65
2005 4.19 1.30 0.86
2020 5.08 1.45 1.04
2035 5.30 1.44 0.98
2050 5.74 1.50 0.92
2065 7.17 1.53 1.14
2080 7.50 1.53 1.08
2095 7.55 1.56 0.96

5.4. Autonomous Energy Efficiency Improvement, AEEI(1/yr): 0.0100 1/yr for all regions for
all times after1990; parametrically variedver the range(0.0,0.0150).The impact of
these variations on energlemand, energynixes, and carbon-dioxide emissions is
shown on Figs. 13-18 of the main body of this report:

5.5. Deforestration Rate, DFR(Mha/yr): NA

33



5.6. Aforestation Rate, AFR(Mha/yr): NA

5.7. Carbon Content for Vegetation, CCV(tonneC/ha): NA
5.8. Animal Numbers, ANI(M): NA

5.9. Rice Yield, RYE(tonne/ha): NA

5.10. Rice Acreage, RAC(Mha): NA

5.11. Methane emissions from rice fields, tonnefta/yr: NA

5.12. Energy Value of ?????, Epg dtoe/yr): NA

5.13. Carbon content of primary fossil fuels use in ERB

Carbon
Fuel Coefficient
(kgC/GJ)
oll 19.2
gas 13.7
coal 23.8
coal gasification 40.7
coal liquification 38.6
shale oi®) 41.8

(@) Western U.S. shale oil from carbonate rock.

6. Energy Sector (Energycio) Table (Sogoge ~ SC&ode » R€Gode ~ Year — Enorogyct —

Engeiow —» ENGyaiue):

The Energy-Product and Energy-Floschema depicted in thiollowing sections havebeen
modified (expanded) to reflect ti{Erimary Energy, PE)> (Secondary Energy, SE)} (Energy

Service, ES)ogic used inthe ERB model againsthich results forthe C-TAX/AEEI scenarios
considered herein must be presented on @&hregional and globdkvels.Only global results
are presented ithis trail submittal. The Energy-Product/Energy-Flow schenuge in ERB is
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reproduced below: Thain differences with respect tihe IPCC schema beinguggestedre:
a) the separation of “Consumption” antElectricity Generation”;and b) the unaccounting of
syntheticgas and liquids from solids; and c) a somewhginer resolution of both nuclear- and
renewable-energy options.

Energy-Product/Energy-Flow Schema Use in the ERB Model

| == Production | <=—COnsumptiofA—s=|
Primary Secondary Energy
Energy, PE Energy, SE Services, ES
SE Conv.
: o
Oil > A * >| Liquids ———==
I I Residential/
| | Commercial
Gas = ® = Gases— >
| | Industrial
I I
Solids —=| ® Solids———==
I I
| | Transportation
| Electricityl_)
— — — _lI

Nuclear ]
Hydro o
Solar o
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6.1. Energy Product (Engoqud IPCC Schema, Givindllodifications (Expansions)Added

Notation:
Primary
Energy (PE)
6.1.1 OIL-OiIl =(QIL

6.1.1.1. OIP - Produced Oil
6.1.1.2. OIS - Synall '

6.1.2. NGA - Natural Gas = GAS
6.1.2.1. NGP - Produced Natural Ga
6.1.2.2. NGS - Syngas

6.1.3. SLD - Solids
6.1.3.1. COA - Coal T '
6.1.3.2. BMT - Total Biomass .

6.1.4. NUE - Non-breeder Nucleatr, Eleefﬁhx——.—r—r> NUCLEAR

6.1.5. REL - Renewable, Electric
6.1.5.1. HYD - Hydroelectric HYDRO
6.1.5.2. SLE - Solar, Electrie SOLAR
6.1.5.3. NUB - Nuclear Breeder, Electrie

6.1.6. RNE - Rewneable, Nonelectric
6.1.6.1. SLT - Solar, Nonelectre
6.1.6.2. NUN - Nuclear, Nonelectie——— |

= SOLIDS

{2 o

. . FROM
6.1.7. TEG - Total Electric Generatio& FOSSIL
6.1.8. TPE - Total Primary Energae FUELS

Figure 48A givesthe timeevolution of thesix Primary-Energy sources ftine base case being

considered (carbon tasate of 40$/tonneC/15yr and andEEI rate of g, = 0.0125 1/yr).

Figure 48Bgives asimilar plotfor the Basis Scenario (no carbdax, g = 0.0100 1/yr). The

fraction of PE providectlectricity (not samebasis) isgiven in Fig. 49, which, inaddition to
world-averaged values, givéisese fractionsor OECD, Reforming Economie¢REF = FSU +
EEU), and developing (DEV) countries. The essential elments of Figs 48 and 49 are listed below.

World Primary Energy Demand (EJ/yr, Fig. 48A)
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electric

year oil gas coal pyclea)  solaf®)  hydrdd TPE  demantp
1975 11034 69.1 63.9 9.0 --- 18.4 263.8 86.2
1990 |131.7 63.7 89.2 25.6 --- 22.9 333.0 147.0
2005 (1275 875 97.7 42.1 --- 30.4 385.5 154.2
2020 [133.5 104.1 85.6 60.5 7.9 32.7 424.2 198.(
2035 [137.7 98.6 84.5 95.5 27.0 51.9 495.3 273.4
2050 71.6 86.2 134.2 197.4 59.3 73.3 621.8 428.2
2080 51.8 80.0 165.2 268.9 79.7 83.1 728.5 531.1
2095 415 74.4 194.3 348.3 106.6 91.7 855.8 648.4

@ available for each of 13 global regions (re: Item 4.)
() electricity generation only; ERB treats solar thermal as a form of energy conservation.
(© thermal basis; global average ratio of electricity supply to demand is 0.28.

6.2 Energy Flow, (Engow):

6.2.1. CON - Consumption

6.2.2. PRO - Production

6.2.3. EXI - Export/Import

6.2.4. EGE - Electricity Generation
6..3.Energy Product-Flow:

Since only global results are presented in this trial submittal, the Export/Import (EXI) part
of this matrix in inactive.
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Product/Flow| CON PRO EXI EGE
Oll
-OIP
-0IS
NGA
- NGP
- NGS
SLD
- COA
-BMT
NUE
REL
-HYD
- SLE
- NUB
RNE
-SLT
- NUN
TEG
TPE

XX XX XX
XX XX XX

X
X X
X X XXX XXX XX XX

7. Emission Table

7.1. GHG Type: CQ, CHy, Ny,O, CFC, SQ, Others, EQV (C@Equivalent)
COy: (MtonneClyr) monitored
CHyg: (MtonneCHy/yr) monitored
N5O: (MtonneN/yr) monitored
CFC: (MtonneCFC/yr) not monitored
SO,: (MtonneS/yr) not monitored

Others: not monitored
EQV(CO, Equivalent): not monitored

7.2. Emission Source (Emgpyrca:

EUP: Energy Use and Production
- EIN: Industrial Sector
- ERE: Residential Sector
- ETR: Transport Sector

BIB: Biomass Burning

NAT: Nature

DEF: Deforestation
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PRP: Production Process
FER: Fertilized Soil

GAG: Gain in Agriculture
RFI: Rice Fields

AWA: Animal Waste

LFI: Landfill

SEW: Sewage

TOT: Total

7.3. SpeciesersusEmissions-Source Matching Matrix

Species

S(F))urce EUP BIB NAT DEF PRP FER EFE GAG FRI AWA LFI SEW TQ
CcO, X X X
CHy X X X X X X
N,O X X X
CFC

SG,

EQV

7.4. Basecase Tables

Figure 50 gives global emission rates CO,, CH,4, and NO; 13)regionally resolved

resultsare availabldrom the ERBmodel, but not reportetiere. The Speciesversus
Emissions-Sourc&latching Matrix giveabovewas completedbased orthe capabilities

of the version (Version 4.1) of the ERB model used for this stédjhe CG emissions
listed beloware given according to the point emission, emissions for GHare listed

according to source agmission,and NO emissionsare given according to demand

T

sector, all according to the format inherent to the version of the ERB model being used.
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7.4.1. Carbon Dioxide (MtonneCl/yr)

conv. shale
year oil oil synoil coal syngas gas flaring total
1975 | 1911. 1529. 927. 69.8 4437.
1990 | 2430. 2082. 853. 25.7 5391
2005 | 2348. 13.9 184, 1952. 1. 1172. 18.2 5689.
2020 | 2450. 28.2  231. 1047. 1. 1395. 15.1 5166.
2035 | 2515. 51.6  318. 722. 1. 1322. 15.6  4944.
2050 | 2286. 95.8  397. 509. 1. 1219. 20.1  4528.
2065 | 1227. 164.6 984. 467. 1155. 15.7 4014,
2080 | 808. 242.2 1358. 451. 1070. 11.9 394p.
2095 | 546. 342.2 1690. 454, 1. 997. 11.9 404p0.
7.4.2. Methane (MtonneG#r)
gas
coal gas gas transm. auto biomass land-
year | prodn prod'n venting &dist. exhaust burning il total
1975 | 16.76 4.23 22.0 13.53 0.63 8.44 61.34126.92
1990 | 19.31 5.49 7.76 9.38 1.27 11.44 74.76129.41
2005 | 19.93 7.55 5.76 13.06 1.38 15.19 83.2946.16
2020 | 11.99 8.98 5.09 13.48 1.42 18.03 65.81124.80
2035 9.85 8.51 6.04 11.82 1.46 19.82 56.87114.36
2050 8.66 7.85 8.89 9.88 1.29 21.33 43.37101.26
2065 | 14.08 7.43 5.55 8.14 .89 23.15 32.08 91
2080 | 17.63 6.89 4.67 6.74 .78 23.30 35.67 95
2095 | 2094 6.42 5.16 5.64 .73 22.86 39.68101.43
7.4.3. Nitrous Oxide (ktonnejD/yr) 1990
electrical power end use J

year oil gas coal oil gas coal totq

1975 4.7 5.2 52.1 23.2 4.1 48.2 137.6

1990 6.0 9.0 101.4 48.6 2.8 50.9 218.6

2005 3.2 121 69.0 52.6 3.9 70.6 211.5

2020 4.4 171 61.5 55.8 4.0 49.7 192.4

2035 5.3 17.6 55.5 59.7 3.5 38.2 179.7

2050 6.0 17.6 52.0 60.8 2.8 29.3 168.5

2065 5.8 18.3 46.1 57.7 2.3 23.6 153.8

2080 6.5 18.0 44.1 60.4 1.9 22.0 153.

2095 7.7 17.7 43.9 65.1 1.6 22.2 158.72
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8. Consequence Table

The consequences of the emissions listed above are evaluated only fan{S€lons. No attempts
have been made to compute the equivaleéaoy, EQV. Theconsequenceare presented in terms
of the temporal evolution of atmospheric £@ventories, W(GtonneC), anaverage global
temperature risé\T(K); the conversion to ppmv is given Ry13 GtoneC/ppmv. Adescribed in

the main body of this report,the integral-response model describedRef. 15 hasbeen
incorporated into the ERB model telate the above-listed emission rates to atmospheric
accumulations and average global temperaiges. Figure 51 givethe timedependence of the
CO, emission rateRco, (GtonneClyr),the integrate@emissiongelative to thebase year gy =

1800 (when Wky = 594 GtonneCJRV = industrial revolution), W,(Gtonne), the evolving

atmospherianventory, W(Gtonne)and theensuing globaltemperaturerise, AT(K) measured
from try = 1800.The following tablelists the evolution of W an@dT for the basiscase being

presentedd.g, carbon tax rate of 40 $/tonneC/15yr and an AEEI parametgr00.0125 1/yr).

year W(Gtonne) AT(K)(@)

1975 779.5 0.44 (0.44)
1990 829.6 0.57(0.57)
2005 883.0 0.71(0.71)
2020 930.0 0.84 (0.98)
2035 969.5 0.96(1.09)
2050 1002.5 1.06(1.33)
2065 1028.2 1.14 (1.63)
2080 1049.8 1.21 (2.01)
2095 1069.6 1.27(2.28)
(@ values in parentheses correspond to no-carboretax, 0.0100 1/yr Basis
Scenario
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Figure 1. Structural layout of ERB global3Emodeb as adapted and modifiddr the present
study. Fourmain components comprise the ERB economic-equilibriomadel:
energy demand; energgupply; energybalance; and greenhouse-gagGHG)
emissions.The relationships betwedanputs andinteratedoutputs, aswell as the
addition of a (higher fidelity) nuclear energy modeksources, costsnuclear-
materials flows and inventories, and proliferation risk) are also shown.
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Figure 2. Schematic map of thirteen-region ERBdel,
region reflected the respective land masses (Table I).The following regional identifiers
areused: 1) USA = United States Aimerica; 2) CAN = Canada; 3)OECD-E
OECD-Europe; 4) OECD-P = OECD-Pacific; BEU = Eastern Europe; 6)SU
Former Soviet Union; 7) CHINA= China; 8) ME = Middle East; 9) NAFR = North
Africa; 10) SAFR = SoutherAfrica; 11) LA = Latin America;12) IND = India; and

13) SEA = South and East Asia.
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Figure 3A. Key base-casggregated drivers anglatedfirst responsesTime dependencies of
populations (exogenous); GWP (price-adjusted basis case); GWP/POP (price-adjusted
basiscase); primary-energy intensity, El BE/GWP(endogenousgnd per-capita
primary energy, PE/POP(endogenous).
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Figure 3B. Key base-case aggregated drivers and related first responses: Aggregated growth rates
for population (exogenous)GWP (price-adjustedbasis case; primary energy,
PE(endogenous); and primary-energy intensity, El = PE/GWP(endogenous).
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CUMULATIVE GLOBAL ENERGY MIX
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Figure 4A. Cumulative evolution of global primary energy nfior the Basis Scenario (solids =
coal + biomass): Cumulative primary energy.
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Figure 4B. Cumulative evolution of global primary energy nfiot the Basis Scenario (solids =
coal + biomass): Primary energy fractions.
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AGGREGATED PRIMARY ENERGY
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Figure 5. Evolution of aggregated total primary energy for Basis Scenario: OECD = US + CAN

+ OECD-E + OECD-P; REF = FSU + EEU; ab&V = CHINA* + ME + NAFR +
SAFR + L:A + IND + SEA.
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AGGREGATED NUCLEAR vs TIME
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Figure 6A. Aggregated and(13) regional nuclear energy demaridr the Basis Scenario:
Aggregated total and macro-regional nuclear energy demand.
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Figure 6B. Aggregated and (13) regional nuclear energy demand for the Basis Sdeegional
nuclear energy demand.
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Figure 7. Region breakout of total accumulated plutonium for the Basis Scenario.
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Figure 8.  Plutonium andtmospheric carbon accumulatidios the Basis Scenario. Spent-fuel
plutonium is accumulated iwo forms:recyclable (ACC) and fully recycled (REC);

for the once-throughLWR basis case,MSEC Is negligible; average plutonium

contained in LWRS iM guEA; measures of proliferation risk are expressed in terms of
a relative proliferation utility, <u>, and a discounted surprofiferation utilities or a
proliferation risk index, PRI:10
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Figure 9. Time dependence of total Gicarbon) emissionintegratedemissions,atmospheric
accumulation ofemissions,and corresponding globalverage temperatunése, as

determined fronthe linear integral-responseodell5.16 resultsapplied to the zero
carbon-tax basis cagé.
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Figure 10. Atmospheric carbon emission rates as a function of time and region for Basis Scenatrio.
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GLOBAL PLUTONIUM vs CO, ACCUM.
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Figure 11B. Correlation of proliferation-risk indefor no carbontaxes with average global
temperature rise.

51



PRI vs AT
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Figure 12. Correlation of proliferation-risk index with average global temperature rise for case
without carbon tax imposed; comparison PRI impacts of plutoniumrecycle

(e.q, fl]:/IOX = 0.0versus0.30) is shown.
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Figure 13. Primarenergy demand as a functiontwhe and AEEI; theg, = 0.015(RAMP)

case starts ramping from the indicated value in 2005 and linearly decreases to zero
by 2095.
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AGGREGATED NUCLEAR vs AEBEI
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Figure 14. Nuclear energy demand as a functiortimie and AEEI; the g = 0.015(RAMP)

case starts ramping from the indicated value in 2005 and linearly decreases to zero
by 2095.
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Figure 15. Nuclear energy as a fraction tftal primaryenergy (saméasis) as a function of

time and AEEI; the g, = 0.015(RAMP)case starts ramping frone indicated
value in 2005 and linearly decreases to zero by 2095.
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GLOBAL PE/GNP vs AEEI(s,)
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Figure 16. Primary energy intensity, El = PE/GWP, as a function ofamd&EEI; thegy =

0.015(RAMP)case starts ramping frothe indicated value 2005 andlinearly
decreases to zero by 2095.
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Figure 17. Carbon-dioxide (carbon) emissiate as a function dime and AEEI; the g, =

0.015(RAMP)case starts ramping frothe indicated value 2005 andlinearly
decreases to zero by 2095.
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AT versus TIME and AEEI(sy)
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Figure 18. Average global temperatum@se as a function otime and AEEI; the g =

0.015(RAMP)case starts ramping frothe indicated value 2005 andlinearly
decreases to zero by 2095.
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Figure 19. Primary energy demand as a function of time and carbon tax rate, starting in 2005.
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Figure 20. Shift inprimary energy mixfrom Basis Scenario to strong carbtax rate (50

$/tonneC/15yr, starting in 2005)
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Figure 21. Fraction oftotal primaryenergy supplied bglectricity as dunction of time and
carbon tax rate, starting in 2005.
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AR¢/Rc vs C—TAX RATE
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Figure 26. Impact of strong carbon-tax rate(50 $/tonneC/15yr) ofatmospheric carbon
emissions, accumulations, and associated average global temperature rise.
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AT versus TIME and C—TAX
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Figure 27. Time dependence of average global temperaturefois@ range of carbon tax
rates, starting in 2005.
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PRI vs AT(K) and C—TAX
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Figure 28A. Direct comparison of proliferation-risk-indexersusatmospheric temperature-rise
“operating curves” as theate of carbon taxation is varied: direct comparison/

evolution of PRiversusAT, showing isochrones.
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Figure 28B. Direct comparison of proliferation-risk-indexersusatmospheric temperature-rise
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Figure 31A.

Figure 31B.
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Figure 32. Primary energy demand as a function of time for a combination carbon tax rate and
AEEI, showingrelative impacts ofsupply-side (carbortax) and demand-side
(AEEI) scenario attributes.
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Figure 33. Nuclear energy demand as a function of time for a combination carbon tax rate and
AEEI, showingrelative impacts ofsupply-side (carbortax) and demand-side
(AEEI) scenario attributes.
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NE FRACTION vs C—TAX and AEEI
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Figure 34. Nuclear energy fraction of primary energy (same basiduast@en oftime for a

combination carbon tarate and AEEI, showingrelative impacts osupply-side
(carbon tax) and demand-side (AEEI) scenario attributes.
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COz EMISSIONS vs C—TAX and AEEI
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AT vs C—TAX and AEEI(sy)
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Figure 38. Average global temperature rise as a function of fonea combination carbon tax
rate and AEEI, showing relative impacts of supply-side (cationand demand-
side (AEEI) scenario attributes.

UC, vs C—TAX RATE

0 50 100 130 200 250 300
C—TAX RATE, UCwx($/tonneC)

o
g 18—SEP—97 Los Alamos
gaooH"WH_m_m_m_m
o rC—TAX = 40 $/tonneC/15yr 1
< - 4
& I _ooMYT
S 00 | B |
B . . A
:;o\ = // OQXZB X/Y 4
= [ TAX + AGWP = ]
[3
= i |
= 400 + .
%{ - 4
= L |
m L TAX & = i
< | = \O\’Oi{ Lyr ]
=
200 .
- I H=00135 1, ]
N r yr N
@) F 1
O i |
i 0 PR S S T T T TS NS HA R S
Z
=
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PRI vs AT
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NE versus AEEI(zy) for 2095
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Figure 43A.

Figure 43B.

AT versus NE for 2095
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Figure 44. Key “drivers” and responses for the basecase GCC scenario.
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FOSSIL and NUCLEAR RESOURCES vs GRADE
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the Ref.-5 definitions.
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Figure 45B.  Fossiénergy resources used tile ERB modePthe uranium resource reported
herehasbeen replaced witthat of Ref. 33: resource as a function extraction
cost, per the Ref.-5 definitions.

73



PRIMARY ENERGY PRICES
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Figure 46. Primary fossil-energyorld-market prices required fomarket-clearing for
conditions describing the basecase GCC scenario.
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PRIMARY OIL PRICES vs C—TAX
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Figure 47A.  Primary fossil-energy world-market prices required for market-clearingdnge
of carbon-tax scenarios, as well as for the conditions describing the basecase GCC
scenario: primary oil world-market-clearing prices.
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Figure 47B.  Primary fossil-energy world-market prices required for market-clearingenga
of carbon-tax scenarios, as well as for the conditions describing the basecase GCC
scenario: primary gas world-market-clearing prices.
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PRIMARY COAL PRICES vs C—TAX
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Figure 47C.  Primary fossil-energy world-market prices required for market-clearingaiogea
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76



GLOBAL ENERGY MIX
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Figure 48A.  Primary energy demand as a function of time: for basecase GCC scenario.
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Figure 48B.  Primary energy demand as a function of time: for Basis Scenario.
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AGGREGATED ELECTRIC FRACTIONS vs TIME
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both total (World) and macro-regional dependencies (refeffith 2 for regional
and macro-regional notation).
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Table I. Thirteen Regions Described in ERB Model

ID Region Population (millions) Linear Land Area Population Nuclear Energ§*4°
19904142 199542,42| growth (km?2)42,43 Density Capacity Number
(Yolyr) (L/km?) | (Gwe, 1996)

USA United States of America  248.770(4.72%)] 263.614 1.19 9,155,166(6.79%y) | 27.17 99.0(28.9%) 109(26.69
CAN Canada 26.647(0.51%) 28.435  1.34 9,971,875(7.40%) 2.67 15.4(4.5%) |  22(5.4%)
OECD-E | OECD-Europe 434.008(8.22%) 449.564 1.34 6,665,284(4.94%) 65.07 122.5(14.0%) 133(14.99
OECD-P | OECD-Pacific 187.477(3.55%) 193.143 0.60 8,442,636(6.26%) 22.26 47.0(14.0%) 61(14.99
EEU Eastern Europe 123.380(2.34%)] 123.545 0.03 1,166,387(0.87%) 105.78 9.1(2.7%) 12(2.9%)
FSU Former Soviet Union 289.921(5.50% 297.5p7 0.52 21,819,782(16.18%) 13.28 35.1(10.2%) 48(11.89
CHINA* | China and environs 1,216.226(23.8%6),318.869 1.69 | 11,989,362(8.89%) 101.44 2.2(0.6%) 3(0.7%)
ME Middle East 132.420(2.51%) 156.574  3.65 5,488,509(4.07%) 24.13 - - -
NAFR | North Africa 164.932(3.12%) 191.024 3.16 13,328,688(9.89%) 12.37 - S
SAFR | Southern Africa 425.203(8.07%) | 479.348 2.54 | 16,931,332(12.56%) 25.11 1.8(0.5%) 2(0.6%)
LA Latin America 441.038(8.37%) | 481.045 1.81 | 20,543,256(15.24%) 21.47 2.9(0.8%) 5(1.3%)
IND India 846.191(16.05%)| 936.54¢ 2.14 3,183,643(2.36%) 265.79 2.5(0.79%) 10(2.5%)
SEA South and East Asia 682.697(12.95%)  766.024 2.44 6,152,513(4.56%) 110.97 5.0(1.4%)  7(1.7%)
TOT World 5271.338 5685.261 1.57| 134,838,338 39.09 3425 412

(2) Based on total land area, less Antarctica (14,200,069 km
(b) does not include 14,200,000 Rifor Antarctica (8! largest continent), which, if included, gives a total land area of 149,000,000 km
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