
LA-13406

High Explosive Programmed

Burn in the Flag Code

Los
N A T I O N A L L A B O R A T O R Y

Alamos
Los Alamos National Laboratory is operated by the University of California
for the United States Department of Energy under contract W-7405-ENG-36.

An Affirmative Action/Equal Opportunity Employer

This report was prepared as an account of work sponsored by an agency of the United States
Government. Neither The Regents of the University of California, the United States
Government nor any agency thereof, nor any of their employees, makes any warranty, express
or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or
usefulness of any information, apparatus, product, or process disclosed, or represents that its
use would not infringe privately owned rights. Reference herein to any specific commercial
product, process, or service by trade name, trademark, manufacturer, or otherwise, does not
necessarily constitute or imply its endorsement, recommendation, or favoring by The Regents
of the University of California, the United States Government, or any agency thereof. The
views and opinions of authors expressed herein do not necessarily state or reflect those of
The Regents of the University of California, the United States Government, or any agency
thereof. Los Alamos National Laboratory strongly supports academic freedom and a
researcher's right to publish; as an institution, however, the Laboratory does not endorse the
viewpoint of a publication or guarantee its technical correctness.

Edited by Patricia W. Mendius, Group CIC-1
Prepared by M. Ann Nagy, Group X-CI

High Explosive Programmed
Burn in the Flag Code

David Mandell
Donald Burton
Carl Lund

LA-13406

UC-741
Issued: February 1998

Los
N A T I O N A L L A B O R A T O R Y

Alamos
Los Alamos, New Mexico 87545

1

HIGH EXPLOSIVE PROGRAMMED BURN
IN THE FLAG CODE

by

David Mandell, Donald Burton, and Carl Lund

ABSTRACT

The models used to calculate the programmed burn high-explosive
lighting times for two- and three-dimensions in the FLAG code are
described. FLAG uses an unstructured polyhedra grid. The calculations
were compared to exact solutions for a square in two dimensions and for a
cube in three dimensions. The maximum error was 3.95 percent in two
dimensions and 4.84 percent in three dimensions. The high explosive
lighting time model described has the advantage that only one cell at a time
needs to be considered.

I. INTRODUCTION

This report describes the high explosive (HE) programmed burn model

implemented into the FLAG code. In the programmed burn model, the times at which the

HE in each mesh cell detonates is calculated a priori by calculating the arrival times of

waves emanating from the prescribed detonation point or points. The HE chemical energy

is then sourced into the hydrodynamics. The times at which the mesh cells are burned in

two- and three-dimensions are found from the model developed by Lund (Lund, 1986).

FLAG (Burton, 1992,1994) is a one-, two-, and three-dimensional Lagrangian

hydrodynamics code. The code contains a number of hydrodynamics, material strength,

and equation of state models. Additional models are being added, including finite-element,

arbitrary Lagrange-Eulerian (ALE), free Lagrange hydrodynamics, and others. In two

dimensions the HE burn times must be found at the vertices of triangles, and in three

dimensions the burn times need to be calculated at the vertices of tetrahedron. In three

dimensions FLAG uses arbitrary polyhedral, that are broken up, for the internal

calculations, into tetrahedron. FLAG is coded in object-oriented Fortran.

In the next section, the general equations for the Lund model are presented. In the

following sections, the detailed two-dimensional and three-dimensional models are

presented. Then the high-explosive equation of state is presented. Next the procedure for

sourcing the HE chemical energy into the hydrodynamics equations is discussed. Results

and comparisons to analytical solutions are then presented and discussed. Coding and

sample FLAG input files are shown in the Appendices.

2

II. LUND MODEL

The first step in the programmed burn calculation is to find the times that the high

explosive lights at each mesh cell vertex. This step is taken at the beginning of the

calculation. A number of algorithms are available to calculate these burn times. We are

using the Lund model, which is described below.

The scalar burn time field, t, is given by the equation

∇ =t
D
1

 , (1)

where D is the high explosive detonation velocity. Values of D for a number of explosives

are given in standard references (Dobratz and Crawford, 1985). In two dimensions there

are three unknowns – the time, t, and the derivatives of t with respect to the two coordinate

directions, in the finite-difference solution. In three dimensions there is an additional

unknown – the derivative of t with respect to the third coordinate. Taylor expansions from

one vertex to the other vertices provide the additional equation needed to find all the

unknowns. The details of the solutions for two and three dimensions are given in the

following sections.

III. TWO-DIMENSIONAL MODEL

Since it is easier to visualize the two-dimensional (2D) model than the three-

dimensional model (3D), the 2D model will be described first. Initially all of the vertex

times are set to a very large number. Once the triangles containing the detonator(s) are

found and those triangle's vertices are lit, the following procedure is used to calculate the

times at which the HE will light every other vertex in the mesh. For each triangle in the

mesh

1) Since two of the vertices must have known times, skip the triangle during the

current iteration if two of the vertices have the initial large time. Otherwise pick the vertex

with the maximum time, which may be the initial large time, and calculate a new Lund trial

time as described below. Triangles with known times are obtained from the cells with the

detonators during the first iteration, as described above, or from calculations of previous

triangles. If two vertices have identical maximum times, either one can be chosen to be

recalculated.

2) The Lund trial time must satisfy local causality, which is described below. Local

causality basically means that the calculated time must have come from the other two

vertices of the triangle,

3

3) Calculate the direct times from the two known vertices,

4) The new time is the minimum of the old time, the Lund trial time, and the two

direct times. The new time must be greater than the accepted times of the other two vertices

since it is assumed that the detonation wave is coming from that side of the triangle,

5) Iterate until no vertex time is decreasing any longer.

A. Finding the Cell(s) Containing the Detonator(s)

The first step in determining the times for which the HE at each mesh vertex lights

is to determine which cell contains the detonator, the position where the HE begins to burn,

if there is only one detonator. If there are multiple detonators the procedure is done for

each detonator. We need to find the triangle containing the user-specified detonations

point. The surrounding vertices of the triangle are then lit by using the direct distance from

the detonator to each vertex.

The area of a triangle can be found from the cross product of the vectors forming

two sides of the triangle. Thus, if all of the areas of the triangles formed from the vectors

to the vertices and the detonation point are positive, the detonation point is within the

triangle. Consider a triangle with vertices at points 1, 2, and 3, and a detonation point at

point p. The four vectors to the vertices of the triangle and to the detonator are

r x i y j1 = +i i
ˆ ˆ , (2)

where i is 1, 2, or 3, and the detonator is at

p p i p jx y= +ˆ ˆ , (3)

in two dimensions. The following cross products must be positive for the detonation point

to be within the triangle

p r X p r−() −()1 2 ,
(4)

p r X p r−() −()2 3 ,

and

p r X p r−() −()3 1 . (5)

Once it is determined that the detonator is in the triangle being examined, the

lighting times for the three vertices are found from the distance from p to each vertex. For

example, for vertex 1, the time at which the HE will light is

4

t p x p y D tx y1 1
2

1
2= − + − +() () det / , (6)

where D is again the HE detonation velocity and tdet is the detonator lighting time, usually

zero.

B. Two-Dimensional Lund Model

In 2D the HE burn time at one vertex of a triangle, t0, can be calculated by the Lund

model if the times at the other two vertices, t1 and t2, are known from calculations of other

triangles, or from the detonator calculations. The calculated Lund time is a trial solution

which must satisfy a number of criteria, discussed below, before it can be accepted as the

vertex HE lighting time.

 1. Burn Times . In 2D, three equations are needed in order to determine the

burn time, t0, at one vertex of the triangle, by the Lund algorithm. In addition to t0, the

unknowns in the finite-difference solution are the two derivatives of the time with respect to

the coordinates x and y. From Eq. (1), we have

∂t

x

t

y∂




 + ∂

∂






=
2 2

2

1
D

 , (7)

The other two equations are found from taking a Taylor series about the vertex for which

we are calculating the time

t1 = t +
t
x

(x - x) +
t
y

(y - y) 0 1 0 1 0
∂
∂

∂
∂

(8)

and

t2 = t +
t
x

(x - x) +
t
y

(y - y) 0 2 0 2 0
∂
∂

∂
∂

(9)

The derivatives are evaluated at the t0 vertex. Equations (7)-(9) are solved for the three

unknowns. It should be noted that Eq. (7) is a nonlinear equation. A quadratic equation

results, this giving two solutions for t0. The larger value is chosen.

 2. Local Causality . In order for the Lund trial time to be an acceptable time,

local causality must be satisfied. Local causality says that the detonation wave passing

through node 0 must have come from nodes 1 and 2. Mathematically, the gradiant of t0

must pass between nodes 1 and 2, and this will be true if the cross products of the gradient

of the time at 0 with the vectors of the sides have opposite signs.

5

∇t X r r -) ,(1 0
and

∇t X r r -) ,(2 0

must have opposite signs.

IV. THREE-DIMENSIONAL MODEL

The three-dimensional model is similar to the two-dimensional model but the

algebra needed to obtain the solutions is considerably more complicated. In 2D,

Mathematica (Wolfram, 1996) was used to verify the algebra. In 3D Mathematica was

used to obtain the solutions and to produce the Fortran coding. In this case four equations

are needed to find the unknown HE lighting time and the three derivatives of the time with

respect to the three coordinate directions. Prior to solving a given tetrahedron, the two-

dimensional solutions for waves traveling within the faces must be obtained.

A. Finding the Cell(s) Containing the Detonator(s)

In 3D it is necessary to loop over each detonator, find the tetrahedron containing the

detonator, and then light the four vertices of the tetrahedron. The lighting of the vertices

surrounding the detonator is again done by direct lighting.

In 2D we determined if a detonation point was within a triangle by looking at the

signs of vector areas obtained by taking the cross product of vectors to the vertices and the

detonation point. The corresponding algorithm in 3D involves volumes, obtained by

dotting cross products of the position vectors into the vector area of a face of the

tetrahedron. Figure 1 shows a tetrahedron, containing the nomenclature.

The vector areas of the four faces of the tetrahedron are

A r r X r r1 3 2 4 2= − −() () ,

A r r X r r2 4 1 3 1= − −() () ,

A r r X r r3 4 2 1 2= − −() () ,

and

A r r X r r4 1 2 3 2= − −() () ,

where the areas represent the outward normal of the tetraderal face opposite the vertex

designated. For example, A1 is the area of the face opposite vertex 1.

6

t0

t1 t2

t3

r1

r2 r3

r4

Fig. 1. Tetrahedral nomenclature.

The detonator is within the tetrahedron if the following four volumes are all

positive. The vector position of the detonator is p .

(-) , ir p A• i

where i takes on the values 1, 2, 3, and 4.

B. Three-Dimensional Lund Model

 1. Burn Times . The three-dimensional solution for the time, t0, is similar to the

two-dimensional method described above, except that there are now four equations for four

unknowns, and the algebra is considerably more involved. In addition waves traveling

within each face of the tetrahedron must be considered.

Since some tetraheral faces are not parallel to coordinate planes, it is useful to

transform the faces into a two-dimensional coordinate system. Figure 2 shows a

tetrahedral face with a two-dimensional coordinate system (xp, yp) attached to the vertex

were we are calculating a new high explosive burn time.

7

xp

yp

t0
r0

t1

t2, r2

r1

θ

r2 - r0

r1 - r0

r2 - r1

yp2

xp2

Fig. 2. Transformed coordinate system for tetrahedral face.

The lengths of the sides of the triangle are shown. The vectors r are given in terms of the

original three-dimensional coordinate system. The angle theta is given by

cos
))

θ =
− • −((

− −

r r r r

r r r r

2 0 1 0

2 0 1 0

 .

The coordinates of the triangle in the new coordinate system are

xp0 = 0.0, yp0 = 0.0, xp1 = yp1 = 0.0, xp2 = ,r r r r1 0 2 0− −, ()cosθ

and

yp2 = .()sinr r2 0− θ

With these tranformed coordinates, the previously described two-dimensional Lund

solution is used to solve each face of the tetrahedron for the HE burn time for the vertex

having the maximum time, from previous calculations. The accepted solution for any

8

vertex is the minimum acceptable time from the face and tetrahedral solutions. This

minimum time must be greater than the times for the other three vertices.

 2. Local Causality . In three dimensions, local causality requires that the vector

given by the gradient of the burn time must pass through the opposite face of the

terahedron. This requirement means that

∇ = ∂
∂

+ ∂
∂

+ ∂
∂

t
t

x
i

t

y
j

t

z
k0

ˆ ˆ ˆ

must intersect the plane given by Ax + By + Cz + D = 0. A, B, and C can be found from

the cross product of the vectors of the sides of the tetrahedral face (Wexler, 1962):

() () ˆ ˆ ˆr r r3 1 2 1− − = + + , X r Ai Bj Ck

and D Ax= − 2 - By - Cz , 2 2 where x2, y2, and z2 are the coordinates at point 2 of the

tetrahedron.

Three equations are needed to find the intercept point of the plane and the gradient

of the time. The above equation of the plane is one of the equations needed, and the two

equations for the gradient line are the additional equations needed:

x - x y - y z - z
 ,1 1 1

∂
∂

= ∂
∂

= ∂
∂

t
x

t
y

t
z

where x1, y1, and z1 are the coordinates of the vertex where the time t0 has been calculated,

and the derivatives are also evaluated at that vertex.

Simultaneous solution of the above three equations gives the coordinates, xi, yi,

and zi, where the gradient intercepts the plane. It is next necessary to determine if the

intercept point is within or outside the face of the tetrahedron. This determination is done

in a similar manner to the method used to determine if the detonator is within the

tetrahedron.

V. EQUATION OF STATE

The Jones-Wilkins-Lee (JWL) equation of state is used for the detonation products

(Lee et al., 1968). In the current version of FLAG, the high explosive pressure is zero

prior to HE detonation, given by the following equation after the HE is fully burned, and

linearly increased during the time the HE is burning.

9

P A
R V

e B
R V

e
E

V
R V R V= −







+ −






+− −1 1
1 2

1 2
ω ω ω

The material constants R1, R2, A, B, and ω are given, for a number of explosives, in the

report by Dobratz and Crawford. V is the relative specific volume, E is the HE chemical

energy, and P is the pressure of the HE detonation products.

VI. ENERGY SOURCES

The high explosive energy must be coupled to the hydrodynamic equations by

including the HE energy in the force and work terms. This energy is linearly added to the

hydrodynamic equations from the minimum to the maximum HE burn times calculated.

The fraction of energy added each time step is

∆t

t t
E

max min− 0 ,

where tmin and tmax are minimum and maximum HE cell lighting times, and E0 is the HE

chemical energy.

VII. RESULTS

Two- and three-dimensional test problems were run in order to verify that the Lund

model was implemented into the code correctly, and to evaluate the model. Simple

geometries were run first so that the HE lighting times could be compared to exact

solutions. For a square of HE in 2D or a cube of HE in 3D, lit at one corner at time zero,

the exact solution is the distance from the detonator point to a vertex divided by the

detonation velocity. Sample input files are given in Appendices C and D.

A. Two-Dimensional Results

Contours of constant HE lighting times, obtained by using the Lund model, for a 1-

cm by 1- cm square of HE, lit at one corner, and having 10 by 10 cells, are shown in

Fig. 3a. The corresponding exact solution is shown in Fig. 3b, and the percent error is

shown in Fig. 4. The maximum error is about 3.95 percent. The results show that the

Lund model is working correctly in the FLAG code in two dimensions. The input file for

the Lund model for a 2-cell by 2-cell (3 by 3 lines) geometry is given in Appendix C.

10

Fig. 3a. HE burn times, phet, for a square lit at one corner,using the Lund model.

11

Fig. 3b. Exact HE burn times, phet.

12

- 4

- 3

- 2

- 1

0

1

0 2 0 4 0 6 0 8 0 100 120 140

L
U

N
D

 P
E

R
C

E
N

T
 E

R
R

O
R

 F
R

O
M

 D
IR

E
C

T
 T

IM
E

VERTEX NUMBER

Fig. 4. Percent error between the exact (direct) solution and the Lund model for the 2D
square.

To test the coupling of the HE model with the hydrodynamics, a cylinder of PBX-

9501 explosive, lit at the origin was calculated. The resulting pressure wave at 3

microseconds is shown in Fig. 5. The mesh consisted of 10 by 50 cells and was run on a

workstation. The Chapman-Jouguet (CJ) pressure for PBX-9501 is 370 kilobars. The

maximum calculated pressure was about 278 kilobars. The calculated pressure would

approach the measured value if a finer zoned calculation were run. We did not perform this

calculation because of disc limitations on the workstation used for the calculations.

13

Fig. 5. Calculated 2D pressure contours for a cylinder of PBX-9501 at 3 microseconds.
The Lund model was used to calculate the HE lighting times.

B. Three-Dimensional Results

The two test problems discussed above were converted to three-dimensional

problems. The results for the error in the cube HE lighting times are shown in Fig. 6.

The maximum error was about 4.84 percent. Results for the PBX-9501 cylinder are

shown in Figs. 7 and 8. One quarter of the cylinder was used in the calculation, and the

results were reflected about the axes using the GMV graphics package (Ortega, 1995).

The results verify the 3D coding.

14

- 5

- 4

- 3

- 2

- 1

0

1

0 200 400 600 800 1000 1200 1400

L
U

N
D

 P
E

R
C

E
N

T
 E

R
R

O
R

 F
R

O
M

 D
IR

E
C

T
 T

IM
E

VERTEX NUMBER

Fig. 6. Percent error between the exact (direct) solution and the Lund model for the 3D
cube.

15

Fig. 7. Pressure contours at 3 microseconds for a PBX-9501 cylinder, lit at the origin.
Half the cylinder is shown. The HE burn times were obtained by using the Lund
model.

16

Fig. 8. Pressure contours at 3 microseconds for a PBX-9501 cylinder, lit at the origin.
The entire cylinder is shown. The Lund model was used.

ACKNOWLEDGMENTS

We would like to thank Robert Hotchkiss, Computational Science Methods Group,

for his help with the vector algebra and analytical geometry methods. We would also like

to thank Frank Ortega, Computational Science Methods Group, for help in using his

General Mesh Viewer (GMV) graphics package.

17

REFERENCES

1. Donald E. Burton, “Connectivity Structures and Differencing Techniques for

Staggered-Grid Free-Lagrange Hydrodynamics,” Lawrence Livermore National

Laboratory Report UCRL–JC–110555 (1992).

2. Donald E. Burton, Consistent Finite-Volume Discretization of Hydrodynamic

Conservation Laws for Unstructured Grids, Lawrence Livermore National Laboratory

Report UCRL–JC–118788 (1994).

3. B. M. Dobratz and P. C. Crawford, “LLNL Explosives Handbook—Properties of

Chemical Explosives and Explosive Simulants,” Lawrence Livermore National

Laboratory Report UCRL–52997 (January 31, 1985).

4. E. L. Lee, H. C. Hornig, and J. W. Kury, “Adiabatic Expansion of High Explosive

Detonation Products,” Lawrence Livermore National Laboratory Report UCRL–50422

(May 2, 1968).

5. Carl Lund, Private Communication (1986).

6. Frank Ortega, “GMV—General Mesh Viewer User’s Manual,” Los Alamos National

Laboratory report LAUR–95–2986 (1995).

7. Stephen Wolfram, The Mathematica Book, Third Edition, Cambridge University

Press, NY (1996).

8. Charles Wexler, Analytic Geometry A Vector Approach, Addison-Wesley Pub. Co.,

Reading, MA (1962).

18

APPENDIX A

TWO-DIMENSIONAL FORTRAN CODING

In order to aid other computational physicsts who wish to use the Lund high

explosive burn model, the coding used in FLAG is presented in this Appendix and the

following Appendix. The two-dimensional coding is presented in this Appendix. FLAG is

written in object-oriented Fortran. A database manager controls the classes, which are

designated by dd in the following coding. The “access” command in the coding brings in

the variables indicated. The written coding is preprocessed to insert the pointers and other

Fortran 77 constructs.

I . LOCATION OF 2D DETONATORS

c---

 subroutine HEDet2D(dd)
c
c Find the cells containing detonators.
c Calculate the lighting times around the detonators for 2D
c
 access /dd/ kk4ll, kkdll,
 1 kk3ll,kksll, kksl, kkdl,
 1 dxt(kk4ll,kkdll),
 1 kkpll,px(kk3ll,kkpll),
 1 kkzll,zx(kk3ll,kkzll),
 1 phet(kkpll),pheto(kkpll),
 1 zhet(kkzll),zheto(kkzll),
 1 kstyp(kksll),
 1 kksp1(kksll),kksp2(kksll),kksz(kksll),
 1 detvel(kksll),
 1 idebug,zero

 integer s,p1,p2,z,d,inside

 real*8 xdet,ydet,tdet,
 1 x1,x2,x3,y1,y2,y3,
 1 pr1cpr2,pr2cpr3,pr3cpr1

 data inside/0/
c
c loop over all detonators
c
 do d=1,kkdl

 xdet = dxt(1,d)
 ydet = dxt(2,d)
 tdet = dxt(3,d)
c

19

c loop over sides
c
 do s=1,kksl

 if(kstyp(s).eq.1) then

 p1 = kksp1(s)
 p2 = kksp2(s)
 z = kksz(s)

 x1 = px(1,p1)
 x2 = px(1,p2)
 x3 = zx(1,z)
 y1 = px(2,p1)
 y2 = px(2,p2)
 y3 = zx(2,z)

c
c Cross the vector differences of the detonation position
c and the point positions in all combinations. If the
c three results are all positive, the detonation point is
c within the side.
c
 pr1cpr2 = (xdet-x1)*(ydet-y2)-(xdet-x2)*(ydet-y1)
 pr2cpr3 = (xdet-x2)*(ydet-y3)-(xdet-x3)*(ydet-y2)
 pr3cpr1 = (xdet-x3)*(ydet-y1)-(xdet-x1)*(ydet-y3)

 if(idebug .eq. 2) then
 write(*,*)
 write(*,*) '-------------------------------'
 write(*,*)
 write(*,*) 'HEDet2D: Side = ',s
 write(*,*) 'p1=',p1, ' p2 = ',p2,' z = ',z
 write(*,*) 'x1 = ',x1,' y1 = ',y1
 write(*,*) 'x2 = ',x2,' y2 = ',y2
 write(*,*) 'x3 = ',x3,' y3 = ',y3
 write(*,*) 'xdet = ',xdet,' ydet = ',ydet
 write(*,*) 'pr1cpr2 = ',pr1cpr2,' pr2cpr3 = ',
 1 pr2cpr3,' pr3cpr1 = ',pr3cpr1
 write(*,*)
 write(*,*) '-------------------------------'
 write(*,*)
 endif

 if(pr1cpr2 .ge. zero .and.
 1 pr2cpr3 .ge. zero .and.
 1 pr3cpr1 .ge. zero) then

 phet(p1) = sqrt((xdet-x1)**2 + (ydet-y1)**2) /
 1 detvel(s) + tdet
 phet(p2) = sqrt((xdet-x2)**2 + (ydet-y2)**2) /
 1 detvel(s) + tdet
 zhet(z) = sqrt((xdet-x3)**2 + (ydet-y3)**2) /
 1 detvel(s) + tdet

20

c
c Another detonation point could be closer to the point than
c the current detonation point so take the minimum time.
c
 phet(p1) = amin1(phet(p1),pheto(p1))
 pheto(p1) = phet(p1)
 phet(p2) = amin1(phet(p2),pheto(p2))
 pheto(p2) = phet(p2)
 zhet(z) = amin1(zhet(z),zheto(z))
 zheto(z) = zhet(z)

 inside = 1

 if(idebug .eq. 1) then
 write(*,*)
 write(*,*) '********************************'
 write(*,*)
 write(*,*) 'HEDet2D:'
 write(*,*) 'p1=',p1,' phet(p1)=',phet(p1),'
 1 p2=',p2,
 1 ' phet(p2) = ',phet(p2),' z=',z,
 1 ' zhet=',zhet(z), ' s=',s
 write(*,*)
 endif

 endif

 endif

 enddo

 enddo

 if(inside .ne. 1)
 1 call Fatal('HEDet2D: Detonators must be inside mesh')

 return
 end

I I . LUND 2D CALCULATION

c---

 subroutine HELund2D(dd)
c
c Calculate the Lund HE burn times for 2D
c

 access /dd/ kk4ll,fnul,
 1 kk3ll,kksll, kksl,
 1 kkpll,px(kk3ll,kkpll),
 1 kkzll,zx(kk3ll,kkzll),
 1 phet(kkpll),pheto(kkpll),

21

 1 zhet(kkzll),zheto(kkzll),
 1 kstyp(kksll),
 1 kksp1(kksll),kksp2(kksll),kksz(kksll),
 1 detvel(kksll),
 1 mheiter,zero,
 1 idebug

 integer s,p1,p2,z,d,
 1 heiter,
 1 success,bad,
 1 i1,i2,i3,flag

 real*8 x1,x2,x3,y1,y2,y3,
 1 tmax,t21,t31,t1,t2,t0tmp,
 1 x10,y10,x20,y20,x12,y12,d1,disc,
 1 ax,ay,bx,by,a,b,c,
 1 gx,gy,gc10,gc20,
 1 ihe

c
c Iterate until the HE burn times are no longer decreasing
c
 do heiter=1,mheiter

c
c loop over "sides"
c
 do s=1,kksl

 if(kstyp(s).eq.1 .and. detvel(s) .ne. fnul) then

 p1 = kksp1(s)
 p2 = kksp2(s)
 z = kksz(s)

 x1 = px(1,p1)
 x2 = px(1,p2)
 x3 = zx(1,z)
 y1 = px(2,p1)
 y2 = px(2,p2)
 y3 = zx(2,z)
c
c Two of the three times must be known to use the Lund method
c
 ihe = 0
 if(phet(p1) .eq. fnul) ihe = ihe + 1
 if(phet(p2) .eq. fnul) ihe = ihe + 1
 if(zhet(z) .eq. fnul) ihe = ihe + 1
 if(ihe .lt. 2) then
c
c Find the maximum HE burn time and recalculate that point
c from the other two points of the triangle
c
 tmax = amax1(phet(p1), phet(p2), zhet(z))

22

 if(phet(p1).ge.phet(p2).and.phet(p1).ge.zhet(z)) then
c
c Time at p1 is being recalculated
c
 i1 = p1
 i2 = p2
 i3 = z
 flag = 0
 elseif(phet(p2).ge.phet(p1).and.phet(p2).gt.
 1 zhet(z)) then
c
c Time at p2 is being recalculated
c
 i1 = p2
 i2 = p1
 i3 = z
 flag = 0
 elseif(zhet(z).gt.phet(p1).and.zhet(z).ge.
 1 phet(p2)) then
c
c Time at z is being recalculated
c
 i1 = z
 i2 = p1
 i3 = p2
 flag = 1

 else
 cycle
 endif

 if(flag .eq. 0) then
c
c Either point p1 or point p2 is being recalculated.
c
 t1 = phet(i2)
 t2 = zhet(i3)
 x10 = px(1,i2)-px(1,i1)
 y10 = px(2,i2)-px(2,i1)
 x20 = zx(1,i3)-px(1,i1)
 y20 = zx(2,i3)-px(2,i1)
 t21 = sqrt(x10**2+y10**2)/detvel(s)+phet(i2)
 t31 = sqrt(x20**2+y20**2)/detvel(s)+zhet(i3)
 x12 = px(1,i2)-zx(1,i3)
 y12 = px(2,i2)-zx(2,i3)
 else
c
c Point z is being recalculated.
c
 t1 = phet(i2)
 t2 = phet(i3)
 x10 = px(1,i2)-zx(1,i1)
 y10 = px(2,i2)-zx(2,i1)

23

 x20 = px(1,i3)-zx(1,i1)
 y20 = px(2,i3)-zx(2,i1)
 t21 = sqrt(x10**2+y10**2)/detvel(s)+phet(i2)
 t31 = sqrt(x20**2+y20**2)/detvel(s)+phet(i3)
 x12 = px(1,i2)-px(1,i3)
 y12 = px(2,i2)-px(2,i3)
 endif

 d1 = x20*y10-x10*y20
 ax= - y12/d1
 ay= x12/d1
 bx= (t2*y10 - t1*y20)/d1
 by= -(t2*x10 - t1*x20)/d1
 a = ax**2+ay**2
 b = 2*(ax*bx+ay*by)
 c = (bx**2+by**2-1/detvel(s)**2)
 disc=b**2-4.*a*c

 if (disc.ge.0) then

 t0tmp= (-b + sqrt(disc))/(2.*a)

 gx = ax*t0tmp+bx
 gy = ay*t0tmp+by

 gc10 = gx*y10-gy*x10
 gc20 = gx*y20-gy*x20

 if(gc10*gc20 .lt. zero) then

 if(flag .eq. 0) then
 if(t0tmp.gt.phet(i2).and.t0tmp.gt.
 1 zhet(i3)) then
 phet(i1) = amin1(t0tmp,t21,t31,
 1 phet(i1),pheto(i1))
 else
 phet(i1) = amin1(t21,t31,phet(i1),
 1 pheto(i1))
 endif
 else
 if(t0tmp.gt.phet(i2).and.t0tmp.gt.
 1 phet(i3)) then
 zhet(i1) = amin1(t0tmp,t21,t31,zhet(i1),
 1 zheto(i1))
 else
 zhet(i1) = amin1(t21,t31,zhet(i1),
 1 zheto(i1))
 endif
 endif
 else

 if(flag .eq. 0) then

24

 phet(i1) = amin1(t21,t31,phet(i1),pheto(i1))

 else
 zhet(i1) = amin1(t21,t31,zhet(i1),zheto(i1))
 endif

 endif

 else
 if(flag .eq. 0) then
 phet(i1) = amin1(t21,t31,phet(i1),pheto(i1))

 else
 zhet(i1) = amin1(t21,t31,zhet(i1),zheto(i1))
 endif

 endif

 if(idebug .eq. 1) then
 write(*,*)
 write(*,*) '------------------------------------'
 write(*,*)
 write(*,*) 'HELund2D: HE ITERATION NUMBER',heiter
 write(*,*) 'p1=',p1,' p2=',p2,' z=',z
 write(*,*) 's=',s,' phet(p1)=',phet(p1),'
 1 phet(p2)=',
 1 phet(p2),' zhet = ',zhet(z)
 write(*,*) 'x1=',x1,' y1=',y1,' x2 = ',x2,'
 1 y2 = ',y2,
 1 ' x3 = ',x3,' y3 = ',y3
 write(*,*) 'tmax = ',tmax
 write(*,*) 'pheto(p1)=',pheto(p1),' pheto(p2)=',
 1 pheto(p2),
 1 ' zheto(z) =',zheto(z)
 write(*,*) 't0tmp = ',t0tmp,' t21 = ',t21,'
 1 t31 = ',t31
 write(*,*) 'i1=',i1,' i2=',i2,' i3=',i3,
 1 ' flag=',flag
 write(*,*) 'disc = ',disc
 write(*,*) 'a = ',a,' b = ',b,' c = ',c
 write(*,*) 'Gx = ',gx,' Gy = ',gy,' gc10 = ',gc10,
 1 ' gc20 = ',gc20
 write(*,*) 'x10 = ',x10,' y10 =',y10
 write(*,*) 'x20 = ',x20,' y20 = ',y20
 write(*,*) 'x12 = ',x12,' y12 = ',y12,' d1=',d1
 endif

 endif

 endif

 enddo

25

 bad = 0

 do s=1,kksl

 if(kstyp(s).eq.1) then

 p1 = kksp1(s)
 if(phet(p1) .lt. fnul) then
 bad = 1
 exit
 endif

 endif

 enddo

 if(bad .eq. 0) call Fatal('HELund2D: BAD TIME ITERATION')

 success = 0

 do s=1,kksl

 if(kstyp(s).eq.1 .and. detvel(s) .ne. fnul) then

 p1 = kksp1(s)
 p2 = kksp2(s)
 z = kksz(s)

 if(phet(p1) .lt. pheto(p1)) then
 success = success + 1
 pheto(p1) = phet(p1)
 endif
 if(phet(p2) .lt. pheto(p2)) then
 success = success + 1
 pheto(p2) = phet(p2)
 endif
 if(zhet(z) .lt. zheto(z)) then
 success = success + 1
 zheto(z) = zhet(z)
 endif

c write(*,*) 'HELUND2D: HE ITERATION NUMBER',heiter
c write(*,*) 's = ',s,' phet(p1) = ',phet(p1),' phet(p2) = ',
c 1 phet(p2),' zhet = ',zhet(z)

 endif

 enddo

 if(success .eq. 0) then
 write(*,*)
 write(*,*) '--------- HE LUND 2D BURN --------------'
 write(*,*)

26

 write(*,*) 'NUMBER OF ITERATIONS = ',heiter
 write(*,*) 'MAXIMUM ITERATIONS ALLOWED = ',mheiter
 write(*,*)
 write(*,*) '--'
 write(*,*)
 exit
 endif

 enddo

 if(success .ne. 0)
 1 call Fatal('HELund2D: HE iteration did not converge ')

 return
 end

27

APPENDIX B

THREE-DIMENSIONAL CODING

In order to aid other computational physicists who wish to use the Lund high

explosive burn model, the 3D coding used in FLAG is presented in this Appendix. FLAG

is written in object-oriented Fortran. A database manager controls the classes, which are

designated by dd in the following coding. The “access” command in the coding brings in

the variables indicated. The written coding is preprocessed to insert the pointers and other

Fortran 77 constructs.

I . LOCATION OF 3D DETONATORS

c---

 subroutine HEDet3D(dd)
c
c Find the cells containing detonators.
c Calculate the lighting times around the detonators for 3D
c
 access /dd/ kk4ll, kkdll,
 1 kk3ll,kksll, kksl, kkdl,
 1 dxt(kk4ll,kkdll),
 1 kkpll,px(kk3ll,kkpll),
 1 kkzll,zx(kk3ll,kkzll),
 1 kkfll,fx(kk3ll,kkfll),
 1 phet(kkpll),pheto(kkpll),
 1 zhet(kkzll),zheto(kkzll),
 1 fhet(kkfll),fheto(kkfll),
 1 kstyp(kksll),
 1 kksp1(kksll),kksp2(kksll),kksz(kksll),kksf(kksll),
 1 detvel(kksll),
 1 idebug,zero

 integer s,p1,p2,z,f,d,inside,totin

 real*8 xdet,ydet,zdet,tdet,
 1 x1,x2,x3,x4,y1,y2,y3,y4,z1,z2,z3,z4,
 1 r1pa1,r2pa2,r3pa3,r4pa4
c
c totin is the runnig total of the number of detonators
c inside the mesh
c
 totin=0

c
c loop over all detonators
c
 do d=1,kkdl

28

 xdet = dxt(1,d)
 ydet = dxt(2,d)
 zdet = dxt(3,d)
 tdet = dxt(4,d)
c
c loop over sides
c
 do s=1,kksl

 if(kstyp(s).eq.1) then

 p1 = kksp1(s)
 p2 = kksp2(s)
 z = kksz(s)
 f = kksf(s)

 x1 = px(1,p1)
 x2 = px(1,p2)
 x3 = zx(1,z)
 x4 = fx(1,f)

 y1 = px(2,p1)
 y2 = px(2,p2)
 y3 = zx(2,z)
 y4 = fx(2,f)

 z1 = px(3,p1)
 z2 = px(3,p2)
 z3 = zx(3,z)
 z4 = fx(3,f)

 r1pa1 =
 - ((y2-ydet)*(-(x3*z2)+x4*z2+x2*z3-x4*z3-x2*z4+x3*z4)+
 - (x2-xdet)*(y3*z2-y4*z2-y2*z3+y4*z3+y2*z4-y3*z4)+
 - (x3*y2 - x4*y2 - x2*y3 + x4*y3 + x2*y4 - x3*y4)*(z2 - zdet))

 r2pa2 =
 - ((y1-ydet)*(x3*z1-x4*z1-x1*z3+x4*z3+x1*z4-x3*z4)+
 - (x1-xdet)*(-(y3*z1)+y4*z1+y1*z3-y4*z3-y1*z4+y3*z4)+
 - (-(x3*y1)+x4*y1+x1*y3-x4*y3-x1*y4+x3*y4)*(z1-zdet))

 r3pa3 =
 - ((y1-ydet)*(-(x2*z1)+x4*z1+x1*z2-x4*z2-x1*z4+x2*z4)+
 - (x1-xdet)*(y2*z1-y4*z1-y1*z2+y4*z2+y1*z4-y2*z4)+
 - (x2*y1-x4*y1-x1*y2+x4*y2+x1*y4-x2*y4)*(z1-zdet))

 r4pa4 =
 - ((y1-ydet)*(x2*z1-x3*z1-x1*z2+x3*z2+x1*z3-x2*z3)+
 - (x1-xdet)*(-(y2*z1)+y3*z1+y1*z2-y3*z2-y1*z3+y2*z3)+
 - (-(x2*y1)+x3*y1+x1*y2-x3*y2-x1*y3+x2*y3)*(z1-zdet))

 inside = 0
 if(r1pa1 .ge. zero .and. r2pa2 .ge. zero .and.

29

 1 r3pa3 .ge. zero .and. r4pa4 .ge. zero) then
 inside = 1
 totin = totin + 1
 endif

 if(idebug .eq. 2) then
 write(*,*)
 write(*,*) '-------------------------------'
 write(*,*)
 write(*,*) 'HEDet3D: Side = ',s
 write(*,*) 'p1=',p1, ' p2 = ',p2,' z = ',z,' f = ',f
 write(*,*) 'x1 = ',x1,' y1 = ',y1,' z1 = ',z1
 write(*,*) 'x2 = ',x2,' y2 = ',y2,' z2 = ',z2
 write(*,*) 'x3 = ',x3,' y3 = ',y3,' z3 = ',z3
 write(*,*) 'x4 = ',x4,' y4 = ',y4,' z4 = ',z4
 write(*,*) 'xdet = ',xdet,' ydet = ',ydet,' zdet = ',
 1 zdet
 write(*,*) 'r1pa1 = ',r1pa1,' r2pa2 = ',
 1 r2pa2,' r3pa3 = ',r3pa3,' r4pa4 = ',
 1 r4pa4
 write(*,*) 'inside = ',inside,' totin = ',totin
 write(*,*)
 write(*,*) '-------------------------------'
 write(*,*)
 endif

 if(inside .eq. 1) then

 phet(p1) = sqrt((xdet-x1)**2 + (ydet-y1)**2
 1 +(zdet-z1)**2) /
 1 detvel(s) + tdet
 phet(p2) = sqrt((xdet-x2)**2 + (ydet-y2)**2
 1 +(zdet-z2)**2) /
 1 detvel(s) + tdet
 zhet(z) = sqrt((xdet-x3)**2 + (ydet-y3)**2
 1 +(zdet-z3)**2) /
 1 detvel(s) + tdet
 fhet(f) = sqrt((xdet-x4)**2 + (ydet-y4)**2
 1 +(zdet-z4)**2) /
 1 detvel(s) + tdet
c
c Another detonation point could be closer to the point than
c the current detonation point so take the minimum time.
c
 phet(p1) = amin1(phet(p1),pheto(p1))
 pheto(p1) = phet(p1)
 phet(p2) = amin1(phet(p2),pheto(p2))
 pheto(p2) = phet(p2)
 zhet(z) = amin1(zhet(z),zheto(z))
 zheto(z) = zhet(z)
 fhet(f) = amin1(fhet(f),fheto(f))
 fheto(f) = fhet(f)

 if(idebug .eq. 3) then

30

 write(*,*)
 write(*,*) '-------------------------------------'
 write(*,*)
 write(*,*) ' DETONATOR NUMBER ',kkdl
 write(*,*)
 write(*,*) 'DETONATOR POSITION AND TIME:'
 write(*,*)
 write(*,*) 'x = ',dxt(1,kkdl),' y = ',dxt(2,kkdl),
 1 ' z = ',dxt(3,kkdl),' TIME = ',dxt(4,kkdl)
 write(*,*)
 write(*,*) 'SIDE ',s
 write(*,*)
 write(*,*) 'POINT p1:'
 write(*,*) ' x = ',x1,' y = ',y1,' z = ',z1
 write(*,*) ' BURN TIME = ',phet(p1)
 write(*,*) 'POINT p2:'
 write(*,*) ' x = ',x2,' y = ',y2,' z = ',z2
 write(*,*) ' BURN TIME = ',phet(p2)
 write(*,*) 'ZONE:'
 write(*,*) ' x = ',x3,' y = ',y3,' z = ',z3
 write(*,*) ' BURN TIME = ',zhet(z)
 write(*,*) 'FACE:'
 write(*,*) ' x = ',x4,' y = ',y4,' z = ',z4
 write(*,*) ' BURN TIME = ',fhet(f)
 endif

 if(idebug .eq. 1) then
 write(*,*)
 write(*,*) '********************************'
 write(*,*)
 write(*,*) 'HEDet3D:'
 write(*,*) 'p1=',p1,' phet(p1)=',phet(p1),'
 1 p2=',p2,
 1 ' phet(p2) = ',phet(p2),' z=',z,
 1 ' zhet=',zhet(z), ' s=',s
 write(*,*)
 endif

 endif

 endif

 enddo

 enddo

 if(totin .eq. 0)
 1 call Fatal('HEDet3D: Detonators must be inside mesh')

 write(*,*)

 return
 end

31

I I . 3D LUND CODING

c---

 subroutine HELund3D(dd)
c
c Calculate the Lund HE burn times for 3D
c

 access /dd/ kk4ll,fnul,
 1 kk3ll,kksll, kksl,
 1 kkpll,px(kk3ll,kkpll),
 1 kkzll,zx(kk3ll,kkzll),
 1 kkfll,fx(kk3ll,kkfll),
 1 phet(kkpll),pheto(kkpll),
 1 zhet(kkzll),zheto(kkzll),
 1 fhet(kkfll),fheto(kkfll),
 1 kstyp(kksll),
 1 kksp1(kksll),kksp2(kksll),kksz(kksll),kksf(kksll),
 1 detvel(kksll),
 1 mheiter,zero,
 1 idebug

 integer s,p1,p2,z,f,d,
 1 heiter,
 1 success,bad,
 1 i1,i2,i3,i4,flag

 real*8 x1,x2,x3,x4,y1,y2,y3,y4,z1,z2,z3,z4,
 1 tmax,t21,t31,t41,t1,t2,t3,t0tmp,
 1 x10,y10,z10,x20,y20,z20,x30,y30,z30,
 1 x12,y12,d1,disc,
 1 ax,ay,az,bx,by,a,b,c,dface,
 1 gx,gy,gz,gc10,gc20,
 1 c1,c2,c3,c4,c5,c6,
 1 xi,yi,zi,
 1 r4pcr3pda,r2pcr4pda,r3pcr2pda,
 1 ihe,tmp

c
c Iterate until the HE burn times are no longer decreasing
c
 do heiter=1,mheiter

c
c loop over "sides"
c
 do s=1,kksl

 if(kstyp(s).eq.1 .and. detvel(s) .ne. fnul) then

 p1 = kksp1(s)
 p2 = kksp2(s)
 z = kksz(s)

32

 f = kksf(s)

c
c Calculate the time for the tet faces
c
c Face f-p1-z
 call dtetface(fhet(f),fheto(f),fx(1,f),fx(2,f),fx(3,f),
 1 phet(p1),pheto(p1),px(1,p1),px(2,p1),px(3,p1),
 1 zhet(z),zheto(z),zx(1,z),zx(2,z),zx(3,z),
 1 zero,detvel(s))

c Face f-p2-z
 call dtetface(fhet(f),fheto(f),fx(1,f),fx(2,f),fx(3,f),
 1 phet(p2),pheto(p2),px(1,p2),px(2,p2),px(3,p2),
 1 zhet(z),zheto(z),zx(1,z),zx(2,z),zx(3,z),
 1 zero,detvel(s))

c Face f-p1-p2
 call dtetface(fhet(f),fheto(f),fx(1,f),fx(2,f),fx(3,f),
 1 phet(p1),pheto(p1),px(1,p1),px(2,p1),px(3,p1),
 1 phet(p2),pheto(p2),px(1,p2),px(2,p2),px(3,p2),
 1 zero,detvel(s))

c Face p1-p2-z
 call dtetface(phet(p1),pheto(p1),px(1,p1),
 1 px(2,p1),px(3,p1),
 1 phet(p2),pheto(p2),px(1,p2),px(2,p2),px(3,p2),
 1 zhet(z),zheto(z),zx(1,z),zx(2,z),zx(3,z),
 1 zero,detvel(s))

c
c Three of the four times must be known to use the Lund method
c in 3D
c
 ihe = 0
 if(phet(p1) .eq. fnul) ihe = ihe + 1
 if(phet(p2) .eq. fnul) ihe = ihe + 1
 if(zhet(z) .eq. fnul) ihe = ihe + 1
 if(fhet(f) .eq. fnul) ihe = ihe + 1
 if(ihe .lt. 2) then
c
c Find the maximum HE burn time and recalculate that point
c from the other three points of the tet
c
 if(phet(p1).ge.phet(p2).and.phet(p1).ge.zhet(z)
 1 .and.phet(p1).ge.fhet(f)) then
c
c Time at p1 is being recalculated
c
 i1 = p1
 i2 = p2
 i3 = z
 i4 = f
 flag = 0

33

 x1 = px(1,i1)
 x2 = px(1,i2)
 x3 = zx(1,i3)
 x4 = fx(1,i4)

 y1 = px(2,i1)
 y2 = px(2,i2)
 y3 = zx(2,i3)
 y4 = fx(2,i4)

 z1 = px(3,i1)
 z2 = px(3,i2)
 z3 = zx(3,i3)
 z4 = fx(3,i4)

 ax = y3*z2-y4*z2-y2*z3+y4*z3+y2*z4-y3*z4
 ay = -(x3*z2)+x4*z2+x2*z3-x4*z3-x2*z4+x3*z4
 az = x3*y2-x4*y2-x2*y3+x4*y3+x2*y4-x3*y4

 elseif(phet(p2).ge.phet(p1).and.phet(p2).gt.
 1 zhet(z).and.phet(p2).ge.fhet(f)) then
c
c Time at p2 is being recalculated
c
 i1 = p2
 i2 = p1
 i3 = z
 i4 = f
 flag = 3

 x1 = px(1,i1)
 x2 = px(1,i2)
 x3 = zx(1,i3)
 x4 = fx(1,i4)

 y1 = px(2,i1)
 y2 = px(2,i2)
 y3 = zx(2,i3)
 y4 = fx(2,i4)

 z1 = px(3,i1)
 z2 = px(3,i2)
 z3 = zx(3,i3)
 z4 = fx(3,i4)

 ax = -(y3*z2)+y4*z2+y2*z3-y4*z3-y2*z4+y3*z4
 ay = x3*z2-x4*z2-x2*z3+x4*z3+x2*z4-x3*z4
 az = -(x3*y2)+x4*y2+x2*y3-x4*y3-x2*y4+x3*y4

 elseif(zhet(z).gt.phet(p1).and.zhet(z).ge.
 1 phet(p2).and.zhet(z).gt.fhet(f)) then
c
c Time at z is being recalculated

34

c
 i1 = z
 i2 = p1
 i3 = p2
 i4 = f
 flag = 1

 x1 = zx(1,i1)
 x2 = px(1,i2)
 x3 = px(1,i3)
 x4 = fx(1,i4)

 y1 = zx(2,i1)
 y2 = px(2,i2)
 y3 = px(2,i3)
 y4 = fx(2,i4)

 z1 = zx(3,i1)
 z2 = px(3,i2)
 z3 = px(3,i3)
 z4 = fx(3,i4)

 ax = y3*z2-y4*z2-y2*z3+y4*z3+y2*z4-y3*z4
 ay = -(x3*z2)+x4*z2+x2*z3-x4*z3-x2*z4+x3*z4
 az = x3*y2-x4*y2-x2*y3+x4*y3+x2*y4-x3*y4

 elseif(fhet(f).gt.phet(p1).and.fhet(f).gt.phet(p2)
 1 .and.fhet(f).gt.zhet(z)) then
c
c Time at f is being recalculated
 i1 = f
 i2 = p1
 i3 = p2
 i4 = z
 flag = 2

 x1 = fx(1,i1)
 x2 = px(1,i2)
 x3 = px(1,i3)
 x4 = zx(1,i4)

 y1 = fx(2,i1)
 y2 = px(2,i2)
 y3 = px(2,i3)
 y4 = zx(2,i4)

 z1 = fx(3,i1)
 z2 = px(3,i2)
 z3 = px(3,i3)
 z4 = zx(3,i4)

 ax = -(y3*z2)+y4*z2+y2*z3-y4*z3-y2*z4+y3*z4
 ay = x3*z2-x4*z2-x2*z3+x4*z3+x2*z4-x3*z4
 az = -(x3*y2)+x4*y2+x2*y3-x4*y3-x2*y4+x3*y4

35

 else
 cycle
 endif

 if(flag .eq. 0 .or. flag .eq. 3) then
c
c Either point p1 or point p2 is being recalculated.
c
 t1 = phet(i2)
 t2 = zhet(i3)
 t3 = fhet(i4)

 x10 = px(1,i2)-px(1,i1)
 y10 = px(2,i2)-px(2,i1)
 z10 = px(3,i2)-px(3,i1)
 x20 = zx(1,i3)-px(1,i1)
 y20 = zx(2,i3)-px(2,i1)
 z20 = zx(3,i3)-px(3,i1)
 x30 = fx(1,i4)-px(1,i1)
 y30 = fx(2,i4)-px(2,i1)
 z30 = fx(3,i4)-px(3,i1)

 t21 = sqrt(x10**2+y10**2+z10**2)/
 1 detvel(s)+phet(i2)
 t31 = sqrt(x20**2+y20**2+z20**2)/
 1 detvel(s)+zhet(i3)
 t41 = sqrt(x30**2+y30**2+z30**2)/
 1 detvel(s)+fhet(i4)
 x12 = px(1,i2)-zx(1,i3)
 y12 = px(2,i2)-zx(2,i3)
 elseif(flag .eq. 1) then
c
c Point z is being recalculated.
c
 t1 = phet(i2)
 t2 = phet(i3)
 t3 = fhet(i4)

 x10 = px(1,i2)-zx(1,i1)
 y10 = px(2,i2)-zx(2,i1)
 z10 = px(3,i2)-zx(3,i1)
 x20 = px(1,i3)-zx(1,i1)
 y20 = px(2,i3)-zx(2,i1)
 z20 = px(3,i3)-zx(3,i1)
 x30 = fx(1,i4)-zx(1,i1)
 y30 = fx(2,i4)-zx(2,i1)
 z30 = fx(3,i4)-zx(3,i1)

 t21 = sqrt(x10**2+y10**2+z10**2)/
 1 detvel(s)+phet(i2)
 t31 = sqrt(x20**2+y20**2+z20**2)/
 1 detvel(s)+phet(i3)
 t41 = sqrt(x30**2+y30**2+z30**2)/

36

 1 detvel(s)+fhet(i4)
 x12 = px(1,i2)-px(1,i3)
 y12 = px(2,i2)-px(2,i3)
 else
c
c Point f is being recalculated.
c
 t1 = phet(i2)
 t2 = phet(i3)
 t3 = zhet(i4)

 x10 = px(1,i2)-fx(1,i1)
 y10 = px(2,i2)-fx(2,i1)
 z10 = px(3,i2)-fx(3,i1)
 x20 = px(1,i3)-fx(1,i1)
 y20 = px(2,i3)-fx(2,i1)
 z20 = px(3,i3)-fx(3,i1)
 x30 = zx(1,i4)-fx(1,i1)
 y30 = zx(2,i4)-fx(2,i1)
 z30 = zx(3,i4)-fx(3,i1)

 t21 = sqrt(x10**2+y10**2+z10**2)/
 1 detvel(s)+phet(i2)
 t31 = sqrt(x20**2+y20**2+z20**2)/
 1 detvel(s)+phet(i3)
 t41 = sqrt(x30**2+y30**2+z30**2)/
 1 detvel(s)+zhet(i4)
 endif

 d1 = -x30*y20*z10 + x20*y30*z10
 1 + x30*y10*z20 - x10*y30*z20 -
 1 x20*y10*z30 + x10*y20*z30
c
 c1 = y20*z10 - y30*z10 - y10*z20 + y30*z20 +
 1 y10*z30 - y20*z30
 c2 = -t3*y20*z10 + t2*y30*z10 + t3*y10*z20 -
 1 t1*y30*z20 - t2*y10*z30 + t1*y20*z30

 c3 = -x20*z10 + x30*z10 + x10*z20 -
 1 x30*z20 - x10*z30 + x20*z30
 c4 = t3*x20*z10 - t2*x30*z10 - t3*x10*z20 +
 1 t1*x30*z20 + t2*x10*z30 - t1*x20*z30

 c5 = x20*y10 - x30*y10 - x10*y20 + x30*y20 +
 1 x10*y30 - x20*y30
 c6 = -t3*x20*y10 + t2*x30*y10 + t3*x10*y20 -
 1 t1*x30*y20 - t2*x10*y30 + t1*x20*y30

 disc =
 1 (2*c1*c2 + 2*c3*c4 + 2*c5*c6)**2*
 1 detvel(s)**4 - 4*(c1**2 + c3**2 + c5**2)
 1 *detvel(s)**2*(-d1**2 + c2**2*detvel(s)**2 +
 1 c4**2*detvel(s)**2 + c6**2*detvel(s)**2)

37

 if (disc.ge.zero) then

 disc = sqrt(disc)
 t0tmp =
 1 ((-2*c1*c2 - 2*c3*c4 - 2*c5*c6)*detvel(s)**2 +
 1 disc)/(2.*(c1**2 + c3**2 + c5**2)*detvel(s)**2)
c
c The derivatives of the time w.r.t. x, y and z are:
c
 gx = (t0tmp * c1 + c2) / d1
 gy = (t0tmp * c3 + c4) / d1
 gz = (t0tmp * c5 + c6) / d1
c
c Check local causality. t0tmp is a possible time only if
c causality is satisfied. This means the gradient of the time
c t0 must pass within the opposite face of the tet.
c
c Calculate the eq. of the plane for the tet face opposite
c the time being calc. using the 3 points of the tet face.
c (A x + B y + C z + D = 0)
c

 a = ax
 b = ay
 c = az

 dface = -a*x2-b*y2-c*z2
c
c Solve the equation for the plane and the equations for
c the line representing the gradient of the time at t0 to
c give the x, y, and z coodinates where the two intersect.
c This point is at xi, yi, and zi.
c
 tmp = (A*gx+B*gy+C*gz)

 if(tmp .ne. zero) then
 xi = -(dface*gx-B*gy*x1-C*gz*x1+B*gx*
 1 y1+C*gx*z1)/tmp

 yi = -(dface*gy+A*gy*x1-A*gx*y1-C*gz*
 1 y1+C*gy*z1)/tmp

 zi = -(dface*gz+A*gz*x1+B*gz*y1-A*gx*
 1 z1-B*gy*z1)/tmp

 endif
c
c Determine if the intercept point (xi, yi, zi)
c is within the triangle forming the tet side.
c
c r4pcr3pda is the vector at point 4 - the vector of the
c intercept point crossed with the vector at point 3 -
c the intercept point, and that quantity dotted into the
c vector of the area of the point where the time, t0, is

38

c being calculated.
c
 if(tmp .ne. zero) then
 r4pcr3pda =
 1 az*(x4*y3-xi*y3-x3*y4+xi*y4+x3*yi-x4*yi)+
 1 ay*(-(x4*z3)+xi*z3+x3*z4-xi*z4-x3*zi+x4*zi)+
 1 ax*(y4*z3-yi*z3-y3*z4+yi*z4+y3*zi-y4*zi)

 r2pcr4pda =
 1 az*(-(x4*y2)+xi*y2+x2*y4-xi*y4-x2*yi+x4*yi)+
 1 ay*(x4*z2-xi*z2-x2*z4+xi*z4+x2*zi-x4*zi)+
 1 ax*(-(y4*z2)+yi*z2+y2*z4-yi*z4-y2*zi+y4*zi)

 r3pcr2pda =
 1 az*(x3*y2-xi*y2-x2*y3+xi*y3+x2*yi-x3*yi)+
 1 ay*(-(x3*z2)+xi*z2+x2*z3-xi*z3-x2*zi+x3*zi)+
 1 ax*(y3*z2-yi*z2-y2*z3+yi*z3+y2*zi-y3*zi)

 endif

 if(flag .eq. 2 .or. flag .eq. 3) then
 r4pcr3pda = - r4pcr3pda
 r2pcr4pda = - r2pcr4pda
 r3pcr2pda = - r3pcr2pda
 endif

 if(r4pcr3pda .ge. zero .and.
 1 r2pcr4pda .ge. zero .and.
 1 r3pcr2pda .ge. zero .and.
 1 tmp .ne. zero) then

 if(flag .eq. 0 .or. flag .eq. 3) then
 if(t0tmp.gt.phet(i2).and.t0tmp.gt.
 1 zhet(i3).and.t0tmp.gt.
 1 fhet(i4)) then
 phet(i1) = amin1(t0tmp,t21,t31,t41,
 1 phet(i1),pheto(i1))
 else
 phet(i1) = amin1(t21,t31,t41,
 1 phet(i1),pheto(i1))
 endif
 elseif(flag .eq. 1) then
 if(t0tmp.gt.phet(i2).and.t0tmp.gt.
 1 phet(i3).and.t0tmp.gt.
 1 fhet(i4)) then
 zhet(i1) = amin1(t0tmp,t21,t31,t41,
 1 zhet(i1),zheto(i1))
 else
 zhet(i1) = amin1(t21,t31,t41,
 1 zhet(i1),zheto(i1))
 endif
 else
 if(t0tmp.gt.phet(i2).and.t0tmp.gt.

39

 1 phet(i3).and.t0tmp.gt.zhet(i4)) then
 fhet(i1) = amin1(t0tmp,t21,t31,t41,
 1 fhet(i1),fheto(i1))
 else
 fhet(i1) = amin1(t21,t31,t41,
 1 fhet(i1),fheto(i1))
 endif
 endif
 else

 if(flag .eq. 0 .or. flag .eq. 3) then

 phet(i1) = amin1(t21,t31,t41,
 1 phet(i1),pheto(i1))

 elseif(flag .eq. 1) then
 zhet(i1) = amin1(t21,t31,t41,
 1 zhet(i1),zheto(i1))
 else
 fhet(i1) = amin1(t21,t31,t41,
 1 fhet(i1),fheto(i1))
 endif

 endif

 else
 if(flag .eq. 0 .or. flag .eq. 3) then
 phet(i1) = amin1(t21,t31,t41,
 1 phet(i1),pheto(i1))

 elseif(flag .eq. 1) then
 zhet(i1) = amin1(t21,t31,t41,
 1 zhet(i1),zheto(i1))
 else
 fhet(i1) = amin1(t21,t31,t41,
 1 fhet(i1),fheto(i1))
 endif

 endif

 if(idebug .eq. 1) then
 write(*,*)
 write(*,*) '------------------------------------'
 write(*,*)
 write(*,*) 'HELund3D: HE ITERATION NUMBER',heiter
 write(*,*) 'p1=',p1,' p2=',p2,' z=',z,' f = ',f
 write(*,*) 's=',s,' phet(p1)=',phet(p1),'
 1 phet(p2)=',
 1 phet(p2),' zhet = ',zhet(z),
 1 ' fhet(f) = ',fhet(f)
 write(*,*) 'x1=',x1,' y1=',y1,' z1 = ',z1
 write(*,*) 'x2=',x2,' y2=',y2,' z2 = ',z2
 write(*,*) 'x3=',x3,' y3=',y3,' z3 = ',z3

40

 write(*,*) 'x4=',x4,' y4=',y4,' z4 = ',z4
 write(*,*) 'pheto(p1)=',pheto(p1),' pheto(p2)=',
 1 pheto(p2),
 1 ' zheto(z) =',zheto(z),' fheto(f) =',
 1 fheto(f)
 write(*,*) 't0tmp = ',t0tmp,' t21 = ',t21,'
 1 t31 = ',t31,' t41 = ',t41
 write(*,*) 'i1=',i1,' i2=',i2,' i3=',i3,' i4=',
 1 i4,' flag=',flag
 write(*,*) 'disc = ',disc,' d1 = ',d1
 write(*,*) 'ax = ',ax,' ay = ',ay,' az = ',az
 write(*,*) 'Gx = ',gx,' Gy = ',gy,' gz = ',gz
 write(*,*) 'r4pcr3pda = ',r4pcr3pda
 write(*,*) 'r2pcr4pda = ',r2pcr4pda
 write(*,*) 'r3pcr2pda = ',r3pcr2pda
 write(*,*) 'a = ',a,' b = ',b,' c = ',c
 write(*,*) 'dface = ',dface,' tmp = ',tmp
 write(*,*) 'xi = ',xi,' yi = ',yi,' zi = ',zi
 write(*,*) 'c1 = ',c1,' c2 = ',c2,' c3 = ',c3
 write(*,*) 'c4 = ',c4,' c5 = ',c5,' c6 = ',c6

 endif

 endif

 endif

 enddo

 bad = 0

 do s=1,kksl

 if(kstyp(s).eq.1) then

 p1 = kksp1(s)
 if(phet(p1) .lt. fnul) then
 bad = 1
 exit
 endif

 endif

 enddo

 if(bad .eq. 0) call Fatal('HELund3D: BAD TIME ITERATION')

 success = 0

 do s=1,kksl

 if(kstyp(s).eq.1 .and. detvel(s) .ne. fnul) then

 p1 = kksp1(s)

41

 p2 = kksp2(s)
 z = kksz(s)
 f = kksf(s)

 if(phet(p1) .lt. pheto(p1)) then
 success = success + 1
 pheto(p1) = phet(p1)
 endif
 if(phet(p2) .lt. pheto(p2)) then
 success = success + 1
 pheto(p2) = phet(p2)
 endif
 if(zhet(z) .lt. zheto(z)) then
 success = success + 1
 zheto(z) = zhet(z)
 endif
 if(fhet(f) .lt. fheto(f)) then
 success = success + 1
 fheto(f) = fhet(f)
 endif

c write(*,*) 'HELUND3D: HE ITERATION NUMBER',heiter
c write(*,*) 's = ',s,' phet(p1) = ',phet(p1),' phet(p2) = ',
c 1 phet(p2),' zhet = ',zhet(z)

 endif

 enddo

 if(success .eq. 0) then
 write(*,*)
 write(*,*) '--------- HE LUND 3D BURN ----------------'
 write(*,*)
 write(*,*) 'NUMBER OF ITERATIONS = ',heiter
 write(*,*) 'MAXIMUM ITERATIONS ALLOWED = ',mheiter
 write(*,*)
 write(*,*) '--'
 write(*,*)
 exit
 endif

 enddo

 if(success .ne. 0)
 1 call Fatal('HELund3D: HE iteration did not converge ')

 return
 end

42

III. TETRADEDRAL FACE CALCULATION

c---

 subroutine dtetface(t1,t1old,x1,y1,z1,
 1 t2,t2old,x2,y2,z2,
 1 t3,t3old,x3,y3,z3,
 1 zero,detvel)
c
c This routine is the driver for the calculation of
c the tet face waves.
c
 real*8 t1,t1old,x1,y1,z1,t2,t2old,x2,y2,z2,
 1 t3,t3old,x3,y3,z3,zero,detvel

 if(t1 .gt. t2 .and. t1.gt.t3) then
 call tetface(t1,x1,y1,z1,x2,y2,z2,x3,y3,z3,
 1 t2,t3,zero,detvel,t1,t1old)

c
c Calculate time at point 2 of the triangle
c
 elseif(t2.gt.t1 .and. t2.gt.t3) then
 call tetface(t2,x2,y2,z2,x1,y1,z1,x3,y3,z3,
 1 t1,t3,zero,detvel,t2,t2old)

 else
c
c Calculate time at point 3 of the triangle
c
 call tetface(t3,x3,y3,z3,x1,y1,z1,x2,y2,z2,
 1 t1,t2,zero,detvel,t3,t3old)

 endif

 return
 end

c---
 subroutine tetface(tface,x0,y0,z0,x1,y1,z1,x2,y2,z2,
 1 t1,t2,zero,detvel,tnew,told)
c
c This subroutine calculates the 2D solution for tet
c faces. For each tet, 3 2D solutions are obtained in
c sequence. This is done in order to take into account
c waves that could propagate within a tet face.
c
 real*8 tface,x0,y0,z0,x1,y1,z1,x2,y2,z2,
 1 t1,t2,zero,detvel,tnew,told,
 1 t10,t20,t0tmp,
 1 x10,y10,x20,y20,x12,y12,
 1 d1,ax,ay,bx,by,a,b,c,disc,gx,gy,
 1 gc10,gc20,dotprod,dist1,dist2,theta
c

43

c Convert the 3D coodinate system (x,y,z) to
c a 2D system (xp,yp) within the tet face. The origin
c is at the vertex where the time t0 is being calculated.
c
 dotprod = (x2-x0)*(x1-x0)+(y2-y0)*(y1-y0)+(z2-z0)*(z1-z0)
 dist2 = sqrt((x2-x0)**2+(y2-y0)**2+(z2-z0)**2)
 dist1 = sqrt((x1-x0)**2+(y1-y0)**2+(z1-z0)**2)
 theta = acos(dotprod/(dist1*dist2))
 t10 = dist1/detvel+t1
 t20 = dist2/detvel+t2

 x10 = dist1
 y10 = zero
 x20 = dist2 * cos(theta)
 y20 = dist2 * sin(theta)

 x12 = x10-x20
 y12 = -y20
c
c Solve the 2D Lund equations.
c

 d1 = x20*y10-x10*y20
 ax= - y12/d1
 ay= x12/d1
 bx= (t2*y10 - t1*y20)/d1
 by= -(t2*x10 - t1*x20)/d1
 a = ax**2+ay**2
 b = 2*(ax*bx+ay*by)
 c = (bx**2+by**2-1/detvel**2)
 disc=b**2-4.*a*c

 if (disc.ge.0) then

 t0tmp= (-b + sqrt(disc))/(2.*a)

 gx = ax*t0tmp+bx
 gy = ay*t0tmp+by

 gc10 = gx*y10-gy*x10
 gc20 = gx*y20-gy*x20

c
c Check 2D local causality
c
 if(gc10*gc20 .lt. zero) then

 if(t0tmp .gt. t1 .and. t0tmp .gt. t2)
 1 then
 tface = amin1(tface,t0tmp,t10,t20,
 1 tnew,told)
 else
 tface = amin1(tface,t10,t20,tnew,told)

44

 endif

 else

 tface = amin1(tface,t10,t20,tnew,told)

 endif

 else
 tface = amin1(tface,t10,t20,tnew,told)
 endif

c write(*,*) '^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^'
c write(*,*) 'dist1=',dist1,' dist2=',dist2
c write(*,*) 'theta=',theta,' t10 = ',t10
c write(*,*) 't20=',t20,' x10=',x10,' y10=',y10
c write(*,*) 'x20=',x20,' y20=',y20,' x12=',x12
c write(*,*) 'y12=',y12,' t0tmp=',t0tmp
c write(*,*) 'gc10=',gc10,' gc20=',gc20
c write(*,*) 'tnew=',tnew,' told=',told
c write(*,*) 't1=',t1,' t2=',t2,' tface=',tface
c write(*,*) '^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^'
 return
 end

45

APPENDIX C

TWO-DIMENSIONAL SAMPLE INPUT

3 by 3 Input

$--
$--
$--
$ LUND HE burn test problem
$--
$--
$--
$ GLOBAL

$--- global level parameters
 mk /global
 title="LUND.2D burn Test"

$--------------------------------------
$ MESH = cartesian
$ Create a mesh and call it 'Grid'

 mk /global/mesh
 mk /global/mesh/geometry/cart2

$ Generate own grid
 mk /global/mesh/zoner/kl

$ Lmax k3
$ p4+------+p3
$ ^ | |
$ K1 ^ | | Kmax
$ L | |
$ p1+------+p2
$ k1 L1 K>>>>>

 integer N, nk, nl
 N=2
 kk3ll=2

 real p1(N),p2(N),p3(N),p4(N),alf(N)
 real rk1(N),rk2(N),rk3(N),rk4(N)
$ NOTE: rk1 ... are real since AJAX call implementation
$ currently passes only reals

 kmax=3
 lmax=3
 rk1= 1 1
 rk3= 3 3
 alf= 1. 1.

 p1= 0 0
 p2= 1 0

46

 p3= 1 1
 p4= 0 1
 call G2Block dd alf rk1 rk3 p1 p2 p3 p4

$--------------------------------------
$ HYDRO parameters

$ universe
 mk /global/mesh/func(univ)/universe

$--------------------------------------
$ REGIONS

 mk /global/mesh/kregion(Universe)/onefunc
 fname="univ"
$--------------------------------------
$ DETONATION TIMES
 mk /global/mesh/heburn/hedet

 kkdll= 10

 dxt=0.0 0.0 0.0

 idebug = 0

$--------------------------------------
$ HIGH EXPLOSIVE EDGE LIGHTING
$ mk /global/mesh/heburn/heedge
$ mheiter= 20
$ idebug = 0
$--------------------------------------
$ HIGH EXPLOSIVE LUND LIGHTING
 mk /global/mesh/heburn/helund
 mheiter= 100
 idebug = 0
$--------------------------------------
$ HIGH EXPLOSIVE DIRECT LIGHTING
$ mk /global/mesh/heburn/hedirect
$ mheiter= 20
$ idebug = 0

$ kkdll= 10

$ dxt=0. 0. 0.
$--------------------------------------
$ MATERIALS

$ Create a material and call it 'mat1'
 mk /global/mesh/mat(he1)/mhe/gamma
 r0=one $ reference density (at node /mat)
 g=5./3.
 detvelhe=1.0
 heenergy=.1111111111

47

 mk /global/mesh/mat(he1)/initmat
 region="Universe"
 density=1.
 energy=1.
 volfrac=one $ default value

$--------------------------------------
$ POB and WIN parameters
 cd /global/mesh/heburn
 alias phet phet
 alias zhet zhet

 mk /global/mesh/pob/win
 ncolors=40
 mk map
 scale(:,:)=0 1 0 1
$ coord = "px" $ default is px
 mk ../wire
 wiretype="ZoneEdge" $ default is "ZoneEdge"
 mk ../contour
 on="on"
 name="phet"
 vmin=0.
 vmax=2.
$ mk ../contour
$ on="off"
$ name="_zr"
$ vmin=0.
$ vmax=64.
$ mk ../gour
$ on="off"
$ name="_zr"
$ vmin=0.
$ vmax=64.
$ mk ../vector
$ on="off"
$ labels="off"
$ name="_pu"
$ vmin=0.
$ vmax=0.
$ mk ../insert
$ on="off"

 mk ../fin

$--------------------------------------
$ EXECUTION

cd /global
 call ttyon

send TestHEBurn
send VIEW

48

cd /global/mesh/heburn/helund

print zhet

print phet

tty

return

49

APPENDIX D

THREE-DIMENSIONAL SAMPLE INPUT

3 by 3 by 3 Input

cat 3D.flg
$--
$--
$--
$ HE burn test problem
$--
$--
$--
$ GLOBAL

$--- global level parameters
 mk /global
 title="LUND.3D burn Test"

$--------------------------------------
$ MESH = cylindrical

 mk /global/mesh(Grid)
 mk /global/mesh(Grid)/geometry/axis2

$ Generate own grid
 mk /global/mesh(Grid)/zoner/kl

$ Lmax k3
$ p4+------+p3
$ ^ | |
$ K1 ^ | | Kmax
$ L | |
$ p1+------+p2
$ k1 L1 K>>>>>

 integer N, nk, nl
 N=2
 kk3ll=2

 real p1(N),p2(N),p3(N),p4(N),alf(N)
 real rk1(N),rk2(N),rk3(N),rk4(N)
$ NOTE: rk1 ... are real since AJAX call implementation
$ currently passes only reals

 kmax=3
 lmax=3
 rk1= 1 1
 rk3= 3 3
 alf= 1. 1.

 p1= 0 0
 p2= 1 0

50

 p3= 1 1
 p4= 0 1
 call G2Block dd alf rk1 rk3 p1 p2 p3 p4

$--- Create a 3D mesh (its default name is 'mesh.0')
 $ Create 3D FROM 2D MESH by translation
 mk /global/mesh/geometry/cart3
 mk /global/mesh/zoner/trans2to3
 trans=0 .5 0
 mmax=3
 mesh2d="Grid"

$--------------------------------------
$ HYDRO parameters

$ universe
 mk /global/mesh/func(univ)/universe

$--------------------------------------
$ REGIONS

 mk /global/mesh/kregion(Universe)/onefunc
 fname="univ"
$--------------------------------------
$ DETONATION TIMES
 mk /global/mesh/heburn/hedet

 dxt=0. 0. 0. 0.

 idebug = 0

$--------------------------------------
$ HIGH EXPLOSIVE EDGE LIGHTING
$ mk /global/mesh/heburn/heedge
$ mheiter= 20
 idebug = 0
$--------------------------------------
$ HIGH EXPLOSIVE LUND LIGHTING
 mk /global/mesh/heburn/helund
$ mheiter= 100
 idebug = 0
$--------------------------------------
$ HIGH EXPLOSIVE DIRECT LIGHTING
$ mk /global/mesh/heburn/hedirect
$ mheiter= 20
$ idebug = 0

$ kkdll= 10

$ dxt=0. 0. 0.
$--------------------------------------
$ MATERIALS

$ Create a material and call it 'mat1'

51

 mk /global/mesh/mat(he1)/mhe/gamma
 r0=one $ reference density (at node /mat)
 g=5./3.
 detvelhe=1.0

 mk /global/mesh/mat(he1)/initmat
 region="Universe"
 density=1.
 energy=1.
 volfrac=one $ default value

$-------------------------------
 mk /global/mesh/output/gmv
 vars="phet" "zhet" "fhet"
$--------------------------------------
$ POB and WIN parameters
 cd /global/mesh/heburn
 alias phet phet
 alias zhet zhet
 alias fhet fhet

 mk /global/mesh/pob/win
 ncolors=40
 mk map
 scale(:,:)=0 1 0 1
$ coord = "px" $ default is px
 mk ../wire
 wiretype="ZoneEdge" $ default is "ZoneEdge"
 mk ../contour
 on="on"
 name="phet"
 vmin=0.
 vmax=2.
$ mk ../contour
$ on="off"
$ name="_zr"
$ vmin=0.
$ vmax=64.
$ mk ../gour
$ on="off"
$ name="_zr"
$ vmin=0.
$ vmax=64.
$ mk ../vector
$ on="off"
$ labels="off"
$ name="_pu"
$ vmin=0.
$ vmax=0.
$ mk ../insert
$ on="off"

 mk ../fin

52

$--------------------------------------
$ EXECUTION

cd /global
 call ttyon

$ send GMV
send TestHEBurn
$ send VIEW
 send GMV

cd /global/mesh/heburn/helund

print fhet

print zhet

print phet

tty

return

This report has been reproduced directly from the
best available copy.

It is available to DOE and DOE contractors from
the Office of Scientific and Technical Information,
P.O. Box 62,
Oak Ridge, TN 37831.
Prices are available from
(615) 576-8401.

It is available to the public from the
National Technical Information Service,
US Department of Commerce,
5285 Port Royal Rd.,
Springfield, VA 22616.

Los
N A T I O N A L L A B O R A T O R Y

Alamos
Los Alamos, New Mexico 87545

	LA-13406.pdf
	ABSTRACT
	I. INTRODUCTION
	II. LUND MODEL
	III. TWO-DIMENSIONAL MODEL
	A. Finding the Cell(s) Containing the Detonator(s)
	B. Two-Dimensional Lund Model

	IV. THREE-DIMENSIONAL MODEL
	A. Finding the Cell(s) Containing the Detonator(s)
	B. Three-Dimensional Lund Model

	V. EQUATION OF STATE
	VI. ENERGY SOURCES
	VII. RESULTS
	A. Two-Dimensional Results
	B. Three-Dimensional Results

	ACKNOWLEDGMENTS
	REFERENCES
	APPENDIX A
	APPENDIX B
	APPENDIX C
	APPENDIX D

