LA-UR- 94 - 1272

Los Alamos National Laboratory is operated by the University of California for the United States Department of Energy under contract W-7405-ENG-36.

TITLE: Evaluation of the *d+t* Cross Sections Based on an R-Matrix Analysis of the ⁵He System

AUTHOR(S): Hale, G. M., T-2

SUBMITTED TO: To be presented at the IAEA Specialists' Meeting on Charged Particle and Photonuclear Data Evaluation's for FENDL Smolenice, Slovakia, April 18-21, 1994

By acceptance of this article, the publisher recognizes that the U.S. Government retains a non-exclusive, royalty-free license to publish or reproduce the published form this contribution, or the allow others to do so, for U.S. Government purposes.

The Los Alamos National Laboratory requests that the publisher identify this article as work performed under the auspices of the U. S. Department of Energy.

FORM NO. 836 R4 ST. NO. 2629 5/81

DISTRIBUTION OF THIS DOCUMENT IS UNLIMITED

••

EVALUATION OF THE *d+t* CROSS SECTIONS BASED ON AN R-MATRIX ANALYSIS OF THE ⁵HE SYSTEM

G. M. Hale Theoretical Division Los Alamos National Laboratory

P'SCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completenes, or usefulness of any information, apparatus, product, or process dirclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinious of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

Arguments Against:

Theory-based evaluation

- Harder to do; takes longer.
- Limited ranges of mass, energy over which any one theory (model) is practical.
- Too much (approximate) theory
 ⇒ bad representations of data.

Curve-fitting evaluation

- Completely unconstrained by physical principles.
- Burden falls entirely on measurements to get reliable results.
- Can get *good* representations of *bad* data.

ASYMPTOTIC REGION (S matrix, phase shifts, etc.)

Measurements

INTERIOR REGION
(Microscopic Calculations)

SURFACE

$$R_{c'c} = (c'I[H+\mathcal{L}-E]^{-1}Ic) = \sum_{\lambda} \frac{r_{c'\lambda}r_{c\lambda}}{E_{\lambda}-E}$$

- builds in fundamental conservation laws, symmetries, and analytic properties (causality, unitarity, etc.) of nuclear reactions.
- parametrizes only interior quantities (correct Coulomb, angular-momentum barrier penetration built in).
- explicit energy dependence (poles) ideal for describing resonances.

Energy Dependent Analysis Code

Capabilities and Features

- 1) Accomodates general (spins, masses, charges) two-body channels
- 2) Uses relativistic kinematics and R-matrix formulation
- 3) Calculates general scattering observables for $2 \rightarrow 2$ processes
- 4) Has rather general data-handling capabilities
- 5) Uses modified variable-metric search algorithm that gives parameter covariances at a solution.

⁵He System Analysis

Channel	lmax	<u>ac_(fm)</u>	
d-t	5	5.1	
n-4He	5	3.0	
n-4He*	1	5.0	

Reaction	Energy Range	# Observable Types	# Data Points	X ²
Τ(d,d)Τ	Ed=0-8 MeV	6	683	1284
T(d,n) ⁴ He	Ed=0-10 MeV	14	1241	1727
T(d,n)⁴He⁺	E _d =4.8-8 MeV	1	10	15
⁴ He(n,n) ⁴ He	E _n =0-28 MeV	2	813	1108
	Tota	ls: 23	2747	4134

parameters = $117 \Rightarrow \chi^2$ per degree of freedom = 1.57

[109 phase parameters are necessary to describe the S matrix at a single energy]

Renormalization	Factors for	T(d.n) Cross-Section	Data
		I (um) Oross Section	

Data set	Туре	Ed (MeV)	Scale factor	Scale error (%)
Jarmie '84	σ(E)	0.008 - 0.070	1.017	1.26
Brown '87	σ (E)	0.053 - 0.116	1.025	- (rel.)
Bame '57	σ(θ)	0.50	0.939	10
Baine '57	σ(θ)	0.75	0.931	10
Barne '57	σ(θ)	1.0	0.949	10
Barne '57	σ(θ)	1.3	0.929	10
Bame '57	σ(θ)	1.5	0.912	10
Barne '57	σ(θ)	2.5	0.973	10
Bame '57	σ(θ)	3.0	0.977	10
Barne '57	σ(θ)	3.5	0 994	10
Bame '57	σ(θ)	4.0	1.004	10
Bame '57	σ(θ)	4.5	0 981	10
Bame '57	σ(θ)	5.0	ს.986	10
Bame '57	σ(θ)	6.0	0.977	10
Bame '57	σ(θ)	7 .û	0.980	10
Paulsen '64	σ(θ)	1.0	0.95 6	- (rel.)
Paulsen '64	σ(θ)	3.0	0.974	- (rel.)
Ivarovich '68	ͻ (θ)	4.2 / 10	1.016*	1.0
McDaniels '90**	σ(θ)	50	0.996	1.5
McDaniels 90	σ(θ)	6.0	0.980	1.5
Drosg '82	J(6)	3.973	1.024	3.0
Drosg '78	σ (0°)	7 - 10	0.986	1.5
Drosg '90	σ(180°)	4.7 - 10	1.009	1.0
Goldberg '61	σ(θ)	7.9	1.004	- (rel.)

^{*} Experimental scale value of 1.028 ±0.01 determined by Drosg ** Based on McDaniels '73 as revised by Drosg

³H(d,n)⁴He Cross Section

D(t,
$$\alpha$$
)n $\theta_{\rm lab}$ = 90.0

D(t, α)n θ_{lab} = 90.0

Stability of Low-Energy Cross-Section Extrapolation

Present value of $\sigma_{d,n}(100 \text{ eV}) = 2.0506 \times 10^{-56} \text{ b}$ $\Rightarrow S(0) = 11.75 \text{ MeV-b}]$ is:

5.5% higher than the value we had in 1979 (pre-Jarmie&Brown)
0.2% higher than the value we had in 1986 (used in Bosch&Hale)
0.5% higher than the value we had in 1992 (CSEWG 1993)

Conclusions

1. R-matrix theory, when used in its full multilevel, multichannel form, is an extremely useful tool for doing charged-particle evaluations for reactions in light systems at moderate energies.

2. No other evaluation for the d+t reactions has considered more data, and has been constrained by as much theory as the R-matrix calculations reported here. They give a good fit to all the data in the system, and especially for the $T(d,n)^4$ He cross sections at energies below 10 MeV.

3. A single-level representation of the $J^{\pi} = 3/2^{+}$ R-matrix in the ⁵He system gives a cross-section extrapolation to low energies that is adequate to only about 5%. There are two other $J^{\pi} = 3/2^{+}$ resonances in the range below $E_{d}=8$ MeV, plus higher background-level contributions, that contribute 2.3% of the total reaction R-matrix element (or about 4.6% in the cross section) at low energies.

4. The calculations presented here allow a consistent evaluated file of cross sections and angular distributions to be constructed for all the d+t reactions $[T(d,d), T(d,n), and T(d,n^*)]$ at energies below 10 MeV, which give all the information necessary to do charged-particle transport.

5. The results of the R-matrix calculation at energies up to 10 MeV match well with the evaluation that has been done recently by Drosg for the T(d,n) cross section at higher energies.