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AND T {E LIMITATIONS OF THE MEAN PROMPT-NEUTRON LIFETIME MODEL

Gregory D. Spriggs

Los Alamos National Laboratory
P. O. Box 1663, MS G783

Los Alamos, NM 87545

(505) 667-5563

ABSTRACT

Prompt critical in a bare reactor is defined as the point
at which the reactivity p of the reactor is equal to the effec-
tive delayed neutron fraction f. In a reflected reactor, how-
ever, it is shown that prompt critical will occur at a
reactivity of p = B(1 — f) where f is the fraction of core neu-
trons that return to the core region after having leaked into
the reflector.

Furthermore, it is also shown that the mean prompt-
neutron lifetime model that has been traditionally used to
characterize the dynamic response of reflected reactors may
not always provide an adequate representation of the sys-
tem for reactivities greater than 18$.

And finally, the coupled, point-kinetic equations pro-
posed by Avery!' and further developed by Cok:n? for simple
reflected systems are recast into a more usable form that
can be readily used to perform superprompt critical tran-
sient analyses.

1. INTRODUCTION

Prompt critical represents the point at which a neutron
chain reaction can be sustained by prompt neutrons alone.
From a mathematical standpoint, prompt critical occurs
when the reciprocal time constant, a, associated with the
decay or growth of prompt neutron chains is just equal to
zero. In a bare reactor, this occurs when the reactivity p is
equal to the effective delayed neutron fraction .

Using the coupled, point-kinetic equations proposed
by Avery' and further developed by Cohn? for simple
reflected systems, it was shown by Kistner® that there will
exist two distinct time constants associated with the decay
or growth of prompt neutron chains; one of the time con-
stants is always negative while the other time constant
becomes positive at reactivities greater than

p~Bl-N )

where f is the fraction of core neutrons that return to the
core region after having leaked into the reflector. By defini-
tion, this reactivity must correspond to the point of prompt
critical in a reflected system.
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In this manuscript we develop the above expression, as
well as discuss the limitations of the mean prompt-neutron
li‘etime model derived from the same system of equations.

II. THEORY
A. Point-Kinetic Equations for a Reflected System

In 1958, Avery' presented a general point-kinetic
model to describe the time-dependent behavior of multiply-
ing systems comprised of an arbitrary number of regions,
each characterized by a multiplication factor k; and a neu-
tron lifetime T1,. For a two-region system consisting of a
simple core surrounded by a non-multiplying, source-free
reflector, Cohn? reduced Avery’s model to the following set
of coupled differential equations:

aN, k. (1-B)-1 Jre
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N. number of neutrons in the core region,

N, number of neutrons in the reflector region,

k. multiplication factor of the bare core,

B effective delayed neutron fraction,

T. neutron lifetime in the bare core,

T, neutron lifetime in the reflector region,

f., fraction of neutrons that leak from the core into
the reflector,

f. fraction of neutrons that leak from the reflector
vack into the core,

f  tota! fraction of core neutrons returned to the core
after having leaked into the reflector,

= fifo



C; concentration of the i* precursor group,

B, delayed neutron fraction of the i** precursor
group,

A, decay constant of the i* precursor group,

m  number of delayed neutron groups, and

S intrinsic/external neutron source rate.

B. Overall Effective Multiplication Factor

Following the approach of Mowery and Romesburg,*
we obtain an expression for tiae overall effective multiplica-
tion factor, k, of the integral system by solving for the equi-
librium condition of the above system of equations. This
leads to the following expression for the number of neu-
trons in the core region at equilibrium, N,

TS
N,

0= ITRY) (5)

and the number of neutrons in the reflector region :at equi-
librium, N,,..
fert,
N, = <N, (©)

c

Hen: 2, the total neutron pcpulation of the integral syster
at equilibrium, N,,, is given by

(T +f,t)S
N,=N_+N, = — ey

o co ro = l—_(_k‘-—"’_fT (7)

By direct comparison with the source-multiplication
equation for a bare reactor, we infer from the above expres-
sion that the overall effective multiplication factor for a
retiected system is

=k, +f ®)

From Eq. (7), we also define the system’s staric mean
neutron lifetime T, us

L =Tk fert, 9)

The reciprocal of T, represents the average loss rate from
the integral system in the equilibrium state, but, as will be
shown later, differs slightly from the mean prompt-neutron
lifetime that characterizes the kinetic behavior of the sys-
tem.

C. Estimation of Kinetic Parameters

Before proceeding, we would like to stress the mean-
ing of k., T, Tn f.. for and f and briefly describe how these
parameters may be obtained from a series of transport and/
or Monte Carlo reactor physics calculations.

As previously defined, k. corresponds to the k eigen-
value obtained from a calculation in which oniy the bare
core is modeled. In highly reflected systems, k. will typi-
cally be on the .rder of 0.80.

The average neutron lifetime in the core, T, is defined
as the mean time hetween any type of neutron interaction
that results in a loss of a neuiron from the core. As with k.,
1. corresponds to the bare core and, in most cases, can be
ascertained directly from the output summary of a Monte
Carlo analysis of a bare core model. Some attention, how-
ever, must be given to the interpreqation of the labels tiat
are assigned to the quantities that are listed in the output
summary of the code in order to extract the correct value
for t..

For example, in the case of MCNP, four different life-
times are listed: 1) the fission lifetime 1, 2) the capture (or
nonfission absorption) lifetime 1,, 3) the leakage lifetime #,,
and 4) the .otal removal lifetime 7. In the context of the
kinetic equations, it is somewhat of a misnomer to refer to
the first three of these four quantities as neutron lif2times
because they actually represent (at least in the case of
MCNP) the average interaction time required for a single
neutron to obtain a given end result (.e., fission, nonfission
capture, and leakage); f, represents the average time from
birth to interaction for a single neutron to cause a fission; ¢,
represents the average time from birth to interaction for a
single neutron to be captured in a nonfission reaction; and ¢,
represents the average time from birth to interaction for a
single neutron to leak from the system. The average neu-
tron removal lifetime in the core, ¢, is related to these three
quantities by

t,= Pa+ P, +Pyy (10)

where Py, P,, and P, are tiie fraction of neutrons that interact
by fission, capture, and leakage, respectively. In the case of
MCNP, 1, is identically equal to T..

Because T, represents the average neutron remo-al life-
time in the core, NJ/t_ represents the total number of neu-
trons loss per unit time. Therefore, PN /T, represents the
total fission rate, P,V /1. represents the total nonfission cap-
ture rate, and P,NJ/1, represents the total leakage rate. We
can also represent these same interaction rates as N./t,,
where 1, is the average time between fission events, NJ/t,,
where 1, is the average time between nonfission captures,
and N/J/t,, where 1, is the average time between leakage
events. Hence, we can define a mean fission lifetime, T, to



be /P, a mean capture lifetime, €, to be t/F,, and a mean
leakage lifetime, 1, to be TJP,. It is obvious from Eq. (10)
that 1 is not the same as £, and so forth.

Using the bare core model, the fraction of core neu-
trons that leak from the core into the reflector, f, can be
established by integrating the positive leakage current over
that portion of the core surface area that is reflected. Fer
small, fully-eftscted systems, this fraction will typically be
on the order of 50 to 60%.

The overall effective multiplication factor, k, is deter-
mined from another k eigenvalue calculation using a model
of the integral system (i.e., core plus reflector). Given k and
k., the total fiaction, £, of core neutrons that leak from the
core into the reflector and then return to the core can be cal-
culated from Eq. (8). Once fis known, we deduce the frac-
tion of neutrons in the reflector that return to the cure, f,.
from the definition of f:

f
Jer
The average neutron lifetime in the reflector, 1, is

obtained from an integral system model calculation using
the equilibrium condition defined by Eq. (6). That is,

(/‘c )Nro (12)
T =|—{—
r cr NCO

where N,, and N_, are the total number of neutrons in the
reflector region and core region, respectively, at equilib-
rium.

N, and N_, are easily obtained by integrating the spa-
tial-dependent, energy-dependent neutron fluxes over the
respective volume of the two regions:

Jre an

_ ¢(E,r)
Nro = I —WdEdr (13)
reflector
and /!
_ [ ¢&ED
Nco = I —WdEdr (14)

core
where v(E) is the neutron velocity corresponding to energy
E.

D. The Shift in Prompt Critical

In a bare reactor, the decay or growth of prompt neu-
tron chains is described by

N, = Ae” (15)
in which a is defined by
k(1-B) -1
o= —(—-——g)—— (16)

When k < 1/(1 - B), a is negative and the prompt neutron
chains decay with time; when k > 1/(1 - B), a is positive
and the prompt neutron chains grow with time; when e is
zero, the prompt neutron chains, once initiated, propagate
indefinitely; hence, @ = 0 defines the condition of prompt
critical.

In reflected reactors, the decav or growth of prompt
neutron chains is described by

N, = A, + Ay e™ an

where a, and a, arise as the result of two different groups
of prompt neutrons.?

The first decay mode in Eq. (17) is associated with the
prompt neuirons that multiply contiguously within the core
region on a time scale corresponding to the average 'ifetime
of & prompt peutron in the hare core, .. The second decay
mode is associated with that group of prompt neutrons that
leak from the core region into the reflector region and then
re-enter the core region where they further propagate the
prompt-neutron chains by inducing additional fissions. This
process occurs on the time scale of the mean prompt-neu-
tron lifetime of the integral system.

If both o, a: J o, are negative, then the prompt neutron
chains decay with time. On the other hand, if either o, or o,
is positive, then the prompt neutron chains grow with time
and the system is superprompt critical. Therefore, we
define prompt critical for a reflected reactor as the point at
which either a becomes zero.

We determine the reactivity corresponding to prompt
critical in a reflected rea.ior using the solution cbtaim d by
Kistner.? In his formulation, delayed neutrons and external/
intrinsic source neu.:ons are ignored in the coupled point-
kinetic equations. Hence, Egs. (2), (3), and (4) reduce to

aN. _ AN 4L N 8
E;_—ct*'rcr (18)
ax, AN +A_N
E;——rr+ cr''e (19
where
1-k, (1-B)
A = EUD 0
T
1
A= @

(22)



A=
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(23)
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The soutica of the above system of equations is
obtained tiy taking the Laplace transform of Eqgs. (18) and
(19) and solving for the roots of the subsidiary equation;
that is, L, and o, correspond to the roots of the quadratic
equation

al+ (A, +A)a+A A -A A =0 (24)

cr rc

From the anadratic formula, we obtain

lc+lr-‘ -lr:.”lr“2
@, =-|-~]-

| = 5 |~ ] -A (25)
A+A  rA.+Aq?
(12 = - [ 3 + 5 -A (26)
where
A=XA-A A, @7

The first root is always negative, whereas the second
root becomes zero when A =0. Thus, prompt critical occurs
when

AA, = A A (28)

cr rc

Based on the definitions in Eqs. (20) through (23), this
expression reduces to

f=1-k. (1-B) (29)

Using k = k. + f, we rewrite the above prompt critical condi-
tion in terms of the overall effective multiplication factor of
the system as

_1-Ppf
k = 5 (30)
or, in terms of the traditional definition of reactivity,
B(l1-H
= ——wm 1 - 31
T=Bf pa-n an

From Eq. (31), we see that prompt critical in a reflected
reactor is shifted downward by a factor of (1 — f). As will be
shown in the following section, this factor also appears in
the definition of the mean prompt-neutron lifetime.

E. The Reflected-Core Inhour Equation

In most reflected reactors, k is controlled by changing
k. by means of inserting or removing control rods. Never-
theless, there are many reactors still in operation (e.g., SPR
at Sandia ard SKUA at Los Alamos) that control k by add-
ing ¢r _..noving reflector, thereby altering f. Regasdless of
the method used to control the reactivity of the system, the
definition of the overall effective multiplication factor is
still applicable. However, for the purposes of this paper, we
assume that the change in k is controlled strictly by a
change in k_ and that f is a constant over the operating reac-
tivity range of the reactor.

For this situation, we obtain the applicable inhour
equation for a reflected reactor by setting the denominator
of the transfer function equal to zero where the transfer
function is

tc Cioli frcho -!
Nc = ﬁ,s B,-S - (32)

YEGseD +zs+l,._p7c:

tt‘
*k,
This yields

kc tc ﬁrm Bim
p= 'E[mz+kc(trm+l) +zw+l,] (33)

where p is defined in the usual way as (k- 1)/k.

Note that when f approaches zero (which implies that k
> k. since k =k, + ), th> above expression collapses to the
inhour equation for a bare reactor. When fis greater than
zero, an e4tra term associated with the reflector appears in
the equation, and the reactivity of the system is reduced by
a factor of k/k.

Under certair; conditions, Eq. (33) can be rewritten in a
form analogous to the inhour equation for a bare reactor. To
accomplish this, though, it is first necessary to define a
reflected-core reactivity, p,, as

k-1
k

which, using the relationship & = k. + f, can alsu be written
as

b= p(F) = (34)

(4

k-1

P, == = (35)

If we define k,, as the multiplication factor of the bare core
when the integra! system is at delayed critical, i.e.,

k,=1-f 36)

then p. becomes



Figure 1. Qualitative plot of the roots of
the reflected-core inhour equatior. (Not
drawn to scale).

pc = _€ co (37)

which corresponds to the reactivity as defined by Cohn.?
Hence, Eq. (33) now becomes

T, fro B

k. + k(T w+1) +Zmn»l,.

p.=® (38)

If the neutron lifetime in the reflector is small enough,
we can combine the first two terms on the right-hand-side
of Eq. (38) to yield the mean prompt-neutron lifetime
modet originally derived by Cohn.2 However, as discussed
in the following section, the mean prompt-neutron lifetime
model should be used with caution because it may not
always yield an adequate representation of the dynamic
response of a reflected reactor at reactivities greater than

1$.

F. Solution and Limitations of the Mean Prompt-Neu-
tron Lifetime Model

If we assume the standard six groups of delayed r:u-
trons, then Eq. (38) will have eight roots. A qualitative plot
of these eight roots is shown in Fig. (1). The exact valnes of
these eight roots, however, can be quite sensitive to the val-
ues of the prompt-neutron lifetime in the core and in the
reflector. Furthermore, the appropriateness of .he mean
prompt-neutron lifetime model is also strongly dependent
on which root of the reflected-ccre inhour equation is of
interest and, in the case of the first root, on the reactivity of
the system.

Case 1. Root 1 Below Prompt Critical. Root 1 cor-
responds to the asymptotic inverse period of the reactor. For
negative reactivities, this root will vary between 0.0 and A,
(where A, is the mean decay constant 5f the shortest lived
delayed neutron group; this is approximately 0.01 s-! for
the common fissionable isotopes). For positive reactivities
renging from 0.0 to ~ 0.98, root 1 varies from 0.0 to a valu~
on the order of 10 s~!. Because the neutron lifetimes in most
common reflector materials runge from 10 ps (e.g., steel) to
1 ms (e.g., graphite), the product T,w, << 1.0. Therefore,
Eq. (38) reduces to the following equation

B
PxAO+Y = (39
where the mean prompt-neutron generation time, A,, is
defined as the mean prompt-neutron lifetime . i.e.,

T, = T +fT, (40)

divided - k..
In the vicinity of delayed critical, k is approximately
1.0 and so ¢, = (1 —f). Therefore,
T +fT,
A, = T=F 41)
Equations (39) and (41) constitute the mean prompt-neu-
tron: lifetime time model for a refle sted-core reactor.

As can be observed, Eq. (39) is now identical in form
to the inhour equation for a bare reactor. However, it must
be stressed that the neutron generation time in Eq. (39) rep-
resents a mean value as defined by Eq. (41) and that the
reactivity p, does not correspond to the traditional defini-
tion of reactivity [see Eq. (34)]. Nevertheless, because the
form of the inhour equation is the same for both a bare
reactor and a refiected reactor, the reactivity corresponding
to a given inverse period must also be the same providing
the characteristic neutron generation time in both systems
is the same.

For example, if we compare a bare reactor having a
prompt-neutron generation time of 50 us wirh a reflected
reactor having an equal mean prcmpt-neutron generation
time and a return fraction of 20%, then, in accorcdance to
the inhour equation for both the bare reactor and the
reflected reactor. a 10 s asymptotic period wi!l yield a reac-
tivity of approximately 0.408$. In the reflected reactor, how-
ever, 0.40% corresponds to p. — not p. If converted (o the

L We note that the mean lifetime defined by Eq. (40) differs
from the static mean lifetime previously defined in Eq. (9).
The significance of this difference, however, is not well
understood ¢t this time.
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Figure 2. Plot of the first and seventh rvot of
the reflected-core inhour equation.

traditional definition of reactivity, a 10 s asymptotic period
in the reflected reactor would actually correspond to 0.32$
reactivity. It follows, therefore, that the absolute value of k
necessary to produce a 10 s period in a reflected system is
smaller than in a comparable bare system.

Case II. Root 1 Above Prompy Critical. Although

the condition of ,¢d, << 1.0 is satisfied for root 1 in the
vicicity near prompr critical and below, it is not necessarily
satisfied for reactivities greater than 1$. For those situations
in which the neutron lifetime in the reflector is relatively
small, it is likely that the condition 1, << 1.0 will still be
satisfied at reactivities significantly greater than 1$. When
this occurs, then the mean prompt-neutron lifetime model
will be applicab’e and the first root will closely follow the
asymptote

p.—B
A

over the normal reactivity operating range of the system.
An example of this situation is shown in Fig. (2) in which
the exact solutions® for roots 1 and 7 are compared to the
asymptote corresponding to the mean prompt-acutron life-
time model. As can be readily observed, both roots hug the
asymptote very snugly over the range shown, thereby, con-
firming that the raean prompt-neutron lifetime model is
applicable for the situation pictured.

o= (42)

® A Fortran code was written to solve for the roots of the
inhour equation using a numerical scheme. In the context of
this paper, therefore, exact means to within machine accu-
racy.

Before continuing, it is worth mentioning that the
above asvmptote crosses the reactivity axis at p, = B which
defines prompt critical in the @ vs. p, plane. Using Eg. (34)
snd the apptoximation that k. = 1 — f in the vicinity of
prompt critical, we again obtain the result that prompt criti-
cal in a reflected reactor occurs at a reactivity of approxi-
mately p = B(1 - ).

Case II1. Roots 2 through 6. As with the bare-core
inhour equation, roots 2 through 6 are completely bound by
the decay constants corresponding to each of the six precur-
sor groups. Therefore, root 2 ranges from —A, to —A,, root 3
ranges from —A; to —A;, and so forth. In general, the values
of the A's correspond to approximately 0.01, 0.03, 0.1, 0.3,
1.0, and 3.0 s~'. Consequently, the condition 1,0, << 1.0,
where i equals 2 through 6, is easily satisfied. Hence, for
these five roots, the mean prompt-neutron lifetime model is
applicable.

Case 1V. Root 7. The seventh root of the reflected-
core inhour equation varies from —Aq to —1/t,, and at reac-
tivities in the vicinity of delayed critical, is asymptotic to
Eq. (42). More often than not, the seventh root will not sat-
isfy the condition 1,0, << 1.0 except when the reflector life-
time is very small and/or the reactivity is in the vicinity of
prompt critical. As such, the mean prompt-neutron lifetime
modei will frequently be invalid for this particular rvot. An
example of when the mean prompt-neutron lifetime model
fails is shown in Fig. (3) where o, (and ®,) can be seen to
deviate significantly from the mean prompt-neutron life-
time asymptote.

As readily observed from Figs. (2) and (3), the ®, roct
below prompt critical and the ®, roat above prompt critical
appear to be a mere continuation of each other. This, in fact,
is the case. If one ignores the region very near prompt criti-
cal, it can be readily shown by direct comparison that the
composite of 2, below prompt critical and w, above prompt
critical coincides almost exactly with o, in Kistner’s model
[see Eq. (26)]. (The comparison is not exact between the
roots of the two models as a result of the inclusion of
delayed neutrons in the exact solution.)

Consistency betwecn Kistner’s model and the exact
solution of the reflected-core inhour equation is further
demonstrated by expanding the radical in Eq. (26) and eval-
uating the resulting function at delayed critical. This yields

Ba-n
a, =—— 43)
20 T +fT,
which agrees with Eq. (42) evaluated at delayed critical.

Casz V. Root 8. The eighth root of the reflected-
core inhour equation varies from -1/, to —eo and, at reactiv-
ities in the vicinity of delayed critical, is asymptotic to
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Figure 3. Plot of the first and seventh root of
the reflected-core inhour equation.

(44)

where

c k _f

c

(45)

is the prompt-neutron generation time cf the bare core.

It should be noted that this root does not exist ia the
mean prompt-neutron lifetime model. It disappears as soon
as it is assumed that 1,0 << 1.0 which, in most reactors,
would rarely be .atisfied because of the large magnitude of
o%. For this reason, we are forced to solve for root 8 using
Eq. (38) rather than Eq. (39) regardless of the validity of the
mean prompt-neutron lifetime model.

111. REACTIVITY FORM OF POINT-KINETIC MODEL

Obviously, when the mean prompt-neutron lifetime
model is not applicable for a given system, then the point-
kinetic model represented by Egs. (2). (3). and (4) should
be used to predict the transient response of the system at
reactivities greater than p, = 1$. However, the forms of
Egs. (2), (3), and (4) are not very convenient for obtaining
numerical solutions since they are based on a time-depen-
dent multiplication factor k. rather than on a time-depen-
dent reactivity.

With the use of Egs. (34) and (35), Egs. (2), 1\3), and
(4) can be rewritten in terms of reactivity as

dN., p.-B-f(1-p) S
- = N +—-
dt T L 4

¢ r

N,+I\Ci+5 (46)

dN’ fer N

dc, _ U-NBN. , o 48)
dt T, !

where we have assumed that the term (1 — f)/(k — f) that

would normally appear in the denominator of the first tesm

on the right-hand-side of Eq. (46) is approximately equal to

1.0 in the vicinity of delayed critical and that k. = 1 — fin

Eq. (4).

Note that Eqs. (46) through (48) collapse to the iradi-
tional point-kinetic equations for a bare system when the
retnrn fraction from the reflector, f,., is set equal to zero.
This, by definition, forces f to equal zero [see Eq. (11)] and
forces p. to collapse to the traditional definition of reactiv-
ity [see Eq. (35)].

In the context of this model, the temperature feecback
coefficient associated with the core region is defined as

dp,
a, =-
dT,
and the core temperature is coupled to the neutron popula-
tion (i.e., core power) by Newton's Law of Cooling:

49

JTC .
il KN -Y(T,-T_.) (50)
where

K. reciprocal of the tota: heat capacity of the core,

Y reciprocal heat transfer time constant, and

T.. initial temperature of core atr=0.

IV. CONCLUSIONS

Based on the solution of tlie reflected-core inhour
equation, we make the following conclusions:

1. The reactivity p, measured in reflected reactors
using small positive or negative periods is a factor of k/k,
larger than the reactivity p defined in the traditional man-
ner.

2. As a consequence of the aforementioned shift in
reactivity, prompt critical in a reflected reactor occurs ata
reflected-core 1eactivity cf p, = B, which is equivalent to a
reactivity of p = B(1 — f) where p is defined in the tradi-
tional manner.

3. The validity of the mean prompt-neutron lifetime



model is oot dependent. For negative and small positive J total fraction f core neutrons that are returned to the
reactivities, the inverse asymptotic period o, is small core after having leaked from the core
enough to satisfy the condition t,0, << 1.0. However, for = fife
reactivities above prompt critical, this condition is only sa- C, concentration of the i* precursor group
isfied when <, is relatively small or the reactivity is very B, delayed neutron fraction of the i* group
close to prompt critical. A, decay consturt of the i* precursor group
§ intrinsic/extemal neutron source rate
4. When the condition 1,0, << 1.0 is not satisfied a: ¢ neutron flux
reactivities above prompt critical, the asymptotic inverse v peutron velocity
period will vary in a nonlinear fashion with reactivity. Con- w, i* root of inhour equation
sequently, the dynamic response of a reflected-core pulse ©, asymptotic inverse period
reactor may not be adequately represented during super- a prompt-neutzon decay constant in one-region model
prompt critical operations using the bare core point-kinetic @, prompt-neutron decay constant in two-region model
model. associated with the bare core region
= )y in the exact solution of the reflec:ed-core inhour
5. For reflected-core systems in which the mean equation
prompt-neutron lifetime model is not applicable, \he rela- a, prompt-neutron decay constant in two-region model
tionship between asymptotic inverse pcriod and super- associated with the mean prompt-neutron lifetime of
prompt critical reactivity can be well represented by the integral system
second decay constant obtained in the two-region model = @), for negative reactivities and = w, for positive
developed by Kistner. reactivities in the exact solation of ti.e reflected-core
nhour equation
NOMENCLATURE ay O, evaluated at delayed criticai
o, prompt temperature feedback coefficient of core
k effective multiplication factor of integral system K. reciprocal of the total heat capacity of core
k. multiplication factor of bare core Y reciprocal heat transfer time constant
p traditional reactivity T. average temperature of core
=k-1Vk T, initial reference temperature of core
p. reflected-core reactivity
= (k- 1) k, REFERENCES
N, number of neutrons in the core region
N, number of neutrons in the reflector region 1. R. Avery, “Theory of Coupled Reactors,” in Proc. 2nd
N, =N, +N, Intern. Conf. Peaceful Uses Atomic Energy, Geneva,
N, number of prompt neutrons in integral system 12, 151 (1958;.
k. multiplication factor of the bare core
B effective delayed neutron fraction 2. Charles Erwin Cohn, "Reflected-Reactor Kinetics,”
v, total number of neutrons born per fission Nucl. Sci. and Engr,, 13, 12 (1962).
1. neutron lifetime of the bare core
T, neutron lifetime in the reflector region 3. G Kistner, “Rossi-o Theory for Assemblies with Two
T, mean time between fission events in the bare core Prompt Neutron Groups,” Nukleonik, 7, 2, 106 (1962).
=vrlk,
T, static mean neutron lifetime of the integral system 4. Alfred L. Mowery, Jr. and H. C. Romesburg, “Calcula-
=T +f.% tion of Interactions Between Clustered NERVA Reac-
1, dvnamic mean neutron lifetime of the integral system tors,” in Amer. Nucl. Soc. Proc. of National Topical
=T+t Meeting on Coupled Reactor Kinetics, C. G. Chezem
A, mean prompt-neutron generation time of integral and W. H. Konler, Ed. (Texas A&M University, Texas,
system 1967). pp. 64.
= (T + fr,)k.
A, 1nean prompt-neutron generation time of the bare core
=1k,
f., fraction of neutrons that lezk from the core into the

reflector
fraction of neutrons that leak from the reflector back
into thc core



