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ABSTRACT

Using convenuonal diffusion limit analysis. we asymptotically compare three competiive ume-
dependent equations (the telegrapher's equation. the ume-dependent Simplified P: (SP:) equauon, and the
timz-dependent Simplified Ever-Panty (SEP) equation). The time-dependent SP: equation contains
higher order asympiotic approxamations of the ume-dependent transport equation than the other equations
in a physical regime in which the time-dependent diffusion equation is the leading order approximaunon.
In addition. we derive the multigroup modified time-dependent SP: equation from the multigroup time-
dependen: transport equation by means of an asymplolic expansion in which the mulugroup time-
dependent diffusion equation is the leading order approxamation.  Numerical comparisons of the time-
dependent diffusion. the telegroher’s, the time-dependent SP., and Se solutions in 2-D X-Y geometry
show that, in most cases, the SP: solutions contain most of the transport corrections for the diffusion
approximation.

. INTRODUCTION

A more or less complete model cf the transport of neutrally-charged sub-atomic particles, as well as
charged particles in some important physics regimes, is given by Bolzmann Equation.' The Discrete
Ordinates (S~) method has been conventionally usad to snlve this equation numerically. The S« method
provides great accuracy but for manv applications, ¢specially time-dependent, multidimensional cases,
such as reactor-core-disruptive problems, requires 0o much computational time. To cvercome the high-
cost of the conventional Sw equations, seversl competitive simplified equations, such as the telegrapher's
equation’ and the time-dependent Simplified P: (SP:) equation™ which could be solved with almost the
same computatiocal effort as the ume-dependent diffusion equation, can be used to oblain relatvely

inexpensive, but approximate solutions to the transport solutions which are more accurate than the
diffusion solutions.

An asymptotic analysi. can be performed to show that, for an important class of problems, the
diffusion equation is an asymptolic limit of the transport equation.” A recent paper by the authors*
provides a broadened view of the result discusced above. It shows that the time-dependent SP: equation
has high-order asympiotic approxiinauons of the ime-dependent 'ransport equation in a physical regime
in which the coaventional time-dependent diffusion equation is the leading-order approximation. 1n this
paper, we compare the telegrapher's equation and the time-dependent SP: equation using the conventional
asympiotic approaches.  As a result we find that the time-dependent SP: equation hos the same



asvmptolic approximations as the time-dependent transport equation up (o the third order in a physical
regime in which the time-dependent diffusion equauion 1s the leading order approximauon. whereas the
telegrapher's equation has the same asympiouc approxaumauons only up to the second order. This implies
an advantage of the former over the latter.

We formulate the telegrapher’s equation and the ime-depe: dent SP: equation for one-group, 2-D X-Y
geometry problems and compare numencal tme~dependent diffuc:on, SP.. Se. and telegrapher's solutions
in various classes of problems. As we have shown previously for slab geometry problems,’ the results
show that, in most cases. the ume-dependent SP: soluuions are significantly more accurate than the
diffusion solutions and can be obtainen with a very small fraction of th» computauonal effort of an Sa
calculadon. And even in the opucally-thin regimes. :n which bou. the tme-deperdent diffusion and the
telegrapher's equation are no longer good approximauons to the ume-dependent transport equation, the
time-dependent SP: solutions are quite close to the Se solutions.

In addition, as we have previously shown in a one-group problem.’ we also denve here the
multigroup modified ime-dependent SP: equation from the multigroup time-dependent transporn equation
bv means of an asympiotic expansion ' :n which the multgroup time-dependent diffusion equation is the
leading order approxamaton.

Accord’ng tc the recent paper by Noh et al..” in 2-D X-Y geometry, there is another competitive
enuation called the Simphfied Even-Parity (SEP) equation which is much more computationally efficient
than the even-parity equation. We denve here the ime-dependent SEP equation tn 2-D X-Y geometry
and analvze this equation asvmptoucally. The results show that the ume-dependent SEP equation also
has the same asymptotic approximations as the ime-dependent transport equation only up to the second
order.

An outine of the remainder of this paper is as foilows. In Sec. I, we carry out an asymptotic
analysis of the telegrapher's equation and the time-dependent SP: equation in general geometry. In Sec.
i1, we present numerical comparisons of the ume-dependent diffusion, SP:, Se, aud the telegrapher’s
solutions. In Sec. 1V, we asymptotically derive the multigroup modified time-dependent SP: equation
from the multigroup time-dependent transport equation. In Sec. V., we ca:Ty oul an asymptotic analysis
of the ume-dependent SEP equation in 2-D X-Y geometry. In Sec. VI, we conclude with a summary and
recommend for future work

II. ASYMPTOTIC ANALYSIS OF THE TELEGRAPHER'S EQUATION AND THE TIME-
DEPENDENT SP: EQUATION IN GENERAL GEOMETRY

In this section, we shall consider the one-group time-dependent transport probiem in multidimensional,
multuplying medium with aelayed neutrons and isotropic scattering.  Multigroup problems require a more
complicated tsymptotic analycis that we wil! discuss in section IV,

Tue one-group, multidimensional Lime-dependeitt transport equation with delayed neutrons is

—IZ—V+Q-Vw+o,v={(l—B)VUI, +0,}0+AC+Q,
v ot

C
and a—:Bvo/¢—lC,
ot

where the notlations are standard (see Ref. 1).

If we consider the asymptotic scaling,
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the scaling defined above has been known to be one in which the diffusion equation is an asympictic Limit
of the transport equation as € — 0.

We expand,

Y=Y, FEY, +E Y, + . 0=0,+€0, +. 0, + . and C=C,+€C, +€ C, +---

Applving these (o the ume-dependent transport equauon and equating the coefficients of different
powers of €. we obtain the following equauons:

o) v, =0, ,
1
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lod, _ _,
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ot 30,
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O(e™) -—-DV’¢, +0,0, =(1-8)vo 0, +AC, ,
v ot
C
and §—L=Bm/¢l—kq,
or
) l a 4 b} b} la¢ b3
O(e) (——-—=V)DV e, +=—L-DV'¢, +0,9, =(1-P)vo ¢, +AC,,
va, 3t 150" v or
and —i =fvo ¢, -AC..
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A. The Telegrapher's Equation

The one-group, multidimensional telegrapher's equation with delayed neutrons is

3
—— = () — - ——= DV'¢+c o=(1-B)vo, 6+AC+Q ,
ov ot v o, ot oy ot

C
and i-=-Bch/q>—AC.
ot

Applying the same scaling and ¢xpaasion (o these equations, we obtain the following equations;
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Comparing these asymptotic approximations with those of the time-dependent transport equation, we
find that the telegrapher's equation has thc same asympiolic approximations as the umec-dependent
transport equation up to the second order in a physical regime in which the ume-dependent diffusion

equation is the leading order approxamation.

B. Time-Dependent SP: Equation

The one-group, multidimensional time-dependent SP: equations with delayed neutrons are

149
———?-: +V. +o‘v.=(l—B)v0/v°+).C+Q,
v at

1d 1 2
- y +—VV.+—VV1 0¥, =0,
v at 3 3
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oC
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Applying the same scaling and expansion to these equations, we obtain the following equations;

O(e) .l_ia"i_DV’¢°+o‘¢° =(I—B)VU/@° +1.C° +Q ’
14
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—L=fvos ¢ -AC, ,
ot Bvo,8.—AC,
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oC
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Thus. the ume-dependent SP: equation has the same asvinptolic approximations as the time-
dependent transport equation up io the third order iu a physical regime in which the ume-dependeat
diffusion equatioa is the leading order approxumation. Conclusively. we find that the ume-dependent SP:
equation contains higher-order asympiouic corrections to the time-dependent diffusion equauon than the
telegrapher's equation.  Thus. one might expect the higher accuracy frem the time-dependent SP:
equation, especially 1n diffusive regimes.

III. NUMERICAL CALCU_ATIONS AND RESULTS

First, differencing the time variable in the time-dependent SP: equations using a fully-implicit scheme
and formulating an equation with the scalar flux. y (= ¢), only, we obtain,

) 4 -l »~l .
-V-D'V{e” +r(o.'¢ -MN}+0.70 =35, H
[o]
1 1 1
where J,'=0,+—, o/'=0,+—, D'=—-,
vA? vAS 3o,
. I . 4 I . 5 . 1 |
2nd S =Q+—¢" -V DV——(—0" -2 ¥})-—V-(—¥))
VAL 5¢,' v 2 ' VAL

Equation (1) is in the form of a conventional diffusion equation.  Spatially differencing this equation
in 2-D X-Y gcometry, we obtin the matrix equation A-¢”'=S" at each time step, n. where A is a five-
diaponal symmerric matnix. Since these equations are very similar to those obi~‘ned from differencing
the time-deperuent diffusion =quation, solut.ons are obtained with almost the same computatonal effort
and with a very smal! fraction of the time needed for the time-dependent S~ solutions.

V/e have compared the time-dependent diffusion, the tclegrapher's, the ume-dopendent SP:, and Se
solutions in various classes of 2-D X-Y geometry problems with and without delayed neuirons and the
numerical results show that, in most cases, the time-dependent SP: solutions are siguificantly more
accurate than the conventional time-dependent diffusion and the telegrapher's soluticas and can be
obtained with a very small fraction of the computational effort of an Ss calculation (see Table 1). And
even in the optically-thin regimes, in which both the time-depenaent diffusion and the telegrapher's
equation are no longer good spproximations to the time-dependent transport equation, the lime-dependent
SP: solutions are quite close 1o the Se solutions.

The cnnfiguration of a sample problem is shown in Fig. 1. In Fig. I, o is the towal cross section with
a unit of [l/cm), ¢ is the scatering ratio defined as o.'0, and Q is the internal source with a unit of

"I/cm® /sec). The left and bottom boundaries of the system are reflective and the right aid top



boundaries are vacuum. We start with zero ininal fluxes evervwhere and compare the ume-dependent
vanations of the scalar fluxes which are calculated by the ume-dependent diffusion. SP:. Se. and the
telegrapher's equauons at point | and 2.

vVac.
10 cm I
. o=01
; c =09 o2
i =
ref. i Q=00 4‘\
1
Scm | pt.2 vac.
|
7 c=10
; c =09
i Q=10
% |
S ref.
—pt
0 cm Scm 10 cm

Fig. 1  ample Problem

The results are shown in Fig. 2 and Fig. 3. At each point, the SP: solutions are mnch closer to the Se
solutions than the diffusion and the telegrapher’s soluttons. Moreover. as shown in Fig 3, SP: soluttons
are guite close to the Sa solutions even in the opucatiy-thin regimes in which both the diffusion and the
telegrapher’s tquation are no longer good approximations.
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Fig. 2 Scalar Flux Variation at Pt. | Fig. 3 Scalar Flux Vanation at Pt. 2



1 Equation Diffusion Telegrapher's SP2 S8
CPU time (sec) 0.235 0.264 0.291 6.138

Table 1 Elapsed CPU Time for Each Ecuation

[V. ASYMPTOTIC DERIVATION OF THE MULTIGROUP MODIFIED TIME-DEPENDENT SP:
EQUATION
As we have shown in Section 1. delayed neutrons do not alter the resuits of the asymptotic analyses
and waus, for simplicity, we shall not consider delcyed neutrons in this section (0, can be included in o,).

For the same reason, we only present here the asymptotic analysis for planar geometry, however, we have
performed the multidimensional analysis and obtained the same results.

The multigroup, planar geometry time-dependent transport equation with isotropic scattering is*

1d 0 cn 1
——(x.1,1) +u—v+o,v =—'-I_iv(x.u'.l)du'+—Q(xJ), 2)
v ot ax 2 2

where
y(x.u.t) = angular flux (a G vector)
Q(x,1) = soune (a G vector)
o, = total cross section (a GxG diagonal matrix)
G, = scattering cross section (a GxG matrix)
G = number of energy groups.

10
Integrating Eq. (2) over the wiole angle, ;I ' Eq.(2)d, and introducing

o(x,t) = I:v(x,u,t)du = scalar flux (a G vector),

19 0N

=L+ Wy D+, -0,)0 = 0(x.1). ®)
v ot oax

And from Egq. (2) and Eq. (3), we also obtain

la av 1 la a 1
——v(x,u,1)+p——+0 ¥ =—{——0¢(x,1)+0, +—L ‘wx,u',t)au'}. 4
Ny uax ¥=3 Va'¢( ¢ - Hw(x,p'.radu'} (O]

Introducing isito Eq. (3) and Eq. (4) the asymptotic scaling;

] ] \4
o, =L 0, ,0=¢eQ ,va—,
€ € €

we obtain



-aiq(x t)+—,[ NTRTE NTEN t)r‘\.l‘+ (0, -0, )e=eQ(-.1), (%)
v ol €

€ 90 oy o© l ¢eo o an )
—— (X, {0+ —+—’-v=—l——¢(r.1)+—'0+—]..u'v(x. Dau'y («
vatv "ar L 2 vor € dax " )

And we introduce into Eq. (6) the expansion;,

v=v“+8vl+alv!+...._ (7)

and, equate the coefficients of different powers of £, we obtain the following equatiuns:

» 1
O(e ) Y, =—¢,

2
o) v, = —u)(ii)g
) o ar 2
, L1 @,
Ote) v, = -2y
o,ax 2
1 1 a l"' a ¢ K ] 1 a 1’
O(e’) V,=——(—)-+(-u —=) —,
Vo, 0t G, dx 2 3 G, or 2
) 1o , L 1 a, P TR SR B I
O(e) Yo=———{ -=)(—) 2, (u -u—-—)(——) d
Vo, of 3 o, z 3 45 o, ax 2

and so on. Introducing these moments into Eq.(7), we obtain an asymplotic expansion for ¥ in terms of ¢.
Applying this expansion 1n*o Eq. (5), we finally obtain the equation for ¢ as follows;

€0 o e 1 da ¢ 1L a_1 a3 4
—_— ) — __)__ .___) ____.(__ }+O £ ) +_(0 - t 8
Y (x./) {3(0 ( { % 150 )! (e)]e . )e=eQ(x,1). (8)

1f we delete the t:rms of O(e’) and higher in Eq. (8) and reapply the scaliny reversely, we obtain,

! a f)‘i—!——¢+(0 -3,)9=Q(x.1). <
vat ox 36 dx

These are the conventional multigroup time-~dependent diffusion equations.

If we delete the terms of O(e’) and higher in Eq. (%) and introduce Eq. (9) into the resultant
equation, we obtain,



1 4 o1 19 10 a 1 o
(__i_.a____){_-f-oﬂo. -6 )0-N+——e8(x.)-——"—4+(0. -0, je= Q(x,1).(10)
V0,0t dx S0, dxo, vor voor ax 3G, dr

These are the muitigroup medified time-dcpendent SPy cquatioms’ which couid be obtained by
neglecting the time derivative term of he seccnd moment of angular flux. 0V , /0!, in the multigroup
lime-dependent SPx equations.  We carty out the same asymptolic analysis on this equation as we do in
Sec. 11, and the resuits show that the modified Lime-dep sndemt SP: equation has also the same asyrmpiotic
applmmmomuthcnme-depmdunmnqnneq:mwnnmwthcmudadermnphvnalmglmem
which the time-dependent diffusion equation s the leading order approximation.  The acvantages of
using modified time-dependent SP: equation for thv: one-group case are discussed in Re?. 6.

V. ASYMPTOTIC ANALYSIS OF THE TIME-DEPENDENT SEP EQUATION ™ 2.D X-Y
GEOMETRY

In the recent paper by Noh et ai..” the authors introduced the Simplified Even-Farity (SEP) equation
which could be obtained from the even-parity equation using the assumption, x(K.N) = x(K.—n), in 2-D
X-Y geometry (y is even-party flux). With the resulting elimination of the cross-derivative terms of the
even-parity equation, SEP equation is much more computationally efficient than the onginal even-paaty
equation. All the woik in that parzr deals with the sicady-state case.

In this paper, we derive the titac-dependent SEP equation from the ume-dependent transport equation
using the s2me assumption. This derivation is straightforward, and we will not show it here for brewvity.

The time-dependent SEF equat.on in 2-D X-Y geometry is

1 o 2wy wx J
o= 2 2,0, (——+l)(o +Q). (11
oV a:’ vat o & o, ox= vo, ot o0 )

Applying the same scaling and expansion to this equation as in Sec. I, we obtain the following
equations;

1
O(e) -i-DV'% +0.6,=0.
v
O(e") lﬁl-—Dv‘a;, +0,9,=0,
v
O(e”) (L"a---.‘—vl DV'e, + L a’ li’-‘- DV'¢, +0,6, =0 .
ve, ot 130] 150 ax’'ay’ v ot

Comparing Lhese asymptotic approximations with those o. the time-dependent transport equation in
Sec. II, we find that the time-dep'ndent SEP equation a1s0 has the same asymptotic approximations as the
time-dependent transpolt equation only up to the second order in a physical regime in which the time-
dependent diffusion equation is the leading crder approximation.

In addition, w= derive here the modified time-dependent SEP equation which could be obtained by
neglecung the time derivative term of the odd-panty flux, dff/df, in the time-dependent transport
cquation. The modified bme-dependent SEP equation in 2-D X-Y geometry is



————— - ——+0 X =0, ¢+(. (12;

Compared with Eq. (11), Eq. (12) contains only the first order ume derivative term of x.
Accordingly, solutions can be obtained more computationally efficiently than the original ime-dependent
SEP equabon. We carry out the same asympiotic analysis on this equation and the results are as follows;

I :
O(e) —%—DV ¢,+0.0,=0,
v
O(E) —l%—DV’Q +0.9, =0,
Vv
4 4
O(e") (-——V")DV'e, ——-i’——+13‘- DV'e,+0,9,=0
150° 15¢' ar'dy’ v ot

Thus, the ime-dependemt mndified SEP equation also has the same asymptotic approximatioas as the
Lime-dependent transport equation up o the second order.

V1. CONCLUSIONS

We have shown that the time-dependent SP: equation containg higher order asymptotic
approximations to the time-dependent transport equation than the other compe.itive time-dependen:
equanons in a physical regume in which the time-dependent diffusion equation is the leading order
approximagion. And numerical results show that, in most of cases in 2-D X-Y geometry, the time-
dependent SP: solutions are a lot more accurate than the ume-dependent diffusion and the telegrapher’s
solutons. In addition, we derive the multigroup modified time-dependent SP: equation from the
multigroup time-dependent transport equation by an asymptotic expansion. These results imply that, in
many problems in which the coaventional time-dependent diffusion equation is not sufficiently accurate,
the time-dependent SP: equation could give a lot more accurate solutions than the ume-dependent
diffusion cquation with almost the same computational efforts A numerical test for the time-dependent
SP: equation 10 more general cases, such as in 2-D R-Z geometry, with a multigroup energy treatment, is
being carmied out by the authors to validate the advantages of the time-dependent SP: equation in more
realistic problems. Thosc conclusioas and future work mentioned above for the time-dependent SPs
equation are also applicable 10 the modified time-dependent SP: equation.
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