

Classification changed to UNCI,ASSIFIFD
 Per Zach - . Kahn, Chief Declass. Baaed 7-10-68

LAMS -861
Series A

15 March 1949
This document contains
39 pages.

ELASTIC CONSTANTS AND SOUND VELOCITIES IV. The Elastic Constants of Plutonium

Work done by: Report written by:
G. Foster Evans (Appendix) contain Henry L. Laquer Henry L. Laquer William E. McGee

ELASTIC CONSTANTS AND SOUND VELOCITIES

 IV. The Elastic Constants of PlutoniumSuminary
The elastic constants of two specimens of α-phase plutonium and of one specimen of δ-phase stabilized plutonium were obtained by methods described in an earlier report. ${ }^{l}$ These data should be good to about one percent. Mathematical expressions are given to account for the effect of a coating of different material upon the observed resonance frequencies. The temperature coefficient of Young's modulus of α-phase plutonium has also been measured.

Introduction

This paper reports the elastic constant values obtained with three different nickel coated plutonium specimens. It is only a preliminary report, since work on specimens of different metallurgical history and treatment is in progress.

History of Samples
Unless noted differently, all fabrication work was done by CMR-11. The α-phase specimen, E-296, was vacuum cast. The highest temperature reached during the casting was just above $900^{\circ} \mathrm{C}$. The highest pressure, 16 microns, occurred at about $700^{\circ} \mathrm{C}$. After it had cooled to room

temperature, the sample was put into a press, heated in $1-3 / 4$ hours from $30^{\circ} \mathrm{C}$ to $340^{\circ} \mathrm{C}$, and extruded at 17.5 tons (28,000 psi) in the δ-phase. It was then machined, cleaned, and nickel coated at $62 \pm 3^{\circ} \mathrm{C}$.

The stabilized δ-phase specimen, E-295, containing three atom percent of gallium, was vacuum cast. The highest temperature reached in casting was also just above $900^{\circ} \mathrm{C}$. The highest pressure, 12 microns, occurred at about $870^{\circ} \mathrm{C}$. The casting was annealed for $1 / 4$ hour at $500^{\circ} \mathrm{C}$. After cooling, the sample was put in a press, heated in two hours from $30^{\circ} \mathrm{C}$ to $330^{\circ} \mathrm{C}$, and extruded at 15 tons ($24,000 \mathrm{psi}$). It was then machined, cleaned, and nickel coated at $100 \pm 10^{\circ} \mathrm{C}$. The α-phase "thermal conductivity bar", Z-13, was vacuum cast by CMR-11. It was pressed to the highest possible density by CMR-5. A double acting die and a Riehle hydraulic testing machine were used. The die temperature was raised from room temperature to $160^{\circ} \mathrm{C}$ in two hours. After "soaking" the sample at $160^{\circ} \mathrm{C}$ for 30 minutes a load of 52,000 psi was applied. The temperature was held between 150 to $160^{\circ} \mathrm{C}$ with the specimen under load, before cooling under load to $38^{\circ} \mathrm{C}$. The major part of the forming was done with the metal in the β^{\prime}-phase and some subsequent filling out to compensate for the $\beta-\alpha$ shrinkage. After this, the sample was atored under refrigeration for alnost eight months

and then nickel coated at about $70^{\circ} \mathrm{C}$.
Table I lists the weights, densities, dimensions, and coating data for the three samples as reported by the groups doing the fabricating.

Technique of Measurement

The techniques used in this work are those described in a previous report ${ }^{l}$. The longitudinal and torsional vibrational frequencies of the samples E-295 and E-296 were obtained with Rochelle salt crystals. It had been our intention to re-measure these samples using the electrostatic method, but it was found that the coating had deteriorated to such an extent as to make the work unsafe without special dry-box instrumentation. With sample Z-13, the longitudinal resonances were obtained by the electrostatic method, and the torsional ones with torque bimorph crystals. The crystals were attached, at first, with strippable paint, and then, since this did not prove very satisfactory, with Amphenol "Coil Dope" \#912. Phenyl salicylate was not available for the earlier work (E-295, E-296) and could not be used with the specimen $Z-13$, since its temperature would reach about $50^{\circ} \mathrm{C}$ when in equilibrium with the measuring equipment.

Experimental Results

Table II lists all the resonance frequencie $\}$ observed with specimen E-296. The numbers

TABLE I
Plutonium Samples, Specifications

first six columns were obtained with $3 / 16 \times 3 / 16 \times 5 / 16$ (inches) expander bars \#85664, weighing . 377 and . 369 gms. Those in the last three columns were obtained with $3 / 16 \times 3 / 16$ x 5/16 (inches) torque bimorphs \#2JCl85, weighing . 371 and .377 gms. It is obvious from the Table that many spurious, probably bending, vibrations are excited by the crystals. The use of the electrostatic method would thus have been very desirable, and we intend to do this as soon as our dry-box instrumentation is complete. A wire cradle support with the wires at the $1 / 4$ points, i.e., the nodes for the second and sixth longitudinal and torsional harmonics was used in all runs except runs 6 and 9 , where a rigid center clamp was used. Table III lists all the observed resonance. frequencies for the stabilized δ-phase specimen E-295. Three runs were made using \#85664 expander bars, weighing .389 and $.377^{\prime}$ gms. Two runs were made with \#2JCle5 torque bimorphs weighing . 360 and .369 gms . Again a great number of bending vibrations are apparent. The center clamp was employed in runs 3 and 5. The longitudinal and torsional reduced frequencies for both bars are recorded in Table IV; and plotted in Figs. 1, 2, and 3.

With the pure plutonium apecimen Z-13, the assignment of the higher longitudinal harmonics, although obtained by the electrostatic method, presented some difficulty, due to

APPROVED FOR PUBLIC RELEASE

- 8

TABLE III

E-295, Observed Resonances (Kc)

$$
\because \mathrm{O}
$$

-10-

6母G?
the rapid velocity dispersion caused by the large diameter of the bar. Table V lists the resonance frequencies observed in three runs with the electrostatic method, and those observed with \#2JCi85 torque bimorph crystals weighing . 350 and . 352 gms. The reduced frequencies, Table VI, for $Z-13$ are plotted in Figs. 3 and 4.

An inspection of the Figures shows that the scattering of the reduced frequencies from smooth curves during anj one run is quite small; however, there are larger systematic discrepancies between successive runs. These are probably due to the fact that some measurements were made before the temperature of the specimen had reached a steady state value. The longitudinal $\nu_{0}(L)$'s, i.e., the frequencies for an infinitesimally thin bar, are obtained as the extrapolated intercept with the ordinate ($n=0$). Since it is known from previous work that the torsional frequencies obtained with crystals exhibit a pronounced anomalous dispersion, the torsional $\nu_{0}(T)$'s were taken as a horizontal asymptote to the observed frequencies. We note from Fig. 3 that, with the larger specimen (Z-13), this dispersion is less pronounced than with the smaller ones.

Table VII lists these completely uncorrected $\nu_{o}{ }^{\prime s}$ together with probable errors, estimated from the scattering of the points in the Figures.

Electrostatic Drive

AMG 861

TABLE VI
Z-13, Reduced Frequencios

Run 3		Run 4	Run 5
$9^{9.024} 1$	T-1	6.042	6.009
$8.987{ }_{9}$	T-2	6.018	5.996
8.908_{5}	T-3	6.004	5.990
8.728_{5}	T-4	5.999	5.986
8.2982	T-5	5.994	5.985
7.613_{2}	T-6	5.985	5.980
6.902_{0}	T-7	5.985	5.980
6.4775	T-8	5.983	5.978
6.0575	T-9	5.982	5.978
5.822_{9}	T-10	5.982	5.978
5.659_{3}	T-21	5.982	5.979
5.530_{0}	T-12	5.982	5.978
5.4142	$\mathrm{T}-13$	5.981	5.977
$5.358{ }_{4}$			
(5.2157)			
5.2350			

TABLE VII

$\underline{\text { Uncorrected } \nu_{o} \text { 's (Kc) }}$

	E-296	E-295	$\underline{Z-13}$
$\nu_{0}(L)$	$8.02{ }_{9}^{ \pm} .01$	$6.094 \pm .01$	$9.030 \pm .01$
$\nu_{0}(T)$	$5.263 \pm .005$	$3.945 \pm .003$	$5.977 \pm .002$

Actually there is some ambiguity in extrapolating to $n=0$ for the data obtained with crystals and it is necessary to be guided by the Bancroft dispersion plot (see p. 26 et seq) to arrive at the best value for $v_{0}(L)$. This is not necessary for data obtained by the electrostatic method.

Temperature Coefficient

The systematic discrepancies between successive runs led us to study the self-heating of cne plutonium specimen ($Z-13$). This self-heating offers a very simple means to obtain approximate values for the temperature coefficient of the elastic moduli. The sample was cooled under tap water, placed on the electrostatic set-up as quickly as possible, and the first longitudinal resonance frequency was measured simultaneously with the surface temperature at a point near the middle of the specimen. An uncalibrated Chranel P-Alumel thermocouple was used. The time, temperature, and frequency values are given in

Table VIII. The temperature asymptotically approaches a value of about $51^{\circ} \mathrm{C}$, as shown by Fig . 5. The frequency vs. temperature plot (Fig. 6) forms a straight line the slope of which is $(60 \pm 3) \times 10^{-5} /{ }^{\circ} \mathrm{C}$. This would be the temperature coefficient for the longitudinal sound velocity. The temperature coefficient of Young's modulus is then (120 ± 6) $\times 10^{-5} /{ }^{\circ} \mathrm{C}$.

Calculation of Sound Velocities and Elastic Constants
In order to calculate the elastic constanta of the plutonium specimens, we have to correct the ν_{0} 's listed in Table VII in such a way as to compensate for the effect of the crystals and of the nickel coating.
a. Crystal Correction:

The relatively large masses of all the plutonium specimens make the simple m / M and i / I corrections appear sufficient to account for the loading effect of the crystals. Since all the crystals used had the same dimensions (3/16 $\times 3 / 16 \times 5 / 16$ inches), their moments of inertia about an axis perpendicular to and through the center of the square faces are equal to $\mathrm{m} \mathrm{a}^{2} / 6$, or $\mathrm{m}(0.476)^{2} / 6=0.0378 \mathrm{~m} \mathrm{gm}-\mathrm{cm}^{2}$. Table IX summarizes the crystal corrections.

b. Coating Correction:

Whereas the crystals only add to the inertia
(kinetic energy) of the vibrating system, the coating adds to the inertia and to the springiness (potentiag

APPROVED FOR PUBLIC RELEASE

TARLE VIII
Temperature Coefficient Data

*	Time	Temperature	Frequency (L-I)
	2:55 p.	$20.5{ }^{\circ} \mathrm{C}$	---
-	3:05	37.8	$9.091{ }_{1} \mathrm{Kc}$
	3:08	39.0	9.0854
	3:12	41.0	9.077_{0}
	3:15	42.0	9.071_{6}
Tmer	3:20	43.9	9.0616
0	3:32	47.1	9.0409
∞	3:47	49.5	9.030_{0}
	4:00	49.8	$9.026{ }_{2}$
$6)$	4:05	50.0	9.0241

APPROVED FOR PUBLIC RELEASE
Las s. 64

APPROVED FOR PUBLIC RELEASE

TABLE IX
Crystal Corrections

	E-296	E-295	Z-13
M (Bar)	429.948	363.301	1679.80
m (2 Crystals)	. 746	. 766	---
m / M (Longit.)	.00174	.00211	---
I (Bar)	108.735	93.202	1859.161
m (2 Crystals)	. 748	. 729	. 702
1 (2 Crystals)	. 0283	. 0276	. 0265
1/I (Torsion)	$.0002_{6}$. $.0003_{0}$.$^{0000}{ }_{1}$

$\rightarrow+\cos x+2$
of the syatem. Birch and Bancroft ${ }^{2}$ have solved the problem for the case of toraional vibrations, using the approximate methods developed by Rayleigh ${ }^{3}$. By the same methods, Foster Evans, (Alt. Froup Leader, $\mathrm{T}-3$) has obtained the corresponding relations for longitudinal vibrations. The derivation of these relations is given in the Appendix.

In general, if both kinetic and potential energy of a vibrating system are increased by a small amount, the frequency, ν_{o}, of the undisturbed system is related to the frequency, ν, of the actual system by

$$
\begin{equation*}
v_{0}=v(1+a-c) \tag{1}
\end{equation*}
$$

where a is a function of the additional kinetio energy and c a function of the additional potential onergy.

For longitudinal vibrations, the coating of thickness ΔR at the sides gives

$$
\begin{align*}
& a=\Delta R / R \cdot \rho^{\prime} / \rho, \tag{2}\\
& c=\Delta R / R \cdot E^{\prime} / E, \tag{3}
\end{align*}
$$

and the coating at the two ends

$$
\begin{equation*}
a^{\prime}=2 \Delta R / L \cdot p^{\prime} / \rho . \tag{4}
\end{equation*}
$$

Francis Biroh and Dennison Bancroft, J. of Geol. 46,
$59-87(1938)$.
 Vol. 1, Ch. 4, Dover Publications, New fifot : $19 \% 45_{0}^{\circ}$

For torsional vibrations, the'sides give

$$
\begin{align*}
& a=2 \Delta R / R \cdot \rho^{\prime} / \rho, \tag{5}\\
& c=2 \Delta R / R \cdot \mu^{\prime} / \mu, \tag{6}
\end{align*}
$$

and the coating at the two ends

$$
\begin{equation*}
a^{\prime}=2 \Delta R / L \cdot \rho^{\prime} / \rho \cdot \tag{7}
\end{equation*}
$$

To obtain numerical values for these corrections, we take the following values for nickel from the Handbook of Chemistry and Physics ${ }^{4}$:

$$
\begin{aligned}
& E^{\prime}=21 . \times 10^{11} \text { dynes } / \mathrm{cm}^{2} \\
& \mu^{\prime}=7.3 \times 10^{11} \text { dynes } / \mathrm{cm}^{2} \\
& \rho^{\prime}=8.90 \mathrm{gms} / \mathrm{cm}^{3} .
\end{aligned}
$$

The thin nickel layer deposited by carbonyl decomposition may well have properties different from the bulk properties just listed. This problem still needs to be investigated. All the coating corrections, as well as the quantities necessary to calculate them, are summarized in Table X. Table XI lists the sum of the crystal and coating corrections to be applied to the uncorrected ν_{0} 's in Table VII, expressed both as percentage of frequency and as number of cycles.

\footnotetext{
4
Handbook of Chemistry and Physics, 30th ed., Chemical Rubber Publishing Co., Cleveland, Ohio, 1947, pp. 451, 1708.

TABLF X

Coating Corrections

	$\mu^{\prime} / \mu^{\prime}$		1.77	4.20	1.76
Q	Longitudinal		$.0130_{5}$	$.0510_{7}$.00762
		a	.00277	.00606	$.0015_{7}$
60		a^{\prime}	$.0002_{8}$.${ }_{.0006}$	$.0003_{8}$
	Torsional	c	$.0213_{6}$	$.0908_{5}$	$.0121_{4}$
		a	$.0055_{3}$	$.0121_{1}$.00313
-		a^{\prime}	.00028	.00060	.$^{.00038} 8$

TABLE XI

Overall Corrections

		$\underline{\mathrm{E}-296}$	E-295	Z-13
Longitudinal:	percent	$-0.82{ }_{6}$	-4.230	-0.567
	cycles	-66.	-252.	-51.
Torsional	percent	-1.529	-7.784	-0.862
	cycles	-80.	-295.	-51.

Fortunately, these corrections are small, and, assuming that the coating thickness is krown, their magnitude is in doubt by no more than plus or minus two or three cycles, except for the δ-phase specimen E-295, for which the corrections are uncertain by plus or minus tencycles. Howevers it should be remembered that all corrections are proportional to the coating thickness ΔR and, so far, little is known about its uniformity along the main axis of the bars or even about any circular cross section. Table XII lists the corrected v_{0} is, the sound velocities ve and V_{t}, the elastic constants E, μ, and Poisson's ratio o calculated therefrom. As a further check of the consistency of the data, the σ calculated from the intercepts is compared with the one obtainable from the velocity dispersion curves according to Bancroft ${ }^{5}$. In doing this, an assumption is


```
LABS**!;
```

TABLE XII
PLUTONIUM, RESULTS

SPECIMEN	$\begin{aligned} & \mathcal{V}_{0}(\mathrm{~L}) \\ & (\mathrm{Kc}) \end{aligned}$	$\begin{aligned} & V_{(T)}(T) \\ & \left(K_{c}\right) \end{aligned}$	$\begin{aligned} & \mathrm{v}_{\ell} \\ & \mathrm{cm} / \mathrm{s} \end{aligned}$	$\begin{gathered} v_{t} \\ =C \times 10^{-5} \end{gathered}$	E DYNES / c	$\begin{gathered} \mu \\ n^{2} \times 10^{-11} \end{gathered}$	$\begin{array}{\|l\|l\|} \hline \text { FROM } \\ \text { INTERCEPTS } \end{array}$	$\begin{gathered} \text { FROM } \\ \text { DISPERSIO } \end{gathered}$
E. 29.96 (a)	$7.963 \pm .01$	$5.183 \pm .01$	2.24	1.46	$9.73 \pm .03$	$4.12 \pm .02$	0.18	0.20
(1)	$5.842 \pm .02$	$3.65{ }_{0} \pm .02$	1.67	1.05	$4.46 \pm .03$	$1.74 \pm .02$	0.28	0:3n:
	$8.979 \pm .01$	$5.92_{6} \pm .01$	2.20	1.45	$9.52 \pm .02$	$4.15 \pm .02$	0.15	…?:

made which is not necessarily correct for the higher harmonics; namely, that the percentage corrections given in Table XI are the same for all the harmonics studied. Plots of the normalized frequencies against the Bancroft parameter $n d / 2 L$ (for the uncoated specimens) are given in Figs. 7, 8, and 9. The α-phase specimen, E-296, shows some scattering from a smooth curve probably due to the crystals which were used here. The dispersion curve gives a value of Poisson's ratio of $0.20 \pm .01$ againgt a calculated value of 0.18 . The δ-phase specimen E-295 shows similar scattering. Here we obtain a Poisson's ratio of $0.33 \pm .01$ against a calculated value of 0.28 . The α-phase specimen $Z-13$, with the large diameter shows the nost anomalous behavior in that the actual dispersion curve does not match any of Bancroft's calculated ones. We can estimate a value of Poisson's ratio of $0.17 \pm .03$ whereas the calculated value is 0.15 .

Conclusions

Due to the uncertainty involved in measuring coated specimens, the data summarized in Table XII can only be considered as preliminary. However, it may be stated that pure α-phase plutonium has elastic moduli slightly smaller than palladium or copper and slightly larger than brass. ${ }^{4}$ The gallium stabilized δ-phase alloy is more plastic (higher Poisson's ratio) and has elastic moduli about the same as : magnesium or tin. 4

APPROVED FOR PUBLIC RELEASE

Acknowledgments
The writer wishes to acknowledge the advice obtained from Dr. Edward F. Hammel on many experimental problems and the assistance given by Mr. Thomas A. Sandenaw in recording the data on specimens E-295 and E-296.

APPENDIX

The Effect of a Uniform Coating on the

Resonance Frequencies of Metal Rods

In the following, the effect of a uniform coating upon the observed resonance frequencies of a homogeneous metal rod is treated by the approximation methods developed by Rayleigh ${ }^{3}$. The rod has a density, ρ, and elastic roduli E and μ. The coating of thickness, ΔR, has a different density, ρ^{\prime}, and elastic moduli E ' and μ^{\prime}.

In a conservative system, having one degree of freedom, the kinetic energy, T, is, as long as the displacements, q, are small

$$
\begin{equation*}
T=1 / 2 a \dot{q}^{2} \tag{A-1}
\end{equation*}
$$

The gradient of the potential energy, U, will be a force which for elastic materials will be proportional to the displacement, if the coordinates are chosen such that

$$
\begin{align*}
U & =0 \text { for } q=0 . \quad \text { Thus } \\
\mathrm{dU} / \mathrm{dq} & =\mathrm{cq} \tag{A}\\
U & =1 / 2 \mathrm{cq}^{2} . \tag{A-3}
\end{align*}
$$

3 cf. page 23.

Since the system is conservative:

$$
\begin{align*}
& T+U=\text { const. } \tag{A-4}\\
& \quad 1 / 2 a \dot{q}^{2}+1 / 2 \mathrm{cq}^{2}=\text { const. } \tag{A-5}
\end{align*}
$$

Differentiate:

$$
\begin{align*}
& a \dot{q} \ddot{q}+c q \dot{q}=0, \tag{A-6}\\
& \ddot{q}+c / a q=0 . \tag{A-7}
\end{align*}
$$

This is the wave equation and its solution is:

$$
\begin{equation*}
q=A \cos \left(n \omega_{0} t+B\right), \tag{A-8}
\end{equation*}
$$

where

$$
\begin{equation*}
\omega_{0}=2 \pi \nu_{0}=\sqrt{c / a} \tag{A-9}
\end{equation*}
$$

If now T and U of the system are perturbed in such a way that
and

$$
c \rightarrow c+\Delta c,
$$

$a \longrightarrow a+\Delta a$,
the resonance frequencies of the system will be given by

$$
\begin{equation*}
\omega^{2}=\frac{c+\Delta c}{a+\Delta a}=\frac{c}{a} \frac{(1+\Delta c / c)}{(1+\Delta a / a)}, \tag{A-10}
\end{equation*}
$$

and one calculates $\omega_{0}\left(\operatorname{or} \nu_{0}\right)$ from ω (or ν) according to
$\omega_{0}^{2} / \omega^{2}=(1+\Delta a / a) /(1+\Delta c / c) \cong 1+\Delta a / a-\Delta c / c$,

$$
\omega_{0} \cong \omega(1+\Delta a / 2 a-\Delta c / 20)
$$

(a) Longitudinal Vibrations

Longitudinal vibrations are described by the
lInear displacement ξ. For the unperturbed case, we have

$$
\begin{equation*}
d^{2} \xi / d t^{2}=E / \rho \cdot d^{2} \xi / d x^{2} \tag{A-13}
\end{equation*}
$$

with the solution for a free-free bar

$$
\begin{equation*}
\xi=s(n, t) \cos n \pi x / L \tag{A-14}
\end{equation*}
$$

the s being the displacement from the equilibrium position of one end at any time, t.

We calculate

$$
\begin{align*}
T & =\int_{0}^{L} 1 / 2\left(\pi R^{2} \rho\right) d x \dot{\xi}^{2} \tag{A-15}\\
& =\pi R^{2} \rho / 2 \int_{0}^{L} \dot{\xi}^{2} d x \tag{A-16}\\
& =\pi R^{2} \rho / 2 \dot{s}^{2} \int_{0}^{L} \cos ^{2} n \pi x / L \quad d x \tag{A-17}\\
& =\pi R^{2} \rho / 2 \dot{s}^{2} L / n \pi[(n \pi x / 2 L)-0]_{0}^{L} \tag{A-18}\\
& =\pi r^{2} L \rho / 4 \quad \dot{s}^{2}=M / 4 \quad \dot{s}^{2}=1 / 2(M / 2) \dot{s}^{2} \tag{A-19}
\end{align*}
$$

To obtain the potential energy U, we have to integrate the net force on any elementary disc:
$(\underbrace{\pi R^{2}})(\underbrace{\frac{d^{2} \sum^{2}}{d x^{2}} d x})=\pi R^{2} E \cdot\left(-n^{2} \pi^{2} / L^{2}\right)$ cos $(n \pi x / L) d x \quad(A-20)$
area forcelunit area

$$
\begin{equation*}
=-\underbrace{\left(n^{2} \pi^{3} R^{2} E / L^{2}\right)}_{k} \xi d x \tag{A-21}
\end{equation*}
$$

$$
\begin{align*}
U & =-\int_{0}^{L} \int_{0}^{\xi}(-k \xi d x) d \xi \tag{A-22}\\
& =k s^{2} / 2 \int_{0}^{L} \cos ^{2} n \pi x / L d x \tag{A-23}
\end{align*}
$$

$$
\begin{equation*}
U=k s^{2} / 2 \quad \mathrm{~L} / n \pi \quad[(n \pi x / 2 L)-0]_{0}^{L} \tag{A-24}
\end{equation*}
$$

$$
=\frac{\mathrm{ks}^{2} \mathrm{~L}}{4}=\frac{1}{2}\left(\frac{\mathrm{~kL}}{2}\right) \mathrm{s}^{2}=\frac{1}{2}\left(\frac{\mathrm{n}^{2} \pi^{3} \mathrm{R}^{2} \mathrm{E}}{2 \mathrm{~L}}\right) \mathrm{s}^{2}
$$

From equations (1), (3), (19), and (25)

$$
\begin{align*}
& a=M / 2 \tag{A-26}\\
& c=n^{2} \pi^{3} R^{2} E / 2 L \tag{A-27}
\end{align*}
$$

We first consider the effect of the coating at the sides of the bar:

$$
\begin{align*}
\Delta \mathrm{T}_{1} & =\int_{0}^{L} 1 / 2\left(2 \pi R \Delta R \rho^{\prime} d x\right) \dot{\xi}^{2} \tag{A-28}\\
& =\pi R \Delta R \rho^{\prime} \int_{0}^{L} \dot{\xi} 2 d x \tag{A-29}\\
\Delta T_{1} / T & =\Delta a_{1} / a=2 \pi R \Delta R \rho^{\prime} / \pi R^{2} \rho \tag{A-30}\\
& =2 \Delta R / R \cdot \rho^{\prime} / \rho=m / M \tag{A-31}
\end{align*}
$$

The net force on a ring of thickness $d x$ is:
$(2 \pi R \Delta R)\left(E^{\prime} \frac{d^{2} \xi}{d x^{2}} d x\right)=2 \pi R \Delta R E^{\prime} \quad s\left(\frac{-n^{2} \pi^{2}}{L^{2}}\right) \cos \frac{n \pi x}{L} d x$

$$
\begin{equation*}
=\frac{-2 n^{2} \pi^{3} R \Delta R}{L^{2}} E^{\prime} \xi d x \tag{A-33}
\end{equation*}
$$

Since equation (33) will be integrated exactly as equation

(21) we can write immediately

$$
\begin{equation*}
\Delta U_{1} / U=\Delta a_{1} / a=2 \Delta R / R \cdot E^{\prime} / E \tag{A-34}
\end{equation*}
$$

The coating at the ends adds only to the kinetic energy of the system

$$
\begin{equation*}
\Delta \mathrm{T}_{2}=1 / 2\left(\pi R^{2} \Delta R p^{\prime}\right) \quad \dot{s}^{2} \tag{A-35}
\end{equation*}
$$

$$
\begin{equation*}
\Delta T T_{2} / T=\Delta a_{2} / a=2 \Delta R p^{\prime} / L \rho=2 m / M \tag{A-36}
\end{equation*}
$$

If there is a coating of thickness ΔR at each end, the combined effect will be just twice that given in equation (36).

(b) Torsional Vibrations

Torsional vibrations can be fully described by considering θ, the angular displacement. The wave equation in this case is

$$
\begin{equation*}
d^{2} \theta / d t^{2}=\mu / \rho \quad d^{2} \theta / d x^{2} \tag{A-37}
\end{equation*}
$$

with the solution for a free-free bar

$$
\begin{equation*}
\theta=\phi(n, t) \cos n \pi x / L \tag{A-38}
\end{equation*}
$$

the ϕ being the angular displacement of one end of the bar at any time, t.

$$
\begin{aligned}
& T=\int_{0}^{L} I / 2\left(\pi R^{2} \rho \frac{R^{2}}{2} d x\right) \dot{\theta}^{2}
\end{aligned}
$$

To obtain the potential energy U, we must consider a ring of thickness dr. The net torque on this ring is:
$\underbrace{2 \pi r d r}_{a r \theta a} \cdot \underbrace{r}_{a r m} \cdot \underbrace{\frac{d^{2}(r \theta)}{d x^{2}} \mu d x}_{\text {shear/unit area }}=2 \pi \mu r^{3} d r \underbrace{\frac{1}{2}}_{\frac{d^{2} \theta}{d x^{2}}} d x$
The net torque on an elementary disc is:

$$
\begin{align*}
& \int_{0}^{R}\left(2 \pi \mu \frac{d^{2} \theta}{d x^{2}} d x\right) r^{3} d r=\frac{\pi \mu}{2} R^{4} \frac{d^{2} \theta}{d x^{2}} d x \tag{A-43}\\
&=\frac{\pi \mu R^{4}}{2} \phi\left(\frac{-n^{2} \pi^{2}}{L^{2}}\right) \cos \frac{n \pi x}{L} d x \tag{A-44}\\
&=-\underbrace{\frac{n^{2} \pi^{3} R^{4} \mu}{2 L^{2}}}_{k^{\prime}} \theta d x \tag{A-45}\\
& U=-\int_{0}^{L} \int_{0}^{\theta}-\left(k^{\prime} \theta d x\right) d \theta \tag{A-46}\\
&=\left(k^{\prime} \phi^{2} / 2\right) \int_{0}^{L} \cos ^{2}(n \pi x / L) d x \tag{A-47}\\
&=\frac{k^{\prime} \phi^{2} L}{4}=\frac{1}{2}\left(\frac{k^{\prime} L}{2}\right) \phi^{2}=\frac{1}{2}\left(\frac{n^{2} \pi^{3} R^{4} \mu}{4 L}\right) \phi^{2} \tag{A-48}
\end{align*}
$$

From equations (1), (3), (41), and (48)

$$
\begin{align*}
& a=M R^{2} / 4 \tag{A-49}\\
& c=n^{2} \pi^{3} R^{4} \mu / 4 L \tag{A-50}
\end{align*}
$$

Again we consider first the effect of the coating at the sides of the bar.

$$
\begin{align*}
\Delta T_{1} & =\int_{0}^{L} I / 2\left(2 \pi R \Delta R \rho^{\prime} d x\right) R^{2} \dot{\theta}^{2} \tag{A-51}\\
& =\pi R^{3} \Delta R p^{\prime} \quad \int_{0}^{L} \dot{\theta}^{2} d x
\end{align*}
$$

$$
\begin{align*}
& \text { - } 39 \text { - } \\
& \Delta T_{1} / T=\Delta a_{1} / a=4 \Delta R / R \cdot \rho^{\prime} / \rho=2 m / M=1 / I \tag{A-53}\\
& \Delta U_{1}=-\int_{0}^{L} \int_{0}^{\theta}(\underbrace{2 \pi R \Delta R)}_{\text {area }} \cdot \underbrace{R}_{\text {amt }} \cdot \underbrace{\left.\frac{d^{2} \theta}{d x^{2}} d x R \mu^{\prime}\right)}_{\text {shear/unit area }} d \theta \text {, } \tag{A-54}\\
& =2 \pi R^{3} \Delta R \mu, \quad \int_{0}^{L} \int_{0}^{\theta}-\left(d^{2} \theta / d x^{2}\right) d x d \theta \text {, } \tag{A-55}\\
& \Delta U_{1} / U=\Delta c_{1} / Q=4 \Delta R / R \cdot \mu ' / \mu \cdot \\
& \text { The coating at the ends, again adds kinetic energy only } \\
& \Delta T_{2}=1 / 2\left(\pi R^{2} \Delta R \rho^{\prime}\right) R^{2} / 2 \dot{\phi}^{2}, \tag{A-57}\\
& \Delta T_{2} / T=\Delta a_{2} / a=2 \Delta R / L \cdot \rho^{\prime} / \rho=2 \mathrm{~m} / \mathrm{M}=21 / I \text {. } \tag{A-58}
\end{align*}
$$

According to these simple approximations the corrections should thus have the same fractional value for all harmonics of a given type of vibration.

:.....

UNCLASSIFIED

ONCLASSIFIED

DCCUMENT ROOM

REC. PKom "とd esyp.
DATE … ... 4-8-4/9
REC.

