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Neutron-Deuleron Scattering At High Energies

J. Introduction

The value of the n-n cross section at various energies

is of fundamental interest to nuclear physics because of the

direct bearing on the question of nuclear forces. Unfortunately
it is difficult to obtaln direct experimental evidence about this
cross sectidn, The method of using two beams of neutrons can not
yileld results because as yet we do not possess beams that are in-
tense enough for thls purpose. Thus all our information about
the n-n cross section is limited to that obtained by indirect
means. The recent development of 100 Mev neutron beams by vse of
tre Berkeley 184-inch cyclotron permits such an indirect way of

determining the n-n cross section at high energles.

The fundamental idea of the Rerkeley work may be describesd

as follows: At high energles the n-d cross section shculd, in
first approximatlion, consist only of the sum of the n-p and n-n
cross sections. This is based on the assumption that at high
energles the wave length of the incident neutron is short compared
to the inter-nuclear distance between the nucleons in the deuteron
and that the energy of the Incoming neutron is very high compared
to € , the binding energy of the deuteron in the ground state., In
this aporoximation the difference between the n-é and n-p should
then yield the n-n cross section. Tndeed such experiments wers

carried out at Perkeleay by Cook, NMcMillan, Peterson and Sewell1

1
L. F. Cook, E. M, NcMillan, J. ¥. Peterson and D. C. Sewsell,

Phys. Rev., 72, 1264 (1947)
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wlth‘QO Mev neutrons. Their results may be summarized as

follows:
Substance: Total Cross Section in barns:
D 0.117 ¥ 0.006
H 0.083 * 0.004
Difference (n-n) 0.034

This shows a large discrepancy between the inferred n-n and

the measured n-p cross section. In consequence 1t was thought
desirabls tn examine just how accurate it is to consider the
n-d cross section as the sum of the n-n and n-p cross section
for 90 Mev neutrons. The present thesis in an attempt to esti-
mate these correction terams.

The correction terms will be due to two causes: finite
binding of the deteron in the ground state and interference of
the waves scattered from the t{wo particles in the deuteron. 1In
order to see whether these correction terms are negligible lot
us examine some relevant quantities occurring‘in the problem.
The relative wave length of the incoming neutron, or what may
by regarded as more significsnt, this quantity divided by 2n
turns out to be A = 0.5 x 10 %m. On the other hand the
averuge "radius" of the deuteron2 in the ground state 1is

approximately 4 x 1013 cm. Thus we see that whils A is

2 . ’
Estimated by following Bethe and Bacher, Rev. of Mod. Phys., 8, 4
112 (1936) in setting thls radius equal to 1/a where o = % /(ve) %



small compared to the average separation in the deuteron,

it is by no means negligibly small., The corrections due to

the binding energy of the deuteron can thus be expected to be

of the order of magnitude of the ratlo of € to the neutron energy,
i.8., the order of a few per cent. It is difficult to form an
off;hand estimate of the correction due to interfersnce. How-
aver these rough consideratioﬁs tend to indicate that 1t is worth-
while to calculate the correction in more detail.

Ve shall attempt to set up the n-d scattering problem
in such a way that the total n-4 cross section divides itself
naturally into three separate parts:

1. The scattering of the incoming neutron from the

proton bound in the field of the other neutron.

2. The scattering of the incoming neutron from the

neutron bound in the field »f the proton,

3. The interference term.

Since the energies we w!sh to consider are reasonably high we
shall calculate our cross sectlons by the Rorn approximation.
While it is realized that at 90 Mev this is far from ideal it
should serve to glve some idea of the correction,

In order to effect the separation into the scattering
from the proton and the neutron it will be well to retain the
laboratory system of coordinates as far as the description of
the three-particle system is concerned. This does not of courss
preclude the frequent use of relative coordinates betwean two
particles of the three-particle system.

In the next section we shall consider the simplest




cas?, namely the case of Wigner forces, ignoring the effect of
the Paull principle operating betwken the two neutrons. In tnes
usual calculation with the Born apprroximation we should expsct
to represent the final wave functions of the three-particle
system as that of three free partlicles., In our case it will te
necessary to consider the final wave function as made up of ths
product of the final free-particle function of the scattered
neutron and the wave function of a very highly-sxclted deuteron.
(Actually it 1s seen that we really use a modified Hamlltonian
in order to work with a free-particls wave function, but this
b8 only a calculational sinplification.) The modified plcture
will Insure that we indeed describe the scattering of the in-
coming neutron from a bound particles, even though the tinding
alfter the collision 1s essentially negligible.

In sections ITII, IV and V #e consider the modifications
Introduced by more gsgsral nuclear forces gﬁe.also the inclusion

of tlie Paull principle,




II. ‘Nigner Forces Without Pauli,Principle

We shall choose to designate the three particles as

indicated in Fig. 1.

Fig. 1

SN
{ e \

; 2. neutron
I
. : |
3  © i

incoming 1 roton
neutron R

TR P o . Deuteron Al /ér X

Thus the coordinates of the particles in the laboratory system

are designated as ry, ro, and Tz respectivelys. We shall further
Introduce relative coordinates between particles 1 and 2, that 1is
let:

r=r_-r (1)

R

%(r1+ r,) (2)

Further introduce the following momenta in the laboratory

system:

— before collision: p,
Incoming neutron —_—
after collision : p

Deuteron: " before collision: zZ8ro

_— particle 1l: p!
T~ particls 2: p"

after colliision

SWe shall omit to make a distinction between fhe_writing of
vectorlial and scalar quahtitiss since the particular symbol
in question should be clear from the context.




o

Tt will be useful to introduce the following combinatioqs of

momenta:
Py = &(p'-p") (3)
— [} L
Py= P' P (4)
These momenta will be recognized as thoss associated with %
coordinates r and R respectively.

We define ’01(r,t) and 9bf(r,t) reapectively as the
initfal and final wave function of the three particls system.
Further Ep and E; are total final and initial energles of the

,&&gstem. We shall have no occasion to use Ef in explicit form,
. ’\r"

but, ws shall make use of Efo; the final ensrgy neglscting the

energy of binding between particles 1 and 2. Thus we have

o= _L. (.2, ,'2 "2
Bpm=on %+ p %+ p %) (5)
2
$ E, = Po” _¢ : . (8)
! 2y s e

Now let us develop our cross section, using the usual fims
dapendent peturbation theory. In this ssction we shall neglect
the Pauli principles; i.e., we shall not antisymmetrlze our wave
functlions. Furthermore we shall neglect treatment of the splin,
The nuclear potentials shall be assumed of a stralght Wigner type.

4

Now we have the time dependent Schroedinger equation® which states

that:
1R (r,6) 2 (Havpq) P (r,t) (7)

4
Of course r is here used to denote a general spacial coordinate
and is not the r of equation (1).




Here H 1{s the Hamlltonian corresponding to the kinetic energy
of all three particles plus the potential energy hetwsen particles

1 and 2. That 1is

o= 12 v v 2
= T om (v, + 2‘1-V3 )+ Vpplry-ry5) (&)

The quantity Vhq which is made up of the two potential energles

Vnp(r,- T'») and Vpn(rg-rz) is regarded as the perturbation in
equation (7). Now let
@ (r,t)ze VBG4 (9)
. q?hen A , . :
o~ /uzh(r,h) = -%\ 1/ Ht’ﬁhd e-i'/hm'fé(t) (19)

Thus in first approximation this integral equation (10) has
the solution

t )
5&(?’”:%1(?’“ -% f (.‘.‘i/-l:1 H{t-t )Vnd;éi(r’t')dt' (11)
4

o]
where

@y ir,t) = o-i/BEt ¢1(p) (12)

Now let us ask for the probability of finding the system at the

time t in the state "f". This probability is then given by lbf]2

where

be = (Yp, &) (13)
Thus we have from equation (11) and (12) that

- 1/h (Ep-Eq)t t
b.Ze 72175 -1 -1/RE.t
'y 1, P hﬁ (@0 r

C/BEE-ED, e U/RE g g

’

since 962 and géf.are orthogonal functions and H 18 a Hermitian

opesrator we may write:
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: bp = - %(¢r,vnd D) /t o VAEr-Eptt o, " (1s)

vl S A °

¥ o - t

e o . b’f - %( ¢f,vnd ¢1) f e*i/h(Ef“Ei)t' dat!' (18)

Fo ' © (Eqs16 is identical with Eq,15 and
: and finally | was included inadvertantly)

2
log]? = 2 | (Pe lvnal 1) |

=y - > > (1-cos(Ep-E4)t/F ) (17)

Form this ws then develop our cross section in the usual manner®

and we find that

v 2 2 |
° nd (po/M> }: /| (¢f [ Vna| ¢1) (’Er 5(Ef-E1)dEf (18)

whers in equation (19) the symbol V dsnotes a large volume to

which we normalize and p as usual denotes the denaity of states
f

with energy Ep, i1.e., in our case
5->—> >
Pp dB, =V dgdy A% |
; 5 (19)
h ,

Now let us write the & function in terms of its integral

representation and we find that
VN
o z ——
nd % Po

where

. 3" N .
v 2 t* (E,-E,) )
Tz F/I (Be|Voal & 1.)| o 71%aA agagidpn (21

‘Thus we may write in symbolic form that

T :\/‘g’ (¢1 lvnd’ ¢f)(¢flvndl }51)01 " (Ef'Ei)d}., (22 )

© Ses for ingtance Veitler, "The quantum theory of radlation",
2nd edition, page R,
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Thus | : ' - : ‘
/2 (Byltg o B0 (Pe|Tnal B0

- Now sinqe the yéf are a comnlete set of functions we may replace

them by any other complete set, say}éf . Here the st are eigen
functions of the Hamilton operator H_, where H, 1s |

‘ L2 2 2 2
S e v +V
H S = B (V) + Y, 5 ) (24)
~ Thus H becomgb
(25)

H=H + Vnp(rl-re)
and equation (23) may be written as

= [ (P Vaa| PiPL [N P Po° | Vna|P0)
f.k LA g, oo

Now the’following theorem is proved in Appendix A:

.(e A+B)aa' - (e A)aa' + (B)aa' ( e ) (27)

Where B is small compared to A. Now
1’\H Fo) i,‘Ho'*' ix V12
« $.°1 | #:° = (e e (28)

where we have abbreviated Vnp(rl-rg) by V12
We know that Vyp 1s small compared to H, since we assume a high

momentum for the incoming neutron. Then by (27) we have

(B0 et xH‘?Sfo)-.'(5?5k° | e?*Fo| B0 )+ (2,0 |1 Wy | P1°)
S8 EO 1 2Ee° (20)
i x( 1 O~ EpC ) '
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_ However the céntribution of the last term to (29)

comes only from those portions where E °~ Ef° and thus

k

(¢kol ei’\ H l¢f0): ( ¢k0 'ei,\ Ho(l 15 Vlg)l ¢f.0) (30)
Now then

/2(751 and‘ ¢f ) ( Pyo l“‘”“’m)"ndl Pyret? (Bro7Ee) ),

By assumption, which we made at the beginning of this section,

we may permute V12 and Vnd since neither of them lnvolve space or

epin operatops. Further 2

2 v
= - - 12 .
V12 ¢1-( € ?‘i———ﬁ—“——) 751 ‘ (32)
So that ' '
2
T= fE(stx\Vndl ¢r°)(¢'f ‘Vndl{l 0 2V12 }¢)
M 1
2

However, ths operator V&Q does not commute with Vnd and we

must examinre T when Vnd s split up inteo Ites separate teprms,

.Recall then'that

2’ | )
') o V
nd npvnp+-vnnvnn-f Vnnvnp-+ Vannn . (34)

and split up T and nd correspondingly inteo
T=T, +T_+ T 4+ 7 ° 5
a7 "7 Te,at T, | ' (35)
and

Ond:\JA-P-)B-t'JC,A“"U C,B (36)

_ Now let us concentruate on aA. From equation (33) we see that

this invélves the matrix elemgnt




Z .
L:(ovl, 2 v ,
A ?% { np (1-1n [64~;§:%~l§- ) 951) . (27)
For the avalustlion of (37) we now note that LA can be'written in

terms of tre coordinates ry,r; and (rl-re); r as
w»

- 1 -t/H (py-r+o-r N+ 1/ Rp"er: + AN,
LA- 3372 ‘d/"e 27 5 Vnp(rl"r3')0 ot

2 .
-1 ( - he Vie )| X (r*)dryt dp.'dr'(34a:
€+ Y A 1 N

Performing partial integration with respect to the coordirats p

we get
L = & 1-1 % ( P2 /R (Perat 4 pler; ty pMappat)
A V‘}/2 6+-7—-- & 2 1 2
!.. afl
Vnp(rlvcrav)e‘i//k pO"'S'Ax(m »l_r-?')‘
dry 'dry 'dr, ! (bg?{
Since only small values of % contritute to {31) because this
expression {8 oscillatory for large values of % we may make the
Following replacement A% (39) P
pho p"e

1-1’(6‘_*_ )9 e‘li( €+T ) | (QC)

Then TA becomes in virtue of (31), (39), and (40)

o o— V71 =1/h (P’ +0.r2)+ 1/R p". p
NN AVA LT R ngteyory)

+1/h(p .r'-p".r' 2 Is - [
& I8 i l) 2f(r)drdr1dr3 . §H~(p2+.p ‘-pf2~p02)4
dA dp dp' dp" (43 -

Denote by {p (p") the momentum tranafarm of X (r) 1.e., 1mt
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‘ - 1 ", . .
¢ (p") = = fe”/?”’ ¥ x (r)dr (47)
LI ' hqlz . .. . .
b - :
* ther (41) and (20) may be written as follows:
e - ¥, ~1/% (p.r=+ p! 1 -
N g = . I + | P « 1
e/ U o Pt Rty (o gy 18 (o)
. 2 (o™ |2 e 122, .2 n2__2
| dry drg ‘Cﬁ (p") l e Sy (P<+p!<-p""-pg )
’ dA dp dp' dp" ‘ (43)
Now let us call - pﬁj@pd}Athen~w§<get - e :

M / . ‘
R R -1/% (per ', -}:
" A hgpU J[wae /B {pery+p r.1)Vnp(f‘l-r‘:s)e'*ﬁi/ (Poery pgary)

dry drs, l@(Pd)l o g (p%+p'2-p4R-p 2)

dA dp dp' dp" (44)

On the other hand consider now the collislon of a neutron of
momentum p_ with a proton of momentum p". The crose ssction for

thls process may he written as

(p.~-pi)z ) ' -i/t,(p.r-+p'.r ) '
¢ np'Po-Pyq) % helpo-deWF“/wa e S 1 Vnp(rl-rg)

+1/% (Pgela + Piury)
e 03 ¥ Pq.11 dr, dr 2
3
i 1o s
e 5% (p24p Cwp Zap.2
2N (p<4p ' =Po ~Pgy )d]\ dp dp' dp" - - (45

Hence we may express ”A as

- ]p -pdl o 2 -

Note that equation (46) is Just what we would expeot from

physical reasoning. It 1s the average cross section for a
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mean of neutrons with relative momsntum Po-pg relstive to thre -
proton with an average relati?e momentum of Pye The distrikution
of P4 is just that of the momentum of the proton in the deuteron
as we expect.

The techniques In evaluating s are exactly the same
as those wusad in obtaia}ng equatig&”(46) for O pe T™his 18 so

. ~ g S :

since we are nerflecting snin prcpértlies and so there is no in-
herent difference between particle 1 and 2, Hénce we shall not
give the detials here of obtaining “ ey but merely state tre
result which is

&
K - lp -p l 2
R —/""2'5';(2—“' Gnrl(p()'pd) '<I> (Pd)z& d —;d (4*.’}

squation (47) 1is apaln the result we would sxpect from phyatesl
reasoning,

Before simplifying (46) and (47) for very high P, we
shall first turn our attention to the cross terms. First note
that there {?'a relstion betwesn .4 C,P -
purpose look at T In the form of equstion (22). Splitting up

and o For tlis

Vnd= Vnn*'vnp in (22) shows that the twc cross terms are just
complex conjugates of each otker. Or that '

' + ¢ = fog
“c,a c,B 2Re 7, (4€)
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Thus we shall examine only IR We find that
3

S ) ’ . O
TcyA '«/f %: (551 annl??°>LA ol “(Er-Eg) 44 (49)

whare LA 1s given by (37). Ry performing the steps analogous

to (38)-(40) we find that

Ts, :/ ‘;‘ KMe %Q“(Pew'e-?"g'%e) d A (50)
where

K= A(Dy Vol ) (51)

M= (Pelv | B, (52)

The important step in solving the cross-term is that of treating
K and M separstely at this étage. In other words in K the

coordinate r' is "extraneous" and we must eliminate it. In M

ths coordinate ro 1is "éxtraneous" and must be eliminated. In

particular then we may write XK and M as follows by making use

-of equation (42}

= —7—h3/2 -1 ! | ' nl.
X = v5 > /Ie /hpotrs Vnn(rzv_r"s')e'*‘i/i:) (P.r3’+[P +p] .ré )
. . » "
@ (‘P') 'drz' drs' c (53)

3/2
h [ 1]
M= .m‘r /e'j/-}—l (p-P5+ [P + p'].rl)vnp(rl'rs)‘;i/?ﬁ pO'rs
<p (+0o") dridry (54)

Now let us Introduce the followling coordinates




PR
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RV

- ™ -
31 - rl--l" rl - 84
32 = ré-r' ’ t Py I 8,-9q
33 = Ps_p‘A .o p',; = 34"85-81
34 = r, .‘ J . ré S 8,-85-9, + 32 |
Thus we got

C,A nn" U2

& i/% (p'+ p")(s 'sg'sl"' 32) ~-3/% p, (34-31

v (sl)e* ’/-h p°'(34 gl)
np

@ (-p") @ +p")o

‘._ | ,.  dsy da, ds;5 ds, dX dp dp' dp"

g .Y.'_h__. - +1”h 0(8 -3z-
T T 5 ,ﬁo hpO‘(sfl %3 sl)v (s5) /R Peli8gsgmsy)

(55)

‘i/'h (p + I’") %4

,)'2 n2

Q
(p+ -p"%-p,”)

(56)
Integrating over Iss and 34 wo 8°t
- Vo® " 1/'}'1(13'*1)")(82-81) {
TC,A- W d (po-’)-p'-p ) xm(82' p'sl)
% ‘ ]\ -
2 n2 2
(-p') (+p")e —*92 p12.pn2p 2) ’
P _ $ 2 | T o ds, ds, dA dp‘d;‘ 4,
. v Y (57} -
Integrating over dp wo get :
: = vih6 ; 1/h(p +p")(s -sl ( )V (sy)
C,a” pWE ST 2" "np'f1

. N
D (-p') @ (+p")e m 2<P"‘-pov(p +;o"))dsl

Now the @ 's mesm that onl very small values of p' and p

will give a contri(bution, i.e., to ?lrst order ws have

i
|
|
i
|

ds., dA d_ 4t 4"
2 P

P p
(sR)
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o= 17 -
3, Mn6 "
T E'Q'Q“T f v (85)V, (s)) cp (-p) D (+p)
(52)
¢ (p'2.|p,) lp +p"| p)

-» -
where/u 1s cosine of the angle betwaen P, and p' + p" . Since

-p
p'+ p has no preferod direction We mayaverage over i . This yields

3

T fv (s2)V,5051) &' (-p1) @ (+p")

C,A
(60)

S (ulpg| [P+ 2" -p'Pae

Performing the integration_over_d/u we got

* - > - - -
_ V3 wn® Von (820 Vnp(81) @ 7(-p") & (+p") &3] dip apr o))"
o Y [Po| [P+ "] (61)

Now one can easily show that

i/%h (p'+ p") . ' “
/e / - aF = ”h-—w—-' (62)
re ‘ - e+ p"|
but :
- 1 1i/% p.r ‘ ,
x = *> 63
(r) —37E \/ e ' _ .:(I)(p)dp ( 4)
hence ' ’ ’l
3 6 e
- ¥° _¥n 1 3 {g >
. = L () n (ann(sg)Vnp(sl)dsl as’p)
S i) X (r)af
r.2
How let us assume that V 5 and V np are related b] a simple
nunerical constant.i In partlcalar let
Vnn = k1 Vnp . o ' (65)
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|
we&

. thei,notice thatJ/Vnpvnp can be expressed as proportional to

b .

o d °n

an g=0. This ts 8¢ since if we write - np(O) as
+1, i (, O - d dn
shortkand for ¢ (0} - a_._ﬁ_E'_ =0  tren
-2
- 2y > —-

Wotlce furthor what the significance of the last part of (64) 18;

narely that

Agf#} _ ey

f X(r) X (AN (:1—,:) (67)
2 r<

r

where the bar as usual denotes an average. Then we may combine
gll thke foregolng to wvite’
9 .= 1
AT pon —] < ¢ 68

which is of the form of a deuleron momentum squared over the

Incident momentum sqQuared multiplisd by a cross section. Lsater

we shall notice that this is typical of the form of the correction

terms we are lookling for.
Now let us return to the equations for Gk anid ag
{equation (46) and (47)) and simplify them for the case of high

P, with which we are concerried. Thus expdanding equation (46)

arcund Po we have

-1 -
OA- Ipo'\/‘{‘pOl dnp(po) -~ Pg - Vpo (poonp(po))

1
+ 3 (pd..vpo)2 |p0| ¢ (po)+...} lq:o (pd)|2 d;ﬁ (69}
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Since pd has no preferred dipeotion, tte second term of (69)

%;j Iintegrates to zero wnen the angular 1ntegration fs pepformnd
VoL The other terms yleld .
| = a 2 (1) - v, (; ] (po)
s “p= ¢ Py) + pgc (5= - 4 P po 9 np po t..,
where ;;é denotes as usual arn average of pez : We'may simplify
this exp‘ession by the use of the standard relation concerned
with the Laolacian. Thus ;
L o -2 " 1 ,.’f.i a2 P
" Voo CIpol o pN) =T 7S = Aepo® 3(05)) B (71)
o o ! dp, . -
and hence ' : ; :
1 ;;5 42 2# ‘
VAS np(po),+ I3 -3 5 (po”©, o np(Po) (72)
Po< / dpo -

Now we may re-express the second tefms of (72)‘wh{ch we may call
& np+ Plfferentiating out we find ; i
— : S
- 1 [p42 4 s, (p,) - d4°
snp = 6 (- o {2 “np(Pe+ 4py 1D Pol 4oz L2 nplPc)
Po : E ¢ Py Lo A py2

Thus we need to consider whether we can re-expresa 3. 8s an

angular'derivative at the energy co#responding;gg Py. Indeed tlils

. can be dona.: Conslder §3§%?1~ which is given by
g o). °
du + ~_.
do (8) . /' V(re 1/1‘-( o P);_' 4> {74}
dn . L2
ls} .
Thus If for the sake of brevity we call . i~g-

d.ﬂ. =S¢ (@)
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Ay
jf«r‘l ! N g g
- and let x denote tre cosine of the angle between p and p,
A o ‘
: : a(x) = flp,<(l-x)) . (76)
o sad B o |
b | 1
. N 8'*/ o(x)dx (77)
- '
-1 _
hernce
o1
d ¢ o de {x :
- d o)
ol B e (78]
-1
but . .
dc X ‘-— X LAY . :
AL = e, () £y w79
whereas
T T (-DpgPr (80)
and thus
Pt A ) .
- dg(x) - 2(x-1) d s (x) (81)
dp, P, dx
so that
+1
.35’ = gn iégll e . (82)
O o) .
-1
or
ds - =22 2%
B S 4ol (e3)

If we substitute (83) into (73) and do out the tndicated operations

we find that
np 3 0.2 np e (84}
o) d /
p0
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Now wo still have to re-express & “npl™ ) ; which is easy

d Py

to do. From equation (76) we have

o (m) = £(2p,?) (85)
tﬁus

EDens ISR (86)
but from (80)

23%151 = -1 = -902 £ ‘ (87)

or

(88)

(e9)
X==1

We may then collect our two alternate expressions for the

dp, Po dx
xz -1
Thus finally

i

§np
o

(PdQ) {? o o do,
5 2 o ! - . p

case of the nd cross section with the assumption of Wigner
potentials and neglect the modificationa introduced by the
Paull principle. From equation (68) and (72) we get

2
o = o + o +l pd da
nd np nn 6 -5

————— 2
p02 dp02 (po ¢ np)
+ % (Pde) a2 .
POQ d902 (pg onn) (90)
+ '5‘;2 (r) (“’—-zr‘d ) a np(O)
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Alternately from (68) and (89) we get

- 2 pd2 a3
] = ¢ + o 4+ £ 2n g (n)-27 .4 np
nd np nn 3 (poﬁ) ne ax

2 2
t = (.p_g_){gnc (fx)-2n,4d"’nn
nn <=

P2

k 2 -~
1 h 1
P — a .
902 ( ] ) (I‘i ) O?p(o)

xz -1
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I7I. Wigner Forces with Paulil Principle

Tn this section we shall consider how 94 is modifled
if we take the Pauli principle, pperaping between the two neutrons,
into account. For this purpose it will be useful to redevelop
the cross sedtion formula in a manner different from the time
depenident perturbation theory presented in section II. If we
followed the method of section II we would find difficulty in
exhibiting which correction terms are of order higher than those
we are interested in. This arises from the fact that it is not
until a late stage of the previous method that we made use of the

fact that Vo is small compared to H. In the “reatment here we

shall make use of this fact as early as possible.

Let us therefore develop our formula from a stationary
state perturbatlion theory. Any wave functlions will be understood
to include a spin dependentipart, but we continue to take the |
potentials as spin independent. ‘

Let

%,:e-i/h(Ei-l-ié' )r,¢ ' (1)
1.e.,§é describes the wave function with the time supressed.
Here € denotes a small imaginary contribution to the enerzy Ei

and eventually we shall let g'go to zero. 1In essence then E'will

serve as a convergence factor in our integrations. Thus

(Ei-*-ig Y= (H+V 4) P (2)
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Thus symbolically

@ = : P (3)

. If then we add the solution 951 of the homoageneous eguation

corresponding to squattion (1) we get

Ei‘H'*' te

If we set ¢ = ¢1 in the integral eguation (4) in accordance

#ith the Porn approximation and split up H into Ho and V12 we get

¢: ¢i+¢sc (5)

with

1
pt e, V
¢ - T _u _t nd 91 (8)
sc TR J12-+ 1€

If now we expand for V12 small, Lhen

| - 1 1 1 }
- - + == =
P sc {51-H0+ 1€ Ej-H  + 1€ Vio E(-H + 1€ Vid ¢1 (7)

Thus we see that 9630 gets broken up into s maln term and a
correction to 1it.

Now examnine the comnutablility of H, and V1o‘ We know that

(V. -V _BY = (E-E8E"Y (V

o 12 12 o’'mg! 12) gm (8)

where E and E' are eigen values of Hd‘ Now if we choose any

model for Visy (say a Yukawa potential for instance) we see at
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once that (V. ) is only significant when (E - B') Py .
12°gr! = 4 Nl

Thus [Ho’ Vle:] is almost but not qulte zsro., Consider now
however that V12~occurs only In the correction term of (7). Thus
the non-commutability of Vio with H, 1s only a correction to the

correctlion term. Hence we shall ignore it in the anproximation

A§:§kWhich we Yo working. A

Thus

1 1 .
= = = 7 (9)
¢sc Ei'Ho + 1€ { Vg ¥ Ej-Ho+ 1 € VigV nd} ¢1

For the purposes of thig sectlon we have assumed only Wigner
' ' £\

potentials so that V12 and Vhq commute. Furtner Ho, and Vpg
comnute as far as the second term of (9) 1s concerned Wy .an

analagous argument to that pressnted for V12 and H, above. Thus’

96qn becomes

- 1 1 A |
¢sc' Ei'Ho ¥ i¢e Vnd { 1 + E-mi"‘o"' iz V‘L'Z}sti {19)

Now we may set

V12¢1 = (=€ -1,) Py (11)

where Tlé 1s the kinetlc energy operator corresponding to the

potential operator V12. Now re-sxpress 961 as a superposition

of plane waves. 'We have

91/13 | J U

o1
¢1— vz X (r)-ry) ’ (12)
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thus 1/5
; Poer
¢1 = -%3 - h:s;e - fei/h pa-{r1-rz) ® (pglaz;  (13)
hence .
T1e ¢1: T, o(Pa) ¢1 (14)
shere . .,
NI (15)

Symbolically we may write

i r,-r
¢ - Z ame /h pdm( 1 2):Z¢ (15)
b m‘-:l‘s'.‘ m im
then
1 Ti12{pdm} + €
¢:ZE-H+1?VN{1' : s (17)
sc m 175, Ei'Ho + 1€

or permuting the order of Vnd in analogy to the previous

_argument we find

- 1 - Tio(pPdm) + €
¢sc- ; { 1 - 12 } Vg ¢1m (1e)

Ey-H, + 1€ Ej-Hy + 1 €

Now let us remember that Tl? 1s small and furthermore call6

- - O
E; = E:i - € (19)
then we see that
m E,°+ Tle(pdm)-ﬂo-+ 1€ n n .

6 '
The notation has been chosen in consistency with equation (TI-§).
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and so

- ~1/H(Ef + 1€ )t
P e : B (21)

Before proceeding to develop the Pauli cross section it seems
desirable at this point to develop the non-Pauli cross section

to exhiblit agreeﬁent with section II. Consider then what the
steps are from here on. The probability of finding the system.
in a certain final state "f" where the deuteron is disrupted and

all three particles have certain definite momenta is glven by

,bf,2 = |« #4° %lsc)lz (22)
or
€

2 2
‘bf' - e iat | @0, Do) ]| (23)

Thus the total transition probability is given by

2 2€ t
w:‘-aé-g f l( ¢r0’ Sbsc), /OEr e & dEr (24)

and thus
1 v\ o 2 2€¢
“nd -8 ZI: : (po7M) dgfﬁ( ¢f‘o’ ¢sc)l ',‘OEI‘ e h dEg (25)

The insertion of the extra factor ?5]; .5% merely expresses the
fact that we must average over the six equally likely initial
spin states, which are discussed more fully in Appendix B.

Now at this stégefwg break up V4 as in equation (34). Thus we

get
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EE

LA

=1 3 €
As 1 (p‘—v';ﬁ) Qii fl( P 1 =
g m Ei'9+ T o(pam)-H + 1€

2
np(F17Ts) ¢im) l P, 4B, (26)

Examining the matrix element we note that the momentum of

coordinate ro does not change, 1i.e,

Pdm = P" (27)

then

|(Peo, T » np (7y 3)¢1m)' (28)

'm E, 0+ 1o (Pam) -F, +1&

2
’( f o ¢i) , E,° : ")-E° +1€
now ‘we know that
1im € - .
then
2n o 2 o
%a° % PO/M> k/|(¢ Vo B s e By-m p00m)
. r
or lastly
1 Z: ( 2 n l( oy 96 )l 2 (pQ*_p|2;gn2¢D02)
=8 T 5 /™ e £ *'np 7y 6 en '
dE 31
et (21)
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in complete agreement with the result of section II, except

‘that the wave functions here inclu@c a spin part. We must now

examine 1it.

In sectlon II we proceeded from the analogue of (31)7
by reducing out the extraneous coordina§e ry. Thus we must here
reduce out the sxtraneous spin coordinate So as well. This

operation procesds as follows. Let

t
bz PN (32)
where?? denotes the spin function of a three-particle system

which is described more fully in Appendix R. Theh call I" the

wave function of a two-particle system and say that
1
r'=Te& (33)

wheredﬁ is the spin wave function of a two-particle system.

Then by the usual steps for the space part we gets

o = & Y -~ )
Lo 8 Ei:l;:(Po/M EVALLE AN Ty7,) ®
‘(P (p") l % (p2+ p'zr;P"e-Pne >pEf dEp (34)

now however we have proved in Avpendix B that

7
namely equatlions (II-41) and (II-43).

8 .
In equation (34) the symbol %: denotes summation over the final

spin states.
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1
so that indeed
-’-42( ) afl (T (p, p')lv [T(po -p"))l2
‘(p(p") l2 P24 p'2-pt2.p,? ¢ .. Ed
E £
M £
where the 7 2: exnresses the fact that we must average over
i
the four equally likely initial spin states of a neutron-proton
system and again by the steps outlined in section IT we find
o :/’ | Po-pal 2
A \ ‘ Po ”np(po-pd) l@ (pd)l di;; (37)
279y
similarly we could without difficulty carry through the same
procedure to evaluate o pe Now coordinate ry is extraneous and
in analogy to eguation (27) we get
Pgm = p! (38)
and the entire procedure carries through l1ike that for Ok.
When we come to the interference term ws tan write 1t
1 'V') 2 €
= 2Re =
°c,a % O-C:B 6 ; (po/M Ny
/(¢ ’ L Vap(ry-rs)
f m E4O+ T 2(pdm»-ao+1€ nptt1lThs ¢1m)
(39)
(¢O’ 1 v ( .
PA=
n E1°"‘T12(pdn) H_+1€ nnifers) i)
( dk
QE' £

o
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thus the first matrix element ylelds

NE L -
. {}3 ‘ﬁ Pam = P" (40)
'{T‘ whereas the second one ylelds
. |
:;:é | Pan = p' (41)
o ~. waich at r2§§3 sight ;§§Ei.to preggﬁéhcomplicatioqs. Recg%;
however that the interterence term s of the order of a correction
term; thus we may make approximations in it without changing 1t
to the approximation in which we are interested. TIn particular
set
§
' | Pam = Pdn ~ (42)
- than

21

1 Vo
=2 Re ¢ ( AT )
o, A + a-C,B 6 ? Po/ W ¥

Vo
(@] o) ) 2 2 2 2

2M

5 B (43)
£

which 1s in complete analogy to the formuyla obtained in section

II. The only difference from here on in the treatment of ¢ A-+rzc P
’ ?

compared to that in section II is that of the spin which needs to

be considered here. Since the potential is spin-independent the

spin sum in operation is
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213;5 @ 1] 2@ 1] 70 2 & 4?(7?111]771) (44)

But the sum (44) is Jjust unity. Equally well ‘the spin sum

which appears in connection with ¢, (0), namely
np

1
ZA‘,ll.%(éfli]éf)(éi]i[éf):l (45)
thus we find again that ‘;%k iéﬁ% |
N + a = kl h2 'I |
C,A C,R -{)-;2 (—;;) (;g—-) C‘np(o) (46)

Now we are ready to exhibit the effect of antiswnmetrizing the
wave function 55 which we shall denote by 96 When we perform

this antisymmetrization in particles 2 and 3 we get

~J

R 1z 13
B = -;/:2:[  (3,12) -¢1(2,‘IS)+ ¢sc(3,T2) -¢sc(2,13)] (47)

where the bar denotes the particles in the deuteron. The fact
that the normalization is indeed l/wa to an approximation cone
sistent with the solution of our problem is proved in Appendix D.
That equation (47) fulfills the condition we require of
it 1s well illustrated when we consider the asymptotic condition.

Consider the case when neutron number 3 is at Infinity. Then

D ~ —7_ [gbsc(:s,'fé)- D (2 )] (48)
or 95 ~ —Ee [?é (3,12)- Tos fé,ﬂ(B,T"{]

&l
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But Indeed (48) 1is alsc fulfilled for the limiting case of (47)

with neutron 2 at infinity.

" 1 1
D= —— X ——y . P
s¢ V2 m | El°+T12(pdm)=IIO+ e ™ im

1 1

I, Y ——s =
Ve 2% E + T o (pgy)=llo + 1€

Voa Prc (49

Then we must examine this for the potential split up as befors,

Take first the Vnn part, i.e., the one belongirg to o pe We

have found before that in this case
now examine pdk;.here we have the second term of (49) gives

1

- v -
lp\:\ E{®+ T15(pgy) -Ho+ 1€ nn(Tpory) (Tpy Byy ) (51)

now

1/ py.ro 1
Ly B~ o 72, /B Pak(r; -ry) (52)

o}
Then on examining the matrix element formed with 9éf we see
that the momentum of coordinate ry remains unchanged, just as

in the non-Paull principle case, Herce

pdk: p!' = Pam

Thus for the n-n portion we effectively have
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AN g = ) o) - =~ (1 = I,,.)V ¢ (54)
";D /" se,B m Ef + T(p")-ll,+1€ 23’ 'nn 7 im '
’L\w or In the same manner as before we [ind that
i
e 5T g L (B, (1- IQS)Vnn¢1)'
1 07?!

Eu;:’ 2 2 2

2, p"C e

5 ( p 7 PP > £y dE, (55)
2 M £

Now let us reduce ( Sbr? I (1-123)Vnn| ¢1) further. For this

purpose take the first termwith the "1" in it. This clearly

yields
+1/% (pyeTz=p'.rg)

32 r _1/% (p. ",
n [ TS LA

Ri(s) @ (p') drodry (58)

where (P denotes a momentum wave function as usual.

The term with the 123 written out yields
1 -1/B (p.rg+p'.ry+ p".ry)
' 2 7
- Vx:) 7-.2 fe f(IQSS)Vnn(rQ-rs)

e x(r'].-re)??i(s) drydrpdry (57)

3/2

h -1i/h (p.ro+ p".rz)
:. - y5/2 /9 2 3771,(1233)‘/““(1'2—:'3)

Y | (58)

/B Porrs T2l () b (p1) arpar
3/2
_ n -1/h (p.r-+p".
=t 5 fe AERSA XOR f23"mn277s)
(59

+1/% (pyerz-ptery)
o O T TE R ) D () drpdrg

)
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thus

) 3/2' "
( ¢ 1(1 Ies)vm“éi): 3_57_2_ o~1/B (perg+p".ry)

/% (o, (60)
??f(s)(l-l-es)vnn e+ ,(pool‘s-p'.l‘2)9?i(s\ @ (p ) dredrs

If we agaln use I for the wave function of the twc-particle

'
system and denote tre spatial part of'r'by I tren we may write

Tﬂ(po,-pv) = % é+i/h.(po.r3-pn_r2)

(61)
then
-~ 1 2nV 1 ' .
°e " 6 E (thsp )/E 5 (T (o,0m7g | (1-Tpa) V| T (g, -p )| ®
0O
2 1A " (62)
’(@(p') I e zw(p2+p 2-p,?p°2)dA dpdp'dpn

Now in Appendix C we have proved that

z ?% ](??f | (1-1,4)] 7?1)[2 = %%%,(éf | (1'123)141)" " (69)

wheretg is the spin wave function of the two-particle system.

Hence

o = ryy (220 AHT (0,0" | (:Tp5)v | T (pos-p')) |

B 4 TF hhﬁ

2
(64)
2 1 2 n2_ _,2

|® e |7 o 2 (P7+0"5-p 2p 2y a,a_'a "
P p

Note that our derivstion of equation (55) did not really make’
any very speclal assumptions concerning the 'three- particle systien.
Hence we may in analogy to (55) writes down the easily proved

formula for the scattering of a free neutron (2) from another free

‘Y
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reutron (3). This then yields the usual scattering formula

e
| with V_  replaced by 1 (1-1p3)vnn; namely
e "/—2. -
o Pauli 1 env o
T °nn (po pq) >3 LT Z— )
e
~v : . " 2
e f [(T (oo™ | (1-1,)%_ | T (py-pg)) |
2
A "y R
. 202y pnz_pdz_po ) y e g by oy
d dp 1Y dp (
Thus comparing (64) and (65) we find, as expected that
Po~p Pauli
4 :'/l 0Pal  opn O (py-pa) | @ (oa)|° (66)
B Po d
Now tugp to (49) and examine for the n-p part, i.e., the one
belonging to T In this case we find
Pgm=pP" = Pax (67)
and hence in analogy to equation (55) we find
o
st 5 (%) &S Il
i Po/M
2 2
0% prZ_pn2_, 2
5 Q L. 4dE
2% Eo T (68)
o)
Now note that (1-123) may be applled to 9éf in virtue of the
commutability of (1-123) with Hé. Further we have thrat the
operator
(€9)

2 .
(1-I55)° = 2(1-125)
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so that in (68) we may replace

.

(70)

(B, Py Py inp(1-Tp3) P

-

.(. : 2
|( ¢r):(1'123)"np ¢1)I
2

In analogy with (70) break up

0A= \JAI + UAQ (71)

then (kl 1s clearly related to the usual n-p cross section and

is 83 was to be expected.

(72)

o /]p pdlﬁy e , fov
Pa

AL o 0 (Po-04) Icp (pd>|

The term ak,2 which is

o B PR
A,2 6 i f 'hhg f¢ ‘ np ?3]95 O)(¢f‘ 'Vnp'¢i)

i3
N (p%+ P'e-p"e-poe)

O

dn d d 'd " 73
035 '%p (73)

1s a correction term arising in the Pauli principle treatment
only in virtue of the binding between particles 1 and 2, We

can easily verify that OA o vanisnes for the case of no binding
»

tetween particles 1 and 2. This 1s a result we must requlire

physically, since the mere presence of the extra neutron number

2 should not influence the n-p scattering in the case where we

have three free particles. For the time being we shall leave

° 0 in the form of equation (73) and turn to the evaluation
» .

of the intarference term.
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Ne may tredt the interference term in the manner
described earlier in this section., For the matrix oclement
contalning Y, ., we find

Pam= P" 3 Pak (£7)

whereas for the matrix element containing V., we find

pdm:p' - pdk

we are not bothered by the Inconsistency between these two
‘matrix elements since the interference term {tself is just of
the order of a correction term. Thus we may write

1 on

. - vV )
s+ 3 = 2Re %
C,A C,B ° 6 le (PO7M +

(P, »(1=Tpn)V By ) (B o, (1-Tpadv, Py

' ./:\‘iJ 04878~

2 2 .2 2
P + '-p" -p.
5( - ) e (74)

2M f

) =
Again 1if we say that ]nn klvnp then we may replace

(2°, (1-Ip3) Wy Py )P0, (1-Tpp)Vpn Py )
5 — (75)

Ky (B 1Ty g (r1-m) B (P v (e, or) By

thus if in accordance with the subdivision of (75) we call
(76)

Sc,a t %.p T %1t e
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- then 001 is the usual interference term namely

‘_ Kq h< BY
. OC]..- p—02 (.._) (;i'-e-) an(O) (77)

The term ®°co is an additional term to the usual interference

‘term arising from the introduction of the Pauli principle.

Explicitly it 1is

-ok
"ot 21:Z (’fx hgpo)/(¢ | Vnp(F1-r3) Ipz | P )

ce

(78)

o gm_i’\ 2 .2 w2 o
(¢f lvnp(rQ'rIS)’ ¢1)9 (P+p' -p" -pO )d‘,\ dpdp'dp"

We could develop ¢ co Into a form similar to (77); namely into

a form with (IQSVnn)Q; which would yield a part of o . (0).

Then 1if we Wished to complate onn(c) we could get part of the
term from *5é1 by changing it into the n-n form. However we
still would have a correction term left over which would be no
simpler than,(78). Hence there is little advantage in carrying
(78) furthef. It can of course be evaluated for specifﬁc models
for the potential. |

‘Now let us summarize the resuits of this section, which

'arevthat:

1 pd d2 ’2 d2
¢ nd Svnptonnt [ ;—5 E—;§(90 anp)+-gg;§(p020 nn{}
' o)

p
kl h2 ) ( I )
+ A (VL) , (0
Po° ( 7 rd2 np (79)
1 wrd '
e ?‘?(f@':)ﬁ?’ [ atzs| £ { (B | v] B
13 2.
B B} o BT
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The above result is seen to divide itself intq the first

.five familiar terms plus an extra term due %to the Pauli

pPinciple, This last term has to be evaluated for the
specific model under dlscussion. It is difficult to make
any predicﬁions regarding its value, except to say that it

is undoubtedly no largef than the correétion terms to o 4.

¢
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IV. Spin and Space Exchange Forces Without Psuli Principle

In this section we shall attempt to degl with a

general potential of the form®

Vnp(r]-rs) (81+ bl 0'1‘ 0-3)(Cl+ dl Pls)Anp(rl-rs) (1)

Vnn(re-rs) (82+ b2 02' 03)(024- dz P23)Bnn(r2-r‘3) (2)

where P stands for space exchange.

Now let us develop our expressions by the method of section III.

We arain get equation (III-9) for Sésc‘ Now howevsr V12 and

Vnd do not commute. Thus
¢sc = ¢sc,o * ¢sc,i (3)
with .
‘ 1 1
- . + -
¢sc,o Ei-Ho+ 1€ na { L E,=Hy*+ 1€ V12} ¢i (4)
and -"

2 :
- 1
Poo,a = (Ei-Ho-é- 1{) [V12,Vnd] Py (5)
[b]
Now we need to evaluate I(Sér ’9ésc) 12 . Now we note that,

by use of equation (3) we get

9 .
¥hile potentials (1) and (2) are not of the most general form
they are of a useful form to exhibit our arguments that follow.
As a matter of fact our arguments do carry through with a very
general, non-tensor force potential.
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o 2 2 E
,(¢f r¢sc)| - |(¢f0'¢sc,o) ‘+I(¢f‘ ’¢Sc,/\)l
+ 2R°(¢O’¢sc,o)(¢sc,l 9¢f"))

Now let us introduce an equivalent notatior for the cross
S

seci&g%, namely | , ' RY* ,ﬁg?&n Aafry

(6)

6= w + oy + 9 (o04) ' {(7)

(D] 3
Let us now concentrate on the term arising from l(?f’f ,9580 ”)l
’\

i.e'r ao .

Ne mugt first exanine V12 961. It 1s still true that

Tie Py = le(pd)‘gbi ' (8)

Since the interchange operator P invVv - does nnt change matters,
) r
for T12 concerns Itself only with relstive quantities bhetween 1

and 2. Thus we et in analogy to equation (I1I-31) that

con?® T () (55) S 108w 20|

2
o+ prZupn?_, 2
8 — 2. Py dE; (9)

2N

Now we must evaluate l(sbfo'vnp 961) |2 further. There is no
difficulty concerning the spin, since in Appendix * we navs oroved
taat

1

2
z ?%3 l (R |ay+ vy o7 °:s|771)l (10)

e

2
?% I (&¢|oy+py o “’sicévi)l
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‘Lot us now examine the necessary spatial matrix element; namely

F
N ey .
S 7 = 96CH
T, = f , (°1+d1P13)Anp(r1-r3)|¢1') (11)
,,.. Let ns break up J in accordance with (11) into
SR -
- J = J + J (12)
e c : d

Then by the famlliar arguments

-1'/h(p.1"3+p'.r'1) +‘/'}’1(D’,_,.z'3-p".r])

JCZ%Z fe Anp(rl-rs)e
| P (p")drydry (13)
The new element tu conslider is Jd'
Jd: :\’/%‘72 e-i/'}q(p'.rl-& p".t'2+p.r3)Anp(r1‘r3)
(14)

e+ i/% Pyel3
x (r'z-r-:5 drldrzdrs

or
dy -1/% (p.r=+ o'.ry) "
= =7 P.Tg «T] +1/B (p .ry-p".rs)
Jd S/2 er Anp(rl-rs)e / O pl P S

D (p") drdr, (15)

of finally
3 - 1 -1/h (p.rz+ p'.vy) .

- 372 fe (cl-f- leIS)Anp(rl'rs) .

{18)

v + 1/% ( ".rq)
P 4 £ 2o RN o
e Po-T3=: 1 (I)(p")drldr*3

and all steps carry through as usual till we agaln obtaln

lpo'pdl o
o o ———— 2
0,4 f Py onp(pO'pd) }@(Pd)l d;’é (17)
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In an analogous manner we derive.the formula for Co.B as
. . s
_ [IPa=Rq| 2
°0,?'f o, ° nn(Pq-pﬁ_)A [cp (pd) l a2 (18)
Now #e must discuss the interflerence term of o . This term
is
1 A 2"
o 2 2Re T 2 ( -) =
0,3 o % T \pyw +
' &‘“- ?; '.{z, D A o L)
0 o, - pr.-_f_ pﬁﬁ‘;pna_p <
f(¢f ’Vnp¢i)(¢t‘ 'Vin 13*5 ( 5% 2 )
p g 9Er (19)
b

While this term is stralghtforward, we can no longer as in

section II expres3s it simply in terms ofc p(0). However wa

n
see by looking at it that given a_, bl’ a2 and b2 we could easally
perform the spin sums indicated. We would then proceed by sepa-
rating the non-space exchenge and space exchange terms and

evaluating these. Thus given the constants a;—> d, and a5 —> d,

thace 1is no inherent difficulty for ¢ 0,c ITn the absencs of
definite values it seems of 1liiltle walus to carry the valuaticn
(19) beyond this stage and we snall leave it in this form.

e} 2
We turn now to the 9y tera arising from }(Féf ,yésc.x)l<

fpon examining fésc,? as given by (5) we note that on the squaring

this tern 1t is of order V4. Now the chief terms of ond are of

2
srder V ; the correction terms in which we are Intecested are of

one order higher, namely Vs; thus we may drop terms of order

V4. Hance we shiall set gy equal to zero.
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t now turn to the evaluatlion of the 9(p 5 )term. This

term does have a'contribution of order V- and 8o we must retain

15. In particﬁlaf the term wilth the V3 contribution reads:
- 2Re 5 ( Vv ) o€

TloayT P Po/M h

’.-'v" . | 0 1 | ) 1 | e
Jige, EfT, ¥ T& Vud ¢_i’((Ez-.‘io+1€)
[le’vuq] 961,$éf6) Fepdie

By arguments similar to those previously presented it can be

(20)

-shown that equation (20) reduces to

:"&%» 2 (P—t/,;lv) 21; sy

%o0s) 1

)
/( nd ‘( ¢ [V12 nd] ¢ )'prf 5 (Ef -Ei)dnf

Performing an intsgratlion by parts we find that

- Re Y s 22
6 po/,M. h

.(ox ;
o) Efo. £ +Vna 71 (0, [ylngné]gbih‘
Pg }a(ﬁzf"-xai)rmfO
hif

The evaluallion of this term depends on the barticular model

chosen, since it has few general properties. We shall therefore

leave 1t in the form (24).

#There‘are nn céqations'numbered (21) and (22) in this sectlon.
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Now we may summartze the results of this section:

°nd R ﬁp +. ® nn
A}., d2
TE [ o2 5 ) g e o }
- -2Re Vo )
e emmw) 5 (¢f Vo ¢ NP Poyw

(25)

)

(o/"‘ fah ‘{ £ Vng Py)
(¢r ’ [’12'Vnd] 2, )*PE } 5(Ef°'E1)dEro

EY

(p 4 pr2oy "“-p ) : ErdEf
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V. ; Spin _and Space Exchange Forcaes with Paull Principle

MIﬁ'this'section we shall at tempt to deal with the

general potential ol aection'IV' - but‘this tfmé we shall in-

clude the mdbdificstlons due to the Paull prineciple.
-,mhen ir 1n analogy to equation (IV-3) we set

P . .

Pse = Poco t Pac,s - (1)

and we find by entisymmetrizing equabions (IV-4) and{IV-3) that

2 .1 1
~¢sc,o"- = L F 3 Vnd ¢1m

'\/E‘ .m ‘Ei‘ lg(pdm) Ho+i ( )
2

-\/'2" Lk Fy9+ Tiolpak)-H + 1€ nd 7 ik

and

o | ' | o
Tz ——= - =z ' {3)
¢sc,a ‘ = E,°-H_+1¢ ) [ 1?.,Vnd] 2 {

Now as in sectlon IV (equation IV-6 and IV-7) we brealk up

o_ao-{-o&-)-c(o)‘) (4)
Now concentrate on tqe term arising from l (96 96 l & i.e0.,

SCO

aAof This 1s now carvied through in strict analogy to previous

work., First ws consider the n-n portion. Here equation (III-53)

-

applies to equation (2) and eventually as usual

]

{Po-pg| Pauli, - :
oaf o nah {Po-pPg) ]fb(pd)! d+ (3) .

For the n-p portion we find



“o,A-f/E%?l % np{Po*id) ‘q) “"“'2 g (6)
2 o el
«w and : . 4 '
v -1 MV
SRR 22 A | (A RO STP S T
Jm' - L g éM\ (g’g*'p'g*p"z‘pog) d» dpdp'dp." (7)
g

- The intsrference term for o , is

e 1 "~ va - )
G(),C =% B ? (55’7&) /ﬁ%%’ e ' "
/ (P, (=T v, BB (1-1y 00V, Briw

2

2 o
P+ p'L-pne'?oz P dE
A g. L (8)
¥ 'y 4

FPor reasons already explained in the analogous case of sectllon

IV (equation IVv-19) it ig not worthwhile to express this term

in more ekplicit farm.

We turn now to the o, term. For reasons analogons to thoss given
for this term in sectlon IV the ay vanishes to ths order we are

interested 1in.

Now as tn the o4y term. Ws may wrlte the portions which con-

tribute as

. 2R (V| ) 2.§.f o 1
° (o )- ° <.p°/M B (‘ ¢f » (iotea) E(-H,+ g nd Py)

2
1 B
( (1-I,,) (Ei_go-}- 16-) [Vlz, Vnd] ¢i, ¢f )

R 4B
~ r
w Ep (9)

Thus by the. arguments presented in sectlon IV
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; Re
= -7 L )
N o & “ o
. . 0
D ' . ;E‘E } - \Ei\o-Ei)dEf‘ . (10)
Tt Again the value of vismmust be oblained for the specific modsl
e nnder consideration and so we leave it in the form (10)
LA . .
‘ Now we may summarize the resalts of this peneral sectlan
‘d =~ %pn t S no
T 2
1 2 a® d
+ = eRd = 2
G (po?) dp, dp..2 (p,‘ n?)‘wdpoz (po arm)

i v 2 oo
R LGRS B, B
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VI, Sonclusion

Let us first say a word about the general nature of

our results. It 1s worth noting that in all cases considered,

in¢luding the most cOmpiicated one {section V) a cartain structure

Is preserved in our results. In all cases we get the terms
6 4+ it 2 l 2 + l(pd ) g (p.2o

and interference terms due to stralght interference or the Paull

principle.
| To get an idea of the ordsr of magnitude of our rasults
we shall first estimate wnat the correption term to ( o n‘*"np)
1s from the results of saction II; i.e., we choose a model with -
Wigner forces and neglect the modificatlons due to the Panli
principle.

We shall compute our correction term from formula (11-91),
l.e., from‘the'angular form. For this purpose let us express it

as Onpithroughout by recalling that from equatlion (I1-65)

Vnn = k1 Vnp (2) ’
then
o = k.2 o (3)
- nn 1 np
hence ——
2 2 4n | pdg d o
=(1+ky7) + (1+ -z - o (n)-4 ng
“nd Lo np ( .kl ) S P2 e ax [ x =21



o775

4
4

LA
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Now pd2 is estimated in appendix E to be
———é - . -
p
(-‘L) = 7.46 Wev (5)
M . c. ) .A ' -
Thus we may write
— |
Pa" ) - 7.46 : T
Pe/) T 2 E . L : - (8)

where E 18 the ensrgy of the incident neutron in Mev ih the

laboratory system. In appendix E wa also find an estimate for

(%—5) = 0.282 x ;925~ em™? - (7)
Thus we may re-cxpress °nq as . . {(8).
Ona = (1+k12) ax;\'p+ (1+k12) | l%;gé R O‘?zﬁzfl‘qg kl.anp(o) |
where |
e (nya Lom |
(" )-4 Sax x =l (9)
Now we shall break up o, into ' )
' (10)

o = M+C
nd o
where ¥ is the maln term, namely ( 11-k1

Tn our numerical work we have exhibited.thg

) o and C is our
Tp .

correction term.
two parts of C, namely Cy and Cgy corré&bdhd{nv ﬁo é&aat50n (8).
Next we must decids what valuea to choose for k If' ‘

we look at the experimental Adata g)ven OR oage 2 we find that .
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can 1 : -~ (11)
S np .

While we know that the n-p cross sectlion cannot be fitted by

Higner forces alone we couldisﬁill choose the value kj_: 0.5 as
a rough indication what to compute for the correctlon terun if we
use only Wigner forces. We. have ;abulated'the_feau;ts for kll:_0-5
and a value of E_ = 90.%25 Mev}o in table 1. In table 1 we have
chosen 10-26 cm2 as the unit of afea. “

Table 1

o A
np(o) = 12.58

¥ = 22.53
c, = 0.18
'\)2 had 4055

c/Mm = 21%
From table 1 we note that the indications are that éince C 1s

positive the trye n-n cross section is smaller thah computed,
Hence it micht be Instructive to examine the case kl = 0.25, which
is summarized in table 2,
Table 2
M = 19.15
¢, = 0.11

C, = 2.53
c/M = 14%

1 . : '
OThe cross sections used in this calculation were obtained from
declassified report LA-654 by L. Goldsteln, entitled "Studies
on the Scattering of Neutrons by.Protons". We are uslng the
rigorous cross sectlons obtalned from r_ = 2.8 x ;0‘13 cm.,
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We shall now have to estimate whap}thé correption term
would be for other potentials and the iﬁcluslén of the Pauli
principle, I£ is our belief that phe.ccrreétion térm_in such
cases does. not exceed the 10% Jusﬁ found. As a matter of fact
the indicgtions.are that it should be smaller. Thils argument
18" substantiated by the fact that o (o) is so pfonounced only
in the w1gner.case, and we saw that 1t.was ¢ue to Cg term that
C was so.large. |

Now we must ask ourselves whether it 1s.prof1table at
this stage of the development to compute the additional correction
terms by special models., First we must look at the'éize of the
correction term compared to the experimental errors. The experi-
mental errors are at present of the order of 10%; i.e0., of the
same order bf‘magnitude as our correction term. This means that
in order to get a significant answer we would certaiﬁly have to
know the "correct" potential for our model. We might. try to |
infer this "correct" potentlal from the n-p scattering experi- '
ments at 30 Mev carried out by Segre et al11 Unfortunately, as
is well known, it has not yet been possible to fit this data un~..

‘ot

ambiguously. ) .

For the time being, therefore, we must leave it .at
the conclusion that the correction terms are offthe order of
10% or less, but may well change'the_trﬁe valué‘éf the n;htcfoés
section at 90 Mev,

11 ” , L .
E. Segre, Washington Physical Soclety meeting, April 29, 1948,
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Note addsd in vroorl.

7%, | Since the‘ccmplgggbn of this work, Wu and Asbkin havs
publlished some numerical calculations or. tha subject of n-d Scatter-
ing (Thysical Review, 73, 986 (1948)}. Thesé calculatiorns seem
tc show agreement for the simplest case, but tend to show that

the corrections ares probably considerably larger than the 10%

estimate made above,
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Appendix A:

Theorem:

If B< A then in first approximation

A+ B) A o® _ o2’
(o ) - (o ) + (8) (_..__.?_....) (1)
‘ an' aa! aa' a-a
Proof: »
AWe know that *
b, b S =l ol Aol
. = n }

Z 2

now when expanding (A + kesp only first powers of B, then

(e A+B) = :Z‘-:; %1 [(An)aa'+lil 2 (An-l-m)aa" (B)a"a"'

(1}

aa o ms:=o a“a
m ()
(A )a|"a|
but o
&g ( )8.8.' ( 8"8"' )a,na' a (B) a'a'm (4)
‘thus
(e ) = (e ) + (B) Z r\Z an ma"n (r)
aa' .. aal aal neo mio nl 5
ea_ea'

now consider L = 3 suppose fiprst a' <« a; then we have

a - a'

x - ]
L = 23 ?a-a’?n! . (6)

or

(7)



<o *m:'n-i n-1 ' m
- a a. (8
L = Z 1 (a ) :
n=o ms=o Ne )
thus
Ce . . , '
A+B A ' o? - o% ) (9)
(e ) = (e ) + (B) a - a
aa' aa' aa'
The conditions e¢learly holds also for a' > a by reversing the

grouping; i.e., considering (ﬁT) as a unit. When a' = a the

.

condftion is seifs~4vident, since then L = 1. A
SR . (*
QLeEeDe
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In this appendix we shall concern ourselves with the

spin functions appearing in the text and some of their properties.

First of all let us for ready reference write down the

spin wave funétions of a tﬂo-particle system each of spin %. Let

a denote spin+% and @ denote spin - 3. Thus a) means the wave

function of particle 1 which has spin + 3. Lettg denote the spin

wave function of the two-particle system with a certain total

spin and a glven spin projection.

that the following four functions exist:

Then we can easily verify

Function.# Total Spin Spin Projection Wave Function
1 1 -1 Ql 0.2
2 1 0 1@ a +a3)
42 1 2 1 2
3 1 -1 Ry Ay
4 0 0 i t .
ﬁ(ﬂlaz @ ,45)

If now we combine these wave functions with those of

a particle number 3 which has spin % we can form spin wave function:

7?describing the three-particle system. In particular we can

form one quartet and two doublets; depending on whether the two-

particle system is in the triplet or singlet state.

These wave

functions are summarized in the following table:
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Total Spin Spin of 2 Total
Function | of 3-parti- | Particle Spin pro- Wave Function
# cle system system jection
1 3/2 -1 + 3/2 ¢, 58 4
N .
2 3/2 1 + = ,/- (71 %%+ %%+ %) %%)
| - 1 . o
° 3/2 . 5|5 Ayt 1ﬁ2ﬂ:5 1%"%)
4 3/2 1 - 3/2 A
a V'S
5 % 1 + % w/"(ﬁl 0% _ 2°1a2ﬁ3+ Y% 3)
6 % 1 _'% -el -
‘ ' Vg(ﬁl %052 Py gt alﬁeﬁs)
7 F3 0 + = (3 .a 2. .a a )
v T1%e% 57 1P %
8 % 0 - % Y a 3 -
ﬁ(ﬁl eﬂs'“lﬁe’ss)
Let us now inquire what relation the wave functions
571 ~+-9?8 .have to our problem at hand. If we consider our

incoming neutron (particle 3) meeting a deuteron (particles 1

and 2) bound in the ground state then only function 1 — 6 can

be spin-wave functions describing the initial state of ths system,

This 1s so, since for the initial state we require the deuteron

to be bound in the ground state, i.e., it must be in the triplet

state.

the three-particle system by 7& ’

Thus if we denote the initial spin=~wave function of

"i" may range from 1 to 6.

Further if we denote the final spin-wave function of the threo-

particle system by ?Zf,"f" may range from 1 to 8. This is so,

since in the final state there is not a priori requirement that

particles 1 and 2 be in either the triplet or singlet state.




Now our spin operators which appéar in the problem
are all of the form (v, + v o9 . 9,) where ¢y andi o are con-
stants and m and n denote two of the particles of our particles
l, 2 and 3.

We shall now proceed to prove some theorems which hold

between the 7's and & 's.

Theorem 1:

4 <
" Z 2 (1)

i=]

i z% ,(77f|¥1+Y2 °1° o3| 7?1)'
i=1 f21

here thetﬁ 's are spin functions compounded of particles 1 and Se

1
6

Let us first reduce the left side; c¢all it L. Then since the

functions 7}, are a complete set we may write:

L s . |
Los 1';1 @ [Coyry goqeog) °] 2y (2)
call

+% 5 0.0 )? (3)

z= (v o 9

1

Thus the spin operator does not involve particle 23 let us

therefore perform the spin integrations over particle 2. Let
L = -é- P L, (4)
. i -

The contribution from the separate terms are as follows:

From 1 = 1:

o= (&, ]z | &) . (5)

l
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From 1 = 23

we have
|2 | %) = 3 (A agv e ay [ 2]y ag+ ey iy
+ogleg oz [y ) te)
or
L, = 5 (&, 2[€ + &) 2]&) ()
From 1 = 3: :
we have A
| 2 |725) = ECE |26 2 H & e [€y (8)
. t";’-ilh
or '
LS:%(€2|2,§2)+%—(<§3Iz,§3) (9)
From 1 = 4: .
L= (&4 2]&p (10)

From 3. = 5:

(')?Slz I??s) = %( ﬂl as-z “'1ﬁ3 ]z ]ﬂla 3-2u lﬂs)

+ & s aglaoy ay) (11)

now

1 .
ﬁl 113-241 1/’:5 = - '2' (ﬁl ds+ ulﬂs) + %( ﬂl us_ alﬂs)(lg)

thus )
L T50E, |2 [€ + 30&, 2] &+ L& |2 ]& )0



Lam:

FProm 1 = 6

(7% | 2| 7g) = Fa @28 0, |5 ] 28 -2/ ay)

+ H AR, 2] AR (14)
hence |

Lg= lﬁ(éelz'§2)+§(‘$4,zlé4)

(15)

t(&4la ] &
Thus adding all six contributions
teixg [(& ]2 &, Méigmé | 2] &3
+(<§4lzl<‘;4)] (16)

L = % f (<$1,z|€1) (17)
or : o
L:% % % l((‘;flyl-f-Yeol.osl(gl), (18)
Q.E.D,

In the same manner we can prove

Theorem 2:

2
1
2 L X |(77 Y1 + T 00n, O 7 ),
5 & % e | ova 2°2. o3| 74 (16)

=% = % ’(‘irlYl**e"e“’S'!f’l),Q

where d; 1s understood to be the two-particle spin function

corresponding to particles 2 and 3. There 1s no need to give

. & detalled proof of theorem 2 since the equivalence of particles )

l and 2 as far as spin is concerned is evident from thelr

treétment.
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Appendix C:

Theoremn
2 ' )
Lrr @ o W72t 2 [é [umglen]®
1 f
Proof:

The operator (1-123) may be written as

(1-123) = (1-52:5 P%) (2)

where we have separated 12:5 into spin and space part. Now

we wish to show the relation between 323 and 02,! oz .

Consider 2 (1_323) operating on a function symmetric in the spin

of particles 2 and 3.

El

and when it operates on an antisymmetric function

2(1-8,5)7, = 47 (4)

Now consider what the action of ( 0g° 0oz + 3) is

( 9%z + B)Ng = O . (5)
( 02.‘>3 + 3)7%, = 4%, (6)

thus
2 _(1'32:5) = Oy 0 5 + 3) (7)
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or

-%—(1+02-03) (8)

Soz =

but as far as the spin is concerned this is of the form

W [

(1-123) = (1 +

(1-123) = ,Yl + T, %5 9 (10)

and hence theorem 2 of Appendix B may be applied.
Q. E. D.
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Appendix D:

In this appendix we shall prove the normalization

constant of ¢~ o We know that
¢ = ¢i + ¢sc (1)

Now by assumption most of the wave function is still ¢i 3 soO

that it will be sufficient to determine the normalization of .

Now

~

B, = C(1-TIpy) Dy | (2)

where C is the normalization constant we wish to determine.

Then
c2((1-1,,) By, (1-Ip5) Py) = 1 (3)

or

202( P, Dy) - 203 B, 1, P,) =1 (4)

We shall now prove that ( ¢i’123 ¢1) is zero to the approximation

we are interested in. In particular this means that we must

prove that terms arising from ( ¢i’125 7_51) are not of order
1/p,2 or lower.

Consider now that

(PiuTpg Py) = %’2 @fe-i/k Po8 X (ry-rp)

(5
ot 1/% Poerp x(pl-rs)ni(s)y?i(]:?ss) !
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Let

- 1 1/ palry-rg)
):(rl-rz) = T37e u/19 b (pd)d;a (6)

th .
°n _ 1 -1/:}'1 (pd.l‘l-Pd°rl) -1/}‘1 poo(rs-rg)
(¢1’123¢1) T ndve %}/9 ° | (7)

+ 1/% pglro-rz) . A
¢ /% Paira~ts @*(pg) P (pa)??; (S (I53S)
or carrying out the integrations

3t
(By,Tp5 Py) = D (py) P (py) L (817 (1p58) (8)
Now examine the properties of'léplg. We are interested with

what inverse power of po it vanishes. Now we know that

JfIQJ(pO)I 2dﬁf must be finite, since in a deuteron there must
: )

be a finite total chance of finding the given momentum state,
Thus l(@ (po)l 2 must go at least as l/po4 to have the

1ntegra} converge. Hence to our approximation

(Brslpg Py) =0 . (9)
and hence

c =z 1/ JE (10)
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Appendix E:

For the sake of completeness we shall describe here

how pgc and (;lé)'were estimated.
d .

2
1. Calculation of pg °*

Assume a square well potential for the deuteron.

The

symbols are the conventional ones, and the relationa from the

Bethe - Bacher article®* have been freely used.

Thus
£ My A € = (pd2 )’:&_P V
- = M
where

‘/‘;V(r),(./lg r dr
[ 552 r2 ar
then oA

‘Vo £ u2dr

[rouzdr +[°°u2dr
(<]

<l
n

<1

now let

u = sinkr for r < ré"

‘u = sinkr, e o (r-ro) for r > r
Then we find that

= Vo

1+ (1/R)

v

m
Bethe and Bacher, Rev. of Mod. Phys., 8, 112, (1236)

(1)

(2)

(3)

(4)

(5)

(6)
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where
sin 2 kr sin®kry
Rz (r - Q
o 2k )/( v
or
. ) -2
Aar < €
0 — €
R = + = ar (14 ) +
sin®kry k ° Vo = € Vo~
hence
ar V.- €
T = v ( o ) o _
° 1 + urg v, ¢
hence

2
() = e () (M)
1 ul‘o €
If we substitute the following values into (10):

€z 2,18 Mev

\'
o

21 3 Mev

r. = 2.80 x 10" cm

then aré = 0.64 and

pd2

- 1
2. Calculatlion of ('—5):
ulte|

-

Using‘the same assumptions as above we may write

<—I§) B, + B

T3

2

(7}

(8)

(10)

(11)

(12)

(13)
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>
whereo o r,
R - 2 ®
B = b? f %—k-r-' dr (14)
1 o
and S 9-20 (r-ro)
- P Jf dr (15)
B, . re
and
2(V.-€ )
c 2Vaz) (16)
Vo(l + 4ro)
( v, ) 1/2
b -
= c (17)
VO - €
¢
we may re-express B1 and B2 as uﬁ
B, = vk [ s (oke.) - sinkr,
1 1'°“*to N P (18)
O .
- 2 _—1-_ _ 2a T'o '
32 = C [: T 2a e E1(2a r,) (19)

Numerical computation of B1 and B2 was carried through for two

values of

Vo

By

s}

2

1
I‘d2

For the purposes of section VI we have used the value derived

from the conventional value of the range, namely from r5= 2.8 x 1

Chl.

I‘O-

o = 1,7 X lo-lscm .

48 ° 4 Iﬂev
0.450 x 1026 cm=2

0,084 x 1026 cm=2

0.534 x 1026 op=2

o = 2.8 X 10~13cm

21.3 Mev
0.250 x 10%6cm=2

0.032 x 10°6cm=2

0,282 x 1026cn=2
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P 4
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