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Neutron-Deuteron Scattering At liiEhEnergies

.fK?

. ~:-. ,1. Introduction

“-b‘%d
The value of the n-n cross section at various energies.,

is of fundamental interest to nuclear physics because of the\

direct bearing on the question of nuclear forces. Unfortunately

it is difl’lcult to obtain direct experimental evidence abouti this

cross sectlo”n; ‘1’hemethod of using two beams of neutrons can not

yield results because as yet we do not possess beams that are in-

tense enough for this purpose. Thus all our information about

the n-n cross section is limlted to that obtained by indirect

means. The recent development of’100 Mev neutron beams by use of

the Berkeley 184-inch cyclotron permits such an indirect way of

determining the n-n cross section at high energies.

The fundamental idea of the Berkeley work may be described

as follows: At high energies the n-d cross section should, In

first approximation, consist only of the sum of the n-p and n-r?

cross sections. This is based on the assumption that at hich

ener~ies the wave length of the incident neutron is short compared

to the Inter-nuclear distance between tlienucleons {n the deuteron

and that.the energy of the incoming neutron is very high compared

to L?, the bindin~ energy of the deuteron

this approximation the difference between

Lhen yield the n-n cross section. Indeed

in the ground state. In

the n-d and n-p should

such experiments were

carried out at Perke16y by Cook, McN?illar,,Peterson and Sewell
A

1

‘Lo F, Cook, E. h?.Ncltillan, J. V. Peterson and D. C. Sewell,
Phys. Rev. 72, 1264 (1947).
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with 90 ?fievneutrons. Their results may be summarized as

follows :

Substance: Total Cross Section in barns:—— .— —

D 0.117 ~ 0.006

H o.083t 0.004

- -- . . --- -- - . - - - - --- -- --- . -- - . . . . . . -- --- -. - . --- -- - --

Difference (n-n) 0.034

Thl.sshows a large discrepancy between the inferred n-n and

the measured n-p cross section. In consequence ft was thought

desirable to examine just how accurate It is to consider the

n-d cross section as the sum of the n-n and n-p cross section

for 90 Mev neutrons. The present thesis in an attempt Lo ostl-

mate these correction terms.

The correction terms will be due t~ two causes: finite

binding of the deteron in the ground state and interference of

the waves scattered from the two particles in the deuteron. In

order to see whether these correction $erms are negligible let*

us examine some relevant quanttti’es occurrin~’ in the problem.

The relative wave length of the incoming neutron, or what ma~

by regarded as more significant, this quantity divided by 211

turns out to be A = 0.5 X 10-13crfi.On the other hand the

average “radius” of the deuteron2 in the ground state is

approximately 4 x 10-13 cm. Thus we see that whilq % is

.——.
2
Estimated bv followlng Rethe ‘and Bachert Rev. of Mod. Phys., 8,
112 (1936) in setting this radius equal to 1,/u where o = li/(W*.
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small compared to the average separation in the deuteron,

it is by no means negligibly small. The corrections due to

the btnding energy of the deuteron can thus be expected to be

of the order of magnitlide of the ratio of ~ to the neutron energy,

109., the order of a few per cent. It is difficult to form an

off-hand estimate of the correction due to interference. How-

sver these rough considerations tend to indicate that It is worth-

while to calculate the correction in more detail.

“tVeshall attempt to set up the n-d scattering problem

In such a way that the total n-d cross sectton divides itself

naturally into three separate parts:

1. The scattering of the incoming neutron from the

proton bound in the field of the other neutron.

‘?4. The scattering of the incoming neutron from the

neutron bound in the field of the proton.

3. The interference term.

$inue the energies we wish to consider are reasonably high we

shall calculate our cross sections by the Born approxLmati.on.

‘While it is realized that at 90 J?evthis is far from ideal it

should serve to give some idea of the correction.

In order to effect the separation into the scattering

from the proton and the neutron it w~ll be well to retain the

laboratory system of coordinates as far as the description of

the three-part~.cle system is concerned. This does not of’course

preclude the frequent use of relative coordinates between two

particles of the three-particle system.

In the next section we shall consider the simplest
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case, namely the case of “Wi.gner forces, ignoring the effect of

the Pauli principle operatlnflbet~en the two neutrons. In the

usual calculation with the Horn approxi.,matlonwe should exp~ct

to represent the final wave functions of the three-particle

9 system as that of’three free particles= In our case it will be

necessary to consider the final wave functi,on as made up of the

prodllctof the final free-particle functton of the scattered

ne~ltron and the wave function of a very highly-sxc.lted deuteron,

(Actually it is seen that we really use a modified Hamtlt.onian

in order to work with a free-partlcl$ wave function, but this

/be only a calculational simplification=) The modified picture

will insure that we indeed describe the scattering of the ln-

eomine neutron from a bound particle, even though the binding

after the collision is essentially negligible,

In sections TII, IV and V we consider the modlficationg

Introduced by more g~era?. nuclear forces ~ also the inc1118ion
b,%-

of ttif3Pauli principle.
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11. Wigner Forces Without PauXl~Principle—.
.

We shall choose to designate the three particles as

indicated in Fig. 1.

Fig. 1
/-
(0’1
;21 neutron

I I

: II
1°1

incoming 11, proton
neutron \-/

. Y ,,

Douteron

Thus the coordinates of the particles In the laboratory system

are designated as rl, r2, and r3 respectively. We shall further

introduce relative coordinates

. let:

r
= ‘1-r2

.

.

betwe’en particles 1 and 2, that is

(1)

R= *(rl+ r2) (2)

Further introduce the following momenta in the laboratory

system:

Incoming neutron
before collision:

after col.li.sion:

Deuteron: - before collision: zero

PO

P

,P article 1: p~
after colllsion

particle 2: p’:

3
We shall omit to make a distinction between the.writing of
vectorial and scalar quantities since the particular symbol
in question should be clear from the context.
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It will be useful to introduce the following combinatlon~ of’

momenta:

PI= *(p’-p”) (3)

‘2
= pt p~f {4)

These momenta will%a recognized as those associated with

coordinates r and R respectively.

We define p(
i
r,t) and $J(f

r,t) respectively as the

inltlal and ffnal wave function of the three particls system.

Further Ef and Ki are total final and lnltial energies of the

~.~ystem. We shall have no occasion to use E
z.-●

~ in explicit form,

but wa shall make USe Of EfO; the final energy neglecting the

energy of binding between particles 1 and 2. Thus we have

(5)

4
2,E=~.

1 2M

Now let us develop our cross

dependent peturbatlon theory. In this section we shall neglect

the Pauli principles; i.e., we shall not antisymmetrlzo our wave

functions. Furthermore we shall neglect treatment of the spin,

The nuclear potentials shall be assumed of a straight Wigner type.

Now we have the time dependent Schroedlnger equation4 which states

that:

ili~(r,t)= (H+ Vnd)~(r, t) (7)

—.

4
Of course r Is here used to denote a general spatial coordinate
and is not the r of equation (1).
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Here H is the Hamlltonian corresponding to the kinet Ic energy f

of all three particles plus the potential energy between particles

1 and 2, That is

2li2 (v: +V;H=-——
2k! *

+V3 )+ ‘Jnp(rl-r2) (8)

The quantity Vnd which is made up of the two potential energies

Vnp(rl- r3) and Vnn(r2-r3) is regarded as the perturbation in

equation (7). Now let

p(r, t)=e ‘i’%Ht*(r,t) (9)

Thus in first approximation this integral equation (10) has

the solution

Now let us ask for the probability of finding the system at the

time t in the state ‘tf”t.This probability is then &i_ven by II
2

bf

where

bf = (pf.p) (13)

Thus we have from equation (11) and (12) that

= ~ iifi(Ef-Ei)t
bf %+f}

-~,/~Eft-~J’t($fe
?

@

e-@iH(’t-tt) Vnd e-i/%Eit~ $) d’ 1
i.. (14)

sincs #z and ~f are orthogonal funct.ions and H is a !-lermltian

operator we may write:
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(15)

(16)

o (4.16 Is identical with E@.15 and
and f’~nally was included inadvertaritly)

Form this W9 then develop our cross section in the usual,manner~

and we find that

where in equation (19) the s,ymbol~ denotes a large volume to

which we normalize and
‘Ef

as usual denotes the densl.ty of states

with energy Ef, i.e., in our case

Now let us write the ~ function in terms of lts integral

representation and we find that

-vhf
and = —%POT

where

T .V3.—
~9 f

(E’f-Ei

(19)

(20)

dpdpldp~t (21)

Thus we may write in symbolic form that

—— . —-. -—

5See for instance ~~eltler, l’Thequantl~m theory of radiation”,
2nd efil.tlon,page 89.

.
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No”q ,slnpt33 !j’he$f a~e a complete set of functions we may replace
......,.“....” .. .

+,thernby any other oom~lete set, say f“~ +Here the f“ are eigen

functions of’ the Hamilton operator Ho, where Ho ‘s

“’z
Ho= - % (24):.. . ..e.

1. .,,

Thus H becomes

H= Ho + Vnp(rl-r2) (25)

and equation (23) may be written as

T=&@,[%l $%”)(
1 e-i AEf ~h “(26)

proved in Appendix A:

(+ (Oaaf ‘: : ::’ )
(2’7)

A. Nf)w

+;) = (e
ix Ho+ iAV12

)kf
(28)

.

Now the following theorem is

(eA+B)aa,= (e*)aa,
.

Where B is s,mallcompared to.

;

whqre we have abbreviated Vnp(rl-r2) b’ V~2

We knOW that .V12 IS small compared to HO ‘ince ‘e asswe a ‘igh

r.omentum for the incoming neutron. Then by (27) We have

*

(20),,.
. .

i X(EIAo-Efc )
. .
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g’3 comes only from Lhose portions where I!0- EfO and thus
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.

By assumption, which we.made at t}ie beg!rining of’ this section,

we may permyte V12 and Vnd since,n0!th%18 Of them irlVCJ~VO space or

(32)

SCJthtit

., .

(33)
.

.2
However, the oper~~tor ’12 does not co@hute with ‘Jndand We

must exsmine T when Vnd is spilt up intp Itk separate terms,
,

Recall tlJOnthat

v z’~v .
nd ~pvnp+ Vrinvnr,+ v y +Vvnn np np m (34]
. .

and sp]it up T and o ~d correspondingly into

T= TA+TB+T+T’
C,A C,B

(35)

and ,

Now let .u8, concentrate on dA. From equation” (33) we see that

this involves the matrix element

*



. ,“ .,.

‘-

..

{37) .’ :

. For the evalugt !gn c.f (37) we now note that L.
A

can be writtur~ ir.

terms of tkiecoordinates rl,r3 and (rl.r2)= ~W~S

L1A= ;/2
[
l-i > ( ~+ p’t2I-r)Je+i’’R(per~’’+”r”+p’~.*

.
‘% ‘~~*2’q5’

i 39’$, ,.:

Since only small values of % cent.1.ltutetd (31) because tklis

expression is oscillatory for lar~.e values of % we may make the

(40}

‘Men TA becomes I.nvirtue of (31), (39), and (40)

T = d3~ Jlj--1/h (P’. rl+-p, rv)+. i,~kpn.r
~- e

‘np(r~-r3} ‘. ,

+1/3i (Po.r3-p”.r )
e

I
2 i ~.1 X (r)drdr1dr3 e ~(pp+ p’:-p’’%poz? )”.
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Cjj(d’)+ f
s-ti/~ pr’.r

Z (r)drh~,’e
‘.

then (41) and (20) may be writte?las follows:

(4j)
.“,.

●

$~ dp alp’,,dp” (43) ,.,

NOW let us call - p~,~l~d;
‘he”$$$%$@ -

;.s,,.

““e

dA dp dp’ dp” (44)

On the otlmr hand consider now tkle“collislon of’a neutron of

momentum p. w~t~J a pr”~>ton of’ Ino?nerlt~m p“. The cross section for

this process may be written as

‘—f If ““%““r”’”’’r’)vnp.l-r.l=—~cnP(po-Fd) ~ h6]Po-Pdl V

+j/~(po.r3+pd.rl)dr dr
e

13
i%.

e ~(P%p’?-po~ ‘pd2)d~ dp dpf dp’~ (45

.’

Hence we may express o as
A

J ! ‘O-pd I
‘A= ‘—

P*
“’ l@(Pd)12d~nP(p~-Pd),”

Note that equation (46) i’sjust what wc would expeot from

physical rea~onlng. It is the avara~e cross section for a
. .

. .. .
,..

(46)

,,.
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proton with an average relative momentbm of PO. The dist.I*ibutian

of pd 5s just that of the momentum of the proton in tiledeuteran

as vie expect.

The techniques in evaluating L“~ are exactly the same

herent dlf’ference between part.lcle 1 and 2. Hence we shall.m$

rssult wh~ch is

&
._

./

lpo-P~l
“B -

P. am~l(pcj-~d) l@(Pd)12 d:d (4y)

equation (47) is apaln the result we would expect from physicsl

reasoning.

Before slmplifyl.ng (46) and {47) for very high p. we

shall first. turn our attention to the cross terms. First note

tl]atthere is a rcle.tionbetween
‘C,A and 0 C,P ●

For tl;is
b

purpose look at T in the form of equatl.on (22). Splitting up

Vnd= Vnny’?np in (22) shows tk,atthe two cross terps sre just

complex conjugates of each otke.r. Or that

CC,A+Gc,~ = 2R=‘c,~ (4e)

..

.

.
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‘ITIus we shal’1examine on~~ J
C,A ‘

We f~md that
.

(49)

whare LA is given by (37). By performin~ the steps analogous

to (38)-(40) we find that

f

1A
T ~ K M e ~(P2+p’2-p’’2-po2) ~~
C,A = ~

where

(50)

(51)

The important step in”solving the cro~s-term is that of treating

K and M separately at thi’sstage. In other wordo in K the

coord.fr~aterl ‘ is “extraneous” and we must elimlnate it. In M
“

thfjcoordinate r2 is ‘~extraneous’land must be eliminated. In

particular then we may write K and M as follows bv making use

of equation (42)

@b d~2t dr~? (53)
I

_h
3/2

M-rose ‘j-/%‘P*r3+ [p’+ p“]er~)VnK,(rl-r3)e+i/~ po.r3

+( + P“) dr1dr3

Now let us introduce’tho following coord~nates

(54)

I
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A $ % = q-r

~:j . . . . . .

=s
‘w ‘*. ‘1 4

. Jft .. ‘2 =
p@l

‘3 = ‘4-91
(55)?:, .,..,, ‘3 = ‘3-P””’ r; z s4-s3-sl

.
. . 34 z ri ::’;

,‘i ‘s4-s3-%+ ‘z-i . .-.. . . . . . .?. . . .. .
....”’.”: . . .. . . . ... -,.. . . . .... . .~~~ ~~ get . :;, “ ““,,.“.,,.,:.. ,: ..,
-4

_ Vth3 ““

J ,

.. . . . . ..

T-— Jmi PO*(S -s -s ) +l\’~ p.(s -g4 3 l,vnn(s2)
C,A

~,~v~ q 3-s3}

~+i/~ (p‘+ p’t)(s -s -s1+s2) -j,l~p,(s4-sll
‘.4,F

-i/k (p!+ p“).s4
e e. . .

t i/% PO*(Sq=sl)Vr)p(sl)e ., ..,,.,- @*(-p;) q) (+p”)@ %( J32+~’’2-p’’Po2

dsl d~z ds3 d94 d~ dp dp~ dp”

1. “ (56)lntegra.ting over .S3and “S4 “WG set

v3h 6
‘+’i/k (P’+ P“)(S2-S1)VT

C,A = ~’ I f d (Po.-p-p’-pq ~.. J%%J31).+
,. .

@*(.P’) q ($ ;tt)e?&&’+ p$U#-po2)dq ~~ ~A ,1 ~t ~
.. .. .., II.,,.. ,,. ‘1 2.,. pnp...

{5’7;,IniAgratln8 over #p w~”get .,”

l!=
C,A

@*(

~OW the

will give

@h6 I /. . .

A.
i/%”(pG”p’’){s”-s )

2 1 vnn(s2) Vnj)(sl)~ .e ‘“

“~””iA”’ ‘“ ““”““
-pt) ‘+ (~’”;jt)o”pj72(Pt~ ..po.(p’+p’’))d~ ~~

:, 1 ~ ciA.. . . ,’. .
1“ . .. ,.

+.
@ ‘s me n tha~ Only very sm”all.values of p? and

.,
(“’m)

P“



—

.

.

.

.

i’.~ --

. .

,-, .. .
.

.:.
,.

. . ,
.. =-,

“lq’.
V32 Mh6

T= J vm(s2)v#l) @*(-p’) Q (+ p“)
C~A ~y

~ (P’2*IPOI /Pf+P’’l#)
(59)

+ -Pwhere# Is cosine of tine angle between p. and p! + p“ .
Since

+ +
pt+ p“ has no praf.ered dhection we mny”avera~e over# .

%1s yields
- ~z)m?

T =
h~~ I J Jsl) @(-P’) @ (+ p”) ‘Vnn(+v

C,A

ff (~lPol \P’+ P“l -P’,2)d/u

integration over.d> we get

( 60)
,

V3 M116
J

vnnts2)vn (s1) @*(-p~)@ (+ P”) d:l d~2 d~ d;!’
-T----Z‘C,A h ~

Po I PI+ ~lt
(61)

Now one can easily sl~ow that

J

i/ii (Pf+ P’’)dF
e

r2 —

but

i/’ti p.1’X(r)=* J e @(old;,.,
hence

NOW let us assume that Vnn .~d Vnp

numerical constantc In partic~a~

vnn = kl Vllp

are related by a simple
. .

let
,. .,.. . .

(62)

‘(64)
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we
. .

tiler: notice that
/ f V:lpvnpcan“.,,,

be expressed as proportional to
“,

.
. ,!

,.
.

(66)

Notice further what the significance of ths last part of (64) Is;

where th6 bar as usual denotes an average, Then we may combine

all. the fore.goin~ tg ivrlte

which is of the form of a deuteron moimenturnsquared over the

Incident.momentum squared multiplied by a cross section, Lster

we shal~ .rmtice khat. tkJ~S is typical of the form of the correction

terms we are looking $’wr,

Now let us retllrn to the equat.ior.s for ~~ Qlld~B

{equation (46) and (47)) and simplify them for the case of high

P~ with wl-lickA we are concezv’led. Thus expanding equation (46)

arcund p. We have

. 1

‘A‘mf{I P. anP(Po) - p: . ‘Po (Po”np(Po))
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S~nce p~has no preferred di~ection, the seconk.1term of (69)~ti.,.
.+..! l.,

integrates to zero when the an~ular integ’ratl~~ {.sperformRd.
,..-

. l“--. ●S.
4 The other terms yield

..
..:“,

,.

.+” ,

;

.$

(

CA “ anp (p(j)+Z* (*) -: * ~;. (;IPot alp+.. *
o ..

I (’70)

. . ..
whera pd2 denotes as usual ar$aver~ge of pd2., \Vemay SirDp~ify ,

I

this expression by the use of the s~andard rel~t~on concerrled
..

:.
with the LaplacJan. Thus

,,,. .
!..

.

I .[ . . . . .

%,

v“
I I

tc) Wd “ (PO))=JJ=;”” .-JL..-&~ ‘ (P.))u
Ipol dpo’

‘k>’-”(73)

and hence
!,..

I

Now we may re-express the second te~ms of (72) which we may call 6

,6
np” Differentiating out we find ; !..

,...

.,
an.gula..rderlvativo at Lhe energy corresponding,.t,?PO, Indeed tti!~

Thus if’for the sake of ~Jr@V~t~ we qall l:.
,..k....

,. I .,

,..,.
,.

(74) ,.

(’75)
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+

and let ‘x denote the cosine of the angle between p
+

and PC,

O (x) = f(po~(l-x)) ‘ . (76)

(77)

?.

~(x)dx

and
t“ :-v 1

J“2n

hence

dG (X) dx
dPo

-1

but

!3Q.zb
dpo

2 p. (1-x) f“ A.lCjy

.

.

whereas

du (x)=
dx. (-l)Po2f ’ (80)

and thus

Q.&k!.=
dpo (81)

so that

(82)

(83)

If we substitute (EK5)into {7’3)and do oUt the ~ndica~ed ~Per@~i~~ns

we find that

6 ( ){=g—~d2 2R ,
rip 3 np(”)+poz~dan p(n)g

}
(84)

d P.
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still have to re-express d :np(r, )
; which is easy

~
From equation (76) we have

o(~): i’(2Po%

do(n) -
dpo - Qo “ n

but from (80)

or

Thus finally

IQ&l - .P02 ~,1
d.x

x= -1 -

QJJQ- 4
dpo - - ~

d U(X)

dx I
1X=-1

(85)

(86)

(87)

(88)

We may then collect our two alternate expressions for the

ease of the nd cross section w~th the assumption of ‘JYQner

potentials and neglect the modifications introduced by the

Pauli principle. From equation (68) and (72) we get

o =U+c.r
nd

()

+* pd2 d2 ~p2U
np nn ~ ~02 O np)

()
+~~ d2

po2 ~2 (Po2 “nn)
o (9@)

‘:2 (g)(+) o rip(o)
+—
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Alternately from (68) and (89) we get

“N.
““”i3 (J =U +0 (-){+~ pd2

nd np 3 g
2 “ unp(~ )-2X .4 d ‘]np

nn dx
C%* 1}

x= -1
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ITI. Wigner Forces with Pauli Prinoiple

~n this sect~on we shall consider how and 1s modified

if we bake the Pauli principle, operating between the two neutrons,

into account. For this purpose it will be useful to redevelop

the cross section formula in a manner different from the time
-d

dependent perturbation theory presented in section II. If we

followed the method of section. 11 we would find difficulty in

exhibiting which correction terms are of order higher than those

we are interested in. This arises from the fact that it is not

until a late stage of the previous method that we made use of’ the

fact that V12 fs small compared to H. In the ‘treatment here we

‘shall make use of this fact as early as possible.

Let us therefore develop our formula from a stationary

state perturbation theory. Any wave functions wI1l be understood

to include a spin dependent part, but we continue to take the
.

potentials as’spin independent,

Let

(1) ‘
i.e., 9 describes the wave function with the time supressed.

Here ~denotes a small ~maginary contribution to the energy Ei
-

and eventually we shall let C go to zero. In essence then ~will

serve as a convergence factor In our lntegratl.ons. Thus

.
(2)



-24.

.

-d’ If then we add the solution pi of the hom~geneous equation

a correspondin~ to 5quation (1) we ~et

(3)

‘v.

(4!

If we set Y%% in the integral equat ton (4) in accordance

‘wit:~the Porn approximation ar,dsplit up H iuto Ho and v12 we Set

with

(5)

(6)

~{

1
sc- +

5@-io+ i~

Tnus we see that $Z$~c

correction to it.

gets broken up l.ntoa main term and a

Now examine the eo,mnutability of EiOand Vlg. ‘Jeknow that

(8)

where E and E~ are el.gen values of Ho. Now if We choose any

‘Odel f~~ vl~) (say a Yukawa potential for instance) wo see at



.

.
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~nce t.ha~ (v
12)EE1

1s only sig;lficant when (E - E’) < ‘d2 .
T

Thus
po$ “,2]

is almost but not quite zero. Cons Lder now

however that V
12 ‘

occurs only in the correction term of {7). Thus

the non-commut~~bility of V12 with Ho is only a correction to the

correction term. Hence we shall ignore it in the approximation

/<-.● “’

T?IUS

For the purposes of th~ section we have assumed only ?Jigner
Q:yp

pOtf3ntialS so that V12 and Vlldcornaute. Further Ho and Vnd

commute as far as the second term of (9) is concerned t+y.ari

analagous argument to that presented for V12 and Ho above,

9 ~fibecomes.“

Now we may set

{11)

where T12 Is tilek~.netlc energy operator correspondin~ to the

potential operator V12. Now re-express 9 i as a su~~rposi~ion

of plane waves. We have

t (12) .
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●

hence

~he re

Symbolically we may write
.

then

(14)

4.

(15)

(15)

9 =x 1 {
‘12{ Pdm)+F

Ei-H + I?vnd
1- ——

SC m Ei-Ho + 15 (17)
0

or permuting the order of Vnd in analogy to the prevlouij

argument we find

Now let us remember that TIP is small and furtherm{>r~>ca116.

then we see that

9$ =x 1
Sc

m ‘nd @imE1O + T12(pdm)-Ho-t i~

(13)

(20)

——— —.
6
The notation has been chosen In conslste~cy wltb equation (~1-6).
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“t’-
P - &k(Ei + i ~ )t

sc- 9 Sc

,

(21)

Before proceeding to develop the Pauli cross section it seems

desirable at this point to develop the non-Pauli cross section

to exhibit agreement with section II. Consider then what the

steps are from here on, The probability of finding the system.

in a oertain final state ltfltwhere the deuteron is disrupted and

all three partioles have certain definite momenta is ~lven by

or

. II
2

bf = e
9 1( $%0, Y%c)[ 2

Thus the total transition probability is given by

and thus

The insertion of the extra factor

fact that we must average over the

d?Zf

(22)

(23)

(24)

2?t
e ~ dEf (25)

‘ ~ merely expresses the
Zf

six equally likely initial

spin t3Late8,which are discussed more fully in Appendix B.

NOW at thi,sstage,we br~ak UP Vnd as in equation (34). Thus we

get

.
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.

.

(26)

1

‘j’0+T12(p(lm)-~o+~F

,2

Examining the matrix elemeht weJnote that the momentum of
.

coordinate r2 does not change, i.e.
.

P* = p“ (27)

then

(28)
I(9+;Z 1 Vnp (rl-r3)#J/2m E~0+T12(pdm)-Ho+iF

2
=1( #fo, vnp5J12

I

1

Ei0+T12(P’’)~~ I
now we know that

then ,

~EdEf . “ (30)
● f

or lastly

(31)
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N.
“iii”

t+

?-:-
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.

.

“incomplete agreement with the result of section 11, except

that the wave functions here include a spin part. We must now

examine it.

In sect Ion II we proceeded from the analogue of (31)7

by reducing out the extraneous coordinate r2, Thus we must here

reduoe out the extraneous spin coordinate S2 as well. This

operation proceeds as follows. Let
.

$, jz$’~ (32)

where? denotes the spin function of a three-particle system

which is described more fully in Appendix B. Then call17 the

wave function of a two-particle system and say that

r =r’g

where + is the spin wave function of a two-particle system.

Then by the usual steps for the space part we get8

now however we,have proved in Appendix B that

7
namely equations (11-41) and (II-43).

(33)

(34)

8
In equation (34) the symbol ~ denotes summation over the f’inal

spin states.
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.

. ‘ml
“in so that indeed

-.

@
,,...*’ . ~-~~ .

‘ .-‘ ~}le~ethe ~ Z
expresses the f%t that we must average over

:
the four equ;lly likely initial spin states of a neutron-proton

system and again by the steps outlined in section 11 we find

*G9

similarly we could without difficulty carry through the same

procedure to evaluate u ~. Now’coordinate rl is extraneous and

in analogy to equation (27) we get

~d~ = P’ (38)

and the entire procedure carries through llke that for
‘A ●

When we come to the interference term ws ~an write it .
w

OC,A+ aC,B= 2Re )i~(”+il- y--

‘ J’(@fO’~Ef+Tl~’} Ho+i~ ‘m(r~-r.]pfm] o,-

(39)

P*!‘$%
.i?



.
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. thus the first matrix element yields
9

(4!7)

[h
whereas the second one yields

-WV- .
F.-2

.

-t”
‘dn = P’ (41)

,..4.%y
~.which at f@J.. sight se,

P

‘.to pres&&-complications” ‘cc?.:.~

however that the lntefie~e”nce term is of the order of a correction

term; thus we may make approximations in it without changing lt

to the approximation in which we are interested. Tn particular

Pdm ~ pdn (42)

then

which is in complete analogy to the form~la obtained in section

II. The only difference from here on in the treatment of oC,A+ CC,E

compared to that In section 11 is that of the spin w?~ichneeds to

.,

.

be considered here. Since the potential Is spin-independent the

spin sum in operation is
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.

But the sam (44) is just unity. Equally well the spin sum

which appears I.r)connection “with crip(o), namely

thus we find again that ~~+

Now we are ready to exhibit the effect of

.-

(44)

(45)

$&*

c np (0) (46)

antis,ym~etrizing the
M

wave function ~, which we shall denote by @ . When we perform

this anttsymmetrization in particles 2 and 3 we get

M

9= 1—.

-c[$?5(
2J. 1‘=)7Z5(2,T3)+ $z5#3,1z) .@,c(@) (q,)

where the bar denotes the particles in the deuteron. The fact

that the normalization is indeed 1/W to a. approximation COII.

slstent with the solution of our problem Is proved in Appendix D.

That equation (47) fulfills the condj.tlon we require of

it is well lllustrat6d

Consider the case when

when we consider the asymptotic condition.

neutron number 3 is at infinity. Then

or
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.

hit indeed (48) is also fulfilled for the limitln~ case of (47)

with neutron 2 at infinity.
d

+
1

E
1

Sc -
T 2m - ‘nd 9 imEi0+T12(pdm)-110+ lC

1
Ix

1.— -r 9“Jnd lk
(49)

2 23 k E10+T12(pdk)-HG + i~

Then we must exa.m!ne this for t}Je potential split up as before.

Take first the Vnn part, i.eO, the one be~~ng~r,g to
4

5 P“ ‘Ne

have found before that In this case ‘

pdm=p~ (50)

nOW ex&min8 p~k; here we have the second term of’ (49) ~ives

-x 1
Vnr,(r,-r )(1

~ EiO+ T13(pdk)-I:o+ i& - ~ 23 Y% ) (51)

now

9 f/lipo0r2 *~/% pdk(rl-r3)
123ik -e.

9Then on examining t]iem.atrfx element formed VfttkJ f“ we se6

that the momentum of coordinate rl remains unchanged$ just as

in the non-Paull pr~ncfple case. Henco

. .

.
\

‘dk=p’ = ‘dm (53)

Thus for the n -n portion we effectively have
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.

.

@ = z 1—-— (1 9- 123)vnn it’r (54)
SC,E m Eio+ T(p~)-Ho+ i~ .

or in the same manner as before we find that

,,2 ,2

(

#+P -p -P02 pv
5

)
dEf

2M “f
(55)

Now let us reduce ( $fo I (1-T23)Vnn I @i) further. For thjs

purpose take tl~efirst term with the “1” in it. This clearly

yields
.

3/2

f

-i/Ii (p.r3+p’r.r2)
h

+1/% (po0r3-p’.r~)
e V’(s) Vnn(r~-r3)e

, ~l(s) @ (p’) dr2dr3

where @ denotes a momentum wave function as usual.

The term with the 123 wrjtten out yields

f
-i/15!p.r2+p~,r1+p’’.r2 )

‘-* e nf( I~~s)Vnn(r~-r~)

+~lli Po.r3
e ~(rl-r2)~~(s) dr1dr2dr3 (57)

~3/2

f

-i/Ii (p.r2+p’’.r3)
~e ~f( 123S )Vnll(r~-r~)--

(58)
+i/%(Po.r~-p’.r2)
e ~i(s) @ (P’) dr2dr%L

h3/2

J

-.i/~(p.r3+p’’.r~)
= + ‘~g e nf(s) - 123Vm(r2-r3)
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thus

JJ2
( @f”l(l-123)vm /fZ$j)z ,_.’fe-~/k (p.r3+p’’. r2)

@2

f’@)(l-123)vnn ~+ilk ‘pO”r3-@*r2)q1(s) q (p,) ~r2,jr:0)

If we a~ain user for the wave function of the twc-particle

system and denote the spatial part of T by r’ tbienwe may w.rite

I“(po,-pf) z + ~+i/~ (pO”r~-p’. r2)

(61]

l@ P’)12 ~ ‘%
~-(p% p“2.p?spo2) (62)

dA dpdp~dp)~

Now in Appendix C we have proved that {

where < is the spin wave function of the two-particle system.

Hence

1o-=- 2 d12
q%

)f

I(r (P,p”)I(1-123)VMI r (Po,-P~))l 2
B4if h6po

l@(P’)12 ~ & (p?+;”%% 2]

{64)

OdAdd~dll
PPp

Note that our derivation of’equation (55) did not really make”

any very specfal assumptions concerning the three- particle system.

Hence we may in analogy to (55) write down the easily proved

formula for the scatLerfng of’a free neutron (2) from another free

#-
, &-



,,

t
3(5.

neutron (3). This then yields the usual scatter~.ng formula

with”Vnrlreplaced by & (1-Ip3)Vnn; namely
-@-

a -+ :$
pauli~po-pd) -

(21nf3
nn

)~ h6 lP~-Pdl .

[(r(p, p”) ] (1-123)~nnl r (Po-pd)) I 2

f 2

‘1’huscomparing (64) and (65) we find, as expected that

Now t;q,$p (49) and examine for the n-p part, i.e., the one
1

belonging to CA. In this case we find

~dm=p’’=p~~ (67)

and hence In analogy to equation (55) we find

(
22

P2-t.pf -pw -P-2

6
v

)

/QE CN?f

2M f
(68)

$Now note that (1-123) may he applied to ~“ In virtue of the

commutabllitj of (1-123) with Ho. Further we have t~:atthe

operator

(1-123)2 = 2(1-123) (69)



4

so tha~ In (68) we may replace
.

2

IrIanalogy with (70) break UP

‘iA=GA1 + ‘A2
(71)

theli ~Al is clearly relsted to the usual n-p crctsssection and

The term ‘A,2 which iq

(73)

Is a correction term arfsinC in the Pauli principle treatment

only in vlrLue of the binding between particles 1 and 2. ‘iVf2

carieasll.y ver~fy that oA,2
vanis’nes for the case of no binding

between particles 1 and 2. ‘This is a result we must require

physically, sinco the mere presence of the extra neutron number

2 should not influence We n-p scatter~ng in the case where we

have three free particles. For the thne being we shall leave

o ~ ~ In the form of equation (73) and turn to the evaluation
9

of the interference term.
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. “#emay treat the interference term In the manner~q

,,m
described earlier In this section. For the matrix element

. ,.

i:~ containing ‘Jrlowe find.

.,,+”

.

“

*V
G’.i

G-+ pdm=~” = Pdk~<

*( .
ma; whereas for the matrix element containin~ ‘Jnnwe find

~~~=p’=pd~ . (53)

we are not bothered by Lhe lnconsi.stency between these twa

matrix elements s!nce the Interference term itself is just of

the order of a correction term. Thus we may write

(
2 ,,~

p2+ ~1.p .po2
8

)
/j’j’d~f (74)

2?4 f

Again if we say that Vnn = k V
1 np then we may replace

(YI°, (l-123)vnp@i)~@f(’, (~-123)Vnn@i)+

2 (7.5)

kl( $Z$fo,(l-123)Vnp(rl-r3) #l)(@f’o, vnp!r2-r3) @i)w

thus if in accordance w~th the subdivision of (75) we call

.
a C,A + ‘C,E = ‘cl + ‘C2

(76)
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*

eil ~then CJ
.

cl is the usual interference term namely

. Ms~’: “’ kl

&:’ :’ , “cl’~2
~%) (*) ‘rip(O)

(77)* o
i;’j

RWq ‘he.‘erm *C2 is an additional term to the usual interference
?x.~

‘Q% ‘term.arising from the introduction of the Pauli prlnclple,

es Explicitly it is

-,2 k
0= 1 h’?y4

-r- n(h——
)~w ( ~ ‘np(q-r~)1231 @fO)fJ2

if hgpo

(78).,
(@fO IVnp(r2-r3)l @f)e &( P2+p’2-p’’2-po2)dk d d ,d ,,

Pp p -

We could develop UC2 Into a form similar to (77); namely into

a form with (123~/nn)2; which would yield a part of a nn(0).b
I

Then if we wi,shed to complete o~(C) we could get part of the
..z..

I ‘erm ‘rem ‘cl by changing It into the n-q form. However we

still would have a correction term left over which would be no

simpler than .(78). Hence there is llttle advantage in carrying

(78) further. It can of course be evaluated for speci~ic models

for the potential.
.

Now let us summarize the results of this section, which
●

are that:
.,

●

I

. (79)
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.
The above result is seen to divide ftself into the first

,.

‘N” five familiar terms plus an extra term due to the Pauli
.

U’3, prjnci,plee This last term has to be evaluated for the

& specific model under discussion. It is difficult to make

.3 any predictions regarding its value, except to say that it
~~

‘@s
is undoubtedly no larger than the correction terms to o“nd.

J.”,””” .
,,

.
.

+.

,

.

.

.

.
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IV. Spin and Space Exchange Forces Without Pauli Principle

. .:”@,
.-

P
In this section we shall attempt to deal with a

.

‘“<:~ general potential.of the formg

Vnp(rl-r3) ~ (al+ bl ‘1’ a3)(cl+ dl P13)A
Jrl-r3) ,

Vnn(r2-r3) = (a2+b2 02. c3)(c2+d z p23)Bnn(r2-r3)

(1)

(2)
.

where P stands for space exchange.

Now let us develop our expressions by the method of section 111.

We aPain get equation (III-9) for $Z$3C. Now however V12 and

v nd do not co.mute. Thus

PS(2 --9 Sc,o + @sC,%

with

9$
1

{

1

8C,0
v

Ei-Ho+ ia nd 1 + Ei-H6+i& ’12 1
2

P
-(

1.
Se,% - ‘I-HO+ ‘~‘) [ ‘12,vnd ]$ i

(3)

Now we need to evaluate [(#f’’,.@.c) 12 ~ Now we note that,

by use of’equation (3) we get

9
While potentials (1) and (2) ar”e not of the most general form
they are of a useful form to exhibit our arguments that follow.
As a matter of fact our arguments do carry through with a very
general, non-tensor force potential.
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.

f-’?

.

, ;-..
)

., -:

,tiq~t,

.:i.
./

+ 2Re( @fo,@3c,o)(@~c,a,@T”) (6)

Now let us introduce an equivalent notation for the cross

secf%!$, namely -
*..

~“.
#g%.., x+.. ..

..?

Let us now concentrate on the terlr.arisln~ from l@’’#sc,c,) I2

i.e., a. .

We must first examine V 912 i“ It is still true that

(8)

Since tileInterchanfie operntor P in V does not change matters,
12 12

for T
12

concerns itself only with relative quantities botweefi 1

and 2. Thus we ::etin analogy to equation (111-31) that

(43) ‘

tnat

(10)
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- ,, =z
-4

2

-Lot us now “examine the necessary spat,fal matrix element$ namely

J= ( @“o’ I (cl+ dlp13)Anp(rl-r3)l 91’)

Let us break up J In accordance w!.&.h(11) into

K*
w,

$&5%!
w..

J ZJ + . Jd
c (12)

Then by the f’amlllar arguments

c1

J
.i/*(p.r3+p~.rl) +l/k(P,).r~-p’’.r])J-

C-VT2 e ‘np(rl-rs)e

@ (P’’)dr1dr3 (13)

The new element to couslder is Jd.

dl
J f

-i/~(p’.rl+ Pr’.r2+p.r3)
~= +7/2 e Anp(rl-r3)

+ i/lipo.rl
e X(r2-r3) dr1dr2dr3 (14)

or
dl

f
~-i/li (por~+p~.rl) + l/%(pc).r~-p’’.r3)J

d
= 772 -4np(rl-r3)e

@ (P”) drldr3 (15)

of finally

-i/~(p.r3+ p’.r~)
J=

;~]2 j’” (Cl+ d1P13)Anp(r~-r3) ,16)

+ i/ti (po.rs-p’’,rl)
e @(p’’ )dr~~r3

and all steps carry through as usual till ‘wea~ain obtain

J’IPc)-pdI 2
‘O,A= — ‘np(Po-Pd) ]Q(Pd) I ‘~

P.
(17)
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?Jowvwe must d!s cuss the inters rercnce term o: a Tt]lsterm(: ●

PE (lEf

f

soe by lookinc at it that given a,, b and b ,Nec~~llde& ily
A 1’ a2 2

perf’or.mthe spin sums lndtcatod. We w~~uld then proceed by sepa-

rating Lho non-space exchange and space exchange terms and

evaluat.:ng tlleso. Thus given the cons tants al~ dl and a2 ~ d2

de fttiite values it seetns of llttle value to carr$ the v[~luatlcn

(12) beyond this stage and we shall leave it in this form.

\Ve turn now to the u~ term arising from ]WW%C,J(.

!.Jponexamining
P sc,.A as given by (5) we note that on the sq~ari:lg

this term lt is of order V4. Now the chief’terms of Und are of
2

,~rderV ; the correction terms in which we are interested are Of

3one order higher, namely V ; t}luswe may drop terms of order

V4. Hence we s~-lallset q equal to zero.
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We ,XUS~ now turn to the evall~ation of the

:~~ ‘-‘
‘(o ~ )termo This

term does have a contrl.bu.ti-onof order V3. ,. and so we must reLaln
X’:1 “’” ‘“ -,.

it. In part lcula; the term with the V3 contribution reads:
j’w

p,,,%,,] 9,,$+”)‘Efd’f

2

(20)

By arguments $im,ilarto those previously ,presented it.can be

shown that equati, on (20) reduces to

Performing an inte~r~tlan by parts we find th~t

The evaluation of this term depends on the ‘particular model

chosen$ since it has few general properties, ‘we shall therefore

leave it in the form (24).

-——- -—-
. -E

.There are no equations, nwbered (21) and (22) in this”section,

. . . . .. .. . . . .. .. .

.,.,
,:. ,.

. . !.. .
. . . . . .. . . . . . . .“. ”.:./’ -------- .. -!..

..-.

. .
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ncl 0 np +’ Onn

; 2Re
-a-

,-

.

..

.

.

F){ ,~)# d2

~
d’(po2 ‘Z~p)+ .= (PV2 ‘nn)

po2
}

,

.

.

.,. ” . . . .
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~-$. and Space Ex-e ‘Forcos with Paull f’rinclple -‘Q ,,, .—. .
d

.—

.-
,* .’ ,’”’

In”this section wo “shall attempt to deal with’ the
“%

} .’ general: po~~ntial of sect~qn Iv; - b~.ttthis t~me’we shall ~n-

In&,. elude thp rnbdifications ‘due, t.othe Paull principle.

..
. and we fintiby antlsymruetrizi”ngequations (IV-4) arld(IV-5) that

.

.

.

Now as in section IV (equation .TV-5and I-V-7)we brealcup

(4)

0 0“ This isnow carried through in strict analogy to previous
‘“

.
“work. Firsti we cor,slder the n-n ~rtion. Here equation (111-53~

applies to equation (2) and eventually as usual
.

- fp~-pdl

J — O~na O,b.- PO
‘auli(po@ l@(Pd) I 2 dn~ ‘ (’3)

.
.

For the n-p portiotiwe ffnd
#
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.

.

The j.nterferemce term for o _ is
.

A@+.

b

(6)
*

(?)

{,*‘-

(8)

For reasons already explained in ~theanalogous case of section

1’4{equation ?V-19) it is not W(>7bllW}ii16 to express this term

in more explicit farm. -
.

We ti~rn now to the OX term. For reasons analogol~s to those given

for this term in sect ion IV the OR vanl~~@s LO the order we are

Interested in.

Nt}iv ~S tin’ the ~~j, tu&. We may write the portions which con-

tribute as

(9}

Thus by the.arguments presented in section IV

-.



.

b

.-%
2: .

t.., .’. )Inderconsideratiorl and so we leave it in the form (10).
#<,y’

Now WI?may summarizo Lhe results of this Reneral sectlorl:

c + Unond - ann .

.

.

.
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VI. Conclusiony
. ,.

Let us first say a word about the genera L nature of

our results. It.1s worth noting that in all cases conslciered,

is preserved” In aur results. In all cases we ~et the terms

erd interference terms due to straight interference or the Pauli

principle.

To get an $dea of the order of magnitude of our results

we shall first estimate -what the correction term to ( Unn + unD
‘).’

is fX’OfrI the rC)SUlt9 of saction 11; “i.e.,we choose a model wfth

‘,~igner forces and neglect the modifications due to the Pauli

principle.

We shall compute our correction term from formula (11-91),

i.e., from Lhe angular form. For this purpose let 1x3 express it

nl>”throughout by rocallin,g that from equation (1-65)as Q

vnn = kl Vnp

then

‘“nn- k12 a np
hence

‘( ){

7
=(1-+ k12)a np+(l+k12) ‘~-- ~ Onp( fi)-4

Gnd o

. .
-. .

{4)

.
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P# -
T-

7.46 Mev (5)
-, ,,. ‘,

where E1lls the ener~y of the inaident neutron in Mev i“nt’ne

laboratory system. In appendix E ws also find an estimate for

( 1
I&

0.282 x 1026 Cm-2

Thus we may re-express ‘nd as
,

15.&”3
= (l+k12) ~no+(l+k12) ‘~-

~+ 0.72 x 102(J
nd -’—%—— %. ‘rip(f)). h n.”

where . .

.

L = anp( n )-4 Q-W

I ‘x=-l
(9)

Kow we shall break up Und into
Y

~ = M+c
]~d ~

where M is the main term, namely ( I+kl ) ~np and C is OUr

In our nu.meri.ca].wrk. we have exhl.biied,thecorrection term.

tw{~parts Or c,
.. . ....

namely Cl and (12corrq~pondin~ to..dqiza~~on(8).

Next we mu$t decids”what valu~s to ,choos@ f’or~1’~, If “-
..

we look at the experimental, data g!v~n-on” p$q$bQ w~’”fin,d-.thht“~ .’”’.
,’ ... .. . ..

.
.,’. J...

,.
.,.!””.’,” ““...

,, .,,.’,.-. .“
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(11)

While we know that the n-p cross section cannot be fitted by

Wigner forces alone we could still choose the value kl a 0i5 as
,’

a rough indication what ta compute for the oorrectton tern if we

use only Wigner forces. We.have tabulated’ the results for k.l’=.‘“5
10

and a “value of En = 90.25 Mev in table 1. In table 1 we have,,
-26 2

.

chosen 10 cm as the unit of area.

Table 1
..

‘}np = 18.92 .$
0
rip(o)= 12.58

M = 22.53

c1 = 0.18

‘2 = 4*55

c/M = 21.~

From table 1 we note that the indications are that since C is

posttive the trye n-n cross section is smaller than oomputed.

A

Hence it miqht be instructive to exmine the case kl = 0.25s which

is su,mmarlzed in table 2. . .

Table 2

M= 19.15

c1 =
O*11

C2 = 2.53

C/M = 14$

‘“The cross sections used in this calculation were obtained frOm
declassified report LA-654”by L. Goldsteln, entitled “Studies
on the Scattering of Neutrons b,y.Protons’t* V/eare using the
r!gorous cross sections obtained from rm = 2.8 x 10-~3 cmb.

.
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We shall now have to estima,tewhat the correction term
,.

would be for other potentials and the inclusion of the Paull

principle, It !s our belief that the correction term.in such. .

cases does.not exceed the 10? Juqt found. As,,amatter of fact

the indications are that it should be smaller. This argument

is-substantiated by the fact that a (o) is so pronounced only

in the Wi.gnercase, and we saw that it was due to ~2 ter~ that L

C was so.large.

Now we must ask ourselves whether’ it is profitable at

this stage of,the development to compute the additional correction

terms by special models. First we must look at the size of the
..

correction term compared to’the experimental errors. The experi-

mental errors are at present of the order of 10~; i.e.$ of the
.

same order of magnitude as our correction term. !FhIsmeans that

tn order to get a significant answer we would certainly have to

know the ‘~correctttpotential for our model. V/emight try to
,...,,

infer this llcorrect!lpotent!al f~pm the n-p scattering ex~eri-

11 “ments at 90 Mev carried out by Segre et al . Unfortunately, as ~ ‘
. .

1s well known, it has not yet been possible to fit thl”sdata.un-
. . .. . .

ambiguously.
,x.. .,

t . .... . .

For the time being, th.ereforo,we must leave it.at
.....

the conclusion that the correction terms are of the order of “.

. .
,

104 or less,
.

but ma:~well change” the true value of the h-n”croas

SeCtiOn at 90 hlev. ,

-—

E. Segre, Washington Physical Society meeting, April 29, 1948:

.,

..

,:
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Note addad in proq’f’,

.Ci~ Sinco ttieccmpl~on of this work, Wu and Aslikinhavs

publj.sh~d some numerical calculations OK the subject of n-clScatter-

ing (rhj’siCril Review, 73, 986 (1948)]. Theso calculations seem

to show agreement for the simplest case, but tend to show that

the corrections are probably considerably larger than the 10~

estimate made above.

.

.
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~endfx A:
i.

Theorem:——

,

- 0< ~ If B< A then in first approximation,,.

-!
- ..;

proof:

we know that .

now when expanding (A+B) keep only first powers of B, then’

. (eA+B)aa,=~:, [(An)aa,+~l~(An-’-m)aa,t(B)tt,t
.n=o m=o a“a’” aa

()Am ~tltal

but

~ (An-l-m)~a, (~} (Am) = an-l-m
(n)

a“a’” a!’a”’ alt~at
afm (~)

~~f

thus

A+~
(e )aa, = (eA) + m)aa,

~n-l-ma~m
aa t E 51 —-

n=o m=o n!

now consider L = es-eat
; suppose first at < a; then

a- ~1

nzo

n
a- n~t
a-a’)n!

L“z z an [l - (+)”]

nta (l-~)n:o
a.

. .

(5)

we have

(6)

(7)

.’

.,



-!%-
J

. ., .%.
.74

(8)

I .: ‘,.{.

thus-...- .,,,-.’
A+B

(

~a - eat
~:b z (eA) ~)

(9)
(e ) + (B) a -a

.;!4., sat. aa1 aa1

,*. The conditions clearly holds also for at > a by reversing the

()agrouping; i.e., considering ~ as a unit. When a? E a the

cond&,~y is se~vldent, since then L =*-1●
~>.-. :-,

F- &*

Q.Eo?)*
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In this appendix we shall concern ourselves with the

functions appearing in the text and some of their properties.

First of all let us for ready reference write down the
J

wave functions of a t~o-particle system each of spin ~. Let

a denote spin-t+ and

function of partfcle

wave function of the

# denote spin - ~. ~us al means the wave

1 ~ich has spin+~. Let~ denote the spin

two-gartfcle system with a certain total

spin and a given spin projection. Then we can easily verify

that the following four functions exist:

, b

Function # Total Spin Spin Projection Wave Function

1 1 -1 al az

2 1 o“ ~C(#l a2+ a1fi2)
-?5

3 1 -1 PI Pz

4 0 0 L (@la’2-a
42

~@2)

i

If now we combine these wave functions with those of

a particle number 3 which has spin 4 we can form spin wave function

~ describin~ the three-particle system. In particular we can

form one quartet and two doublets; depending on whether the two-

particle system is in the triplet or singlet state. These wave

functions are summarized in the following table:



:+ “

- 5’8-

Total Spin Spin of 2 Total
Function of 3-parti.- particle Spin pro- Wave Function

# cle system system jectf.on

1 3/2 1 -t 3/2
ala2a3

2 3/2 1 +& ~ (P a a + a1@2a3+ ala2#3)
~3 123

3 3/2 1 -+ A (F @ a + a1F~f13+P~a2P3)
<3123

4 3/2 1 . 3/2 PI P2 P3

A (@la2a3-2 I 2 35 i 1 +*
6

a~ fi+Ul@2a3)

6 b 4 -1
6’

1 -,
%(% a2B3-2PlP2 ‘3+ a 1P2P3)

7 ‘i o ++ ~ ( fil”a2a ~+a f12 a3)
6

8 h o - &. .h#J ‘-~
-G

1 a2 @3. 1B2P3 )

Let us now inquire what relation the wave funotions

P 1
~ ~ .have to our problem at hand. If we consfder our -

0 .-. -

incom%ng neutron (particle 3) meeting a deuteron (particles 1

and 2) bound in the ground state then only function 1 a 6 can ‘
,

be spin-wave functions describing the initial state of the system,

This is so, since for the initial state we require the deuteron

to be bound in the ground state, i.e., It must be in the triplet

state. Thus If we denote the initial spin--wave function of

the three-particle system by ~i , ‘ti’tmay range from 1 to 6.

Further if we denote the final

particle system by ~f,”f” may

since $n the final state there

particles 1 and 2 be in either

spin-wave funotion of the three-

range from 1 to 8- This is so,

is not a priori requirement that

the triplet or singlet Sh&).



Now our spin
“ G+},,

~~a>‘. are all of the form (Y
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operators which appear in the problem

1 + ‘“2am’ Q where f ~ hd’{ z are con-

r-
;“ stants and m and n denote two @f the particles of our particles

1, 2 and 3.

?52
We shall now proceed to prove some theorems which hold

%“’:
..

,..
:2. between the ~ts and ~ ‘s.

Theorem 1:

hero the ~ ~s are spin functions compounded of particles 1 ‘-and3.

Let us first reduce the left side; call it L. Then since the

functions ~f are a complete set we may write:

call

(3)

Thus the spin operator does not involve particle 2; let us

therefore perform the spin integrations over particle 2. Let .

The contribution from the separate terms are as follows:

From i 3 1:

(4)

(5)
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we have

or

L2 = &(<21zle2J+*(<llzl&l)

From i = 3:

we have

From i = 4:

L=
4 K3 z q)

(6)

(8)

(9)

(10)

+ *( ala31zl”l U3) (11)

thus ●
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From i = 6:

(V6 /z ~6) : *( ‘lZ3-2~la3 1. I ‘143-V31”3)

Thus adding all six con tributions

or

QoEoD*

In the same manner we can prove

Theorem 2:

where ~ is

(15)

(16)

(17)

(18)

(19)

understood to ‘be the two-particle spin function

corresponding to particles 2 and 3. There is no need to give

-a detailed

land2as

treatment.

proof of theorem 2 sinee the equivalence

far as spin is concerned is evident from

of particles ,

their
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Appendix C:

Theorem

Proof:

(1-123)/ Tl)lz= ~ ~$ l(gfl(l-I~~)l~j)12 (1)

The operator (1-123) may be written as

(2)( 1-123) = (1-s23 P23) ~

where we have separated 123 into spin and space part. Now

we wish to show the relation between S23 and 02.6 oz “

Consider 2 (1-S23) oPerating on a function symmetric in the spin

of particles 2 snd 3.

J

2(1.s23)q~ = ()
(3)

and when it operates on an antis~metric function

2(1-S@7A = 47A

Now consider’ what the action of ( 02* 03 -t 3) is

t.

thus

2 (1-323) = ( U2.03 .+3)

(4)

(5)

(6)

(7)

.
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’23 = -
*( NU20CS3)

ry-J thus (l-IOZ) may be written as
Go

VW
* (1-123) ❑ (1 -t

d

but as far as the spin

( 1-123) =

snd hence theorem 2 of

&
2

1
1+02*U

3 I
P13)

is concerned

,Yl+ “f2 ‘2*

Appendix B may be applied.

A

this Is of the form

‘3

Q.&Do

M

●

(8)

(9)

(lo)
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al ,., Appendix D:
* ~;j’:’

In
.-,.-
;. ,-.; constant ofr<.y......

‘.7
..-. ~

this appendix we shall prove the normalization

$. We know that

(1)

Now by assumption most of the wave function is still @i ; so

that it will be sufficient to determine the normalization of .

Now

where C is the normalization constant we wish to determine.

Then

C2( (1-123) @i, (1-123) @i) = I

or

(2)

(3)

We shall now prove that ( @i,123 @l) is zero to the approximation

we are interested in. In particular thfs means that ,wemust

prove that terms arising from ( @i,123 pi) are not of order

l/Po2 or lower~

Consider now that !

( ~i,123 pi) = & ~ fe-i/%‘o”r3X(rl-r2)

e ‘i’% p0”r2 X(rl-r3)~i(S)?i( I~3S)
(5)
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Let

f
i/fipd(rl-r2)

X(rl-r2) = *2 e @ (Pd)d~ (6)

then
-i/~ (pd6r1-pd~rl)e-@ipoe(r3-r2)

Zf(@ f,@f) = * ~ e
(7)

+ i/%Pd(r2-@3)
e @(Pal) @ (Pd)~i(S)?’(I@)

or carrying out the integrations

(@is123 @i) = @ (Po) @* (Po) ~ 77i(S)9?i(123S) (8)
s

Now examine the properties of I@ I2. We are interested

what inverse power of p It vsnishes. Now w’eknow that
o

With

j’/@(po)I ‘d% must be finite, since in a deuteron there must

bo a finite total chance of finding the given momentum state.

Thus \@(PO) I 2 must go at least as l/po4 to have the

integral converge. Hence to our approximation

(#f,123 $51)=0 , (9)

and hence

c= 1/ G

,

(lo)
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the sake of completeness we shall describe here

()

~ “were estimated.
rd2

-
.s2

.’: .,.
!K?~ 1. Calculation of pd2:
9

)=-=;
Assume a square well potential for the deuterone me

symbols are the conventional ones, and the relations from the

Bethe - Bather article% have been freely used.

where
r.

t

&

then

now let

~’v(r)~’ r’ dr

-2r2JP dr
o

7

u= sinkr for r< ro

a(r-ro) for r > r
u= sinkro e- 0..

Then we find that .

-V.
v=

1+ (l/R)

%-
Bethe and Bather, Rev. of Mod. Phys.j 8S 112$ (1$?36)

(1)

(2)

(3)

(4)

(5)

(6)

,
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where

R= (rO -
sin 2.kro

/
)(

sin2kro

2k
—)

. G (7)
p.

t-
.. or

. .2~ro” L ‘6
R= ‘ -t ~ ro(l+ )+’+ (8)

sin2kro
~z = VO-F

*“” .

hence

v = -V. (-) (+) ‘e (9)

hence
.

()pd2—. =-v.
M (+ro) (~)

If we substitute the following values into (10) :

2.18 Mev

21.3 Mev

I

I
I
I

\

I
i

V. =
(11)

r=
o 2.80 x 10-13cm

0.64 andthen ~ r. =I

i

I

-

.( )2

,.. %- Z 7.46 h!CW (12)

()i2. Calculat,~on of
q:

.-

I
I

,
I Using the same assumptions as above we may write

(13)

.
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w
w4
...

v “ :. J

p...

. . -
I :

. .

. ... . ,
,$!

.
---”. ,

.7..(-,
e .,

.* ..+

. .
whero

. .

B=
1

~2

C2

(14)

and

(15)

(16)

dr
, B2 =

J. -0

- 2(v,n-~)lz
- Vo(l +~ro)

,.
and

“c
,.:

1/2

(
v

b= o
V0.6 )

c

4

(17)

we may re-express B
1

and B2 as

= bzk
‘1 [

St(2kro) - sin2kro

kro” 1 (18)

—

[

1 2aro
B = ~2 —-2Ue El(2~ ro)
2 ‘o J

(19)

Numerical computation of’B1 and B2 was

values of ro:

carried through for two

r~ = 2.8 x 10-13cmrQ z 1.7 x 10-13cm~— ‘

V. 48.4 ?~ev 21.3 Mev

0.250 x 1026cm-2

0.032 x 1026cm-2

‘1 0.450 x 1026 cm-2

B
2

0.084 x 1026 cm-2

()

i 00534 X 1026 ~m-2q 0s282 X 1026cm-~

used the value derived

!

from the conventional vglue of the range, namely from ro=2*8 x 1’

For the purposes of section VI we have

..’. . .
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