
\qquad pages.

MEUTRON-DEUTERON SCATTERING AT HIGH ENERGIES

	Work done by:	Report written by:
F. de Hoffmenn	F. do Hoffmann	

Neutron-Deuteron Scattering At High Energies

I. Introduction

The value of the $n-n$ cross section at various energies is of fundamental interest to nuclear physics because of the direct bearing on the question of nuclear forces. Unfortunately it is difficult to obtain direct experimental evidence about this cross section. The method of using two beams of neutrons can not yield results because as yet we do not possess beams that are intense enough for this purpose. Thus all our information about the $n-r$ cross section is limited to that obtained by indirect means. The recent development of 100 Mev neutron beams by use of tre Berkeley 184-inch cyclotron permits such an indirect way of deterining the $n-n$ cross section at high energies.

The fundamental idea of the Berkeley work may be described as follows: At high energies the $n-d$ cross section should, in first approximation, consist only of the sum of the $n-p$ and $n-n$ cross sections. This is based on the assumption that at high energies the wave length of the incident neutron is short compared to the inter-nuclear distance betweer the nucleons in the deuteron and that the energy of the incoming neutron is very high compared to G, the binding energy of the deuteron in the ground state. In this approxination the difference between the $n-d$ ard $n-p$ should then field the $n-n$ cross section. Indeed such experiments were carried out at Perkeley by Cook, McMillar, Peterson and Sewell ${ }^{1}$

[^0]with 90 Kev neutrons. Their results may be summarized as follows:

Substance:
D
H

Total Cross Section in barns:
0.117 ± 0.006
0.083 ± 0.004
0.034

This shows a large discrepancy betweon the inferred $n-n$ and the measured $n-p$ cross section. In consequence it was thought desirable to examine just how accurate it is to consider the $n-d$ cross section as the sum of the $n-n$ and $n-p$ cross section for 70 Mev neutrons. The present thesis in an attempt to astimate these correction terins.

The correction terms will be due to two causes: finite binding of the deteron in the ground state and interference of the waves scattered from the two particles in the deuteron. In order to see whether these correction ferms are negligible let us examine some relevant quantities occurring in the problem. The relative wave length of the incoming neutron, or what mag by regarded as more significent, this quantity divided by $2 n$ turns out to be $\lambda=0.5 \times 10^{-13} \mathrm{~cm}$. On the other hand the averuge "radius" of the deuteron ${ }^{2}$ in the ground state is approximately $4 \times 10^{-13} \mathrm{~cm}$. Thus wo gee that while λ is

small compared to the average separation in the deuteron, it is by no means negligibly small. The corrections due to the binding energy of the deuteron can thus be expected to be of the order of magnitude of the ratio of t to the neutron energy, i.A., the order of a few per cent. It is difficult to form an off-hand estimate of the correction due to interference. However these rough considerations tend to indicate that it is worthwhile to calculate the correction in more detail. We shall attempt to set up the n-d scattering problem in such a way that the total n-d cross section divides itself naturally into three separate parts:

1. The scattering of the incoming neutron from the proton bound in the field of the other neutron. 2. The scattering of the incoming neutron from the noutron bound in the field of the proton.
2. The interference term.

Since the energies we wish to consider are reasonably high wo shall calculate our cross sections by the Rorn approximation. While it is realized that at 90 Mev this is far from ideal it should serve to give some idea of the correction.

In order to effect the separation into the scattering from the proton and the neutron it will be woll to retain the laboratory system of coordinates as far as the description of the three-particle systen is concerned. This does not of courso preclude the frequent use of relative coordinates between two particlos of the threo-particle system.

In the next section we shall consider the simplest
case, namely the cane of Wigner forces, ignoring the effect of the Pauli principle operating between the two neutrons. In the usual calculation with the forn approxination we should expset to represent the final wave functions of the three-particle

- system as that of three free particles. In our case it will be necessary to consider the final wave function as made up of the product of the final free-particle function of the scattered neatron and the wave function of a very highly-excited dauteron. (Actually it is seen that. we really use a modified Hamiltonian in order to work with a free-particls wave function, but this (hs only a calculational sinplification.) The modified picture will insure that wo indeed describe the scattoring of the incoming neutron from a bound particle, even though the tinding after the collision is essentislly negligitle.

In sections II, IV and V we consider the modifications introduced by more gerpor nuclear forces and also the inclusion of the fauli principle.
II. Nigner Forcos Without Pauli, Principle

Fig. 1

10		
1	2	neutron
1	1	
1	0	
1	1	proton

FR:

Thus the coordinates of the particles in the laboratory system are designated as r_{1}, r_{2}, and r_{3} respectively ${ }^{3}$. We shall further introduce rolative coordinates tetween partfcles 1 and 2 , that is let:

$$
\begin{align*}
& r=r_{1}-r_{2} \tag{1}\\
& R=\frac{1}{2}\left(r_{1}+r_{2}\right) \tag{2}
\end{align*}
$$

Further introduce the following momenta in the laboratory system:

Deuteron: before collision: zero

[^1]It will be useful to introduce the following combinations of momenta:

$$
\begin{align*}
& p_{1}=\frac{1}{2}\left(p^{\prime}-p^{\prime \prime}\right) \tag{3}\\
& p_{2}=p^{\prime} p^{\prime \prime} \tag{4}
\end{align*}
$$

These momenta will be recognized as those associated with coordinates r and R respectively.

We define $\mathscr{H}_{i}(r, t)$ and $\psi_{f}(r, t)$ respectively as the initial and final wave function of the three particla system. Further E_{f} and E_{i} are total final and initial enorgles of the ~名过stem. We shall have no occasion to use E_{f} in explicit form, but, wh shall make use of $\mathrm{E}_{\mathrm{f}}{ }^{\circ}$; the final enorgy noglecting the energy of binding botwon particles 1 and 2. Thus we have

$$
\begin{align*}
& E_{f}^{0}=\frac{1}{2 M}\left(p^{2}+p^{12}+p^{\prime 2}\right) \tag{5}\\
& E_{i}=\frac{p_{0}{ }^{2}}{2 M}-\epsilon \tag{E}
\end{align*}
$$

Now let us develop our cross section, using the usarl time daperdont peturbation theory. In this section wo shall neglect tizo Pauli principles; i.e., we shall not antisymmetrlzo our wavo functions. Furthermore we shall neglect treatment of the spin. The nuclear potentials shall bo assumed of a straight Wigner type. Now we have the time dependent Schroedinger equation ${ }^{4}$ which states that:

$$
\begin{equation*}
i \hbar \dot{\psi}(r, t)=\left(H+v_{n d}\right) \psi(r, t) \tag{7}
\end{equation*}
$$

4 of course r is here used to denote a general spacial coordinate and is not the r of equation (l).

Here H is the Hamiltonian corresponding to the kinetic energy of all three particles plus the potential energy between particles 1 and 2. That is

$$
\begin{equation*}
H=-\frac{\hbar_{2}^{2}}{2 M}\left(\nabla_{1}^{2}+\nabla_{2}^{2}+\nabla_{3}^{2}\right)+v_{n p}\left(r_{1}-r_{2}\right) \tag{8}
\end{equation*}
$$

The quantity $V_{\text {nd }}$ winch is made up of the two potential energies $V_{n p}\left(r_{1}-r_{3}\right)$ and $V_{n n}\left(r_{2}-r_{3}\right)$ is regarded as the perturbation in equation (7). Now let

$$
\begin{equation*}
\psi(r, t)=e^{-1 / \hbar H t} \phi(r, t) \tag{9}
\end{equation*}
$$

Then

$$
\begin{equation*}
\phi(r, t)=-\frac{1}{\hbar} \dot{\phi}+1 / \hbar H t_{l}-V_{n d} e^{-1 / \hbar H t} \phi(t) \tag{10}
\end{equation*}
$$

Thus in first approximation this integral equation (10) has the solution

$$
\begin{equation*}
\psi(r, t)=\psi_{i}(r, t)-\frac{1}{\hbar} \int_{0}^{t} e^{-1 / \hbar H\left(t-t^{\prime}\right)} V_{n d} \psi_{i}\left(r, t^{\prime}\right) d t^{\prime} \tag{11}
\end{equation*}
$$

where

$$
\begin{equation*}
\psi_{1}(r, t)=e^{-1 / \hbar} E_{1} t \quad \phi_{1}(r) \tag{12}
\end{equation*}
$$

Now let us ask for the probability of finding the system at the time t in the state " f ". This probability is then given by $\left|b_{f}\right|^{2}$ where

$$
\begin{equation*}
b_{f}=\left(\psi_{\mathrm{f}}, \varphi\right) \tag{13}
\end{equation*}
$$

Thus we have from equation (11) and (12) that

$$
\left.\begin{array}{c}
b_{f}=e^{1 / \hbar\left(E_{f}-E_{1}\right) t}\left(\phi_{1}, \phi_{f}\right)-\frac{1}{\hbar} \int_{0}^{t}\left(\phi_{f^{e}} e^{-1 / \hbar E_{f} t}\right. \\
e^{-i / \hbar H\left(t-t^{\prime}\right)} V_{n d} e^{-1 / \hbar} E_{1} t^{\prime} \tag{14}
\end{array} \phi_{1}\right) d t^{\prime} .
$$

since ϕ_{2} and ϕ_{f} are orthogonal functions and H is a Herinitian operator we may write:

6
a:
Er

$$
\begin{equation*}
\mathrm{b}_{\mathrm{f}}=-\frac{1}{\hbar}\left(\phi_{\mathrm{f}}, \mathrm{v}_{\mathrm{nd}} \phi_{1}\right) \int_{0}^{t} e^{+1 / \hbar_{2}\left(E_{f}-E_{i}\right) t^{\prime}} d t^{\prime} \tag{15}
\end{equation*}
$$

$$
\begin{equation*}
b_{f}=-\frac{i}{\hbar}\left(\phi_{f}, v_{n d} \phi_{i}\right) \int_{0}^{t} e^{+1 / \hbar}\left(E_{f}-E_{1}\right) t^{\prime} d t ' \tag{16}
\end{equation*}
$$

and finally was included inadvertently)

$$
\begin{equation*}
\left|v_{f}\right|^{2}=\frac{2\left|\left(\phi_{f}\left|V_{n d}\right| \phi_{f}\right)\right|^{2}}{\left(E_{f}-E_{i}\right)^{2}}\left(1-\cos \left(E_{f}-E_{i}\right) t / \hbar\right) \tag{17}
\end{equation*}
$$

Form this wa then develop our cross section in the usual manner. 5 and we find that

$$
\begin{equation*}
\left.\sigma_{n d}\left(\frac{V}{p_{0} / M}\right) \frac{2 \pi}{\hbar} \int \right\rvert\,\left(\phi_{f}\left|V_{n d}\right| \phi_{i}\right)^{2} \rho_{E_{f}}\left(E_{f}-E_{i}\right) d E_{f} \tag{18}
\end{equation*}
$$

where in equation (19) the symbol V denotes a large volume to Which we normalize and $f_{E_{f}}$ as usual denotes the density of states with energy E_{f}, foe., in our case

$$
\begin{equation*}
\rho_{E} d E_{f}=\frac{V^{3} d_{p} d_{p}{ }^{\prime} d_{p^{\prime \prime}}}{h^{9}} \tag{19}
\end{equation*}
$$

Now let us write the δ function in terms of its integral representation and we find that

$$
\begin{equation*}
\sigma_{n d}=\frac{V M}{\hbar p_{0}} \quad T \tag{20}
\end{equation*}
$$

where

$$
\begin{equation*}
T=\frac{V^{3}}{h^{9}} \int\left|\left(\phi_{f}\left|V_{n d}\right| \phi_{i}\right)\right|^{2} e^{i \lambda\left(E_{f}-E_{1}\right)} d \lambda d_{p^{d}} \rho_{p} d_{p} \tag{21}
\end{equation*}
$$

Thus we may write in symbolic form that

$$
T=\int \sum_{f}\left(\phi_{i}\left|V_{n d}\right| \phi_{f}\right)\left(\phi_{f}\left|V_{n d}\right| \phi_{i}\right)^{i}:\left(E_{f}-E_{i}\right)_{d}
$$

Son for instance Weitler, "The quantum theory of radiation",
end edition, page pg.

Thus

$$
\begin{equation*}
T=\int \sum_{f}\left(\phi_{i}\left|V_{n d} e^{i \lambda H}\right| \phi_{f}\right)\left(\phi_{f}\left|V_{n d}\right| \phi_{i}\right) e^{-i \hbar E_{i}} d \lambda \tag{23}
\end{equation*}
$$ Now since the ϕ_{f} are a complete set of functions we may replace them by any other complete set, say $\phi_{f}{ }^{\circ}$. Here the $\boldsymbol{\phi}_{f}{ }^{\circ}$ are eigen functions of the Hamilton operator H_{o}, where H_{o} is

$$
\begin{equation*}
H_{0}=-\frac{\hbar_{1}^{2}}{2 H}\left(\nabla_{1}^{2}+\nabla_{2}^{2}+\nabla_{3}^{2}\right) \tag{24}
\end{equation*}
$$

Thus H becomes

$$
\begin{equation*}
H=H_{0}+V_{n p}\left(r_{1}-r_{2}\right) \tag{25}
\end{equation*}
$$

and equation (23) may be written as

$$
T=\int \sum_{f, k}\left(\phi_{i}\left|V_{n d}\right| \phi_{i}^{0}\right)\left(\phi_{k}^{0}\left|e^{i \lambda H}\right| \phi_{e^{-i} \lambda E_{i}}\right)\left(\phi_{f}^{0}\left|V_{n d}\right| \phi_{i}\right)
$$

Now the following theorem is proved in Appendix A :

$$
\left(e^{A+B}\right)_{a a^{\prime}}=\left(e^{A}\right)_{a a^{\prime}}+(B)_{a a^{\prime}}\left(\frac{e^{a}-e^{a^{\prime}}}{a-a^{\prime}}\right)
$$

Where B is small compared to A. Now

$$
\begin{equation*}
\left(\phi_{k}^{0}\left|e^{i \lambda H}\right| \phi_{f}^{0}\right)=\left(e^{\left.i \lambda H_{0}+i \lambda V_{12}\right)_{k f}}\right. \tag{28}
\end{equation*}
$$

where we have abbreviated $V_{n p}\left(r_{1}-r_{2}\right)$ by V_{12}
We know that V_{12} is small compared to H_{0} since we assume a high momenturn for the incoming neutron. Then by (27) we have

$$
\begin{align*}
& \left(\phi_{k} 0\left|e^{i \lambda H}\right| \phi_{f^{0}}^{0}\right)=\left(\phi_{k} 0\left|e^{i \lambda H_{0}}\right| \phi_{f} 0\right)+\left(\phi_{k}^{0}\left|i \lambda V_{12}\right| \phi_{f}^{0}\right) \\
& \frac{e^{1 \lambda E_{k}^{o}-e^{i \lambda E_{f}}}}{1 \times\left(E_{x}{ }^{0}-E_{f} c\right)}
\end{align*}
$$

However the contribution of the last tern to (29) comes only from those portions where $E_{k}{ }^{\circ} \sim E_{f}{ }^{\circ}$ and thus

$$
\begin{equation*}
\left(\phi_{k} \circ\left|e^{1 \lambda H}\right| \phi_{f} \circ\right)=\left(\phi_{k} \circ \mid e^{\left.i k H_{o}\left(1 \text { in } v_{12}\right) \mid \phi_{f}^{0}\right)}\right. \tag{30}
\end{equation*}
$$

Now then

$$
\begin{equation*}
T=\int \sum_{i}\left(\phi_{1}\left|v_{n d}\right| \phi_{f}^{0}\right)\left(\phi_{f} 0\left|\left(1+1 Q V_{12}\right) v_{n d}\right| \phi_{i}\right) e^{i}\left(E_{f} 0-E_{i}\right) \tag{31}
\end{equation*}
$$

By assumption, which we made at the beginning of this section, we may permute V_{12} and $V_{\text {nd }}$ since neither of them involve space or spin operators. Further

$$
\begin{equation*}
v_{12} \phi_{1}=\left(-\epsilon-\frac{\hbar^{2} \nabla_{12}^{2}}{M}\right) \phi_{1} \tag{32}
\end{equation*}
$$

So that

$$
\begin{gather*}
T=\int \sum_{f}\left(\phi_{i}\left|v_{n d}\right| \phi_{f}^{0}\right)\left(\phi_{f}^{0}\left|v_{n d}\right|\left\{1-19\left[\epsilon+\frac{\hbar^{2} \nabla_{12}^{2}}{M}\right]\right\} \phi_{1}\right) \\
e^{i \lambda\left(E_{f}^{0}-E_{1}\right)} d \lambda \tag{33}
\end{gather*}
$$

However, the operator ∇_{12}^{2} does not commute with $V_{n d}$ and wo must examine T when $V_{n d}$ is split up into its separate terms, Recall then that

$$
\begin{equation*}
v_{n d}{ }^{2} \rightarrow v_{n p} v_{n p}+v_{n n} v_{n n}+v_{n n} V_{n p}+v_{n p} V_{n n} \tag{34}
\end{equation*}
$$

and split $u p T$ and o nd correspondingly into

$$
\begin{equation*}
T=T_{A}+T_{B}+T_{C, A}+\dot{T}_{C, B} \tag{35}
\end{equation*}
$$

and

$$
\begin{equation*}
\sigma_{n d}=v_{A}+\cdots B+{ }^{\sigma} C, A+\cup C, B \tag{36}
\end{equation*}
$$

Now lot us concentrate on J_{A}. Prom equation (33) we see that this involves the matrix element

$$
\begin{equation*}
L_{A}=\left(\phi_{f}^{0}\left|V_{r 1 p}\right|\left(1=1:\left[\epsilon+\frac{\hbar_{1}^{2} \nabla_{12}^{2}}{V}\right]\right) \phi_{i}\right) \tag{37}
\end{equation*}
$$

For the evaluation of (37) we now note that L_{A} can we written ir. terms of trio coordinates r_{1}, r_{3} and $\left(r_{1}-r_{2}\right)=r$ as

Performing partial integration with respect to the coorityater ${ }^{\prime}$ we get

$$
\begin{align*}
& L_{A}=\frac{1}{V} / 2\left[1-1 \times\left(\epsilon+\frac{p^{\prime \prime 2}}{Y_{1}}\right)\right] \int e^{+1 / \hbar}\left(p \cdot r_{3}^{\prime}+p^{\prime} \cdot r_{1}^{\prime} l^{\prime}+p^{\prime \prime} \cdot r_{2}^{\prime}\right) \\
& V_{n p}\left(r_{1}^{\prime}-r_{3^{\prime}}\right) e^{-1 / \hbar} p_{0} \cdot r_{3^{\prime}} x\left(r_{1}^{\prime}-r_{n^{\prime}}\right) \\
& d r_{1}{ }^{\prime} \mathrm{dr}_{2} \mathrm{dr}_{3}{ }^{\prime}
\end{align*}
$$

Since only small values of h contribute to (31) because iris expression is oscillatory for large values of : we may make the following replacement en (39)

$$
\begin{equation*}
1-1:\left(\epsilon+\frac{p^{\prime \prime} 2}{N}\right) \rightarrow e^{-1 *\left(\epsilon+\frac{p^{\prime 2}}{N}\right)} \tag{40}
\end{equation*}
$$

Then T_{A} becomes ir virtue of (31), (39), and (40)

$$
\begin{gather*}
P_{A}=\frac{v^{3} 1}{h^{9} V^{5}} \iiint e^{-1 / \hbar\left(p^{\prime}, r_{1}+p, r_{3}\right)+1 \prime^{\prime} \hbar p^{\prime \prime} \cdot r V_{n p}\left(r_{\lambda}-r_{3}\right)} \\
e^{+1 / \hbar\left(p_{0} \cdot r_{3}-p^{\prime \prime} \cdot r_{1}\right)} x(r) d r^{\prime} r_{1} d r_{3} \left\lvert\, 2-\frac{1}{2 M}\left(p^{2}+p^{\prime 2}-p^{\prime \prime 2}-p_{0}^{2}\right)\right. \\
d \lambda d p d p^{\prime} d p^{\prime \prime} \tag{4x}
\end{gather*}
$$

Denote by $\Phi\left(p^{\prime \prime}\right)$ the momentum transform of $\mathcal{X}(r)$ 1.e., let

$$
\begin{equation*}
\Phi\left(p^{\prime \prime}\right)=\frac{1}{h^{3 / 2}} \int N^{+1 / \hbar p^{\prime \prime} \cdot r} x(x) d r \tag{42}
\end{equation*}
$$

then (41) and (20) may be written as follows:

$$
\begin{align*}
& \left.\sigma_{A}=\frac{M}{\hbar h^{6} p_{0} V} \int \right\rvert\, \int e^{-1 / \hbar}\left(p \cdot r_{3}+p^{\prime} \cdot r_{1}\right)_{V_{n p}}\left(r_{1}-r_{3}\right) e^{1 / \hbar}\left(p_{0} \cdot r_{3}-p^{\prime \prime} \cdot r_{1}\right) \\
& \left.d r_{1} d r_{3}\right|^{2}\left|\Phi\left(p^{\prime \prime}\right)\right|^{2} \text { e } \frac{1 \lambda}{2 M}\left(p^{2}+p^{2}-p^{\prime \prime} e_{-p_{0}^{2}}^{2}\right) \\
& d \lambda d p \quad d p \cdot d p^{\prime \prime} \tag{43}
\end{align*}
$$

Now let us call-pinispd; thencerset

$$
\begin{align*}
& \left.J_{A}=\frac{M}{h^{\varepsilon_{0}}} \int \right\rvert\, \int e^{-i / \hbar}\left(p \cdot r_{3}+p^{\prime} \cdot r_{1}\right)_{V_{n p}}\left(r_{1}-r_{3}\right) e^{+i / \hbar}\left(p_{0} \cdot r_{3} p_{d} \cdot r_{1}\right) \\
& \left.d r_{j} d r_{3}\right|^{2}\left|\Phi\left(p_{d}\right)\right|^{2}=\frac{i}{2 N}\left(p^{2}+p^{2}-p_{d} 2-p_{0}^{2}\right) . \\
& d \lambda d p d p \prime d p " \tag{44}
\end{align*}
$$

On tho other hand consider now the collision of a neutron of momentum p_{0} with a proton of momentum $p^{\prime \prime}$. The cross section for this process may be written as

$$
\begin{align*}
& \left.\operatorname{snp}_{n}\left(p_{0}-p_{d}\right)=\frac{1}{\hbar h^{6}\left|p_{0}-p_{d}\right| V} \int \right\rvert\, \int e^{-1 / \hbar}\left(p_{0} r_{3}+p^{\prime}, r_{1}\right)_{V_{n p}}\left(r_{1}-r_{3}\right) \\
&\left.e^{+1 / \hbar}\left(p_{0} \cdot r_{3}+p_{d} \cdot r_{1}\right)_{d r_{1}} d r_{3}\right|^{2} \\
& \quad e^{\frac{1 \lambda}{2 M}\left(p^{2}+p^{\prime 2}-p_{0}^{2}-p_{d}^{2}\right)_{d \lambda} d p d p^{\prime} d p^{\prime \prime}} .(45
\end{align*}
$$

Hence we may express :A as

$$
\begin{equation*}
\therefore A=\int \frac{\left|p_{o}-p_{d}\right|}{p_{o}} \quad n_{n}\left(p_{o}-p_{d}\right):\left|\Phi\left(p_{d}\right)\right|^{2} d \overrightarrow{p_{d}} \tag{46}
\end{equation*}
$$

Note that equation (46) is just what we would expect from physical reasoning. It is the average cross section for a
mean of noutrons with relative momentum $p_{0}-p_{d}$ relative to tre proton with an average relative momentum of p_{0}. The distrikution of p_{d} is fust that of the momeritum of the proton in the deuteron as we expect.

The techniques in ovaluating E e are exactly the same as those used in obtaining equation (46) for ${ }^{\circ} A$. This is so since we are neflecting srin proferties and so there is no inherent difference between particle 1 and 2. Hence we shall rot Eive the detials here of obtaining ${ }^{-} R^{2}$ but meroly state the resuilt which is

$$
\begin{equation*}
\therefore{ }_{\mathrm{E}}=\int \frac{\left|p_{0}-p_{d}\right|}{p_{0}} \sigma_{n r_{1}}\left(p_{o}-p_{d}\right) \quad\left|\Phi\left(p_{d}\right)\right|^{2} d \vec{p}_{d} \tag{47}
\end{equation*}
$$

equation (47) is apain the result we would expect from physical reasoning.

Eefore simplifying (46) and (47) for very high p_{0} we shalif first turn our attention to the cross terms. First note that there is a relation betweon $\sigma_{C, A}$ and ${ }^{\circ} \mathrm{C}, \mathrm{F}$. For triss purpose look at T in the form of equetion (2\%). Splititing up $V_{n d}=V_{n n}+V_{n p}$ in (22) shows trat the two cross terms are just complex conjugates of each otker. Or that

$$
\begin{equation*}
{ }_{C, A}+c_{C, B}=2 R e{ }_{C, A} \tag{4e}
\end{equation*}
$$

Thus we shall examine only ${ }^{\prime} C, A$. We find that

$$
\begin{equation*}
T_{C, A}=\int \sum_{f}\left(\phi_{I}\left|V_{r i n}\right| \phi_{f}^{0}\right) L_{A} i \cdot\left(E_{P^{0}}^{0}-E_{i}\right)_{d} \tag{49}
\end{equation*}
$$

where L_{A} is given by (37). By performing the steps analogous to (38)-(40) we find that

$$
\begin{equation*}
T_{C, A}=\int \sum_{f} K M e^{\frac{1}{2 N}}\left(p^{2}+p^{\prime 2}-p^{\prime 2}-p_{o} 2\right) d \lambda \tag{50}
\end{equation*}
$$

whore

$$
\begin{align*}
& K=\left(\phi_{i}\left|v_{n n}\right| \phi_{i}\right) \tag{51}\\
& M=\left(\phi_{f} o\left|v_{n p}\right| \phi_{i}\right) \tag{52}
\end{align*}
$$

The important step in solving the cross-term is that of treating K and M separately at this stage. In orion words in K the coordinate r_{1} ' is "extraneous" and we must eliminate it. In M the coordinate r_{2} is "extraneous" and must be eliminated. In particular then we may write K and M as follows by making use of equation (42)

$$
\begin{align*}
& K=\frac{h^{3 / 2}}{v^{5 / 2}} \int e^{-i / \hbar} p_{0} \cdot r_{3}{ }^{\prime} V_{n n}\left(r_{z^{\prime}}-r_{3}^{\prime}\right) e^{+1 / \hbar}\left(p \cdot r_{3}{ }^{\prime}+\left[p^{\prime}+p^{\prime \prime}\right] \cdot r_{2}^{\prime}\right) \\
& \Phi\left(-F^{\prime}\right) d r_{2}{ }^{\prime} d r_{3}, \tag{53}\\
& M=\frac{h^{3 / 2}}{V^{5 / 2}} \int e^{-1 / \hbar}\left(p \cdot r_{3}+\left[p^{\prime}+p^{\prime \prime}\right] \cdot r_{1}\right)_{V_{n},}\left(r_{1}-r_{3}\right) e^{+i / \hbar} p_{0} \cdot r_{3} \\
& \Phi\left(+p^{\prime \prime}\right) d r_{1} d r_{3} \tag{54}
\end{align*}
$$

Now let us introduce the following coordinates

$$
\left.\begin{array}{l}
s_{1}=r_{1}-r_{3} \\
s_{2}=r_{2}^{\prime}-r_{3} \tag{55}\\
s_{3}=r_{3}-r_{3} \\
s_{4}=r_{i}
\end{array}\right\} \begin{aligned}
& -16 \\
& r_{1}=s_{4} \\
& r_{3}=s_{4}-s_{1} \\
& r_{3}^{\prime}=s_{4}-s_{3}-s_{1} \\
& r_{2}^{\prime}=s_{4}-s_{3}-s_{1}+s_{2}
\end{aligned}
$$

Thus wo got

Integrating over s_{3} and s_{4} wo get

$$
\begin{equation*}
T_{C, A}=\frac{v^{3} h^{6}}{h^{9} v^{4}} \int \delta\left(p_{0}-p-p^{\prime}-p^{\prime \prime}\right) 0_{1}^{+1 / \hbar\left(p^{\prime}+p^{\prime \prime}\right)\left(s_{2}-s_{1}\right) v_{n H 1}\left(s_{2} ; v_{n p^{\prime}} s_{1}\right)} \tag{56}
\end{equation*}
$$

$$
\begin{equation*}
\Phi^{\prime \prime}\left(-p^{\prime}\right) \Phi\left(+p^{\prime \prime}\right) \frac{1 \lambda}{2 M}\left(p^{2}+p^{\prime 2}-p^{\prime 2}-p_{0}^{2}\right) d s_{1} d s_{2} d \lambda d_{p} d_{n}^{\prime} \lambda_{p}^{\prime \prime} \tag{57}
\end{equation*}
$$

Integrating over d_{p} wo get

$$
\begin{align*}
& T_{C, A}=\frac{v^{3} h^{6}}{h^{9} V^{4}} \int 0^{i / \hbar\left(p^{\prime}+p^{\prime \prime}\right)\left(s_{2}-s_{1}\right)_{v_{n}}\left(s_{2}\right) v_{n}\left(s_{1}\right)} \\
& \Phi^{*}\left(-p^{\prime}\right) \Phi \tag{58}
\end{align*}
$$

Now the Φ 's mean that only very sail values of p ' and p " will give a contribution, le., to first order we have

$$
\begin{aligned}
& T_{C, A}=\frac{V n^{3}}{h^{9} V^{5}} \int 0^{-1 / \hbar} p_{0} \cdot\left(s_{4}-s_{3}-s_{1}\right) V_{n n}\left(s_{2}\right)^{+1 / \hbar} \operatorname{p} \cdot\left(s_{4}-s_{3}-s_{1}\right) \\
& 0_{0}^{+i / \hbar}\left(p^{\prime}+p^{\prime \prime}\right)\left(s_{4}-s_{3}-s_{1}+s_{2}\right)_{0}^{-1 / \hbar p \cdot\left(s_{4}-s_{1}\right)} 0^{-1 / \hbar\left(p^{\prime}+p^{\prime \prime}\right) \cdot s_{1}}
\end{aligned}
$$

$$
\begin{array}{r}
T_{C, A}=\frac{V^{3} 2^{M n^{6}}}{h^{9} V^{4}} \int V_{n n}\left(s_{2}\right) V_{n p}\left(s_{1}\right) \Phi^{*}\left(-p^{\prime}\right) \Phi\left(+p^{\prime \prime}\right) \\
\quad \delta\left(p^{\prime 2}-\left|p_{0}\right|\left|p^{\prime}+p^{\prime \prime}\right| \mu\right) \tag{50}
\end{array}
$$

where μ is cosine of the angle between p_{0} and $\vec{p}^{\prime}+\overrightarrow{p^{\prime \prime}}$. Since $\overrightarrow{p^{\prime}}+\overrightarrow{p^{\prime \prime}}$ has no prefered direction we may average over μ. This yields

$$
\begin{array}{r}
T_{C, A}=\frac{V^{3} M n^{6}}{n^{O} V^{1}} \int V_{n n}\left(s_{2}\right) V_{n p}\left(s_{1}\right) \Phi^{*}\left(-p^{\prime}\right) \Phi\left(+p^{\prime \prime}\right) \\
\delta\left(\mu\left|p_{o}\right|\left|p^{\prime}+p^{\prime \prime}\right|-p^{\prime 2}\right) d \mu \tag{60}
\end{array}
$$

Performing the integration over. d μ we get

$$
T_{C, A}=\frac{V^{3} M_{n}^{6}}{n^{3} V^{4}} \int \frac{V_{n n}\left(s_{2}\right) V_{n p}\left(s_{1}\right) \Phi^{*}\left(-p^{\prime}\right) \Phi\left(+p^{\prime \prime}\right) d \vec{s}_{1} d \vec{s}_{2} \overrightarrow{d_{p}^{\prime}} \overrightarrow{d_{p}} \overrightarrow{\mathrm{~d}}^{\prime \prime}}{(61)}
$$

Now one can easily show that

$$
\begin{equation*}
\int \frac{e^{i / \hbar\left(p^{\prime}+p^{\prime \prime}\right)} r^{2} \vec{r}}{r^{2}}=\frac{\pi h}{\left|p^{\prime}+p^{\prime \prime}\right|} \tag{62}
\end{equation*}
$$

but

$$
\begin{equation*}
x(r)=\frac{1}{n^{3} / 2} \quad \int e^{i / \hbar} p \cdot p \quad \Phi(p) d \vec{p} \tag{63}
\end{equation*}
$$

hence

$$
\begin{gather*}
T_{C, A}=\frac{v^{3} \min ^{6}}{n^{9} p_{0} V^{4}}\left(\frac{1}{\pi h}\right) n^{3}\left(\int V_{n n}\left(s_{2}\right) V_{n p}\left(s_{1}\right) d \vec{s}_{1} d \vec{s}_{2}\right) \\
\int \frac{x(r) x^{*}(r) d \vec{r}}{r^{2}} \tag{64}
\end{gather*}
$$

Now let us assume that $V_{n n}$ and $V_{n p}$ are related by a simple numerical constant. In particular let

$$
\begin{equation*}
v_{n n}=k_{1} \quad v_{n p} \tag{65}
\end{equation*}
$$

when notice that $\int V_{n p} V_{n p}$ can be expressed as proportional to $\left.\frac{d v_{n p}}{d \Omega}\right|_{\theta=0}$. This is sci since if we write $\because n p(0)$ as shorthand for ${ }^{\circ}(0)=\frac{d u n p}{d \Omega} f_{\theta}=0$ then

$$
\begin{equation*}
n_{n p}(0)=\frac{2 \pi v^{2}}{\hbar r_{1}^{3}} \int \quad v_{r_{1} p}\left(s_{1}\right) V_{n p}\left(s_{2}\right) d_{s_{l}} d_{s_{2}} \tag{66}
\end{equation*}
$$

Notice further what the significance of the last part of (64) is; namely that
-

$$
\int \frac{x(r) x^{2}\left(r^{2} \mathrm{~d} \vec{r}\right.}{r^{2}}=\left(\frac{\overrightarrow{1}}{r^{2}}\right)
$$

where the bar as usual denotes an average. Then we may combine all the foregoing to write

$$
C_{C, A}^{0}=\frac{k]}{2 p_{0}^{2}}\left(\frac{h^{2}}{\pi}\right)\left(\frac{1}{r_{d}^{2}}\right) \quad \quad_{n p}(C)_{s i \pi}
$$

which is of the form of a deuteron momentum squared over the incident momentum squared multiplied by a cross section. Later we shall notice that this is typical of the form of the correction terms we are looking for.

Now let us return to the equations fire σ_{A} arid σ_{B}
(equation (46) and (47)) and simplify them for the case of hight po with which we are concertied. Thus expanding equation (46) around p_{0} we have

$$
\begin{aligned}
& \sigma_{A}=\frac{1}{\left|p_{o}\right|} \int\left\{\left|p_{o}\right| \sigma_{n p}\left(p_{o}\right)-\overrightarrow{p_{d}} \cdot \nabla_{p_{o}}\left(p_{o}^{o}{ }_{n p}\left(p_{o}\right)\right\}\right. \\
&\left.+\frac{1}{2}\left(p_{d} \cdot \nabla_{p_{o}}\right)^{2}\left|p_{o}\right| \sigma\left(p_{o}\right)+\ldots\right\}\left|\Phi\left(p_{d}\right)\right|^{2} d_{p d}(\varepsilon, Q)
\end{aligned}
$$

Since $\overrightarrow{p_{d}}$ has no preferred direction, the second term of (69) integrates to zero when the angular integration is performed. The other terms yield

$$
\varepsilon_{A}=a_{n p}\left(p_{0}\right)+\overline{\rho_{d}{ }^{2}}\left(-\frac{1}{2 p_{0}}\right)-\frac{1}{3} \quad \nabla_{p_{0}}^{2}\left(i \mid p_{0}\right) a_{n p}\left(p_{0}\right)+\ldots
$$

where $\overline{p_{d} 2}$ denotes as usual ar average of p_{d}.: We may simplify this expression by the use of the standard relation concerned with the Laplacian. Thus

$$
\begin{equation*}
\left.\nabla_{0}^{2}\left(\left|p_{0}\right| v\left(p_{0}\right)\right)=\frac{1}{\left|p_{0}\right|} \frac{d^{2}}{d p_{0}^{2}}-\frac{1}{0} p_{0}\left(p_{0}\right)\right) \tag{71}
\end{equation*}
$$

and hence

$$
\begin{equation*}
\sigma_{A}=n_{n}\left(p_{0}\right)+\frac{1}{6}\left(\frac{p_{d}^{2}}{p_{0}^{2}}\right) \frac{d^{2}}{d_{p_{0}^{2}}}\left(p_{0}^{2} a_{n p}\left(p_{0}\right)\right. \tag{72}
\end{equation*}
$$

Now we may re-express the second terms of (72) which we may call * np. Differentiating out we find

$$
\varepsilon_{n p}=\frac{1}{6}\left(\overline{p_{0}^{2}}{p_{0}}^{2}\right)\left\{2 r_{n p}\left(p_{0}\right)+4 p_{0} \frac{d n_{n p}\left(p_{0}\right)}{d p_{0}}+p_{0}^{2} \frac{d^{2} o n p\left(p_{c}\right)}{d!_{0}^{2}}\right.
$$

Thus we need to consider whether we can re-express $\frac{d o}{d_{p}}$ as ami angular derivative at the energy corresponding to po. Indeed this can be done. Consider $\frac{d o(\theta)}{d \Omega}$ which is Elver by

$$
\frac{d o(\theta)}{d \Omega} \sim\left|\int V(r) e^{+1 / \hbar}\left(\overrightarrow{r_{0}}-\vec{p}\right) \cdot r_{d \vec{r}}\right|_{p=p_{r}}^{2}
$$

Thus if for the sake of brevity we call

$$
\begin{equation*}
\frac{d \cdot(\theta)}{d \Omega}=c \quad(\theta) \tag{75}
\end{equation*}
$$

B
and let x denote tree cosine of the angle between \vec{p} and $\overrightarrow{r a}_{\mathrm{C}}$ E

$$
\begin{equation*}
r(x)=f\left(p_{0}^{2}(1-x)\right) \tag{76}
\end{equation*}
$$

and

$$
\begin{equation*}
\sigma=2 \pi \int^{1} d(x) d x \tag{77}
\end{equation*}
$$

hence

$$
\begin{equation*}
\frac{d c}{d p_{0}}=\int^{I} \frac{d c(x)}{d p_{0}} d x \tag{78}
\end{equation*}
$$

but

$$
\begin{equation*}
\frac{d o(x)}{d p_{0}}=2 p_{0}(1-x) f^{\prime} \ln , x_{0} \tag{79}
\end{equation*}
$$

whereas

$$
\begin{equation*}
\frac{d v(x)}{d x}=(-1) p_{0}^{2} f^{\prime} \tag{80}
\end{equation*}
$$

arid thus

$$
\begin{equation*}
\frac{d c(x)}{d p_{0}}=\frac{2(x-1)}{p_{0}} \quad \frac{d \cdot s(x)}{d x} \tag{81}
\end{equation*}
$$

so that

$$
\begin{equation*}
\frac{d:}{d p_{0}}=\pi \int^{+1} \frac{(x-1)}{p_{0}} \frac{d \sigma(x)}{d x} d x \tag{82}
\end{equation*}
$$

or

$$
\begin{equation*}
\frac{d \cdot}{d p_{0}}=\frac{-2 \cdot}{p_{0}}+\frac{2 \pi}{p_{0}} 4 c(n) \tag{83}
\end{equation*}
$$

If we substitute (83) into (73) and do out the indicated operations we find that

$$
\begin{equation*}
{ }^{6} n p=\frac{2}{3}\left(\frac{\overline{p_{d}^{2}}}{p_{0}^{2}}\right)\left\{2 n, n_{n p}(\pi)+p_{0} 2 r \cdot \frac{d_{0} n p(\pi)}{d p_{0}}\right\} \tag{84}
\end{equation*}
$$

Now wo still have to re-express $\frac{d \dot{\sigma}_{n p}(r)}{d p_{0}}$; which is easy to do. From equation (76) we have

$$
\begin{equation*}
0(\pi)=f\left(2 p_{0}^{2}\right) \tag{85}
\end{equation*}
$$

thus

$$
\begin{equation*}
\frac{d g(\pi)}{d p_{0}}=4 p_{0} f^{\prime} \pi \tag{86}
\end{equation*}
$$

but from (80)

$$
\begin{equation*}
\left.\frac{d o(x)}{d x}\right|_{x=-1}=-p_{0}^{2} f^{\prime} \tag{87}
\end{equation*}
$$

or

$$
\begin{equation*}
\frac{d \sigma(\pi)}{d p_{0}}=-\left.\frac{4}{p_{0}} \quad \frac{d \sigma(x)}{d x}\right|_{x=-1} \tag{88}
\end{equation*}
$$

Thus finally

$$
\delta_{n p}=\frac{2}{3}\left(\overline{\frac{p d^{2}}{p_{0}^{2}}}\right) \quad\left\{? \therefore \sigma_{n p}(n)-\left.2^{n} \cdot 4 \cdot \frac{d a n p}{d x}\right|_{x=1}\right\}(89)
$$

We may then collect our two alternate expressions for the case of the nd cross section with the assumption of wiener potentials and neglect the modifications introduced by the Pauli principle. From equation (68) and (72) we get

$$
\begin{align*}
& \left.0_{n d}=\sigma_{n p}+o_{n n}+\frac{1}{6}\left(\overline{p^{2}}\right) \quad \frac{d^{2}}{p_{0}^{2}}\right) \quad \frac{d p_{0}}{}\left(p_{0}^{2} u_{n p}\right) \\
& +\frac{1}{6}\left(\frac{\overline{\mathrm{pd}^{2}}}{p_{0}^{2}}\right) \quad \frac{\mathrm{d}^{2}}{\mathrm{~d} \rho_{0}^{2}} \quad\left(p_{0}^{2} \sigma_{n n}\right) \tag{90}\\
& +\frac{k_{1}}{p_{0} 2}\left(\frac{n^{2}}{n}\right)\left(\frac{\bar{l}}{r_{d}^{2}}\right) \quad o_{n p}(0)
\end{align*}
$$

Alternately from (68) and (89) we get
2
2
2
2

$$
\begin{align*}
\sigma_{n d}=\sigma_{n p}+u_{n n} & +\frac{2}{3}\left(\frac{\overline{p d^{2}}}{p_{0}^{2}}\right)\left\{2 \pi \sigma_{n p}(\pi)-\left.2 \pi \cdot 4 \frac{d s_{n p}}{d x}\right|_{x=-1}\right\} \\
& +\frac{2}{3}\left(\frac{\overline{p d^{2}}}{p_{0}^{2}}\right)\left\{2 \pi \sigma_{n n}(7)-\left.2 \pi \cdot 4 \frac{d \sigma_{n n}}{d x}\right|_{x=-1}\right\} \\
& +\frac{k_{1}}{p_{0}^{2}}\left(\frac{n^{2}}{\pi}\right)\left(\frac{1}{r_{d}^{2}}\right) \sigma_{n p}(0) \tag{91}
\end{align*}
$$

III. Wigner Forces with Pauli Prinoiple

In this section we shall consider how $\sigma_{\text {nd }}$ is modified if we take the Pauli principle, operating between the two noutrons, into account. For this purpose it will be useful to redevelop the cross soction formula in a manner different from the time dependent perturbation theory presented in section II. If we followed the method of section. II we would find difficulty in exhibiting which correction terms are of order higher than those we are interested in. This arises from the fact that it is not until a late stage of the previous method that we made use of the fact that V_{12} is small compared to H. In the treatment here we shall make use of this fact as early as possitle.

Let us therefore develop our formula from a stationary state perturbation theory. Any wave functions will be understood to include a spin dependent part, but we continue to take the potentials as spin independent.

Let

$$
\begin{equation*}
\mathscr{\mu}=e^{-1 / \hbar\left(E_{1}+1 \tilde{\epsilon}\right) t} \phi \tag{1}
\end{equation*}
$$

1.e., ϕ describes the wave function with the time supressed. Here $\tilde{\epsilon}$ denotes a small imaginary contribution to the energy E_{1} and eventually we shall let $\tilde{\boldsymbol{\epsilon}}$ go to zero. In ossence then $\widetilde{\boldsymbol{\epsilon}}$ will serve as a convergence factor in our integrations. Thus

$$
\begin{equation*}
\left(E_{i}+i \tilde{\epsilon}\right) \phi=\left(H+v_{n d}\right) \phi \tag{2}
\end{equation*}
$$

Thus symbolically

$$
\begin{equation*}
\phi=\frac{1}{E_{i}+i \tilde{\epsilon}-H} \phi \tag{3}
\end{equation*}
$$

If then we add the solution ϕ_{1} of the homogeneous equation corresponding to equation (1) we get

$$
\begin{equation*}
\phi=\phi_{1}^{4}+\frac{1}{E_{1}-H+1} \sum_{n d} \quad v_{n d} \phi \tag{4}
\end{equation*}
$$

If we set $\phi=\phi_{1}$ in the integral equation (4) in accordance With the porn approximation and split up it into H_{0} and V_{12} we et

$$
\begin{equation*}
\phi=\phi_{i}+\phi_{s c} \tag{5}
\end{equation*}
$$

with

$$
\begin{equation*}
\phi_{\mathrm{sc}}=\frac{1}{E_{1}-T_{0}^{-T}}+\overline{T_{12}}+v_{n d} \phi_{1} \tag{6}
\end{equation*}
$$

If now we expand for y_{12} small, then

$$
\begin{equation*}
\phi_{\mathrm{sc}}=\left\{\frac{1}{E_{1}-H_{0}+1 \widetilde{\epsilon}}+\frac{1}{E_{1}-H_{0}+1 \widetilde{\epsilon}} v_{12} \frac{1}{E_{1}-H_{0}+1 \widetilde{\epsilon}}\right\} \quad v_{n d} \phi_{1} \tag{7}
\end{equation*}
$$

Thus we see that $\boldsymbol{\phi}_{\text {sc }}$ gets broker up into a main term and a correction to it.

Now examine the computability of H_{0} and $V_{l 2}$. .

$$
\begin{equation*}
\left(\theta_{0} V_{12}-V_{12} H_{0}\right)_{E E}=(E-E 1)\left(V_{12}\right)_{E E} \tag{B}
\end{equation*}
$$

where E and E, are elgen values of H_{0}. Now if we choose any model for $V_{1 P}$, (say a Yukawa potential for instance) wo see at
once that $\left(V_{12}\right)_{E R}$, is only significant wien $(E-E)<\frac{\overline{p_{d} \dot{2}}}{M}$.
电 Thus $\left[\mathrm{H}_{0}, \mathrm{~V}_{12}\right]$ is almost but not quite zero. Consider now however that V_{12}.occurs only in the correction term of (7). Thus the non-commutability of V_{12} with H_{o} is only a correction to the correction term. Hence we shall ignore it in the approximation fork which we working. S

Thus

$$
\begin{equation*}
\phi_{s c}=\frac{1}{E_{1}-H_{0}+1 \widetilde{\epsilon}}\left\{v_{n d}+\frac{1}{E_{1}-H_{0}+i \widetilde{\epsilon}} v_{12} v_{n d}\right\} \phi_{1} \tag{9}
\end{equation*}
$$

For the purposes of this section we have assumed only Wigner potentials so that V_{12} and $V_{n d}$ commute. Furtiner H_{0} and $V_{n d}$ comminute as far as the second term of (9) is concerned th it ar analagous argument to that presented for V_{12} and H_{0} above. Thus ϕ_{sc} becomes

$$
\begin{equation*}
\phi_{s c}=\frac{1}{E_{1}-H_{o}+1 \widetilde{\epsilon}} v_{n d}\left\{1+\frac{1}{E_{i}-T_{0}+1 \widetilde{\epsilon}} v_{12}\right\} \phi_{1} \tag{110}
\end{equation*}
$$

Now we may set

$$
\begin{equation*}
{ }_{12} \phi_{1}=\left(-\epsilon-T_{12}\right) \phi_{1} \tag{II}
\end{equation*}
$$

where T_{12} is the kinetic energy operator corresponding to the potential operator V_{12}. Now re-express ϕ_{1} as a superposition of plane waves. We have

$$
\begin{equation*}
\phi_{i}=\frac{1}{v^{r}} e^{i / \hbar p_{0} \cdot r_{3}} x\left(r_{1}-r_{2}\right) \tag{12}
\end{equation*}
$$

(i) thus

$$
\begin{equation*}
\phi_{1}=\frac{1}{V^{2}} \frac{e^{i / \hbar} p_{0} \cdot r_{3}}{n^{3} / 2} \int e^{1 / \hbar p_{d} \cdot\left(r_{1}-r_{2}\right)} \Phi\left(p_{d}\right) d_{p_{d}} \tag{1.3}
\end{equation*}
$$

hence

$$
\begin{equation*}
T_{12} \phi_{1}=T_{12}\left(p_{d}\right) \phi_{i} \tag{14}
\end{equation*}
$$

where

$$
\begin{equation*}
T_{12}\left(p_{d}\right)=\frac{p_{d}^{2}}{M} \tag{15}
\end{equation*}
$$

Symbolically we may write

$$
\begin{equation*}
\phi_{1}=\sum_{m, x_{m}} a_{m} e^{i / \hbar p_{d m}\left(r_{1}-r_{2}\right)}=\sum_{m} \phi_{i m} \tag{15}
\end{equation*}
$$

then

$$
\begin{equation*}
\phi_{s c}=\sum_{m} \frac{1}{E_{1}-H_{0}+i \widetilde{\epsilon}} V_{n d}\left\{1-\frac{T_{12}\left(p_{d m}\right)+\epsilon}{E_{1}-H_{0}+1 \widetilde{\epsilon}}\right. \tag{17}
\end{equation*}
$$

or permuting the order of $V_{n d}$ in analogy to the previous argument we find

$$
\phi_{s c}=\sum_{m} \frac{1}{E_{1}-H_{0}+i \tilde{\epsilon}}\left\{1-\frac{T_{12}\left(p_{d m}\right)+\epsilon}{E_{1}-H_{0}+1 \widetilde{\epsilon}}\right\} v_{n d} \phi_{1 m}
$$

Now let us remember that T_{12} is small and furthermore call ${ }^{6}$

$$
\begin{equation*}
E_{i}=E_{i}^{0}-\epsilon \tag{19}
\end{equation*}
$$

then we see that

$$
\begin{equation*}
\phi_{s c}=\sum_{m} \frac{1}{E_{i} 0+T_{12}\left(p_{d m}\right)-H_{0}+i \widetilde{\epsilon}} v_{n d} \phi_{i n} \tag{20}
\end{equation*}
$$

${ }^{6}$ The notation has been chosen in consistency with equation (II-G).

$$
\begin{equation*}
\mu_{s c}=e^{-1 / \hbar\left(E_{1}+1 \widetilde{\epsilon}\right) t} \phi_{s c} \tag{21}
\end{equation*}
$$

Before proceeding to develop the Pauli cross section it seems desirable at this point to develop the non-Pauli cross section to exhibit agreement with section II. Consider then what the steps are from here on. The probability of finding the system in a certain final state " f " where the deuteron is disrupted and all three particles have certain definite momenta is given by

$$
\begin{equation*}
\left|b_{f}\right|^{2}=\left|\left(\psi_{\mathrm{f}} 0, \mu_{\mathrm{sc}}\right)\right|^{2} \tag{22}
\end{equation*}
$$

or

$$
\begin{equation*}
\left|b_{f}\right|^{2}=e^{\frac{2 \tilde{\epsilon} t}{\hbar}}\left|\left(\phi_{f} 0, \phi_{s c}\right)\right|^{2} \tag{23}
\end{equation*}
$$

Thus the total transition probability is given by

$$
\begin{equation*}
w=\frac{\partial}{\partial t} \int\left|\left(\phi_{f}^{0}, \phi_{s c}\right)\right|^{2} \rho_{E_{f}} e^{\frac{2 \tilde{\epsilon} t}{\hbar}} d E_{f} \tag{24}
\end{equation*}
$$

and thus

$$
\begin{equation*}
o_{n d}=\frac{1}{6} \sum_{i}\left(\frac{V}{p_{0} / M}\right) \frac{\partial}{\partial t} \int\left|\left(\phi_{f} 0, \phi_{s c}\right)\right|^{2} \rho_{E_{f}} \frac{2 \widetilde{\tilde{\epsilon}} t}{\hbar} d E_{f} \tag{25}
\end{equation*}
$$

The insertion of the extra factor $\frac{1}{6} \sum_{1}$ merely expresses the fact that we must average over the six equally likely initial spin states, which are discussed more fully in Appendix B. Now at this stage, we hreak up $V_{n d}$ as in equation (34). Thus we get

$$
\begin{gather*}
\sigma_{A}=\frac{1}{6} \sum_{i}\left(\frac{V}{p_{0} / M}\right) \frac{2 \tilde{\epsilon}}{\hbar} \int \left\lvert\,\left(\phi_{f}^{0}, \sum_{m} \frac{1}{E_{1}^{0}+T_{12}\left(p_{d m}\right)-H_{0}+i \widetilde{\epsilon}}\right.\right. \\
 \tag{26}\\
\left.V_{n p}\left(r_{1}-r_{3}\right) \phi_{1 m}\right)\left.\right|^{2}{ }_{E_{E_{f}} d E_{f}}
\end{gather*}
$$

Examining the matrix element we note that the momentum of coordinate r_{2} does not change, i.e.

$$
\begin{equation*}
p_{d m}=p^{\prime \prime} \tag{27}
\end{equation*}
$$

then

$$
\begin{aligned}
&\left|\left(\phi_{f^{\circ}}, \sum_{m} \frac{1}{E_{f} 0+T_{12}\left(p_{d m}\right)-H_{o}+i \widetilde{\epsilon}} V_{n p}\left(r_{1}-r_{3}\right) \phi_{i m}\right)\right|^{2} \\
&=\left|\left(\phi_{f}^{0}, V_{n p} \phi_{i}\right)\right|^{2}\left|\frac{1}{E_{i}^{0}+T_{12}\left(p^{\prime \prime}\right)-E_{f} 0+1 \widetilde{\epsilon}}\right|^{2}
\end{aligned}
$$

now we know that

$$
\begin{equation*}
\lim _{\epsilon \rightarrow 0} \frac{\epsilon}{x^{2}+\epsilon 2}=\operatorname{no}^{\circ}(x) \tag{29}
\end{equation*}
$$

then

$$
\begin{gathered}
\sigma_{A}=\frac{1}{6} \sum_{i}\left(\frac{V}{p_{0} / M}\right) \frac{2 \pi}{\hbar} \int\left|\left(\phi_{f}^{o}, V_{n p} \phi_{i}\right)\right|_{\delta\left(E_{f}-E_{i}-T_{12}\left(p^{\prime \prime}\right)\right)}^{o} \\
\rho_{E_{f}} d E_{f}
\end{gathered}
$$

or lastly

$$
\sigma_{A}=\frac{1}{6} \sum_{i}\left(\frac{V}{p_{0} / M}\right) \quad \frac{2 \pi}{\hbar} \int\left|\left(\phi_{f}^{0}, v_{n p^{\prime}} \phi_{i}\right)\right|^{2}\left(\frac{p^{2}+p^{\prime 2}-p^{\prime \prime 2}-p_{o}^{2}}{2 M}\right)
$$

$$
\begin{equation*}
\rho_{E_{i}} d E_{f} \tag{31}
\end{equation*}
$$

In complete agreement with the result of section II, except that the wave functions here include a spin part. We must now examine it.

In section II we proceeded from the analogue of (31) ${ }^{7}$ by reducing out the extraneous coordinate r_{2}. Thus we must here reduce out the extranecus spin coordinate s_{2} as well. This operation proceeds as follows. Let

$$
\begin{equation*}
\phi=\phi^{\prime} \eta \tag{32}
\end{equation*}
$$

where \cap denotes the spin function of a three-particle system which is described more fully in Appendix R. Then call Γ the wave function of a two-particle system and say that

$$
\begin{equation*}
\Gamma=\Gamma^{\prime} \xi \tag{3.3}
\end{equation*}
$$

where \mathcal{F} is the spin wave function of a two-particle system. Then by the usual steps for the space part we get ${ }^{8}$

$$
\begin{array}{r}
\sigma_{A}=\frac{1}{6} \sum_{i} \sum_{f}\left(\frac{V}{p_{o} / M}\right) \frac{2 \pi}{\hbar} \int\left|\left(\Gamma_{f}^{\prime} \eta_{f,} V_{n p} \Gamma_{i}^{\prime} \eta_{i}\right)\right|^{2} \\
 \tag{34}\\
\left.\left|\Phi\left(p^{\prime \prime}\right)\right|^{2} b\left(\frac{p^{2}+p^{\prime 2}-p^{\prime \prime}-p_{o}^{2}}{2 M}\right)\right)_{E_{f}} d E_{f}
\end{array}
$$

now however we, have proved in Appendix B that

7
namely equations (II-4I) and (II-43).
8
In equation (34) the symbol \sum_{f} denotes summation over the final spin states.
$\because V \quad \frac{1}{6} \sum_{i} \sum_{f}\left|\left(\eta_{f}\left|v_{n p}\right| \eta_{p}\right)\right|^{2}=\frac{1}{4} \sum_{i} \sum_{f}\left|\left(\xi_{f}\left|v_{n p}\right| \xi_{i}\right)\right|^{2}$
so that indeed
I

$$
\begin{align*}
& \sigma_{A}=\frac{1}{4} \sum_{i}\left(\frac{V}{p_{C} / M}\right) \quad \frac{2 \pi}{\hbar} \int\left|\left(\left.\Gamma\left(p, p^{\prime}\right)\right|_{V_{n p}} \mid \Gamma\left(p_{0},-p^{\prime \prime}\right)\right)\right|^{2} \tag{36}\\
&\left|\Phi\left(p^{\prime \prime}\right)\right|^{2} \varepsilon\left(\frac{p^{2}+p^{\prime 2}-p^{\prime 2}-p_{0}^{2}}{2 M}\right) \dot{f}_{E_{f}} E_{f}
\end{align*}
$$

where the $\frac{1}{4} \sum_{i}$ expresses the fact that we must average over the four equally likely initial spin states of a neutron-proton system and again by the steps outlined in section IT we find

$$
\begin{equation*}
\sigma_{A}=\int \frac{\left|p_{0}-p_{d}\right|}{p_{0}} \quad{ }_{n p}\left(p_{0}-p_{d}\right)\left|\Phi\left(p_{d}\right)\right|_{\text {sirs is }}^{2} \underset{p_{d d}}{ } \tag{37}
\end{equation*}
$$

similarly we could without difficulty carry through the same procedure to evaluate $\sigma \mathrm{p}$. Now coordinate r_{1} is extraneous and in analogy to equation (27) we get

$$
\begin{equation*}
p_{\partial m}=p^{\prime} \tag{38}
\end{equation*}
$$

and the entire procedure carries through like that for σ_{A}. When we come to the interference term we can write it

$$
\begin{align*}
& { }^{\circ} C, A+\sigma_{C, B}=2 \operatorname{Re} \frac{1}{6} \sum_{i}\left(\frac{V}{P_{O} / M}\right) \frac{2 \tilde{c}}{\hbar} \\
& \int\left(\phi_{f}^{0}, \sum_{m} \frac{1}{E_{1} 0+T_{12}\left(p_{d m}\right)-H_{0}+1 \widetilde{\epsilon}} \quad v_{n p}\left(r_{1}-r_{3}\right) \phi_{1 m}\right) \tag{39}\\
& \left(\phi_{f} \circ, \sum_{n} \frac{1}{E_{i} 0+T_{12}\left(p_{n}\right)-H_{0}+i \widetilde{\epsilon}} \quad v_{n n}\left(r_{2^{-r_{3}}}\right) \phi_{i n)}\right. \\
& \dot{P}_{\mathrm{E}} \mathrm{dt}_{\mathrm{F}}
\end{align*}
$$

this the first matrix element yields
$\because 2$

- in
r
-

FF
ne \rightarrow :

$$
\begin{equation*}
p_{d m}=p^{\prime \prime} \tag{40}
\end{equation*}
$$

whereas the second one yields

$$
\begin{equation*}
p_{d n}=p^{\prime} \tag{41}
\end{equation*}
$$

vinhich at first sight seams to present complications. Recall however that the interference term is of the order of a correction term; thus we may make approximations in it without changing it to the approximation in which we are interested. In particular set

$$
\begin{equation*}
p_{d m}=p_{d n} \tag{42}
\end{equation*}
$$

then

$$
\begin{align*}
& \sigma_{\approx, A}+\sigma_{C, B}=2 \operatorname{Re} \frac{1}{6} \sum_{i}\left(\frac{V}{P_{0} / M}\right) \frac{2 \cdot}{\hbar} \\
& \int\left(\phi_{\mathrm{f}}^{0}, v_{n p} \phi_{i}\right)\left(\phi_{\mathrm{f}}^{0}, \mathrm{v}_{\mathrm{nn}} \phi_{\mathrm{i}}\right) *\left(\frac{\mathrm{p}^{2}+\mathrm{p}^{\prime}-\mathrm{p}^{2}-p_{o}^{2}}{2 M}\right) \\
& {\underset{X}{x}}^{E d_{f}} \tag{43}
\end{align*}
$$

which is in complete analogy to the formula obtained in section II. The only difference from here on in the treatment of ${ }^{\circ} \mathrm{C}, \mathrm{A}+{ }^{\circ} \mathrm{C}, \mathrm{B}$ compared to that in section II is that of the spin which needs to be considered here. Since the potential is spin-independent the spin sum in operation is

$$
\begin{equation*}
\frac{1}{6} \sum_{i} \sum_{f}\left(\eta_{\mathrm{f}}|1| \eta_{\mathrm{i}}\right)\left(\eta_{\mathrm{i}}|1| \eta_{\mathrm{f}}\right)=\frac{1}{6} \sum_{i}\left(\eta_{\mathrm{i}}|1| \eta_{1}\right) \tag{44}
\end{equation*}
$$

But the sum (44) is just unity. Equally well the spin sum which appears in connection with $v_{n}(0)$, namely

$$
\begin{equation*}
\frac{1}{4} \sum_{i} \sum_{f}\left(\xi_{f}|1| \xi_{f}\right)\left(\xi_{1}|1| \xi_{f}\right)=1 \tag{45}
\end{equation*}
$$

thus we find again that

$$
\begin{equation*}
{ }^{{ }^{C}, A}+a_{C, B}=\frac{k_{1}}{p_{n} 2}\left(\frac{n^{2}}{\pi}\right)\left(\frac{\overline{1}}{r_{d}^{2}}\right){ }^{{ }_{n}}{ }_{n p}(0) \tag{46}
\end{equation*}
$$

Now we are ready to exhibit the effect of antisymetrizing the wave function ϕ, which we shall denote by $\tilde{\boldsymbol{\phi}}$. When we perform this antisjmmetrization in particles 2 and 3 we get

$$
\begin{equation*}
\tilde{\phi}=\frac{1}{\sqrt{2}}\left[\phi_{1}(3, \overline{12})-\phi_{i}(2, \overline{13})+\phi_{s c}(3, \overline{12})-\phi_{s c}(2, \overline{13})\right] \tag{47}
\end{equation*}
$$

where the bar denotes the particles in the deuteron. The fact that the normalization is indeed $1 / \sqrt{2}$ to an approximation consistent with the solution of our problem is proved in Appendix D. That equation (47) fulfills the condition we require of it is well illustrated when we consider the asymptotic condition. Consider the case when neutron number 3 is at infinity. Then

$$
\begin{array}{rlrl}
& \tilde{\phi} & \sim \frac{1}{\sqrt{2}} & {\left[\phi_{3 \mathrm{c}}(3, \overline{12})-\phi_{3 \mathrm{c}}(2, \overline{13})\right]} \tag{48}\\
\text { or } & \tilde{\phi} & \sim \frac{1}{\sqrt{2}} \quad\left[\phi_{\mathrm{sc}}(3, \overline{12})-I_{23} \phi_{\mathrm{sc}}(3, \overline{12})\right]
\end{array}
$$

But indeed (48) is also fulfilled for the limiting case of (47) with neutron 2 at finfinity.

$$
\begin{align*}
\tilde{\phi}_{s c}= & \frac{1}{\sqrt{2}} \sum_{m} \frac{1}{E_{1}^{0}+T_{12}\left(p_{d m}\right) H_{0}+i \tilde{\epsilon}^{\prime}} V_{n d} \phi_{i m} \\
& -\frac{1}{\sqrt{2}} I_{23} \sum_{k} \frac{1}{E_{i}^{0}+T_{12}\left(p_{d k}\right)-\Pi_{0}+i \widetilde{\epsilon}_{n d}} V_{n k} \phi_{i k} \tag{49}
\end{align*}
$$

Then we must exanine this for the potential split up as before. Take first the $V_{n n}$ part, i.e., the one belongirg to σ_{F}. We have found before that in this case

$$
\begin{equation*}
p_{d m}=p^{\prime} \tag{50}
\end{equation*}
$$

now examine $p_{d k}$; here we have the second term of (49) gives

$$
\begin{equation*}
-\sum_{\mathrm{K}} \frac{1}{E_{i}^{\circ}+\mathrm{T}_{13}\left(\mathrm{p}_{\mathrm{dk}}\right)-\mathrm{T}_{0}+1 \tilde{\epsilon}} \mathrm{v}_{\mathrm{nr}}\left(\mathrm{r}_{2}-\mathrm{r}_{z}\right)\left(\mathrm{I}_{23} \phi_{i k}\right) \tag{51}
\end{equation*}
$$

now

$$
\begin{equation*}
I_{23} \phi_{i k} \sim \theta^{1 / \hbar} p_{0} \cdot r_{2} e^{1 / \hbar} p_{d k}\left(r_{1}-r_{3}\right) \tag{52}
\end{equation*}
$$

Then on examining the matrix element formed with \varnothing_{f}^{0} we see that the momentum of coordinate r_{1} remains unchanged, just as in the non-Pauli principle case. Herice

$$
\begin{equation*}
p_{d k}=p^{\prime}=p_{d m} \tag{53}
\end{equation*}
$$

Thus for the $n-n$ portion we efrectively have

$$
\begin{equation*}
\tilde{\phi}_{s C, B}=\sum_{m} \frac{1}{E_{1}^{0}+T\left(p^{\prime}\right)-\mathrm{I}_{\mathrm{o}}+1 \tilde{\epsilon}}\left(1-\mathrm{I}_{23}\right) \mathrm{V}_{\mathrm{nn}} \phi_{\mathrm{im}} \tag{54}
\end{equation*}
$$

or in the same manner as before we find that
等

$$
\begin{align*}
J_{B}=\frac{1}{6} \sum_{i}\left(\frac{V}{p_{\partial} / N}\right) & \frac{2}{\hbar} \int \frac{\left|\left(\phi_{I}^{n},\left(1-I_{23}\right) V_{n n} \phi_{1}\right)\right|^{2}}{2} \\
& :\left(\frac{p^{2}+p^{\prime \prime}-p^{2}-p_{0}^{2}}{2 M}\right) \rho_{E_{j}} d E_{P} \tag{55}
\end{align*}
$$

Now let us reduce $\left(\phi_{f}^{\circ}\left|\left(1-I_{23}\right) V_{n n}\right| \phi_{i}\right)$ further. For this purpose take the first term with the "l" in it. This clearly yields

$$
\begin{gather*}
h^{3 / 2} \int e^{-1 / \hbar\left(p \cdot r_{3}+p^{\prime \prime} \cdot r_{2}\right)} \eta_{\mathrm{r}}(s) v_{n n}\left(r_{2}-r_{3}\right) e^{+i / \hbar\left(p_{0} \cdot r_{3}-p^{\prime} \cdot r_{2}\right)} \\
\eta_{1}(s) \Phi\left(p^{\prime}\right) d r_{2}{ }^{d r_{3}} \tag{56}
\end{gather*}
$$

where Φ denotes a momentum wave function as usual.
The term with the I_{23} written out yields

$$
\begin{align*}
& -\frac{1}{V^{5 / 2}} \int e^{-i / \hbar}\left(p \cdot r_{2}+p^{\prime} \cdot r_{j}+p \prime \cdot r_{2}\right)_{\eta_{f}}\left(I_{23} s\right) V_{n n}\left(r_{2}-r_{3}\right) \\
& e^{+1 / \hbar p_{0} \cdot r_{3}} x\left(r_{1}-r_{2}\right) \eta_{1}(s) d r_{1} d r_{2} d r_{3} \tag{57}\\
& =-\frac{n^{3 / 2}}{v^{5 / 2}} \int e^{-1 / \hbar}\left(p \cdot r_{2}+p^{\prime \prime} \cdot r_{3}\right)_{\eta_{1}}\left(I_{23} s\right) V_{n n}\left(r_{2}-r_{3}\right) \tag{58}
\end{align*}
$$

$$
\begin{align*}
& =+\frac{h^{3 / 2}}{v^{5 / 2}} \int e^{-1 / \hbar}\left(p \cdot r_{3}+p^{\prime \prime} \cdot r_{2} i_{\eta_{f}}(s)-I_{23} V_{n n}\left(r_{2}-r_{3}\right)\right. \\
& e^{+i / \hbar\left(p_{0} \cdot r_{3}-p^{\prime} \cdot r_{2}\right)} \eta_{1}(s) \Phi\left(p^{\prime}\right) d r_{2}{ }^{d r_{3}} \tag{59}
\end{align*}
$$

thus

$$
\begin{align*}
& \left(\phi_{\mathrm{r}}^{0}\left|\left(1-I_{23}\right) v_{n n}\right| \phi_{1}\right)=\frac{h^{3 / 2}}{v^{5 / 2}} \int \mathrm{e}^{-1 / \hbar\left(p \cdot r_{3}+p^{\prime \prime} \cdot r_{2}\right)} \\
& \quad \eta_{\mathrm{r}}(\mathrm{~s})\left(1-\mathrm{I}_{23}\right) v_{n n} e^{+1 / \hbar\left(p_{0} \cdot r_{3}-p^{\prime} \cdot r_{2}\right)} \eta_{1}(s) \Phi\left(p^{\prime}\right) d r_{2^{d i d}}(6 \tag{60}
\end{align*}
$$

If we again use Γ for the wave function of the two-particle system and denote the spatial part of Γ by Γ^{\prime} then we may write

$$
\begin{equation*}
\Gamma^{\prime}\left(p_{0},-p^{\prime}\right)=\frac{1}{V} \theta^{+1 / \hbar}\left(p_{0} \cdot r_{3}-p^{\prime} \cdot r_{2}\right) \tag{61}
\end{equation*}
$$

then

$$
\begin{aligned}
& \left.\sigma_{p}=\frac{1}{6} \sum_{i}\left(\frac{2 \pi v^{3}}{\hbar n^{6} p_{0}}\right) \int \sum_{f} \frac{1}{2} \right\rvert\,\left(\left.\Gamma^{\prime}\left(p, p^{\prime \prime}\right) \eta_{f}\left|\left(1-I_{23}\right) v_{n r i}\right| \Gamma^{\prime}\left(p_{0},-p^{\prime}\right)\right|^{2}\right.
\end{aligned}
$$

Now in Appendix C we have proved that

$$
\frac{1}{6} \sum_{i} \sum_{f}\left|\left(\eta_{\mathrm{f}}\left|\left(1-I_{23}\right)\right| \eta_{i}\right)\right|^{2}=\frac{1}{4} \sum_{i} \sum_{\mathrm{f}}\left|\left(\xi_{\mathrm{f}}\left|\left(1-I_{23}\right)\right| \xi_{i}\right) \cdot\right|^{2}(63)
$$

where ξ is the spin wave function of the two-particle system. Hence

$$
\begin{array}{r}
\sigma_{B}=\frac{1}{4} \sum_{i} \sum_{f}\left(\frac{2 \eta v^{2}}{\hbar_{h^{6} p_{o}}}\right) \int \frac{\left|\left(\Gamma\left(p, p^{\prime \prime}\right)\left|\left(1-I_{23}\right) v_{n n}\right| \Gamma\left(p_{o},-p^{\prime}\right)\right)\right|^{2}}{2} \\
\left|\Phi\left(p^{\prime}\right)\right|^{2} e \frac{1!}{2 M}\left(p^{2}+p^{\prime \prime 2}-p^{\prime 2}-p_{o}^{2}\right) d \lambda d_{p} d_{p} d_{p}^{\prime \prime}
\end{array}
$$

Note that our derivation of equation (55) did not really make any very special assumptions concerning the three- particle system. Hence we may in analogy to (55) write down the easily proved formula for the scattering of a free neutron (2) from another free

Civ neutron (3). This then yields the usual scattering formula
With $V_{n x}$ replaced by $\frac{1}{\sqrt{2}}\left(1-I_{23}\right) V_{n n}$; namely

$$
\begin{array}{r}
\sigma_{n n}^{P a u l i}\left(p_{o}-p_{d}\right)=\frac{1}{4} \sum_{i} \sum_{f}\left(\frac{2 \pi V^{3}}{\hbar n^{6}\left|p_{o}-p_{d}\right|}\right) \\
\int \frac{\left|\left(\Gamma\left(p, p^{\prime \prime}\right)\left|\left(1-I_{23}\right) v_{n n}\right| \Gamma\left(p_{o}-p_{d}\right)\right)\right|^{2}}{2} \\
e^{\frac{1 \lambda}{2 M}\left(p^{2}+p^{\prime \prime 2}-p_{d}{ }^{2}-p_{o}^{2}\right)} d \lambda d_{p} d_{p} d_{p}^{\prime \prime}
\end{array}
$$

Thus comparing (64) and (65) we find, as expected that

$$
\sigma_{\mathrm{E}}=\int \frac{\left|p_{0}-p_{d}\right|}{p_{0}} \sigma_{n n}{ }^{\text {Pauli }}\left(p_{0}-p_{d}\right)\left|\Phi\left(p_{d}\right)\right|^{2} \quad d_{r_{d}}
$$

Now turn to (49) and examine for the nip part, fee.. the one belonging to σ_{A}. In this case we find

$$
\begin{equation*}
p_{d m}=p^{\prime \prime}=p_{d k} \tag{67}
\end{equation*}
$$

and hence in analogy to equation (55) we find

$$
\begin{gather*}
\sigma_{A}=\frac{1}{6} \sum_{i}\left(\frac{V}{\rho_{0} / M}\right) \frac{2 n}{\hbar} \int \frac{\left|\left(\phi_{\mathrm{f}}^{0},\left(1-I_{23}\right) V_{n p} \phi_{i}\right)\right|^{2}}{2} \\
0\left(\frac{p^{2}+p^{\prime 2}-p^{n^{2}-p_{0}^{2}}}{2 M}\right) \rho_{E_{f}} d E_{\mathrm{f}} \tag{68}
\end{gather*}
$$

Now note that $\left(1-I_{23}\right)$ may be applied to $\boldsymbol{\phi}_{f}^{0}$ in virtue of the computability of $\left(1-I_{23}\right)$ with H_{o}. Further we have that the operator

$$
\begin{equation*}
\left(1-I_{23}\right)^{2}=2\left(1-I_{23}\right) \tag{69}
\end{equation*}
$$

\because
so that in (68) we may replace

$$
\begin{aligned}
& \frac{\left|\left(\phi_{r}^{\prime},\left(1-I_{23}\right) y_{r 1}, \phi_{1}\right)\right|^{2}}{2} \rightarrow\left(\phi_{\mathrm{r}}^{0}, \mathrm{v}_{\mathrm{r}, \mathrm{p}} \phi_{1}\right)\left(\phi_{1, v_{n p}}\left(1-I_{23}\right) \phi_{r}^{\prime \prime}\right) \\
& \text { In analogy with (70) break up }
\end{aligned}
$$

$$
\begin{equation*}
v_{A}=v_{A 1}+{ }^{v_{A 2}} \tag{71}
\end{equation*}
$$

then Al is clearly related to the usual $n-p$ crass section and is as was to be expected.

$$
\begin{equation*}
\sigma_{A 1}=\int \frac{\left|p_{0}-p_{d}\right|}{p_{0}} \sigma_{n p}\left(p_{0}-p_{d}\right)\left|\Phi^{4}\left(p_{d}\right)\right|^{2} d_{p_{d}} \tag{72}
\end{equation*}
$$

The term $\sigma_{A, 2}$ which is

$$
\begin{gather*}
\sigma_{A, 2}=\frac{-1}{6} \sum_{i} \sum_{f}\left(\frac{M V^{4}}{\hbar n^{9} p_{0}}\right) \int\left(\phi_{1}\left|V_{n p} I_{23}\right| \phi_{f}^{0}\right)\left(\phi_{f}^{0}\left|V_{n p}\right| \phi_{1}\right) \\
=\frac{i}{2 m}\left(p^{2}+p^{\prime 2}-p^{\prime \prime}-p_{o}^{2}\right) d \dot{*} d_{p} d_{p} d_{p}^{\prime \prime} \tag{73}
\end{gather*}
$$

is a correction term arising in the Pauli principle treatment only in virtue of the binding between particles 1 and 2 . We car easily verify that ${ }_{\mathrm{A}, 2}$ vanisines for the case of no binding between particles 1 and 2. This 1 s a result we must require physically, since the mere presence of the extra neutron number 2 should not influence tire $n-p$ scattering in the case where we have three free particles. For the time being we shall leave ${ }^{0} A, 2$ in the form of equation (73) and turn to the evaluation of the interference term.

We may treat the interference term in the manner described earlier in this section. For the matrix element containing ${ }^{\prime}$ no we find

$$
\begin{equation*}
p_{d m}=p^{\prime \prime}=p_{d k} \tag{67}
\end{equation*}
$$

whereas for the matrix element containing $V_{n n}$ we find

$$
\begin{equation*}
p_{\mathrm{dm}}=\mathrm{p}^{\prime}=\rho_{\mathrm{dk}} \tag{.53}
\end{equation*}
$$

we are not bothered by the inconsistency between these two matrix elements since the interference term itself is just of the order of a correction term. Thus we may write

$$
\begin{align*}
& \sigma_{C, A}+J_{C, B}=2 \operatorname{Re} \frac{1}{6} \sum_{i}\left(\frac{V}{P_{O} / M}\right) \frac{2^{n}}{\hbar} \\
& \int_{n=3} \frac{\left(\phi_{f}^{0},\left(1-I_{23}\right) V_{n p} \phi_{1}\right)\left(\phi_{r}^{0},\left(1-I_{23}\right) V_{n n} \phi_{1}\right) *}{24 \sin } \\
& *\left(\frac{p^{2}+p^{\prime}-p^{\prime 2}-p_{o}^{2}}{2 M}\right) \rho_{E_{i}} d E_{r} \tag{74}
\end{align*}
$$

Again if we say that $V_{n n}=k_{1} V_{n p}$ then we may replace $\frac{\left(\phi_{f}^{0},\left(1-I_{23}\right) v_{n p} \phi_{i}\right)\left(\phi_{f}^{0},\left(1-I_{23}\right) v_{n n} \phi_{i}\right) *}{2} \rightarrow$

$$
\begin{equation*}
k_{1}\left(\phi_{r} 0,\left(1-I_{23}\right) V_{n p}\left(r_{1}-r_{3}\right) \phi_{1}\right)\left(\phi_{r}^{0}, V_{n p}\left(r_{2}-r_{3}\right) \phi_{1}\right) * \tag{7.2}
\end{equation*}
$$

thus if in accordance with the subdivision of (75) we call

$$
\begin{equation*}
\sigma_{C, A}+{ }_{C, R}=\sigma_{C 1}+{ }_{C 2} \tag{76}
\end{equation*}
$$

C1 then σ_{Cl} is the usual interference term nomely

$$
\begin{equation*}
o_{C 1}=\frac{k_{1}}{p_{o}} 2\left(\frac{h^{2}}{\therefore}\right)\left(\frac{\overline{2}}{r_{d}^{2}}\right) o_{n p}(0) \tag{77}
\end{equation*}
$$

The term ${ }^{\circ} \mathrm{C} 2$ is an additional term to the usual interference term arising from the introduction of the Pauli principle.
Explicitly it is

$$
\begin{align*}
& { }_{\rho}^{0}=\frac{-2 k_{1}}{6} \sum_{i} \sum_{f}\left(\frac{M_{i} V^{4}}{\hbar h^{9} p_{0}}\right) \int\left(\phi_{i}\left|V_{n p}\left(r_{1}-r_{3}\right) I_{23}\right| \phi_{f}{ }^{0}\right) \\
& \left(\phi_{f}^{0}\left|V_{n p}\left(r_{2}-r_{3}\right)\right| \phi_{1}\right) \text { e } \frac{1 \lambda}{2 m^{2}}\left(p^{2}+p^{\left.i^{2}-p^{\prime 2}-p_{0}^{2}\right)}\right. \tag{78}
\end{align*}
$$

We could develop $\sigma_{\text {c2 }}$ into a form similar to (77); namely into a form with $\left(I_{23^{1}} n\right)^{2}$; which would yield a part of $\sigma_{n r i}(0)$. Then if we wished to complete $o_{n n}(c)$ we could get part of the term from ${ }_{c}{ }_{C l}$ by changing it into the $n-n$ form. However we still would have a correction term left over which would be no simpler than. (78). Hence there is little advantage in carrying (78) further. It can of course be evaluated for specific models for the potential.

Now let us summarize the results of this section, which are that:

$$
\begin{align*}
& \sigma_{n d}=\theta n p+\sigma n n+\frac{1}{6}\left(\frac{\overline{p_{d}^{2}}}{p_{0}^{2}}\right)\left\{\frac{d^{2}}{d p_{o}^{2}}\left(p_{o}^{2}{ }^{2}{ }_{n p}\right)+\frac{d^{2}}{d p_{o}^{2}}\left(p_{o}^{2} o_{n n}\right)\right\} \\
& +\frac{k_{1}}{p_{0}^{2}}\left(\frac{h^{2}}{\pi}\right)\left(\frac{\bar{l}}{r_{d}^{2}}\right) o_{n p}(0) \tag{79}\\
& -\frac{1}{6} \sum_{i} \sum_{f}\left(\frac{M V^{4}}{\hbar n^{3} p_{0}}\right) \int\left(\phi_{i}\left|v_{n p} I_{23}\right| \phi_{f}^{0}\right)\left\{\left(\phi_{f} \circ\left|v_{n p}\right| \phi_{i}\right)\right. \\
& \left.+2\left(\phi_{f}^{0}\left|v_{n n}\right| \phi_{1}\right)\right\} e^{\frac{1 *}{2 M}\left(p^{2}+p^{\prime 2}-p^{\prime 2}-p_{o}^{2}\right)} d x
\end{align*}
$$

The above result is seen to divide itself into the first five familiar terms plus an extra term due to the Pauli principle. This last term has to be evaluated for the specific model under discussion. It is difficult to make any predictions regarding its value, except to say that it is undoubtediy no larger than the correction terms to 0° nd.

0

IV. Spin and Space Exchange Forces Without Pauli Principle

In this section we shall attempt to deal with a general potential of the form ${ }^{9}$

$$
\begin{align*}
& v_{n p}\left(r_{1}-r_{3}\right)=\left(a_{1}+b_{1} \sigma_{1} \cdot \sigma_{3}\right)\left(c_{1}+d_{1} P_{13}\right) A_{n p}\left(r_{1}-r_{3}\right) \tag{1}\\
& v_{n n}\left(r_{2}-r_{3}\right)=\left(a_{2}+b_{2} \sigma_{2} \cdot c_{3}\right)\left(c_{2}+d_{2} P_{23}\right) B_{n n}\left(r_{2}-r_{3}\right) \tag{2}
\end{align*}
$$

where P stands for space exchange.
Now let us develop our expressions by the method of section III. We aryan get equation (III-9) for $\phi_{s c}$. Now however V_{12} and $V_{\text {nd }}$ do not commute. Thus

$$
\begin{equation*}
\phi_{\mathrm{sc}}=\phi_{\mathrm{sc}, \mathrm{o}}+\phi_{\mathrm{sc}, \lambda} \tag{3}
\end{equation*}
$$

with

$$
\begin{equation*}
\phi_{s c, 0}=\frac{1}{E_{1}-H_{0}+1 \tilde{\epsilon}} v_{n d}\left\{1+\frac{1}{E_{1}-H_{0}+1 \tilde{\epsilon}} v_{12}\right\} \phi_{1} \tag{4}
\end{equation*}
$$

and

$$
\begin{equation*}
\phi_{s c, \lambda}=\left(\frac{1}{\mathbb{I}_{i}-H_{0}+1 \widetilde{\epsilon}}\right)^{2} \quad\left[v_{12}, v_{n d}\right] \phi_{1} \tag{5}
\end{equation*}
$$

Now we need to evaluate $\left|\left(\phi_{\mathrm{f}}{ }^{\prime}, \phi_{\mathrm{sc}}\right)\right|^{2}$. Now we note that, b_{j} use of equation (3) we get
9.

While potentials (1) and (2) are not of the most general form they are of a useful form to exhibit our arguments that follow. As a matter of fact our arguments do carry through with a very general, non-tensor force potential.

$$
\begin{align*}
\left|\left(\phi_{f}^{\prime}, \phi_{s c}\right)\right|^{2} & =\left|\left(\phi_{\mathrm{f}} 0, \phi_{s c, o}\right)\right|^{2}+\left|\left(\phi_{f}^{\prime \prime}, \phi_{s c}, \lambda\right)\right|^{2} \\
& +2 \operatorname{Re}\left(\phi_{f} 0, \phi_{s c, 0}\right)\left(\phi_{s c}, \lambda, \phi_{f}\right) \tag{6}
\end{align*}
$$

Now let us introduce an equivalent notation for the cross section, namely

$$
\begin{equation*}
0=\omega_{0}+\sigma_{\lambda}+v(0 \lambda) \tag{7}
\end{equation*}
$$

Let us now concentrate on the term arising from $\left|\left(\phi_{\mathrm{f}}^{n}, \phi_{\text {sc, } 0}\right)\right|^{2}$ i.e.: ${ }^{\sigma}{ }_{0}$ -

Ne must first examine $V_{12} \phi_{1}$. It is still true that

$$
\begin{equation*}
T_{12} \phi_{1}=T_{12}(p d) \phi_{1} \tag{8}
\end{equation*}
$$

Since the interchange operator P_{12} in V_{12} does not change matters, for T_{12} concerns itself only with relative quantities between 1 and ?. Thus we set in analogy to equation (III-3I) that

$$
\begin{align*}
& \left.o_{0, A}=\frac{1}{6} \sum_{i}\left(\frac{V}{\sigma_{0} / h_{i}}\right)(\frac{\overbrace{n}^{n}}{\hbar}) \int \right\rvert\,\left(\phi_{i}^{r},\left.V_{n p} \phi_{i)}\right|^{2}\right. \\
& \theta\left(\frac{p^{2}+p^{\prime}+\dot{p}^{\prime \prime}-p_{0}^{2}}{2 N}\right) P_{E_{f}} d E_{f} \tag{9}
\end{align*}
$$

Now we must evaluate $\left|\left(\phi_{f}{ }^{\circ},{ }_{n}{ }_{n \rho} \phi_{1}\right)\right|^{2}$ furtiner. There is no difficulty. concerning the spin, since in Appendix wo nave or wed that

$$
\begin{aligned}
& \frac{1}{6} \sum_{i} \sum_{f}\left|\left(\eta_{f}\left|a_{1}+b_{1} \sigma_{1} \cdot \sigma_{3}\right| \eta_{i}\right)\right|^{2} \\
&=\frac{1}{4} \sum_{i} \sum_{f}\left|\left(\mathcal{S}_{f}\left|a_{1}+b_{1} o_{1} \cdot \sigma_{3}\right| \dot{s}_{1}\right)\right|^{2}
\end{aligned}
$$

\because Let us now examine the necessary spatial matrix elements namely

$$
\begin{equation*}
J=\left(\phi_{f} 0^{\prime}\left|\left(c_{1}+d_{1} P_{13}\right) A_{n p}\left(r_{1}-r_{3}\right)\right| \phi_{1}^{\prime}\right) \tag{11}
\end{equation*}
$$

Let is break up J in accordance with (11) into

$$
\begin{equation*}
J=J_{c}+J_{d} \tag{12}
\end{equation*}
$$

Then by the familiar arguments

$$
\begin{gather*}
J_{c}=\frac{c_{1}}{V^{5} / 2} \int e^{-1 / \hbar\left(p \cdot r_{3}+n^{\prime} \cdot r_{1}\right)} A_{n p}\left(r_{1}-r_{3}\right) e^{+i / \hbar\left(p_{0} \cdot r_{3}-p^{\prime \prime} \cdot r_{1}\right)} \\
\Phi\left(p^{\prime \prime}\right) d r_{1} d r_{3} \tag{1.3}
\end{gather*}
$$

The new element to consider is J d.

$$
\begin{array}{r}
J_{d}=\frac{d_{1}}{V^{5 / 2}} \int e^{-1 / \hbar\left(p^{\prime} \cdot r_{1}+p^{\prime \prime} \cdot r_{2}+p \cdot r_{3}\right)} A_{n p}\left(r_{1}-r_{3}\right) \\
e^{+1 / \hbar} p_{0} \cdot r_{2} x\left(r_{2}-r_{3}\right) d r_{1} d r_{2} d r_{3} \tag{14}
\end{array}
$$

or

$$
\begin{gather*}
J_{d}=\frac{d_{1}}{V^{5 / 2}} \int \rho^{-1 / \hbar\left(0 \cdot r_{3}+p^{\prime} \cdot r_{1}\right)_{A_{n p}\left(r_{1}-r_{3}\right) e}+1 / \hbar\left(p_{0} \cdot r_{1}-\beta^{\prime \prime} \cdot r_{3}\right)} \\
\Phi\left(p^{\prime \prime}\right) d r_{1} d r_{3} \tag{15}
\end{gather*}
$$

of finally

$$
\begin{array}{r}
J=\frac{1}{V^{j / 2} \int e^{-i / \hbar\left(p \cdot r_{3}+p^{\prime} \cdot r_{1}\right)}\left(c_{1}+d_{1} p_{13}\right) A_{n p}\left(r_{2}-r_{3}\right)} \\
\left.e^{+i / \hbar\left(p_{0} \cdot r_{3}-?^{\prime \prime} \cdot r_{1}\right)} \Phi\left(p^{\prime \prime}\right) d r_{1} d r_{3}\right)
\end{array}
$$

and all steps carry through as usual till we again obtain

$$
\begin{equation*}
{ }^{o_{0, A}}=\int \frac{\left|p_{0}-p_{d}\right|}{p_{D}} \quad \sigma_{n \rho}\left(p_{0}-p_{d}\right)\left|\Phi\left(p_{d}\right)\right|^{2} \underset{p d}{ } \tag{17}
\end{equation*}
$$

In an analogous manner we derive the formula for oo, ${ }^{\circ}$ as

$$
\begin{equation*}
a_{0, p}=\int \frac{\left|p_{n}-p_{d}\right|}{p_{0}} \sigma_{n n}\left(p_{0}-p_{i 1}\right) \quad|\Phi(p d)|^{2} a_{o d} \tag{18}
\end{equation*}
$$

Tow we must discuss the interference term of os. This term is

$$
\begin{aligned}
& 0_{0,0}=2 \operatorname{Re} \quad \frac{1}{6} \sum_{i}\left(\frac{V}{n_{0} N}\right) \quad \frac{2 \eta}{\hbar}
\end{aligned}
$$

$$
\begin{align*}
& \rho E_{f} d E_{f} \tag{19}
\end{align*}
$$

Wile this term is straightforward, we can no longer as in section II exifeess it simply in terms of $\mathrm{u}_{\mathrm{n}}(0)$. However wo so by looking at it that given a_{1}, b_{1}, a_{2} and b_{2} we could easily perform the spin sums indicated. We would then proceed by searating the non-space exchange and space exchange terms and evaluating these. Thus given the constants $a_{1} \rightarrow d_{1}$ and $a_{2} \rightarrow d_{2}$ there is no inherent difficulty for $\sigma 0, \mathrm{c}$. In the absence of definite values it seems of lille value to carry the valuation (10) beyond this stage and we shall leave it in this form.

We turn now to the j_{k} term arising from $\left|\left(\phi_{f}^{n}, \phi_{3 c, \lambda}\right)\right|^{2}$. Ion examining $\phi_{s c, \lambda}$ as given $\mathrm{ty}(5)$ we note tint on the squaring, this tern it is of order V^{4}. Now the chief terms of and are of order V^{2}; the correction terms in which we are interested are of one order higher, namely V^{3}; thus we may drop terms of order v^{4}. Hence we shall set or equal to zero.

We must now turn to the evaluation of the o (ox)term. This term does have a contribution of order V^{3} and so we must retain it. In particular the term with the V^{3} contribution reads:

$$
\begin{align*}
& \sigma_{(0, ~}=\frac{2 R e}{6} \sum_{i}\left(\frac{V}{\mu_{0} / M}\right) \frac{2 \tilde{\epsilon}}{\hbar} \\
& \therefore \int\left(\phi_{f}^{0}, E_{1}-T_{0}+I \widetilde{\epsilon}\right. \\
&\left.V_{i d} \phi_{i}\right)\left(\left(\frac{1}{E_{1}-H_{0}+1 \tilde{\epsilon}}\right)^{2}\right. \tag{20}\\
& {\left.\left[V_{12}, V_{n u}\right] \phi_{i}, \phi_{r} 0\right) \rho_{E_{r}} d E_{f} }
\end{align*}
$$

By arguments similar to those previously presented it. can be shown that equation (20) reduces to

$$
\begin{align*}
& { }^{\sigma}(0)=-\frac{R e}{6} \sum_{i}\left(\frac{V}{\Gamma / M}\right) \frac{2 \pi}{\hbar} \tag{23}\\
& \int\left(\phi_{f}^{0}, v_{n d} \phi_{i}\right)\left(\phi_{f}^{0},\left[v_{12} V_{n d}\right] \phi_{i}\right) \%_{r_{E_{f}}} \delta^{\prime}\left(E_{\left.f^{\prime \prime}-E_{i}\right) d E_{f}}{ }^{0}\right.
\end{align*}
$$

Perforining an integration by parts we find that

$$
\begin{align*}
& \operatorname{lol}^{=-\frac{R e}{6}} \sum_{i}\left(\frac{V}{p_{0} M}\right) \quad \frac{2 n}{\hbar} \\
& \int \frac{\partial}{\partial E_{f}}\left\{\left(\phi_{f}^{0}, v_{n d} \phi_{1}\right)\left(\phi_{f}^{0},\left[v_{12}, v_{n d}\right] \phi_{1}\right) *\right. \\
& \left.\rho_{E_{f}}\right\}\left\{\left(E_{f}^{0}-E_{i}\right) d E_{f}^{0}\right. \tag{24}
\end{align*}
$$

The evaluation of this term depends on the particular model chosen, since it has few general properties. Ne shall therefore leave it in the form (24).

[^2]0
Now we may summarize the results of this section:

$$
\begin{aligned}
& \sigma_{n d}=\sigma_{n p}+\sigma_{n n} \\
& \because \frac{1}{6}\left(\frac{p^{2}}{p_{0}^{2}}\right)\left\{\frac{d^{2}}{d p_{0}^{2}}\left(p_{0}^{2} \sigma_{n p}\right)+\frac{d^{2}}{d p_{0}^{2}}\left(p_{0}^{2} \sigma_{n n}\right)\right\} \\
& +\frac{2 R e}{6} \sum_{i}\left(\frac{V}{p_{0} / M^{-}}\right) \frac{2 \pi}{\hbar} \int\left(\phi_{f}^{i}, V_{n p} \phi_{i}\right)\left(\phi_{f}^{0}, V_{a n} \phi_{i}\right) \\
& \delta\left(\frac{\mathrm{F}^{2}+\mathrm{F}^{2} \mathrm{c}^{42}-\mathrm{F}_{0}}{2 \mathrm{~L}}\right) \quad \therefore \mathrm{E}_{\mathrm{f}}^{\mathrm{dE}} \mathrm{f} \\
& \text { (25) } \\
& -\frac{R e}{\sigma} \sum_{i}\left(\frac{V}{D_{O} / M}\right) \frac{2 \pi}{\hbar} \int \frac{\partial}{\partial E_{f}} \circ\left\{\left(\phi_{f}^{0}, V_{n d} \phi_{i}\right)\right. \\
& \left.\left(\phi_{f}^{0},\left[V_{12}, v_{n d}\right] \phi_{i}\right) H_{E_{E}}{ }_{f}\right\} \quad 3\left(E_{f}{ }^{\circ}-E_{i}\right) d E_{f}
\end{aligned}
$$

V. Spin and Space Exchange Forces with Pauli Principle

In this section we shall attempt to deal with the general potential of section IV; - but this time we shall inelude the modifications due to the pauli principle.

Then if in analogy to equation (I V-3) we set

$$
\begin{equation*}
\tilde{\phi}_{s c}=\tilde{\phi}_{s c, 0}+\tilde{\phi}_{s c, p} \tag{1}
\end{equation*}
$$

and we find by antisymmetrizing equations (I V-4) ard (I V-5) that

$$
\begin{align*}
\tilde{\phi}_{s c, 0} & =\frac{1}{\sqrt{2}} \sum_{m} \frac{1}{E_{1}+T_{12}\left(p_{d m}\right)-H_{o}+i \widetilde{\epsilon}} V_{n d} \phi_{i m} \tag{2}\\
& -\frac{1}{\sqrt{2}} I_{23} \sum_{k} \frac{1}{E_{i} 0+T_{12}\left(p_{d k}\right)-H_{0}+i \tilde{\epsilon}_{n d}} V_{i k}
\end{align*}
$$

and

$$
\begin{equation*}
\tilde{\phi}_{\mathrm{sc}, \lambda}=\frac{\left(1-I_{23}\right)}{\sqrt{2}}\left(\frac{1}{E_{i} \sigma_{-1}+1 \tilde{\epsilon}}\right)^{2} \quad\left[\mathrm{v}_{12,} \mathrm{v}_{\mathrm{nd}}\right] \quad \boldsymbol{\phi}_{1} \tag{3}
\end{equation*}
$$

Now as in section IV (equation IV -5 and IV -7) we break up

$$
\begin{equation*}
\left.\sigma=\sigma_{0}+\sigma_{\lambda}+\sigma_{(0 \lambda}\right) \tag{4}
\end{equation*}
$$

Now concentrate on tho term arising from $\left|\left(\boldsymbol{\phi}_{\mathrm{f}}^{0}, \tilde{\boldsymbol{\phi}}_{\mathrm{sc}, \mathrm{o}}\right)\right|^{2}$ 1.e., O o. This is now carried through in strict analogy to previous work. First wee consider the $n-n$ portion. Here equation (III-53) applies to equation (2) and eventually as usual

$$
\begin{equation*}
\sigma_{0, B}=\int \frac{\left|p_{0}-p_{d}\right|}{p_{0}} \sigma_{n n}^{P a u l i}\left(p_{0}-p_{d}\right) \quad\left|\Phi\left(p_{d}\right)\right|^{2} \underset{n d}{ } \tag{j}
\end{equation*}
$$

For the $n-p$ portion we find
$1 \times y$
ai. and
mo interference term for o is

$$
\begin{align*}
& s\left(\frac{p^{2}+p^{2}-p^{\prime \prime}-p_{0}^{2}}{2 y}\right) \rho_{E_{I}} d E_{\rho} \tag{8}
\end{align*}
$$

For reasons already explained in the analogous case of section IV (equation IV -19) it is not wrotrwille to express tins term in more explicit form.

We turn now to the o_{λ} term. For reasons analogous to those given for this term in section IV the on vanishes to the order we are interested in.

Now as tin the oj, tern. We may write the portions winch contribute as

$$
\begin{align*}
& 0_{(0 \lambda)}=\frac{R \Delta}{6}\left(\frac{V}{F_{0} / N}\right) \frac{2 \tilde{\epsilon}}{\hbar} \int\left(\phi_{r}^{0},\left(1-I_{23}\right) \frac{1}{E_{i}-H_{0}+i \tilde{\epsilon}_{n d}} V_{i}\right) \\
& \left(\left(1-I_{23}\right)\left(\frac{1}{\underline{E}_{1}-H_{0}+i \widetilde{\epsilon}}\right)^{2}\left[V_{12}, V_{n a}\right] \phi_{i}, \phi_{r} "\right) \\
& { }_{\sim}^{\rho} E_{f} d E_{f} \tag{8}
\end{align*}
$$

Thus by tine arguments presented in section IV

$$
\begin{aligned}
& -49= \\
& \text { o (08) }=-\frac{R e}{12} \sum_{i}\left(\frac{V}{p_{0} / \hbar}\right) \frac{2 n}{\hbar}
\end{aligned}
$$

$$
\begin{align*}
& \left.i E_{1}^{0}\right\}=\left(E_{r^{\circ}-E_{1}}^{0} d E_{r}^{n}\right. \tag{10}
\end{align*}
$$

$\therefore+$

Aryan the value of uni must he obtained for the specific model
under consideration and so we leave it in the form (10).
Now we may summarize the results of this perieral section:

$$
\begin{align*}
& v_{n d}=o_{n n}+\sigma_{n p} \\
& +\frac{1}{6}\left(\frac{p_{0}^{2}}{p_{0}}\right)\left\{\frac{d^{2}}{d p_{0}}\left(p_{0}^{2} 0_{n p}\right) \times{ }^{2} w^{2} \frac{d^{2}}{d p_{0}}{ }^{2}\left(p_{0}^{2} a_{n n}\right)\right\} \\
& +\frac{i \pi}{3} \sum_{i}\left(\frac{V}{p_{0} q}\right) \frac{2 \pi}{\hbar} \int\left(\phi_{f i}^{n},\left(1-I_{23}\right) v_{n p} \phi_{i}\right) \\
& \left(\phi_{1}^{0},\left(1-I_{23}\right) V_{1 I_{1}} \phi_{1}\right) ;\left(\frac{\ddot{i}^{2}+p^{12}-p^{12}-p_{1}^{2}}{2 M}\right) \rho_{E_{P}} d E_{P} \\
& -\frac{R e}{I 2} \sum_{i}\left(\frac{V}{F_{0} M}\right) \frac{2^{n}}{\hbar} \int \frac{\partial}{\partial E_{i}^{a}}\left\{\left(\phi_{\mathrm{i}} 0,\left(1-I_{23}\right) V_{r d} \phi_{1}\right)\right. \\
& \left.\left(\phi_{r}^{0},\left(1-I_{23}\right)\left[y_{1 E^{\prime}}, V_{n d}\right] \phi_{i}\right) \%_{E_{r}}^{0}\right\} *\left(E_{r}{ }^{0}-E_{1}\right) d E_{p} \tag{11}
\end{align*}
$$

VI. conclusion

Let us first say a word about the general nature of our results. It la worth noting that in all cases considered, including the most complicated one (section V) a certain structure is preserved in our results. In all cases we get the terms
and interference terms due to stralegh interference or the pauli principle.

To get an Idea of the order of magnitude of our resin ts we shall first estimate what the correction term to ($\left.\sigma_{n n}+\sigma_{n p}\right)$ is from the results of section II; le., we choose a model with Wigner forces and neglect the modifications due to the pauli principle.

We shall compute our correction term from formula (II-91), i.e., from the angular form. For this purpose let as express it. as on throughout by recalling that from equation (I-65)

$$
\begin{equation*}
v_{n n}=k_{1} v_{n p} \tag{2}
\end{equation*}
$$

then

$$
\begin{equation*}
o_{n n}=k_{1}^{2} o_{n p} \tag{3}
\end{equation*}
$$

hence

$$
\begin{align*}
& c_{n d}=\left(1+k_{1}^{2}\right)_{\sigma_{n p}}+\left(1+{k_{1}}^{2}\right) \quad \frac{4 \pi}{3} \cdot\left(\overline{p_{Q}^{2}} p_{0}^{2}\right)\left\{a_{n p}(\pi)-\left.4 \frac{d o_{n p}}{\lambda x}\right|_{x=-1}\right\} \tag{4}\\
& +\frac{k_{1}}{p_{o}^{2}}\left(\frac{h^{2}}{x}\right)\left(\frac{\overline{1}}{r_{d}^{2}}\right) \quad o_{n p}(0)
\end{align*}
$$

Now $\overline{P^{2}}$ is estimated in appendix E to be

$$
\begin{equation*}
\left(\overline{p_{d}^{2}} \bar{N}\right)=7.46 \mathrm{Mev} \tag{5}
\end{equation*}
$$

Thus we may write

$$
\begin{equation*}
\left(\overline{\frac{p_{d}^{2}}{p_{0} E}}\right)=\frac{7 \cdot 46}{2 E_{n}} \tag{E}
\end{equation*}
$$

where E_{n} is the energy of the incident neutron in Mev in the laboratory system. In appendix E we also find an estimate for

$$
\begin{equation*}
\left(\frac{\overline{1}}{r_{d} 2}\right)=0.282 \times 10^{26} \mathrm{~cm}^{-2} \tag{7}
\end{equation*}
$$

Thus wo may re-express and as

$$
\begin{equation*}
o_{n d}=\left(1+k_{1}^{2}\right) o_{n p}+\left(1+k_{1}^{2}\right) \quad \frac{15.63}{E_{n}} L+\frac{0.72 \times 10^{2}}{E_{n}} k_{1} \sigma_{n p}(0) \tag{8}
\end{equation*}
$$

where

$$
\begin{equation*}
L=\sigma_{n p}(n)-\left.4 \quad \frac{d \sigma_{n p}}{d x}\right|_{x=-l} \tag{9}
\end{equation*}
$$

Now we shall break up and into

$$
\begin{equation*}
o_{n d}=M+C \tag{10}
\end{equation*}
$$

where H is the main term, namely $\left(1+k_{1}^{2}\right)$ on and C is our. correction term. In our numerical. writ we have exhibited the two parts of C, namely C_{1} and C_{2} corresponding to equation (8). Next we must decide what values to choose for k_{2}. If we look at the experimental rata given on page 2 we find that

$$
\begin{equation*}
\frac{\sigma_{n n}}{\sigma_{n p}} \sim \frac{1}{4} \tag{11}
\end{equation*}
$$

While we know that the n-p cross section cannot be fitted by Wigner forces alone we could still choose the value $k_{1}=0.5$ as a rough indication what to compute for the correction tern if we use only Wigner forces. We have tabulated the results for $k_{1}=0.5$ and a value of $E_{n}=90.25 \mathrm{Mev}^{10}$ in table 1 . In table 1 we have chosen $10^{-26} \mathrm{~cm}^{2}$ as the unit of area.

Table 1

$$
\begin{aligned}
{ }^{3 n p} & =18.02 \\
{ }_{n p(0)} & =12.58 \\
M & =22.53 \\
C_{1} & =0.18 \\
{ }_{n} & =4.55 \\
C / M & =21 \%
\end{aligned}
$$

From table 1 wo note that the indications are that since C is positive the trye $n-n$ cross section is smaller than computed. Hence it misht be instructive to examine the case $k_{1}=0.25$, which is summarized in table 2.

Table_2

$$
\begin{aligned}
M & =19.15 \\
c_{1} & =0.11 \\
c_{2} & =2.53 \\
c / M & =14 \%
\end{aligned}
$$

10
The cross sections used in this calculation were obtained from declassified report LA-654 by L. Goldstein, entitled "Studies on the Scattering of Neutrons by. Protons". We are using the rigorous cross sections obtalned from $r_{0}=2.3 \times 10-13 \mathrm{~cm}$.

We shall now have to estimate what the correction term would be for other potentials and the inclusion of the pauli principle. It is our belief that the correction term in such cases does not exceed the 10% just found. As a matter of fact the indications are that it should be smaller. This argument is substantiated by the fact that σ (o) is so pronounced only In the Wigner case, and we saw that it was due to \hat{C}_{2} term that C was so.large.

Now we must ask ourselves whether it is profitable at this stage of the development to compute the additional correction terms by special models. First we must look at the size of the correction term compared to the experimental errors. The experimental errors are at present of the order of lob; i.e., of the same order of magnitude as our correction term. This means that in order to get a significant answer we would certainly have to know the "correct" potential for our model. We might.try to infer this "correct" potentlal from the n-p scattering experiments at 90 Mev carried out by Segre et all ${ }^{11}$. Unfortunately, as is well known, it has not yet been possible to fit this data unambiguously.

For the time being, therefore, we must leave it at the conclusion that the correction terms are of the order of 10\% or less, but may well change the true value of the n-n cross section at 90 Mev . 11
E. Segre, Washington Physical Society meeting, April 29, 1948.

Acknomledgements

The author wishes to thank Professor Julian Schwinter for suggesting this problem. Thanks are also due to Professor Schwingor for his kind guidance of the work and many helpful suggestions during the course of it.

This work was carried out while the author was the holder of a National Research Council Pre-Doctoral. Fellowship. The author is grateful to the National Research Council for this financial assistance.

Noto addad in uroor.

si= Since tro completson of this work, Wu and Ashilin have pubilshed some rumerical calculations or the subject of $n-d$ Scatiering (Thysical Roview, 73, 986 (1948)). These calculatiors soom to show agrement for the simplest casa, but tend to show that the corrections are probably considerably larger than the 10% estimate made above.

Appendix A:

Theorem:

If $B<A$ then in first approximation

$$
\begin{equation*}
\left(e^{A+B}\right)_{a a^{\prime}}=\left(e^{A}\right)_{a a^{\prime}}+(B)_{a a^{\prime}}\left(\frac{e^{a}-e^{a^{\prime}}}{a-a^{\prime}}\right) \tag{1}
\end{equation*}
$$

Proof:

we know that

now when expanding $(A+B)$ keep only first powers of B, then

$$
\begin{gather*}
\left(e^{A+B}\right)_{a a^{\prime}}=\sum_{n=0}^{\infty} \frac{1}{n!}\left[\left(A^{n}\right)_{2 a^{\prime}}+\sum_{m=0}^{n-1} \sum_{a^{\prime \prime} a^{\prime \prime \prime}}\left(A^{n-1-m}\right)_{a a^{\prime \prime}}(B)_{a^{\prime \prime} a^{\prime \prime}}\right. \\
\left(A^{m}\right)_{a^{\prime \prime \prime} a^{\prime}} \tag{3}
\end{gather*}
$$

but
thus

$$
\begin{equation*}
\left(e^{A+B}\right)_{a a^{\prime}}=\left(e^{A}\right)_{a a^{\prime}}+(B)_{a a^{\prime}} \sum_{n=0}^{\infty} \sum_{m=0}^{n-1} \frac{a^{n-1-m_{a}} m}{n!} \tag{5}
\end{equation*}
$$

now consider $L=\frac{e^{a}-e^{\prime}}{a-a^{\prime}} ;$ suppose first $a^{\prime}<a ;$ then we have

$$
\begin{equation*}
L=\sum_{n=0}^{\infty} \frac{a^{n}-a^{n}}{\left(a-a^{n}\right) n!} \tag{6}
\end{equation*}
$$

or

$$
\begin{equation*}
L=\sum_{n=0}^{\infty} \frac{a^{n}\left[1-\left(\frac{a^{\prime}}{a}\right)^{n}\right]}{n d a\left(1-\frac{a^{\prime}}{a}\right)} \tag{7}
\end{equation*}
$$

$$
\begin{equation*}
L=\sum_{n=0}^{\infty} \sum_{m=0}^{m=n-1} \frac{a^{n-1}}{n!}\left(\frac{a^{1}}{a}\right)^{m} \tag{8}
\end{equation*}
$$

thus

$$
\begin{equation*}
\left(e^{A+B}\right)_{a a^{\prime}}=\left(e^{A}\right)_{a a^{\prime}}+(B)_{a a^{\prime}}\left(\frac{e^{a}-e^{a^{\prime}}}{a-a^{\prime}}\right) \tag{9}
\end{equation*}
$$

The conditions clearly holds also for $a^{\prime}>$ a by reversing the grouping; ie., considering $\left(\frac{a}{a^{r}}\right)$ as a unit. When $a^{\prime}=a$ the condition is seffredident, since then $I=1$.
Q.E.D.

Appendix B:

In this appendix we shall concern ourselves with the spin functions appearing in the text and some of their properties. First of all let us for ready reference write down the spin wave functions of a two-particle system each of spin $\frac{1}{2}$. Let a denote $\operatorname{spin}+\frac{7}{2}$ and β denote $\operatorname{spin}-\frac{1}{2}$. Thus al means the wave function of particle 1 which has spin $+\frac{1}{2}$. Let \mathcal{F} denote the spin wave function of the two-particle system with a certain total spin and a given spin projection. Then we can easily verify that the following four functions exist:

Function \#	Total Spin	Spin Projection	Wave Function
1	1	-1	$a_{1} \alpha_{2}$
2	1	0	$\frac{1}{\sqrt{2}}\left(\beta_{1} a_{2}+a_{1} \beta_{2}\right)$
3	1	-1	$\beta_{1} \beta_{2}$
4	0	0	$\frac{1}{\sqrt{2}}\left(\beta_{1} a_{2} a_{1} a_{1} \beta_{2}\right)$

If now we combine these wave functions with those of a particle number 3 which has spin $\frac{1}{2}$ we can form spin wave function $\boldsymbol{\eta}$ describine the three-particle system. In particular we can form one quartet and two doublets; depending on whether the twoparticle system is in the triplet or singlet state. These wave functions are summarized in the following table:

\cdots	$\begin{gathered} \text { Function } \\ \# \end{gathered}$	Total Spin of 3－parti－ cle system	Spin of 2 particle system	Total Spin pro－ jection	Wave Function
	1 2 3 4	$\begin{aligned} & 3 / 2 \\ & 3 / 2 \\ & 3 / 2 \\ & 3 / 2 \end{aligned}$	1 1 1 1	$\begin{aligned} & +3 / 2 \\ & +\quad \frac{1}{2} \\ & -\quad \frac{1}{2} \\ & -3 / 2 \end{aligned}$	$\begin{gathered} { }^{a_{1}}{ }^{a_{2}}{ }^{a_{3}} \\ \frac{1}{\sqrt{3}}\left(\beta_{1} a_{2} a_{3}+a_{1} \beta_{2}{ }_{3}+a_{1} a_{2} \beta_{3}\right) \\ \frac{1}{\sqrt{3}}\left(\beta_{1} \beta_{2}{ }^{a} 3+a_{1} \beta_{2} \beta_{3}+\beta_{1} a_{2} \beta_{3}\right) \\ \beta_{1} \beta_{2} \beta_{3} \end{gathered}$
	5 6	$\frac{7}{2}$ $\frac{1}{2}$	1 1	$\begin{gathered} +\frac{1}{2} \\ -\frac{1}{2} \end{gathered}$	$\begin{aligned} & \frac{1}{\sqrt{6}}\left(\beta_{1} 2^{\alpha} 3_{3} 2^{a} 1^{a} 2^{\beta_{3}+\alpha_{1}} 1^{\beta_{2}} 3\right) \\ & \frac{-1}{\sqrt{6}}\left(\beta_{1} 2^{\left.a_{3} \beta_{3}-2 \beta_{1} \beta_{2}{ }_{3}+{ }^{\alpha} 1^{\beta} 2^{\beta_{3}}\right)}\right. \end{aligned}$
，	7 8	咅 $\frac{2}{2}$	0 0	$\begin{aligned} & +\frac{1}{2} \\ & -\quad \frac{1}{2} \end{aligned}$	$\left(\begin{array}{l} \frac{1}{\sqrt{2}}\left(\beta_{1} \alpha_{2}^{a_{3}}{ }_{3}{ }_{1} \beta_{2} a_{3}\right) \\ \frac{1}{\sqrt{2}}\left(\beta_{1} \alpha_{2}^{\left.\beta_{3}-\alpha_{1} \beta_{2} \beta_{3}\right)}\right. \end{array}\right.$

Let us now inquire what relation the wave functions $\eta_{1} \rightarrow \eta_{8}$ ．have to our problem at hand．If we consider our incoming neutron（particle 3）meeting a deuteron（particles 1 and 2）bound in the ground state then only function $1 \rightarrow 6$ can be spin－wave functions describing the initial state of the system， This is so，since for the initial state we require the deuteron to be bound in the ground state，i．e．，it must be in the triplet state．Thus if we denote the initial spinmerave function of the three－particle system by η_{j} ，＂ 1 ＂may range from 1 to 6. Further if we denote the final spin－wave function of the three－ particle system by $\eta_{f}, " f$＂may range from 1 to 8 ．This is so， since in the final state there is not a priori requirement that particles 1 and 2 be in oither the triplet or singlet state．

Now our spin operators which appear in the problem are all of the form ($r_{1}+\gamma_{2} \sigma_{m}$. J_{n}) where i_{1} and ${ }_{2} 2$ are constents and m and n denote two of the particles of our particles 1, 2 and 3.

We shall now proceed to prove some theorems which hold between the η 's and $\boldsymbol{\xi}^{\prime \prime} \mathrm{s}$.

Theorem 1:

$$
\begin{align*}
& \frac{1}{6} \sum_{i=1}^{6} \sum_{f=1}^{8}\left|\left(\eta_{f}\left|r_{1}+r_{2} \sigma_{1} \cdot o 3\right| \eta_{1}\right)\right|^{2}=\frac{1}{4} \sum_{i=1}^{4} \sum_{f=1}^{4} \tag{1}\\
&\left|\left(\xi_{f}\left|r_{1}+r_{2} o_{1} \cdot o_{3}\right| \xi_{1}\right)\right|^{2}
\end{align*}
$$

here the $\boldsymbol{\xi}$'s are spin functions compounded of particles 1 and 3. Let us first reduce the left side; call it L. Then since the functions η_{f} are a complete set we may write:

$$
\begin{equation*}
L=\frac{1}{6} \sum_{i=1}^{6}\left(\eta_{1}\left|\left(\gamma_{1}+r_{2} \sigma_{1} \cdot \sigma_{3}\right)^{2}\right| \eta_{1}\right) \tag{2}
\end{equation*}
$$

call

$$
\begin{equation*}
z=\left(r_{1}+r_{2} \sigma_{1} \cdot \sigma_{2}\right)^{2} \tag{3}
\end{equation*}
$$

Thus the spin operator does not involve particle 2; let us therefore perform the spin integrations over particle 2. Let

$$
\begin{equation*}
I=\frac{1}{6} \sum_{i} L_{i} \tag{4}
\end{equation*}
$$

The contribution from the separate terms are as follows:
From $1=1$:

$$
\begin{equation*}
L_{1}=\left(\xi_{1}|z| \xi_{1}\right) \tag{5}
\end{equation*}
$$

$$
\begin{array}{ll}
\therefore & \text { From } 1=2: \\
& \text { we have } \\
\therefore & \left(\eta_{2}|z| \eta_{2}\right)=\frac{1}{3}\left(\beta_{1} a_{3}+{ }_{1} \beta_{3}|z| \beta_{1} u_{3}+\alpha_{1} \beta_{3}\right) \\
& +\frac{1}{3}\left({ }_{1}{ }_{1} a_{3}|z| a_{1} a_{3}\right)
\end{array}
$$

or

$$
\begin{equation*}
L_{2}=\frac{2}{3}\left(\xi_{2}|z| \xi_{2}\right)+\frac{1}{3}\left(\xi_{1}|z| \xi_{1}\right) \tag{7}
\end{equation*}
$$

From $1=3$:
we have

$$
\begin{equation*}
\left(\eta_{3}|z| \eta_{3}\right)=\frac{2}{3}\left(\xi_{2}|z| \xi_{2}\right)=\frac{1}{3}\left(\xi_{3}|z| \xi_{3}\right) \tag{8}
\end{equation*}
$$

0% \rightarrow ?
or

$$
\begin{equation*}
L_{3}=\frac{2}{3}\left(\xi_{2}|z| \xi_{2}\right)+\frac{1}{3}\left(\xi_{3}|z| \xi_{3}\right) \tag{9}
\end{equation*}
$$

From $1=4:$

$$
\begin{equation*}
L_{4}=\left(\xi_{3}|z| \xi_{3}\right) \tag{10}
\end{equation*}
$$

From 1 $=5$:

$$
\begin{array}{r}
\left(\eta_{5}|z| \eta_{5}\right)=\frac{1}{6}\left(\beta_{1} a_{3}-2{ }_{1} \beta_{3}|z| \beta_{1}{ }_{3} 3^{\left.-2 a_{1} \beta_{3}\right)}\right. \\
\quad+\frac{1}{6}\left(a_{1} a_{3}|z|{ }_{1} a_{3}\right) \tag{11}
\end{array}
$$

now

$$
\beta_{1}{ }_{3}{ }^{-2 a_{1} \beta_{3}=-\frac{1}{2}\left(\beta_{1} \alpha_{3}+{ }_{1} \beta_{3}\right)+\frac{3}{2}\left(\beta_{1}{ }_{3}-a_{1} \beta_{3}\right)(12), ~(1)}
$$

thus

$$
L_{5}=\frac{1}{12}\left(\xi_{2}|z| \xi_{2}\right)+\frac{3}{4}\left(\xi_{4}|z| \xi_{4}\right)+\frac{1}{6}\left(\xi_{1}|z| \xi_{1}\right)(13)
$$

From $1=6:$

$$
\begin{align*}
&\left(\eta_{6}|z| \eta_{6}\right)=\frac{1}{6}\left(\alpha_{1} \beta_{3}-2 \beta_{1} \alpha_{3}|z| a_{1} \beta_{3}-2 \beta_{1} \alpha_{3}\right) \\
&+\frac{1}{6}\left(\beta_{1} \beta_{3}|z| \beta_{1} \beta_{3}\right) \tag{14}
\end{align*}
$$

hence

$$
\begin{align*}
I_{6}=\frac{1}{12}\left(\xi_{2}|z| \xi_{2}\right) & +\frac{3}{4}\left(\xi_{4}|z| \mathcal{\zeta}_{4}\right) \\
& +\frac{1}{6}\left(\xi_{3}|z| \mathcal{S}_{3}\right) \tag{15}
\end{align*}
$$

Thus adding all six contributions

$$
\begin{align*}
& L=\frac{1}{6} \times \frac{6}{4}\left[\left(\dot{\xi}_{1}|z| \dot{\xi}_{1}\right)+\left(\dot{\xi}_{2}|z| \xi_{2}\right)+\left(\dot{\xi}_{3}|z| \dot{\xi}_{3}\right)\right. \\
&\left.+\left(\xi_{4}|z| \xi_{4}\right)\right] \tag{16}\\
& L=\frac{1}{4} \sum_{i}^{4}\left(\mathcal{\xi}_{1}|z| \xi_{1}\right) \tag{17}
\end{align*}
$$

or

$$
\begin{array}{r}
L=\frac{1}{4} \sum_{i} \sum_{f}\left|\left(\xi_{f}\left|r_{1}+r_{2} 0_{1} \cdot 0_{3}\right| \xi_{1}\right)\right|^{2} \\
\text { Q.E.D. }
\end{array}
$$

In the same manner we can prove
Theorem 2:

$$
\begin{aligned}
\left.\frac{1}{6} \sum_{i} \sum_{f} \right\rvert\,\left(\eta_{f} \mid r_{1}\right. & \left.+r_{2} o_{2} \cdot \sigma_{3} \mid \eta_{i}\right)\left.\right|^{2} \\
& =\frac{1}{4} \sum_{i} \sum_{f}\left|\left(\xi_{f}\left|\gamma_{1}+r_{2} \sigma_{2} \cdot \sigma_{3}\right| \xi_{1}\right)\right|^{2}
\end{aligned}
$$

where \mathcal{F} is understood to be the two-particle spin function corresponding to particles 2 and 3. There is no need to give a detailed proof of theorem 2 since the equivalence of particles. 1 and 2 as far as spin is concerned is evident from their treatment.

Appendix C：
Theorem

$$
\frac{1}{6} \sum_{i} \sum_{f}\left|\left(\eta_{f}\left|\left(1-I_{23}\right)\right| \eta_{i}\right)\right|^{2}=\frac{1}{4} \sum_{i} \sum_{f}\left|\left(\xi_{f}\left|\left(1-I_{23}\right)\right| \xi_{i}\right)\right|^{2}
$$

Proof：
The operator（ $1-I_{23}$ ）may be written as

$$
\begin{equation*}
\left(1-I_{23}\right)=\left(1-s_{23} P_{23}\right) \tag{2}
\end{equation*}
$$

where we have separated I_{23} into spin and space part．Now we wish to show the relation between S_{23} and $\sigma_{2} \cdot{ }^{\circ} 3$－ Consider $2\left(1-S_{23}\right)$ operating on a function symmetric in the spin of particles 2 and 3 ．

$$
\begin{equation*}
\dot{2}\left(1-S_{23}\right) \eta_{s}=0 \tag{3}
\end{equation*}
$$

and when it operates on antisymmetric function

$$
\begin{equation*}
2\left(1-\mathrm{S}_{23}\right) \eta_{\mathrm{A}}=4 \eta_{\mathrm{A}} \tag{4}
\end{equation*}
$$

Now consider what the action of $\left(\mathrm{o}_{2} \cdot \circ_{3}+3\right)$ is

$$
\begin{align*}
& \left(0_{2} \cdot 0_{3}+3\right) \eta_{\mathrm{S}}=0 \tag{5}\\
& \left(0_{2} \cdot 0_{3}+3\right) \eta_{\mathrm{A}}=4 \eta_{\mathrm{A}} \tag{6}
\end{align*}
$$

thus

$$
\begin{equation*}
2\left(1-3_{23}\right)=\left(0_{2} \cdot 0_{3}+3\right) \tag{7}
\end{equation*}
$$

or

$$
\begin{equation*}
S_{23}=-\frac{1}{2}\left(1+\sigma_{2} \cdot \sigma_{3}\right) \tag{8}
\end{equation*}
$$

thus ($1-I_{23}$) may be written as

$$
\begin{equation*}
\left(1-I_{23}\right)=\left(1+\frac{1}{2}\left[1+\sigma_{2} \cdot \sigma_{3}\right] P_{13}\right) \tag{9}
\end{equation*}
$$

but as far as the spin is concerned this is of the form

$$
\begin{equation*}
\left(1-I_{23}\right)=r_{1}+r_{2} \sigma_{2} \cdot{ }_{3} \tag{10}
\end{equation*}
$$

and hence theorem 2 of Appendix B may be applied.
Q.E.D.

Appendix D:

In this appendix we shall prove the normalization constant of $\tilde{\phi}$. We know that

$$
\begin{equation*}
\tilde{\phi}=\tilde{\phi}_{i}+\tilde{\phi}_{s c} \tag{1}
\end{equation*}
$$

Now by assumption most of the wave function is still \varnothing_{i}; so that it will be sufficient to deterraine the normalization of Now

$$
\begin{equation*}
\tilde{\phi}_{1}=c\left(1-I_{23}\right) \phi_{i} \tag{2}
\end{equation*}
$$

where C is the normalization constant we wish to determine.

Then

$$
\begin{equation*}
c^{2}\left(\left(1-I_{23}\right) \phi_{1},\left(1-I_{23}\right) \phi_{i}\right)=1 \tag{3}
\end{equation*}
$$

or

$$
\begin{equation*}
2 c^{2}\left(\phi_{i}, \phi_{i}\right)-2 C^{2}\left(\phi_{i}, I_{23} \phi_{i}\right)=1 \tag{4}
\end{equation*}
$$

We shall now prove that $\left(\phi_{i}, I_{23} \phi_{i}\right)$ is zero to the approximation we are interested in. In particular this means that we must prove that terms arising from $\left(\phi_{i}, I_{23} \phi_{i}\right)$ are not of order $1 / p_{0}{ }^{2}$ or lower.

Consider now that

$$
\begin{align*}
\left(\phi_{1}, I_{23} \phi_{1}\right)= & \frac{l}{v^{2}} \sum_{s} \int e^{-i / \hbar} p_{0} \cdot r_{3} x\left(r_{1}-r_{2}\right) \\
& e^{+i / \hbar p_{0} \cdot r_{2} x\left(r_{1}-r_{3}\right) \eta_{i}(s) \eta_{1}\left(I_{23} s\right)} \tag{5}
\end{align*}
$$

Let

$$
\begin{equation*}
x\left(r_{1}-r_{2}\right)=\frac{1}{h^{3 / 2}} \int e^{1 / \hbar p_{d}\left(r_{1}-r_{2}\right)} \Phi\left(p_{d}\right) d_{p_{d}} \tag{6}
\end{equation*}
$$

then

$$
\begin{align*}
\left(\phi_{1}, I_{23} \phi_{1}\right) & =\frac{1}{h^{3} v^{2}} \sum_{s} \int e^{-1 / \hbar\left(p d \cdot r_{1}-p_{d} \cdot r_{1}\right)} e^{-1 / \hbar p_{0} \cdot\left(r_{3}-r_{2}\right)} \tag{7}\\
& e^{+i / \hbar p_{d}\left(r_{2}-r_{3}\right)} \Phi^{*}\left(p_{d}\right) \Phi\left(p_{d}\right) \eta_{1}(s) \eta_{1}\left(I_{23} S\right)
\end{align*}
$$

or carrying out the integrations

$$
\begin{equation*}
\left(\phi_{1}, I_{23} \phi_{1}\right)=\Phi\left(p_{0}\right) \quad \Phi^{*}\left(p_{0}\right) \sum_{s} \eta_{1}(s) \eta_{1}\left(I_{23} s\right) \tag{8}
\end{equation*}
$$

Now examine the properties of $|\Phi|^{2}$. We are interested with what inverse power of p_{0} it vanishes. Now we know that $\int\left|\Phi\left(p_{0}\right)\right|^{2} \vec{d}_{p_{0}}$ must be finite, since in a deuteron there must be a finite total chance of finding the given momentum state. Thus $\left|\Phi\left(p_{0}\right)\right|^{2}$ must go at least as $1 / p_{0}{ }^{4}$ to have the integral converge. Hence to our approximation

$$
\begin{equation*}
\left(\phi_{i}, I_{23} \phi_{i}\right)=\dot{0} \tag{9}
\end{equation*}
$$

and hence

$$
\begin{equation*}
c=1 / \sqrt{2} \tag{10}
\end{equation*}
$$

6 Appendix E:

For the sake of completeness we shall describe here how $\overline{p_{d}^{2}}$ and $\left(\frac{\overline{1}}{r_{d}^{2}}\right)$ were estimated.

1. Calculation of pd^{2} :

Assume a square well potential for the deuteron. The symbols are the conventional ones, and the relations from the Bethe - Bacher article\% have been freely used. Thus

$$
-\epsilon=\left(\frac{\overline{p_{d}^{2}}}{M}\right)-\frac{x}{+} \bar{v}
$$

where

$$
\begin{equation*}
\bar{v}=\frac{\int_{0}^{\infty} V(r) \psi^{2} r^{2} d r}{\int_{0}^{\infty} \psi^{2} r^{2} d r} \tag{2}
\end{equation*}
$$

then
now let

$$
\begin{equation*}
\bar{V}=\frac{-V_{0} \int_{0}^{r_{0}} u^{2} d r}{\int_{0}^{r_{0}} u^{2} d r+\int_{r_{0}}^{\infty} u^{2} d r} \tag{3}
\end{equation*}
$$

$$
\begin{align*}
& u=\operatorname{sinkr} \text { for } r<r_{o} \tag{4}\\
& u=\operatorname{sinkr} r_{o} e^{-\alpha\left(r-r_{0}\right)} \text { for } r>r_{o} \tag{5}
\end{align*}
$$

Then we find that

$$
\begin{equation*}
\bar{v}=\frac{-v_{0}}{1+(1 / R)} \tag{6}
\end{equation*}
$$

*Bethe and Bather, Rev. of Mod. Phys., 8, 112, (1936)
where

$$
\begin{equation*}
R=\left(x_{0}-\frac{\sin 2 k r_{0}}{2 k}\right) /\left(\frac{\sin ^{2} k r_{0}}{4}\right) \tag{7}
\end{equation*}
$$

$0 x^{\circ}$

$$
\begin{equation*}
R=\frac{r_{0}}{\sin ^{2} k r_{0}}+\frac{\tilde{-}^{2}}{k^{2}}=a r_{0}\left(1+\frac{\epsilon}{V_{0}-\epsilon}\right)+\frac{\epsilon}{V_{0}-\epsilon} \tag{8}
\end{equation*}
$$

hence

$$
\begin{equation*}
V=-V_{0}\left(\frac{a r_{0}}{1+r_{0}}\right) \quad\left(\frac{V_{0}-\epsilon}{V_{0}}\right)-\epsilon \tag{3}
\end{equation*}
$$

hence

$$
\begin{equation*}
\left(\overline{\frac{p_{d}^{2}}{M}}\right)=-v_{0} \quad\left(\frac{u r_{0}}{\bar{i} r_{0}}\right) \quad\left(\frac{v_{0}-\epsilon}{\epsilon}\right) \tag{10}
\end{equation*}
$$

If we substitute the following values into (10):

$$
\begin{align*}
& \epsilon=2.18 \mathrm{Mev} \\
& v_{0}=21.3 \mathrm{Mev} \tag{11}\\
& r_{0}=2.80 \times 10^{-13} \mathrm{~cm}
\end{align*}
$$

then $\& r_{0}=0.64$ and

$$
\begin{equation*}
\quad \because\left(\frac{\mathrm{pd}^{2}}{M}\right)=7.46 \mathrm{Mev} \tag{12}
\end{equation*}
$$

2. Calculation of $\left(\frac{\overline{1}}{r_{\alpha}^{2}}\right)$:

Using the same assumptions as above we may write

$$
\begin{equation*}
\left(\frac{I}{r_{d}^{2}}\right)=B_{1}+B_{2} \tag{13}
\end{equation*}
$$

where

$$
\begin{equation*}
\mathrm{B}_{1}=\mathrm{b}^{2} \int_{0}^{r_{0}} \frac{\sin ^{2} \mathrm{kr}}{\mathrm{r}^{2}} \mathrm{dr} \tag{14}
\end{equation*}
$$

and

$$
\begin{equation*}
B_{2}=c^{2} \int_{r_{0}}^{\infty} \frac{e^{-2 a\left(r-r_{0}\right)}}{r^{2}} d r \tag{15}
\end{equation*}
$$

and

$$
\begin{align*}
c & =\frac{2\left(V_{0}-\epsilon\right)_{i}}{V_{0}\left(1+u r_{0}\right)} \tag{16}\\
b & =\left(\frac{V_{0}}{V_{0}-\epsilon}\right)^{1 / 2} c \tag{17}
\end{align*}
$$

we may re-express B_{1} and B_{2} as

$$
\begin{align*}
& B_{1}=b^{2} k\left[S_{1}\left(2 k r_{o}\right)-\frac{\sin ^{2} k r_{0}}{k r_{0}}\right] \tag{18}\\
& B_{2}=c^{2}\left[\frac{1}{r_{0}}-2 u e^{2 a r_{0}} E_{1}\left(2 a r_{0}\right)\right] \tag{19}
\end{align*}
$$

Numerical computation of B_{1} and B_{2} was carried through for two values of r_{o} :

$$
r_{0}=1.7 \times 10^{-13} \mathrm{~cm}
$$

$$
r_{0}=2.8 \times 10^{-13_{\mathrm{cm}}}
$$

V_{0}
48.4 Mev
21.3 Mev
$\mathrm{B}_{1} \quad 0.450 \times 10^{26} \mathrm{~cm}^{-2}$
$0.250 \times 10^{26} \mathrm{~cm}^{-2}$
$\mathrm{B}_{2} \quad 0.084 \times 10^{26} \mathrm{~cm}^{-2}$
$0.032 \times 10^{26} \mathrm{~cm}^{-2}$
$\left(\frac{\overline{1}}{r_{d^{2}}}\right)$
$0.534 \times 10^{26} \mathrm{~cm}^{-2}$
$0.282 \times 10^{26} \mathrm{~cm}-2$

For the purposes of section VI we have used the value derived from the conventional value of the range, namely from $r_{0}=2.8 \times 1$ cm .
8.31 .48
-

[^0]: ${ }^{l}$ L. F. Cook, E. M. NcMillan, J. M. Peterson and D. C. Sewoll, Phys. Rev. 72, 1264 (1947). los numos marl Las ubs.

[^1]: $3_{\text {We shall omit to make a distinction between the writing of }}$ vectorial and scalar quantities since the particular symbol in question should be clear from the context.

[^2]: *There are no equations numbered (21) and (22) in this section.

