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Convenientapproxlmte methodswe developedfor the

oaloulationof oritioalsizesand multiplicationratesof spherioal,

aotiveooressurroundedby infinitetampers. Speoialattentionis

giv$mto thoseproblemsarisingfromthe faot thatneutronsof
I

differentvelooitieahave differentproperties.The methodsoonsist

essentiallyof

by fundamental

shapes formsa

considerations

approximatingthe neutrondensitiesat eaohvelooity

mode sha~e’for eaoh velooity. Eaoh one of these

souroe of neutroneof all velooitiessand simple
.

of the numberand spatialdistributionof absorption

fromthesesouroesdeterminethe oritioalsizeatwhioh equilibrium

betweenproductionand absorptionis aohieved. The aoouraoyobtained

is apparentlysufficientfor all praoticalpurposes. Modifioation$

of themethodfor systemsof shapesotherspherioalor havingfinite

tampersare disoussed.
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5.

Introduction

The characteristic neutron problem is that of determining

the critical radius of an active, spherical, homogeneous core

sur~ounded by a finite br infinite, homogeneous tamper. The cross
.

sections in ~eneral will be energy dependent and the neutrcm

spectrum will not be monochr~matic, both bec~use of the spread of

the fission spectrum and because ef the existence of inelastic

scattering in cwe and tamper. In some cases the neutron energy

spectrum can be considered mmochromatic, and the Problem is then

easily snluble by various standard methods. In other cases, two

neutron ener~ies can be considered to exist and the

Boltzmann equation solved-by the use of one ~f the

harm-nit approximations. In principle, better approx!ma-

iions could be obtained by using three or more effective neutr~n

=~erqies, but the wavk then becomes prohibitively difficult.

Some method af calculation is clearly necessary which.will obviate

i~le~edifficulties and at the same time retain sufficient ac’CUraCY

t.obe useful.

The methqds descrit.edin this report were developed speci-

~ically for the easy calculatim of critical masses and multipli-

cation rates of hydrjde assemblies, but their application Is of.

much greater generality. It is believed that they will be ~cmnd

to have great usefulness in the treatment of all neutron problems

in whjch an active, spherical core, with or without hydrogen

content, is sur’ounfiedEy an infinite m rinjte tamp~r which may

or may not scatter neutrnns inelastically.
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These methads are not exact, but in all cases of interest thus

far investigated their accuracy has been found ample for all

~ractical purposes. Finally, they are extremelY si~;Plefor

computation anfi$once mastered, quite simple to use in thinking

about a wide variety of neutron preblems in which the energy

spread of the neutrons is an essential feature.

Ch. I. Properties of Systems with ?tonaener~eticNeutrans.

Section 1 The Fundamental Integral Equation.

We sb.allfind it very useful in our later work to keep

in mind certain irportant features af the simple one-velocity

neutron problem. Let us consider an active cme surrounded by

a tamper. There may be spherical symmetry kut this is not necessar:,

‘:~ecmsider the case af ~sotr~pic scattering~ since this is”simPle

and usually all that is needed. The tamper is characterized.by

a total crcms section and by an absorption cross section. The

core is characterized by a t~tal cross section ~ ~ and by a

number f , whjch Is the numter of extra neutrnns emitted per

collision. These extra neutrons are emitted isotropically at a

single energy.

Sl~pposea single neutr-m is emitled isotropica?ly at the

point 7 fn the core. ‘!redefine a quantity K(%~ Y) dr
-9/

wh+ch Is the nr-ibabilitythat the neutrm emitted at X makes

its first c~llision in th~ c?re, irrespective of intervening

collisions in the tanper, at x in the v~lume element d~ .

The function K depends on the properties of the tamper, the

radius af the core, and the t~tal cr~ss sectian of the core~

—--- -
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I
We imagine a neutron flux density present in the core and tamper,

time independent, and defined in the core as the function ~(.

We can write the density of collisions per unit time in the core

as o-#@) ● Using the function K 9

we can also write an expression for this collision density as a sum

of collisions arising at the point x from neutrons

liberated at all other points of the core from collisions and then

proceeding to = to make first collisions. ThiS obviously

gives an integral

Crp(qdr

or

~fl) =(l+f@’K(Z’~T)~@)

The integration extends only over the core.

(1.1)

Certain general properties of this integral equation follow

easily. The kernel K is clearly symmetric. This results

from the fact that if one considers the totality of paths from

~’toz , it is seen that the reverse of each path is just

as likely as the forward path, and the totality of backward paths

will then have the same total probability as the totality of

forward paths.

Section 2 Character of the ei~enfunctions and ei~en~alues.

Only for a discrete sequence of values of f can solutions

be obtained. There will be a lowest f , called f. , for

which the density 9 0 is everywhere positive. In a system

.——. .._——
.~
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sin kr
r , with kr equal to something between ~ and ~

at the surface of the core. The function P o will look more

er less as follows:

I- (r)

Core
\

I

1’\
I ~,

-
CoFe Radlua r

Tamper

The extension of PO into the tamper is indicated by the

dotted curve. This extension of course has essentially the shape
e-hr

r
, where h Is the characteristic decay constant

determined by the total and absorption cross sections in the tamper.

There will be the usual rapidly decaying transition effects at the

core-tamper Interface.

The density functions corresponding to higher values of f

( fn being associated with @n ) will have one or more nodal

surface, the neutron density being positive in some regions and

negative in others. Negative neutron densities have physical

meaning only as deficiencies below some positive neutron density,

but physical reasoning can be used in interpreting the integral

equation if negative neutrons are thought of as actual particles

whose presence in a region can cancel the presence of an equal

number of positive neutrons. From this point of view, it is clear

that increasing the number of nodal surfaces in * will increase

APPROVED FOR PUBLIC RELEASE
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the value of f required to maintain this ?@ ● This iS SO

because leakage of neutrons of opposite sign into one another will

become more rapid as the density function mcillates more rapidly.

A larger net production of neutrons per c~llision will then be

required ta compensate these larger losses by leakage.

Section 3 Interpretation of the efgenfunctions and
ei~envalues.

Another useful interpretation of the eigenvalue l+f exists.

The integral equation says that an isotropic source of neutrons

distributed spatially In the core as the function @ n has the

property that all the resulting first collisions are distributed

also as * ● Further, it says that if (i+f~~~

neutrons are released per unit time per unit volume, ~~
.

first collisions result per unit tine per unit volume. This fS

equivalent to saying that a source density * gives rise to

a density of first collisions — *l~fn n , or stated more

simply, one neutron released in a distribution + n gives

-~ first collisions, having also the spatial dependence of

P n“

The eigenfunctions

have the useful property

P n , since K is symmetric,

of being mutually orthogonal when

integrated over the core. We shall assume, and it is certainly

true for cases of physical Interest, that the functions ~n form

a complete set so that any reasonable function defined over the core

can be written as a convergent series of @n .

APPROVED FOR PUBLIC RELEASE
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Section 4 Relation to the Milne Ecmation.

It is of some interest to derive the relation between the

integral equation (1.1) and the more usual way of writing the

integral equation for the two medium problem. We let -* be

the total cress section in the tamper and 9 be the fraction of

tamper collisions which result in ●bsorption. We denote the

ordinary Milne kernel between two points 7? arvfY (core or
\

tamper) by M (~’—— 5?) . This kernel i.sof course symmetric

since it Is just the neutron flux density at ~ arising from .

a unit source at %’ . We write ~~) . and 4 (z,.

for the neutron densities in the core and tamper respectively and

obtain: .

●

(4.1)

It Is clear that if solutions of the equations (4.1) are obtained

for two different values of f , these solutions will be

I
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the

orthogonal with respect to integration over the core only.

furthe~ clear that the set of functions ?# obtained fr.m

equations (4.1) by giving f+f its various allowed values will

be Identical with the previously defined set of ~w . This

procedure is definitely contrary to the usual one of increasing

{+f and ‘-9 in proportion and thus obtaining solutions

orthogonal over both core and tamper. It will be seen that the

procedure we have adopted seems to be much better suited to our

purposes. Of course, the kernel K can be expressed In terms

of the kernel N1 . If we imagine the core function ~ to be
.
known, we can use the second of the equations (4.1) to solve in

principle for the tamper function # . We can then insert this

function $ in the first of the two equations to obtain a single

integral equation for * . We can then identify the kernel of

this equation with K .

Section 5 Equivalent e~~envalue Drobletns.

The relations of the one-velocity problem canbe written in a

somewhat different natatim which is convenient for certain purposes.

We can imagine that a part aa of the total cross section &

results in a process of absorption. We can then ask, how many

neutrons Vn must be liberated for each neutron absorbed in order

to maintain the critical condition (in the nth mode). For each

nuetron absorbed DA are liberated and hence the net number of

neutrons liberated per absorption is Zn- I , and per collision

q
is (&i) -$ since a fraction ,= of all collisions
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are absorption. But previously we have

of neutrons liberated per collision~ so

our two notations is

Another interpretation of Pn is

called fn the net number

that the relation between

(5.1)

that for each neutron

liberated in the distribution ~* , the number J_
v~ are

reabsorbed (with the same distribution) by the cross section ~

This idea is made use of in the next section.

This question can also be looked at more formally. If a

●

kernel P (w+ is defined as the density of absorption

at z produced by one neutron emitted at ~’ , it is

easily seen that P can be written as a power series in the kernel

K (matrix multiplication) and therefore the kernels K and P

both have the P* for their eigenfunctions, and the eigen-

values

values

of P ●re simply related (by equation 5.1) to the eigen-

Of.K! .

section 6. Absorption of neutrms from an arbitrar~
source.

We are now in a position to ahswer a question of great interest

in our later work. Neutrons are emitted isotr~pically with a space

density 3(X ● We wish to determine the resulting density

absorption A(X) ● We write S as a series in the ~n

of

:

s=~sng~ (6.1)
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It Is then clear from our previous work that each . ~* Wi11

reproduce Itself in the absorption density, but with a reduced

fstrength — . We have:
%

(6.2)

The series for s Is ●ssumed convergent, and the -n form

an increasing sequence, so that the series for A converges more

rapidly than that for S . Physically, the distribution of

absorption is always smoother, that is closer to *O , than

the

for

source which gave rise to the absorption.

The ideas which we have developed will be of great importance

the methods to be presented, but we still need a way of getting

numerical values for the fn or % 9 and useful shapes f’or

the ~n . We shall find that only f. , ZO , and ti are

needed, and these can now be obtained with some ease for the case

of spherical symmetry with an infinite tamper. Given the tamper

constants, the core radius and the total core cross-section$ fo

and hence WO can be obtained by the simple procedures given

in LA-173 or LA-234. The eigenfunction *O will always be

approximated by
sin kx where k is the infinite

x

medium wave number calculated from the f. . These approximations

will generally be g~od. Where they are not, care will be taken

to noint out the reason and ~ossible improvements.
A. .

.— .—.,..— —-- ..-------

‘- ‘---‘“”-
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11. The Treatment of ManY-Velocity Problems When No Inelastic

Scatterln~ is Present in the TamPe~.

In attempting to solve critical problems involving a

continuum of velocities, we shall begin by finding what problems

we can solve exactly. We restrict ourselves in this chapter to

problems in which the tamper absorbs and scatters elastically but

does not have any cross section for inelastic scattering, fissim$

absorption, and elastic scattering. All processes are assumed

isotropic.

Section 1 Case of constant mean free ~ath.

If, in addition to these requirements, we ask that all cross

sections in the tamper and the total crass secttm in the core be

independent of neutron energy, we obtain a problem exactly soluble

in terms of the presumably known salutions of the one-velocity

problem. To show this we first n~tice that, because of our

restrictions on the cross sections~ a one-velocity eigenfunction

PO and eigenvalue i+fo calculated with the constants

at any velocity will be identical with those calculated at any

other velocity. This is so because the eigenfunctions and eigen-

values of the one-velocity pr~blem defined by equation (1.1) of

Chapter I depend only on the total cross section in the core,

the radius of the core, and the properties of the tamper.

We now assert that with these restrictions, if the value of Z

is such that the system is critical, neutrans of’every velocity

will have the same spatial distribution *O . This canbe

seen by remembering th6 properties of the eigenfunctions. Neutrons

of all velocities will be making collisions whfch also have the

APPROVED FOR PUBLIC RELEASE
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spatial dependence P o . From each collision neutrons come

out isotropically with an energy distribution determined by the

cross sections. We then have an isotropic source of neutrons of

all velocities spatially distributed as ?&o“ The last

step in the argument consists of the observation that the first

collisions from such a source will also have the shape of ?&o“

Our assertion is therefore self-consistent.
1

I We can find the value of x required for criticality in
I

the following way. Suppose that when a neutron of velocity #

makes a collision in the core, a number s(v’—— v)dv

I are emitted isotroplcally in the velocity range dv . The

function s (V’—w) will inv~lve the various core
I

cross sections, the spectra of fission neutrons and inelastically

scattered neutrons, and the number of neutrms$ z , emitted

per fission. Call @e (v) the cross seetlon

for elastic scattering q (v) that for capture, q(~)

that for fissian from which w neutrons are liberated with

spectrum x(v) and T that for inelaitic scattering.

If a neutron of velocity z is scattered inelastically,

suppose tie spectrum resulting is #(v~vq ● In this case,

r=q+~+q+q

ant%
.

e(v9”s(d~v] =q[v96(v’-v) +~(vjDx(v) +q(v9#(v’-v) (1.1)

where d(vl-v) is Dlracts delta

neutrons scattered elastically do not

I - Sw

function and insures that

alter their velocity.

—
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Let N(v) be the total number of neutrons present in the core

per unit range of v , multiplied by V . ~

The total number of collisions made at velocity V’ in the

range dv’ per second is N@~ W(VP dv’ where &(V~

is the t~tal.core crms section. (actually & , at present,

is considered as independent of V’ ). WOm each of these

collisions, s (w-+ .chl neutrcms emerge in the

1
velocity range dv and a fraction —i+fo of these make

first collisions in the core. We can thererore express by an

integral equation the fact that all collisions at velocity V

arise by the process just described from collisions at all velocities

or

/

00

N(VDW[V]= ,:f cfv’5(v’dv)N(v’j P(VP (1.2)
O*

This equation will have a solutim only for one value of > ,

(which is contained implicitly in the function S(V’-V)

and this value would then just keep the system critical. We could

just as well keep z fixed at Its correct value and inquire what

the radius of the core must be to make f+fo such ●s to permit

a solutlon of the equation.

The calculation can also be made in a somewhat different but

equivalent way. This has the advantage of removing the delta

finction in (II).
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elastic cross section as distinct from the

rest of the cross section, which we will think of as an

absorption cross section ~(v’ . The proces-included

in this absorption cross section are Al those

neutrons from the velocity v so that q“q

We let V(V) be the value of z required

which remove

+q+q

to keep a one-

velocity problem critical if q(v) is considered as absorption,

as deftned in section 1-5. Suppose that when a neutron of

velocity V’ suffers an absorption, s~ (v’-v) Cfv neutrons

come out isotropfcally in the velocity range ‘Civ●

(1*3)

We have for the total number of absorption per second of

neutrons in the velocity range 6fV , I@”) Cq@ Clv’ ●

Each of these emits ~a(v’~v)dv neutronsJ a fraction

i
w(v)

of which are reabsorbed (by equation (5.1) of Chapter I).

We can again write an Integral equation, expressing the fact that

all absorption at velocity v arise by the above process from

absorption at all velocities. We have:

or:

/
W+V)@V)=& d%. (v+ N(V9G@

o

— .aims.____=-==~ ‘104)
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The function v(v) depends on the radius of the core and the

function Sd(v~q contains the real z for fission. The

equation will not in general have a solution, but we can obtain

one by properly adjusting either z or the core radius, in

which case we shall have made the system critical.

The equations (1.2) and (1.4) are rigorously equivalent,

as can be proved immediately from (1.1) and (1.3) and the

relation of ~ and # given in (5.1), Chapter I. Equation

(1.4) is more convenient to use because of the lack of the delta

function in ~a .

The solution of this equation 1.4 is discussed in more detail

in section 4, but we can solve it here in a particularly simple

special case, namely when there is no inelastic scattering in the

core. (We shall also assume q=o but this is really not

necessary). In this case, since q= q Equation 1.4

becomes:

(105)

This equation can be solved by noting that

(1.6)N(Vh@)=C -+#A

where c is a

this solution

u
CXv

WV ‘c

constant, independent of V . Now we substitute

in equation (1.5) and obtain:

(1.7)

I

--..-~s
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This obviously requires:

f

tm
f—= & .x(v)
V w(v)

o

(108)

This equation has a simple interpretation. In a critical

system, the neutrons liberated fr~m a single fission must produce

exactly one fission in the first generation. Multiplying equation

(1..8) through by P , we have exactly this statement for the

simplesystem considered. This is so because H x (v) is

the number of neutrons emitted in the velocity range dV in one

fission and there is no inelastic scattering. By our previous

arguments, a fraction
+

of those neutrons emitted at

velocity V will be absorbed to produce fission. The total

number of fissions coming in one generation from the neutrons

released from one fission is then clearly equal to

/
‘& * which must be equal to unity

o
as stated by equation (1.8).

Section 2 Variable cross Section. The first lower
am roximatlon.

The

constant

restriction to constant cross sections in the tamper and

total cross section in the core, which is necessary for

the validity of equations (1) and (2), is of course too stringent

to include most cases of interest. We shall, however, use the

arguments employed in the derivation of these equations to give

a useful approximate treatment of less restricted problems. Suppose

that the tamper cross sections and the core total cross sections

vary with neutron velocity in addition to the variations permitted

In the preceding treatment. We can no longer argue that we know

the spatial distribution of neutrons of each velocity.
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This is so because the eigenfunctions calculated with the constants

at different velocities are no longer the same, and the consistency

argument that all neutrons are distributed as the common PO will

therefore fail.

We proceed by defining a set of functions ~~ @,V] which

are the eigenfunctions calculated from the constants for neutrons

of velocity v . The set of functions for each velocity is

assumed complete, and in particular any one of the ~n at one

velocity canbe expanded in a convergent series of the <n for

any other velocity. In any reasonable system, a given ~n will

not vary drastically wfth neutron velocity. This is especially

Ptrue of ~ , the eigenfunction with no zeros. In a system

with spherical symmetry, for example, the function P ~ will be

sin krapproximately of the form ~ where the phase of the sine

function must be at least ~ and somewhat less than ~ , in

all interesting cases. Usually conditions will be much less ex-

treme, so that we make the assumption that the change in shape

of ~ with velocity IS small in a sense to ‘bedefhed

more carefully later.

It can now be seen that a reasonable approximation for the

spatial distribution of neutrons of velocity V is to say that

it has the shape of po~,~) ●
Suppose that this were

strictly true. Neutrons of velocity V’ make collisions

distributed as +0 @,V’) . From these collisions neutrons

of all velocities emerge isotropically. Consider those with

velocity 17 . We have an isotropic source of neutrons of

velocity v distributed as *K.V3 and must then

—-
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calculate the spatial distribution of absorption from this source~

We use the method of Chapter ,1and expand the source density In

the eigenfunctions of velocity v :
.

(2.1)

The density of absorptfons, (or first collisions, if any collision

is called absorption), will be:

(2.2)

where the ~n (V) are those defined by equation (5.1) of Chapter I.

The shape of /1(~ will be very close to that of #@&’v~

for two reasons. In the first place, most of the contribution to

the expansion of S(F) comes from the term in po(zv) e

This is so because of our assumption that * (%V)

and *O@, @ do not differ much in shape. In the
.

second place, the sequence of the zn (v) increases >apidly

as n increases, so that the series for /1(~) converges much

more rapidly than that for S(T) . Some numerical illustrations

of the validity of these statements can be found in Appendix I.

It is clear then that our assumption of shape &@v)

for the neutron distribution at velocity V is nearly self-

consistent but not completely so. It is exactly so where

*O (ZV] is independent of v and, as we shall see, is

good enough for most purposes when *O varies in a reasonable
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-}:iththis assumption, we can write an equation analogous to

eauation (1.4] whfch will however no longer be exact. With the

notation US~d in der+ving eqllation(1.4]9 and the approximate

assumption that neutrons of velocity v emitted from absor~tions

at ve19city V’ awe emitted in the snati.aldistribution m, v) x
we will have an equation ~f exactly the same form as equation (1.4):

(2.3)

where we have set A(v)= l’IJ(v)q <v) , . Thus A(v) has

‘he s~gnificance o? being the total number of neutrons being

absorbed at velocity v .

Thjs iS 0= course no lonper an exact equation. , It is very

nearly correct and can be used for nearly all practical problems.

‘;I’Pshall call it the first lower approximation.

Sect~on 3 First upDer a~proximation.

Another equation can be derived by making an approximation

no worse than that used in obtaining equation (2.3). We assume that
a
‘N-llythose absorption which occur at velocity v’ in the

disttibutlon (% v’) are to be counted as twaducinq

absorpt.ionsat velocity v ● If ~(~,~) is assumed to

te normalized so that its integral over the core is unity, then we
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We are interested in Co , which is: -

AS bef~re, N [v’)q (v’)Sa (v’-v) CIV’C!V neutrons

are emftted per second from absorption at velocities in the range

dV to final velocities in the range dV’ . With the approximation

we are now making, a fraction co(v< v) of these form

fa source for absorption at velocity v and a fraction
*-

of these actually are absorbed

yields the integral equation:

at velocity V . This reasoning

(3.1)

The equation canbe made simpler and more symmetrical if

~ (~~ ~ (V) is replaced by
%$&77-A ,Vl

so that, except for the new normalization, Is the number

of neutrons absorbed in the shape *O (X.V) . In this case

it becomes,

(3.2)

where

(3.3)

and the
P

functions used in calculating M need not be normalized

in any particular manner. The equation (3.2) we call the first upper
\

approximation. ——
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We have two equations (2.3) and (3.2) which represent different

appr~ximations to the many velocity problem. We shall attempt

(the mathematical rigor is nat all that may be desired) in

Appendix II to show that the two approximations give results which

are on opposite sides of the truth. In the very large number of

different p“actical cases which have been tried the equation 2.3

gives a value of the u needed for criticality, or the cr~tical

radius which is t~o low, and the equation 3.2 gives results tcm
1

high. Therefore we have a method by which we can bracket the correc

answer with confidence. This

upper limit on the error made

solve). It is only necessary

using (3.2).

permits us, for example, to put an

by using 2.3 (which is the simpler to

to investigate the change made on

It is true that the two equations (2.3) and (3.2) in all

practical cases tried have given remarkably close results. In

appendix III and IV we give a few representative examples. The

values of w-i calculated by the two methods rarely differed by

more than 4%. Thus the use ~f equation (2.3) alone can be

relied on for great accuracy. If any doubt of the accuracy exists,

it maybe tested by a comparison w~th (3.2).

The reason that the two eql]ationsgive nea?ly the same results

is not Car to seek. The equations dif~er only by the fact~r

MO(V,V’) in equation 3.2. If this factor were exactly 1

the tw~ equations would be identical, and, since they bra”ket the

correct answer, exact. . BUt Mo(v,v’) can only be exactly 1

if po(x,v) = *O(X,V’) , that is if the shape

?f the fundamental made were the same at all velocities. This iS

4
.

*

—
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the case when the total cross sections are velocity-independent

In which case (2.3) is indeed exact as we showed in section 1,

equation (1.4). When, however,
y%(x,d differs from #ofX,@ J

the Schwartz inequality shows that Mo(v,v’] must be less

than one. However, except when the functions tiffer to an

extreme degree, the amount by which M falls short of unity is very

small. Some representative values are given in the accompanying

table. The value of M depends only on the shapes of the

functions *(Z v) and ~o~,v’) . These functions

depend only on the radius r . If the functions are of shape

1 -pea and f -qra respectively, the value of M is

where

fz
x= — = 0.069, P =

f 75 %-f–
and Q =

P +f- 9

Y&!?
1
1
1

1- ra
1-1/2ra

1-1/3rz
1

W X,V’] M
1- 1/3r8 .994
1- 1/2 r~ .983
1- r~ .836
1- gd 1.000
1- p .923
l-r- ● 891

sin ~/ fir .780

I

—---- —
–—-———

-
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If for some velocity the mean free path in the tamper

much less than that in the core ( a very rare case) P

and PO is nearly 1 if the tamper is not absorbing.

1s very

is small

If the

paths are more nearly equal, P is near 1/3 and increases

as the mean free path in the tsnper increases. Absorption tn

the tamper increases the neutron curvature P . A value of

p as high as 1 can occur with a completely absorbing tamper

and-a core with very small mean free path. In this case @
sinflr

is more ltke a sine wave, —
flr

rather than !- @

but in other cases the ~rabola is a good enough spproxhation

for the computation of M . In practical cases p will

rarely be below 1/3 or as high as 1 so that M will always “

exceed 0.90. Furthermore, of course not only the extreme values

of M appear In

variable takes all

must be very close

unity over most of

(3.2). In the integration over V’ the latter

values and when it is olose to V, Plo(v,V’)

to 10 Since therefore the MO is close to

the range of integration the results of (3.2)

are nearly the same as the results Of (2.3). In fact this may

be made use of. Equation (3.2) is most easily solved by pertur-

bation methods, considering 1-MO (V,V’j as a perturba-

tion away from the much simpler equation (2.3). ‘bus a simple

formula for the difference of the results of (3.2) and (2.3) 1s

readily found, and appears in appendix II, equation (11-9).

Section 4 Higher approximations

We now give for the sake of completeness a formal scheme of

successively better approxlmettons to the correct value of Z .

The first of these will be the approximation given by equation (2*3)

the second that given by equation (3.2), and further Ones will
—.. - - -–.-. . . _—— .

‘z- -.2-__—-.—
1

— —
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increase in accuracy and difficulty. The first will be the most

convenient because of its ease of application and the second will “

have sozaeusefulness for estimating accuracy, but higher approxima-

tions, while necessary for gmd accuracy in source multiplication

calculations, do not in general increase the accuracy sufficiently

to compensate their increased difficulty.

We write an integral equatim for A(Y,v) , the density

of absorptlons of neutrons at position T in the core V per

unit range of v . We denote by s (v’-v) the function

previously called s’ (v’-v’ , We define a kernel p(~-%,v’

as the density of absorption at z when one neutron is re eased
&V. Thisk~rn~~is Of’courseidenticalwiththekernelP< ~~’.

isotropfcally at T wfth velocity defined in Chapter I, the

variable v merely specifying the constants to be used in

calculating the kernel. We then see that A (~, v)

the following integral equation:

satisfied

(4.1)

The kernel p is a one-velcmity diffusion kernel, since it

represents the probability that a neutron emitted at a given point

at a given velocity suffer only elastic collisions and then be

absorbed at another point. we can obtain a form for P by

considering a simple one-velocity problem in which the tamper

constants are th~se ~f velocfty V , the total cros seetion.
\iS that Of velocity v j ●nd the fission C*SS section n the core

in the core is set equal to the absorption cross section at velocity

v. The eigenfunctlons at velocity V , #@9v) ,

satisfy aIone-ve15city integral equation:

I— —.
—-””” .: -:— - “---.= ——
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(4.2)

This can be seen from the arguments following equation (5.1) of

Chapter I. The kernel of such an equation can always be written

I as a bilinear series of its eigenfunctions. This expansion will

be, since P IS symmetric:

(4.3)

I The approximation to P which we first make is that of

I setting all the %(v) .equal to -o (V’ . This gives
I
I for P :

●

(4.4)

This approximation will be designated as the’first lower approxima-

tion (abbreviated L-1) since it will appear that its use will lead

to values for the critical radius and critical w which are

smaller than the correct values. If we insert equation (4.4) In

equation (4.1) we obtain:

A (% V) =W+W cfv’s(V’- v)A (~, V) (4.5)

This is a rather degenerate integral equation, since x

-——-.—.—.-—
——
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parameter. We can then integrate the equation over the core to

obtain:

/

A(v) =& cfv’s(v’— v) A (v’)
.

(4.6)

Here A(v) is merely the space integral of A(~,v) ●

Equation (4.6) is seen to be identical with equation (2.3).

The next approximation consists in assuming that all the -n

are very large except for -o . Equation (17) then becomes:

.

i
P(z-r,v)=—

& (57,v)

ivo(v)@po (T,v)

We will call this the first upper approximation

since its use will always give too high a value

(4.7)

(abbreviatedU-1),

for the criticalw

or the critical radius. It Is plainly an approximation of opposite

character to the first lower approximation, since it replaces all

-n by quantities which are equal to or greater than the correct

values, whereas in the first ~~wer aPPr~ximati~ns all ‘he ‘n

(an increasing sequence) are placed equal to Z. , the smallest

of the sequence.

Combining equations (4.7) and (4.1) we obtain in this

approximation:
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It Immediately follows from equation (4.8) that in this approximation I

A (~, V) has the form:

(4.9)

If we insert the expression (4.9) in equation (4.8), we obtain an

integral equation f3r AO(V) :

This is of course identical with equation (3.2)

The general nature of our two approximation schemes is now clear.

The Nth lower approximation assumes that the first N terms in the

billnear expansion (17) are taken exactly while all the %
from

%
onward are taken equal to

‘N-1 9
The Nth upper approxima-

tion takes the first N terms exactly while all f’urtherterms are

placed ‘equal to zero. This procedure is Sufficiently illustrated

by working out the second lower appraximatlon. we place:
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With this expression for the kernel P. equation (4.1) becomes:

(4.12)

This equation Is not easily transformable I.ntaone or two integral

equations for one or twa functions of velocity alone. If we do

not try to treat a continulm af vel~cities but restrict ourselves

to a small number of discrete velocity groups, equation (4.12)

is easily s~luble.

The convergence of this sequence of approxinatlons is

illustrated in Appendix IV by applying them to several two-group

diffusion theory problems.

Ch.IL . The Treatment of Inelastic Scattering in the TamDerC

In the preceding chapter we have seen that useful appr~ximate

methods exist by which neutron properties of some simple system

can be easily calculated, even though a continuum of velocities

is necessary In the description. We should now like to extend

our treatment to the the case where the

inelastic scattering cross section. We

tion here is not neanly so strong as it

tamper possesses an

shall see that our posi-

was in the simpler systems

treated previously. We shall find ourselves unable to treat a

continuum of velocities and we must therefore

of replacing the continuum by discrete energy

———-. . ..——-—

‘a -z

make the approximation

groups.

—
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Section 1 Two velocity groups. General equations and
definitions.

Let us first consider a system in

velocities are created and destroyed.

sists of a spherical, homogeneous core

which neutrons of only two

Suppose that the system con-

surrounded by an infinite,

homogeneous tamper. Neutrons in the core can be elastically

scattered or can be transferred from one velocity to the other

by fission or by inelastic scattering. Neutrons in the tamper

can be elastically scattered, captured, or transferred from

velocity one to velocity two by inelastic scattering. We adopt

a point of view similar to that used in the preceding chapter.

Neutrons In the core act by means of collisions as a source of

neutrons of both velocities, and by studying the absorption from

this source, we shall obtain the condition of balance satisfied

for criticality. We shall think of the inelastic scattering cross

section in the tamper as ●n absorption cross section for neutro-ns

of velocity one. We shall then have a source of neutrons of

velocity two distributed In the tamper as are the neutrons of

velocity one. It is then necessary to find what fraction of the

neutrons from this source are absorbed in the core, and include

these extra absorption In the balance condition.

To make these ideas more precise let us first consider the

situation without the inelastically scattered neutrons. Suppose, ‘

for example, that these inelastically scattered were removed and

not permitted to produce firther fission. Later we can study the

actual contribution made by these inelastically scattered neutrons.

Thus we have a problem without inelastic scattering in the tamper,

—
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the actual inelastic cross-section being replaced

In that case, we can use the ideas of Chapter II.

lower approximation, we are led to write equation

in a for~ appropriate to just two velocities:

by absorption.

In the simplest

(3.1) Chapter II

(101)

HereAf and Aa are the total number of neutrons absorbed in the

core at velocity one and two respectively, and qo(md Zao)

are the= values which make a one velocity system critical which

had the cross sections appropriate to velocity one (and two) only.

The quantities S are the direct analogue of Sa(V—V’) c Thus

s~i~a) gives the number of neutrons liberated at velocity two If

one is absorbed at velocity one, while ~~l~i) gives the number

liberated at velocity one under the same circumstances. If a

neutron is absorbed at velocity two it has probabilities ~f~~l)

and S(2 ~~) to reappear at velocity one and two respectlvely~

The equations are easy to understand. For example, the expression

In the square bracket of the first equation is the total number

of neutrons liberated at velocity one and of these, as was discussed

In Chapter I, the fraction
f_

~!o
can be expected to return to

the core for reabsorption.

N~w we must include the effect of the inelastically scattered
●

neutrons. A certain number of

at velocity two and these find

contribute to the absorption

neutrons are liberated In the tamper

their way back to the core and

Ag there.

— —
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The neutrons are liberated at various places in the tsmper~

(the distribution depending on the shape of the tamper solutlon

at velocity 1) and thus kve different probabilities of returning

to the core. For a simple argument let us define a quantity:

P@ as the average probability that a neutron liberated

in the tamper by inelastic scattering (from velocity) findsits

way into the core and is absorbed there.

Then the term to add to the second of the equations (1.1) iS

Shlply Pf2 times the number of neutrons inelastically scattered

in the tamper. This number is not hard to find. It iS just

d times the total number of neutrons absorbed in the
~a*

tamper, since each absorption has this probability of resulting

in inelastic scattering ( -*Lfz is the inelastic cross-section

S.nthe tamper, and ~~ is the total absorption

of neutrons of velocity one in the tamper and is

plus the true capture cross section)s The number

cross-section

q’,:

absorbed in

the tamper is just those tiich are not absorbed in the core.

Since of the neutrons liberated in the core a fraction l_

1 ~! o
are returned to the cores the remainder, or I- —

40
are

absorbed in the tamper. In this way we can understand the modifi-

cation of equations (1) to include the effects of inelastic

scattering:

1
Af”~

[
s(t-- f)A, +S (2~ f) Aa1
[, ;0 soA=— ~Z)Ai+S(Z--Z)A2 1

,
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These are simple equations which prove to be adequate to give

a close approximation to the solution of two veloclty problems.

To use them however, some fairly simple way must be devised for

the determination of p,? . We shall derive several alternate

approximate formulas for this quantity and discuss the validity

of the approximations later in this chapter. We shall also be

concerned to some extent with the validity of the entire set of

equations (1.2), but strictly this presents no really new problem

(above those discussed in Chapter II) other than the adequacy

of a proposed formula for pfz . At the end of this chapter we

discuss the extension to a system with three, or more velocity

groups.

The determination of pf2 requires an analysis of the

diffusion back to the core of neutrons which have been liberated

in the tamper. The dependence of the quantity on the index 1 is

solely through the fact that the neutrons of velocity 1 determine

the spatial distribution of the source. Let us consider neutrons

of

We

of

velocity two released from any source In the tamper, ~(r) .

then consider a kernel C12(r-r’) which is the flux density

neutrons (of velocity two) at position # in the core when

a unit source is located at position r in the tamper. The

dens~ty of absorption A(r’) In the core resulting from the

source S(r) is then given by:

fad QJ-or2~r ~p.3)A(r4)a4#Toga
o–

-=- =

APPROVED FOR PUBLIC RELEASE

APPROVED FOR PUBLIC RELEASE



The quantity plais the number of absorption which occur

in the core in the fundamental mode:

(r)q&(r) Fdr ● 4flf~o (r) r%r
p12 = 4 fllt’~~ (r) r2cir

(1.4)

In the expression (1.3) for A the source S must be taken to

be that arising from velocity one (equation below). We are

therefore led to study the kernel Qe more carefully. -

. The kernel QA is a diffision kernel at a single velocity

and Is therefore symmetric. We use this fact to obtain an

expression for it. Let us expand (?2(r~r’) as a series in the

normal modes at velocity two, &, (r~ with coefficients

+..(0 . We have:

(1.5)

Consider a smrce of neutrons of velocity two in the core, having

the form ~j(c? ●

We use equation (1.5) and the orthogonality

of the %
~

2
to obtain as the resulting density of absorption

in the tamper:

Now we know that If neutrons are released from ● source~,(r)

the distribution of absorption will be & -k (r)

It is therefore true that if one net neutron is released in the

net neutrons are absorbed in the core, and
I
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We now integrate equation (1.6) over the tamper. We obtain

the total rate of absorption in the tamper which~ by the argument

just made, must be equal to !- ~ times the total source
‘a k

in the core. This gives:

(1.7)

Combining 1.6 and 1.7 we find for +..(r) :

(1.8)

We can now insert this In equation (1.5) to obtain an

expression for the kernel Qa in terms of the eigenfunctions and

eigenvalues of a one-velocity critical problem:

Now let us obtain the q=ntity Ptz defined previously.

For the source s (r) , we take a function with the shape of

the tamper solution appropriate to the fundamental mode for

neutrons of velocity one, but normalized so that one neutron is

emitted per second. This gives:

S(r) =
T,~ (r)

4zi’/wTf0(r)r”dr
a

(1.10)
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If we substitute

(1.3) to find A

can be expressed

this, and the expression (1.9) for ~ into

, and then use the formula (1.4) we find ptz

as:

(1.11)

The expression (1.11) is exact.

In the next sections we shall discuss various approximations

that can be made to it. Before we do that, however, it may be

well to point out that th e uati% % as ?K &l&$& ~? XhL~~ue#aa o~p~~%~ergentexact. Their deriva iO
are themselves no~approxirnat~ons to the exact equations will be

undertaken later.

Section 2 Neutron return from tamuer to core: First!
method of approximation.

We discuss in this and the next section various approximations

which can be made to the quantity PIZ ●
There is one simplification

which can be made immediately. If we multiply and divide by the

core volume we obtain as a factor the combination of integrals:

(r) r’cfrJ *
(r~’dr~r’dro

(2.1)

I

I

I We shall hereafter replace this combination by unity. This is a

- —— --
—.. —.--
—

!
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reasonable approximation. Except near the edge of the core the I

function #%. (r) behaves aS %S . For kaa=~ ,

(tamper having large cross section and no capture) the combination

is equal to unity, for kea=$ it is G.98, and for lcaa~

, it is 0.88. It should be remembered that a large

value of ~ d corresponds to a poor tamper, from which the inelastic “

return is less important. This approximation therefore seems to

I be good (and is certainly ccmvenient). If this is done, we have

for p,a:

(2.2)

The various approximate methods of estimating P92 are simply

alternate ways of evaluating the integrals (omitting the subscript

for nornal mode):

~@Tf(r)Tz(r)ra dr
‘Tt (r)ra cfr~ T=(r) r’dr

(2.3)

This only requires knowledge of the shapes and not the size of the

functions T, and Te . When the diffusion theory is valid these

shapes are accurately known. They are of the form e -h%

and e-ti respectively. The constants ~, hzand

are respectively ~~ and - ‘espectivelyO

Putting these forms into (2.2) and performing the integrals one
I

finds$
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(2.4)

This is the first of our forRK$for pia ● It is exact (except

for our replacement of the integrals (5.1) by unity) in the

diffusion theory. It may also be obtained directly from the

differential equations of this theory by studying the diffusion

into the core of neutrons distributed in the tamper as 62-h,+

The expression (2.4) although only (nearly) exact for the

diffusion theory is nevertheless often a very useful approximation

when the accurate integral theory must be used. In this theory

the functions TO for example behaves asymptotically as e -hf$

and differ from this only near the core surface where transition

effects occur. These transition effects, especially when the

tamper does not have a large absorption cross section are often

quite small, and their effect in the integrals (2.s) is negligible.

One change must be made however, The quantities ~, and hz must

now be determined from the usual secular equation for the l!ilne

equation in the infinite tamper medium:

h

*= ‘-g’
q

,*= @-.
(2.5)

q

where ,9 and ~ are the usual ratios of absorption to that

g =x~
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cross sections

putting better

the transition

— .—~r=====
at the two velocities P*

(9~=#k
). The formula may be improved by

formulas for Tf and Ta Into (2.2) in which

effects (which has been studied in many one-velocity

problems, see LA-53 and LA-258) are more clearly represented.

This probably leads to relatively complicated expressions.

In the next section we derive another form for P,a and show that

it takes somewhat better account of these effects than does (2.4).

Section 3 Neutron return from tam~er to core: “
other ammoxirnations.

The method we shall adopt to determine p,a in this section

is to set up an imaginary two velocity problem for which the

complete answer is known. Then using our fundamental equations

(1.2) for such a problem we shall find the value of P?2 ‘o Solve

other problems.

To do this we consider an

two groups. The upper we call

imaginary problem in which there are

group x and the lower simply 2.

The constants of the lower velocity are exactly those of the

velocity two group for the real problem for which we are trying to

solve, The constants of group x however, instead of being those

of velocity one, are taken to be simply those of velocity two$

with one exception~ however. That is we imagine that we add a

cross section w& of inelastic cross section which transfers

neutrons from group X to group 2 (the tamper absorption cross

section is therefore qx~ +C%H*”PX: ). Now this

transfer from X to 2 really makes no difference, the neutrons

still have the same properties. Thus we know that for the whole

system we can solve for the critical z .

— L --
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It is simply ~0 .

The point, however, iS that

only through the shape of Tf and

on the shape of the function TX

p,a depends on velocity one

therefore PXE depends only

representing the distribution

of x neutrons in the tamper. But the shape Tx can be made

very like that of Tf by adjusting the value of Wxa

(and hence qa* )0 We discuss the choice of TX later,

but first let us see how we can determine Px& which we shall

later use as an approximation for P,a ●

Let the & required to keep criticality in the upper group

be w’ (which Is notz= because of the’extra tamper absorption

ofxneutrons)0 We now treat this problem by the pair of equations

(2) assuming the exact critical w for the system is -= . Then

since X and 2 neutrons both may be pictured as producing

fission from each absorption with this -=-a ,and there is no

core inelastlc scattering we have

s(x--x)=~,s(-x)=%s(-z) =0,s(-+0 ,
so that equations (1.2) become
.

Ax=&x[waX4x+U&Ae]

A= =0+ CX”%? @ L

w: +@’r%% W= )[ p.. -244x +=2Aa]

These equations (add them and divide by Ax +Ae

that

‘-s

px2;f-&@r# ~
,qa + Txa

(3.1)

) require

==iwiim--==~ ‘3”2)
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To obtain an expression for pw we must now choose the value

of ~x; so that Tx approximates l’i . We shall do

this by making the asymptotic forms of these functions the same

and hope that the transition effects are nearly similar. Thus

we choose fiy=h, ● We shall, to indicate this special choice

now use the notation 12 for x. We let ge be the usual absorption

number in the tamper at group two, so that:

(3.3)

We can look at the quantity @#8 as the capture cross section

that would have to be added to the tamper at velocity two to make

the asymptotic rate of decay of neutrons of velocity two match that

of neutrons at velocity one in the real two velocity problem.

We define 9,2 as the total absorption number necessary at

velocity two in the tamper to match the shapes in this way. We

have:

-s?&and gfz-~e= ~*
d

We re-write equation (44) as follows:

(3.4)

(3.5)
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This is the second of our useful approximations to p12 “ In

it the quantity “ ,29 is the absorption number for group-two

neutrons in the tamper which would give the same asymptotic

exponential solution for region 2 as actually does exist in”

region one. That iS

region one as in (2.

(2.5) and ~t~ from
I

-%-‘–91 ‘tanh
7!9+”

and

The quantity Z,e is

if 9, is the true absorption number in

5) we find 9,a by determining ~t from

a similar equation.

d%
1-g18=fanh-f & (3.6)

the% valu%w;ich would make a system with

neutrons of velocity two critical if the actual absorption number

in the tamper were 9,=(instead of ge).
We shall now derive equqtfon (3.5) by another more formal

method which shows more clearly the approximatims involved in Its

derivation. We must first prove a simple orthogonality relation

holding between the neutron distributions in certain related one

velocity problems. (This theorem and its applicatims are described

in much more detail in LA- 608 . ) Let M(Z~%’&(77)

be the probability per unit volume that a neutron released isotropi-
-

tally at Y’ makes its first collisions at x . The position~
.

can be a core point or a tamper point so that & is a function

of position. The kernel M is, of course, symmetrical. Suppose

we have two systems, both critical, with the same total cross section

as a function of pasition and wh;ch, therefore, have the same

M@Z) . Let us call the function whjch is the total cross

section multiplied by the total number of neutrons emitted per

collision q(~) . We can~~en write-integral equations for ~ and

:~ ~
‘—— ~
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and the second by ~ ~’~~~ , integrate each over all space

and subtract. We obtain:

)q’(r’)p(n]c@)+(=) -@~(~jM($==

(3*7)

In the second term of the right hand side of Eq. 3.7 we interchange

the dummy variables of integration and note that, since M(5&X)

is symmetric, this term now cancels the first. We obtain:

(3.8)

We now specialize this general thewem to the case of interest to

us. We consider

and tamper equal

these systems we

to 9= and place

two systems with the total cross-section in core

to ~ and ~*, respectively. In the first of

place the absorption number in the tamper equal

the reproduction number in the core equal to

f= , the f required for criticality. In the other prgblem

place the absorption number in the tamper equal to the number

previously defined, and the reproduction number in the core equal
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to f,2 s the f required for criticality with this changed

tamper absorption. The quantity ~(x) will be equal to (f~ f)%

in the core and (~- g)o# in the tamper. We now write

equation (3.8), doing the integrals over the core and tamper

separately and obtain, writing
# ~ and + ,a for the densities

in the core T2 and T12 for the densities in the tamper:

We

In

can also use

each problem

the

the

conservation law to get some other relations.

t~tal number of extra neutrons produced in

the core must be destroyed in the tamper. This candition gives:

(3.10)

If we now divide equation (3.9) by each of the equations (3.10),

we obtain:

(3.11)

We now multiply

of integrals on

illall cases of

=&’;.)&+z::
/by arclr and sit the re
o

the left equal to unity, as it will be very nearly

interest.

N ‘:% -—— .-.—
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We have thus obtained an expression in terms of the eigen-

values of two one-velocity problems an expression for a combination

of tamper integrals approximating to the combination required in

the equation (2.2) for the quantity pf2 ●

The function Ta ,

appearing In (2.2), is duplicated exactly in equation (3.11).

The function T{ , appearing in (2.2), is approximated by the

function ~ . The function ~a and T, match asymptotically

and both have transition effects in the same direction at the

interface. By the use of Eq. (3.11) we can, therefore, expect

to obtain an expression for ~fz of greater accuracy than if we

had used the asymptotic exponential tamper solutions for T1 and T2 .

we combine (3.11) and (2.2) to obtain:

(3.12)

We can express the quantities fz and f,zin terms of the quantities

-2 and ~’ previously used by the usual relation ( from Chapter I,

equation (5.1) )

~
@f

p2.f+_ z
za

Pfz=f+ -$? ff~
aa

The insertion of

q: “cJeO#

f,,= $(4.- f)

(3.13) in (3.12)yields, after n~ting that

and rearranging,

(3.13)

=+s5!‘“ 9,2-9. viz —.-.
;= m~: .+.=_—- ——
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which is seen to be identical with the previously derived equation

(305)0

The foregoing treatment would be expected to be excellent

if k and -kX are each small compared with unity. The
q*

functions T, and T= will then have essentially the character

which they have in diffusion theory. They will consist mostly

of the asymptotic exponential solutions with relatively small

transition effects at the ,Interface. If we use equation (58)

for P,2 , the size of $* does not actually concern us since

the function Ta is no: approximated in that expression.

Suppose, however, we consider what happens as Al increases.
~

The function T, will decay more and mwe rapidly with a

transition effect which becomes relatively larger. This transition

effect is not matched by that in the function ~2 (except qualitatively)

so that equation (3.5) may be expected to become less accurate.

In many cases of Interest the inelastic scattering cross section
forms so large a part of the total cross se tion1?in the tamper at the higher velocity that -i-*maybe rather close

q
t~ unity and this defect In equation (3.5) may therefore be

serious.

A further

than one, even

related trouble can also occur. If ** is greater

the introduction of complete absorptio; into the

tamper at velocity two will not give an asymptotic decay which

will match ~z to f, (there being no meaning to the second equa-

‘1 is less than, but fairly close to one,tion 78 ). Even if =X

so much absorption mustabe fntrodured at velocity two that the

asymptotic part of the function ~2 becomes unimportant and the

match therefore will again be poor. .

-Z- ..s. . . . ..- .-.—. . . ... . .—— —.. . . . . . —.-
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It Is usually true for physical reasons that ~$is greater than

cq* 9 if one refers to the higher energy, and since ~ fs
C@

necessarily less than one the second trouble will not arise in a

reasonable system. Exceptions may accur but this trouble is much

more likely to arise if the tamper cmtains fissionable material

so that neutrons entering the tamper at velocity two can have

their energy increased to velocity one. We would then be

interested in calculating the number of absorption, taking

place in the core at velocity one, of neutrons which have been

thus raised in energy in the tamper. This clearly involves

the calculation of a quantity p21 , which will be just the

quantity p,2 with the one and’two fntert!hangedin the definition.

In wercoming the first difficulty it is clearly advantageous

to use, if possible, the correct finction T, . We can do this

by introducing sufficient absorption,
9
~i , in the tamper at

velocity one so that the resulting tamper solution Tat duplicates,

as closely as possible, the function ~a . By using _Tat as an

approximation for Ta , and the expression (53) for the combina-

tion of tamper integrals which we need, we can get an alternative

expression for P,z . .This procedure will, & course, overcome

the second difficulty since, h, Is less than + , ~= is less

than ~% , and if hi is greater than %*, it follows that ~=

is less than ~x and the reverse procedure just outlined will

give us a reasonable value for the quantity paf .

We proceed to calculate J+z in this alternative fashion.

APPROVED FOR PUBLIC RELEASE

APPROVED FOR PUBLIC RELEASE



-. ...=..----- ..-— .——~ .. -—--— 50. . ..— —

We define 9Zfas the absorption number necessary in the tamper”

at velocity one to give an asymptotic decay equal to ~z . The

eigenvalue f, will be the reproduction number necessary in

the core at velocity one to maintain critical~ty for a tamper

absorption 9, and fef will be the corresponding quantity when

the tamper absorption is equal to ~, .9 The use of equation (3.11)

then gives:

(3.14)

We then combine equations (3.14) and (2.2) to obtain the desired

approximation for pf2:

(3.15)

This is our third approximation to pfa .

By some obvious manipulation we can obtain the following rela-

tion between the p12 which is calculated as above and the p2f

calculated by equation (58) with the interchange of one and two:

(3.16)

That this relation is valid in general may be seen directly from

equation (2.2)0

.——_ .—
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Appendix V, and very simple to calculate. The use of the exact

tamper s~lutions is prohj.bitivelydifficult and can be used,

therefore, only as a check upon the less accurate expressions.

The other two methods are fairly easy and intermediate in

accuracy. These two methods depend, hswever, for their usefulness

on the ease and accuracy with which we can obtain the eigenvalues

for arbitrary one-velocity problems. With equal mean free paths

in core and tamper we can get good accuracy by the use of the ex-

trapolated end point pr~cedure. Reasonably accurate calculations

can be made for unequal mean free paths by the methods mentioned

in Chapter I.

Section 4 Validity of the armroxirnationsinherent
in the general eauations.

In the last sections of this chapter we shall discuss the

technical problem of extending this formalism to systems with

three neutron velocities and to systems with finite tampers.

Since no essentially new ideas are required for this, it seems

advisable at this point to discuss in more detail the accuracy

of the entire scheme of equations (2)$ even granting t~t P12

may be known exactly. We shall consider the equations (1.2)

as a first (and most practical) of a series of appr~ximations

to the exact equations. To study this in more detail we shall

first have to write dwm the exact equations in the two-velocity

case. To this end we shall call the density of absorption at

velocities one and two A,(r) and Az(r) respectively and intro-

duce coefficients S(i~kj as at the beginning of this

chapter.
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It Is identically satisfied by the formula (2.4) for plz so it

gives no new result in this case, but for formula (3.s) it yields

the new relation (3.15). An analysis of the transition effects

as they affect the accuracy of formulas

that (when the sizes ~f ~f, -*, ~a~*

(3.5) and (3.15) indicates

are sunh that either for-

mula may be used) these farmulas err on opposite sides of the

truth in many cases. It is possible that this may be true in

general, and if this theorem could be established it would permit

us to put limits on the error made in calculating pfz . In

that case we could put the theory with tamper inelastic scattering

on the same sure footing as the theory when this scattering is

absent. At present writing this has not been done.

We now have four methods for calculating Plz “ ‘sing

equation (2.2) we can first assume that T1 and Ta have the

shape of the asymptotic exponential thereby obtaining equation

(Ze~ ]. We can second assume the correct T.. and approximate ~
obtaining epation (3.5)

by ~a T . We can third assume T, and approximate ~ .byTzf
obtaining equation (3J5)
A finally, with sufrlcient effmt, we could assume the correct

functions for both T{ and T2 . All of these methods coincide

essentially in the diffusion limit and the various methtis which

we have devised merely represent various ways of taking into account,

to varjous extents, the transition effects which occur at the

Interface except in the dif’rusionlimit. The quantity pfa is

calculated for some typical cases by each of these meth~ds in

Appendix V. The use of the asymptotic exponentlals is of the

greatest general use since it is reasonably accurate, as shown in

.— ——.——..———. - ..... . . . .
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Finally we also need the kernels ?l(r’~r) and ~[r’~r)

which are the densities of absorption in the core at ~ when

one neutron is released at # at velocities one and two

respectively. We obtain by elementary reasoning the integral

equations:

A, (r)= 4?’r’r;’dr’ ~ (r~r)[S (1+)Af (r’) +5 (t?-- i)A#)]

A.(r) =4m>f’adr’~(r%@ --2)Af(r’) +s (Z-2)Aa(r’)]o

The ftrst equation states that all absorption of neutrons of

velocity one arise from neutrons liberated at velocity one from

previous absorption. The second equation states that all

absorption of neutrons at velocity two arise either from neutrons

liberated at velocity two by previous absorption or from neutrons

liberated at velocity one which were inelastically scattered to

velocity two in the tamper. This latter effect is expressed by

the last term in which a new quantity 52 (t-’-r)

appears. We define the kernel Ffa(r’-r) as the density

of absorption of neutrons of velocity two taking place at position P
whergone neutron is emitted

/h
er second at velocity one at position

, escapes absorption n t e core, is inelastically

scattered in the tamper, and finally returns to the core to be

absorbed.

The new kernel can easily be expressed exactly in terms of

the previously defined kernel ~i~r’--q~~~~ ●

This latter quantity is the density of absorption In the tamper

for one neutron released per second in the core at velocity one at
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%i!position r’ . A fraction
~

of these absorption yield

neutrons of velocity two, so that for one neutron emitted per

second ●t velocity one at position r“ , we have a source

density of neutrons of velocity two in the tamper given by:

(4.2)

Now we find the density of absorption at position r in

the core resulting from this source. This is, from equation (1.3)

(4.3)

We could now use the expression (1.9) for the kernel Q to

obtain an explicit expression for ~z .

What approximations can be made to reduce (4.1) to a useful

form? The approximations which can be made of the kernels P{ and

~ were discussed at considerable length in Chapter II. It

was there shown that a very useful approximation the first lower

approximation, was equivalent to replacing ~(%’~~) , by

(+,)3(*’+ and ~ by a similar expression. Our problem

here is to discuss approximations which can be made to &(#~r’) ,

(with the hope of course of eventually transforming (4.1) into

(1.2). We,shall discuss this by discussing approximations to

Q, (r’~r) and (J2 since F can be expressed by (4.3)

in terms of these quantities.

I
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An exact expression for~ is given by equation (1.9] (we

drop the subscript indicating which velocity group we are dis-

cussing. The index k represents the mode in question).

To make progress we must develop an approximation to it. One

way is to observe that the functions Tk(r) are nearly all of

the same shape, so that the first factor is nearly independent

of the mode ~ . This is exact in the limit of dif?’usiontheory

since Tk(r) are merely simple exponential characterized

only by the tamper properties. In the factor containing these

quantities, we therefore omit the subscripts and take this common

factor outside the summation sign. It is clear that this procedure

will become less accurate as we depart farther from the diffusion

limit. This is so because the tamper solutions depend, In the

transition effect at the boundary,

We shall discuss this in much

this apwoximation we obtain:

on the core distribution.

more detail below. Making

Q(r-r’)=4m
T(r’) ~(,.;)xq

(rjradr k
o

(4.5)

The sum on k may now be performed exactly. We can use the

completeness relation

for the one-velocity

for the ~k and the bilinear expansion

diffusion kernels defined in Chapter II:

~— . -– “—
I

—
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(It has been tacitly assumed that we are interested in neutron

distributions which are finctions of, r only).

(4.6)

We now integrate the

one variable over the core to do the sums indicated in (4.J) and

obtain:

= p (~”L:) (4.7)

expressions (4.6) and (4.7) with respect to

It is instructive to show that this expression can be under-

stood in a more physical way. Supp~se that one neutron per second

Is released at velocity one from a spherically symmetric source

at radius r’ . By definition q (x’~ X’? are absorbed per

second per unit volume at r“ . The total number absorbed per

second In the core Is the volume integral of ~ (r’~r”j

over all points in the core r“ . The total number absorbed

per second in the tamper must then be equal to:

(4.9)
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The distribution of these

at least in the diffusion

defined function T (x)

absorption in the tamper must haves

limit, just the shape of the previously

● If we normalize this shape to unit

integral and multiply by the total number of absorption in the

tamper (4.9) we obtain the density of absorption at r’ in the

tamper resulting from a unit swrce at r in the core. This iS,

by definition; the kernel Q(r’~rj&d* : in agreement

with equation (4.8).

The expression (4.8) for Q can now be inserted into (4.3)

to obtain an approximate expression for Ff2 :

.

(4.10)

Recalling the expression (2.2) for p,2 , this can be simplified

{/ }“~”%mI-4R ~ (r-- r’’)&dr”dr”
o

(4.11)

If in the exact equations (4.1) the (inexact) relation (4.11)

is used these equations are seen to depend only on the kernels P .

These kernels can be approximated in a series of apwnxima e forms
f

just as in Chapter II. We shall only exhibit the case corresponding

to the first lower approximation here. The extension to the higher

approximations are obvious by analogy, and an example is given in

—- --
—
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Appendix V. It must be pointed out, however, that these approxima-

tions cannot converge to the true answer (except in the diffusion

theory limit) when there is tamper inelastic scattering. This iS

because they converge to an exact solution of (4.1) only after the

expression (4.11) is used, and this latter is itself inexact. We

discuss to some extent the accuracy of 4.11 at the end of this

section. Since 4.11 is inexact it is not too sensible to try to

solve (4.1) very exactly when (4.11) is used and the method of

first lower approximation of Chapter II should be sufficient.

In this method we

for ~ and ~

and 4.4 of Ch. II

set every eigenvalue in the bilinear expansions

equal to the lowest eigenvalue. Equations 4.3

then yield:

,o/t-nq(w+) =&

F&(r —r’’=&-@c- ~)

A corresponding expression for the kernel F4. can

inserting the expressions 4.12 into

%(r’~r’ = ~~qt (’-;) ‘*
o

IQ

equation 4.100

With these approximations, equations 4.11 become:

[
A,(r)=*O S (f-f)Af (r) +“S(Z- f) Aa(r)]

[ ‘@A,(r) +s(~-z)A8(r)]Az(r)=&s(l

(4.12)

be obtained by

This yields, ~a:

(4.13)

I
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We now integrate each equation over the core and

and & (without arguments) the total number of

.

denote by A~

absorption

taking place in the core at velocities one and two respectively.

I We obtain two algebraic equations for A, and A& :I

These equations are identical to the equations (1.2) at the be-

ginning af this chapter. We see that they correspmd to several

approximations. First, and poss~bly best, there is the approxima-

tion of using first lower approximation. This was discussed in

Chapter II. There is further the difficulty that p, can only
Methodsto r30thiswere discussedin sections2, and Y o~ thisCh@Qr

be calculated eas~ly approximatelyTFinally there is the appnxima-

tion used in obtaining the expressim F,a in the fwm (4.11) or

what is the same thing, the step leading from (4.4) to (4.5) in

the calculation of Q , in which all the tamper functions have been

assumed to be nearly of the same form. We shall discuss this

approximation at some further length now, but unfortunately will

not develop a simple way of decreasing the error made by it.

The expression 4.5 for the kernel Q is not in general correct

I

.-— .—_.—— -—“all-=== 1
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because, as has been pointed out, the transition effects will be

different for the different normal modes and the step which leads

from equation 4.4 to equation 4.5 will therefore be incorrect.

The difficulty is equally obvious from the physical point of’view

that led to an interpretation of equation (4.8). Here one iS now

unable to say that the distribution of absorption in the tamper

depends only in size on the point in the cone from which the

neutrons are released. We are therefore unable to write Q1(r’~r”)

in the factared form (4.8) where each factor is a function only

of one variable.

Having pointed out the difficulties, we shall now see, that

there is certainly gmd reason to believe that the expression

(4.10) for the kernel F,a is a useful approximation even when

diffusion theory is not valid. Although in general there will be

transition effects at the boundary, these effects will be quali-

tatively similar for the various nmmal mqdes, in that the neutron

density in the tamper will always rise above the asymptotic

solution close to the core-tamper interface. This positive dis-

crepancy will always decay rapidly away from the interface but the

characteristic length of this decay, while always considerably

less than a mean free path in the tamper, is less for the higher

normal modes than for the lower. This is so because a core density

which oscillates rapidly compared with a mean free path sends pDsi-

tive and negative neutrons out normally to the interface in about

equal numbers. This cancellation does not occur for neutrons

emerging at an angle so large that the essential contribution to

the emerging neutrons (within one mean free path from the interface,

measured along a chord at the emerging angle) comes from the

-w~o
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positive part of the density closest to the interface. This

emphasis on large angles in the emerging distribution for the

higher modes means that the first collisions necessary to establish

the asymptotic ta~per solution will be made closer to the interface.

In view, however, of the qualitative similarity of the

transition effects for the various normal modes, it is reasmable

to believe that the combination of tamper integrals occurring in

the expression 4.3 for Ft2 when used for 4.4 will be nearly

independent of the indices k and j which run ~ver

modes for velocities one and two. We would then obtain

(4.1~) as an approximation to Ff2 .

all normal

the expression

We can also consider this approximation from the physical

point of view that led to an interpretation ~f Equation (4.8).

Consider a source of neutrms in the form of a spherical shell

at radius r’ in the core. The resulting density of absorption

can be represented by a curve like the following:

I r’ a r

The curve in the tamper will be asymptotically an expmential but

will have a transition at the interface. In the core the curve

will consist of increasing ●nd decreasing exponential arranged to

be finite at the center an d-have a diso~ntinulty of slope at r’ .-— .——- — _ .—
-—--—~——

%ililim-’~
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There will be transition effects at the source radius and at the

interface. The

the position of

i.e., more than

face.

region near the interface will not be affected by

the source provided the source is far enough away,

a small fraction of a mean free path from the inter-

The shape of the curve

dent of r’ except when

in the tamper will therefore be indepen-,

r~ Is very near to the core radius in

the sense previously mentioned. Equation (4.s) will therefore be

corrects except when r’ Is near the core radius, if 1 [r)

and Ta(r) is the correct tamper solutions for a source inside

an absorbing core.

Section 5 Extension to three or more velocity grouPS.

The methods which we have developed so far in this chapter

are sufficient to mlve two-velocity problems w!lthsufficient

accuracy for practical purposes. The representation of a problem

with a continuum of velocities by a reduction to one with two

velocities is, however~ rather crude. We should therefore like

to develop methods for handling problems with three or more neutron

velocities without any drastic increase in the amount of labor

required. We shall also not be able to obtain arbitrary accuracy

for three-velocity problems but for practical purposes we can do

sufficiently well.

The approach previously used will be useful but some extension

will be necessary. We can again write the neutron densities in

the core at any velocity as a series of the normal modes appropriate

to that velocity. We can then, in principle, write a system of

simultaneous equations between the co-efflcients of these normal

modes to describe the balance between neutron production and neutron

absorption at every velocity.__——

m> ~
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To do this we must, of course, calculate the distribution of

absorption

the methods

in the core

in the tamper from each normal mode and calculate by

previously evolved the distribution of absorption

of singly inelastically scattered neutrons returning

from the absorption in the tamper. If we then make the assumption

that only the fundamental nodes at each velocity are important

we would then have a scheme like the one whtch we used for two

velocity problems. One difficulty remains, that of calculating

the number of absorption of neutrons of velocity three in the

core which have been doubly inelastically scattered from velocity

one in the tamper. In order to be as brief as possible, we shall

content aurselves here to deriving as sim~ly as possible expressions

to take into account this double inelastic scattering. We shall

not attempt to exhibit the errors made in the formulas, although

this can be done, because It leads to very complex expressions,

and nething essentially new is learned. The errors are of exactly

the same kind (but somewhat larger, by accumulation) as those made

in the discussion of the single tnelastic scattering. They are due

to neglect of transition effects to various degrees.

The fundamental equatians (1.2) when generalized to include

inelastic scattering and limited to a system in which the neutrons

have just three possible velocities, become
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(5.1)

Here the quantities are defined exactly analogously to those of

equations (1.2) for two groups, extent to simplify the writing we

have made the abbreviations

GIX3(1-H)A, +@-4)Aa +s(3%)A3

so that A,9 A&t As represent the number of neutrons absorbed

in the core at each velocity~ and ~f~Gz>63 have the significance

of the number at each velocity which are generated in the core.

The first two equations of (5.11) are just as fn (1.z), the tMrd

represents the absorption of group-three neutrons. The first

term represents
I

~ are retumned to

those generated at velocity 3 in the core which

the core.
.
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The second term represents neutrons whfch are generated at velocity
I

me, are inelastically scattered in the tamper with cross section

q{j directly from velocity one to three, and which are ab-

sorbed at velocity three in the core. The form is obvious and it

is clear that p,3 is just analagms to the l% of previous

sections but is calculated using constants of regions one and

three, rather than one and two as for . The third termpta

represents those generated in the core at velocity two and which

thereafter are scattered inelastically to three in the tamper and

subsequently absorbed in the core. This leaves out of account

neutrons which start at velocity one in the core, are inelastically

scattered to region two in the tamper, and then before returning

to the core are inelastically scattered again from two to three,

eventually being absorbed in the core at velocity three. It iS

clear that this effect is accounted for by the last term if:

p312 is defined as the average probability that a neutron

liberated at velocity two in the tamper (by inelastic scattering

from velocity one) is inelastically scattered again to velocity

three, and Is absorbed in the care at that velocity three.

These equations (5.1) which are rewritten in stnplest form

in Chapter IV, are the equations which may be used to solve three

velocity problems with practical accuracy.

requires a method of estimating ,2 .p3

We can

to find J%

at velocity

neutrons at

find this by an analogue of the

Their use, hawever,

method used in section 3

● ClearlyP~2a ( like Ptz ) depends m conditions

one only through the shape Tf( r ) of the source ~f

one. We can take an imaginary

constants of regims two and three as they

problem-with the

actually are, and
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change region one to a region x which has the constants of two,

but an inelastic cross section so adjusted that Tx is close

to Tf (exactly the same value of q%: in fact as is

required, as for ~,Z3 by equation (3.6). Then the quantity may

serve as a good approximation to ~f23 . The px23 can be

found since we know the z (say -c ) required to make the

whole system critical as it is just a two velocity problem with

velocities two and three which can be solved by methods already

worked out. The ~X23 is adjusted so that (5.1) will.give the

right answer in this case. There is no loss In generality in

determining the Px~ in simply letting group-three neutrons

only regenerate group X and this simplifies the values of

~(~~j) . They all vanish except S(S~X)=ZC . Of

course ~~~ is to be taken equal to %=*3 as is every

crnss section for ~egion x and ~ except that ~~ and

&=$ differ by the extra @& in *X: . Equations (5.2)

gfve 6f=qA3 , C&=O and 63=0 so that the

equations (5.1) reduce to

*

Ae =
!

)
u= A3

o+~(l-x Pxa

A3=o+$ , f(
Xtl ) )

P’ px3%A3+o+w*(f-J= DX P=aq 43
(5.3)
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Only the third of these is reauired and this determiries pxz3

immediately in terms of ZC (divide by A3 ). We may next deter-

mine by the two group problem with two and three. We may observe

that this is just what is obtained if the neut,ronsfrom three feed

two directly but do not feed x . That is for this case all ~

vanish except the single S(3 ~Zl~=~ . Hence G,=63=0, Gz =qA3
9

and the equations (5.1) become,

/4,=0

I Thus, again only the third equation is needed and it yields

(5.4)

(5.5)

when this is substituted into the third of the equations (5.3)

there results an expression from which pxz3 may be determined:

(This expression may also be seen directly by careful reasoning).

We now choose %& as in equation (3.4), and define all the

~ quantities and -x .~e exactly as in this case.

. .— ——. ..—.-.
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Then we can take pxz3 as ~fZ3 . We can also approximate pX3 by

pf3since the former is the transfer from Tx to three and the

latter is that from ~f to three, and TX and Tf are nearly

equal. Hence we finally obtain a useful formula for ~ ,23 :

I

TO use this pf~ and pe~may be obtained by any of the methods

outlined in sections 2 and 3. Unfortunately p,z3 is obtained as

a difference of terms, and this makes the accuracy of p ,E3 less

than that of quantities like ple . It is probably true that the

best results are obtained if pe3 and p,~ in (5.7) are both

calculated by the same meth~d, and presumably it is best to use

the method of section 3 (equation (3.5) ). This is because

the derivation of (3.5) is like that of (5.7) and some thought

I indicates that if this method is used the errors in p23 and pfg

after substitution in (5.7) tend to offset each other rather than

accumulate.

There are, in analogy to the case of pft , many other forms

that plz~ can be written. For example, by eliminating ZIa by

equation (3.5), and expressing it in terms of p,a :

‘, {*Z (P23-Y%3) +(M.)P.3)
‘“3 = 9:;

(5.8)

(This can also be derived directly by other methods). There is

no point to this (it is identical to 5.7) if the p’s are calculated

by (3.5), which is the recomy”endedprocedure, but if another

formula (say 2.4.) iS used for the p’s the relation (5.8) niay b@
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easier to use.

Again, we might have made the analysis of

way, in that we could have put the constants of

69,

p lzj in another

group two

similar to group three and thus obtained a new form. This simply

reverses the role of groups one and three. The easiest way of

seeing what will result is to find p,t~ (obtained by formula 5.7)

(simply by interchanging the constants of group three with those

of group one) and then noting as in the case of pfz , equation

(3.16), it is possible to demonstrate a reciprocity relation:

(509)

so that F123 is known when PJ2! is found in this manner.

If this method is applied to 5.8 there results

4{ -s’ (Pat - P3f)+@pg)ph 5.10)Pfz3=
4ZL-s.*.@-~

~a CV# & }(i-q) g3a-g.

and of course other combinations are possible, using equations

I (3.5) and (3.15). In calculating P3z just imagine the inelastic
I
I scattering to be reversed and equal to q3: (but do not change
I

q: * ) so that the neutrms go from three to twoand &Ja
I

instead of vice-versa. Then g32 is the 9 needed in region

two to reproduce the absorption in region three.

I
I

-.—.-= —.
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Section 6 Extension to systems with finite tamners.

We now wish to develop a method for treating the case of a

homogeneous, spherical core surrounded by a homogeneous, spherical

tamper with finite outer radius. In the first place to apply

our methods at all, we must know the solutions (critical z , etc.)

for one-velocity problems with finite tampers. If the core and

tamper are of equal mean free path the method of the extrapolated

end point described by Frankel, Nelson, and Goldberg in LA-53

and LA-258 can be used to obtain very accurate results. When the

free-paths are unequal the approximate methods of Feynman (LA -608 }

or, of Serber (LA - 234 ) can be used.

We shall consider only the case of two neutron velocities.

Nat only will the critical z values be different but the

fundamental equations (1.2) will have to be altered in case the

tamper is finite. The term in these equations,

(6.1)

must be changed in form, if pfa is still defined as the number

of core absorption at velocity two per neutron libel’atedin the

tamper. Of course”,the formula for Plz will be altered, but be-

side that the term (6.1) in equations (1.2) must be replaced by:

(6.2)

— —
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This term is to represent the number of neutrons liberated in the

core at velocity one which are inelastically scattered (with

cross-section ~~ ) in the tamper and are eventually absorbed

in the core. It can be understoti in the following way. Of the

neutrons liberated in the core, which are ~fi~l)Af+S(~~i)Az

in number, a fraction ~
*O

are returned to the core. Hence
4

l–—
J%o

are not returned to the core. One of two things may

have happened to these neutrms. They either have been absorbed

in the tamper, or they have leaked out of the mtside of the tamper.

Suppose we define: L,

is the number of neutrons (of velocity one) which leak out of the

tamper for each neutron which is absorbed in the tamper.

Then it Is clear that

[
~ S(!---l)A{+S(2~
I+L,

I)A2
1

is the number of neutrons of velocity one which are absorbed in
*

the tamper. Of those absorbed the fraction, 0T;2

are inelastically scattered, and these have the c%ance pfa

of finding their way back to the core at velocity two, by

definition. Thus the form (6.2) is explained.

For finj.tetamper problems then we have tw~ quantities to

calculate Lf and pf2 . We should first point out that pfz

cannot generally be calculated by a method of imaginary inelastic

scattering analogous to that used in Section 3. This is because

it is not possible to repr~duce closely the function T,(r) by

adjusting an absorption cross section in regim two to make a

?function TX = {a .

..

— —
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This is because, although the asymptotic exponential rates 4, andI

ha may be made to coincide? the boundary conditions at the

outer edge are different, and thus the ratio of rising to falling

exponential cannot generally be correctly matched at the same time.

Put another way, the extrapolated end points will be unequal.

For that reason we can find

method of section 2 In which

~ and neglect transition

r,2 only by the analogue

we use explicit functims

effects. This we proceed

of the

for T{ and

to do,

finding first L, and then Ptg .

Consider the neutrons which are lost from group one in the

tamper. The abswptions of neutrons of group one are distributed

approximately as

* ~infi hi (b+x~-$)
c“~a

r

where c is a constant ~{ is the decay constant of the asymptotic

solution in the tamper and x+ is the extrapolated end point at

the outside of the tamper. Th~s distributim neglects the

complicated transition effects at the core-tamper interface and

at the outside of the tamper. We have defined a quantity ‘t as

the

per

ted

number of neutrons of velo~ity one which leak out of the tamper

neutron absorbed. This quantity can be approximately calcula-

in the following way. With the distribution just given, we

integrate over the tamper to obtain the total number of absorption

and calculate the neutron current leaving the outer edge of the

tamper. The current corresponding to an asymptotic neutron flux

density N is:

I

-—

— —
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This is easily shown by consideration of the integral equation

and is seen to approach the diffusion theory expression for smallq ,

which is correct.

The expression (6.3) will give the

asymptotic density is correct. We make

the current at the surface is correctly

9°valid for = , where the current

9/

current wherever the

the approximation that

given by (63). This is

is independent of radius,

but becomes worse as
9

is increased, because of the difference

between the absorption in the transition effect at the outside

surface and the absorption in the asymptotic density, which we

have used to replace the transition effect.

We now obtain for L, , by dividing the above calculated

current by the total absorption:

L,=
fi,b cosh hfx, +sitth tf xl

(6.4)
fi, acoshfi,(b+x+-a)+sinfi hf(b+xf-a)-fi,bcosk h,x,-sinh~lxf

where a and b are the core radtw and the outside tamper

radius, respectively. * Note: * Frankel and Goldberg (LA-258)

describe methods whereby L{ can be calculated exactly (exdluding

transition effects at the core-tamper interface). That is the

approximate formula (20) for 7 is corrected at the outside

edge of the tamper. The result is that the combination

Afb COSA 114X{+sinh 4{X{ which appears in the numerator9

and last half of the denominator, and which arises from (20)9

is to be replaced by (if we call ~~~ )

\. . . . .. ... . . .-. : ~.-
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h,

where T~ is a

LA-258.

could he

integral

certain expression depending on 9 given in

These expressions would be identical if the square root

replaced by the cos~ h,,x{ and if ~ times the

could be replaced by tanh fht%f)
- h{

That this is nearly possible can be seen from the following table.

0.0

.2

.4

.6

1000

1.23

1*72

Y.26

Cosh(hx)

1●00

lA21

1.63

2.9k

.n

.75

.80

.87

0.4 we c

h,x,
tan~~

●’P

●79

.87

●95

n use theSince 9 is rarely as large a
given in the text. Actually if q is as large as

—

simpler form
0.4 the entire

formula is inaccurate for an~ther”reason. Far such a large
%transition effects at the core tamper interface are considers le

and limit the accuracy of (20).

To find pfa we shall use an approximate representation of the

tamper densities by asymptotic solutions of the integral equation.

We define a kernel Q&(~~7’) as the flux density of
~/

neutrons of velocity two at a point X ar~sing from a source

of one neutron

for group one

tion so that:

per second at 7. We call the tamper solution

~1(~~ and approximate It by the asymptotic solu-

T, (7)=
,-r)

r

-“5)
;s!!!!’~.— .—.——..-..—
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To the accuracy which we used in deriving the previous

expressions for Pf2 , we have for P,a :

(6.6)

As before, we replace Cla(r-r’) by Cla(r’~r) , because of

the fact that it is a symmetric one-velocity diffusion kernel.

We then note that

4zrrr:z cfr’Q~ (r’~ r)

is just the=flux density in the tamper of neutrons of velocity two,

arising from a uniform source spread over the core, of unit

strength per unit volume. Of the neutrons fr~m such a source,

4nas
3

in number per second, a fracti.~nequal approximately
1

to I
~

are abswbed in the core, a fraction i — ~ are

1
2

lost In the tamper, and af these a fraction
l+Le

( Leis

defined by replacing 1 by 2 in the definition of L, ) are actually

absorbed in the tanper. We can then write the desired density

in the tamper as:

where ~ (r) is to be approximated by:

T=(r) =
r

-—. - . .. .....-

(6.7)

. ...—
._ .- ...~..— —---- (6.8)—. ~- -— I
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If we now do the indicated integrations, we obtain an

explicit expression for :

The following abbreviations have

S1 ‘sink hI ( b-a+ x,)

c, =costi h,(b-a+xf)

S2=mh $ (b-a+ Xe)

ce=cos~ ~ (b-a+ x&)

It can eas?ly be shown that as

large, this expression for fie

by equation (2.4) of Chapter III

I

(6.9)
j

been used:

Z, =sinh hf xl

K, ‘Co9fi h, )(,

X’e=sinl’l ~xe

Ka =emh 4X2
b is allowed to become very

approaches the expression given

for an infinite tamper. This iS

to be expected since the two derivations are completely parallel

except for the thickness of the tamper. The formula as it stands

is complicated, and some experience in its use would probably

permit one to find simpler appr?xinatfons to it, but we have

n~t done a great deal of work with fintte tampers as yet.

APPROVED FOR PUBLIC RELEASE

APPROVED FOR PUBLIC RELEASE



-. —.- —---

‘--’ -=iii=+- 1
I

In appendix VII we give a numerical check of the procedure

which we have developed fo? two group finite tamper problems.

No actual calculations of this sort are available, because of

their difficulty when done by more conventional methods. ‘.~’e

therefwe use the method to solve a one-velocity problem which

has been artificially split into a two-velocity pr~blem by the

additioh of an inelastic cross-section in the tamper. The problem

can then be solved exactly as a one-velocity problem and we thus

obtain a reasonable check of the meth~d.

To extend the method to problems with three or more velocities

would require the study of quantities analagous to p~zj for the

finite tamper. This js difficult to work out for the general cases

and entirely satisfactory formulae for this case have not been

worked out.

If the total mean free path is nearly the same in all energy

groups then the methods of section Z and section 3 can be

applied to obtain an appr~priate formula for the analogue of ptz3

Chapter IV.. Special Meth~ds f?r the Solution of ?!dan~Velocitv
Problems.

We propose In this chapter to describe specific procedures~

based en the developments of the preceding chapters, for the

solution of a useful variety of problems. We shall show h~w to

calculate the multiplication rates of systems composed of a

homogeneous spherical core and a homogeneous spherical tamper with

arbitrary outside radius.
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We shall try to devise sl~itabletests of the accuracy af the

methods given and shall indicate how the methods may be extended

to include more general problems.

Section 1 Reduction of multi~lyin~ sgstems to eauivalen~
~ritical problems.

We first state and prwe the following useful theorem.

Any system in which the neutron density depends on time through

a factor @ can be thought of as a critical system (density

constant in time) in which a velocity - dependent capture cross-

section equal to G is added to the system. The proof is

elementary. Consider the Boltzmann equation describing the system.

If n(~,~, t) is the complete density function,

we have:

SZ!L+ii.v-~ l-v&n==S
t!$k

(1.1)

Here S is the source of neutrons being restored to ~ and ?

and is explicitly Independent of time, being the result of some

linear integral operation on ~ . We write ~=~o(~,=je a+

and obtain:

4?iRo+Tvno +Vawlo ‘s0

7
or i7F7ne+v(cV-+~ qo=so

(1.2)

Here So is the result of the same operation on ~0 that gave$

when operating on rl . From equation (1.2) we then see that the

system is equivalent to a time independent one with total cross-

section =+% and no additional smrce involving ~ ~ so
G

that the v is essentially a capture cross section.

~:== ~

— — — —
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We shall then treat only critical systems, it being assumed that

all multiplying or decaying systems have been reduced to critical

by the use of the above theorem.

Section 2 Methods for woblems with no inelastic
scattering in the tam~er.

Let us begin by outlining the method which seems most useful

for the solution of prablems in which the tamper does not scatter

inelastically.

in Chapter II.

spherical core

We shall use the first lower approximation developed

We consider a system composed of a homogenems,

with radius a and a hamogeneous$ spherical tamPer

with outside radius b . The core is characterized by a total

cross section ~(v) , a fission cross section C9@ “ 9

a capture cross section q (v) , an inelastic cross section

q(v) , a fission spectrum x(v) normalized to unit

integral, an inelastic spectrum #(@-~) (=oforv>v’)

normalized to unit integral over V , a total cross section

-C*(V) in the tamper, and a capture cross section ~x(l?~

in the tamper. The value of U for fissien is given and it is

desired to find the multiplication rate of the neutron density.

We guess a multiplication rate cZ and add ~ to the t~tal

and capture cross sections in core and tamper. We then wish to

find whether the resulting system is critical with the given

value of 27 . We do this by finding the value of Z required

for criticality. If the critical # is htgher than the actual

n we have guessed too high a value for 4C and must adjust

the next guess accwdingly.

APPROVED FOR PUBLIC RELEASE

APPROVED FOR PUBLIC RELEASE



I

-~. .,~ -—
.~- —=: _---—...... . ...._ :.-

-:=%-mlw
Usually two trials will give a useful value for the multiplication

rate.

In order to find the critical value of z we write equation

(?.3) of Chapter II:

(2.1)

We can write s (v’-v) explicitly in terms of the cross

sections ( & and @c are understood to have the&absorption adc$qd).

We define an absorption cross section &a&)=~&)+@@+~(V)

and write s(v’—— v) as:

(2.2)

Equation (1.3) becomes, remembering that inelastic scattering

must decrease the energy of a neutron:

(2.3)

For convenience, we chmse the size of A~) so that one

neutron emerges from fission per second. That is, we place:

“

--— -——.—

‘= -

/
2Y

~; q(v)
A(v)=l

. w(v)
(2.4)
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With this normalization, equation (5) becames:

-L

a
x(v) f

A(v) s ~ ‘pm(v) dti~(v’~v)m A (VY
q (v’)

(2.5)

All the finctlons in equation (2.5) are known except for /l(vj and

no(v) ● Since ZO (V) is just the z required for

criticality in a certain known one-velocity problem (Chapter II),

we can calculate it by the methods suggested in Chapter I so that

only A(v) remains to be found. Equation (2.s) can then be inte-

grated numerically step-by-step. Suppose VO is the highest

energy of the fission spectrum. Then A(vo) is just X(vo)
w~(v~) ●

We start A (v) with this initial value and find it for

successively lower valuesof V by using the values already found

to do the integral on the right-hand side of equation (2.s).

We finally obtain the complete function A(V) , on the

assumption of the normalizatim (2.4)0If the function A(v) iS

then substituted In the normalization condition and the integral

performed, we obtain the value of ~ required for criticality.

This procedure is a useful one in cases where one desires a

detailed picture of the spectrum of neutrons present inside the

system or escaping from it. It may be expected to be very accurate

for the untamped case, in which case the assumption of no inelastic

scattering in the tamper is exact and in addition the first upper

approximation will be extremely good because of the similarity in

shape of the untamped eigenfunctions at all velocities. Its

accuracy may be less but will still be very gaod in cases where the

properties of the tamper do not vary wildly with velocity. ,

I—-—
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Section III SDecial sim~lifyin~ assumption for
~.

There are some cases with a continium of velocities in

which the integral equation can be solved exactly, and a great

deal of numerical work can be avoided. For example, it may

be sufficiently accurate to represent the inelastic scattering

cross sections in a special form such that the integration of

equatian (2.s) is much simplified. Suppose we could write:

(3.1)

This is just the assumption that the inelastic scattering behaves

as though there existed various varieties of fission, each with

its own cross section as a functlm of velocity -n (v’) , and

associated with each kind of fission a different normalized spectrum

x~ (v) ; and with a z of 1. In order to represent real

inelastic scattering an (v) should be taken different from

zero only for values of v higher than those for which Xn (v)

is d5.f?erentfrom zero.

If we now write equation (2.s) we have:

A(v’)dv’
(3.2)

This can be reduced to a set of N linear inhomogeneous algebraic

equatians for N unknowns. We define:

I

/

An= *d*(V)
A (v) dv

~ -a(v)

-.
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which gives the finction A(v) in terms of the known functions

x(v~~~n@’’and &(Vjand the unknown coefficients An . These

coefficients can be determined by multiplying equation (3.4) by

P. (v) and integrating over all v . l~eobtain:
q (v)

(3.5)

This $et of linear algebraic equatims are easlly solved (if N is

not large) and we then have A(v) from (.3.4). We can finally

find the z for criticality by performing the integral

indicated in equation (2.4).

It should be finally painted out that the integral equation

can also be solwed if the inelastic scattering can be represented

by another form. Suppose #(V’- v) is of a form analagous to

that arising frcm collisions of neutrons with protons, equation

(2. 5) can be integrated as a first order diffenwntial equation.

That is, suppose we can write, with sufficient accuracY

+( v’~v] = j?J,(w)+&d v’)~ (3.6)

=0 V’<v
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{far neutrons on pntms this can be done exactly,

+ f=(;’)z v +Z’=zv ● We then have for equatim

(2.5)

This can be d!.f?erentlatedwith respect to ~

.

(3.7)

to obtain:

(3.8)

This can Iwr-ediately ~;e ?ntegra+r.d ta give A(v) as an indefinft
b

!ntegral,.on v . Tn “ppneral the i.ntep~alcann~t be perfl~rrried

but p>od accu “acy can be gbtained by the use of’analytically, .

Simps9n1s R.\)le, o; some e~ufval~nt m;th?do The applicatim of

this methwl to the treatment of the hydride prnblernhas been given

by IZhrlichIn LA-YC8.

. .

APPROVED FOR PUBLIC RELEASE

APPROVED FOR PUBLIC RELEASE



-==-====

Section 4 The metho4 of velocity groups

A somewhat less cumbersome procedure, which is not exact

but will give good accuracy in critical mass calculations (but not

so detailed an energy spectr~), is the so called group appnmxi-

mation. We assume that neutrons have only certain discrete

energies and average the cross sections in such a way that

reasonable results are obtained. This approximation can be put

on a rigorous basis if there is no inelastic scattering in the

tamper. We proceed to do this by one possible methti.

In equation (2.s) we write A(V)=~(V)N(Vj 9

where JV(V) is the flux density at velocity v integrated oum

the core. Equation (2.5) becomes, if we multiply by -o(v)

and remember equation (5.11) of Chapter I (for ZO in terms of f,

1 where f is the number of excess neutrons required per collision

~ for criticality):

(4.1)

In equation (4.1), we interpret the left-hand side as the number

of neutrons lost from velocity ~ per second and the right hand

side as the number added to velocity V per second. Equation

(4.1) OF course says that these must be equal for criticality.

The first term on the left, ~$N , is the number lost by

absorption, whereas fcY~ is the number lost by leakage into

the tamper. We shall think of fe as an effective cross section

for lOSS of leakage.

~-- -
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We now define

them, which do

. .. .- -—---- --m.>.——

n energy regions or groups, as we will

not overlap but collectively include the

complete range of energy. Let us call Ui and Vt the lower

and upper limits respectively of i~~ groups and ~derstand that

the first group has the lowest energy. We then integrate

equation (4.1) over the ~ th group and obtain:

We define:

[

vi
N(v)civ=Ni
i!

‘L f(v) w(v) N(v)dV . -i
(4.3)

&qx(v)dv=xi

b

‘=!!!!7 .-—
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Eauation (4.2) can then be written, reversing the order of inte-

gration in the term involving the inelastic cross section:

(404)

(4. 5)

The quantity qji is essentially an average inelastic

scattering cross section from the j th group to the i th

group. It is different from zero only if “At .J Its

values for i= “J represent an addition to the elastic cross

sections arising from inelastic scattering which fails to remove

a neutron from the group in which it started. In the definition

(4.~), the Vi in the integral over V could be replaced by V’ ,

since +( v’~v a c) for V>VO ●

Equation (4.4) cm now be written:
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If the average cross sections occurring in equation (4.6)

have been obtained by integrating over the actual spectrum, the

set of ~~ and the

correct values. The

using an approximate

z obtained will be identical with their

approximation which will be used is that of

spectrum (guessed or calculated on some

simplified assumptions) to obtain the average cross sections.

The solution of the set of equations (4.6) will then yield an

approximate value of Z and the approximate number of neutrons in

each group. If a reasonable number of groups are used, so that

the cross sections do not vary widely within any group, the

approximation to the average cross sections will be excellent and

we can therefore expect to obtain accurate results for z and

the spectrum.

The procedu-e which we have given contains specific recipes

for averaging the absorption cross sections, the fission spectrum,

and the inelastic spectrum, all in the core. It is implied that

the average velocity of a group is given by:

(4.7)

This is so, because the velocity enters only in the form of an

absorption cross section ~

No very direct,procedure

core cross section, the total

capture cross section. These
—i

is implied for averaging the total

tamper crms section, or the tamper

quantities enter only in the calcula-

tion of f& and all that can be said precisely is that &

should be averaged in the same way as an absorption cross section.

— ...

“’ - I
.-
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In practice it is usually adequate to calculate f& as the

[&for a one-velocity pr.blem whose cross sections in both core

and tamper are reasonable averages over the ~‘ th group of the

actual cross sections.

It is clear that the procedure which we have outlined for

solving the integral equation (2.1) will work equally well for

the set of simultaneous equations (4.6), if all integrations are

replaced by appropriate sumvlations. The use of the group approxima-

tion makes much more practicable the application of the sequence of

upper and lower approximations described in Chapter II. This re-

mains difficult, however, because the one-velocity eigenfunctions

are not sufficiently well known. Upper and lower limits can be

put on the critical radius and the critical & “bythe use of

a perturbation scheme like that which led to equation (II-9) of

Appendix II. These procedures are sufficiently illustrated by

their application to some two-group critical calculations in

Appendix IV.

Section 5 Methods including inelastic scattering in
the tamper.

We now propose to apply the methods of Chapters II and 111 to

the calculation of cr5tical problems in which inelastic scattering

is present in the tamper. We do this first for the case of an

infinite tamper. We discuss the case of three neutron velocity

groups, since this fully illustrates the general method.

As in Chapter III, we define a total absorption cross section

in the tamper as the sum of inelastic and capture cross sections

(ass~ing no fission in the tamper). Neutrons leaving the core

make inelastic collisions in the tamper and these collisions then

form a source, in the tamper, of lower energy neutrons.
.-
- .—
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The diffusion of these neutrons back into the core must then be

treated by the use of the quantities P,~,Pf~j?3}?23

defined in equations (2.4)$ (3.5), (5.7), or (5.8)

of Chapter 111.

Using a notation similar to that of equation (4.6), we

write:

qaN++ffqN, (
=Px, qN, +C@12 +q’’f~d

) (5.1)

On the left-hand side is the total number of neutrons removed per

second from group one in the core by absorption and leakage. The

right hand side is the total number en~ering group one per second

(by fission). The term fu- , which gives the leakage, includes

the 10SS by inelastic scattering in the tamper$ since f, is assumed

to be calculated with inelastic scattering in the tamper treated

as capture.

We can write a similar equation for the second velocity group:

The last term on the right

per second taking place in

into the core after having

inelastic collision in the

(5.2)

is just the total number of absorption

the core of neutrons diffusing back

been degraded to vel~city two by an

tamper.

I —.—-. .-==
—.. .._—.-—
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This is easily seen If it is remembered that f, q N,

is the total number of neutrons of velocity one whjch are absorbed

in the tamper per second, that a fraction q ~e
~

of these

are degraded to velocity two, and that a fraction q~ of these

(Chapter III) are absorbed in the core. Eauation (5.2) is then

best understood by transposing this term to the left. The left-

hand side is then just the total number of neutrons per second

removed from velocity two in the core by absorption and leakage,

exclusive of those which were returned from a degradation in the

tamper. The right hand side, to which it must be equal, is just

the total number of neutrons of velocity two produced per second

in the core.

A similar equation for group three follows immediately:

YaNg+fs~N3=~~3 ~~fN1+~fN2+~fN,3)

+ff+&-p,a3N,
la (5.3)

The only term

the last one,

which are twice degraded in the tamper before reentering the core.

in equation (5.3) requiring further explanation is

which must be added in to take care of the neutrons

The equations (5.1), (5.2) and (5.3) are exactly equivalent to

(5.1) and (s.2) of Chapter III, simply rewritten in a form more

convenient for practical calculation.

s@B!l!m=.~.... .. -—. --,-—-_.—
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If onl~~two groups are used, just omit equation (J.3) and set

N3=0 ● In this case, if the tamper is finite, replacepfa

by ~
I+L,

●

The method of solution of these three equations is just that

described for the equations (4.6). That is, the total number

of neutrons produced by fission per second is normalized to unity

(for convenience) and the equations solved step by step for

N{,N~9N3 . The value of z is then

found from:

;=(qfNf+%f%+@3)

(504)

Although we have made a considerable effort to provide a

reasonably vigorous foundation for these equations, it is clear

that their best justificatim must come from actual numerical

comparisons with more trustworthy calculations. It is impractical

to do an actual calculation (except with the methods here given)

to an accuracy greater than that given by a two-group calculation

with the so-called P3 spherical harmmic approximation to the

solution of the Boltzmann equation. ~ny comparisons of this type

have been made, with excellent results, but for our purposes it

is sufficient to make the comparison with two group diffusion theory.

This is done in Appendix V.

It is also profitable to make various sorts of internal compari-

sons of the methods here developed. One questionable point is that

of-the accuracy attained by the use of the quantities P12,~a3

etc. We can shed some light on this by performing a typical three-

group critical calculation in two ways, first by the use of the

definitions (3.5) and (5.8) (Chapter III) for Pla~d P123 9
—====iil . .

. . . ..__
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and second by the use of the definitions (3.15) and (5.7). These

two sets of definitions were derived in widely different ways

and were seen to be most useful under different sets of conditions.

The discrepancy between the two approximate calculations can

then be taken as a reliable estimate of the absolute error intro-

duced by our approximations. A comparison of this sort is also

made in Appendix VI.

It is difficult, in the few selected examples

appendices to convey the impression of confidence

of these formulas which one obtains when actually

given in these

in the accuracy

working with

them and comparing them time and time again with surprising

success to the results of much more difficult but more exact

calculations.

It should finally be pointed out in a little more detail why

the group appraxlmation (or something similar) is essential to

the treatment of Inelastic scattering In the tamper. Suppose

we had a tamper in which many inelastic collisons could be made

by a single neutron. We would then have to use quantities like

Pic ~ PIa3~ P1234 etc. These quantities (except for the

first # seem to be exceedingly difficult to calculate with any

degree of accuracy, so that a restrictim to a small number of

velocities is necessary.

There do exist problems however with a continuum of velocities

which can be treated by our methods. This can be done if the

inelastic scattering function in the tamper is so restricted that

a neutron once inelastically scattered can make no more inelastic

collisions, or possibly onlyme more. We illustrate with the

case where no more tha_n_oneinelastic collision in the tamper is
-— –-—— —--- -_ .
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permitted. Ye write the integral equation analagous to the

simultaneous equations which we have been using:

f

a

A(v) =& (N’S (v’-v)A(v’)

o

Here the second term on the right gives the number of absorption

taking place in the core by reason of single inelastic scattering

in the tamper. The function p (V’;v) would be written in our

previous notation as ~v~v and is :ust the return to the core

of neutrons of velocity v released in the tamper distribution

characteristic of velOCity V“. Equation (s.5) will not in

general describe the system correctly. It will however do so if

from zero for

once degraded

and ~*(v) are nowhere different

the same value of V . In this case, a neutron

cannot be again inelastically scattered and equation

(5.5) iS correct, at least to the extent that our previous

approximations are valid.

The equation (5.5) can in principle be solved, ir particular

by a numerical step by step procedure, but the work will in

general be prohibitive. By the use of the continuous analogue

‘f ~123 , a similar equation can be written in the case where

a neutron can be degraded not more than twice In succession In

the tamper. This equation is naturally very complicated and

about equally useless.

—
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Section 6 Other Problems amen&ble t
described herein.

In actual practice it will usually be necessary to treat

systems which are less idealized than the ones which we have

considered so far. A partial list of useful extensions of the

foregoing formalism might include methods for treating:

1. Systems departing from spherical symmetrY.

2. Systems containing holes, or other inhomogeneities.

3. Subcritical systems containing a steady source.

We shall outline how several of these generalizations may be

made. Consider first the case of a non-spherical system, such

as a homogeneous cubical core imbedded in an infinite homogeneous

tamper. If the cubical core problem were solved in general for

neutrons of a single velocity? the extension to many velocities

would be simple because none of our basic results thus far depend

essentially on the spherical symmetry of the core. They do

depend on the assumption that the fundamental modes at the various

neutron velocities do not differ radically in shape in the core.

valid for cores of any not too
.

the cubical core, we have only

appropriate one-velocity problems

This assumption should be equally

irregular shape, so that to treat

to obtain the eigenvalues for the

(with cubical cores). This is not easy,

not lie in our many-velocity formalism.

Consider now an otherwise spherical,

an infinite tamper having a small hole at its center. Such a

system is encountered when one changes the degree of criticality

of a system by remwing material from the center. The consequent

change in the value of Z required for criticality can be

but the difficulty does

homogeneous system with

1----- -–-..—-——...—..— —-
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obtained by the consistent application of

developed

are to be

reasoning

spherical

with the specification that all

the formalism thus far

one-velocity eigenvalues

calculated for systems with holes in the center. The

here Is exactly the same as that just used for the nan-

case, but it is now possible to carry through the

calculation with ease. This is so because the eigenvalue

a spherical one-velocity system with a hole in the center

calculated by a simple perturbation scheme involving only

eigenvalue for the system without the hole, the volume of

and the ratio of the neutron density at the center to the

neutron density in the core.

for

is easily

the .

the hole

average

If the hole is not at the center, the perturbation will also

involve the angular distribution of neutron velocities at the hole,

and if the hole is in the tamper, the procedure becomes meaningless.

More general Inhomngeneities in density can presumably be well

treated by the same method if they occur in the core. Here, the

difficulty in obtaining good one-veloclty eigenvalues becomes very

severe. Again, variati~ns in tamper density render the method less

valid, because the tamper densities in the one-velocity problems

cannot be made to coincide so closely by changing the absorption.

If the inhomogeneity consists

so that the system is not divided

with homogeneous composition? the

of variations of composition

into a core and a tamper each

method breaks down. A clumsy

perturbation treatment can still be made, if the composition is

nearly unifo~m, but the main advantages of the method are lost.

I
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Another important type of problem is that of a subcritical

system which multiplies a steady neutron source. The application

of the fomalism to a problem of this type is sufficiently

illustrated by consideration of an untamped active sphere with

a source at the center. Here one uses one of the series of upper

and lower approximations described in Chapter 11S with the given

source introduced into the original integral equation. A set

of i&omoge neous equations wI1l be obtained which can be solved

to obtain an approximation to the number of fissions occurring

per second.

Better results will be obtained by the use of the first

collision sources rather than the point source at the center.

Neither the first upper nor

because of the bad shape of

lower approximations will b6 adequate~

the source, but the second lower

approximation will usually @ve good accuracy.

This problem has been very carefully studied

of view of the methods developed heretn by Ashkin

from the point

and by these

and other methods by Serber. Ashkin was able to treat the multi- ,

plicatlon of an untamped sphere with a continuum of velocities.

For practical problems with metal spheres, however~ the method

of velocity groups was sufficient. For small spheres Serber~s

method of successive collisions was also able to deal with the

complete velocity spectrum. The matters are discussed In detail

in Serber~s LAMS - 253.

— —-——’ .—
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Diffusion theory cheekof assumption
APPENDIX I. forfirstlowerapproximation.

We wish to obtain some numerical confirmation of the basic

assumption underlying the U-1 and L-f approximations. We

consider a two-velocity problem in the diffusion approximation,

With the following constants:

q =+4 Cq?a=l qc*= o a =0.48690

q =-* =8 qa=z q: =0. 11626
(1)

The quanti$y a is the radius of the core.

The fundamental modes at the two velocities have the shapes,

in the core:

sin kir
q(r)= ~

sm Ifpr
UjJd= ~

where + and k2 are to be determined. The
~-h,r ~-her

densities are ~ and ~ 9

(2)

corresponding tamper

The quantities h, and

ha can be determined from the CPOSS sections in the usual way,

and we then require that the logarithmic derivatives of the

densities be continuous at r= a . The problem has been so

adjusted that:

k{a=+

—— ... ...-.— .-—. - - - —. ..—

‘=a-’”‘;-

(3)
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We can then find the value of v which would have to be

associated with the core absorption cross section at each velocity

to maintain these fundamental modes at critical. These turn out

to be:

q = 1.86731

nz= 1.33880
(4)

We then calculate, both exactly and with the approximations

of Chapter II, the density

two from a source with the

of abswptions of neutrons of velocity

shape of Uf ● We have:

= sink{r
r

(5)

This yields for (nv)a :

3e9?
r(nv)a = ~ +Asin@3~-

+ +3qqa ‘in ‘i=

(6)

Where A must be adjusted to satisfy the boundary condition at

rsd. Equating the logarithmic derivative ~f (6) at r =a*O-~a9

we obtain:

3- klCOS k{a+ h2 sin ktaA—

The density of absorption can then be calculated as (tIV)a~a

With the L-1 approximation of Chapter II, this density of

sinkgrabsorption will hav~the.~p~~
and a SiZe such

(7)

●

— — — —
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that its volume

of the source.

4integral is $ust ~ times the volume integral
z

This yields:

a
rdrsin ktr sin kar

fd
(8)

●r t-sin ker 1’

The exact expression is compared with the approximate expression

in the first of the graphs immediately following. An exactly

similar calculation can be made of the absorption of neutrons of

velocity one arising from a source ~
r

. The results

are plotted In the second of the succeeding graphs.

A more stringent test of our approximations would be obtained

in a case where the values of kta and kza differed more widely.
3fl

This has been done for a similar case with kla=~ and k2d=7

and the results plotted in the third and fourth graphs following.

It canbe seen from these plots that our approximation is a

reasonable one.

It is of interest to consider the number of neutrons absorbed

per neutron emitted from the source. This number has been

1approximated by ~ and can be calculated exactly by multiplying

equation (6) by ~a ~ integrating over the cores and dividing

the result by the integral of the source over the core. We label

the four cases previously considered in the order given and list

the values of ~ and the correct absorption ratio:
1
A

case T Correot Ratio*
I 0.7469 0.7395

A
‘tI 0.56ss 65398
III O.?ceo 0.6773

Iv 0.5898 0.5547
4

~—.. . ,___ — --..— -— r
—
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~PP~lX 11
The sign o? the errors of the upper

and lower approximations

We wish to show that the critical z and critical radius

given by the first lower approximation (equation (2.3)$ Chapter II]

will always be less ttin those given by the first upper approxima-

tion (equation 3.2), Chapter II). To show this we fix the radius

and the value of & and inquire by what factor would the neutron

production per absorption need to be increased to make the system

critical. That is, we write instead of equations (2.3) and (3.2)

the following:
.

/
ALAL[v)=&- dv’S(v ‘~v)AL(V’)

1

-/
AvJ4v(v)=~v) dv’s(v~v) M. (V,V’)AU (V’)

Here 7NLand ~are the quantities bywhich s~v’~v) must be

divided in the first lower and first upper approximations respec-

tively In order to make the system critical. If XLis unity, for

example, the system is just critical by the first lower approxima-

tion. If AL is greater than Unity, the system produces too

=’~
1
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many

that

will

neutrons and is therefore supercritical. We proceed to show

~Lis always equal to m greater than Au . A given system

therefore be more active in the first lower approximation,

and hence the critical radius and critical z will be less in

this approximation.

We note that MO(V9V’) Will be equal to or less than unity

by the Schwarz inequality. We therefore write:

Mo(v,v’)= f-N(v,v’)
(3)

where N is a pssitive function which will be small compared with

unity If the eigenfinctions #o(%3V) are reasonable. We imagine

that equation (1) has been solved and the eigenvalue *L obtained.

We then obtair Au by a first-order perturbation calculation.

We write: XU=AL+A2L

AV=AL+AA (4)

Eauation (2) becomes, if we negIect obviously second order terms:

We use equation (1) to eliminate two terms and obtain:

(6)

There is an Integral operator adjoint to that in equation (1) whose

eigenvalue is also AL ● The corresponding eigenfunction

satisfies:

I
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We multiply euuation (6) by XL and integrate over V . We

obtain: .

f/
- dV dV’p~ ~ (V’-.” N(v, V’)~L(IdAL (V’)

(8)

Use of equation (7) yields:

2@v&(v)AA(v) +&t@~L (v)& (V’)

/
= AL dv’~L (v’) AA (,V’)

-//
dv dv’~~ 3 (v’~v)N(v,v’)~L (V)AL (v’) ,

or, with some obvious rnanipulatims:

//
AA*-

dv dV’q&) S (V’+V) N(v, V’)& (V]AL (V’)

/tiv~L CV)AL(V)
. (9)

We now show that IL(v) and AL(v) do not change sign and

hence that AX is essentially negative. A rigorous pro~f of

this assertion seems difficult but a sirple physical argument

can be given. If we have a system Which according to eauation

is not critical, then it is intuitively clear that it could be

(1)

made critical by dividing S(v’~v) by a real positive number XL .

If the system has thus been made critical, we can nwmalize AL(v)

so that one neutron, for example, emerges from fissions per second.
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Since all processes contemplated in equation (l), except for

fission, degrade the energy of neutrons, we can then use equation

(1) to solve for AL(v) by a step-by-step method. A positive

number of neutrons will be present at the highest energies because

a positive number of neutrons are emerging from fission. P7sitive

numbers of neutrons will then be present at all lower energies

by reason of inelastic scattering from above and positive numbers

of neutrons emerging into the lower energies from fission. With

this normalization it must then be true that AL(v) is positive

for all v .

TO show that XL(V) Is also positive definite we use the

same argument. The equation (7) can be thought as giving the

neutron spectrum for a problem in which inelastic scattering

takes neutrons from low energies to high and the fission spectrum

and cross section are interchan~ed. We then normalize ii~(v)

so that one neutron emerges from this inverted fission process

per seccmd and solve step-by-step starting at the low energy

end. IL(V) must then be positive also. It then follows from

equation (9) and the arguments just made that AX is negative

and the assertion with wh~ch we started Is therefore true.

We should now like to demonstrate that AL and Xulie on

opDosite sides of the correct value. We again use a first-order

perturbation treatment, which becomes somewhat more difficult

because of the necessity of taking into account the space variation

of the kernel as well as the efgenfunctions. We consider three

kernels:
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We write the integral equation (15) of Chapter II as:

AA (~,V)#kj@(~~%V]~ (V~v’)i@;v’)

(11)

Here ~ is again the number by which S(V’-V) would have to

be divided to make the given system critical. If

kernels (10) are inserted in equation (11), three

of the eigenvalue ~ are determined. We shall

the three

dif~erent values

denote these by

AL 9 As and Au . The first measures the activity of the system

according to the first lower approximation, the second gives the

true activity of the system, and the third measures the activity

according to the first upper approximation. We then wish to show

that if the three values of ~ are calculated by a first-order

perturbation scheme starting from the first lower approximation,

the true value of A must lie between XL and Au.

We write the integral equation (11) as:
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The function A@v) satisfies the following equation:

(13)

In finding XL we could i~ore the space dependence of AL(F,v)

because of the highly degenerate form of equation (13). If,

however, we wish to base a perturbation calculation on AL (~, V) J

we must be more careful. We write:

AL (~,V)=AL (V)f(~)
(14)

I Here f(xj is an arbitrary function of position to be determined

I later and AL(v) iS just the solution of equation (1). We
I

rewrite equation (12), neglecting second-order terms and making

the cancellations, possible by virtue of equation (13):

A@ A(r9v)-AJUl@) f (m

f= ~V’S(V+’)D~j AA (%,l?’$;jv’s(k+i @?~~,V)AL(V)f (~(1 5)o

I
We multiply through by the function ~L@) satisfying the integral

equation (7) adjoint to equation (l), and integrate over velocity.

Two terms in eauation (15) then cancel by virtue of equation (7)

and we obtain:

AX f &’)’v~L(vjAL~v)

$@fiVS(vkv)~L(v)AL(v9AF(F~XV)f (r.)

/

/&@7S(V~VJX, (V)AL(VJ)AP(FLT, V-) ~(x ~

or Akf (Z)- d?’
~~v&(v) AL(v)

+(

I
——. -—

-:= -(~6)—— ,
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Equation (16) is an integral equation for the unknown function

f(l) ● The quantity AX enters as the eigenvalue of an

integral operator which is symmetric since

Consider the three kernels (10). We define two kernelsAP :

(17)

We see from (10), remembering that the xn form an increasing

sequence, that AP and APU are each kernels with all

positive eigenvalues. Furthermore, A Pu is obtained from AP by

adding a kernel with all positive eigenvalues. If AX corres-

ponds to A P and Axuto APU ~ we see that Ax and Axu are

the highest eigenvalues of symmetric kernels which are sums of

kernels with positive eigenvalues (remembering that &($ and

AL(V)can be chosen Positive definite). Furthermore A2LU iS

the highest eigenvalue of a kernel which is obtained from that

for AX by the addition of kernels with all positive eigenvalues.

It therefore follows, from a lemma to be proved, that AX and

~~u are positive and that AAU is greater than AX , so

that ALNL>AU as we wished to show.

We now prove the required lemma. Let L and M be two

symretric kernels, each with all positive elgenvalu.esforming a

decreasing sequence from a highest

eigenvalues ofLand ~ be ~ and

— —

eigenvalue. Let the highest

& respectively. We have:

._. ..—

~’ ‘
..

— —
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~=&Kw_ (x,Mx)

(* 541 ~ “~
(18)

where P
and X are functions so chwsen that the expression

equated to ~ and
P

attain their maximum possible valuas.

The bracket notation of course indicates an inner product.

c.~~ider the kernel ~= L + M . Its eigenvalues are all positive

since any eigenvalue is a possible value of:

(19)

and each term in (19) is essentially positive as can be seen by

expanding ~ in eigenf%nctions of L or M for the two

terms respectively. The highest eigenvalue of S,G -will be

the absolute

for example,

~>~+

We have just

maximum of the expression (19). Ifwe let #=~ ,

we obtain:

argued that:

so that:

(20)

(21)

(22)

—
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by reversing the argument:

(23)

We have therefore proved the required result, that the
I

highest eigenvalue of the sum of two kernels with positive eigen-

1 values (each with a highest eigenvalue) is greater than the

I
highest eigenvalue of either kernel separately. Actually, of

course, the proofs lack rigor because they are based on perturba- “

tion arguments to first order, without a demonstration that the

higher order terms are small.

an

of

In

APPENDIX III. Resultsof firstapproximationsfor
severalspecialproblems

We now propose to apply the procedures of Appendix 11 to

actual many velocity problem. We first assume the validity

diffusion theory for the calculation of all eigenvalues.

spite of the shortcomings of diffusion theary, we can still

expect a meaningful check, since our approximate methods will be

applied to a many velocity diffusion equation, whjch we shall also

solve exactly.

We define a problem as follows:

a-(v) ‘U-*(V)=+ X(V)=l if O<v<l

=0 if!<v
(1)
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We then write the diffusion equation:

A

- 3;*(v) VaN & V] +c&v) N(S?,V)= O O<v<a

a<v
(2)

Here N (5?$v) is the flux density at % per unit range of velocity

and z is the total number of neutrons per fission required for

criticality. We write:

F (% y; (q N (T, v) (iv
odvea

o

‘o adv
(3)

for the density of fissions, and insert the gtven cross sections:

(4)

This equation can be formally solved for N in terms of F by

use of’the

the left:

N (3?,+=

Greents function for the differential operator on

(5)

We then multiply through by ~(vJ and integrate over v

obtain a space integral equation for F(?) :
-e . .

~E!!!!!!!!!!!-::-==

the

to

—
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I

I

I

I

I

‘-x””-
We rewrite this:

one-velocity

●

. The usual

(6)

(7)

r.-

problem is that of

We then see that our many-velocity diffusion theory is equivalent

to a one-velocity integral theory problem. The density of

fissions becomes a neutron density, ~ becomes the i~f needed

for criticality, and K becomes the total cross section in

the equivalent one-velocity problem. The integral is to be taken

only over the core, so that the

an untamped sphere of radfus a

We take K= 1 and a = i extrapolated end-

point method then gives &=i.9878.

We now propbse to obtain - by the U-f

tions. We first use the L-1 method and then

answer in the U-t approximation hy the use of the perturbation

scheme developed in this appendix.

Equation (1.8) of Chapter II gives for z calculated by

the L-1 method:

&&;d$&

and L-1 appr~xima-

obtain the approximate.

(8)
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Here z(vjis the value of z required to make a one-velocity

system critical with the constants of velocity v . Writing ~(v~

for the wave-number of the fundamental mode at velocity v ,

we must match the logarithmic derivatives of ~in k and ~-%r

at r=a . This gives:

K
kcotka=-~
tank

or — k
= -v

We find Z(V) by remembering that

(9)

in the one-velocity

diffusion theory:

(+2= f = se orzd+~f

m-q K- (lo)

Combining (8) and (10), and tak~ng k from equation (9), we have:

t

/

‘ (iv—=
q ~ t+v=ka(v) (11)

This integral can be performed analytically and yields

+=90, which is slightly belbw the exact answer previously

obtained. This is of course in the direction expected from the

theorem proved in the first part of this appendix. It Is easily

estirated that this discrepancy in the values of z amounts

to a difference of 0.6% in the criticaL radius or 1.8% in

The difference between the true value of @ and ZL

from the fact that the one-velocity eigenfunctions do not

the same shape.

the mass.

arises

have

— —
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The spread in shapes can

for V=O and v = !

ka=O.6!W

We now wish to apply

of this appendix to find

s (v’~v) “2V x(v)

be indicated by giving the values

● For V=~ , ka=m and for

of ka

Vi,

the methods developed in the first part

an u~per limit for Z . We have

(12)

I We give z its correct value and then have — ‘mL ●

~L
The

equation adjoint to (12) is:

I / “/* AL(V9xJrL (v]= Cfv

o

(13)

I so that XL (v) s a constant = 1 , say.

I We have *V
P

‘x~ =
, where from equation (9)

of this appendlx~ A ~ is given (approximately ) by:

i +7PXV9

“7“W%F(V’”’)wv
1

//

‘ N(v, v8)=-Zzj Cfv cfd
00

Jqvp(v’)
(14)
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where N(v,V’) is defined by equation (3).

double integral can be done numerically and we

and hence ZV=Z.of13 . ThiS iS too high 8S

1’-’
The indicated

obtain A=O.016f

expected.

APPENDIX IV. Numeri.~~1testoftheconvergenceof
higherapproximations

We propose to solve a two-velocity problem with no inelastic

scattering in the tamper, in the diffusion limit. For simplicity

we consider the same problem discussed

the crosssection and fission spectrum

9 :4 -

Cqlz :1 4%2C

=lC =0 qf

O-if :0 X2

xl :1 05*

@“* -4 072C*

q~ * so

The radius of the tamper is infinite.

in Appendix I. We specify

a little more clOsely:

;8

-o

-2 a= 0.48690

:0

-8

~ 0.11626

A pair of coupled diffusion equations for the neutron densities

can be written and solved in a straightforward but lengthy fashion.

When this is

system would

We shall

done, it is found that if z ume equal to 2.509 the

be critical.

now apply to this problem the first four of the

sequency of successive approximations described at the end of

Chapter II. The fundamental integral equations are:

1
At(F)== d~’~(~--’’)Aa(~)

co RE

A@)#~=’%&’+A ,(~)

cow

.- .._ .—— -—..— .—. ..—~—-.
—...

(1)
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These are just the equation (15) of Chapter II\modified to take

\

\into account the existence of only two velocit ‘~esand particularized

to the cross sections of the present problem. The space functions

A, and Az are, respectively,

and of ftssions. The kernels

velocity diffusion kernels for

the densities of inelastic collisions

~ and ~ are just the one-

neutrons of velocities one and two

which were defined in Chapter II. Let us define Ue,Uf, U2 9

---- -to be the successive eigenfunctions of the kernel Pf and

+09 + ~- - -to be its corresponding eigenvalues. The

function u. is then the distribution of fissions in the fundamental

mode of a one-velocity problem whose constants are the constants

of velocity, one with the total core absorption cross section

considered as fission. The quantity PO is the value of V

required to keep this one-velocity problem critical. We define

a similar sequence of functions Vo,vf, Va ----and a sequence
ilf

of eigenvalues ~ ,% ,~a , ---- for velocity two.

The L-f approximation proceeds by writing:

as outlined in Chapter II. The equations (1) become:

A&=&A,

(2)

(3)

which yields Z=~OZo = 2.500, which is certainly excellent

accuracy.

~- - “-----—-~-’=--n==.— —. L—
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The U- 1 approxlmatiofiassumes:

(4)

where (u. Uo) is the volume

A similar notation will now

become:

()integral over the core of U02 ~ ●

prove very useful. ?he equations (1)

(5)

I

f (v. Ai)
VoAa ‘W; (W Vo)

These can be cmveniently solved by multiplying the first by V.

and integrating and the second by UO and integrating. This

yields:

z-kJd-@oAl)‘/60 (UO~o) (U”JQ
f (Uovo)

(U. A.)=– *
~o (Vo v.)

(v.At)

which are simply two homogeneous linear equations fo~ the numbers

(viiA{) and (uoAa~ ●
We immediately obtain:

(7)

which Is shove the correct answer and slightly closer %0 ft than

was L-i .

—— .——
.——.
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In the L-2 approximation, we write:
P

“J

The integral equations become:

(8)

(9)

() i6@.d.Aa= ‘-—
e 4 (VOVo)

We multiply each equation by U. and by VO and integrate over

the core. ()This yields four homogeneous linear equations for UOA{ ,

(K At) , @OA&~ , and @OAa). Setting the secular determinant

;qual to zero yields JY= 2.508, in good agreement with the correct

value, but slightly lower as expected.

Nothing will be gained by going through the u-~ approximation

in detail, but it is interesting to note that it gives --2.509

to that many figures. These figures are summarized in the first

column of the table below.

An exa~t~y similar set of calculations has been done for the

second problem dtscussed in Appendix I, namely the one with

different radius and tamper capture cross section. Inthis one

the fundamental modes have phases

n’
-z and ~

4
, so that the

ccmverge less rapidly than in the

are given in the second column of

at the outside of the core of

set of approximations should

previous case. The results

the table.
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Exact

L- t

u-1
L-Z

u-z

azSFirst Problem

2.509

2.500

2.516

2 ● 508

2 ● 509

Z. Second Problem

2.548

2 ● Joo

2.596

2.543

2.552

It is finally of considerable interest to compare the neutron

flux densities as calculated from the exact two-group diffusion

theory and theL-l approximation. In the first graph following

are plotted two solid curves representing N, and lJ2 ~ the

neutron flux densities at velocities one and two respectively,

calculated exactly. The dotted curves are just the fundamental

modes for the two velocities, with their relative sizes adjusted

so that the ratio of fissions to inelastic collisions is just

that given by the ~-i approximation. The first graph is for

the first case discussed in this appendix and the second graph
m

is for the second case with ka =~ and ~ for the two

velocities. The agreement between solid and dotted curves is

remarkable in view of the seeming crudity of the approximation.

.
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APPENDIX V

TWO-VELOCITY DIFFUSION THEORY WITH INELASTIC SCATTERING IIV
THE TAMPER

We shall attempt to investigate the validity of the approxima-

tion scheme developed in Chapter III for the case of an inelastically

scattering tamper. Our procedure will parallel that of Appendix

IV in that we will discuss a two-velocity diffusion theory

problem, first exactly and then by means of the equations (4.1)

of Chapter III and the indicated successive approximations to

their solution.

We take for the constants of the pr~blem the following:

q = 7*=4

qf=cqe=~c*=o

~12Z0.Z8fJ

q,:=o.2205

X,=1

The exact two-velocity

q =q *=6

qf= e

qd ‘q: =0

X2 =0 a=0,5

diffusion equations plus the usual diffusion

theory boundary conditions yield aY=z.q67.

We shall now apply to this problem the successive approxima-

tions (developed in Section 5 of Chapter III) to

of the integral equations (4.1) of Chapter III.

specialized to the present pr~blem, are:

the solution

These equations,

9—
—
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with F,a given in terms of P and Pa by (4.11) of Chapter III.

As in Appendix III we call the sequence of one-velocity -$ for

velocity one ~0,/41 9--- and the corresponding eigenfunctions

uo,u~ ,---- For velocity two we have ZO,zf ,--- and V09Vf

---
●

We then make the L-1 approximation of Chapter II:

()where 1f is an abbreviation for the valume integral over the

core of the praduct of the quantities inside the bracket.

The equations (1) become:

(3)

These can be integrated over the core to obtain two algebraic

equations for @+) and ~A2~ :

(4)

——_
=–~ - —
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1 Inserting the values for PO, ZO , and p,z, we obtain z = 2.500.

This iS too high by 2% of=~f , which amounts to about 4% In the

arttical mass.

We now make the U-1 approximation:

[

f@&J
F,a (%---?)= I - —

P“ (UOUQ)
1

u~(r’)

The equations (1) become:

(5)

[
I

1 (f d
“z (VOVJ .OG$*

(6)

These are of somewhat more complicated form than (3) but they

can be reduced to three algebraic equations by multiplying the

first equation by I/. , the second by UO and by unity and

integrating over the core. This yields the equations;

—.— _. . _ —. —
\ ----- - - .~-.-+ _ ...-
=-=+=+:.:_>:_: .“ .-=mlBiD-—===s
~?== amm!lm
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These can be solved, with the information needed for L-i plus

a knowledge of UO and v~ . We obtain z = 2.441. This iS

too low by less than 2$ in Z-1 .

By an exactly similar procedure

can be made, yielding z = 2.470;

Possibly a better test would be

the L-Z approximation

which is very close.

in a case with more inelastic

scattering in the tamper.

in the tamper drastically

to the following:

We increase the inelastic cross section

and alter several core cross sections

a=O.5

q = q$=4 q =c#=8
qf *=o

‘TC=TC
qf=f ‘i = 1

c74~=o.05834 CYg=ca$=o Xa=o.

C& = L8505

The exact value of z iS 2.339. The L-f value is 2.3919

too high by 4% inz-i or about 8% in the mass. The U-1 and ~-a

approximations give, respectively, z = 2.319 and z= 2.341.

These are 1.!5$low and a doubtful 0.1$ in z-1 , respectively,

so that in spite of the relatively poorer accuracy of L-i , good

convergence is still obtained.

It should be noted that the so-called upper and lower approxima-

tions have apparently reversed their roles. It camot be proved

that this will always be so, or that they will always bracket

the answer, but it is certain that as the inelastic scattering in

the tamper approaches zero, they will become true upper and lower

—.. —.....z———
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approximations to Z and a . As have been pointed out in the

text in Chapter III this series of approximations can only be

expected to converge to the true answer in the diffus30n theory

limit. In integral theory there is already an error in the - “

fundamental equation (4.1) for F,d of Chapter III.

APPENDIX VI.

THREE-VELOCITY PROBLEM IN INTEGRAL THEORY.

We consider a three-group problem with inelastic scattering

in an infinite tamper. We choose a core radius of two-length units

and cross sections as follows:

q =-*= f *= 1.Z!q=q q=q *= ~.5

Cqf=o @i?f=0.2 %f =i3.5

* =0.1qlz=ql~ ‘z;=0.!2q!!=-

$=0*tqf3=q~3 %?C =0.2

~c =0, a ~:=o

*=O@rc

X1 = i.o x~=o ‘3
=0

We need numerous auxiliary quantities. First there are the

total absorption cross sections in the core and tamper:

Td =0.4 c#7a=o.5z ~a = 0.5

q:= o.z *=o.f2-a *=O
Ta

We then find the absorption numbers,9 , in the tamper:

9,=0.2 ~=o.i9 g3 =0

We will need the rates of decay, ~ , of the asymptotic tamper

solutions given by: -
..— ——
=~– – -

1 --
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(1)

We find:

hf=o,no3 @a= 0,6301 h3=o
We shall also require the quantities gl~ gat , etc. defined in

Chapter III. These are given by relations of the form:

These yield:

9 -.1303{8-

913= .0798

929 = .0619

(2)

921 =.f504

93f=0

93a=0
We must now find the quantities f,,fa}$,fZ ,f,~ etc.,

which are needed for the calculation of the critical z by the

method of Chapter IV. These quantities f “ are the number of

extra neutrons per collision required to keep various one-velocity

systems critical. The relatian of these auxiliary problems to

the actual problem has been defined in Chapter III. We give in

tabular form the constants specifying these problems:
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a c?-Problem ~

1 2.0 2.0 0.2 0.7103

2 2.4 2.4 0.1 0.5251

3 3.0 3.0 0 0

12
-

2.4 2.4 0.1303 0.5919

13 3.0 3.0 0.0798 0.4735

23 3.0 3.0 0.0619 0.4201

21 2.0 2*O 0.1504 0.6301

31 2.0 2.0 0 0

32 2.4 2.4 0 0

b

A= ~kaked +n Chamt@r T. there exist raDid and accurate methods-----r -7
---— _ - —-.—— . - *.

for obtaining the f% in general. For the purpose at hand, the

mean free paths in core and tamper were purposely set equal for

each velocity, so that the more precise method of the extrapolated

end point described by Frankel and Nelson in LA-53 could be

applied. According to this method, we first choose the unit

length so that the total cross section is uni~and introduce

I

(

auxiliary variable k , which is just

sinusoidal as~ptotic solution in

relations:

The

-4 .k
k. --~ax~

a-

l+f= k
tad k

first of these is~ diffusion

the

the wave number of the

core. We then have the

theory b~und&t’y&g ‘---

of

an

two

(3)

—

— —
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applied at a distance x ~ inside the actual boundary- The

second is just the usual relation between f and k . We

can find x, as a function of f and 9 from a graph in

LA-258 (By Frankel and Goldberg). The procedure is then to guess

a value of k , calculate f by the second equation, look

up x, , and calculate an impraved value of k by substituting

the quantities thus far found in the right-hand side of the

first equation. This procedure yields the following values of f :

f,=Oo3Z26 fz=o.u44 f3=0.086Z

f,z=o.z33z f2,=o.3100

f, J=o. f555 f31=0.1834

f2~=o. W95 f3~=o.13if

It will finally be convenient to calculate values of z ,

the total number of neutrons necessary per core absorption

to keep these auxiliary systems critical. This can be done

with the usual relation:

w= f+= ‘“f
Pa

We obtain:

q=L006s we = !.5f78

qg=f.5382 %1 = 1.7750

’13 =f.4665 W31 = i.4585

*e3=!.4485 *32 =f.3025

Z13= 1.2586

I
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We shall now

will make several

need the quantities P{29Pt3~J+3 ?P123 ● We

calculations of the value of ~ required to

make our three velocity problem critical. For the first we use

the equations (3.5)and (5.8)of Chapter III for J% andpt23 “

By simply substituting the numbers already found in these equations,

we obtain:

p,z=o.1074 p,3=o.354i p2g=oc336~

pw3=o.z419

By using the equations (3.15) and (5.7) of Chapter III we

can get an alternative set of values for the above quantities.

The vanishing of the tamper absorption in the third group now

requires the taking of limits in which ~~ approaches zero and

the diffusion theory relation (exact for small absorption) between

9 and h is used to obtain limiting values for

932
. These limits are:

r~

The following values are then easily obtained:

p,3=0.36~6

p,2~=0.3Z43

The first three quantities are seen

with their previous values, but the

agree well.

Pa=o”3394

and

.

to be in reasmable agreement ~

two values of
~ f23 do not

—–-
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(Some of this discrepancy may arise from the fact that~ta~ does

not have so many significant figures as piz , because of the

subtractions occurring in it.)

We now use the first set of values and the method embodied

in equations (5.1), (5.2), and (S.3) of Chapter IV to find the

value of Z for criticality. Equation (5.1), with the specified

normalization to one neutron emitted from fission per seconds

becomes:

N,= “ X4
~a +f,~

= 1.38388
=qq”

Equation (5.2) becomes:

Similarly, equation (5.3) bec0m08:

N3 = 0.5002

We can now calc~latez from equation (5.4) of Chapter IV.We ob~in

-=3.4336

By performing exactly the same calculation wfth the other set

of values for
PIZ s rfa$ya~~pl~ywe obtain:

w= 3,Z463

! This discrepancy in the value of ~ will give rise to @

‘discrepancy in the critical mass if Z Is apeclfled. This

corresponding discrepancy in mass can be estimated to be about 16%8

which is large$ but not uselessly so. It i,sinteresting to compare

this discrepancy with that obtained by changing the tamp r inelastic I
~– —-—
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cross sections to capture cross sections. This produces such a

large change in # (to 6s1828) that it is difftcult to be sure

of the mass changes but it probably amounts to approximately a

300% increase. The 16% uncertainty in the mass arising from our

approximate method is then seen to be negligible in comparison with

the possible uncertainty introduced by the presence of inelastic

scattering.

It would of course be more reasonable to treat the tamper

inelastic cross section as an elastic cross section rather than

a capture, if it is desired to ignore the effect of the inelastic

scattering. This at least does not throw away neutrons which are

actually

a value

large by

present. This calculation is easily done and leads to

v= 4.7407, which corresponds to a critical mass too

about 150$!. We then see that the 16% discrepancy in

mass between our first two calculations is really negligible in

comparison with the total effect on the mass of the inelastic

scattering in the tamper. We can estimate that our approximate

methods will give the effect of the tamper inelastic scattering

on the critical mass to about l@i which is excellent. The

example was chosen to show up the effect of inelastic scattering

to an extreme degree. Under more practical conditions the effects

of inelastic scattering are not nearly so drastic.

It should be pointed out that in actual practice, the

differential cross sections will not be known with complete accuracy.

If they were, the reduction to average three group cross sections

is too ambiguous a procedure to be considered reliable. The best

available procedure is then to adjust the three group cross

sections so that they

— —.

are in reasonable agreement with the

-=

known
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I

differential cross sections, and at the same time so that their

use in the approximate formalism here developed will give correct

results for the available experiments on assemblies which are in

the neighborhood of critical. The f’omall,smcan then be considered

a valid and convenient method for predicting the results of other

experiments which are not too remotely related the the experiments

which were used in the adjustment of the cross sections.

It is instructive at this point to check the accuracy of

the expression obtained forpf2by the use of the asymptotic

exponential approximation to the tamper densities In the

velocity problems. We use equation (2.4) of Chapter III

one

to obtain:

pf2=o.lo77 p,3=0.3618 pz3=o.3438

We then insert these values

obtain:

Pi23 = 0.Z474

In equation (5.8) of Chapter 11S to

for criticality will be given

example used, this much simpler

It is seen that these values agree well with the ones previously

obtatned, so that the value of x

well with this simpler procedure.

We see that, at least for the

method is just as trustworthy as the methods previously used.

It will presumably become relatively poorer as the tam~r stbsorptions

are increased~ but lt should always be used unless greater accuracy

Is clearly necessary.

Finally, it should be noticed that with the present formalism,

the use of more than three groups is of doubtful advantage,

inasmuch as the discrepancybetween the three values of p 123

indicates that a quantity such as rjz~ may be completely uncertain.

_~’..—
.—..

I ‘-2 6s
I

—
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NUMERICAL TEST OF THE THEORY FOR A FINITE TAMPER.

We assume a two-velocity system with the following constants:

q=cg*=l q“ =0.3

%=0.2 C#=o%k

x~ =0

a= !.4 b =3.0

We inquire what value of- for fission will make the system critical.

The constants have been so chosen that a neutron at either velocity

is equally effective in causing a fission, so that the preblem

really Is a one-velocity problem with constants:

dl=i.4 b=3.O

The f for this problem can be found by the extrapolated end-

point method and Is eaual to 0.4505. We can immediately find the-

for criticality to be 2.7017.

We n~w apply the method of Chapter IV for solving two-velocity

problems with finite tampers. For this purpose we require that

for a one-velocity problem with the cmstants of group one. This

problem is identical with the previous one, except for the fact

thatg,=O.2. This can also be solved exactly and yields

‘i = 0.525s, which is equivalent to pi = 2.7517.

&
-/

J

“%
-“~

‘/

,-
--— .....;:

~~
-

—
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The other f required is fa , which is just the one first

given. The quantity Lt defined in equation (64) of Chapter III

IS equal to 1.2486. The quantitY pf2 defined by equation (6.9)., -,.. -,.
of Chapter III can be fo~d by taking the limit of ~ for

%%
small h2 and is equal to 0.1112.

Equations (s.1) and (5.2) of Chapter IVwith pfa replaced

by p!e
(HL,) “

~e and the value

obtain== 2.ss24.

about 2% by the use

in critical mass of

and N3 = O can then be solved for N4 and

of z found by the usual procedure. We

We have therefore made a mistake in Z-I of

ef our method. This corresponds to a mistake

smething like 4%, which is certainly

tolerable for most purposes.

We might ask for the total

of the tamper. The value of z

iS 2.1230. This corresponds to

from the previous case, so that

effect on Z of the finiteness

for the same system with b=-

something like a 60$ mass decrease

our approximate treatment gives

the effect on the mass of the finiteness of the tamper to some-

thing like 7%. This certainly constitutes a very useful degree of

accuracy.

—
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