

# DO NOT CIRCULATE 

PERMANENT RETENTION


## Report writtens

January 21, 1947

This document consists of 120 pages



CRITICALITY HAZARDS
ORO 91isid

## UNCLASSIFIED

CRITICALITY: HAZARDS
Distributed OCT 101952 ..... LA-524
Series A
Los Alamos Report Library ..... 1-10
Series B
Los Alamos Report Library
5.... $1-25$
Series C
Los Alamos Report Library ..... 1-20
J R. Oppenheimer ..... 21
Argonne National Laboratory22-23
Armed Forces Special Weapons Project (Sandia) ..... 24
Atomic Energy Commission, Washington ..... 25-27 ..... 25-27
Brookhaven National Laboratory ..... 28
Carbide and Carbon Chemicals Company (K-25 Plant) ..... 29-30
Carbide and Carbon Chemicals Company (ORNL) ..... 31-32
Carbide and Carbon Chemicals Company (Y-12 Plant) ..... 33-34
Dow Chemical Company (Rocky Flats) ..... 35
duPont Company ..... 36-38
General Electric Company, Richland ..... 39-40
Hanford Operations Office ..... 41
Idaho Operations Office42
Knolls Atomic Power Laboratory ..... 43-44
National Advisory Committee for Aeronautics, Cleveland ..... 45
Patent Branch, Washington46
Savannah River Operations Office, Augusta ..... 47Savannah River Operations Office, Wilmington48-49
University of California Radiation Laboratory ..... 50-51
Technical Information Service, Oak Ridge

## UNCLASSIFIED



## UNCLASSIFIED

## ABSTRACT

Convenient approximate methods are developed for the caloulation of oritical sizes and maltiplication rates of spherical, aotive cores surrounded by infinite tampers. Special attention is given to those problems arisiag from the fact that noutrons of different velooities have different properties. The methods consist essentially of approximating the neutron densities at each velocity by fundamental mode shapes: for each velooity. Each one of these shapes forms a source of neutrons of all volocities, and simple considerations of the number and spatial distribution of absorptions from these sources determine the oritical size at which equilibrium between production and absorption is achieved. The accuracy obtained is apparently sufficient for all practical purposes. Modifications of the method for systems of shapes other spherioal or having finite tampers are disoussed.


The Calculation of Critical masses Including the Effects of the Distribution of Neutron Energies.

INDEX
Fage
Introduction 5
I Properties of systems with monoenergetic neutrons.

1) The fundamental integral equation. 6
2) Character of the eigenfunctions and eigenvalues. 7
3) Interpretation of the eigenvalues as reproducing factors. 9
4) Relation to the Milne equation. 10
5) Equivalent eigenvalue problems. 11
6) Absorption of neutrons from an arbitrary source.

II Treatment of many-velocity problems when no inelastic scattering is present in the tamper.

1) Case of constant mean free path.
2) Variable cross section. The first lower approximation19
3) First upper approximation. ..... 22
4) Higher approximations. ..... 26

III The treatment of inelastic scattering the tamper.

1) Two velooity groups. General equations and definitions.

2) Neutron return from tamper to core: First method of approximation
3) Neutron return from temper to core: Other Approximations. 41
4) Validity of the approximations inherent in the general equations. 51
5) Extension to three or more velooity groups. 62
6) Extension to systems with finite tampers. 70

IV Special Methods for the Solution of Many-Velocity Problems.

1) Reduction of multiplying systoms to equivalent oritical problems. 78
2) Methods for problems with no inelastic soattering in the tamper 79
3) Special simplifying assumption for inolastic
soattering.
4) The method of velooity groups 85
5) Methods including inelastic scattering in the tamper. 89
6) Other problems amenable to the methods desoribed herein. . . 95

## UNCLASSIFIED


4.

## APPERDICES

I Diffusion theory oheck of assumptions for first lower approximation 98

| II The sign of the errors of the upper and lower |  |
| :--- | :--- |
| approximations. |  |

III Results of first approximations for several speoial problems. 113
IV Numerical test of the convergence of higher approximations. ..... 118
V Two-velooity diffusion theory with inelastio soattering in the tamper. ..... 125
VI A threo-velooity problem in integral theory. ..... 129
VII Numerical test of the theory for a finite tamper. ..... 137


## Introduction

The characteristic neutron problem is that of determining the critical radius of an active, spherical, homogeneous core surrounded ky a finite ir infinite, homogeneous tamper. The cross sections in general will be energy dependent and the neutron spectrum will not be monochromatic, both because of the spread of the fission spectrum and because of the existence of inelastic scattering. in core and tamper. In some cases the neutron energy spectrum can be considered monochromatic, and the nroblem is then easily soluble by various standard methods. In other cases, two effective neutron energies can be consiciered to exist and the resulting Boltzmann equation solved by the use of sne of the spherical harm $n i=$ approximations. In principle, better approximations conld be obtained by lising three or more effective neutron nereies, but the work then becomes prohibitively difficult. Some method of calculation is clearly necessary which will obviate these dif"iculties and at the same tirne retain surricient arcuracy to be useful.

The methods descriked in this report were developed specifically for the easy calculation of critical masses and multipifsation rates of hydride assemblies, but their application is of much greater generality. It is believed that they will be found to have preat usefulness in the treatment of all neutron problems in which an active, spherical core, with or without hydrogen content, is surrouncied by an infinite or rinfte tarmor which may or may not scatter neutrons inelastically.

These methods are not exact, but in all cases of interest thus far investigated their accuracy has been found ample for all practical purposes. Finaliy, they are extremely sir:ple for computation anc, once mastered, quite simple to use in thinking about a wide variety of neutron problems in which the energy spread of the neutrons is an essential feature. Ch. I. Properties of Systems oith Monoenergetic Neutrons.

## Section 1 The Fundamental Integral Equation.

We shall find it very useful in our later work to keep in mind certain irportant features of the sir:ple one-velocity neutron problem. Let us consider an active core surrounded by a tamper. There may be spherical symmetry tut this is not necessar: Ue consicer the case of !sotrnpic scattering, since this is simple and usually all that is needed. The tamper is characterized by a total cross section and by ar absorptinn cross section. The core is characterfized hy a total cross section $\sigma$, and by a number $£$, which is the numter of extra neutrons emitted per collision. These extra neutrnns are emitted isotropically at a single energy.

Suppose a single neutron is emitted isotropically at the point $\vec{x}$ in the core. Ne define a quantity $K\left(\vec{x}^{\prime} \longrightarrow \vec{x}\right) d \vec{x}$ which is trie orobahility that the neutron emitted at $\vec{x}^{\prime}$ makes its first collision in the core, irrespective of intervenirg collisinns in the tamper, at $\vec{x}$ in the volume element $d \vec{x}$. The function $K$ depends on the properties of the tamper, the radius of the core, and the total cross section of the core.


We imagine a neutron flux density present in the core and tamper, time independent, and defined in the core as the function $\Psi(\vec{x})$ We can write the density of collisions per unit time in the core as $\quad \sigma(\vec{x}) \quad$. Using the function $K$, we can also write an expression for this collision density as a sum of collisions arising at the point $\vec{x} \quad$ from neutrons liberated at all other points of the core from collisions and then proceeding to $\vec{x} \quad$ to make first collisions. This obviously gives an integral equation for $\qquad$

$$
\sigma \psi(\vec{x}) d \vec{x}=\int(1+f) \sigma \psi\left(\vec{x}^{\prime}\right) d \vec{x}^{\prime} K\left(\vec{x}^{\prime} \rightarrow \vec{x}\right) d \vec{x}
$$

or

$$
\begin{equation*}
\Psi(\vec{x})=(1+f) \int d \vec{x}^{\prime} K\left(\vec{x}^{\prime} \rightarrow \vec{x}\right) \Psi\left(\vec{x}^{\prime}\right) \tag{1.1}
\end{equation*}
$$

The integration extends only over the core.
Certain general properties of this integral equation follow easily. The kernel $K$ is clearly symmetric. This results from the fact that if one considers the totality or paths from $\vec{x}^{\prime}$ to $\vec{x} \quad$, it is seen that the reverse of each path is just as likely as the forward path, and the totality of backward paths will then have the same total probability as the totality of forward paths.

Section 2 Character of the eigenfunction and eigenvalues.
Only for a discrete sequence of values of $f$ can solutions be obtained. There will be a lowest $f$, called $f_{0}$, for which the density $\Psi_{0}$ is everywhere positive. In a system with spherical symmetry it will have the shape (approximately) of
$\frac{\sin k r}{r}$ , with kr at the surface of the core. The function equal to something between $\frac{\pi}{2}$ and $\pi$ will look more or less as follows:


The extension of $\mathscr{F}_{0}$ into the tamper is indicated by the dotted curve. This extension of course has essentially the shape $\frac{e^{-h r}}{r}$ , where $h$ is the characteristic decay constant determined by the total and absorption cross sections in the tamper. There will be the usual rapidly decaying transition effects at the core-tamper interface.

The density functions corresponding to higher values of $f$ ( $f_{n}$ being associated with $\Psi_{n}$ ) will have one or more nodal surface, the neutron density being positive in some regions and negative in others. Negative neutron densities have physical meaning only as deficiencies below some positive neutron density, but physical reasoning can be used in interpreting the integral equation if negative neutrons are thought of as actual particles whose presence in a region can cancel the presence of an equal number of positive neutrons. From this point of view, it is clear that increasing the number of nodal surfaces in will increase
the value of $f$ required to maintain this $\Psi$. This is so because leakage of neutrons of opposite sign into one another will become more rapid as the density function oscillates more rapidly. A larger net production of neutrons per collision will then be required to compensate these larger losses by leakage.

## Section 3 Interpretation of the eigenfunctions and eigenvalues.

Another useful interpretation of the eigenvalue $1+⿷$ exists.
The integral equation says that an isotropic source of neutrons distributed spatially in the core as the function $\Psi_{n}$ has the property that all the resulting first collisions are distributed also as $\Psi_{n}$. Further, it says that if $\left(1+f_{n}\right) \circ \mathscr{F}_{n}$ neutrons are released per unit time per unit volume, or first collisions result per unit time per unit volume. This is equivalent to saying that a source density $\Psi_{n}$ gives rise to a density of first collisions $\frac{1}{1+f_{n}} \Psi_{n}$, or stated more simply, one neutron released in a distribution $\Psi_{n}$ gives $\frac{1}{1+f_{n}}$ first collisions, having also the spatial dependence of $\Psi_{n}$ 。

The eigenfunctions $W_{n}$, since $K$ is symmetric, have the useful property of being mutually orthogonal when integrated over the core. We shall assume, and it is certainly true for cases of physical interest, that the functions form a complete set so that any reasonable function defined over the core can be written as a convergent series of $\Psi_{n}$.



## Section 4 Relation to the Milne Equation.

It is of some interest to derive the relation between the integral equation (1.1) and the more usual way of writing the integral equation for the two medium problem. We let on be the total cross section in the tamper and $g$ be the fraction of tamper collisions which result in absorption. We denote the ordinary Milne kernel between two points $\vec{x}$ and $\vec{x}^{\prime}$ (core or tamper) by $M\left(\vec{x}^{\prime} \rightarrow \vec{x}\right) \quad$. This kernel is of course symmetric since it is just the neutron flux density at $\vec{x}$ arising from a unit source at $\vec{x}^{\prime}$. We write $\boldsymbol{\Psi}(\vec{x})$ and $\phi(\vec{x})$ for the neutron densities in the core and tamper respectively and obtain:

$$
\begin{align*}
& \Psi(\vec{x})=(1+f) \sigma \int_{\text {core }} d \vec{x}^{\prime} M\left(\vec{x}^{\prime} \rightarrow \vec{x}\right) \Psi\left(\vec{x}^{\prime}\right) \\
& \\
& \quad+(1+g) \sigma * \int_{\text {tamper }} d \vec{x}^{\prime} M\left(\vec{x}^{\prime} \rightarrow \vec{x}\right) \phi\left(\vec{x}^{\prime}\right) \\
&  \tag{4.1}\\
& \begin{aligned}
& \phi(\vec{x})=(1+f) \sigma \int_{\text {core }} d \vec{x}^{\prime} M\left(\vec{x}^{\prime} \rightarrow \vec{x}\right) \Psi\left(\vec{x}^{\prime}\right) \\
&+(1-g) \sigma * / d \vec{x}^{\prime} M\left(\vec{x}^{\prime} \rightarrow \vec{x}\right) \phi\left(\vec{x}^{\prime}\right)
\end{aligned}
\end{align*}
$$

It is clear that if solutions of the equations (4.1) are obtained for two different values of $£$, these solutions will be
orthogonal with respect to integration over the core only. It is further clear that the set of functions obtained from the equations (4.1) by giving $1+f$ its various allowed values will be identical with the previously defined set of $\Psi_{n}$. This procedure is definitely contrary to the usual one of increasing
$1+f$ and $1-g$ in proportion and thus obtaining solutions orthogonal over both core and tamper. It will be seen that the procedure we have adopted seems to be much better suited to our purposes. Of course, the kernel $K$ can be expressed in terms of the kernel $M$. If we imagine the core function $M$ to be known, we can use the second of the equations (4.1) to solve in principle for the tamper function $\phi$. We can then insert this function $\varnothing$ in the first of the two equations to obtain a single integral equation for $\boldsymbol{J}$. We can then identify the kernel of this equation with $K$.

## Section 5 Equivalent eigenvalue problems.

The relations of the one-velocity problem can be written in a somewhat different notation which is convenient for certain purposes. We can imagine that a part $\sigma_{a}$ of the total cross section $\sigma$ results in a process of absorption. We can then ask, how many neutrons $\nu_{n}$ must be liberated for each neutron absorbed in order to maintain the critical condition (in the nth mode). For each nuetron absorbed $\boldsymbol{Z}_{n}$ are liberated and hence the net number of neutrons liberated per absorption is $\boldsymbol{\nu}_{n}-1$, and per collision is $\left(U_{n}-1\right) \frac{\sigma_{a}}{\sigma^{-}}$since a fraction $\frac{\sigma_{2}}{\sigma^{2}}$ of all collisions
are absorption. But previously we have called $f_{n}$ the net number of neutrons liberated per collision, so that the relation between our two notations is

$$
\begin{equation*}
f_{n}=\left(\nu_{n}-1\right) \frac{\sigma_{n}}{\sigma^{2}} \tag{5.1}
\end{equation*}
$$

Another interpretation of $\nu_{n}$ is that for each neutron liberated in the distribution $\Psi_{n}$, the number $\frac{1}{\nu_{n}}$ are reabsorbed (with the same distribution) by the cross section $\sigma_{a}$ This idea is made use of in the next section.

This question can also be looked at more formally. If a kernel $P\left(\bar{x}^{\prime} \rightarrow \bar{x}\right)$ is defined as the density of absorptions at $\vec{x}$ produced by one neutron emitted at $\vec{x}^{\prime}$, it is easily seen that $P$ can be written as a power series in the kernel
$K$ (matrix multiplication) and therefore the kernels $K$ and $P$ both have the for their eigenfunction, and the eigenvalues of $P$ are simply related (by equation 5.1) to the eigenvalues of .K.

## Section 6. Absorption of neutrons from an arbitrary source.

We are now in position to answer a question of great interest in our later work. Neutrons are emitted isotropically with a space density $S(x)$ - We wish to determine the resulting density of absorptions $A(\vec{x})$. We write $S$ as a series in the $\Psi_{n}:$

$$
\begin{equation*}
S=\sum_{n} S_{n} \psi_{n} \tag{6.1}
\end{equation*}
$$



It is then clear from our previous work that each frn will reproduce itself in the absorption density, but with a reduced strength $\frac{1}{V_{n}}$. We have:

$$
\begin{equation*}
A=\frac{\Sigma_{n}}{\nu_{n}} S_{n} \psi_{n} \tag{6.2}
\end{equation*}
$$

The series for $S$ is assumed convergent, and the $V_{n}$ form an increasing sequence, so that the series for $A$ converges more rapidly than that for $S$. Physically, the distribution of absorptions is always smoother, that is closer to $\Psi_{0}$, than the source which gave rise to the absorptions.

The ideas which we have developed will be of great importance for the methods to be presented, but we still need a way of getting numerical values for the $f_{n}$ or $\nu_{n}$, and useful shapes for the $\Psi_{n}$. We shall find that only $f_{0}, \nu_{0}$, and $\Psi_{0}$ are needed, and these can now be obtained with some ease for the case of spherical symmetry with an infinite tamper. Given the tamper constants, the core radius and the total core cross-section, $f_{0}$ and hence $w_{0}$ can be obtained by the simple procedures given in LA-173 or LA-234. The eigenfunction $\psi_{0}$ will always be approximated by $\frac{\sin k x}{x}$ where $k$ is the infinite medium wave number calculated from the $f_{0}$. These approximations will generalily be good. Where they are not, care will be taken to point out the reason and possible improvements.

II. The Treatment of Many-Velocity Problems When No Inelastic Scattoring is Present in the Tamper.

In attempting to solve critical problems involving a continuum of velocities, we shall begin by finding what problems we can solve exactly. We restrict ourselves in this chapter to problems in which the tamper absorbs and scattiers elastically but does not have any cross section for inelastic scattering, fission, absorption, and elastic scattering. All processes are assumed isotropic.

## Section 1 Case of constant mean free path.

If, in addition to these requirements, we ask that all cross sections in the tamper and the total cross section in the core be independent of neutron energy, we obtain a problem exactly soluble in terms of the presumably known solutions of the one-velocity problem. To show this we first notice that, because of our restrictions on the cross sections, a one-velocity eigenfunction $\Psi_{0}$ and eigenvalue $1+f_{0} \quad$ calculated with the constants at any velocity will be identical with those calculated at any other velocity. This is so because the eigenfunctions and eigenvalues of the one-velocity problem defined by equation (l.l) of Chapter I depend only on the total cross section in the core, the radius of the core, and the properties of the tamper.

We now assert that with these restrictions, if the value of $\nu$ is such that the system is critical, neutrons of every velocity will have the same spatial distribution $\Psi_{0}$. This canbe seen by remembering the properties of the eigenfunctions. Neutrons of all velocities will be making collisions which also have the
spatial dependence $\Psi_{0}$. From each collision neutrons come out isotropically with an energy distribution determined by the cross sections. We then have an isotropic source of neutrons of all velocities spatially distributed as to . The last step in the argument consists of the observation that the first collisions from such a source will also have the shape of Our assertion is therefore self-consistent.

We can find the value of $\boldsymbol{\nu}$ required for criticality in the following way. Suppose that when a neutron of velocity $v^{\prime}$ makes a collision in the core, a number $S\left(v^{\prime}-v\right) d v$ are emitted isotropically in the velocity range $d v$. The function $\quad S\left(V^{\prime} \rightarrow v\right) \quad$ will involve the various core cross sections, the spectra of fission neutrons and inelastically scattered neutrons, and the number of neutrons, $\mathcal{V}$, emitted per fission. Call $\sigma_{e}(v)$ the cross section for elastic scattering $\sigma_{\varepsilon}(v)$ that for capture, $\sigma_{e}(v)$ that for fission from which $\boldsymbol{\sim}$ neutrons are liberated with
spectrum $x(v)$ and $\sigma_{i}$ If a neutron of velocity $\boldsymbol{\nu}$ suppose the spectrum resulting is that for inelastic scattering. is scattered inelastically,

$$
\phi\left(v \rightarrow v^{\prime}\right) \quad \text {. In this case, }
$$

$$
\sigma_{i}=\sigma_{e}+\sigma_{\hat{f}}+\sigma_{i}+\sigma_{\bar{c}}
$$

and

$$
\sigma\left(v^{\prime}\right) \cdot S\left(v^{\prime} \rightarrow v\right)=\sigma_{d}\left(v^{\prime}\right) \delta\left(v^{\prime}-v\right)+\sigma_{f}\left(v^{\prime}\right) v x\left(v^{\prime}\right)+\sigma_{i}\left(v^{\prime}\right) \phi\left(v^{\prime} \rightarrow v\right)
$$

where $\delta\left(v^{\prime}-v\right)$ is Dirac's delta function and insures that neutrons scattered elastically do not alter their velocity.


Let $N(v)$ be the total number of neutrons present in the core per unit range of $V$, multiplied by $V$.

The total number of collisions made at velocity $V^{\prime}$ in the range $d v^{\prime}$ per second is $N\left(v^{\prime}\right) \sigma\left(v^{\prime}\right) d v^{\prime}$ where $\sigma\left(v^{\prime}\right)$ is the tota? core cross section. (actually $\sigma$, at present, is considered as independent of $V^{\prime}$ ). From each of these collisions, $\quad S\left(V^{\prime} \rightarrow V\right) \quad . d V$ neutrons emerge in the velocity range $d V$ and a fraction $\frac{1}{1+f_{0}}$ of these make first collisions in the core. We can therefore express by an integral equation the fact that all collisions at velocity $V$ arise by the process just described from collisions at all velocities $v^{\prime}$. We have:
$N(v) \sigma(v) d v=\int_{0}^{\infty} d v^{\prime} \frac{S\left(v^{\prime}-v\right) d v}{1+f_{0}} N\left(v^{\prime}\right) \sigma\left(v^{\prime}\right)$
or

$$
\begin{equation*}
N(v) \sigma(v)=\frac{1}{1+f_{0}} \int_{0}^{\infty} d v^{\prime} S\left(v^{\prime} \rightarrow v\right) N\left(v^{\prime}\right) \sigma\left(v^{\prime}\right) \tag{1.2}
\end{equation*}
$$

This equation will have a solution only for one value of $v$, (which is contained implicitly in the function $S\left(v^{\prime} \rightarrow v\right)$ and this value would then just keep the system critical. We could just as well keep $\boldsymbol{z}$ fixed at its correct value and inquire what the radius of the core must be to make $1+f_{0} \quad$ such as to permit a solution of the equation.

The calculation can also be made in a somewhat different but equivalent way. This has the advantage of removing the delta function in (11).

Let us consider the elastic cross section as distinct from the rest of the cross section, which we will think of as an absorption cross section $O_{a}(V) \quad$ - The processusincluded in this absorption cross section are al 1 those which remove neutrons from the velocity $V$ so that $\sigma_{\bar{a}}=\sigma_{f}+\sigma_{i}+\sigma_{c}$ We let $2(V)$ be the value of $T$ required to keep a onevelocity problem critical if $\mathcal{O}_{\mathrm{a}}(v)$ is considered as absorption, as defined in section $2-5$. Suppose that when a neutron of velocity $v^{\prime}$ suffers an absorption, $\quad S_{a}\left(v^{\prime} \rightarrow v\right) d v \quad$ neutrons come out isotropically in the velocity range $d V$.

$$
\begin{equation*}
\sigma_{a}\left(v^{\prime}\right) S_{Q}\left(v^{\prime}-v\right)=\sigma_{f}\left(v^{\prime}\right) \geq x_{f}(v)+\sigma_{\operatorname{in}}\left(v^{\prime}\right) \phi\left(v^{\prime} \rightarrow v\right) \tag{1.3}
\end{equation*}
$$

We have for the total number of absorptions per second of neutrons in the velocity range $d v, N\left(v^{\prime}\right) \sigma_{a}\left(V^{\prime}\right) d v^{\prime}$ Each of these emits $\quad S_{a}\left(v^{\prime} \rightarrow v\right) d v \quad$ neutrons, a fraction $\frac{1}{2(v)}$ of which are reabsorbed (by equation (5.1) of Chapter I). We can again write an integral equation, expressing the fact that all absorptions at velocity $V$ arise by the above process from absorptions at all velocities. We have:

$$
N(v) \sigma_{a}(v) d v=\int_{0}^{\infty} d v^{\prime} \frac{S_{a}\left(v^{\prime} \leftrightharpoons-v\right) d v}{\nu(v)} N\left(v^{\prime}\right) \sigma_{a}\left(v^{\prime}\right)
$$

or:
$N(v) \sigma_{a}(v)=\frac{1}{v^{\prime}\left(v^{\prime}\right)} \int_{0}^{\infty} d v^{\prime} S_{a}\left(v^{\prime} \rightarrow v\right) N\left(v^{\prime}\right) \sigma_{a}^{-}\left(v^{\prime}\right)$


The function $\nu(v)$ depends on the radius of the core and the function $\quad S_{a}\left(V^{\prime} \rightarrow V\right)$ contains the real $V$ for fission. The equation will not in general have a solution, but we can obtain one by properly adjusting either $\mathcal{N}$ or the core radius, in which case we shall have made the system critical.

The equations (1.2) and (1.4) are rigorously equivalent, as can be proved immediately from (1.1) and (1.3) and the relation of $\{$ and $\geqslant$ given in (5.1), Chapter I. Equation (1.4) is more convenient to use because of the lack of the delta function in $S_{a}$.

The solution of this equation 1.4 is discussed in more detail in section 4, but we can solve it here in a particularly simple special case, namely when there is no inelastic scattering in the core. (We shall also assume $\sigma_{c}=0$ but this is really not necessary). In this case, since $\sigma_{a}=\boldsymbol{\sigma}_{\mathbf{f}} \quad$ Equation 1.4 becomes:

$$
\begin{equation*}
N(v) o_{f}(v)=\frac{v x(v)}{v(v)} \int_{0}^{\infty} d v^{\prime} N\left(v^{\prime}\right) o_{f}\left(v^{\prime}\right) \tag{1.5}
\end{equation*}
$$

This equation can be solved by noting that

$$
\begin{equation*}
N(v) \sigma_{\hat{f}}(v)=c \frac{x(v)}{v(v)} \tag{1.6}
\end{equation*}
$$

where $C$ is a constant, independent of $V$. Now we substitute this solution in equation (1.5) and obtain:

$$
\begin{equation*}
c \frac{x(v)}{v(v)}=c \frac{v x(v)}{v(v)} \int_{0}^{\infty} d v \frac{x\left(v^{\prime}\right)}{v\left(v^{\prime}\right)} \tag{1.7}
\end{equation*}
$$

This obviously requires:

$$
\begin{equation*}
\frac{1}{v}=\int_{0}^{\infty} d v \frac{x(v)}{v(v)} \tag{1.8}
\end{equation*}
$$

This equation has a simple interpretation. In a critical system, the neutrons liberated from a single fission must produce exactly one fission in the first generation. Multiplying equation (1.8) through by $\boldsymbol{\nu}$, we have exactly this statement for the simple system considered. This is so because $\boldsymbol{\mathcal { L }} \boldsymbol{x}(V)$ is the number of neutrons emitted in the velocity range $d v$ in one fission and there is no inelastic scattering. By our previous arguments, a fraction $\frac{1}{\nu(V)}$ of thnse neutrons emitted at velocity $V$ will be absorbed to produce fission. The total number of fissions coming in one generation from the neutrons released from one fission is then clearly equal to $\int_{0}^{\infty} d v \frac{V \mathcal{X}(v)}{V(V)}$ which must be equal to unity as stated by equation (1.8).

Section 2 Variable cross section. The first lower approximation.

The restriction to constant cross sections in the tamper and constant total cross section in the core, which is necessary for the validity of equations (1) and (2), is of course too stringent to include most cases of interest. We shall, however, use the arguments employed in the derivation of these equations to give a useful approximate treatment of less restricted problems. Suppose that the tamper cross sections and the core total cross sections vary with neutron velocity in addition to the variations permitted in the preceding treatment. We can no longer argue that we know the spatial distribution of neutrons of each velocity.

This is so because the eigenfunctions calculated with the constants at different velocities are no longer the same, and the consistency argument that all neutrons are distributed as the common $\int_{0}$ will therefore fail.

We proceed by defining a set of functions $\int_{n}(\vec{x}, v)$ which are the eigenfunctions calculated from the constants for neutrons of velocity $V$. The set of functions for each velocity is assumed complete, and in particular any one of the $\Psi_{n}$ at one velocity can be expanded in a convergent series of the $\Psi_{n}$ for any other velocity. In any reasonable system, a given $\mathbb{F}_{n}$ will not vary drastically with neutron velocity. This is especially true of $\Psi_{0}$, the eigenfunction with no zeros. In a system with spherical symmetry, for example, the function $Y$ will be approximately of the form $\frac{\sin k r}{r}$ where the phase of the sine function must be at least $\frac{\pi}{2}$ and somewhat less than $\pi$, in all interesting cases. Usually conditions will be much less extreme, so that we make the assumption that the change in shape of $\Psi_{0}$ with velocity is small in a sense to be defined more carefully later.

It can now be seen that a reasonable approximation for the spatial distribution of neutrons of velocity $V$ is to say that it has the shape of $\int_{0}(\vec{x}, v)$. Suppose that this were strictly true. Neutrons of velocity $V^{\prime}$ make collisions distributed as $\int_{0}\left(\vec{X}, V^{\prime}\right)$. From these collisions neutrons of all velocities emerge isotropically. Consider those with velocity $V$. We have an isotropic source of neutrons of velocity $v$ distributed as $\bar{Y}\left(\vec{x}, v^{\prime}\right)$ and must then

calculate the spatial distribution of absorptions from this source. We use the method of Chapter I and expand the source density in the eigenfunctions of velocity $V$ :

$$
\begin{equation*}
S(\vec{x})=\psi_{0}\left(\vec{x}, v^{\prime}\right)=\sum_{n} S_{n} \Psi_{n}(\vec{x}, v) \tag{2.1}
\end{equation*}
$$

The density of absorptions, (or first collisions, if any collision is called absorption), will be:

$$
\begin{equation*}
A(\vec{x})=\sum_{n} \frac{s_{n}}{\nu_{n}(n} \Psi_{n}(\vec{x}, v) \tag{2.2}
\end{equation*}
$$

where the $\nu_{n}(V)$ are those defined by equation (5.1) of Chapter I. The shape of $A(\vec{x}) \quad$ will be very close to that of $\Psi_{0}(\vec{x}, v)$ for two reasons. In the first place, most of the contribution to the expansion of $S(\vec{x})$ comes from the term in $\Psi_{0}(\vec{x}, v)$ This is so because of our assumption that $\Psi_{0}(\vec{x}, v)$ and $\Psi_{0}\left(\vec{x}, v^{\prime}\right)$ do not differ much in shape. In the second place, the sequence of the $\nu_{n}(v)$ increases rapidly as $n$ increases, so that the series for $A(\vec{x})$ converges much more rapidly than that for $S(\vec{x})$. Some numerical illustrations of the validity of these statements can be found in Appendix I. It is clear then that our assumption of shape $\mathscr{F}_{0}(\vec{x}, v)$ for the neutron distribution at velocity $\quad V$ is nearly selfconsistent but not completely so. It is exactly so when $\Psi_{0}(\vec{x}, v) \quad$ is independent of $v$ and, as we shall see, is good enough for most purposes when $f_{0}$ varies in a reasonable way with $V$.

Hith this assumption, we can write an equation analogous to equation (1.4) which will however no longer be exact. With the notation used in deriving equation (1.4), and the approximate assumption that neutrons of velocity $v$ emitted from absorptions at velncity $V^{\prime}$ are emitted in the sotial distribution $\Psi_{0}(\bar{X}, V)$, we will have an equation of exactly the same form as equation (1.4):

$$
\begin{equation*}
A(v)=\frac{1}{v(v)} \int_{0}^{\infty} d v^{\prime} S_{a}\left(v^{\prime} \rightarrow v\right) A\left(v^{\prime}\right) \tag{2.3}
\end{equation*}
$$

where we have set $A(v)=N(v) \sigma_{a}(v)$. . Thus $A(v)$ has the significance of being the total number of neutrons being ahsorbed at velocity $v$.

This is or course no longer an exact equation. . It is very nearly correct and can be used for nearly all practical problems. TPe shall call it the first lower aporoximation.

Section 3 First upper apnroximation.
Another equation can be derived by making an approximation no worse than that used in obtaining equation (2.3). We assume that only those absorptions which occur at velocity $V^{\prime}$ in the distribution $f_{0}\left(x^{\prime}, v^{\prime}\right)$ are to be counted as producing absorptions at velocity $v$. If $\Psi_{0}(\vec{x}, v)$ is assumed to be normalized so that its integral over the core is unity, then we must write:
$\mathscr{F}_{0}\left(\vec{x}, v^{\prime}\right)=\sum_{n} c_{n} \Psi_{n}(\vec{x}, v)$

We are interested in $C_{0}$, which is:
$C_{0}\left(v, v^{\prime}\right)=\frac{\int \psi_{0}(\vec{x}, v) \Psi_{0}(\vec{x}, v) d \vec{x}}{\Psi_{0}^{2}(\vec{x}, v) d \vec{x}}$
As before, $N\left(v^{\prime}\right) \sigma_{\alpha}\left(v^{\prime}\right) S_{a}\left(v^{\prime} \rightarrow v\right) d v^{\prime} d v$
neutrons are emitted per second from absorptions at velocities in the range $d V$ to final velocities in the range $d V^{\prime}$. With the approximation we are now making, a fraction $\quad C_{0}\left(V^{\prime}, V\right)$ of these form a source for absorptions at velocity $V$ and a fraction $\frac{1}{V(V)}$ of these actually are absorbed at velocity $V$. This reasoning yields the integral equation:
$N(v) \sigma_{a}(v)=\frac{1}{v^{\prime}(v)} \int_{0}^{\infty} d v^{\prime} S_{a}\left(v^{\prime} \rightarrow v\right) C_{0}\left(v, v^{\prime}\right) N\left(v^{\prime}\right) \sigma_{a}\left(v^{\prime}\right)$
The equation can be made simpler and more symmetrical if $N(v) o_{2}(v)$ is replaced by $\frac{A(v)}{\sqrt{\int_{0}^{\infty}} y^{2}(r, v) d \bar{x}}$ so that, except for the new normalization, $A(V)$ is the number of neutrons ahsorbed in the shape $\quad \omega_{0}(x, v)$. In this case it becomes,
$A(v)=\frac{1}{v^{\prime}(v)} \int_{0}^{\infty} d v^{\prime} S_{a}\left(v^{\prime} \rightarrow v\right) M_{0}\left(v, v^{\prime}\right) A\left(v^{\prime}\right) d v^{\prime}$
where
$M_{0}\left(v, v^{\prime}\right)=\frac{\int_{0}\left(\vec{x}, v^{\prime}\right) \psi_{0}(\vec{x}, v) d \vec{x}}{\sqrt{\Psi_{0}^{2}\left(\vec{x}, v^{\prime}\right) d \vec{x}} \cdot \sqrt{\Psi_{0}^{2}(\vec{x}, v) d \vec{x}}}$
and the functions used in calculating $M$ need not be normalized in any particular manner. The equation (3.2) we call the first upper approximation.

We have two equations (2.3) and (3.2) which represent different approximations to the many velocity problem. We shall attempt (the mathematical rigor is not all that may be desired) in Appendix II to show that the two approximations give results which are on opposite sides of the truth. In the very large number of different practical cases which have been tried the equation 2.3 gives a value of the $\boldsymbol{\nu}$ needed for criticality, or the critical radius which is too low, and the equation 3.2 gives results ton high. Therefore we have a method by which we can bracket the correc answer with confidence. This permits us, for example, to put an upper limit on the error made by using 2.3 (which is the simpler to solve). It is only necessary to investigate the change made on using (3.2).

It is true that the two equations (2.3) and (3.2) in all practical cases tried have given remarkably close results. In appendix III and IV we give a few representative examples. The values of $\boldsymbol{\nu}-1$ calculated by the two methods rarely differed by more than $4 \mathbb{N}$. Thus the use of equation (2.3) alone can be relied on for great accuracy. If any doubt of the accuracy exists, it may be tested by a comparison with (3.2).

The roason that the two equations give nearly the same results is not far to seek. The equations differ only by the factor $M_{0}\left(v, v^{\prime}\right)$ in equation 3.2. If this factor were exactly 1 the two equations would be identical, and, since they branket the correct answer, exact. "But $M_{0}\left(V, V^{\prime}\right)$ can only be exactly $l$ if $y_{0}(x, v)=w_{0}\left(x, v^{\prime}\right) \quad$, that is if the shape of the fundamental made were the same at all velocities. This is
the case when the total cross sections are velocity-independint in which case (2.3) is indeed exact as we showed in section 1 , equation (1.4). When, however, $\mathscr{H}_{0}(x, v)$ differs from $\mathscr{H}_{0}\left(x, v^{\prime}\right)$ the Schwartz inequality shows that $M_{0}\left(V, V^{\prime}\right)$ must be less than one. However, except when the functions differ to an extreme degree, the amount by which $M$ falls short of unity is very small. Some representative values are given in the accompanying table. The value of $M$ depends only on the shapes of the functions and $\boldsymbol{L}_{0}(\vec{x}, v)\left(\vec{x}, v^{\prime}\right)$. These functions depend only on the radius $r$. If the functions are of shape

$$
\begin{aligned}
& 1-p r^{2} \text { and } 1-q r^{2} \quad \text { respectively, the value of } M \text { is } \\
& M=\frac{1+x P Q}{\sqrt{1+\times P^{2} \sqrt{1+\times Q^{2}}}}
\end{aligned}
$$

where

$$
x=\frac{12}{175}=0.069, \quad P=\frac{p}{1-\frac{3}{5} p} \quad \text { and } Q=\frac{q}{1-\frac{3}{5} q}
$$

TABLE

| $\Gamma_{0}(x, V)$ | $T H\left(x, V^{\prime}\right)$ | $M$ |
| :---: | :---: | :---: |
| 1 | $1-1 / 3 r^{2}$ | .994 |
| 1 | $1-1 / 2 r^{2}$ | .983 |
| 1 | $1-r^{2}$ | .836 |
| $1-r^{2}$ | $1-r^{2}$ | 1.000 |
| $1-1 / 2 r^{2}$ | $1-r^{2}$ | .923 |
| $1-1 / 3 r^{2}$ | $1-r^{2}$ | .891 |
| 1 | sin $\pi r r^{2}$ | .780 |
|  |  |  |




If for some velocity the mean free path in the tamper is very much less than that in the core (a very rare case) $p$ is small and $\Psi_{0}$ is nearly 1 if the tamper is not absorbing. If the paths are more nearly equal, $P$ is near $1 / 3$ and increases as the mean free path in the tan per increases. Absorption in the tamper increases the neutron curvature $\rho$ - A value of $P$ as high as 1 can occur with a completely absorbing tamper and a core with very small mean free path. In this case is more like a sine wave, $\frac{\sin \pi r}{\pi r}$ rather than $1-r^{2}$ but in other cases the parabola is a good enough pproximation for the computation of $M$. In practical cases $\rho$ will rarely be below $1 / 3$ or as high as 1 so that $M$ will always exceed 0.90. Furthermore, of course not only the extreme values of $M$ appear in (3.2). In the integration over $V^{\prime}$ the latter variable takes all values and when it is close to $V, M_{0}\left(V, V^{\prime}\right)$ must be very close to 1. Since therefore the $M_{0}$ is close to unity over most of the range of integration the results of (3.2) are nearly the same as the results of (2.3). In fact this may be made use of. Equation (3.2) is most easily solved by perturbation methods, consldering $1-M_{0}(v, v)$ as a perturbation away from the much simpler equation (2.3). I'hus a simple formula for the difference of the results of (3.2) and (2.3) is readily found, and appears in ap pendix II, equation (II-9). Section 4 Higher approximations

We now give for the sake of comple teness a formal scheme of successively better approximations to the correct value of $\boldsymbol{v}$. The first of these will be the approximation given by equation (2.3) the second that given by equation (3.2), and further ones will

increase in accuracy and difficulty. The first will be the most convenient because of its ease of application and the second will have some usefulaess for estimating accuracy, but higher approximations, while necessary for good accuracy in source multiplication calculations, do not in general increase the accuracy sufficiently to compensate their increased difficulty.

We write an integral equation for $A(\vec{x}, V)$, the density of absorptions of neutrons at position $\vec{x}$ in the core $V$ per unit range of $V$. We denote by $S\left(V^{\prime} \rightarrow V\right)$ the function previously called $S_{a}\left(v^{\prime} \rightarrow v\right)$. We define a kernel $P(\vec{x} \rightarrow \vec{x}, v)$ as the density of absorptions at $\vec{x}$ when ome neutron is released v. This kernel is of course identical with the kernel $P(\bar{x} \rightarrow \bar{x})$ isotropically at $\vec{x}$ with velocity efined in Chapter $I$, the variable $V$ merely specifying the constants to be used in calculating the kernel. We then see that $A(\vec{x}, v)$ satisfied the following integral equation:
$A(\vec{x}, v)=\int d \vec{x}^{\prime} \int d v^{\prime} P\left(\vec{x}^{\prime} \rightarrow \vec{x}, v\right) S\left(v^{\prime} \rightarrow v\right) A\left(\vec{x}^{\prime}, v^{\prime}\right)$
The kernel $P$ is a one-velocity diffusion kernel, since it represents the probability that a neutron emitted at a given point at a given velocity suffer only elastic collisions and then be absorbed at another point. We can obtain a form for $P$ by considering a simple one-velocity problem in which the tamper constants are those of velocity $v$, the total cross section is that of velocity $V$, and the fission cboss section in the core in the core is set equal to the absorption cross section at velocity
$v$. The eigenfunctions at velocity $v, \Psi_{n}(x, v)$ satisfy one-velocity integral equation:
$\Psi_{n}(\vec{x}, v)=\nu_{n}(v) / d \vec{x} P\left(\vec{x}^{\prime} \rightarrow \vec{x}, v\right) \Psi_{n}(\vec{x} ; v)$
This can be seen from the arguments following equation (5.1) of Chapter I. The kernel of such an equation can always be written as a bilinear series of its eigenfunction. This expansion will be, since $P$ is symmetric:
$P\left(\vec{x}^{\prime} \rightarrow \vec{x}, v\right)=\sum_{n} \frac{1}{v_{n}(v)} \frac{\Psi_{n}(\vec{x}, v) \Psi_{n}\left(\vec{x}^{\prime}, v\right)}{\int d \vec{x} \Psi_{n}^{2}(\vec{x}, v)}$
The approximation to $P$ which we first make is that of setting all the $\nu_{n}(V)$ equal to $\nu_{0}(V)$. This gives for $P$ :
$P(\vec{x}-\vec{x}, v)=\frac{1}{v_{0}(v)} \frac{\Psi_{n}(\vec{x}, v) \Psi_{n}(\vec{x}, v)}{d \vec{x} \Psi_{n}^{2}(\vec{x}, v)}=\frac{1}{v_{0}(v)} \delta(\vec{x}-\vec{x})$

This approximation will be designated as the first lower approximalion (abbreviated Ll) since it will appear that its use will lead to values for the critical radius and critical $\geqslant$ which are smaller than the correct values. If we insert equation (4.4) in equation (4.1) we obtain:
$A(\vec{x}, v)=\frac{1}{\nu_{0}(v)} d v^{\prime} S\left(v^{\prime} \rightarrow v\right) A(\vec{x}, v)$
This is a rather degenerate integral equation, since $\vec{x}$ enters only as a parameter and the. kernel is independent, of this
parameter. We can then integrate the equation over the core to obtain:
$A(v)=\frac{1}{z_{0}(v)} \int d v^{\prime} S\left(v^{\prime} \rightarrow v\right) A\left(v^{\prime}\right)$
Here $A(V)$ is merely the space integral of $A(\vec{x}, v) \quad$. Equation (4.6) is seen to be identical with equation (2.3).

The next approximation consists in assuming that all the $\nu_{n}$ are very large except for $\mathbb{N}_{0}$. Equation (17) then becomes:

$$
\begin{equation*}
P(\vec{x} \rightarrow \vec{x}, v)=\frac{1}{\nu_{0}(v)} \frac{\psi_{0}(\vec{x}, v) \psi_{0}(\vec{x}, v)}{d \vec{x} \psi_{0}(\vec{x}, v)} \tag{4.7}
\end{equation*}
$$

We will call this the first upper approximation (abbreviated $\mathrm{U}-\mathrm{l}$ ), since its use will always give too high a value for the critical $\boldsymbol{y}$ or the critical radius. It is plainly an approximation of opposite character to the first lower approximation, since it replaces all $z_{n}$ by quantities which are equal to or greater than the correct values, whereas in the first lower approximation, all the $\mu_{n}$ (an increasing sequence) are placed equal to $\nu_{0}$, the smallest of the sequence.

Combining equations (4.7) and (4.1) we obtain in this approximation:

$$
A(\vec{x}, v)=\frac{1}{v_{0}(v)} \frac{\psi_{0}(\vec{x}, v)}{d \vec{x} \Psi_{0}^{2}(\vec{x}, v)} \int \delta \vec{x}^{\prime} / \delta v^{\prime} S\left(v^{\prime} \rightarrow v\right) \Psi_{0}(\vec{x}, v) A(\vec{x}, v)(4.8)
$$

It immediately follows from equation (4.8) that in this approximation

$$
\begin{aligned}
& A(\vec{x}, v) \\
& A(\vec{x}, v)=A_{0}(v) w_{0}(\vec{x}, v)
\end{aligned}
$$

has the form:

If we insert the expression (4.9) in equation (4.8), we obtain an integral equation for $A_{o}(V)$ :

$$
\begin{equation*}
A_{0}(v)=\frac{1}{v_{0}(v)} / d v^{\prime} S\left(v^{\prime} \rightarrow v\right) \frac{d \vec{x} \Psi_{0}(\vec{x}, v) \Psi_{0}\left(\vec{x}, v^{\prime}\right) A_{0}\left(v^{\prime}\right)}{\sqrt{d \vec{x} \Psi_{0}^{2}(\vec{x}, v) \sqrt{d \vec{x}} x_{0}^{2}\left(\vec{x}, v^{\prime}\right)}} \tag{4.10}
\end{equation*}
$$

This is of course identical with equation (3.2)
The general nature of our two approximation schemes is now clear. The Nth lower approximation assumes that the first $N$ terms in the bilinear expansion (17) are taken exactly while all the $N / N$ fron $Z_{N}$ onward are taken equal to $Z_{N-1}$. The Nth upper approximation takes the first $N$ terms exactly while all further terms are phaced equal to zero. This procedure is sufficiently illustrated by working out the second lower approximation. We place:

$$
\begin{align*}
& P(\vec{x} \rightarrow \vec{x}, v)=\frac{1}{w_{0}(v)} \Psi_{0}(\vec{x}, v) \Psi_{0}\left(\vec{x}^{\prime}, v\right)+\frac{1}{\sum_{1}(v)} \sum_{n=1}^{\infty} \frac{\Psi_{n}(\vec{x}, v) \Psi_{n}(\vec{x}, v)}{d \vec{x} \Psi_{n}^{2}(\vec{x}, v)} \\
& =\left[\frac{1}{\nu_{0}(v)}-\frac{1}{v_{1}(v)}\right] \frac{\Psi_{0}(\vec{x}, v) \Psi_{0}\left(\vec{x}^{\prime}, v\right)}{d \vec{x} \Psi_{0}^{2}(\vec{x}, v)}+\frac{1}{\sum_{1}(v)} \sum_{n=0}^{\infty} \frac{\Psi_{n}(\vec{x}, v) \Psi_{n}(\vec{x}, v)}{\int d \vec{x} \Psi_{n}^{2}(\vec{x}, v)} \\
& =\left[\frac{1}{\nu_{0}(v)}-\frac{1}{\sum_{1}(v)}\right] \frac{\Psi_{0}(\vec{x}, v) \underline{I_{0}}(\vec{x}, v)}{d \vec{x} \Psi_{0}^{2}(\vec{x}, v)}+\frac{1}{w_{1}(v)} /(\vec{x},-\vec{x}) \tag{4.11}
\end{align*}
$$



With this expression for the kernel P. equation (4.1) becomes:

$$
\begin{align*}
& A(\vec{x}, v)=\left[\frac{1}{v_{0}(v)}-\frac{1}{v_{1}(v)}\right] \frac{\Psi_{0}(\vec{x}, v)}{d \vec{x} \Psi_{0}^{a}(\vec{x}, v)} \int d v^{\prime} S\left(v^{\prime} \rightarrow v\right) \int d \vec{x}^{\prime} \Psi_{0}\left(\vec{x}^{\prime}, v\right) A\left(\vec{x}^{\prime}, v^{\prime}\right) \\
&+\frac{1}{v_{1}(v)} / d v^{\prime} S\left(v^{\prime} \rightarrow v\right) A\left(\vec{x}, v^{\prime}\right) \tag{4.12}
\end{align*}
$$

This equation is not easily transformable ints one or two integral equations for one or two functions of velocity alone. If we do not try to treat a continum of velocities but restrict ourselves to a small number of discrete velocity groups, equation (4.12) is easily soluble.

The convergence of this sequence of approximations is illustrated in Appendix IV by applying them to several two-group diffusion theory problems.

Ch. III. The Treatment of Inelastic Scattering in the Tampere
In the preceding chapter we have seen that useful approximate methods exist by which neutron properties of some simple systems can be easily calculated, even though a continuun of velocities is necessary in the description. We should now like to extend our treatment to the the case where the tamper possesses an inelastic scattering cross section. We shall see that our position here is not nearly so strong as it was in the simpler systems treated previously. We shall find ourselves unable to treat a continuum of velocities and we must therefore make the approximation of replacing the continuum by discrete energy groups.

-


## Section 1 Two volocity groups. General equations and definitions.

Let us first consider a system in which neutrons of only two velocities are created and destrojed. Suppose that the system consists of a spherical, homogeneous core surrounded by an infinite, homogeneous tamper. Neutrons in the core can be elastically scattered or can be transferred from one velocity to the other by fission or by inelastic scattering. Neutrons in the tamper can be elastically scattered, captured, or transferred from velocity one to velocity two by inelastic scattering. We adopt a point of view similar to that used in the preceding chapter. Neutrons in the core act by means of collisions as a source of neutrons of both velocities, and by studying the absorption from this source, we shall obtain the condition of balance satisfied for criticality. We shall think of the inelastic scattering cross section in the tamper as an absorption cross section for neutrons of velocity one. We shall then have a source of neutrons of velocity two distributed in the tamper as are the neutrons of velocity one. It is then necessary to find what fraction of the neutrons from this source are absorbed in the core, and include these extra absorptions in the balance condition.

To make these ideas more precise let us first consider the situation without the inelastically scattered neutrons. Suppose, for example, that these inelastically scattered were removed and not permitted to produce further fission. Later we can study the actual contribution made by these inelastically scattered neutrons. Thus we have a problem without inelastic scattering in the tamper,


APPROVED FOR-PUBIIC RELEASE

the actual inelastic cross-section being replaced by absorption. In that case, we can use the ideas of Chapter II. In the simplest lower approximation, we are led to write equation (3.1) Chapter II in a form appropriate to fust two velocities:

$$
\begin{align*}
& A_{1}=\frac{1}{\nu_{10}}\left[S(1 \rightarrow 1) A_{1}+S(2 \rightarrow 1) A_{2}\right] \\
& A_{2}=\frac{1}{\nu_{20}}\left[S(1 \rightarrow 2) A_{1}+S(2 \rightarrow 2) A_{2}\right] \tag{1.1}
\end{align*}
$$

Here $A_{1}$ and $A_{2}$ are the total number of neutrons absorbed in the core at velocity one and two respectively, and $\nu_{10}\left(\right.$ and $\nu_{20}$ ) are the $\mathbb{Z}$ values which make a one velocity system critical which had the cross sections appropriate to velocity one (and two) only. The quantities $S$ are the direct analogue of $S_{a}\left(v \rightarrow v^{\prime}\right)$ - Thus $S(1 \rightarrow 2)$ gives the number of neutrons liberated at velocity two if one is absorbed at velocity one, while $S(1 \rightarrow 1)$ gives the number liberated at velocity one under the same circumstances. If a neutron is absorbed at velocity two it has probabilities $S(2 \rightarrow 1)$ and $S(2-2)$ to reappear at velocity one and two respectively. The equations are easy to understand. For example, the expression in the square bracket of the first equation is the total number of neutrons liberated at velocity one and of these, as was discussed in Chapter I, the fraction $\frac{1}{10}$ can be expected to return to the core for reabsorption.

Now we must include the effect of the inelastically scattered neutrons. A certain number of neutrons are liberated in the tamper at velocity two and these find their way back to the core and contribute to the absorptions $\mathbf{A}_{\boldsymbol{z}}$ there.

The neutrons are likerated at various places in the tamper, (the distribution depending on the shape of the tamper solution at velocity l) and thus he different probabilities of returning to the core. For a simple argument let us define a quantity: $P_{12}$ as the average probability that a neutron ilberated in the tamper by inelastic scattering (from velocity) findsits way into the core and is absorbed there.

Then the term to add to the second of the equations (1.1) is simply $P_{12}$ times the number of neutrons inelastically scattered in the tamper. This number is not hard to find. It is just
times the total number of neutrons absorbed in the tamper, since each absorption has this probability of resulting in inelastic scattering ( Oil is the inelastic cross-section in the tamper, and $\sigma_{\text {ia }}^{*}$ is the total absorption cross-section of neutrons of velocity one in the tamper and is oila plus the true capture cross section). The number absorbed in the tamper is just those wich are not absorbed in the core. Since of the neutrons liberated in the core a fraction are returned to the core, the remainder, or. $1-\frac{1}{2}$
 are absorbed in the tamper. In this way we can understand the modification of equations (1) to include the effects of inelastic scattering:

$$
\begin{aligned}
A_{1}=\frac{1}{2_{10}} & {\left[S(1 \rightarrow 1) A_{1}+S(2 \rightarrow 1) A_{2}\right] } \\
A_{L_{2}}=\frac{1}{2_{20}} & {\left[S(1 \rightarrow 2) A_{1}+S(2 \rightarrow 2) A_{2}\right] } \\
& +\frac{\sigma_{12} *}{O_{12}^{*}}\left(1-\frac{1}{2_{10}}\right) P_{12}\left[S(1 \rightarrow 1) A_{1}+(2 \rightarrow 1) A_{2}\right](1.2) \\
& =1
\end{aligned}
$$

These are simple equations which prove to be adequate to give a close approximation to the solution of two velocity problems. To use them however, some fairly simple way must be devised for the determination of $P_{12}$. We shall derive several alternate approximate formulas for this quantity and discuss the validity of the approximations later in this chapter. We shall also be concerned to some extent with the validity of the entire set of equations (1.2), but strictly this presents no really new problem (above those discussed in Chapter II) other than the adequacy of a proposed formula for $\mathrm{P}_{12}$. At the end of this chapter we discuss the extension to a system with three, or more velocity groups.

The determination of $P_{12}$ requires an analysis of the diffusion back to the core of neutrons which have been liberated in the tamper. The dependence of the quantity on the index 1 is solely through the fact that the neutrons of velocity 1 determine the spacial distribution of the source. Let us consider neutrons of velocity two released from any source in the tamper, $S(r)$. We then consider a kernel $Q_{2}\left(r \rightarrow r^{\prime}\right)$ which is the flux density of neutrons (of velocity two) at position $\mathrm{r}^{\prime}$ in the core when a unit source is located at position $r$ in the tamper. The density of absorptions $A\left(r^{\prime}\right)$ in the core resulting from the source $S(r)$ is then given by:

$$
\begin{equation*}
A\left(r^{\prime}\right)=4 \pi \sigma_{2 a} \int_{0}^{\infty} S(r) Q_{2}\left(r \rightarrow r^{\prime}\right) r^{2} d r \tag{1.3}
\end{equation*}
$$

The quantity $P_{12}{ }^{\text {is }}$ the number of absorptions which occur in the core in the fundamental mode:
$p_{12}=\frac{4 \pi / A(r) \Psi_{20}(r) r^{2} d r \cdot 4 \pi / \Psi_{20}(r) r^{2} d r}{4 \pi / \Psi_{20}^{2}(r) r^{2} d r}$
In the expression (1.3) for $A$ the source $S$ must be taken to be that arising from velocity one (equation below). We are therefore led to study the kernel $Q_{2}$ more carefully.

The kernel $Q_{2}$ is a diffusion kernel at a single velocity and is therefore symmetric. We use this fact to obtain an expression for it. Let us expand $Q_{2}\left(r \rightarrow r^{\prime}\right)$ as a series in the normal modes at velocity two, With coefficients $\phi_{z k}(r)$. We have:

$$
\begin{equation*}
Q_{2}\left(r \rightarrow r^{\prime}\right)=Q_{2}\left(r^{\prime}-r\right)=\sum_{k} \phi_{k k}(r) \int_{2 k}\left(r^{\prime}\right) \tag{1.5}
\end{equation*}
$$

Consider a source of neutrons of velocity two in the core, having the form $\Psi_{\text {sj }}\left(r^{\prime}\right)$. We use equation (1.5) and the orthogonality of the $\Psi_{\text {ak }}$ to obtain as the resulting density of absorptions in the tamper:
$T_{2 k}(r)=4 \pi \sigma_{2 Q_{0}}^{*} Q_{Q}^{a}\left(r^{\prime} \rightarrow r\right) \Psi_{2 k}\left(r^{\prime}\right) r^{\prime} d r^{\prime}=4 \pi \sigma_{2 a}^{*} \phi_{2 k}(r) \int_{0} \Psi_{2 k}^{a}(r) r^{2} d r$

Now we know that if neutrons are released from a source $\Psi_{a k}(r)$ the distribution of absorptions will be $\frac{1}{\sum_{2 k}} \Psi_{2 k}(r)$
It is therefore true that if one net neutron is released in the shape $H_{2 k} \frac{1}{V_{2 k}}$ net neutrons are absorbed in the core, and

$$
1-\frac{1}{\nu_{2 k}} \nu_{\Sigma k} \text { net neutrons must be absorbed in the tamper. }
$$

We now integrate equation (1.6) over the tamper. We obtain the total rate of absorption in the tamper which, by the argument just made, must be equal to $1-\frac{1}{\sum_{2 k}}$ times the total source in the core. This gives:
$4 \pi / \int_{2 k}^{\infty}(r) r^{2} d r=\left(1-\frac{1}{\nu_{2 k}}\right) 4 \pi / \int_{2 k}^{a}(r) r^{2} d r$
Combining 1.6 and 1.7 we find for $\phi_{2 k}(r)$ :
$\phi_{k k}(r)=\frac{T_{A k}(r)}{4 \pi /_{a}^{\infty} T_{2 k}(r) r^{2} d r} \frac{1-\frac{1}{\nu / k}}{O_{2 a}^{*}} \frac{4 \pi \int_{0}^{a} \int_{2 k}(r) r^{2} d r}{4 \pi \int_{0}^{a} T_{2 k}^{2}(r) r^{2} d r}$

We can now insert this in equation (1.5) to obtain an expression for the kernel $Q_{2}$ in terms of the eigenfunction and eigenvalues of a one-velocity critical problem:

$$
\begin{equation*}
Q_{2}\left(r \rightarrow r^{\prime}\right)=\sum_{k} \frac{T_{2 k}(r)}{4 \pi /^{\infty} T_{2 k}(r) r^{2} d r} \cdot \frac{1-\frac{1}{22 k}}{\sigma_{2 a}^{*}} \cdot \int_{0}^{a} \frac{U_{2 k}(r) r^{2} d r}{\int_{2 k}^{2}(r) r^{2} d r} \Psi_{2 k}\left(r^{\prime}\right) \tag{1.9}
\end{equation*}
$$

Now let us obtain the quantity $P_{12}$ defined previously. For the source $S(r)$, we take a function with the shape of the tamper solution appropriate to the fundamental mode for neutrons of velocity one, but normalized so that one neutron is emitted per second. This gives:

$$
\begin{equation*}
S(r)=\frac{T_{10}(r)}{4 \pi /_{a}^{\infty} T_{10}(r) r^{2} d r} \tag{1.10}
\end{equation*}
$$

If we substitute this, and the expression (1.9) for $Q$ into (1.3) to find $A$, and then use the formula (1.4) we find $p_{12}$ can be expressed as:

$$
p_{12}=\frac{\left[4 \pi \int_{0}^{a} \Psi_{E 0}(r) r^{2} d r\right]^{2}}{4 \pi \int_{0}^{1} \Psi_{20}^{2}(r) r^{2} d r} \frac{\sigma_{2 a}}{\sigma_{22}^{*}}\left(1-\frac{1}{2 r_{20}}\right) \frac{4 \pi /_{1}^{\infty} T_{10}(r) T_{20}(r) r^{2} d r}{4 \pi \int_{a}^{\infty} T_{10}(r) r^{2} d r 4 \pi / a}
$$

The expression (1.11) is exact.
In the next sections we shall discuss various approximations that can be made to it. Before we do that, however, it may be
 are themselves not个approximations to the exact equations will be undertaken later.

Section 2 Neutron return from tamper to core: First method of approximation.

We discuss in this and the next section various approximations which can be made to the quantity $\rho_{12}$. There is one simplification which can be made immediately. If we multiply and divide by the core volume we obtain as a factor the combination of integrals:

$$
\begin{equation*}
\frac{\left[\int_{0}^{a} y_{r_{0}}(r) r^{2} d r\right]^{2}}{\left.\int_{0}^{2} y r_{0}^{2}(r)^{2} d r\right]_{0}^{a} r^{2} d r} \tag{2.1}
\end{equation*}
$$

We shall hereafter replace this combination by unity. This is a
reasonable approximation. Except near the edge of the core the function $\frac{\sin k r}{k r}$ (r) behaves as For $k_{2} a=0$ (tamper having large cross section and no capture) the combination is equal to unity, for $k_{2} a=\frac{\pi}{2} \quad$ it is $C .98$, and for $k_{2} a \frac{3 \pi}{4}$ , it is 0.88 . It should be remembered that a large value of $k_{z}$ a corresponds to a poor tamper, from which the inelastic return is less important. This approximation therefore seems to be good (and is certainly convenient). If this is done, we have for $P_{12}$ :
$\rho_{12}=\frac{\sigma_{2 a}}{\sigma_{2 a}^{*}}\left(1-\frac{1}{\nu_{20}}\right) \frac{\int_{a}}{\int_{a}^{\infty} T_{10}(r) T_{20}(r) r^{2} d r \cdot \frac{a^{3}}{3}} T_{10}(r) r^{2} d r \cdot \int_{a}^{\infty} T_{20}(r) r^{2} d r \quad ~$

The various approximate methods of estimating $\rho_{12}$ are simply alternate ways of evaluating the integrals (omitting the subscript for normal mode):
$\int_{a}^{\infty} T_{1}(r) T_{2}(r) r^{2} d r ~(r) r^{2} d r \int_{a}^{\infty} T_{2}(r) r^{2} d r \quad$

This only requires knowledge of the shapes and not the size of the functions $T_{1}$ and $T_{2}$. When the diffusion theory is valid these shapes are accurately known. They are of the form $e^{-h \frac{r}{r}}$ and $e^{-h_{2} \frac{r}{r}}$ respectively. The constants $h$ and $h_{2}$ are respectively $\sqrt{3 \sigma_{1}^{*} \sigma_{12}^{*}}$ and $\sqrt{3 \sigma_{2}^{*} \sigma_{\mathrm{Ea}}}$ respectively. Putting these forms into (2.2) and performing the integrals one finds:

$p_{12}=\frac{a^{3}}{3\left(1+h_{1} a\right)\left(1+h_{2} a\right)\left(h_{1}+h_{2}^{2}\right)} \frac{\sigma_{2 a}^{2}}{\sigma_{2 a}^{2}}\left(1-\frac{1}{\nu_{2}}\right)$

This is the first of our forms for $p_{12}$. It is exact (except for our replacement of the integrals (2.1) by unity) in the diffusion theory. It may also be obtained directly from the differential equations of this theory by studying the diffusion into the core of neutrons distributed in the tamper as $e^{-h_{1} \frac{r}{r}}$ The expression (2.4) although only (nearly) exact for the diffusion theory is nevertheless often a very useful approximation when the accurate integral theory must be used. In this theory the functions $T_{10}$ for example behaves asymptotically as $e^{-h_{1} \frac{r}{r}}$ and differ from this only near the core surface where transition effects occur. These transition effects, especially when the tamper does not have a large absorption cross section are often quite small, and their effect in the integrals (2.3) is negligible. One change must be made however. The quantities $h_{1}$ and $h_{2}$ must now be determined from the usual secular equation for the Milne equation in the infinite tamper medium:

$\frac{\frac{h_{2}}{O_{E} x_{2}}}{\tanh ^{-1} \frac{h_{2}}{O_{2}^{2}}}=1-g_{E}$
where $g_{1}$ and $g_{2}$ are the usual ratios of absorption to that
cross sections at the two velocities $\quad\left(g_{1}=\frac{\sigma_{1}^{*}}{\sigma_{i}^{*}}\right.$ and $g_{2}=\frac{\sigma_{2}^{*}}{O_{2}^{*}} \quad$ ). The formula may be improved by putting better formulas for $T_{1}$ and $T_{2}$ into (2.2) in which the transition effects (which has been studied in many one-velocity problems, see LA-53 and LA-258) are more clearly represented. This probably leads to relatively complicated expressions. In the next section we derive another form for $P_{12}$ and show that it takes somewhat better account of these effects than does (2.4).

## Section 3 Neutron return from tamper to core: other approximations.

The method we shall adopt to determine $p_{i 2}$ in this section is to set up an imaginary two velocity problem for which the complete answer is known. Then using our fundamental equations (1.2) for such a problem we shall find the value of $p_{42}$ to solve other problems.

To do this we consider an imaginary problem in which there are two groups. The upper we call group $\boldsymbol{X}$ and the lower simply 2. The constants of the lower velocity are exactly those of the velocity two group for the real problem for which we are trying to solve. The constants of group $x$ however, instead of being those of velocity one, are taken to be simply those of velocity two, with one exception, however. That is we imagine that we add a cross section $\sigma_{i x z}^{*}$ of inelastic cross section which transfers neutrons from group $x$ to group 2 (the tamper absorption cross section is therefore $\sigma_{i \times 2}^{*}+\sigma_{2 a}^{*}=\sigma_{x a}^{*} \quad$. Now this transfer from $x$ to 2 really makes no difference, the neutrons still have the same properties. Thus we know that for the whole


It is simply No •
The point, however, is that $p_{12}$ depends on velocity one only through the shape of $T_{1}$ and therefore $P_{x c}$ depends only on the shape of the function $T_{x}$ representing the distribution of $x$ neutrons in the tamper. But the shape $T_{x}$ can be made very like that of $T_{1}$ by adjusting the value of Oixa (and hence $\sigma_{x a}^{*}$ ). We discuss the choice of $\boldsymbol{O}_{i x}$ later, but first let us see how we can determine $P_{x 2}$ which we shall later use as an approximation for $P_{12}$.

Let the required to keep criticality in the upper group be $\nu_{x}$ (which is not $\nu_{2}$ because of the extra tamper absorption ofxneutrons). We now treat this problem by the pair of equations (2) assuming the exact critical $\sim$ for the system is $z_{c}$. Then since $x$ and 2 neutrons both may be pictured as producing fission from each absorption with this $\boldsymbol{\nu}=\boldsymbol{Z}_{2}$, and there is no core inelastic scattering, we have
$S(x \rightarrow x)=\nu_{2}, S(2 \rightarrow x)=\nu_{2}, S(2 \rightarrow 2)=0, S(x \rightarrow 2)=0$,
so that equations (1.2) become
$A_{x}=\frac{1}{\nu_{x}}\left[\nu_{2} A_{x}+\nu_{2} A_{2}\right]$
$A_{z}=0+\frac{\sigma_{x 2}^{*}}{\sigma_{2 a}^{*}+\sigma_{i x 2}^{*}}\left(1-\frac{1}{\nu_{2}}\right) p_{x z}\left[\nu_{2} A_{x}+\nu_{2} A_{2}\right]$
These equations (add them and divide by $A_{x}+A_{z}$ ) require that
$p_{x 2}=\frac{1-\frac{2}{2 x}}{\sum_{2}\left(1 \frac{1}{2)} \frac{\sigma_{x} \times 2^{*}}{\sigma_{2}^{*}+\sigma_{i \times 2}^{* x}}\right.}$


To obtain an expression for $\rho_{12}$ we must now choose the value of $\sigma_{i \times 2}^{*}$ so that $T_{x}$ approximates $T_{1}$. We shall do this by making the asymptotic forms of these functions the same and hope that the transition effects are nearly similar. Thus we choose $h_{X}=h_{1}$. We shall, to indicate this special choice now use the notation 12 for $x$. We let $g_{2}$ be the usual absorption number in the tamper at group two, so that:

$$
\begin{equation*}
g_{2}=\frac{\sigma_{2 a}^{*}}{\sigma_{2}^{*}} \tag{3.3}
\end{equation*}
$$

We can look at the quantity orixa as the capture cross section that would have to be added to the tamper at velocity two to make the asymptotic rate of decay of neutrons of velocity two match that of neutrons at velocity one in the real two velocity problem. We define $g_{12}$ as the total absorption number necessary at velocity two in the tamper to match the shapes in this way. We have:

$$
\begin{align*}
& g_{12}=\frac{\sigma_{22}^{*}+o_{i x 2}^{*}}{\sigma_{2}^{*}} \\
& \text { and } g_{12}-g_{2}=\frac{\sigma_{x 2}^{*}}{\sigma_{2}^{*}} \tag{3.4}
\end{align*}
$$

We re-write equation (44) as follows:
$p_{12}=\frac{\frac{1}{\nu_{2}}-\frac{1}{\nu_{12}}}{g_{12}-g_{2}} \cdot \frac{g_{12}}{1-\frac{1}{\nu_{12}}}$

This is the second of our useful approximations to $\rho_{12}$. In it the quantity $g_{12}$ is the absorption number for group-two neutrons in the tamper which would give the same asymptotic exponential solution for region 2 as actually does exist in region one. That is if $g_{1}$ is the true absorption number in region one as in (2.5) we find $g_{12}$ by determining $h_{1}$ from (2.5) and $\underset{g_{12}}{g_{12}}$ from a similar equation.
$1-g_{1}=\frac{\frac{h_{1}}{\partial T^{*}}}{\frac{\tan ^{-1} h^{-1} h_{1}}{O T^{*}}}$

$$
\begin{equation*}
\text { and } 1-g_{12}=\frac{\frac{h_{1}}{\sigma^{*}}}{\frac{\tan h^{-1} h_{1}}{\sigma_{2}^{*}}} \tag{3.6}
\end{equation*}
$$

The quantity $\boldsymbol{v}_{12}$ is the $\boldsymbol{z}^{\prime}$ value which would make a system with neutrons of velocity two critical if the actual absorption number in the tamper were $g_{12}$ (instead of $g_{2}$ ).

We shall now derive equation (3.5) by another more formal method which shows nore clearly the approximations involved in its derivation. We must first prove a simple orthogonality relation holding between the neutron distributions in certain related one velocity problems. (This theorem and its applications are described in much more detail in LA- 608 .) Let $M(\vec{x} \rightarrow \vec{x})$ ○- $(\vec{x})$ be the probability per unj.t volume that a neutron released isotropically at $\vec{x}^{\prime}$ makes its first collisions at $\vec{x}$. The position $\vec{x}$ can be a core point or a tamper point so that $\sigma$ is a function of position. The kernel $M$ is, of course, symmetrical. Suppose we have two systems, both critical, with the same total cross section as a function of position and which, therefore, have the same $M(\vec{x} \xrightarrow{\prime} \vec{x})$. Let us call the function which is the total cross section multiplied by the total number of neutrons emitted per collision $q(\vec{x})$. We can then write integral equations for

$\psi^{\prime}$, the neutron densities in the two systems:
$\mathscr{F}(\vec{x})=\int \vec{x}^{\prime} M\left(\vec{x}^{\prime} \rightarrow \vec{x}\right) q\left(\vec{x}^{\prime}\right) \mathscr{F}\left(\vec{x}^{\prime}\right)$
$\boldsymbol{F}^{\prime}(\vec{x})=\int d \vec{x}^{\prime} M\left(\vec{x}^{\prime} \rightarrow \vec{x}\right) q^{\prime}\left(\vec{x}^{\prime}\right) \boldsymbol{\Psi}^{\prime}\left(\vec{x}^{\prime}\right)$
We multiply the first of these equations by $q^{\prime}(\vec{x}) F^{\prime}(\vec{x})$ and the second by $q(\vec{x}) \geq(\vec{x})$, integrate each over all space and subtract. We obtain:

$$
\begin{array}{r}
\int \mathrm{d} \vec{x}\left[q^{\prime}(\vec{x})-q(\vec{x})\right] \Psi(\vec{x}) \Psi \Gamma^{\prime}(\vec{x})=\int d \vec{x} / d \vec{x}^{\prime}\left[q^{\prime}(\vec{x}) \Psi \Psi^{\prime}(\vec{x}) M\left(\vec{x}^{\prime} \rightarrow \vec{x}\right)\right. \\
\left.q\left(\vec{x}^{\prime}\right) \Psi\left(\vec{x}^{\prime}\right)-q(\vec{x}) \Psi(\vec{x}) M\left(\vec{x}^{\prime} \rightarrow \vec{x}\right) q^{\prime}\left(\vec{x}^{\prime}\right) \Psi^{\prime}\left(\vec{x}^{\prime}\right)\right] \tag{3.7}
\end{array}
$$

In the second term of the right hand side of Eq. 3.7 we interchange the dummy variables of integration and note that, since $M\left(\vec{x}^{\prime} \rightarrow \vec{x}\right)$ is symmetric, this term now cancels the first. We obtain:

$$
\begin{equation*}
\int d \vec{x}\left[q^{\prime}(\vec{x})-\vec{q}(\vec{x})\right] \Psi^{\prime}(\vec{x}) \Psi(\vec{x})=0 \tag{3.8}
\end{equation*}
$$

We now specialize this general then rem to the case of interest to us. We consider two systems with the total cross-section in core and tamper equal to $\sigma_{\varepsilon}$ and $\sigma_{\varepsilon}^{*}$, respectively. In the first of these systems we place the absorption number in the tamper equal to $g_{2}$ and place the reproduction number in the core equal to $f_{2}$, the $f$ required for criticality. In the other problem we place the absorption number in the tamper equal to the number $g_{12}$ previously defined, and the reproduction number in the core equal
to $f_{12}$, the $f$ required for criticality with this changed tamper absorption. The quantity $q(x)$ will be equal to $(1+f) o_{2}$ in the core and $(1-g) \sigma_{2}^{*}$ in the tamper. We now write equation (3.8), doing the integrals over the core and tamper separately and obtain, writing $\mathscr{F}_{2}$ and $\int_{12}$ for the densities in the core $T_{2}$ and $T_{12}$ for the densities in the tamper:

$$
\begin{align*}
& 4 \pi\left(f_{12}-f_{2}\right) \sigma_{2} \int_{0}^{a} r^{2} d r \Psi_{2}(r) \Psi_{12}(r)  \tag{3.9}\\
&=4 \pi\left(g_{12}-g_{2}\right) \sigma_{\varepsilon}^{*} \int_{a}^{\infty} r^{2} d r T_{2}(r) T_{12}\left(r^{\prime}\right)
\end{align*}
$$

We can also use the conservation law to get some other relations. In each problem the total number of extra neutrons produced in the core must be destroyed in the tamper. This condition gives:

$$
4 \pi f_{12} \sigma_{2} / r^{2} d r \Psi_{12}(r)=4 \pi g_{12} \sigma_{2}^{*} a_{a}^{\infty} r^{2} d r T_{12}(r)
$$

$4 \pi f_{2} \sigma_{2} \int_{0}^{a} r^{2} d r y F_{2}(r)=4 \pi g_{2} \sigma_{2}^{*} \int_{a}^{\infty} d r T_{12}(r)$
If we now divide equation (3.9) by each of the equations (3.10), we obtain:
$\left(\frac{1}{f_{2}}-\frac{1}{f_{12}}\right) \frac{1}{\sigma_{2} \int_{0}^{a} r^{2} d r r_{2}(r) \sum r_{12}(r)}$

$$
\begin{equation*}
=\left(\frac{1}{g_{2}}-\frac{1}{g_{12}}\right) \frac{1}{\sigma_{2}^{*}} * \int_{a}^{\infty} r_{r^{2} d r}^{\infty} T_{2}(r) T_{12}(r) \tag{3.11}
\end{equation*}
$$

We now multiply by ${ }^{\text {a }} \mathrm{r} d r$ and set the resulting combination of integrals on the left equal to unity, as it will be very nearly in all cases of interest.


We have thus obtained an expression in terms of the eigenvalues of two one-velocity problems an expression for a combination of tamper integrals approximating to the combination required in the equation (2.2) for the quantity $P_{12}$. The function $T_{2}$, appearing in (2.2), is duplicated exactly in equation (3.11). The function $T_{1}$, appearing in (2.2), is approximated by the function $T_{12}$ - The function $T_{12}$ and $T_{1}$ match asymptotically and both have transition effects in the same direction at the interface. By the use of Eq. (3.11) we can, therefore, expect to obtain an expression for $p_{12}$ of greater accuracy than if we had used the asymptotic exponential tamper solutions for $T_{1}$ and $T_{2}$. We combine (3.11) and (2.2) to obtain:

$$
\begin{equation*}
\rho_{12}=\frac{\sigma_{2 a}}{\sigma_{2 a}^{*}}\left(1-\frac{1}{\nu \varepsilon}\right) \frac{\sigma_{2}^{*}}{\sigma_{z}} \frac{\frac{1}{f_{2}}-\frac{1}{f_{12}}}{\frac{1}{g_{2}}-\frac{1}{g_{12}}} \tag{3.12}
\end{equation*}
$$

We can express the quantities $f_{2}$ and $f_{12}$ in terms of the quantities
$\nu_{2}$ and $\nu_{12}$ previously used by the usual relation (from Chapter I, equation (5.1) )
$\nu_{z}=1+\frac{\sigma_{z}}{\sigma_{z a}} f_{z}$

$$
f_{z}=\frac{\sigma_{\Sigma} a}{\sigma_{2}}\left(\nu_{a}-1\right)
$$

$\nu_{12}=1+\frac{\sigma_{E}^{-}}{\sigma_{z a}} f_{12}$

$$
\begin{equation*}
f_{12}=\frac{\sigma_{z a}}{\sigma_{2}}\left(\nu_{12}-1\right) \tag{3.13}
\end{equation*}
$$

The insertion of (3.13) in (3.12) yields, after noting that

$$
\sigma_{2 a}^{*}=g_{2} \sigma_{2}^{*} \quad \text { and rearranging }
$$

$p_{12}=\frac{g_{12}}{g_{12}-g_{2}} \frac{\frac{1}{\sum_{2}}-\frac{1}{\nu_{12}}}{1-\frac{1}{\nu_{12}}}$



Which is seen to be identical with the previously derived equation (3.5).

The foregoing treatment would be expected to be excellent if $\frac{h_{1}}{\sigma_{1}^{*}}$ and $\frac{h_{z}}{\sigma_{z}^{*}}$ are each small compared with unity. The functions $T_{1}$ and $T_{2}$ will then have essentially the character which they have in diffusion theory. They will consist mostly of the asymptotic exponential solutions with relatively small transition effects at the interface. If we use equation (58) for $\rho_{12}$, the size of $\frac{h_{2}}{\sigma_{2}^{*}}$ does not actually concern us since the function $T_{2}$ is not approximated in that expression. Suppose, however, we consider what happens as $\frac{h_{1}}{\sigma_{1}}$ increases. The function $T_{1}$ will decay more and more rapidiy with a transition effect which becomes relatively larger. This transition effect is not matched by that in the function $T_{12}$ (except qualitatively) so that equation (3.5) may be expected to become less accurate.

In many cases of interest the inelastic scattering cross section forms so large a part of the total cross section in the tamper at the higher velocity that $\frac{h_{1}}{\sigma_{1}}$ may be rather close to unity and this defect in equation (3.5) may therefore be serious.

A further related trouble can also occur. If $\frac{h_{1}}{\sigma_{2}} *$ is greater than one, even the introduction of complete absorption into the tamper at velocity two will not give an asymptotic decay which will match $T_{12}$ to $T_{1}$ (there being no meaning to the second equation 78 ). Even if $\frac{h_{1}}{\sigma_{\varepsilon}^{*}}$ is less than, but fairly close to one, so much absorption must be introduced at velocity two that the asymptotic part of the function $T_{12}$ becomes unimportant and the match therefore will again be poor.

It is usually true for physical reasons that $\sigma_{2}^{*}$ is greater than $\sigma_{1}^{*}$, if one refers to the higher energy, and since $\frac{h_{1}}{\sigma_{1}^{*}}$ is necessarily less than one the second trouble will not arise in a reasonable system. Exceptions may occur but this trouble is much more likely to arise if the tamper contains fissionable material so that neutrons entering the tamper at velocity two can have their energy increased to velocity one. We would then be interested in calculating the number of absorptions, taking place in the core at velocity one, of neutrons which have been thus raised in energy in the tamper. This clearly involves the calculation of a quantity $\rho_{21}$, which will be just the quantity $P_{12}$ with the one and two interchanged in the definition. In overcoming the first difficulty it is clearly advantageous to use, if possible, the correct function $T_{1}$. We can do this by introducing sufficient absorption, $g_{21}$, in the tamper at velocity one so that the resulting tamper solution $T_{21}$ duplicates, as closely as possible, the function $T_{2}$. By using $T_{21}$ as an approximation for $T_{2}$, and the expression (53) for the combination of tamper integrals which we need, we can get an alternative expression for $\rho_{12}$. . This procedure will, of course, overcome the second difficulty since, $h_{1}$ is less than $\sigma_{1}^{*}, h_{2}$ is less than $\sigma_{2}^{* *}$, and if $h_{1}$ is greater than $\sigma_{2}^{*}$, it follows that $h_{2}$ is less than $\sigma_{1}^{*}$ and the reverse procedure just outlined will give us a reasonable value for the quantity $p_{21}$.

We proceed to calculate $P_{12}$ in this alternative fashion.

We define $g_{21}$ as the absorption number necessary in the tamper at velocity one to give an asymptotic decay equal to $h_{2}$. The eigenvalue $\quad f_{1}$ will be the reproduction number necessary in the core at velocity one to maintain criticality for a tamper absorption $g_{1}$ and $f_{z 1}$ will be the corresponding quantity when the tamper absorption is equal to $g_{21}$. The use of equation (3.11) then gives:
$\frac{\int_{0}^{a} r^{2} d r \int_{a}^{\infty} r_{d r}^{2} T_{1}(r) T_{21}(r)}{a r^{2} d r T_{1}(r) /_{a}^{\infty} r^{2} d r T_{21}(r)}=\frac{\sigma^{*}}{\sigma_{1}} \frac{\frac{1}{f_{1}}-\frac{1}{f_{21}}}{\frac{1}{g_{1}}-\frac{1}{g_{21}}}$

We then combine equations (3.14) and (2.2) to obtain the desired approximation for $p_{12}$ :

$$
\begin{equation*}
p_{12}=\frac{\sigma_{2 a}}{\sigma_{2 a}^{*}}\left(1-\frac{1}{\nu_{2}}\right) \frac{\sigma_{1}^{*}}{\sigma_{1}^{*}} \frac{\frac{1}{f_{1}}-\frac{1}{f_{21}}}{\frac{1}{g_{1}}-\frac{1}{g_{21}}} \tag{3.15}
\end{equation*}
$$

This is sur third approximation to $\mathrm{p}_{12}$.
By some obvious manipulation we can obtain the following relation between the $p_{12}$ which is calculated as above and the $p_{21}$ calculated by equation (58) with the interchange of one and two:

$$
\begin{equation*}
p_{12}=\frac{\sigma_{2 a}}{\sigma_{2 a}^{*}} \frac{\sigma_{12}^{*}}{\sigma_{12}} \frac{\left(1-\frac{1}{\nu_{2}}\right)}{\left(1-\frac{1}{\Sigma_{1}}\right)} p_{21} \tag{3.16}
\end{equation*}
$$

That this relation is valid in general may be seen directly from equation (2.2).

Appendix $\nabla$, and very simple to calculate. The use of the exact tamper solutions is prohibitively difficult and can be used, therefore, only as a check upon the less accurate expressions. The other two methods are fairly easy and intermediate in accuracy. These two methods depend, however, for their usefulness on the ease and accuracy with which we can obtain the eigenvalues for arbitrary one-velocity problems. With equal mean free paths in core and tamper we can get good accuracy by the use of the extrapolated end point prncedure. Reasonably accurate calculations can be made for unequal mean free paths by the methods mentioned in Chapter I.

## Section 4 Validity of the approximations inherent in the general equations.

In the last sections of this chapter we shall discuss the technical problem of extending this formalism to systems with three neutron velocities and to systems with finite tampers. Since no essentially new ideas are required for this, it seems advisable at this point to discuss in more detail the accuracy of the entire scheme of equations (2), even granting that $p_{12}$ may be known exactly. We shall consider the equations (1.2) as a first (and most practical) of a series of approximations to the exact equations. To study this in more detail we shall first have to write down the exact equations in the two-velocity case. To this end we shall call the density of absorptions at velocities one and two $A_{1}(r)$ and $A_{2}(r)$ respectively and introduce coefficients $S(i \rightarrow k)$ as at the beginning of this chapter.

It is identically satisfied by the formula (2.4) for $p_{12}$ so it gives no new result in this case, but for formula (3.5) it yields the new relation (3.15). An analysis of the transition effects as they affect the accuracy of formulas (3.5) and (3.15) indicates that (when the sizes of $h_{1}, \sigma_{i}^{*}, h_{2} \sigma_{2}^{*}$ are such that either formula may be used) these formulas err on opposite sides of the truth in many cases. It is possible that this may be true in general, and if this theorem could be established it would permit us to put limits on the error made in calculating $p_{12}$. In that case we could put the theory with tamper inelastic scattering on the same sure footing as the theory when this scattering is absent. At present writing this has not been done.

We now have four methods for calculating $P_{12}$. Using equation (2.2) we can first assume that $T_{1}$ and $T_{2}$ have the shape of the asymptotic exponentials thereby obtaining equation (2.4 ). We can second assume the correct $T_{2}$ and approximate $T_{1}$ obtaining equation (3.5) by $T_{12} \uparrow$. We can third assume $T_{1}$ and approximate $T_{2}$ by $T_{21}$ obtaining equation (3.15)
$\Lambda$ finally, with sufficient effort, we could assume the correct functions for both $T_{1}$ and $T_{2}$. All of these methods coincide essentially in the diffusion limit and the various methods which we have devised merely represent various ways of taking into account, to various extents, the transition effects which occur at the interface except in the diffusion limit. The quantity $p_{12}$ is calculated for some typical cases by each of these methods in Appendix $V$. The use of the asymptotic exponentials is of the greatest general use since it is reasonably accurate, as shown in

Finally we also need the kernels $P_{1}\left(r^{\prime} \rightarrow r\right)$ and $P_{2}\left(r^{\prime} \rightarrow r\right)$ which are the densities of absorptions in the core at $r$ when one neutron is released at $r^{\prime}$ at velocities one and two respectively. We obtain by elementary reasoning the integral equations:

$$
\begin{align*}
& A_{1}(r)=4 \pi \int_{0}^{a} r^{\prime 2} d r^{\prime} P_{1}\left(r^{\prime} \rightarrow r\right)\left[S(1-1) A_{1}\left(r^{\prime}\right)+S(2 \rightarrow 1) A_{2}\left(r^{\prime}\right)\right] \\
& A_{2}(r)=4 \pi / r_{0}^{a} r^{\prime 2} d r^{\prime} P_{2}\left(r^{\prime} \rightarrow r\right)\left[S(1 \rightarrow 2) A_{1}\left(r^{\prime}\right)+S(2 \rightarrow 2) A_{2}\left(r^{\prime}\right)\right] \\
& \quad+4 \pi / r_{0}^{d, 2} d r^{\prime} F_{12}\left(r^{\prime}-r\right)\left[S(1 \rightarrow 1) A_{1}\left(r^{\prime}\right)+S(2 \rightarrow 1) A_{2}\left(r^{\prime}\right)\right] \tag{4.1}
\end{align*}
$$

The first equation states that all absorptions of neutrons of velocity one arise from neutrons liberated at velocity one from previous absorptions. The second equation states that all absorptions of neutrons at velocity two arise either from neutrons liberated at velocity two by previous absorptions or from neutrons liberated at velocity one which were inelastically scattered to velocity two in the tamper. This latter effect is expressed by the last term in which a new quantity $\quad F_{12}\left(r^{\prime} \rightarrow r\right)$ appears. We define the kernel $\quad F_{12}\left(r^{\prime} \rightarrow r\right)$ as the density of absorptions of neutrons of velocity two taking place at position $r$ when one neutron is emitted per second at velocity one at position $r^{\text {, }}$, escapes absorption in the core, is inelastically
scattered in the tamper, and finally returns to the core to be absorbed.

The new kernel can easily be expressed exactly in terms of the previously defined kernel $Q_{1}\left(r^{\prime} \rightarrow r^{\prime \prime}\right) \mathcal{O}_{\mathbf{a}}^{*}$
This latter quantity is the density of absorptions in the tamper for one neutron released per second in the core at velocity one at

of these absorptions yield
position $r^{\prime}$ - A fraction neutrons of velocity two, so that for one neutron emitted per second at velocity one at position $r^{\prime}$, we have a source density of neutrons of velocity two in the tamper given by:
$S\left(r^{\prime \prime}\right)=Q_{1}\left(r^{\prime} \rightarrow r^{\prime \prime}\right) O_{i 2}^{*}$

Now we find the density of absorptions at position $r$ in the core resulting from this source. This is, from equation (1.3)
$F_{12}\left(r^{\prime}-r\right)=4 \pi \sigma_{2 a} \sigma_{i 12}^{*} \int_{a}^{\infty} Q_{1}\left(r^{\prime} \rightarrow x^{\prime \prime}\right) Q_{2}\left(x^{\prime \prime} \rightarrow r\right) r^{2} d r$

We could now use the expression (1.9) for the kernel $Q$ to obtain an explicit expression for $F_{12}$.

What approximations can be made to reduce (4.1) to a useful form? The approximations which can be made of the kernels $P_{1}$ and $P_{2}$ were discussed at considerable length in Chapter II. It was there shown that a very useful approximation, the first lower approximation, was equivalent to replacing $P_{1}\left(\vec{x}^{\prime} \rightarrow \vec{x}\right)$. by $\left(\frac{1}{\sum_{10}}\right) S\left(\vec{X}^{\prime}-\bar{X}\right)$ and $P_{2}$ by a similar expression. Our problem here is to discuss approximations which can be made to $F_{i 2}\left(r^{\prime} \rightarrow r\right)$, (with the hope of course of eventually transforming (4.1) into (1.2). We, shall discuss this by discussing approximations to $Q_{1}\left(r^{\prime} \rightarrow r\right)$ and $Q_{2}$ since $F$ can be expressed by (4.3) in terms of these quantities.

An exact expression for $Q$ is given by equation (1.9) (we drop the subscript indicating which velocity group we are discussing. The index $k$ represents the mode in question).

$$
Q\left(r \rightarrow r^{\prime}\right)=\sum_{k} \frac{T_{k}\left(r^{\prime}\right)}{4 \pi / a T_{k}(r) r^{2} d r} \frac{\left(1-\frac{1}{\sum_{k}}\right)}{O_{a}^{*}} \frac{\int_{0}^{a} \Psi_{k}\left(r^{\prime \prime}\right) r^{\prime \prime 2} d r^{\prime \prime}}{\int_{0}^{2} \Psi_{k}^{d}(r) r^{2} d r} \Psi_{k}(r)
$$

To make progress we must develop an approximation to it. One way is to observe that the functions $T_{k}(r)$ are nearly all of the same shape, so that the first factor is nearly independent of the mode $k$. This is exact in the limit of diffusion theory since $T_{k}(r)$ are merely simple exponentials characterized only by the tamper properties. In the factor containing these quantities, we therefore omit the subscripts and take this common factor outside the summation sign. It is clear that this procedure will become less accurate as we depart farther from the diffusion limit. This is so because the tamper solutions depend, in the transition effect at the boundary, on the core distribution.

We shall discuss this in much more detail below. Making this aporoximation we obtain:

$$
\begin{equation*}
Q\left(r \rightarrow r^{\prime}\right)=\frac{T\left(r^{\prime}\right)}{\left.4 \pi \sigma_{2}^{*}\right]_{2}^{\infty} T(r) r^{2} d r} \cdot \sum_{k}\left(1-\frac{1}{\zeta_{k}}\right) \frac{\Psi_{k}(r) \int_{0}^{2} \Psi_{k}\left(r^{\prime \prime}\right) r^{\prime \prime 2} d r^{\prime \prime}}{\int_{0}^{2} \Psi_{k}^{2}(r) r^{2} d r} \tag{4.5}
\end{equation*}
$$

The sum on $k$ may now be performed exactly. We can use the completeness relation for the $\Psi_{k}$ and the bilinear expansion for the one-velocity diffusion kernels defined in Chapter II:
(It has been tacitly assumed that we are interested in neutron distributions which are functions of. $r$ only).
$\frac{\sum_{k} \Psi_{k}(\vec{x}) y_{k}\left(\vec{x}^{\prime}\right)}{\int d \vec{x} \Psi_{k}^{2}(\vec{x})}=\rho\left(\vec{x} \rightarrow \vec{x}^{\prime}\right)$
$\sum_{k} \frac{1}{x_{k}} \frac{\Psi_{k}(\vec{x}) \Psi_{k}\left(\vec{x}^{\prime}\right)}{d \vec{x} \Psi_{k}^{2}(\vec{x})}=P\left(\vec{x}^{\prime}-\vec{x}\right)$
We now integrate the expressions (4.6) and (4.7) with respect to one variable over the core to do the sums indicated in (4.5) and obtain:

It is instructive to show that this expression can be understood in a more physical way. Suppose that one neutron per second is released at velocity one from a spherically symmetric source at radius $r^{\prime}$. By definition $P_{1}\left(x^{\prime} \rightarrow x^{\prime \prime}\right)$ are absorbed per second per unit volume at $r^{\prime \prime}$. The total number absorbed per second in the core is the volume integral of $P_{1}\left(r^{\prime} \rightarrow r^{\prime \prime}\right)$ over all points in the core $r^{\prime \prime}$. The total number absorbed per second in the tamper must then be equal to:

$$
\begin{equation*}
1-4 \pi \int_{0}^{a} \mathrm{P}_{1}\left(x^{\prime} \rightarrow r^{\prime \prime}\right) r^{\prime \prime 2} d r^{\prime \prime} \tag{4.9}
\end{equation*}
$$



The distribution of these absorptions in the tamper must have, at least in the diffusion limit, just the shape of the previously defined function $T_{1}(x)$. If we normalize this shape to unit integral and multiply by the total number of absorptions in the tamper (4.9) we obtain the density of absorptions at $r^{\prime}$ in the tamper resulting from a unit source at $\Gamma$ in the core. This is, by definition; the kernel $\quad Q\left(r^{\prime} \rightarrow r\right) o_{a}^{*} \quad$ : in agreement with equation (4.8).

The expression (4.8) for $Q$ can now be inserted into (4.3) to obtain an approximate expression for $F_{12}$ :

$$
\begin{align*}
& F_{12}\left(r^{\prime} \rightarrow r\right)=\frac{\sigma_{2 a}}{\sigma_{2 a}^{*}} \frac{\sigma_{i 12}^{*}}{\sigma_{1 a}^{*}} \frac{4 \pi \int_{1}^{\infty} T_{1}(r) T_{2}(r) r^{2} d r}{4 \pi \int_{a}^{\infty} T_{1}(r) r^{2} d r \cdot 4 \pi /_{2}^{\infty} T_{z}(r) r^{2} d r}  \tag{4.10}\\
& x\left\{1-4 \pi / P_{1}^{a}\left(r^{\prime}-r^{\prime \prime}\right) r^{\prime \prime 2} d r^{\prime \prime}\right\}\left\{1-4 \pi / P_{2}^{a}\left(r \rightarrow r^{\prime \prime}\right) r^{\prime \prime 2} d r^{\prime \prime}\right.
\end{align*}
$$

Recalling the expression (2.2) for $P_{i 2}$, this can be simplified

$$
\begin{align*}
& \text { to } F_{12}\left(r^{\prime}-r\right)=\frac{\sigma_{12}^{*}}{\sigma_{12}^{* *}}\left\{1-4 \pi / \frac{P_{1}}{P_{1}}\left(r^{\prime} \rightarrow r^{\prime \prime}\right) r^{\prime \prime 2} d r^{\prime \prime}\right\} \\
& \left\{1-4 \pi \int_{0}^{a} P_{2}\left(r \rightarrow r^{\prime \prime}\right) r^{\prime \prime 2} d r^{\prime \prime}\right\} \cdot \frac{3}{4 \pi a^{3}} \cdot \frac{P_{B}}{\left(1-\frac{1}{2 \frac{1}{2} 0}\right)}
\end{align*}
$$

If in the exact equations (4.1) the (inexact) relation (4.11) is used these equations are seen to depend only on the kernels $P$. These kernels can be approximated in a series of aporoximate forms fust as in Chapter II. We shall only exhibit the case corresponding to the first lower approximation here. The extension to the higher approximations are obvious by analogy, and án example is given in

Appendix V. It must be pointed out, however, that these approximations cannot converge th the true answer (except in the diffusion theory limit) when there is tamper inelastic scattering. This is because they converge to an exact solution of (4.1) only after the expression (4.11) is used, and this latter is itself inexact. We discuss to some extent the accuracy of 4.11 at the end of this section. Since 4.11 is inexact it is not too sensible to try to solve (4.1) very exactly when (4.11) is used and the method of first lower approximation of Chapter II should be sufficient. In this method we set every eigenvalue in the bilinear expansions for $P_{1}$ and $P_{2}$ equal to the lowest eigenvalue. Equations 4.3 and 4.4 of Ch . II then yield:
$P_{1}\left(\vec{x}^{\prime} \rightarrow \vec{x}\right)=\frac{1}{\sum_{10}} /\left(\vec{x}^{\prime}-\vec{x}\right)$
$P_{2}\left(\vec{x}^{\prime}-\vec{x}\right)=\frac{1}{\sum_{20}} /\left(\vec{x}^{\prime}-\vec{x}\right)$

A corresponding expression for the kernel $F_{12}$ can be obtained by inserting the expressions 4.12 into equation 4.10. This yields, $P_{12}$ :
$F_{12}\left(r^{\prime}-r\right)=\frac{\sigma_{i 12}^{*}}{\sigma_{12}^{*}}\left(1-\frac{1}{2 P_{10}}\right) \frac{P_{12}}{4 \pi \int_{0}^{a} r^{2} d r}$
With these approximations, equations 4.11 become:
$A_{1}(r)=\frac{1}{2_{10}}\left[S(1-1) A_{1}(r)+S(2-1) A_{2}(r)\right]$
$A_{2}(r)=\frac{1}{\Gamma_{20}}\left[S(1-2) A_{1}(r)+S(2 \rightarrow 2) A_{2}(r)\right]$

$$
\begin{align*}
& +\frac{\sigma_{12}^{*}}{o_{12}^{*}}\left(1-\frac{1}{\sum_{10}}\right) P_{12} \frac{1}{4 \pi / x^{2} d r}\left[S(1-1) 4 \pi / r_{0}^{a} d r A_{1}(r)\right.  \tag{4.14}\\
& \left.\quad+S(2-1) 4 \pi / r^{a} d r A_{2}(r)\right]
\end{align*}
$$


b9.

We now integrate each equation over the core and denote by $A_{1}$ and $A_{\varepsilon}$ (without arguments) the tatal number of absorptions taking place in the core at velncities one and two respectively. We obtain two algebraic equations for $A_{1}$ and $A_{2}$ :

$$
\begin{aligned}
& A_{1}=\frac{1}{\nu_{10}}\left[S(1 \rightarrow 1) A_{1}+S(2 \rightarrow 1) A_{2}\right] \\
& A_{2}=\frac{1}{\nu_{20}}\left[S(1 \rightarrow 2) A_{1}+S(2 \rightarrow 2) A_{2}\right]
\end{aligned}
$$

$$
\begin{equation*}
+\frac{\sigma_{12}^{*}}{\sigma_{12}^{*}}\left(1-\frac{1}{\nu_{10}}\right) P_{12}\left[S(1-1) A_{1}+S(2-1) A_{2}\right] \tag{4.15}
\end{equation*}
$$

These equations are identical to the equations (1.2) at the beginning of this chapter. We see that they correspond to several approximations. First, and possibly best, there is the approximation of using first lower approximation. This was discussed in Chapter II. There is further the difficulty that $P_{12}$ can only Methods to do this were discussed in sections 2, and $3{ }^{\circ}$ of this chapter be calculated easily approximately. $\mathcal{T}$ Finally there is the approximation used in obtaining the expression $F_{12}$ in the form (4.11) or what is the same thing, the step leading from (4.4) to (4.5) in the calculation of $Q$, in which all the tamper functions have been assumed to be nearly of the same form. We shall discuss this approximation at some further length now, but unfortunately will not develop a simple way of decreasing the error made by it.

The expression 4.5 for the kernel $Q$ is not in general correct


because, as has been pointed out, the transition effects will be different for the different normal modes and the step which leads from equation 4.4 to equation 4.5 will therefore be incorrect. The difficulty is equally obvious from the physical point of view that led to an interpretation of equation (4.8). Here one is now unable to say that the distribution of absorptions in the tamper depends only in size on the point in the core from which the neutrons are released. We are therefore unable to write $Q_{1}\left(r^{\prime} \rightarrow r^{\prime \prime}\right)$ in the factored form (4.8) where each factor is a function only of one variable.

Having pointed out the difficulties, we shall now see, that there is certainly good reason to believe that the expression (4.10) for the kernel $F_{12}$ is a useful approximation even when diffusion theory is not valid. Although in general there will be transition effects at the boundary, these effects will be qualitatively similar for the various normal modes, in that the neutron density in the tamper will always rise above the asymptotic solution close to the core-tamper interface. This positive discrepancy will always decay rapidly away from the interface but the characteristic length of this decay, while always considerably less than a mean free path in the tamper, is less for the higher normal modes than for the lower. This is so because a core density which oscillates rapidly compared with a mean free path sends positive and negative neutrons out normally to the interface in about equal numbers. This cancellation does not occur for neutrons emerging at an angle so large that the essential contribution to the emerging neutrons (within one mean free path from the interface, measured along a chord at the emerging angle) comes from the

positive part of the density closest to the interface. This emphasis on large angles in the emerging distribution for the higher modes means that the first collisions necessary to establish the asymptotic tamper solution will be made closer to the interface.

In view, however, of the qualitative similarity of the transition effects for the various normal modes, it is reasonable to believe that the combination of tamper integrals occurring in the expression 4.3 for $F_{12}$ when used for 4.4 will be nearly independent of the indices $k$ and $j$ which run over all normal modes for velocities sne and two. We would then obtain the expression (4.10) as an approximation to $F_{12}$.

We can also consider this approximation from the physical point of view that led to an interpretation of Equation (4.8). Consider a source of neutrons in the form of a spherical shell at radius $r^{\prime}$ in the core. The resulting density of absorptions can be represented by a curve like the following:


The curve in the tamper will be asymptotically an exponential but will have a transition at the interface. In the core the curve will consist of increasing and decreasing exponentials arranged to be finite at the center and-have a disoontinuity of slope at $r^{\prime}$.

There will be transition offects at the source radius and at the interface. The region near the interface will not be affected by the position of the source provided the source is far enough away, 1.e., more than a small fraction of a mean free path from the interface.

The shape of the curve in the tamper will therefore be indepene, dent of $r^{\prime}$ except when $r^{\prime}$ is very near to the core radius in the sense previously mentioned. Equation (4.8) will therefore be correct, except when $r^{\prime}$ is near the core radius, if $T(r)$ and $T_{2}(r)$ is the correct tamper solutions for a source inside an absorbing core.

Section 5 Extension to three or more velocity groups.
The methods which we have developed so far in this chapter are sufficient to solve two-velocity problems with sufficient accuracy for practical purposes. The representation of a problem with a continum of velocities by a reduction to one with two velocities is, however, rather crude. We should therefore like to develop methods for handing problems with three or more neutron velocities without any drastic increase in the amount of labor required. We shall also not be able to obtain arbitrary accuracy for three-velocity problems but for practical purposes we can do sufficiently well.

The approach previously used will be useful but some extension will be necessary. We can again write the neutron densities in the core at any velocity as a series of the normal modes appropriate to that velocity. We can then, in principle, write a system of simultaneous equations between the co-efficients of these normal modes to describe the balance between neutron production and neutron absorption at every velocity.

To do this we must, of course, calculate the distribution of absorptions in the tamper from each normal mode and calculate by the methods previously evolved the distribution of absorptions in the core of singly inelastically scattered neutrons returning from the absorptions in the tamper. If we then make the assumption that only the fundamental modes at each velocity are important we would then have a scheme like the one which we used for two velocity problems. One difficulty remains, that of calculating the number of absorptions of neutrons of velocity three in the core which have been doubly inelastically scattered from velocity one in the tamper. In order to be as brief as possible, we shall content ourselves here to deriving as simply as possible expressions to take into account this double inelastic scattering. We shall not attempt to exhibit the errors made in the formulas, although this can be done, because it leads to very complex expressions, and nothing essentially new is learned. The errors are of exactly the same kind (but somewhat larger, by accumulation) as those made in the discussion of the single inelastic scattering. They are due to neglect of transition effects to various degrees. The fundamental equations (1.2) when generalized to include inelastic scattering and limited to a system in which the neutrons have just three possible velocities, become

$$
A_{1}=\frac{1}{\nu_{10}} G_{1}
$$

$$
A_{2}=\frac{1}{\nu_{20}} G_{2}+\frac{\sigma_{12}^{*}}{\sigma_{12}^{*}}\left(1-\frac{1}{\nu_{10}}\right) p_{12} G_{1}
$$

$$
A_{3}=\frac{1}{\nu_{30}} G_{3}+\frac{\sigma_{13}^{*}}{\sigma_{12}^{*}}\left(1-\frac{1}{\nu_{10}}\right) \rho_{13} G_{1}+\frac{\sigma_{1}^{*}}{\sigma_{23}^{*}}\left(1-\frac{1}{\nu_{20}}\right) \rho_{23} G_{2}
$$

$$
+\frac{o_{112}^{*}}{o_{12}^{*}}\left(1-\frac{1}{\nu_{10}}\right) p_{123} G_{1}
$$

Here the quantities are defined exactly analogously to those of equations (1.2) for two groups, except to simplify the writing we have made the abbreviations

$$
\begin{align*}
& G_{1}=S(1 \rightarrow 1) A_{1}+S(2 \rightarrow 1) A_{2}+S(3-1) A_{3} \\
& G_{2}=S(1 \rightarrow 2) A_{1}+S(2 \rightarrow 2) A_{2}+S(3 \rightarrow 2) A_{3} \\
& G_{3}=S(1 \rightarrow 3) A_{1}+S(2 \rightarrow 3) A_{2}+S(3 \rightarrow 3) A_{3} \tag{5.2}
\end{align*}
$$

so that $A_{1}, A_{2}, A_{3}$ represent the number of neutrons absorbed in the core at each velocity, and $G_{1}, G_{2}, G_{3}$ have the significance of the number at each velocity which are generated in the core. The first two equations of (5.11) are just as in (1.2), the third represents the absorptions of group-three neutrons. The first term represents those generated at velocity 3 ir. the core which are returned to the core.


The second term represents neutrons which are generated at velocity one, are inelastically scattered in the tamper with cross section Oi3 directly from velocity one to three, and which are absorbed at velocity three in the core. The form is obvious and it is clear that $p_{13}$ is iust analagous to the $P_{12}$ of previous sections but is calculated using constants of regions one and three, rather than one and two as for $P_{12}$. The third term represents those generated in the core at velocity two and which thereafter are scattered inelastically to three in the tamper and subsequently absorbed in the core. This leaves out of account neutrons which start at velocity one in the core, are inelastically scattered to region two in the tamper, and then before returning to the core are inelastically scattered again from two to three, eventually being absorbed in the core at velocity three. It is clear that this effect is accounted for by the last term if:
$P_{123}$ is defined as the average probability that a neutron liberated at velocity two in the tamper (by inelastic scattering from velocity one) is inelastically scattered again to velocity three, and is absorbed in the core at that velocity three.

These equations (5.1) which are rewritten in simplest form in Chapter IV, are the equations which may be used to solve three velocity problems with practical accuracy. Their use, however, requires a method of estimating $P_{123}$

We can find this by an analogue of the method used in section 3 to find $\rho_{12}$. Clearly $\rho_{123}\left(\right.$ like $\left.P_{12}\right)$ depends on conditions at velocity one only through the shape $T_{1}(r)$ of the source of neutrons at one. We can take an imaginary problem with the constants of regions two and three as they actually are, and
change region one to a region $x$ which has the constants of two, but an inelastic cross section so adjusted that $T_{x}$ is close to $T_{1}$ (exactly the same value of $\sigma_{i \times 2}^{*} \quad$ in fact as is required, as for $\rho_{123}$ by equation (3.6). Then the quantity may serve as a good approximation to $P_{123}$. The $P_{x 23}$ can be found since we know the $\boldsymbol{\nu}$ (say $\nu_{c}$ ) required to make the whole system critical as it is just a two velocity problem with velocities two and three which can be solved by methods already worked out. The $P_{x 23}$ is adjusted so that (5.1) will give the right answer in this case. There is no loss in generality in determining the $\mathrm{p}_{\times 23}$ in simply letting group-three neutrons only regenerate group $x$ and this simplifies the values of $S(i \rightarrow j)$. They all vanish except $S(3 \rightarrow x)=\nu_{c}$. of course $\sigma_{i x 3}^{*}$ is to be taken equal to $\sigma_{i 23}^{*}$ as is every crass section for region $x$ and 2 except that $\sigma_{x a}^{*}$ and $\sigma_{c a}^{*}$ differ by the extra $\sigma_{i \times 2}^{*}$ in $\sigma_{x a}^{*}$. Equations (5.2) give $G_{1}=\nu_{c} A_{3}, G_{2}=0$ and $G_{3}=0$ so that the equations (5.1) reduce to
$A_{1}=\frac{1}{\nu_{10}}{\sum C A_{3}}$
$A_{2}=0+\frac{\sigma_{i x}^{*}}{\sigma_{x a}^{*}}\left(1-\frac{1}{\nu_{x}}\right) p_{x 2} \nu_{c} A_{3}$
$A_{3}=0+\frac{\sigma_{i 23}^{*}}{\sigma_{x a}^{*}}\left(1-\frac{1}{\nu_{x}}\right) p_{x 3} v_{c} A_{3}+0+\frac{\sigma_{x}^{*} x_{2}}{\sigma_{x a}^{*}}\left(1-\frac{1}{v_{x}}\right) p_{x 2 s} z_{c} A_{3}$

Only the third of these is required and this determines Px23 immediately in terms of $\boldsymbol{L}_{c}$ (divide by $A_{3}$ ). We may next determine by the two group problem with two and three. We may observe that this is just what is obtained if the neutrons from three feed two directly but do not feed $x$. That is for this case all $S$ vanish except the single $S(3 \rightarrow 2)=L_{c}$. Hence $G_{1}=G_{3}=0, G_{2}=\nu_{c} A_{3}$ and the equations (5.1) become,
$A_{1}=0$
$A_{2}=\frac{1}{\nu_{20}} v_{c} A_{3}+0$
$A_{3}=0+0+\frac{o_{23}^{*}}{\sigma_{2 a}^{*}}\left(1-\frac{1}{\nu_{20}}\right) p_{23} \mu_{c} A_{3}+0$
Thus, again only the third equation is needed and it yields
$\frac{1}{V_{c}}=\frac{\sigma_{23}^{*}}{\sigma_{2 a}^{*}}\left(1-\frac{1}{V_{20}}\right) p_{23}$
when this is substituted into the third of the equations (5.3) there results an expression from which $P_{x 23}$ may be determined:
$\frac{o_{x 3}^{*}}{\sigma_{2 a}^{*}}\left(1-\frac{1}{\nu_{20}}\right) p_{23}=\frac{o_{2,}^{*}}{\sigma_{x a}^{*}}\left(1-\frac{1}{\nu_{x}}\right) p_{x 3}+\frac{\sigma_{i x 2}^{*}}{\sigma_{x a}^{*}}\left(1-\frac{1}{\nu_{x}}\right) p_{x 23}$
(This expression may also be seen directly by careful reasoning). We now choose orca as in equation (3.4), and define all the $g$ quantities and $\nu_{x}=\nu_{12}$ exactly as in this case.

Then we can take $\rho_{x 23}$ as $\rho_{123}$. We can also approximate $p_{x 3}$ by $P_{13}$ since the former is the transfer from $T_{x}$ to three and the latter is that from $T_{1}$ to three, and $T_{x}$ and $T_{1}$ are nearly equal. Hence we finally obtain a useful formula for $\mathrm{p}_{123}$ :

$$
\begin{equation*}
p_{123}=\frac{p_{123}^{*}}{g_{2} \sigma_{2}^{*}} \cdot \frac{1}{1-\frac{1}{\nu_{12}}} \cdot \frac{1}{g_{12}-g_{2}}\left\{g_{12}\left(1-\frac{1}{\nu_{2}}\right) p_{23}-g_{2}\left(1-\frac{1}{\nu_{12}}\right) p_{13}\right\} \tag{5.7}
\end{equation*}
$$

To use this $P_{13}$ and $\rho_{23}$ may be obtained by any of the methods outlined in sections 2 and 3. Unfortunately $p_{123}$ is obtained as a difference of terms, and this makes the accuracy of $p_{123}$ less than that of quantities like $P_{12}$. It is probably true that the best results are obtained if $\rho_{23}$ and $\rho_{13}$ in (5.7) are both calculated by the same method, and presumably it is best to use the method of section 3 (equation (3.5) ). This is because the derivation of (3.5) is like that of (5.7) and some thought indicates that if this method is used the errors in $p_{23}$ and $p_{13}$ after substitution in (5.7) tend to offset each other rather than accumulate.

There are, in analogy to the case of $\mathrm{p}_{12}$, many other forms that $p_{123}$ can be written. For example, by eliminating $\nu_{12}$ by equation (3.5), and expressing it in terms of $p_{12}:$
$p_{123}=\frac{\sigma_{2}^{*}{ }_{2}^{*}}{g_{2} \sigma_{2}^{*}}\left\{\frac{g_{2}}{g_{12-} g_{2}}\left(p_{23}-p_{13}\right)+\left(1-p_{12}\right) p_{23}\right\}$
(This can also be derived directly by other methods). There is no point to this (it is identical to 5.7) if the p's are calculated by (3.5), which is the recomrended proceedure, but if another formula (say 2.4) is used for the p's the relation (5.8) may be

easier to use.
Again, we might have made the analysis of $\mathrm{P}_{123}$ in another way, in that we could have put the constants of group two similar to group three and thus obtained a new form. This simply reverses the role of groups one and three. The easiest way of seeing what will result is to find $\rho_{123}$ (obtained by formula 5.7) (simply by interchanging the constants of group three with those of group one) and then noting as in the case of $p_{i 2}$, equation (3.16), it is possible to demonstrate a reciprocity relation:
$\frac{\sigma_{a}}{\sigma_{1 a}^{*}}\left(1-\frac{1}{\nu_{1}}\right) \frac{o_{z_{a}^{*}}^{*}}{\sigma_{i 23}^{*}} p_{123}=\frac{\sigma_{34}}{\sigma_{32}^{*}}\left(1-\frac{1}{\nu_{3}}\right) \frac{o_{2 a}^{*}}{\sigma_{i 21}^{*}} p_{123}$
so that $P_{123}$ is known when $P_{321}$ is found in this manner. If this method is applied to 5.8 there results

$$
\left.p_{123}=\frac{\sigma_{12}^{*}}{\sigma_{1 a}} \cdot \frac{\sigma_{3 a}}{\sigma_{3 a}^{*}} \cdot \frac{\sigma_{123}}{\sigma_{2 a}^{*}} \cdot \frac{\left(1-\frac{1}{2_{3}}\right)}{\left(1-\frac{1}{y_{1}}\right)}\left\{\frac{g_{2}}{g_{32}-g_{2}}\left(p_{21}-p_{31}\right)+\left(1-p_{32}\right) p_{21}\right\} 5.10\right)
$$

and of course other combinations are possible, using equations (3.5) and (3.15). In calculating $p_{32}$ just imagine the inelastic scattering to be reversed and equal to oon (but do not change $\sigma_{2 \alpha}^{*}$ and $\sigma_{3 a}^{*}$ ) so that the neutrons go from three to two instead of vice-versa. Then $g_{32}$ is the $g$ needed in region two to reproduce the absorption in region three.

Section 6 Extension to systems with finite tampers.
We now wish to develop a method for treating the case of a homogeneous, spherical core surrounded by a homogeneous, spherical tamper with finite outer radius. In the first place to apply our methods at all, we must know the solutions (critical $\mathcal{Z}$, etc.) for one-velocity problems with finite tampers. If the core and tamper are of equal mean free path the method of the extrapolated end point described by Frankel, Nelson, and Goldberg in LA-53 and LA-258 can be used to obtain very accurate results. When the free-paths are unequal the approximate methnds of Feymman (LA -608) or, of Serber (LA - 234 ) can be used.

We shall consider only the case of two neutron velocities. Not only will the critical values be different but the fundamental equations (1.2) will have to be altered in case the tamper is finite. The term in these equations,
$\frac{\sigma_{i 12}^{*}}{\sigma_{12}^{*}}\left(1-\frac{1}{2_{10}}\right) p_{12}\left[S(1-1) A_{1}+S(2 \rightarrow 1) A_{2}\right]$
must be changed in form, if $\rho_{12}$ is still defined as the number of core absorptions at velocity two per neutron liberated in the tamper. Of course, the formula for $\mathrm{P}_{12}$ will be altered, but beside that the term (6.1) in equations (1.2) must be replaced by:
$\frac{\sigma_{12}^{*}}{\sigma_{12}^{*}} \frac{\left(1-\frac{1}{2_{1}}\right)}{1+L_{1}} P_{12}\left[S(1 \rightarrow 1) A_{1}+S(2 \rightarrow 1) A_{2}\right]$

This term is to represent the number of neutrons liberated in the core at velocity one which are inelastically scattered (with cross-section $00_{i 2}^{*}$ ) in the tamper and are eventually absorbed in the core. It can be understood in the following way. Of the neutrons liberated in the core, which are $S(1 \rightarrow 1) A_{1}+S(2 \rightarrow 1) A_{2}$ in number, a fraction $\frac{1}{2 / 10}$ are returned to the core. Hence $1-\frac{1}{2 / 10}$ are not returned to the core. One of two things may have happened to these neutrons. They either have been absorbed in the tamper, or they have leaked out of the sutside of the tamper. Suppose we define: $L_{1}$
is the number of neutrons (of velocity one) which leak out of the tamper for each neutron which is absorbed in the tamper.

Then it is clear that
$\frac{1-\frac{1}{V_{10}}}{1+L_{1}}\left[S(1 \rightarrow 1) A_{1}+S(2-1) A_{2}\right]$
is the number of neutrons of velocity one which are absorbed in the tamper. Of those absorbed the fraction, $\frac{O_{i}^{*}}{O_{i 2}^{*}}$ are inelastically scattered, and these have the chance $P_{12}$ of finding their way back to the core at velocity two, by definition. Thus the form (6.2) is explained.

For finjte tamper problems then we have two quantities to calculate $L_{1}$ and $P_{12}$. We should first point out that $P_{12}$ cannot generally be calculated by a method of imaginary inelastic scattering analogous to that used in Section 3. This is becamse it is not possible to reproduce closely the function $T_{1}(r)$ by adjusting an absorption cross section in region two to make a function $T_{x}=\vec{T}_{12}$



This is because, although the asymptotic exponential rates $h_{1}$ and $h_{2}$ may be made to coincide, the boundary conditions at the outer edge are different, and thus the ratio of rising to falling exponentials cannot generally be correctly matched at the same time. Put another way, the extrapolated end points will be unequal. For that reason we can find $\rho_{12}$ only by the analogue of the method of section 2 in which we use explicit functions for $T_{1}$ and $T_{2}$ and neglect transition effects. This we proceed to do, finding first $L_{1}$ and then $\rho_{12}$.

Consider the neutrons which are lost from group one in the tamper. The absorptions of neutrons of group one are distributed approximately as

$$
c \cdot o_{1 a}^{*} \frac{\sinh n_{1}\left(b+x_{1}-r^{\prime}\right)}{r}
$$

where $C$ is a constant $h_{1}$ is the decay constant of the asymptotic solution in the tamper and $X_{1}$ is the extrapolated end point at the outside of the tamper. This distribution neglects the complicated transition effects at the core-tamper interface and at the outside of the tamper. We have defined a quantity $L_{1}$ as the number of neutrons of velority one which leak out of the tamper per neutron absorbed. This quantity can be approximately calculated in the following way. With the distribution just given, we integrate over the tamper to obtain the total number of absorptions and calculate the neutron current leaving the outer edge of the tamper. The current corresponding to an asymptotic neutron flux density $\quad \mathbb{N}$ is:

$$
\vec{J}=-\frac{g o^{*}}{h^{2}} \nabla \mathbb{N}
$$

This is easily shown by consideration of the integral equation and is seen to approach the diffusion theory expression for small $g$, which is correct.

The expression (6.3) will give the current wherever the asymptotic density is correct. We make the approximation that the current at the surface is correctly given by (6. ${ }^{\text {) }}$. This is valid for $g=0$, where the current is independent of radius, but becomes worse as $g$ is increased, because of the difference between the absorption in the transition effect at the outside surface and the absorption in the asymptotic density, which we have used to replace the transition effect.

We now obtain for $L_{1}$, by dividing the above calculated current by the total absorptions:

$$
\begin{equation*}
L_{1}=\frac{h_{1} b \cosh h_{1} x_{1}+\sinh h_{1} x_{1}}{h_{1} a \cosh h_{1}\left(b+x_{1}-a\right)+\sinh h_{1}\left(b+x_{1}-a\right)-h_{1} b \cosh h_{1} x_{1}-\sinh h_{1} x_{1}} \tag{6.4}
\end{equation*}
$$

where $a$ and $b$ are the core radius and the outside tamper radius, respectively. * Note: * Frankel and Goldberg (LA-258) describe methods whereby $L_{1}$ can be calculated exactly (exeluding transition effects at the core-tamper interface). That is the approximate formula (20) for $\vec{J}$ is corrected at the outside edge of the tamper. The result is that the combination $h_{1} b \cosh h_{1} x_{1}+\sinh h_{1} x_{1} \quad$ which appears in the numerator, and last half of the demominator, and which arises from (20), is to be replaced by (if we call of $=1$ )
$h_{1} \sqrt{\frac{m_{1}-g_{1}}{2 g_{1}\left(1-h_{1}^{2}\right)}}\left(b+\frac{1}{\pi} / T_{c} d s\right)$
where $T_{C}$ is a certain expression depending on $g$ given in LA -258. These expressions would be identical if the square root could be replaced by the $\cosh h_{1}, x_{1}$ and if $\frac{1}{\pi}$ times the integral could be replaced by $\tanh \frac{\left(h_{1} x_{1}\right)}{h_{1}}$ That this is nearly possible can be seen from the following table.

| $g$ | $\sqrt{\frac{h^{2}-g}{2 g\left(1-h^{2}\right)}}$ | $\cosh (h x)$ | $\frac{1}{\pi} \int_{0}^{1} T_{c} d s$ | $\tanh \frac{h_{1} x_{1}}{h_{i}}$ |
| :---: | :---: | :---: | :---: | :---: |
| 0.0 | 1.00 | 1.00 | .71 | .71 |
| .2 | 1.23 | 1.21 | .77 | .79 |
| .4 | 1.72 | 1.63 | .80 | .87 |
| .6 | 3.26 | 2.94 | .87 | .95 |

Since $g$ is rarely as large as 0.4 we can use the simpler form given in the text. Actually if $g$ is as large as 0.4 the entire formula is inaccurate for another reason. For such a large $g$ transition effects at the core tamper interface are considerable and limit the accuracy of (20).

To find $P_{12}$ we shall use an approximate representation of the tamper densities by asymptotic solutions of the integral equation. We define a kernel $\quad Q_{2}\left(\bar{x}-\bar{x}^{\prime}\right)$ as the flux density of neutrons of velocity two at a point $\vec{x}^{\prime}$ arising from a source of one neutron per second at $\vec{x}$. We call the tamper solution for group one $T_{1}(\vec{x})$ and approximate it by the asymptotic solustion so that:

$$
T_{1}(\vec{x})=\frac{\sinh h_{1}\left(b+x_{1}-r\right)}{r}
$$

To the accuracy which we used in deriving the previous expressions for $P_{12}$, we have for $P_{12}$ :

$$
\begin{equation*}
P_{12}=\theta_{2 a} \frac{16 \pi \int_{a}^{2} r^{b} d r \int_{0}^{a} r^{\prime e} d r^{\prime} T_{1}(r) Q_{2}\left(r \rightarrow r^{\prime}\right)}{4 \pi / a r^{b} d r T_{1}(r)} \tag{6.6}
\end{equation*}
$$

As before, we replace $Q_{2}\left(r-r^{\prime}\right)$ by $Q_{2}\left(r^{\prime} \rightarrow r\right)$, because of the fact that it is a symmetric one-velocity diffusion kernel. We then note that

$$
4 \pi \int_{0}^{r^{\prime 2} d r^{\prime} Q_{2}^{\prime}\left(r^{\prime} \rightarrow r\right) ~}
$$

is just the $f l u x$ density in the tamper of neutrons of velocity two, arising from a uniform source spread over the core, of unit strength per unit volume. Of the neutrons from such a source, $\frac{4 \pi a^{3}}{3}$ in number per second, a fraction equal approximately to $\frac{1}{\nu_{2}}$ are absorbed in the core, a fraction $1-\frac{1}{L_{2}}$ are lost in the tamper, and of these a fraction $\frac{1}{1+L_{2}} \quad\left(L_{2}{ }^{\text {is }}\right.$ defined by replacing 1 by 2 in the definition of $L_{1}$ ) are actually absorbed in the tamper. We can then write the desired density in the tamper as:
$\frac{1-\frac{1}{V_{2}}}{1+L_{2}} \cdot \frac{4 \pi a^{3}}{\sigma_{2 a}^{3}} \cdot \frac{T_{2}(r)}{4 \pi a_{a}^{b} r^{2} d r T_{2}(r)}$
where $T_{2}(r)$ is to be approximated by:
$T_{2}(r)=\frac{\sinh h_{2}\left(b+x_{2}-r\right)}{r}$

If we now do the indicated integrations, we obtain an explicit expression for

$$
\begin{aligned}
& P_{12}=\frac{a^{3}}{\sigma-\frac{\sigma_{2}^{2}}{\sigma_{2}^{*}}\left(1-\frac{1}{\nu_{2}}\right) \frac{h_{1}^{2} h_{2}^{2}}{\left[S_{1}+h_{1} a c_{1}-\Sigma_{1}-h_{1} b K_{1}\right]\left[S_{2}+h_{2} a c_{2}\right]}} \\
& \times\left\{\frac{\left(S_{1} c_{2}-\Sigma_{1} K_{2}\right)+\left(c_{1} S_{2}-K_{1} \Sigma_{2}\right.}{h_{1}+h_{2}}-\frac{\left(S_{1} c_{2}-\sum K_{2}\right)-\left(c_{1} S_{2}-K_{1} \Sigma_{2}\right)}{h_{1}-h_{2}}\right\}
\end{aligned}
$$

The following abbreviations have been used:

$$
S_{1}=\sinh h_{1}\left(b-a+x_{1}\right) \quad \Sigma_{1}=\sinh n_{1} x_{1}
$$

$c_{1}=\cosh h_{1}\left(b-a+x_{1}\right)$
$K_{1}=\cosh h_{1} X_{1}$
$S_{2}=\sinh h_{2}\left(b-a+x_{2}\right)$
$\Sigma_{2}=\sinh h_{2} x_{2}$
$c_{2}=\cosh h_{2}\left(b-a+x_{2}\right)$
$K_{2}=\cosh h_{2} x_{2}$
It can easily be shown that as
b is allowed to become very large, this expression for $P_{12}$ approaches the expression given by equation (2.4) of Chapter III for an infinite tamper. This is to be expected since the two derivations are completely parallel except for the thickness of the tamper. The formula as it stands is complicated, and some experience in its use would probably permit one to find simpler approximations to $1 t$, but we have nっt done a great deal of work with finite tampers as yet.



In appendix VII we give a numerical check of the procedure which we have developed for two group finite tamper problems. No actual calculations of this sort are available, because of their difficulty when done by more conventional methods. Ne therefore use the method to solve a one-velocity problem which has been articicially split into a two-velocity problem by the addition of an inelastic cross-section in the tamper. The problem can then be solved exactly as a one-velocity problem and we thus obtain a reasonable check of the method.

To extend the method to problems with three or more velocities would require the study of quantities analagous to $P_{123}$ for the finite tamper. This is difficult to work out for the general case, and entirely satisfactory formulae for this case have not been worked out.

If the total mean free path is nearly the same in all energy groups then the methods of section 2 and section 3 can be applied to obtain an appropriate formula for the analogue of $p_{123}$ Chapter IV Special Methnds for the Solution of Many Velocity Problems.

We propose in this chapter to describe specific procedures, based on the developments of the preceding chapters, for the solution of a useful variety of problems. We shall show how to calculate the multiplication rates of systems composed of a homngeneous spherical core and a homogeneous spherical tamper with arbitrary outside radius.


We shall try to devise suitable tests of the accuracy of the methods given and shall indicate how the methods may be extended to include more general problems.

## Section 1 Reduction of multiplying systems to equivalent critical problems.

We first state and prove the following useful theorem. Any system in which the neutron density depends on time through a factor $e^{a t}$ can be thought of as a critical system (density constant in time) in which a velocity - dependent capture crosssection equal to $\frac{\mathscr{V}}{V}$ is added to the system. The proof is elementary. Consider the Boltzmann equation describing the system. If $n(\vec{x}, \vec{v}, t) \quad$ is the complete density function, we have:

$$
\begin{equation*}
\frac{\delta n}{\delta t}+\vec{v} \cdot \vec{\nabla} n+\operatorname{von} n=S \tag{1.1}
\end{equation*}
$$

Here $S$ is the source of neutrons being restored to $\vec{X}$ and $\vec{v}$ and is explicitily independent of time, being the result of some linear integral operation on $n$. We write $n=n_{0}(\vec{x}, \vec{r}) e^{\infty t}$ and obtain:

$$
\begin{align*}
& \infty n_{0}+\vec{\nabla} \vec{\nabla} n_{0}+v o n_{0}=S_{0} \\
& \text { or } \vec{v} \vec{\nabla} n_{0}+v\left(o+\frac{c}{v}\right) n_{0}=S_{0} \tag{1.2}
\end{align*}
$$

Here $S_{0}$ is the result of the same operation on $\eta_{0}$ that gave $S$ when operating on $n$. From equation (1.2) we then see that the system is equivalent to a time independent one with total crosssection $\infty+\frac{a}{V}$ and no additional source involving $\boldsymbol{C}$, so that the $\frac{\alpha}{V}$ is essentially a capture cross section.

We shall then treat only critical systems, it being assumed that all multiplying or decaying systems have been reduced to critical by the use of the above theorem.

## Section 2 Methods for problems with no inelastic scattering in the tamper.

Let us begin by outlining the method which seems most useful for the solution of problems in which the tamper does not scatter inelastically. We shall use the first lower approximation developed in Chapter II. We consider a system composed of a homogenesus, spherical core with radius a and a homogeneous, spherical tamper with outside radius $b$. The core is characterized by a total cross section $\sigma_{C}(v)$, a fission cross section $\sigma_{f}^{( }(v)$, a capture cross section $\sigma_{c}(v)$, an inelastic cross section $\sigma_{i}(v)$, a fission spectrum $x(v)$ normalized to unit integral, an inelastic spectrum $\mathscr{J}\left(v^{\prime} \rightarrow v\right)\left(=0\right.$ for $\left.v>v^{\prime}\right)$ normalized to unit integral over $V$, a total cross section $\sigma_{c}^{*}(v)$ in the tamper, and a capture cross section $\sigma_{c}^{*}(V)$ in the tamper. The value of $\boldsymbol{\sim}$ for fission is given and it is desired to find the multiplication rate of the neutron density. We guess a multiplication rate $\alpha$ and add $\frac{\alpha}{V}$ to the total and capture cross sections in core and tamper. We then wish to find whether the resulting system is critical with the given value of $z$. We do this by finding the value of required for criticality. If the critical 2 is higher than the actual 2 we have guessed ton high a value for $\alpha$ and must adjust the next guess accordingly.

Usually two trials will give a useful value for the multiplication rate.

In order to find the critical value of $z$ we write equation (2.3) of Chapter II:
$A(v)=\frac{1}{\nu_{d}(v)} \int_{0}^{\infty} d v^{\prime} S\left(v^{\prime} \rightarrow v\right) A(v)$
We can write $S\left(V^{\prime} \rightarrow v\right)$ explicitly in terms of the cross sections ( $\infty$ and $\sigma_{c}$ are understood to have the $\left.\frac{\alpha}{V} a b s o r p t i o n ~ a d a d a\right) . ~$ Ne define an absorption cross section $\sigma_{a}(v)=\sigma_{i}(v)+\sigma_{c}(v)+\sigma_{f}(v)$ and write

$$
s\left(v^{\prime} \rightarrow v\right)
$$

as:
$S\left(v^{\prime} \rightarrow v\right)=\nu \times(v) \frac{\sigma_{i}\left(v^{\prime}\right)}{\sigma_{a}\left(v^{\prime}\right)}+\Psi\left(v^{\prime} \rightarrow v\right) \frac{\sigma_{i}\left(v^{\prime}\right)}{\sigma_{a}^{\prime}\left(v^{\prime}\right)}$
Equation (1.3) becomes, remembering that inelastic scattering must decrease the energy of a neutron:
$A(v)=\frac{\nu x(v)}{\nu_{0}(v)} \int_{0}^{\infty} d v^{\prime} \frac{\sigma_{i}\left(v^{\prime}\right)}{\sigma_{a}^{( }\left(v^{\prime}\right)} A\left(v^{\prime}\right)+\frac{1}{\nu_{0}(v)} \int_{v}^{\infty} d v^{\prime} \psi\left(v^{\prime} \rightarrow v\right) \frac{\sigma_{i}\left(v^{\prime}\right)}{\sigma_{a}^{\prime}\left(v^{\prime}\right)} A\left(v^{\prime}\right)$

For convenience, we choose the size of $A(v)$ so that one neutron emerges from fission per second. That is, we place:
$v \int_{0}^{\infty} d v \frac{\sigma_{g}(v)}{\sigma_{a}^{( }(v)} A(v)=1$

With this normalization, equation (5) becomes:
$A(v)=\frac{x(v)}{\nu_{0}(v)}+\frac{1}{\nu_{0}(v)} / v_{v}^{\infty} v^{\prime} Z \sim\left(v^{\prime} \rightarrow v\right) \frac{\sigma_{i}\left(v^{\prime}\right)}{\sigma_{a}^{\prime}\left(v^{\prime}\right)} A\left(v^{\prime}\right)$
All the functions in equation (2.5) are known except for $A(v)$ and $\nu_{0}(V)$. Since $\nu_{0}(V)$ is just the $\boldsymbol{\nu}$ required for criticality in a certain known one-velocity problem (Chapter II), we can calculate it by the methods suggested in Chapter I so that only $A(v)$ remains to be found. Equation (2.5) can then be integrated numerically step-by-step. Suppose $V_{0}$ is the highest energy of the fission spectrum. Then $A\left(V_{0}\right)$ is just $\frac{x\left(V_{0}\right)}{V_{0}\left(V_{0}\right)}$ We start $A(v)$ with this initial value and find it for successively lower valuesof $\mathbf{V}$ by using the values already found to do the integral on the right-hand side of equation (2.5). We finally obtain the complete function $A(v)$, on the assumption of the normalization (2.4). If the function $A(v)$ is then substituted in the normalization condition and the integral performed, we obtain the value of $\boldsymbol{\nu}$ required for criticality. This procedure is a useful one in cases where one desires a detailed picture of the spectrum of neutrons present inside the system or escaptng from it. It may be expected to be very accurate for the untamped case, in which case the assumption of no inelastic scattering in the tamper is exact and in addition the first upper approximation will be extremely good because of the similarity in shape of the untamped eigenfunctions at all velocities. Its accuracy may be less but will still be very good in cases where the properties of the tamper do not vary wildy with velocity.

## Section III Special simplifying assumption for inelastic scattering.

There are some cases with a continium of velocities in which the integral equation can be solved exactly, and a great deal of numerical work can be avoided. For example, it may be sufficiently accurate to represent the inelastic scattering cross sections in a special form such that the integration of equation (2.5) is much simplified. Suppose we could write:

$$
\begin{equation*}
\sigma_{i}\left(v^{\prime}\right) \phi\left(v^{\prime} \rightarrow v\right)=\sum_{n=1}^{N} \sigma_{n}\left(v^{\prime}\right) x_{n}(v) \tag{3.1}
\end{equation*}
$$

This is just the assumption that the inelastic scattering behaves as though there existed various varieties of fission, each with its own cross section as a function of velocity $o_{n}\left(v^{\prime}\right)$, and associated with each kind of fission a different normalized spectrum
$x_{n}$ (v) ; and with a $\geqslant$ of 1 . In order to represent real inelastic scattering $\sigma_{n}(v)$ should be taken different from zero only for values of $V$ higher than those for which $x_{n}(v)$ is different from zero.

If we now write equation (2.5) we have:
$A(v)=\frac{x(v)}{v_{0}(v)}+\frac{1}{v_{0}(v)} \sum_{n=1}^{N} x_{n}(v) \int_{0}^{\infty} \frac{O_{n}\left(v^{\prime}\right)}{\sigma_{2}\left(v^{\prime}\right)} A\left(v^{\prime}\right) d v^{\prime}$

This can be reduced to a set of $N$ linear inhomogeneous algebraic equations for $\mathbf{N}$ unknowns. We define:
$A_{n}=\int_{0}^{\infty} \frac{o_{n}(v)}{\sigma_{\hat{a}}(v)} A(v) d v$
(3.3)
and obtain:
$A(v)=\frac{x(v)}{\nu_{0}(V)}+\sum_{n=1}^{N} A_{n} \frac{x_{n}(v)}{\nu_{0}(v)}$
which gives the function $A(v)$ in terms of the known functions $x(v), \dot{x}_{n}(v)$ and $\boldsymbol{\nu}(v)$ and the unknown coefficients $A_{n}$. These coefficients can be determined by multiplying equation (3.4) by $\frac{\sigma_{n}(V)}{\sigma_{a}(V)}$

$$
\begin{equation*}
A_{m}=\int_{0}^{\infty} \frac{O_{m}(v)}{\sigma_{a}(v)} \frac{x(v)}{v_{0}(v)} d v+\sum_{n=1}^{N} A_{n} \int_{0}^{\infty} \frac{O_{m}(v)}{O_{a}^{2}(v)} \frac{x_{n}(v)}{\nu_{0}(v)} d v \tag{3.5}
\end{equation*}
$$

This set of linear algebraic equations are easily solved (if N is not large) and we then have $A(v)$ from (3.4). We can finally find the $\boldsymbol{v}$ for criticality by performing the integral indicated in equation (2.4).

It should be finally pointed out that the integral equation can also be solmed if the inelastic scattering can be represented by another form. Suppose $\boldsymbol{\phi}\left(V^{\prime} \rightarrow V\right)$ is of a form analagous to that arlsing from collisions of neutrons with protons, equation (2.5) can be integrated as a first order differential equation. That is, suppose we can write, with sufficient accuracy

$$
\begin{align*}
\phi\left(v^{\prime} \rightarrow v\right) & =\phi_{1}\left(v^{\prime}\right) \phi_{2}(v) & & v^{\prime}>v  \tag{3.6}\\
& =0 & & v^{\prime}<v
\end{align*}
$$


(for neutrons on protons this can be done exactly,

$$
\begin{aligned}
& \phi_{1}=\frac{1}{\left(v^{\prime}\right)^{2}}, \phi_{2}=2 v \\
& (2.5)
\end{aligned}
$$

- We then have for equation

$$
\begin{aligned}
& A(v) \frac{x(v)}{\nu_{0}(v)}+\frac{\phi_{2}(v)}{\nu_{0}(v)} \int_{v}^{\infty} d v^{\prime} \frac{\sigma_{i}\left(v^{\prime}\right)}{\sigma_{a}\left(v^{\prime}\right)} \phi_{1}\left(v^{\prime}\right) A\left(v^{\prime}\right) \\
& \text { or } \frac{v_{0}(v)}{\phi_{2}(v)} A(v)=\frac{x(v)}{\phi_{2}(v)}+\int_{0}^{\infty} v^{\prime} \frac{\sigma_{i}\left(v^{\prime}\right)}{O_{2}\left(v^{\prime}\right)} \phi_{1}\left(v^{\prime}\right) A\left(v^{\prime}\right)
\end{aligned}
$$

This can be differentiated with respect to $V$ ti s obtain:

$$
\begin{equation*}
\frac{d}{d v}\left[\frac{m_{0}(v)}{\phi_{2}(v)} A(v)\right]+\frac{\sigma_{i}(v)}{\sigma_{a}(v)} \phi_{1}(v) A(v) \frac{d}{d v}\left[\frac{x(v)}{\phi_{2}(v)}\right] \tag{3.8}
\end{equation*}
$$

This can impodiately ie intepratri th give $A(V)$ as an indefinite !ntegral on $v$ - In general the integral cannot be performed analytically, but pood accu racy can be obtained by the use of Simpson's file, $n:$ some equivalent method. The application of this method to the treatment of the hydride problem has been given by Ehrlich in LA -CB.

## Section 4 The methol of velocity groups

A somewhat less cumbersome procedure, which is not exact but will give good accuracy in critical mass calculations (but not so detailed an energy spectrum), is the so called group approximation. We assume that neutrons have only certain discrete energies and average the cross sections in such a way that reasonable results are obtained. This approximation can be put on a rigorous basis if there is no inelastic scattering in the tamper. We proceed to do this by one possible method.

In equation (2.5) we write $A(v)=\sigma_{\mathrm{d}}(v) N(v)$
where $N(v)$ is the flux density at velocity $v$ integrated ower the core. Equation (2.5) becomes, if we multiply by $\boldsymbol{\nu}_{0}(v)$ and remember equation (5.11) of Chapter I (for $\nu_{0}$ in terms of $\mathfrak{f}$, where $f$ is the number of excess neutrons required per collision for criticality):

$$
\begin{array}{r}
{\left[\sigma_{a}(v)+f(v) \sigma^{\prime}(v)\right] N(v)=v \times(v) \int_{0}^{\infty} d v^{\prime} \sigma_{\underline{p}}\left(v^{\prime}\right) N\left(v^{\prime}\right)} \\
+\int_{v} d v^{\prime} \Psi \Gamma\left(v^{\prime} \rightarrow v\right) \sigma_{i}\left(v^{\prime}\right) N\left(v^{\prime}\right) \tag{4.1}
\end{array}
$$

In equation (4.1), we interpret the left-hand side as the number of neutrons lost from velocity $V$ per second and the right hand side as the number added to velocity $V$ per second. Equation (4.1) of course says that these must be equal for criticality. The first term on the left, os , is the number lost by absorption, whereas $f \circ \mathbb{N}$ is the number lost by leakage into the tamper. We shall think of $f(\infty)$ as an effective cross section for loss of leakage.

APPROVED FOR PUBLIC RELEASE

We now define $\boldsymbol{n}$ energy regions or groups, as we will call them, which do not overlap but collectively include the complete range of energy. Let us call $u_{i}$ and $v_{i}$ the lower and upper limits respectively of $i$ th group, and understand that the first group has the lowest energy. We then integrate equation (4.1) over the $i$ th group and obtain:

$$
\begin{align*}
& \int_{u_{i}}^{v_{i}} O_{i}^{2}(v) N(v) d v+\int_{u_{i}}^{V_{i}}(v) O-(v) N(v) d v= \\
& \text { We define: }
\end{align*}
$$

$$
\begin{align*}
& \int_{u_{i}}^{v_{i}} N(v) d v=N_{i} \\
& \frac{\int_{u_{i}}^{v_{i}} \cos (v) N(v) d v}{u_{u_{i}}} N(v) d v \quad \bar{\sigma}_{2}^{i} \\
& \frac{\int_{u_{i}}^{v_{i}} £(v) \operatorname{oo}(v) N(v) d v}{v_{i}}=\overline{f \sigma^{a}} i  \tag{4.3}\\
& \int_{u_{i}}^{v_{i}} x(v) d v=x_{i} \\
& \frac{\int_{u_{i}}^{v_{i}} \sigma_{f}(v) N(v) d v}{\int_{u_{i}}^{v_{i}} N(v) d v}=\bar{o}_{i}^{i}
\end{align*}
$$

Equation (4.2) can then be written, reversing the order of intgration in the term involving the inelastic cross section:

$$
\bar{\sigma}^{i} N_{i}+\bar{f}_{\sigma^{i}}^{i} N_{i}=\nu x_{i} \sum_{j=1}^{n} \bar{\sigma}_{f}^{j} N_{j}
$$

$$
+\int_{v_{i}}^{\infty} d v^{\prime} \sigma_{i}\left(v^{\prime}\right) N\left(v^{\prime}\right) \int_{u_{i}}^{v_{i}} d v^{v^{\prime}} F\left(v^{\prime} \rightarrow v\right)
$$

$$
\begin{equation*}
+\int_{\text {er define }}^{u_{i}} v_{i}^{v^{\prime}} \sigma_{i}\left(v^{\prime}\right) N\left(v^{\prime}\right) \int_{u_{i}}^{v^{\prime}} d v w^{\prime} v\left(v^{\prime} \rightarrow v\right) \tag{4.4}
\end{equation*}
$$

We further define
$\frac{\int_{u_{j}}^{v_{j}} d v^{\prime} \sigma_{i}\left(v^{\prime}\right) N\left(v^{\prime}\right) \int_{u_{i}}^{v_{i}} d v \notint^{v_{j}}\left(v^{\prime} \rightarrow v\right)}{\int_{u_{j}}^{v_{j}} d v N(v)}=\bar{\sigma}_{i}^{j i}$

The quantity $\bar{\sigma}_{i}^{j i} \quad$ is essentially an average inelastic scattering cross section from the $j$ th group th the $i$ th group. It is different from zero only if $j \geq i$. Its values for $i=j$ represent an addition to the elastic cross sections arising from inelastic scattering which fails to remove a neutron from the group in which it started. In the definition (4.5), the $v_{i}$ in the integral over $v$ could be replaced by $v^{\prime}$, since $\quad \quad \Psi\left(v^{\prime} \rightarrow v=0\right.$ for $v>v^{\prime}$
Equation (4.4) cen now be written:
$\bar{\sigma}_{i}^{i} N_{i}+\bar{f}_{\sigma^{i}}^{i} N_{i}=\nu x_{i} \sum_{j=1}^{n} \bar{\sigma}_{\hat{f}}^{j} N_{j}+\sum_{j=1}^{n} \bar{\sigma}_{i}^{j i} N_{j}$


If the average cross sections occurring in equation (4.6) have been obtained by integrating over the actual spectrum, the set of $N_{i}$ and the $\boldsymbol{v}$ obtained will be identical with their correct values. The approximation which will be used is that of using an approximate spectrum (guessed or calculated on some simplified assumptions) to obtain the average cross sections. The solution of the set of equations (4.6) will then yield an approximate value of $\boldsymbol{\nu}$ and the apnroximate number of neutrons in each group. If a reasonable number of groups are used, so that the cross sections do not vary widely within any group, the approximation to the average cross sections will be excellent and we can therefore expect to obtain accurate results for $\boldsymbol{w}$ and the spectrum.

The procedure which we have given contains specific recipes for averaging the absorption cross sections, the fission spectrum, and the inelastic spectrum, all in the core. It is implied that the average velocity of a group is given by:

$$
\begin{equation*}
\frac{1}{v^{i}}=\frac{\int_{u_{i}}^{v_{i}} \frac{1}{v} N(v) d v}{\int_{u_{i}}^{v_{i}} N(v) d v} \tag{4.7}
\end{equation*}
$$

This is so, because the velocity enters only in the form of an absorption cross section $\frac{\alpha}{V}$

No very direct.procedure is implied for averaging the total core cross section, the total tamper cross section, or the tamper capture cross section. These quantities enter only in the calculation of $\bar{f} \boldsymbol{o}^{i}$ and all that can be said precisely is that $f_{\infty}$ should be averaged in the same way as an absorption cross section.

In practice it is usually adequate to calculate $\overline{\mathcal{O}^{1}}$ as the forfor a one-velocity problem whose cross sections in both core and tamper are reasonable averages over the $i^{\prime}$ th group of the actual cross sections.

It is clear that the procedure which we have outlined for solving the integral equation (2.1) will work equally well for the set of simultaneous equations (4.6), if all integrations are replaced by appropriate sumrations. The use of the group approximation makes much more practicable the application of the sequence of upper and lower approximations described in Chapter II. This remains difficult, however, because the one-velocity eigenfunctions are not sufficiently well known. Upper and lower limits can be put on the critical radius and the critical $\geqslant$ by the use of a perturbation scheme like that which led to equation (II-9) of Appendix II. These procedures are sufficiently illustrated by their application to some two-group critical calculations in Appendix IV.

## Section 5 Methods including inelastic scattering in the tamper.

We now propose to apply the methods of Chapters II and III to the calculation of critical problems in which inelastic scattering is present in the tamper. We do this first for the case of an infinite tamper. We discuss the case of three neutron velocity groups, since this fully illustrates the general method.

As in Chapter III, we define a total absorption cross section in the tamper as the sum of inelastic and capture cross sections (assuming no fission in the tamper). Neutrons leaving the core make inelastic collisions in the tamper and these collisions then form a source, in the tamper, of lower energy neutrons.

The diffusion of these neutrons back into the core must then be treated by the use of the quantities $P_{12}, P_{13}, P_{23}, P_{123}$ defined in equations (2.4), (3.5), (5.7), or (5.8) of Chapter III.

Using a notation similar to that of equation (4.6), we write:

$$
\begin{equation*}
\sigma_{1 a} N_{1}+f_{1} \sigma_{1} N_{1}=2 x_{1}\left(\sigma_{1 f} N_{1}+\sigma_{2 \xi} N_{2}+\sigma_{3 f} N_{3}\right) \tag{5.1}
\end{equation*}
$$

On the left-hand side is the total number of neutrons removed per second from group one in the core by absorption and leakage. The right hand side is the total number entering group one per second (by fission). The term for , which gives the leakage, includes the loss by inelastic scattering in the tamper, since $\mathcal{F}_{1}$ is assumed to be calculated with inelastic scattering in the tamper treated as capture.

We can write a similar equation for the second velocity group:

$$
\begin{align*}
\sigma_{2 a} N_{2}+f_{2} \sigma_{2} N_{2} & =2 x_{2}\left(\sigma_{11} N_{1}+\sigma_{2 f} N_{2}+\sigma_{3 \xi} N_{3}\right) \\
& +\sigma_{i 12} N_{1}+f_{1} \sigma_{1} \frac{\sigma_{12}^{*}}{\sigma_{12}^{*}} P_{12} N_{1} \tag{5.2}
\end{align*}
$$

The last term on the right is just the total number of absorptions per second taking place in the core of neutrons diffusing back into the core after having been degraded to velocity two by an inelastic collision in the tamper.


This is easily seen if it is remembered that $f_{1} \sigma_{1} N_{1}$
is the total number of neutrons of velocity one whjch are absorbed in the tamper per second, that a fraction $\frac{\sigma_{1}^{*} 12}{\sigma_{12}^{*}}$ of these are degraded to velocity two, and that a fraction $P_{12}$ of these (Chapter III) are absorbed in the core. Equation (5.2) is then best understood by transposing this term to the left. The lefthand side is then just the total number of neutrons per second removed from velocity two in the core by absorption and leakage, exclusive of those which were returned from a degradation in the tamper. The right hand side, to which it must be equal, is just the total number of neutrons of velocity two produced per second in the core.

A similar equation for group three follows immediately:
$\sigma_{32} N_{3}+f_{3} \sigma_{3} N_{3}=\boldsymbol{v} x_{3}\left(\sigma_{i 1} N_{1}+\sigma_{62} N_{2}+\sigma_{3 k} N_{3}\right)$

$$
\begin{align*}
& +\sigma_{13} N_{1}+\sigma_{i 23} N_{2} \\
& +f_{1} \sigma_{1} \frac{\sigma_{i 3}^{*}}{\sigma_{1 a}^{*}} P_{13} N_{1}+f_{2} \sigma_{2} \frac{\sigma_{i 2}^{*}}{\sigma_{2 a}^{*}} P_{23} N_{2} \\
& +f_{1} \sigma_{1} \frac{\sigma_{i 12}^{*}}{\sigma_{12}^{*}} P_{123} N_{1} \tag{5.3}
\end{align*}
$$

The only term in equation (5.3) requiring further explanation is the last one, which must be added in to take care of the neutrons which are twice degraded in the tamper before reentering the core. The equations (5.1), (5.2) and (5.3) are exactly equivalent to (5.1) and (5.2) of Chapter III, simply rewritten in a form more convenient for practical calculation.


If only two groups are used, just omit equation (5.3) and set
$N_{3}=0$. In this case, if the tamper is finite, replace $P_{12}$ by $\frac{p_{12}}{1+L_{1}}$
The method of solution of these three equations is just that described for the equations (4.6). That is, the total number of neutrons produced by fission per second is normalized to unity (for convenience) and the equations solved step by step for

$$
N_{1}, N_{2}, N_{3} \quad \text { - The value of } \mathcal{Z} \text { is then }
$$

found from:

$$
\begin{equation*}
\frac{1}{\eta}=\left(\sigma_{i \xi} N_{1}+\sigma_{2 f} N_{2}+\sigma_{3!} N_{3}\right) \tag{5.4}
\end{equation*}
$$

Although we have made a considerable effort to provide a reasonably vigorous foundation for these equations, it is clear that their best justification must come from actual numerical comparisons with more trustworthy calculations. It is impractical to do an actual calculation (except with the methods here given) to an accuracy greater than that given by a two-group calculation with the so-called $P_{3}$ spherical harmonic approximation to the solution of the Boltzmann equation. Many comparisons of this type have been made, with excellent results, but for our purposes it is sufficient to make the comparison with two group diffusion theory. This is done in Appendix $V$.

It is also profitable to make various sorts of internal comparisons of the methods here developed. One questionable point is that of the accuracy attained by the use of the quantities $P_{12}, P_{123}$ etc. We can shed some light on this by performing a typical threegroup critical calculation in two ways, first by the use of the

and second by the use of the definitions (3.15) and (5.7). These two sets of definitions were derived in widely different ways and were seen to be most useful under different sets of conditions. The discrepancy between the two approximate calculations can then be taken as a reliable estimate of the absolute error introduced by our approximations. A comparison of this sort is also made in Appendix VI.

It is difficult, in the few selected examples given in these appendices to convey the impression of confidence in the accuracy of these formulas which one obtains when actually working with them and comparing them time and time again with surprising success to the results of much more difficult but more exact calculations.

It should finally be pointed out in a little more detail why the group approximation (or something similar) is essential to the treatment of inelastic scattering in the tamper. Suppose we had a tamper in which many inelastic collisons could be made by a single neutron. We would then have to use quantities like
$P_{12}, P_{123}, P_{1234}$ etc. These quantities (except for the first twd seem to be exceedingly difficult to calculate with any degree of accuracy, so that a restriction to a small number of velocities is necessary.

There do exist problems however with a continuum of velocities which can be treated by our methods. This can be done if the inelastic scattering function in the tamper is so restricted that a neutron once inelastically scattered can make no more inelastic collisions, or possibly onlyone more. We illustrate with the case where no more than one inelastic collision in the tamper is
permitted. He write the integral equation analagous to the simultaneous equations which we have been using:

$$
\begin{align*}
& A(v)=\frac{1}{\nu_{0}\left(v^{2}\right)} \int_{0}^{\infty} d v^{\prime} S\left(v^{\prime} \rightarrow v\right) A\left(v^{\prime}\right) \\
& \quad+\int_{0}^{d} v^{\prime} \int_{0}^{\infty} d v^{\prime \prime} A\left(v^{\prime}\right) S\left(v^{\prime} \rightarrow v^{\prime \prime}\right)\left[1-\frac{1}{\nu_{0}\left(v^{\prime}\right)}\right] \frac{\sigma_{i}^{*}\left(v^{\prime \prime}\right)}{\sigma_{2}^{*}\left(v^{\prime \prime}\right)} \phi^{*}\left(v^{\prime \prime}-v\right) p\left(v^{\prime \prime}, v\right) \tag{5.5}
\end{align*}
$$

Here the second term on the right gives the number of absorptions taking place in the core by reason of single inelastic scattering in the tamper. The function $\rho\left(V^{\prime \prime}, v\right)$ would be written in our previous notation as $P_{V} V_{V}$ and is just the return to the core of neutrons of velocity $v$ released in the tamper distribution characteristic of velocity $V^{\prime \prime}$. Equation (5.5) will not in general describe the system correctly. It will however do so if $\phi^{*}\left(v^{\prime \prime}-v\right)$ and $\sigma_{i}^{*}(v)$ are nowhere different from zero for the same value of $V$. In this case, a neutron once degraded cannot be again inelastically scattered and equation (5.5) is correct, at least to the extent that our previous approximations are valid.

The equation (5.5) can in principle be solved, ir particular by a numerical step by step procedure, but the work will in general be prohibitive. By the use of the continuous analogue of $P_{123}$, a similar equation can be written in the case where a neutron can be degraded not more than twice in succession in the tamper. This equation is naturally very complicated and about equally useless.

## Section 6 Other problems amerdble to the methods described herein.

In actual practice it will usually be necessary to treat systems which are less idealized than the ones which we have considered so far. A partial list of useful extensions of the foregoing formalism might include methods for treating:

1. Systems departing from spherical symmetry.
2. Systems containing holes, or other inhomogeneities.
3. Subcritical systems containing a steady source.

We shall outline how several of these generalizations may be made. Consider first the case of a non-spherical system, such as a homogeneous cubical core imbedded in an infinite homogeneous tamper. If the cubical core problem were solved in general for neutrons of a single velocity, the extension to many velocities would be simple because none of our basic results thus far depend essentially on the spherical symmetry of the core. They do depend on the assumption that the fundamental modes at the various neutron velocities do not differ radically in shape in the core. This assumption should be equally valid for cores of any not too irregular shape, so that to treat the cubical core, we have only to obtain the eigenvalues for the appropriate one-velocity problems (with cubical cores). This is not easy, but the difficulty does not lie in our many-velocity formalism.

Consider now an otherwise spherical, homogenenus system with an infinite tamper having a small hole at its center. Such a system is encountered when one changes the degree of criticality of a system by removing material from the center. The consequent change in the value of $\boldsymbol{T}$ required for criticality can be

obtained by the consistent application of the formalism thus far developed with the specification that all one-velocity eigenvalues are to be calculated for systems with holes in the center. The reasoning here is exactly the same as that just used for the nonspherical case, but it is now possible to carry through the calculation with ease. This is so because the eigenvalue for a spherical one-velocity system with a hole in the center is easily calculated by a simple perturbation scheme involving only the eigenvalue for the system without the hole, the volume of the hole and the ratio of the neutron density at the center to the average neutron density in the core.

If the hole is not at the center, the perturbation will also involve the angular distribution of neutron velocities at the hole, and if the hole is in the tamper, the procedure becomes meaningless. More general inhomageneities in density can presumably be well treated by the same method if they occur in the core. Here, the difficulty in obtaining good one-velocity eigenvalues becomes very severe. Again, variations in tamper density render the method less valid, because the tamper densities in the one-velocity problems cannot be made to coincide so closely by changing the absorptions.

If the inhomogeneity consists of variations of composition, so that the system is not divided into a core and a tamper each with homogeneous composition, the method breaks down. A clumsy perturbation treatment can still be made, if the composition is nearly uniform, but the main advantages of the method are lost.

Another important type of problem is that of a subcritical system which multiplies a steady neutron source. The application of the formalism to a problem of this type is sufficiently illustrated by consideration of an untamped active sphere with a source at the center. Here one uses one of the series of upper and lower approximations described in Chapter II, with the given source introduced into the original integral equation. A set of inhomogeneous equations will be obtained which can be solved to obtain an approximation to the number of fissions occurring per second.

Better results will be obtained by the use of the first collision source, rather than the point source at the center. Neither the first upper nor lower opproximations will bs adequate, because of the bad shape of the source, but the second lower approximation will usually give good accuracy.

This problem has been very carefully studied from the point of view of the methods developed herein by hshkin and by these and other methods by Serber. Ashkin was able to treat the multiplication of an untamped sphere with a continuum of velocities. For practical problems with metal spheres, however, the method of velocity groups was sufficient. For small spheres Serber's method of successive collisions was also able to deal with the complete velocity spectrum. The matters are discussed in detail in Serber's LAMS - 253.

## Diffusion theory check of assumptions APPENDIX I. for first lower approximation.

We wish to obtain some numerical confirmation of the basic assumption underlying the $U-1$ and $L-1$ approximations. We consider a two-velocity problem in the diffusion approximation, with the following constants:

$$
\begin{array}{llll}
\sigma_{1}=o_{1}^{*}=4 & \sigma_{1 a}=1 & \sigma_{1 c}^{*}=0 & a=0.48690 \\
\sigma_{2}=o_{2}^{*}=8 & \sigma_{2 a}=2 & \sigma_{2 c}^{*}=0.11626 \tag{1}
\end{array}
$$

The quantity $a$ is the radius of the core.
The fundamental modes at the two velocities have the shapes, in the core:

$$
\begin{align*}
& U_{1}(r)=\frac{\sin k_{1} r}{r} \\
& U_{2}(r)=\frac{\sin k_{2} r}{r} \tag{2}
\end{align*}
$$

where $k_{1}$ and $k_{2}$ are to be determined. The corresponding tamper densities are $\frac{e^{-h_{1} r}}{r}$ and $\frac{e^{-h_{2} r}}{r}$. The quantities $h_{1}$ and
$h_{2}$ can be determined from the cross sections in the usual way, and we then require that the logarithmic derivatives of the densities be continuous at $r=a$. The problem has been so adjusted that:

$$
\begin{align*}
& k_{1} a=\frac{\pi}{2} \\
& k_{2} a=\frac{5 \pi}{8} \tag{3}
\end{align*}
$$

We can then find the value of $\boldsymbol{v}$ which would have to be associated with the core absorption cross section at each velocity to maintain these fundamental modes at critical. These turn out to be:

$$
\begin{align*}
& \nu_{1}=1.86731 \\
& \nu_{2}=1.33880 \tag{4}
\end{align*}
$$

We then calculate, both exactly and with the approximations of Chapter II, the density of absorptions of neutrons of velocity two from a source with the shape of $u_{1}$. We have:

$$
\begin{equation*}
-\frac{1}{3 \sigma_{2}^{2}} \nabla^{2}(n v)_{2}+\sigma_{2 a}(n v)_{2}=\frac{\sin k_{1} x}{r} \tag{5}
\end{equation*}
$$

This yields for $(n v)_{2}$ :

$$
\begin{equation*}
r(n v)_{2}=\frac{3 \sigma_{2}}{k_{1}^{2}+3 \sigma_{2} \sigma_{2 a}^{2}} \sin k_{1} r+A \sinh \sqrt{3 \sigma_{2} \sigma_{2 a}^{2} r} \tag{6}
\end{equation*}
$$

Where $A$ must be adjusted to satisfy the boundary condition at $r=a$. Equating the logarithmic derivative of (6) at $r=a$ to $-h_{2}$, we obtain:
$A=\frac{3 \sigma_{z}}{k_{1}^{2}+3 \sigma_{z} \sigma_{2 \alpha}} \frac{k_{1} \cos k_{1 a}+h_{2} \sin k_{1} a}{\sqrt{3 \sigma_{2} \sigma_{2 a}} \cos h \sqrt{3 \sigma_{2}^{2} \sigma_{2 \alpha}} a+h_{2} \sin h \sqrt{3 \sigma_{2} \sigma_{2 a}^{2}} a}$

The density of absorption can then be calculated as $(n v)_{2} \mathcal{C}_{2}$.
With the L-l approximation of Chapter II, this density of absorptions will have-the shape sin $k_{\Omega} r$
that its volume integral is just $\frac{1}{\nu_{2}}$ times the volume integral of the source. This yields:

$$
\begin{equation*}
(n v)_{2} \sigma_{2 a}=\frac{1}{\nu_{2}} \frac{\int_{a}^{a} r d r \sin k_{1} r}{\int_{0}^{a} r d r \sin k_{2} r} \cdot \frac{\sin k_{2} r}{r} \tag{8}
\end{equation*}
$$

The exact expression is compared with the approximate expression in the first of the graphs immediately following. An exactly similar calculation can be made of the absorptions of neutrons of velocity one arising from a source $\frac{\sin k_{2} r}{r}$. The results are plotted in the second of the succeeding graphs.

A more stringent test of our approximations would be obtained in a case where the values of $k_{1} a$ and $k_{2} a$ differed more widely. This has been done for a similar case with $k_{1} a=\frac{\pi}{2}$ and $k_{2} a=\frac{3 \pi}{4}$ and the results plotted in the third and fourth graphs following. It can be seen from these plots that our approximation is a reasonable one.

It is of interest to consider the number of neutrons absorbed per neutron emitted from the source. This number has been approximated by $\frac{1}{2}$ and can be calculated exactly by multiplying equation (6) by oia , integrating over the core, and dividing the result by the integral of the source over the core. We label the four cases previously considered in the order given and list the values of $\frac{1}{\bar{Z}}$ and the correct absorption ratio:

| Case | $\frac{1}{V}$ | Correct Ratio |
| :---: | :---: | :---: |
| I | 0.7469 | 0.7395 |
| II | 0.5355 | 0.5398 |
| III | 0.7080 | 0.6773 |
| IV | 0.5698 | 0.5547 |

APPROFED FOR PUBLIC-RELEASE





## APPENDIX II The sign of the errors of the upper and lower approximations and lower approximations

We wish to show that the critical $v$ and critical radius given by the first lower approximation (equation (2.3), Chapter II) Will always be less than those given by the first upper approximalion (equation 3.2), Chapter II). To show this we fix the radius and the value of $\boldsymbol{v}$ and inquire by what factor would the neutron production per absorption need to be increased to make the system critical. That is, we write instead of equations (2.3) and (3.2) the following:

$$
\begin{align*}
& \lambda_{L} A_{L}(v)=\frac{1}{2_{0}(v)} \int d v^{\prime} S\left(v^{\prime} \rightarrow v\right) A_{L}\left(v^{\prime}\right)  \tag{1}\\
& \lambda_{U} A_{U}(v)=\frac{1}{D_{0}(v)} \int d v^{\prime} S\left(v^{\prime} \rightarrow v\right) M_{0}\left(v, v^{\prime}\right) A_{U}\left(v^{\prime}\right) \tag{2}
\end{align*}
$$

where $M_{0}\left(v, v^{\prime}\right)=\frac{d \vec{x} \Psi_{0}(\vec{x}, v) \sum_{0}\left(\vec{x}, v^{\prime}\right)}{\sqrt{d \vec{x} y_{0}^{2}(\vec{x}, v) \int d \vec{x} \Psi_{0}^{2}\left(\vec{x}, v^{\prime}\right)}}$

Here $\boldsymbol{\lambda}_{L}$ and $\boldsymbol{\lambda}_{\boldsymbol{V}}$ are the quantities by. which $S\left(V^{\prime} \rightarrow V\right)$ must be divided in the first lower and first upper approximations respectlively in order to make the system critical. If $\boldsymbol{\lambda}_{\mathrm{L}}$ is unity, for example, the system is just critical by the first lower approximation. If $\boldsymbol{\lambda}_{\mathrm{L}}$ is greater than unity, the system produces too
many neutrons and is therefore supercritical. We proceed to show that $\boldsymbol{\lambda}_{L}$ is always equal to or greater than $\boldsymbol{\lambda}_{U}$. A given system will therefore be more active in the first lower approximation, and hence the critical radius and critical $z$ will be less in this approximation.

We note that $M_{0}\left(v, v^{\prime}\right)$ will be equal to or less than unity by the Schwarz inequality. We therefore write:

$$
\begin{equation*}
M_{0}\left(v, v^{\prime}\right)=1-N\left(v, v^{\prime}\right) \tag{3}
\end{equation*}
$$

where $N$ is a positive function which will be small compared with unity if the eigenfunctions $\Gamma_{0}(\vec{x}, v)$ are reasonable. We imagine that equation ( $I$ ) has been solved and the eigenvalue $\boldsymbol{\lambda}_{L}$ obtained. We then obtair $\boldsymbol{\lambda}_{\boldsymbol{U}}$ by a first-order perturbation calculation. We write:

$$
\begin{align*}
& \boldsymbol{\lambda}_{U}=\boldsymbol{\lambda}_{L}+\Delta \boldsymbol{\lambda} \\
& A_{U}=A_{L}+\Delta \mathbf{A} \tag{4}
\end{align*}
$$

Equation (2) becomes, if we neglect sbviously second order terms: $\lambda_{L} A_{L}+\lambda_{L} \Delta A+\Delta \lambda A_{L}=\frac{1}{2_{\delta( }\left(V^{\prime}\right)} / d v^{\prime} S\left(v^{\prime} \rightarrow v\right)\left[A_{L}\left(v^{\prime}\right)-N A_{L}\left(V^{\prime}\right)+\Delta A\left(U^{\prime}\right)\right]_{(5)}$ We use equation (I) to eliminate two terms and obtain:
$\lambda_{L} \Delta A+\Delta \lambda A_{L}=\frac{1}{\nu_{0}\left(v^{\prime}\right)} / d v^{\prime} S\left(v^{\prime} \rightarrow v\right) \Delta A\left(v^{\prime}\right)-\frac{1}{\nu_{0}^{\prime}\left(v^{\prime}\right)} / d v^{\prime} S\left(v^{\prime} \rightarrow v\right) N A_{L}\left(v^{\prime}\right)$

There is an integral operator adjoint to that in equation (1) whose eigenvalue is also $\boldsymbol{\lambda}_{\boldsymbol{L}}$. The corresponding eigenfunction satisfies:

$$
\boldsymbol{\lambda}_{I}{\overline{A_{L}}}\left(v^{\prime}\right)=\int d v^{\prime} S\left(v^{\prime} \rightarrow v\right) \frac{1}{\nu_{0}(v)} \bar{A}_{L}(v)
$$

We multiply equation (6) by $\bar{A}_{I}$ and integrate over $V$. We obtain:

$$
\begin{align*}
& \lambda_{L} \int d v \bar{A}_{L}(v) \Delta A(v)+\Delta \lambda / d v \bar{A}_{L}(v) A_{L}(v) \\
&= d v / d v^{\prime} \frac{1}{\nu_{0}(v)} S\left(v^{\prime} \rightarrow v\right) \bar{A}_{L}(v) \Delta A\left(v^{\prime}\right) \\
&-\int v / d v^{\prime} \frac{1}{L_{0}(v)} S\left(v^{\prime} \rightarrow v\right) N\left(v, v^{\prime}\right) \bar{A}_{L}(v) A_{L}\left(v^{\prime}\right) \tag{8}
\end{align*}
$$

Use of equation (7) yields:

$$
\begin{aligned}
& \lambda_{L} \operatorname{dv} \bar{A}_{L}(v) \Delta A(v)+\Delta \lambda / \operatorname{dv} \bar{A}_{L}(v) A_{L}\left(v^{\prime}\right) \\
&= \lambda_{L} \int d v^{\prime} \bar{A}_{L}\left(v^{\prime}\right) \Delta A\left(v^{\prime}\right) \\
&-\int d v \int d v^{\prime} \frac{1}{\nu_{0}(v)} S\left(v^{\prime} \rightarrow v\right) N\left(v, v^{\prime}\right) \bar{A}_{L}(v) A_{L}\left(v^{\prime}\right),
\end{aligned}
$$

or, with some obvious manipulations:

$$
\begin{equation*}
\Delta \boldsymbol{\lambda}=-\frac{\int d v / d v^{\prime} \frac{1}{z_{b}(v)} S\left(v^{\prime}-v\right) N\left(v, v^{\prime}\right) \bar{A}_{L}(v) A_{L}\left(v^{\prime}\right)}{\int d v \bar{A}_{L}(v) A_{L}(v)} \tag{9}
\end{equation*}
$$

We now show that $\bar{A}_{L}(v)$ and $A_{L}(v)$ do not change sign and hence that $\boldsymbol{\Delta} \boldsymbol{\lambda}$ is essentially negative. A rigorous proof of this assertion seems difficult but a simple physical argument can be given. If we have a system which according to equation (I) is not critical, then it is intuitively clear that it could be made critical by dividing $S\left(v^{\prime} \rightarrow v\right)$ by a real positive number $\lambda_{L}$. If the system has thus been made critical, we can normalize $A_{L}(V)$ so that ne neutron, for example, emerges from fissions per second.

Since all processes contemplated in equation (1), except for fission, degrade the energy of neutrons, we can then use equation (1) to solve for $A_{L}(v)$ by a step-by-step method. A positive number of neutrons will be present at the highest energies because a positive number of neutrons are emerging from fission. Positive numbers of neutrons will then be present at all lower energies by reason of inelastic scattering from above and positive numbers of neutrons emerging into the lower energies from fission. With this normalization it must then be true that $A_{L}(v)$ is positive for all $V$.

To show that $\bar{A}_{L}(v)$ is also positive definite we use the same argument. The equation (7) can be thought as giving the neutron spectrum for a problem in which inelastic scattering takes neutrons from low energies to high and the fission spectrum and cross section are interchanged. We then normalize $\overline{\mathbb{A}}_{\mathbb{L}}(V)$ so that one neutron emerges from this inverted fission process per second and solve step-by-step starting at the low energy end. $\bar{A}_{L}(v)$ must then be positive also. It then follows from equation (9) and the arguments iust made that $\Delta \boldsymbol{\lambda}$ is negative and the assertion with which we started is therefore true.

We should now like to demonstrate that $\boldsymbol{\lambda}_{L}$ and $\boldsymbol{\lambda}_{U}$ lie on opposite sides of the correct value. We again use a first-order perturbation treatment, which becomes somewhat more difficult because of the necessity of taking into account the space variation of the kernel as well as the eigenfunctions. We consider three kernels:

$$
\begin{align*}
& P_{L}\left(\vec{x}^{\prime} \rightarrow \vec{x}, v\right)=\frac{1}{\nu_{0}(v)} \sum_{n=0}^{\infty} \frac{\Psi_{n}(\vec{x}, v) \psi_{n}\left(\vec{x}^{\prime}, v\right)}{\int d \vec{x} \Psi_{n}^{2}(\vec{x}, v)}=\frac{1}{\tilde{\psi}_{0}(v)} /(\vec{x}-\vec{x}) \\
& P\left(\vec{x}^{\prime} \rightarrow \vec{x}, v\right)=\sum_{n=0}^{\infty} \frac{1}{v_{n}(v)} \frac{\psi_{n}(\vec{x}, v) \Psi_{n}\left(\vec{x}^{\prime}, v\right)}{\int d \vec{x}^{\prime} \Psi_{n}^{2}(\vec{x}, v)}  \tag{10}\\
& P_{v}\left(\vec{x}^{\prime}, \rightarrow \vec{x}, v\right)=\frac{1}{\psi_{0}(v)} \frac{\Psi_{0}(\vec{x}, v) \Psi_{0}(\vec{x}, v)}{\int d \vec{x} \Psi_{0}^{2}(\vec{x}, v)}
\end{align*}
$$

We write the integral equation (15) of Chapter II as:

$$
\begin{equation*}
\lambda A(\vec{x}, v)=\int d \vec{x}^{\prime} / d v^{\prime} P\left(\vec{x}^{\prime} \rightarrow \vec{x}, v\right) S\left(v^{\prime} \rightarrow v\right) A\left(\vec{x}^{\prime}, v^{\prime}\right) \tag{11}
\end{equation*}
$$

Here $\boldsymbol{\lambda}$ is again the number by which $S\left(v^{\prime} \rightarrow v\right)$ would have to be divided to make the given system critical. If the three kernels (10) are inserted in equation (11), three different values of the eigenvalue $\boldsymbol{\lambda}$ are determined. We shall denote these by
$\boldsymbol{\lambda}_{\mathbf{L}}, \boldsymbol{\lambda}$, and $\boldsymbol{\lambda}_{\mathbf{U}}$. The first measures the activity of the system according to the first lower approximation, the second gives the true activity of the system, and the third measures the activity according to the first upper approximation. We then wish to show that if the three values of $\boldsymbol{\lambda}$ are calculated by a first-order perturbation scheme starting from the first lower approximation, the true value of $\dot{\boldsymbol{\lambda}}$ must lie between $\boldsymbol{\lambda}_{\mathrm{L}}$ and $\boldsymbol{\lambda}_{U}$. We write the integral equation (11) as:
$\left(\lambda_{L}-\Delta \boldsymbol{\lambda}\right)\left[A_{L}(\vec{x}, v)+\Delta \mathrm{A}(\vec{x}, v)\right]$
$=\int d \vec{x}^{\prime} / d v^{\prime} S\left(v^{\prime} \rightarrow v\right)\left[P_{L}\left(\vec{x}^{\prime} \rightarrow \vec{x}, v\right)-\Delta P\left(\vec{x}^{\prime} \rightarrow \vec{x}, v\right)\right]\left[A_{L}(\vec{x}, v)+\Delta A(\vec{x}, v)\right]$

The function $A_{L}(\vec{x}, v)$ satisfies the following equation:

$$
\begin{equation*}
\lambda_{L} A_{L}(\vec{x}, v)=\int d v^{\prime} S\left(v^{\prime} \rightarrow v\right) \frac{1}{\nu_{0}(v)} A_{L}\left(\vec{x}, v^{\prime}\right) \tag{13}
\end{equation*}
$$

In finding $\boldsymbol{\lambda}_{\mathrm{L}}$ we could ignore the space dependence of $\mathrm{A}_{\mathrm{L}}(\overline{\mathrm{x}}, \mathrm{v})$ because of the highly degenerate form of equation (13). If, however, we wish to base a perturbation calculation on $A_{L}(\vec{x}, v)$, we must he more careful. We write:

$$
\begin{equation*}
A_{L}(\vec{x}, v)=A_{L}(v) f(\vec{x}) \tag{14}
\end{equation*}
$$

Here $f(x)$ is an arbitrary function of position to be determined later and $A_{L}(v)$ is just the solution of equation (1). We rewrite equation (12), neglecting second-order terms and making the cancellations, possible by virtue of equation (13):
$\boldsymbol{\lambda}_{\mathrm{L}} \boldsymbol{\Delta} \mathrm{A}(\overrightarrow{\mathrm{x}}, v)-\Delta \boldsymbol{\lambda} \mathrm{A}_{\mathrm{L}}(\mathrm{v}) \mathrm{f}(\overrightarrow{\mathrm{x}})$
$=\int d v^{\prime} S\left(v^{\prime} \rightarrow v\right) \frac{1}{z_{0}(v)} \Delta A(\vec{x}, v)-\int d \vec{x}^{\prime} / d v^{\prime} S\left(v^{\prime} \rightarrow v\right) \Delta P\left(\vec{x}^{\prime}-\vec{x}, v\right) A_{L}(v) f(\vec{x})^{(15)}$
We multiply through by the function $\bar{A}_{L}(v)$ satisfying the integral equation (7) adjoint to equation (1), and integrate over velocity. Two terms in equation (15) then cancel by virtue of equation (7) and we obtain:
$\Delta \boldsymbol{\lambda} f(\vec{x}) / d v \bar{A}_{L}(v) A_{L}(v)$
$=\int d \vec{x}^{\prime} / d v / d v S\left(v^{\prime} \rightarrow v\right) \vec{A}_{L}(v) A_{L}\left(v^{\prime}\right) \Delta P\left(\vec{x}^{\prime} \rightarrow \vec{x}, v\right) f\left(\vec{x}^{\prime}\right)$
or $\Delta \boldsymbol{\lambda} f(\vec{x})=\int d \vec{x}^{\prime} \frac{\int d v / d v S\left(v^{\prime} \rightarrow v\right) \bar{A}_{L}(v) A_{L}\left(v^{\prime}\right) \Delta P\left(\vec{x}^{\prime} \rightarrow \vec{x}, v\right)}{\int d v \bar{A}_{L}(v) A_{L}(v)} f\left(\vec{x}^{\prime}\right)$

Equation (16) is an integral equation for the unknown function $\{(\vec{X})$ - The quantity $\boldsymbol{\Delta} \boldsymbol{\lambda}$ enters as the eigenvalue of an integral operator which is symmetric since
$\Delta P\left(\vec{x}^{\prime} \rightarrow \vec{x}, v\right)=\Delta P_{L}\left(\vec{x} \rightarrow \vec{x}^{\prime}, v\right)$
Consider the three kernels (10). We define two kernels $\Delta P$ :
$\Delta P\left(\vec{x}^{\prime} \rightarrow \vec{x}, v\right)=P_{L}\left(\vec{x}^{\prime} \rightarrow \vec{x}, v\right)-P\left(\vec{x}^{\prime} \rightarrow \vec{x}, v\right)$
$\Delta P_{U}\left(\vec{x}^{\prime} \rightarrow \vec{x}, v\right)=P_{L}\left(\vec{x}^{\prime} \rightarrow \vec{x}, v\right)-P_{v}\left(\vec{x}^{\prime} \rightarrow x, v\right)$

We see from (10), remembering that the $\mu_{n}$ form an increasing sequence, that $\Delta P$ and $\Delta P_{u}$ are each kernels with all positive eigenvalues. Furthermore, $\Delta P_{u}$ is obtained from $\Delta P$ by adding a kernel with all positive eigenvalues. If $\boldsymbol{\Delta} \boldsymbol{\lambda}$ corresponds to $\boldsymbol{\Delta P}$ and $\Delta \boldsymbol{\lambda}_{u}$ to $\Delta P_{u}$, we see that $\Delta \boldsymbol{\lambda}$ and $\Delta \boldsymbol{\lambda}_{\boldsymbol{u}}$ are the highest eigenvalues of symmetric kernels which are sums of kernels with positive eigenvalues (remembering that $\bar{A}_{L}(v)$ and $A_{L}(v)$ can be chosen positive definite). Furthermore $\Delta \boldsymbol{\lambda}_{v}$ is the highest eigenvalue of a kernel which is obtained from that for $\boldsymbol{\Delta \lambda}$ by the addition of kernels with all positive eigenvalues. It therefore follows, from a lemma to be proved, that $\boldsymbol{\Delta} \boldsymbol{\lambda}$ and $\boldsymbol{\Delta} \boldsymbol{\lambda}_{\boldsymbol{U}}$ are positive and that $\boldsymbol{\Delta} \boldsymbol{\lambda}_{\boldsymbol{v}}$ is greater than $\boldsymbol{\Delta} \boldsymbol{\lambda}$, so that $\quad \boldsymbol{\lambda}_{L}>\boldsymbol{\lambda}>\boldsymbol{\lambda}_{U} \quad$ as we wished to show.

We now prove the required lemma. Let $L$ and $M$ be two symretric kernels, each with all positive eigenvalves forming a decreasing sequence from a highest eigenvalue. Let the highest eigenvalues of $L$ and $M$ be $\boldsymbol{\lambda}$ and $\mu$ respectively. We have:

APPROVED FOR PUBLIC RELEASE

$$
\begin{gather*}
\equiv=\frac{\left(\Psi_{5} L \Psi\right)}{(\Psi, \Psi)} \\
\mu=\frac{(x, M x)}{(x, x)} \tag{18}
\end{gather*}
$$

where $\Psi$ and $x$ are functions so chosen that the expression equated to $\lambda$ and $\mu$ attain their maximum possible values. The bracket notation of course indicates an inner product. Consider the kernel $S=L+M$. Its eigenvalues are all positive since any eigenvalue is a possible value of:

$$
\begin{equation*}
\frac{(\phi, S \phi)}{\phi, \phi}=\frac{(\phi, L \phi)}{(\phi, \phi)}+\frac{(\phi, M \phi)}{\phi, \phi} \tag{19}
\end{equation*}
$$

and each term in (19) is essentially positive as can be seen by expanding $\phi$ in eigenfunction of $L$ or $M$ for the two terms respectively. The highest eigenvalue of $S, \mathcal{O}$. will be the absolute maximum of the expression (19). If we let $\phi=\underset{\sim}{C}$, for example, we obtain:

$$
\begin{equation*}
\alpha \geq \lambda+\frac{(\Psi, M \Psi)}{(\Psi, \Psi)} \tag{20}
\end{equation*}
$$

We have just argued that:

$$
\begin{equation*}
\frac{(\Psi, M, \Psi)}{(\Psi, \Psi)} \geq 0 \tag{21}
\end{equation*}
$$

so that:

$$
\begin{equation*}
\infty \geq \lambda \tag{22}
\end{equation*}
$$


or by reversing the argument:

$$
\begin{equation*}
o-\geq \mu \tag{23}
\end{equation*}
$$

We have therefore proved the required result, that the highest eigenvalue of the sum of two kernels with positive eigenvalues (each with a highest eigenvalue) is greater than the highest eigenvalue of either kernel separately. Actually, of course, the proofs lack rigor because they are based on perturbation arguments to first order, without a demonstration that the higher order terms are small.

APPENDIX III. Results of first approximations for several special problems
We now propose to apply the proceedures of Appendix II to an actual many velocity problem. We first assume the validity of diffusion theory for the calculation of all eigenvalues. In spite of the shortcomings of diffusion theory, we can still expect a meaningful check, since our approximate methods will be applied to a many velocity diffusion equation, which we shall also solve exactly.

We define a problem as follows:

$$
\sigma(v)=\sigma^{*}(v)=\frac{1}{v}
$$

$$
x(v)=1 \text { if } 0<v<1
$$

$$
\begin{equation*}
\sigma_{\xi}(v)=\sigma_{c}^{*}(v)=\frac{K^{2}}{3 v} \tag{I}
\end{equation*}
$$

$$
=0 \quad \text { if } 1<v
$$

$$
\sigma_{c}(v)=o_{\text {in }}(v)=0
$$

We then write the diffusion equation:

$$
\begin{align*}
& -\frac{1}{3 \sigma^{-}(v)} \nabla^{2} N(\vec{x}, v)+\sigma_{f}(v) N(\vec{x}, v)=2 x(v) / \sigma_{0}^{\infty}\left(v^{\prime}\right) N\left(\vec{x}, v^{\prime}\right) d v^{\prime} \\
& -\frac{1}{3 \sigma^{-*}(v)} \nabla^{2} N(\vec{x}, v)+\sigma_{c}^{*}(v) N(\vec{x}, v)=0 \quad 0<v<a \\
& a<v \tag{2}
\end{align*}
$$

Here $\mathcal{N}(\vec{x}, v)$ is the $f l u x$ density at $\vec{x}$ per unit range of velocity and $\mathcal{L}$ is the total number of neutrons per fission required for criticality. We write:

$$
\begin{align*}
F(\vec{x}) & =\int_{0}^{\infty}(v) N(\vec{x}, v) d v & & 0<v<a \\
& =0 & & a<v
\end{align*}
$$

for the density of fissions, and insert the given cross sections:

$$
\begin{equation*}
\nabla^{2} N(\vec{x}, v)-\frac{K^{2}}{v^{2}} N(\vec{x}, v)=-3 \nu \frac{x(v)}{v} F(\vec{x}) \tag{4}
\end{equation*}
$$

This equation can be formally solved for $\mathbf{N}$ in terms of $\mathbf{F}$ by the use of the Green's function for the differential operator on the left:

$$
\begin{equation*}
N(\vec{x}, v)=\frac{3 z x(v)}{4 \pi v} / d \vec{x}^{\prime} \frac{e^{-\frac{k}{v}\left|\vec{x}-\vec{x}^{\prime}\right|}}{\left|\vec{x}-\vec{x}^{\prime}\right|} \quad F\left(\vec{x}^{\prime}\right) \tag{5}
\end{equation*}
$$

We then multiply through by $\mathcal{C l}_{f}(v)$ and integrate over $v$ to obtain a space integral equation for $\vec{F}(\vec{X})$ :
$F(\vec{x})=\frac{\psi}{4 \pi} K^{2} / d \vec{x}^{\prime} \frac{F\left(\vec{x}^{\prime}\right)}{\left|\vec{x}-\overrightarrow{x^{\prime}}\right|} \int_{0}^{1} \frac{d V}{V^{2}} e^{-\frac{K}{V}|\vec{x}-\vec{x}|}$
or $F(\vec{x})=\frac{w}{4 \pi} K^{2} / d \vec{x}^{\prime} \frac{F\left(\vec{x}^{\prime}\right)}{\left|\vec{x}-\vec{x}^{\prime}\right|} \frac{e^{-k\left|\vec{x}-\vec{x}^{\prime}\right|}}{K\left|\vec{x}-\vec{x}^{\prime}\right|}$
We rewrite this:

$$
\begin{equation*}
F(\vec{x})=\frac{w}{4 \pi} k \int d \vec{x}^{\prime} \frac{e^{-K\left|\vec{x}-\vec{x}^{\prime}\right|}}{\left|\vec{x}-\overrightarrow{x^{\prime}}\right|^{2}} E\left(\vec{x}^{\prime}\right) \tag{7}
\end{equation*}
$$

We then see that our many-velocity diffusion thenry is equivalent to a one-velocity integral theory problem. The density of fissions becomes a neutron density, $\boldsymbol{\nu}$ becomes the $1+f$ needed for criticality, and $K$ becomes the total cross section in the equivalent one-velocity problem. The integral is to be taken only over the core, so that the one-velocity problem is that of an untamped sphere of radius a -

We take $K=1$ and $a=1$. The usual extrapolated endpoint method then gives $\boldsymbol{m}=1.9878$.

We now propise to obtain $\geq$ by the $U-1$ and $L-1$ approximations. We first use the L-1 method and then obtain the approximate. answer in the $U-1$ apprnximation hy the use of the perturbation scheme developed in this appendix.

Equation (1.8) of Chapter II gives for 2 calculated by the L-l method:

$$
\begin{equation*}
\frac{1}{\nu_{L}}=\int_{0}^{\infty} \frac{x(v)}{\nu(v)} d v \int_{0}^{\frac{1}{2(v)}} \tag{8}
\end{equation*}
$$



Here $\mathbb{Z}(v)$ is the value of required to make a one-velocity system critical with the constants of velocity $v$. Writing $k(v)$ for the wave-number of the fundamental mode at velocity $v$ we must match the logarithmic derivatives of $\sin k$ and $e^{-\frac{k}{v} r}$ at $r=a \quad$ - This gives:

$$
\begin{align*}
k \cot k a & =-\frac{K}{V} \\
\text { or } \frac{\tan k}{k} & =-V \tag{9}
\end{align*}
$$

We find $\boldsymbol{\nu}(v)$ by remembering that in the one-velocity

$$
\begin{align*}
& \text { diffusion theory: } \\
& \begin{aligned}
(z \rightarrow 1) \frac{\sigma^{2}}{\sigma^{2}}=f=\frac{k^{2}}{3 \sigma^{2}} \text { or } w & =1+\frac{\sigma^{\infty}}{\sigma^{f}} f \\
& =1+\frac{k^{2}}{3 \sigma^{\circ} \sigma_{f}}=1+\frac{k^{2}}{k^{2}} v^{2}=1+k^{2} v^{2}
\end{aligned}
\end{align*}
$$

Combining (8) and (10), and taking $k$ from equation (9), we have:

$$
\begin{equation*}
\frac{1}{v_{2}}=\int_{0}^{1} \frac{d v}{1+v^{2} k^{2}(v)} \tag{11}
\end{equation*}
$$

This integral can be performed analytically and yields
 obtained. This is of course in the direction expected from the theorem proved in the first part of this appendix. It is easily estirated that this discrepancy in the values of $z$ gounts to a difference of $0.6 \%$ in the critical radius or $1.8 \%$ in the mass.

The difference between the true value of $v$ and $\nu_{L}$ arises from the fact that the one-velocity eigenfunctions do not have the same shape.

The spread in shapes can be indicated by giving the values of ka for $v=0$ and $v=1$. For $v=0, k a=\pi$ and for $v=1$, $k a=0.65 \pi$

We now wish to apply the methods developed in the first part of this appendix to find an upper limit for $\mathbb{N}$. We have

$$
S(v \longrightarrow v)=v \times(v)
$$

and $\lambda_{L} A_{L}(v)=\frac{1}{2(v)} \int_{0}^{\infty} d v^{\prime} 2 x(v) A_{L}\left(v^{\prime}\right)$
so that $A_{L}(v)=\frac{z_{1} x(v)}{z(v)}$
We give $\boldsymbol{\nu}$ its correct value and then have $\frac{\nu_{1}}{\lambda_{L}}=\nu_{L}$. The equation adjoint to (12) is:

$$
\begin{equation*}
\lambda_{L} \bar{A}_{L}(v)=\int_{0}^{\infty} d v^{\prime} \frac{\omega x\left(v^{\prime}\right)}{\omega\left(v^{\prime}\right)} \bar{A}_{L}\left(\nabla^{\prime}\right) \tag{13}
\end{equation*}
$$

so that $\bar{A}_{L}(v)=$ a constant $=1$, say.
We have $\quad \boldsymbol{V}_{U}=\frac{\boldsymbol{\nu}}{\boldsymbol{\lambda}_{U}}=\frac{2}{\boldsymbol{\lambda}_{L}+\Delta \boldsymbol{\lambda}} \quad$, where from equation (9) of this appendix, $\boldsymbol{\Delta} \boldsymbol{\lambda}$ is given (approximately) by:

$$
\begin{align*}
\Delta \lambda & =\frac{-\int v / d v^{\prime} \frac{1}{2(v)} \nu \times(v) N\left(v, v^{\prime}\right) \frac{\nu_{n} x\left(v^{\prime}\right)}{\nu\left(v^{\prime}\right)}}{\int_{d v \frac{\sum(v)}{2(v)}}^{2 \int_{0}^{2}} d v \int_{0}^{1} d v^{\prime} \frac{N\left(v, v^{\prime}\right)}{2(v) v\left(v^{\prime}\right)}}
\end{align*}
$$

Where $N\left(V, v^{\prime}\right)$ is defined by equation (3). The indicated double integral can be done numerically and we obtain $\boldsymbol{\Delta} \boldsymbol{\lambda}=0.0161$ and hence $\mathbb{Z}_{U}=2.0113$. This is too high as expected.

APPENDIX IV. Numerical test of the convergence of higher approximations
We propose to solve a two-velocity problem with no inelastic scattering in the tamper, in the diffusion limit. For simplicity we consider the same problem discussed in Appendix I. We specify the cross section and fission spectrum a little more closely:

| $\sigma_{1}$ | $=4$ | $\sigma_{2}=8$ |
| :--- | :--- | :--- |
| $\sigma_{112}$ | $=1$ | $\sigma_{2 c}=0$ |
| $\sigma_{1 c}$ | $=0$ | $\sigma_{2 f}=2$ |
| $\sigma_{1 f}$ | $=0$ | $x_{2}=0$ |
| $x_{1}$ | $=1$ | $\sigma_{2 *}=8$ |
| $\sigma_{1 *}$ | $=4$ | $\sigma_{2 c *}=0.11626$ |
| $\sigma_{1 c *}=0$ |  |  |

The radius of the tamper is infinite.
A pair of coupled diffusion equations for the neutron densities can be written and solved in a straightforward but lengthy fashion. When this is done, it is found that if 2 were equal to 2.509 the system would be critical.

We shall now apply to this problem the first four of the sequence of successive approximations described at the end of Chapter II. The fundamental integral equations are:

$$
\begin{equation*}
A_{1}(\vec{x})=\underset{\text { CORE }}{ } d \vec{x}^{\prime} P_{1}\left(\vec{x}^{\prime} \rightarrow \vec{x}\right) A_{2}\left(\vec{x}^{\prime}\right) . \tag{1}
\end{equation*}
$$

$A_{2}(\vec{x})=\int d \vec{x} P_{2}\left(\overrightarrow{x^{\prime}} \rightarrow \vec{x}\right) A_{1}\left(\vec{x}^{\prime}\right)$
CORE

These are just the equation (15) of Chapter II modified to take into account the existence of only two velocitfes and particularized to the cross sections of the present problem. The space functions $A_{1}$ and $A_{2}$ are, respectively, the densities of inelastic collisions and of fissions. The kernels $P_{1}$ and $P_{2}$ are just the onevelocity diffusion kernels for neutrons of velocities one and two which were defined in Chapter II. Let us define $u_{0}, u_{1}, u_{2}$, - - - - to be the successive eigenfunctions of the kernel $P_{1}$ and $\frac{1}{\mu_{0}}, \frac{1}{\mu_{1}},---t o$ be its corresponding eigenvalues. The function $u_{0}$ is then the distribution of fissions in the fundamental mode of a one-velocity problem whose constants are the constants of velocity, one with the total core absorption cross section considered as fission. The quantity $\mu_{0}$ is the value of $\psi$ required to keep this one-velocity problem critical. We define a similar sequence of functions $V_{0}, V_{1}, V_{2}$----and a sequence of eigenvalues $\frac{1}{Z_{0}}, \frac{1}{Z_{1}}, \frac{1}{Z_{2}},---$ for velocity two.

$$
\text { The } L-1 \text { approximation proceeds by writing: }
$$

$$
\begin{align*}
& P_{1}\left(\vec{x}^{\prime} \rightarrow \vec{x}\right)=\frac{1}{\mu_{0}} /\left(\vec{x}-\vec{x}^{\prime}\right)  \tag{2}\\
& P_{e}\left(\vec{x}^{\prime} \rightarrow \vec{x}\right)=\frac{1}{\nu_{0}} /\left(\vec{x}-\vec{x}^{\prime}\right)
\end{align*}
$$

as outlined in Chapter II. The equations (1) become:

$$
\begin{align*}
& A_{1}=\frac{\nu}{\mu_{0}} A_{2} \\
& A_{2}=\frac{1}{\nu_{0}} A_{1} \tag{3}
\end{align*}
$$

which yields $\mu_{=} \mu_{0} \nu_{0}=2.500$, which is certainly excellent accuracy.

The $U-1$ approximation assumes:

$$
\begin{align*}
& P_{1}\left(\vec{x}^{\prime} \rightarrow \vec{x}\right)=\frac{1}{\mu_{0}} \frac{u_{0}(\vec{x}) u_{0}\left(\vec{x}^{\prime}\right)}{\left(u_{0} u_{0}\right)}  \tag{4}\\
& P_{2}\left(\vec{x}^{\prime} \rightarrow \vec{x}\right)=\frac{1}{\nu_{0}} \frac{\nu_{0}(\vec{x}) v_{0}\left(\vec{x}^{\prime}\right)}{\left(v_{0} v_{0}\right)}
\end{align*}
$$

where $\left(u_{0} u_{0}\right)$ is the volume integral over the core of $u_{0}^{2}(\vec{x})$. A similar notation will now prove very useful. The equations (1) become:

$$
\begin{equation*}
A_{1}=\frac{\nu}{\mu} \frac{\left(u_{0} A_{0}\right)}{\left(u_{0} u_{0}\right)} u_{0} \tag{5}
\end{equation*}
$$

$$
A_{2}=\frac{1}{\nu_{0}} \frac{\left(V_{0} A_{1}\right)}{\left(v_{0} V_{0}\right)} v_{0}
$$

These can be conveniently solved by multiplying the first by $v_{0}$ and integrating and the second by $u_{0}$ and integrating. This yields:

$$
\begin{align*}
& \left(v_{0} A_{1}\right)=\frac{\nu}{\mu_{0}} \frac{\left(u_{0} v_{0}\right)}{\left(u_{0} u_{0}\right)}\left(u_{0} A_{2}\right)  \tag{6}\\
& \left(u_{0} A_{2}\right)=\frac{1}{v_{0}} \frac{\left(u_{0} v_{0}\right)}{\left(v_{0} v_{0}\right)}\left(v_{0} A_{1}\right)
\end{align*}
$$

which are simply two homogeneous linear equations foil the numbers $\left(v_{0} A_{1}\right)$ and $\left(u_{0} A_{2}\right)$. We immediately obtain:

$$
\begin{equation*}
\nu=\mu_{0} v_{0} \frac{\left(u_{0} u_{0}\right)\left(v_{0} v_{0}\right)}{\left(u_{0} v_{0}\right)^{2}}=2.516 \tag{7}
\end{equation*}
$$

which is above the correct answer and slightly closer to it than was L-1.

In the $[-2$ approximation, we write:

$$
\begin{aligned}
& P_{1}\left(\vec{x}^{\prime} \rightarrow \vec{x}\right)=\left(\frac{1}{\mu_{0}}-\frac{1}{\mu_{1}}\right) \frac{u_{0}\left(\vec{x}^{\prime}\right) u_{0}(\vec{x})}{\left(u_{0} u_{0}\right)}+\frac{1}{\mu_{1}} /\left(\vec{x}-\vec{x}^{\prime}\right) \\
& P_{2}\left(\vec{x}^{\prime} \rightarrow \vec{x}\right)=\left(\frac{1}{\nu_{0}}-\frac{1}{\nu_{1}}\right) \frac{v_{0}\left(\vec{x}^{\prime}\right) v_{0}(\vec{x})}{\left(v_{0} v_{0}\right)}+\frac{1}{\nu_{0}} /(\vec{x}-\vec{x})
\end{aligned}
$$

Ihe integral equations become:

$$
\begin{equation*}
A_{1}=\nu\left(\frac{1}{\mu_{0}}-\frac{1}{\mu_{1}}\right) \frac{\left(u_{0} A_{2}\right)}{\left(u_{0} u_{0}\right)} u_{0}+\frac{\nu}{\mu_{1}} A_{2} \tag{9}
\end{equation*}
$$

$A_{2}=\left(\frac{1}{\boldsymbol{Z}_{0}}-\frac{1}{\boldsymbol{Z}_{1}}\right) \frac{\left(V_{0} A_{1}\right)}{\left(V_{0} V_{0}\right)} v_{0}+\frac{1}{V_{1}} A_{1}$
We multiply each equation by $u_{0}$ and by $v_{0}$ and integrate over the core. This yields four homogeneous linear equations for $\left(u_{0} A_{1}\right)$, $\left(v_{0} A_{1}\right),\left(u_{0} A_{2}\right)$, and $\left(v_{0} A_{2}\right)$. Setting the secular determinant equal to zero yields $\boldsymbol{x}=2.508$, in good agreement with the correct value, but slightly lower as expected.

Nothing will be gained by going through the U-L approximation in detail, but it is interesting to note that it gives $=2.509$ to that many figures. These figures are summarized in the first column of the table below.

An exactly similar set of calculations has been done for the second problem discussed in Appendix I, namely the one with different radius and tamper capture cross section. In this one the fundamental modes have phases at the outside of the core of $\frac{\pi}{2}$ and $\frac{3 \pi}{4}$, so that the set of approximations should converge less rapidly than in the previous case. The results are given in the second column of the table.


It is finally of considerable interest to compare the neutron flux densities as calculated from the exact two-group diffusion theory and the L-1 approximation. In the first graph following are plotted two solid curves representing $N_{1}$ and $N_{2}$, the neutron flux densities at velocities one and two respectively, calculated exactly. The dotted curves are just the fundamental modes for the two velocities, with their relative sizes adjusted so that the ratio of fissions to inelastic collisions is fust that given by the L-1 approximation. The first graph is for the first case discussed in this appendix and the second graph is for the second case with $k a=\frac{\pi r}{2}$ and $\frac{3 \pi}{4}$ for the two velocities. The agreement between solid and dotted curves is remarkable in view of the seeming crudity of the approximation.

## 123.



## APPROVED FOR PUBLIC RELEASE

## BCO

黾

尼


㞎
化
品

尼
全
㞎
左
共
尼
㞎

－
\＃

## APPENDIX V

TWO-VELOCITY DIFFUSION THEORY WITH INELASIC SCATTERING IN

## THE TAMPER

We shall attempt to investigate the validity of the approximation scheme developed in Chapter III for the case of an inelastically scattering tamper. Our procedure will parallel that of Appendix IV in that we will discuss a two-velocity diffusion theory problem, first exactly and then by means of the equations (4.1) of Chapter III and the indicated successive approximations to their solution.

We take for the constants of the problem the following:

$$
\begin{array}{ll}
o_{1}=o_{1}^{*}=4 & o_{2}=o_{2}^{*}=8 \\
o_{11}=o_{1 c}=o_{1 c}^{*}=0 & o_{2 f}=2 \\
\sigma_{i 12}=0.2813 & \sigma_{2 c}=\sigma_{2 c}^{*}=0 \\
\sigma_{i 12}^{*}=0.2205 & \\
x_{1}=1 & x_{2}=0
\end{array}
$$

The exact two-velocity diffusion equations plus the usual diffusion theory boundary conditions yield $\boldsymbol{z}=2.467$.

We shall now apply to this problem the successive approximations (developed in Section 5 of Chapter III) to the solution of the integral equations (4.1) of Chapter III. These equations, specialized to the present problem, are:
$A_{1}(\vec{x})=2 \int_{\text {CORE }} d \vec{x}^{\prime} P_{1}\left(\vec{x}^{\prime} \rightarrow \vec{x}\right) A_{2}\left(\vec{x}^{\prime}\right)$
$A_{2}(\vec{x})=\int d \vec{x}^{\prime} P_{2}\left(\vec{x}^{\prime} \rightarrow \vec{x}\right) A_{1}\left(\vec{x}^{\prime}\right)+\underset{\text { CORE }}{\int} \int_{x^{\prime}} F_{12}\left(\vec{x}^{\prime} \rightarrow \vec{x}\right) A_{2}\left(\vec{x}^{\prime}\right)$
with $F_{12}$ given in terms of $P$ and $P_{2}$ by (4.11) of Chapter III.
As in Appendix III we call the sequence of one-velocity $\nu$ 's for velocity one $\mu_{0}, \mu_{1},---$ and the corresponding eigenfunction $u_{0}, u_{1},-\cdots$. For velocity two we have $\nu_{0}, \nu_{1},--$ and $v_{0}, v_{1}$ ---.

We then make the $L-1$ approximation of Chapter II:

$$
\begin{align*}
& P_{1}\left(\vec{x}^{\prime} \rightarrow \vec{x}\right)=\frac{1}{\mu_{0}} /\left(\vec{x}-\vec{x}^{\prime}\right) \\
& P_{2}\left(\vec{x}^{\prime} \rightarrow \vec{x}\right)=\frac{1}{\mu_{0}} /\left(\vec{x}-\vec{x}^{\prime}\right)  \tag{2}\\
& F_{12}\left(r^{\prime} \rightarrow r\right)=\frac{\sigma_{i 12}^{2}}{\sigma_{12}^{*}}\left(1-\frac{1}{\mu_{0}}\right) \frac{P_{12}}{4 \pi \int_{0}^{2} r^{2} d r}=\left(1-\frac{1}{\mu_{0}}\right) \frac{P_{12}}{(11)}
\end{align*}
$$

where (11) is an abbreviation for the volume integral over the core of the product of the quantities inside the bracket.
The equations (1) become:

$$
\begin{align*}
& A_{1}(\vec{x})=\frac{\nu}{\mu_{0}} A_{2}(\vec{x})  \tag{3}\\
& A_{2}(\vec{x})=\frac{1}{\mu_{0}} A_{1}(\vec{x})+\nu\left(1-\frac{1}{\mu_{0}}\right) \frac{\rho_{12}}{(11)}\left(1 A_{2}\right)
\end{align*}
$$

These can be integrated over the core to obtain two algebraic equations for $\left(1 A_{1}\right)$ and $\left(1 A_{2}\right)$ :

$$
\begin{align*}
& \left(1 A_{1}\right)=\frac{2}{\mu_{0}}\left(1 A_{2}\right) \\
& \left(1 A_{2}\right)=\frac{1}{\nu_{0}}\left(1 A_{1}\right)+2\left(1-\frac{1}{\mu_{0}}\right) p_{12}\left(1 A_{2}\right) \tag{4}
\end{align*}
$$

Inserting the values for $\mu_{0}, \nu_{0}$, and $p_{12}$, we obtain $\nu=2.500$. This is too high by $2 \%$ of $2=1$, which amounts to about $4 \%$ in the critical mass.

We now make the $U-1$ approximation:

$$
\begin{aligned}
& P_{1}\left(\vec{x}^{\prime} \rightarrow \vec{x}\right)=\frac{1}{\mu_{0}} \frac{u_{0}(\vec{x}) u_{0}\left(\overrightarrow{x^{\prime}}\right)}{\left(u_{0} u_{0}\right)} \\
& P_{2}\left(\vec{x}^{\prime} \rightarrow \vec{x}\right)=\frac{1}{\nu_{0}} \frac{v_{0}(\vec{x}) v_{0}(\vec{x})}{\left(v_{0} v_{0}\right)} \\
& F_{12}\left(\vec{x}^{\prime} \rightarrow \vec{x}\right)=\left[1-\frac{1}{\mu_{0}} \frac{\left(1 u_{0}\right)}{\left(u_{0} u_{0}\right)} u_{0}\left(\vec{x}^{\prime}\right)\right]\left[1-\frac{1}{\nu_{0}} \frac{\left(1 v_{0}\right)}{\left(v_{0} v_{0}\right)} v_{0}(\vec{x})\right] \frac{p_{12}}{\left(1-\frac{1}{\nu_{0}}\right)(11)}
\end{aligned}
$$

The equations ( 1 ) become:

$$
\begin{aligned}
& A_{1}(\vec{x})=\frac{2}{\mu_{0}} \frac{u_{0}(\vec{x})}{\left(u_{0} u_{0}\right)}\left(u_{0} A_{2}\right) \\
& A_{2}(\vec{x})=\frac{1}{2_{0}} \frac{v_{0}(\vec{x})}{\left(v_{0} v_{0}\right)}\left(v_{0} A_{1}\right) \frac{2 p_{12}}{\left(1-\frac{1}{v_{0}}\right)(11)}\left[\left(1 A_{2}\right)-\frac{1}{\mu_{0}} \frac{\left(1 u_{0}\right)}{\left(u_{0} u_{0}\right)}\left(u_{0} A_{2}\right)\right]\left[1-\frac{1}{\nu_{0}} \frac{\left(1 v_{0}\right)}{\left(v_{0} v_{0}\right)} v_{0}(\vec{x})\right]
\end{aligned}
$$

These are of somewhat more complicated form than (3) but they can be reduced to three algebraic equations by multiplying the first equation by $V_{0}$, the second by $u_{0}$ and by unity and integrating over the core. This yields the equations;

$$
\begin{aligned}
& \left(v_{0} A_{1}\right)=\frac{\nu}{\mu u_{0}} \frac{\left(u_{0} v_{0}\right)}{\left(u_{0} u_{0}\right)}\left(u_{0} A_{2}\right) \\
& \left(u_{0} A_{2}\right) \frac{1}{2} \frac{\left(u_{0} v_{0}\right)}{\left(v_{0} v_{0}\right)}\left(v_{0} A_{1}\right)+\frac{\nu p_{12}}{\left(1-\frac{1}{\nu_{0}}\right)(11)}\left[\left(1 u_{0}\right)-\frac{1}{v_{0}} \frac{\left(1 v_{0}\right)\left(u_{0} v_{0}\right)}{\left(v_{0} v_{0}\right)}\right]\left[\left(1 A_{2}\right)-\frac{1}{\mu_{0}} \frac{\left(1 u_{0}\right)}{\left(u_{0} u_{0}\right)}\left(u_{0} A_{2}\right)\right] \\
& \left(1 A_{2}\right)=\frac{1}{\nu_{0}} \frac{\left(1 v_{0}\right)}{\left(v_{0} v_{0}\right)}\left(v_{0} A_{1}\right)+\frac{2 p_{12}}{\left(1-\frac{1}{2}\right)(11)}\left[(11)-\frac{1}{\nu_{0}} \frac{\left(1 v_{0}\right)\left(1 v_{0}\right)}{\left(v_{0} v_{0}\right)}\right]\left[\left(1 A_{2}\right)-\frac{1}{\mu_{0}} \frac{\left(1 u_{0}\right)}{\left(u_{0} u_{0}\right)}\left(u_{0} A_{2}\right)\right](7)
\end{aligned}
$$

These can be solved, with the information needed for $L-1$ plus a knowledge of $u_{0}$ and $v_{0}$. We obtain $v_{0}=2.441$. This is too low by less than $2 \%$ in $\boldsymbol{N}-1$.

By an exactly similar procedure the L-2 approximation can be made, yielding $\boldsymbol{\nu}=2.470$; which is very close.

Possibly a better test would be in a case with more inelastic scattering in the tamper. We increase the inelastic cross section in the tamper drastically and alter several core cross sections to the following:

$$
\begin{array}{lll}
\sigma_{1}=o_{1}^{*}=4 & \sigma_{2}=o_{2}^{*}=8 \\
\sigma_{1 i}=o_{1 c}=o_{1 c}^{*}=0 & \sigma_{2 f}^{*}=1 & x_{1}=1 \\
\sigma_{i 12}=0.05834 & \sigma_{2}=o_{2 c}^{*}=0 & x_{2}=0 . \\
\sigma_{i 12}^{*}=1.8505 & &
\end{array}
$$

The exact value of $z$ is 2.339. The L-1 value is 2.391, too high by $4 \%$ in $\nu-1$ or about $8 \%$ in the mass. The $U-1$ and $L-2$ approximations give, respectively, $\boldsymbol{\nu}=2.319$ and $\boldsymbol{z}=2.341$. These are $1.5 \%$ low and a doubtful $0.1 \%$ in $z-1$, respectively, so that in spite of the relatively poorer accuracy of L-1 , good convergence is still obtained.

It should be noted that the so-called upper and lower approximations have apparently reversed their roles. It cannot be proved that this will always be so, or that they will always bracket the answer, but it is certain that as the inelastic scattering in the tamper approaches zero, they will become true upper and lower
approximations to $\nu$ and a . As have been pointed out in the text in Chapter III this series of approximations can only be expected to converge to the true answer in the diffusion theory limit. In integral theory there is already an error in the fundamental equation (4.1) for $F_{12}$ of Chapter III. APPENDIX VI.

## THREE-VELOCITY PROBLEM IN INTEGRAL THEORY.

We consider a three-group problem with inelastic scattering in an infinite tamper. We choose a core radius of two-length units and cross sections as follows:

$$
\begin{array}{lll}
\sigma_{1}=o_{1}^{*}=1 & \sigma_{2}=\sigma_{2}^{*}=1.2 & \sigma_{2}=\sigma_{3}^{*}=1.5 \\
\sigma_{i f}=0 & \sigma_{2 f}^{*}=0.2 & \sigma_{3 f}=0.5 \\
\sigma_{i 12}=o_{i 12}^{*}=0.1 & \sigma_{i 23}=o_{i 23}^{*}=0.12 & \\
\sigma_{i 13}=o_{i 13}^{*}=0.1 & \sigma_{2 c}=0.2 & \\
\sigma_{i c}=0.2 & \sigma_{2 c}^{*}=0 & \\
\sigma_{1 c}^{*}=0 & & x_{3}=0
\end{array}
$$

We need numerous auxiliary quantities. First there are the total absorption cross sections in the core and tamper:

$$
\begin{array}{lll}
\sigma_{1 a}=0.4 & \sigma_{2 a}=0.52 & \sigma_{3 a}=0.5 \\
\sigma_{1 a}^{*}=0.2 & \sigma_{2, a}^{*}=0.12 & \sigma_{3 a}^{*}=0
\end{array}
$$

We then find the absorption numbers, $g$, in the tamper:

$$
g_{4}=0.2 \quad g_{2}=0.1 \quad g_{3}=0
$$

We will need the rates of decay, $h$, of the asymptotic tamper


We find:

$$
h_{1}=0.7103 \quad h_{2}=0.6301 \quad h_{3}=0
$$

We shall also require the quantities $g_{12}, g_{21}$, etc. defined in Chapter III. These are given by relations of the form:

$$
\begin{equation*}
\frac{\frac{h_{1}}{\sigma_{2}^{*}}}{\tan h^{-1} \frac{h_{1}}{O_{2}^{*}}}=1-g_{12} \tag{2}
\end{equation*}
$$

These yield:

$$
\begin{array}{ll}
g_{12}=.1303 & g_{21}=.1504 \\
g_{13}=.0798 & g_{31}=0 \\
g_{23}=.0619 & g_{32}=0
\end{array}
$$

We must now find the quantities $f_{1}, f_{2}, f_{3}, f_{12}, f_{13}$ etc., which are needed for the calculation of the critical $\boldsymbol{v}$ by the method of Chapter IV. These quantities $\mathfrak{f}$ are the number of extra neutrons per collision required to keep various one-velocity systems critical. The relation of these auxiliary problems to the actual problem has been defined in Chapter III. We give in tabular form the constants specifying these problems:


| Problem | $\sigma^{a}$ | $\sigma^{* a}$ | $g$ | $\frac{h}{\sigma^{*}}$ |
| :---: | :---: | :---: | :---: | :---: |
| 1 | 2.0 | 2.0 | 0.2 | 0.7103 |
| 2 | 2.4 | 2.4 | 0.1 | 0.5251 |
| 3 | 3.0 | 3.0 | 0 | 0 |
| 12 | 2.4 | 2.4 | 0.1303 | 0.5919 |
| 13 | 3.0 | 3.0 | 0.0798 | 0.4735 |
| 23 | 3.0 | 3.0 | 0.0619 | 0.4201 |
| 21 | 2.0 | 2.0 | 0.1504 | 0.6301 |
| 31 | 2.0 | 2.0 | 0 | 0 |
| 32 | 2.4 | 2.4 | 0 | 0 |

As stated in Chapter I, there exist rapid and accurate methods for obtaining the f's in general. For the purpose at hand, the mean free paths in core and tamper were purposely set equal for each velocity, so that the more precise method of the extrapolated end point described by Frankel and Nelson in LA-53 could be applied. According to this method, we first choose the unit of length so that the total cross section is unity and introduce an auxiliary variable $k$, which is just the wave number of the sinusoidal asymptotic solution in the core. We then have the two relations:

$$
k=\frac{\pi-\tan ^{-1} \frac{k}{h}}{2-x_{1}}
$$

$$
\begin{equation*}
1+f=\frac{k}{\tan ^{-1} k} \tag{3}
\end{equation*}
$$

The first of these is a diffusion theory bqundary eqndition
applied at a distance $x$, inside the actual boundary. The second is just the usual relation between $f$ and $k$. We can find $x_{1}$ as a function of $f$ and $g$ from a graph in LA-258 (By Frankel and Goldberg). The procedure is then to guess a value of $k$, calculate $f$ by the second equation, look up $x_{1}$, and calculate an improved value of $k$ by substituting the quantities thus far found in the right-hand side of the first equation. This procedure yields the following values of $f:$

$$
\begin{array}{lll}
f_{1}=0.3226 & f_{2}=0.2244 & f_{3}=0.0862 \\
f_{12}=0.2332 & f_{21}=0.3100 & \\
f_{13}=0.1555 & f_{31}=0.1834 & \\
f_{23}=0.1495 & f_{32}=0.1311 &
\end{array}
$$

It will finally be convenient to calculate values of, the total number of neutrons necessary per core absorption to keep these auxiliary systems critical. This can be done with the usual relation:

$$
\begin{equation*}
y=1+\frac{\sigma}{\sigma a}=f \tag{4}
\end{equation*}
$$

We obtain:

$$
\begin{array}{ll}
z_{1}=1.8065 & v_{2}=1.5178 \\
z_{12}=1.5382 & z_{21}=1.7750 \\
z_{13}=1.4665 & v_{31}=1.4585 \\
v_{23}=1.4485 & z_{32}=1.3025
\end{array} \quad z_{3}=1.2586
$$


133.

We shall now need the quantities $P_{12}, P_{13}, P_{23}, P_{123}$. We will make several calculations of the value of required to make our three velocity problem critical. For the first we use the equations (3.5) and (5.8) of Chapter III for $\rho_{12}$ and $\rho_{123}$. By simply substituting the numbers already found in these equations, we obtain:

$$
\begin{array}{lll}
p_{12}=0.1074 & p_{13}=0.3541 \\
& p_{123}=0.2419
\end{array} \quad \rho_{23}=0.3364
$$

By using the equations (3.15) and (5.7) of Chapter III we can get an alternative set of values for the above quantities. The vanishing of the tamper absorption in the third group now requires the taking of limits in which $\mathcal{O}_{3 \mathrm{a}}^{*}$ approaches zero and the diffusion theory relation (exact for small absorption) between $g_{g_{32}}$ and $h$ is used to obtain limiting values for $\frac{g_{31}}{\sigma_{3 a}^{*}}$ and $\frac{g_{32}}{0_{3 a^{*}}}$

- These limits are:


$$
\begin{aligned}
& \frac{g_{31}}{\sigma_{3 a}^{*}} \rightarrow \frac{\sigma_{3}^{*}}{\sigma_{1}^{* 2}}=1.5 \\
& \frac{g_{32}}{\sigma_{3 a}^{*}} \rightarrow \frac{\sigma_{3}^{*}}{\sigma_{2}^{* 2}}=1.0417
\end{aligned}
$$

The following values are then easily obtained:

$$
\begin{array}{lll}
p_{12}=0.1129 & p_{13}=0.3626 \\
& p_{123}=0.32 .43
\end{array} \quad p_{23}=0.3394
$$

The first three quantities are seen to be in reasonable agreement. with their previous values, but the two values of $P_{\{23}$ do not agree well.

(Some of this discrepancy may arise from the fact that $\mathrm{P}_{123}$ does not have so many significant figures as $P_{12}$, because of the subtractions occurring in it.)

We now use the first set of values and the method embodied in equations (5.1), (5.2), and (5.3) of Chapter IV to find the value of $Z$ for criticality. Equation (5.1), w the specified normalization to one neutron emitted from fission per second, becomes:

$$
N_{1}=\frac{x_{1}}{\sigma_{1 a}+f_{1} \sigma_{1}}=\frac{x_{1}}{z_{1} \sigma_{1 a}}=1.38388
$$

Equation (5.2) becomes:

$$
N_{2}=\frac{1}{\nu_{2} \sigma_{2}^{a}}\left\{x_{2}+\sigma_{i 12} N_{1}+f_{1} \sigma_{1} \frac{\sigma_{i 12}^{*}}{\sigma_{1 a}^{*}} \rho_{12} N_{1}\right\}=0.20572
$$

Similarly, equetion (5.3) becomes:

$$
\mathrm{N}_{3}=0.5002
$$

We can now calculate from oquation (5.4) of Chapter IV. We obtain

$$
\nu=3.4336
$$

By performing exactly the same calculation with the other set of values for $P_{12}, P_{13}, p_{23}, P_{123}$ wo obtain: $z=3.2463$

This discrepancy in the value of will give rise to a discrepancy in the critical mass if $Z$ is specified. This corresponding discrepancy in mass can be estimated to be about $16 \%$, which is large, but not uselessly so. It is interesting to compare this discropancy wi th Ahstoventane poblichanging the tamper inelastic


Mun
cross sections to capture cross sections. This produces such a large change in $\boldsymbol{\psi}$ (to 6.1828) that it is difficult to be sure of the mass change, but it probably amounts to approximately a $300 \%$ increase. The $16 \%$ uncertainty in the mass arising from our approximate method is then seen to be negligible in comparison with the possible uncertainty introduced by the presence of inelastic scattering.

It would of course be more reasonable to treat the tamper inelastic cross section as an elastic cross section rather than a cepture, if it is desired to ignore the effect of the inelastic scattering. This at least does not throw away neutrons which are actually present. This calculation is easily done and leads to a value $z=4.7407$, which corresponds to a critical mass too large by about $150 \%$. We then see that the $16 \%$ discrepancy in mass between our first two calculations is really negligible in comparison with the total effect on the mass of the inelastic scattering in the tamper. We can estimate that our approximate methods will give the effect of the tamper inelastic scattering on the critical mass to about $10 \%$, which is excellent. The example was chosen to show up the offect of inelastic scattering to an extreme degree. Under more practical conditions the effects of inelastic scattering are not nearly so drastic.

It should be pointed out that in actual practice, the differential cross sections will not be known with complete accuracy. If they vere, the reduction to average three group cross sections is too ambiguous a procedure to be considered reliable. The best available procedure is then to adjust the three group cross sections so that they are in reasonable agreement with the known
differential cross sections, and at the same time so that their use in the approximate formalism here developed will give correct results for the available experiments on assemblies which are in the neighborhood of critical. The formalism can then be considered a valid and convenient method for predicting the results of other experiments which are not too remotely related the the experiments which were used in the adjustment of the cross sections.

It is instructive at this point to check the accuracy of the expression obtained for $p_{12}$ by the use of the asymptotic exponential approximation to the tamper densities in the one velocity problems. We use equation (2.4) of Chapter III to obtain:

$$
p_{12}=0.1077 \quad \rho_{13}=0.3618 \quad \rho_{23}=0.3438
$$

We then insert these values in equation (5.8) of Chapter III to obtain:

$$
p_{123}=0.2474
$$

It is seen that these values agree well with the ones previously obtained, so that the value of for criticality will be given well with this simpler procedure.

We see that, at least for the example used, this much simpler method is just as trustworthy as the methods previously used. It will presumably become relatively poorer as the tamper absorptions are increased, but it should always be used unless greater accuracy is clearly necessary.

Finally, it should be noticed that with the present formalism, the use of more than three groups is of doubtful advantage, inasmuch as the discrepany between the three values of $P_{123}$ indicates that a quantity such as $\rho_{1234}$ may be completely ancertain.


APPENDIX VII.
NUMERICAL TEST OF THE THEORY FOR A FINITE TAMPER.
We assume a two-velocity system with the following constants:

$$
\begin{array}{llll}
\sigma_{1}=\sigma_{1}^{*}=1 & \sigma_{1 \mathrm{f}}=0.3 & \sigma_{i 12}=0 & o_{1 c}=0
\end{array} \quad o_{i 12}^{*}=0.2 \quad o_{1 c}^{*}=0
$$

We inquire what value of $z$ for fission will make the system critical. The constants have been so chosen that a neutron at either velocity is equally effective in causing a fission, so that the problem really is a one-velocity problem with constants:

$$
\begin{array}{lll}
\sigma_{0}=\sigma^{*}=1 & \sigma_{f}=0.3 & \sigma_{c}=0 \\
\sigma_{c}^{*}=0 \\
& a=1.4 & b=3.0
\end{array}
$$

The $f$ for this problem can be found by the extrapolated endpoint method and is equal to 0.4505 . We can immediately find the $\boldsymbol{v}$ for criticality to be 2.5017 .

We now apply the method of Chapter IV for solving two-velocity problems with finite tampers. For this purpose we require that for a one-velocity problem with the constants of group one. This problem is identical with the previous one, except for the fact that $g_{1}=0.2$. This can also be solved exactly and yields

$$
\mathbf{f}_{1}=0.5255, \text { which is equivalent to } \boldsymbol{z}_{1}=2.7517
$$


138.


The other $f$ reocuired is $f_{2}$, which is just the one first given. The quantity $L_{f}$ defined in equation (64) of Chapter III is equal to 1.2486 . The quantity $\rho_{12}$ defined by equation (6.9) of Chapter III can be found by taking the limit of $\frac{h_{2}^{2}}{\sigma_{2 a}^{*}}$ for small $h_{2}$ and is equal to 0.1112 .

Equations (5.1) and (5.2) of Chapter IV with $P_{12}$ replaced by $\frac{p_{12}}{\left(1+L_{1}\right)}$ and $N_{3}=0$ can then be solved for $N_{1}$ and
$N_{2}$ and the value of $w$ found by the usual procedure. We obtain $\mathcal{Y}=2.5324$. We have therefore made a mistake in $\boldsymbol{\nu}=1$ of about $2 \%$ by the use of our method. This corresponds to a mistake in critical mass of something like $4 \%$, which is certainly tolerable for most purposes.

We might ask for the total effect on $\geqslant$ of the finiteness of the tamper. The value of $\geqslant$ for the same system with $b=\infty$ is 2.12.30. This corresponds to something like a $60 \%$ mass decrease from the previous case, so that our approximate treatment gives the effect on the mass of the finiteness of the tamper to something like $7 \%$. This certainly constitutes a very useful degree of accuracy.

APPROVED FOR PUBLIC RELEASE

UNCLASSIFIED


