

D) MOT CIRCULATE Retention Copy
 0.1

For Reference

INCLASSIFIED

PUBLICLY RELEASABLE Per 2 Mpsandaual. FSS-16 Date: $3.13-92$ Dy'mballegna.

Charifleation shancen to TNCLASMFIED by muthority of the l. . S. Atomic Energy Commiontong

Pr ALDP, TID-14ee:S2, sept-oct. 1974 by report labiary ore

LADOL 4

Rarch 30.1945
This rocument containe \qquad pages

HOLTI-NEDIUM CRITICALOMASS PROBLETSS

$\because O R K$ DONE BY:
K. M. Case

REPORE MRITLEN BY:
K. M. Case

VERIFIED UNCLASSIFIED
Per_1MR 6-11:29 By.monallegn 4.30-5h_

VERIFIED UNCLASSIFIED
$\angle M R \quad 6-11-79$

ABSTRACT

By use of a theory shich has given excellent results for the oritical mass of spheres both untamped and with infinito tampers formulas are developed for more complicated configurationso Finite tampers, several successife tampers, air spaces between sore and tamper, and holos in the aotife naterial are treated. The formulas obtained are found to be much simpler than those given by any other theory of similar accuracyo Numerical results and graphs are given for the various oases treaten。

MULTI－MKDIUM GRITIGALOMASS FROBLENSS

Introduotion

Recontly a mothod of treating criticalamasa problems in the oneo volooitymeroup aporoximation has been developed by Serber o This treatment jialds formulas that are much simplox than thoso obtained by the ephorioul－ harmonio method and yot fixes critical radis with an orror of leas than 1 per cont（after appliontion of a onall oorreotion factor l）o The amin obstacle in applying tho sphericaloharmonic method in its higher approximations to more complioated critioalmass problems ia the aize of the determinants Which mu8t be aolvedo Sinoo this nom method eliminates the prohibitive amount of cormutation involved in the polynomial mothod，it would seen to bo pertioularly uaefui in obtaining critionl nasses for complicated saseso In this report applications of the method are made to the following problema：
a）Aotive matorial surrounded by a tamper of fiaite thicknesso
b）Active material surrounded by a tarmor of finite thiakness which in turn is arrounded by unothen tamperg which nay be of either finite or infinite thicknesso
o）Active material is separated from an infinite tamper by an air sprase。
d）Aotive waterial is arranged in the form of a sherioal shell with an enptry hole inside。 The anse of a tamper oxtending to infinity is treated as well as the untampol case。

equation but mill use a proceduro suggested by A. H. Wilsom in report BM 44 . Howeror, instend of using inilson's argunent (winich abteins the resuite frora the Boltzmann equation) we will justify the method using the integral equationo

$\xrightarrow{\text { Method }}$

For complioatod oritical mass problaus the straighteforward isethod of fitting the integral oquation nust be modifiod in order to avoid a certain ambiguity which arises with respeot to the proper choice of noutron dansity. To see the anbiguity lot us axamine the method. The problem of an aotive coro combeddod in an infinite tampor is attacked by first assuming the neutrons in eaoh medium to have the same spatial dependence as in an infinito mediun of that matorial. (For the core this is (sin $k_{1} \sigma_{1} r$)/ $\sigma_{1} r$ and for the tamper $A e^{-k_{2} \sigma_{2} r / \sigma_{2} r}$ 。Hore the ofs are the reciprocal transport mean free paths. Subscripta 1 and 2 reier to core and tamper respoctively.

$$
\begin{gathered}
k_{1} \text { is given by } 1+f_{1}=k_{1} / \tan ^{-1} k_{1} \\
\text { where } f_{1}=\left[(v-1)\left(\sigma_{\text {fission }}\right)_{1}-\left(\sigma_{\text {capturo }}\right)\right] / \sigma_{1} \\
\text { and } v=\text { number of noutrons coming off por fission。 } \\
k_{2} \text { is given by } 1+f_{2}=k_{2} / \tan _{h}^{-h^{2} k_{2}} \\
\text { where } f_{2}=-\left(\sigma_{\text {capture }}\right)_{2} / \sigma_{2}
\end{gathered}
$$

These solutions are then required to outisfy the integral oquation for the neutron deasity at the center of the careo

$$
\begin{equation*}
n(0)=\int_{\substack{\text { ail } \\ \text { space }}}\left[\sigma(x)(1+f(x)) / 4 \pi r^{2}\right] n(x)\left(\operatorname{oxp}=\int_{0}^{x} \sigma(x) d x\right) d V \tag{1}
\end{equation*}
$$

This yields one equation conneoting A and the oritical radius (a) of the coros To obtain a socond oquatign och sofuton pro required to satisfy the law of

comsorvation of neutronso This says that the number of nentroms absorbed in the tomper must equal the net mumer produced in the coreo Statod mathematically this in:

$$
\begin{equation*}
\sigma_{1} f_{1} \quad \int_{c o r e} n d V=-\sigma_{2} f_{2} \int_{\text {tanper }} n d V \tag{2}
\end{equation*}
$$

Combining the two equations gives an equation for a Arbbjuity arises when we have for example a sequance of one finite tamper followed by an infinite ono. Dsing the above procedure the core dersity is assursed as:

$$
n_{1}=\left(\sin k_{2} \sigma_{2} r\right) / \sigma_{2} x
$$

in the finite tamper the density is

$$
n_{2}=\left[A e^{-k_{2} \sigma_{2} r}+b_{0}^{k} 2^{\alpha_{2}}\right] / \sigma_{2} r
$$

and in the infinite tamper o

$$
a_{3}=c e^{-k_{3} \sigma_{3} r} / \sigma_{3} r
$$

Fitting the integral oquation and using the comervation law then gives us only tro equations for the four quantities, A, B, C, and a Fence 8 one nore assumptions would have to be made about the neutron densitieso The ambiguity is contained in what these assumptions should boo Another example of the trouble one runs into is the problem of the central hole。 To fit the integral equation at $x=0$ would require some ad hoo hypotheses about tho neutron density in the hole。

These troubles can be avoided, however, by reformulating what actually has been done in the osse where they do not occur o First let us examine oquation (2) o Sinoe for the stoady state the not number of neatrons produced

MCLASSIFIEO

equation must be the total flux of ngutrons across tine surface of the cores Similarly, since the number of neutrona absorbed in the taiper bust be equal to that flowing into it, the rightahand side mast be the total ilux into the tamper:

Thus equation (2) merely states that the total filux is contiauous across the coreotamper iaterface。 Using the fact that the assumed solutions setisfy the exuatione:
$\Delta n_{1}+k_{1}{ }^{2} \sigma_{1}{ }^{2} n_{1}=0 ; \quad \Delta n_{2}-k_{2}^{2} \sigma_{2}^{2} n_{n}=0$
and the divergence theorom, we transform equation (2) into:

$$
\begin{equation*}
\left.\left.\left[o f_{1} \operatorname{cdada}_{1}\right)_{a} / x_{1}{ }^{2} a_{1}\right] \int_{\substack{\text { core } \\ \text { Burface }}} d S=\left[i_{2} \operatorname{grad} a_{2}\right)_{a} / k_{2}^{2} \sigma_{2}\right] \int_{\substack{\text { oore } \\ \text { surface }}} d S \tag{4}
\end{equation*}
$$

Fron the above discussion end wis oquation we see that (2) amounts to equating the flux per unit area (F) in the two regions at the boundary surface。 We al8o seo that F for a medium is fiven by:

$$
F=\langle 0| \mathrm{f}|\operatorname{grad} n\rangle / k^{2} \sigma
$$

Generalizing it can bo said that at the boundary between two media the flux should be equatedo

Substituting the assumed meutron density for the trommedium problem
in (1) yields:

$$
\begin{align*}
& \left.k_{1}=\sigma_{1}\left(1+f_{1}\right) \int_{0}^{a_{1}} e^{-\sigma_{1} r}\left[\left(0 \dot{\ln } k_{1} \sigma_{3} r\right) / \sigma_{1} r\right) / \sigma_{1} r\right] d r+\left\{\sigma_{2}\left(1+f_{2}\right) e^{-\sigma_{1} a}\right\} \tag{5}
\end{align*}
$$

The first integral on the right spita inte

$$
\sigma_{1}\left(I+f_{1}\right)\left\{\int_{0}^{\infty} e^{-\sigma_{1} r}\left[\left(\sin k_{2} \sigma_{2} r\right) / \sigma_{2} r\right] d r-\int_{\theta}^{\infty} e^{\infty \sigma_{1} r}\left[\left(\sin k_{1} \sigma_{1} r\right) / \sigma_{2} r\right] d r\right\}
$$

But $\int_{0}^{\infty} \theta^{-\sigma_{1} r}\left[\left(\sin r_{1} \sigma_{2} x\right) / o_{2} r\right] d r=\left(\tan ^{-1} x_{1}\right) / o_{1}$
From our dofintition of k_{1} अе see that $\sigma_{1}\left(1+r_{1}\right) \int_{0}^{\infty} \theta^{\infty} \sigma_{1}\left[\left(\sin k_{1} a_{1} r\right) / \sigma_{1} r\right] d x=k x_{1}$ quich just oancels the k on the laft of equation (5) o Perioraing this operation. multiplying through by $0^{\sigma_{1}}$ and transposing torms puts (5) in the forms

$$
\sigma_{1}\left(1+f_{1}\right) \int_{a}^{\infty} \theta^{-\alpha_{1}(r-a)}\left[\left(\sin k_{1} \sigma_{1} r\right) / \sigma_{2} r\right] d r=\sigma_{2}\left(1+r_{2}\right) \int_{a}^{\infty} e^{-\sigma_{2}(r-a)} n_{2}(r) d r
$$

or

$$
\begin{equation*}
\sigma_{2}\left(1+f_{1}\right) \int_{a}^{\infty} a^{-\sigma_{1}(r \infty a)}{n_{2}}_{2}(r) d x=\sigma_{2}\left(1+f_{2}\right) \int_{a}^{\infty} e^{-\sigma_{2}(r-a)} n_{2}(r) d r \tag{6}
\end{equation*}
$$

Let $N(r, \mu)$ bo the number of neutrons por unit volume whose velooity roctor makes an angle $\cos ^{-1} \mu$ with the radius vector corresponding to a density distribution $n(r)$. Now oonsider the expression; $\sigma(1+f) \int_{a}^{\infty} e^{-\sigma\left(r^{i}-r\right)} n\left(r^{0}\right) d r^{\prime}$. Broept for the laok of a faotor representing the attemation of the meutron beam from x to 0 this is the density of meutrons at the origin coning from distances greatar than r awayo Since the density at the origin is unfform in angle, that coming from any one solid angle is

$$
\left[\sigma\left(1+f^{2}\right) / 4 \pi\right] \int_{r}^{\infty} e^{\infty \sigma\left(x^{i}-r\right)} \pi\left(r^{i}\right) d r^{\phi}
$$

But the density at the oxigin coming in from a unit solid angie from all distances greater than r and not atteamated botwoen r and 0 is just $N(r,-1)$ o

Thus

$$
N(r,-1)=\left[\sigma\left(1+x^{\prime}\right) / 4 n\right] \int_{r}^{\infty} e^{\infty \sigma\left(r^{\prime}-r\right)} n\left(r^{0}\right) d r^{\theta}
$$

Comparing this with equation (6) we see that it merely says:

$$
\begin{array}{ll}
& 4 \pi N_{1}\left(a_{9}-1\right)=4 n_{2}\left(a_{0}-1\right) \tag{7}\\
\text { or } \quad & N_{1}\left(a_{0}-1\right)=N_{2}\left(a_{p}-1\right)
\end{array}
$$

The condition which we have used (and will henceforth use at all boundaries between two media) is that the flux coming in radially be continuous.

The integrals for the $\mathrm{N}(\mathrm{x},-1)$ can be patten in fairly simple forme Here we include a table of this function for all the density distributions we shall need in this report ${ }^{2}$),

$$
\begin{aligned}
& n(r) \\
& \left(\sin k_{1} \sigma_{1} r\right) / \sigma_{1} r \\
& \left(\cos k_{1} \sigma_{1} r\right) / \sigma_{1} r \\
& e^{-k \sigma r / \sigma r} \\
& e^{k \sigma r} / \sigma r
\end{aligned}
$$

$$
\begin{aligned}
& \mathrm{N}(\mathrm{r},-1) \\
& {[-(1+f) / 4 \pi] \text { I } E(\sigma r+i \sigma i k r)} \\
& {[(1+1) / 4] \text { Re Ex }\left(\alpha x+i j_{1 /}\right) e^{\sigma} T} \\
& {[(1+s) / 4 \pi]_{0}^{\mathrm{cr}} \mathrm{Ei}(\mathrm{or}+\mathrm{kOr})} \\
& {[(1+f) / 4 \pi] 0^{\sigma r} E i(\sigma r-k \sigma r)}
\end{aligned}
$$

2) The difficulty Wilson encountered in treating the cosine term arises from failing to notice that this is an asymptotic, not an exact, solution of the Boltzmann equation. If the Boltzmann equation with a point source (to which the problems in rich the cosine occur more or less correspond) is solved one obtains the (sin $k_{1} \sigma_{1} r$)/ $\sigma_{1} r$ term, and in addition, a linear combination of ($\left.\cos k_{2} \sigma_{2} x\right) / o_{2} r$ and

$$
\frac{1}{2 \pi r} \int_{1}^{\infty} \frac{e^{-r K} d K}{\left.1-[(1+f) / x] \tanh ^{-1}(1 / x)\right]^{2}+(1+f)^{2} x^{2} / 4 x^{2}}
$$

Asymptotically this gives the $00{ }^{k_{1} \sigma_{1} r / \sigma_{1} r}$ term 。

Here Ei（x）stands for $\int_{x}^{\infty} e^{-y / y ~ d y, ~ a n d ~ I ~ m e a n s ~ " i m b i n a r y ~ p a r t ~ o f t ~ a n d ~ R e ~}$ meana＂real part of＂。

To see shat to do with a free surface lot us examine how the uatamped sphere is treated by fitting the intogral equationo on substituting $n_{1}(r)=\left(\sin k_{2} \sigma_{1} r\right) / \sigma_{1} r$ in the integral equation and going through the same manipulations as berore one arrives at equalion（6）excopt that the right hand intogral is not prosent．Thus the formula is

$$
\begin{equation*}
a_{1}\left(1+i_{1}\right) \int_{a}^{\infty} 0_{1}^{-\sigma_{1}(r-a)} a_{1}(x) d x=0 \tag{8}
\end{equation*}
$$

as we say woove this menns $N_{1}(a,-1)=Q_{i}$ i．θ_{0} there is no filux coming radiaily invard。

The procedure for attacking more complicatod problans should now be clear．In anoh of the regions of different neutron propertios the neutron density is assumed to be that oorresponding to an infinite medium of the material。 Thus in a solid active coro a neutron density $a=\left(\sin k_{1} \sigma_{1} x\right) / \sigma_{1} r$ is used．For ax infinite ternpor the solution is taken as：

$$
\operatorname{ar} \theta^{-k_{2} \sigma_{2} r} / \sigma_{2} r
$$

In case the active material does not extend to the center the neutron density used in the active material is：

$$
a=A\left(\sin k_{1} \sigma_{1} r\right) / \sigma_{1} r+B\left(\cos k_{1} \sigma_{1} r\right) / \sigma_{1} r
$$

For a finite tanper solutions of the form：

$$
n=\left[A \theta^{-k_{2} \sigma_{2} 2^{x}}+8 e^{k} 2^{\sigma_{2}}\right] / \sigma_{2} r
$$

are taken．

These solutiors are then raguired to sstisfy cortoin boundary conditions. At a free surface the condition will be $N\left(x_{z} *-1\right)=0$ at a surface separating two media $N\left(r_{80} 1\right)$ and the flux F will bo baken oontimuouso These conditione certainly hold for tho corroct solutions of the probleme Elowovor, it is not inmodiately obvious thet merely requiring these of the approximate solution will yield good resulta Experienoe with timped and untamped spheres indioates that it doeso

Finite Tarapers
Here the problem is to find the oritioal radiue for a sphere of active material grbeddod in a tampor of inner radius a and outor radius bo The core solution will bo taken as $\left(\sin \sigma_{1} k_{2} r\right) / \sigma_{2} r$ and the tamper solution as:

$$
\left[A_{0}{ }^{-v_{2} k_{2}^{r}}+B \theta^{a_{2} 2^{r}}\right] / \sigma_{2}
$$

Subscripts 1 refer to core constants. 2 to tamper constanta p Placing $\mathrm{N}_{2}\left(0_{0}-1\right)=0$, egasting $N_{1}\left(a_{0}-1\right)$ to $N_{2}\left(a_{0}-1\right)$ and seting

$$
\left.\left.\left(-f 1_{1} / k_{1}^{2} \sigma_{1}\right) \text { grad } n_{1}\right)_{a}=\left(f_{2} / k_{2}^{2} \sigma_{2}\right) \operatorname{grad} a_{2}\right)_{a}
$$

gives us three aquations for A, B_{0} and ao Eijminating A and B gives us the following formula for the oriticel radius (a) in tarms of b and tho various nuclear constante:
$\frac{\sigma_{1}{ }^{2} k_{1}^{2}\left(1+i_{1}\right) e^{\sigma_{1} a} 1 \operatorname{si}\left(\sigma_{1} a+i \sigma_{1} k_{1} a\right)}{\mathrm{p}_{1}\left[\sin \sigma_{1} k_{1} a-\sigma_{2} k_{1} a \cos k_{1} \sigma_{1} a\right]}$

$=0$

As a cheok on this method conparisons were made with some calculations unde by Group Tr 4 on finite tampers。 In the six cases ohecked the agreament was well within the aocuragy to which the two sets of computation had been carriod.

One orse of practical interest has bear oalculatedo Thia mas to soe what is lost by having a $4 C$ tampor of only $6^{\prime \prime}$ tindokness with a core of 80 pes cent 250 In units of the oore moun frae path the critical radius witin an infinite MC tamper came out 1.55650 With $6^{\prime \prime}$ WC this 1.5930 a differenoe of 205 per oent in redius or 705 per oent in mass。

Double Tanpers a One Intinite
By double tamper one infinite wo mean a configuration in which a spherioal oore af active ratorial of radius a (region 1) is surroundod by tomper matorial extonding ta radius b (region 2) i from b to oo there is sone other tamper matorial (region 3)p

The scilutions taken in regions 2 and 2 are the sume as those in the yrevious sactiono In region 3 we tako $n(r)=C e^{\omega \sigma_{3} k_{3}} / / \sigma_{3} r$ o To determine $A_{D} B_{0} C_{0}$ and a there are the four equations obtainod by equating flux and $N(x, \infty)$ at a and b_{0} Eliminating $A_{0} B_{0}$ and C yields an equation for a:

$$
\begin{aligned}
& \text { ! : ! : ! : : }
\end{aligned}
$$

$$
\begin{aligned}
& M=\frac{\left(k_{2} \sigma_{2} b+1\right) e^{-k_{2} \sigma_{2} b}+\operatorname{Ei}\left(\sigma_{2} b+\sigma_{2} k_{2} b\right)}{e^{k_{2} \sigma^{b}}\left(k_{2} \sigma_{2} b-1\right)-E E i\left(\sigma_{2} b-\sigma_{2} k_{2} b\right)}
\end{aligned}
$$

For tho case of no abaorption in region 3, X staplifies to $:$

$$
x=\frac{1}{3} \frac{k_{2}{ }^{2} \sigma_{2}^{2}\left(1+f_{2}\right) e^{\sigma_{2} b}}{i_{2} \sigma_{3}^{2} \sigma^{b b} \operatorname{Ei}\left(\sigma_{3} b\right)}
$$

Figure I shows the oritical radius (for an 80 per cont 25 core followed by $5 C$ and then by infinite Fe) as a function of the wC tisioknesso After a thiolcness of about $3^{\prime \prime}$ no particular gain is achiered by inareasing.
 favorable property of Feg annely its lack of absorptiong overcoming the bad effeots onused by its small oross seationo

Pigure II is a similar curve with the Fe replaced by BeOo
Replasing the IfC by B_{10} and the Fo by BC gives the curves shown in Figures III and IV. This is the probiem enoountered in consideriag the effoot of surrounding the plug of the gan with B_{10} for safety in fabrication or shippingo Comparison with the results describod below for an empty shell between core and tamper shows that the insertion of the B_{10} graatiy increases the safety factoro Thus in tho case of aotive material followed by an ais space of equal soluse and them by an infinite wC tamper one can only insent 1.16 WC tamped erits of material before reaching the oritical statoo If \mathbb{B}_{10} is preseat instead of the air about 108 orits can bo present rithout being

superoritioal．
Thos boron calculations were made assuming 200 por cont B_{10} and rough values of the cross seation． S_{g} ．When the scattoring data on B10 has beon evaluated another cal culation mill be mado mssuming the correct B_{10} purity。

Doublo Finite Tampers：
If the second tamper material（region 3）oxtrands only to a radius －instead of to infinityo havo double finite tamperso In the rogion 3 wo now take the neuturon density to be $n(r)=\left[e^{-\sigma_{3} k_{3} r}+\operatorname{De}^{\sigma_{3} k_{3}^{r}}\right] / \sigma_{3}^{r}$ while in regions 1 and 2 it is takon as beforo。 at a and b tha bamo boundary conditions are used。 At o the comdition $M_{3}\left(\sigma_{0}-l\right)=0$ is added．The reaulting equation for a f．s the same as abovo oxcopt thiti K nust be replaced by

$$
\begin{aligned}
& K=\left\{\frac{-3^{k}{ }_{2}^{2} \sigma_{2}^{2}\left(1+f_{2}\right) \theta^{\sigma_{2} b}}{x_{2} k_{3}^{2} \sigma_{3}^{2}\left(1+f_{3}\right) \theta^{\sigma_{3}}}\right\}
\end{aligned}
$$

Tho single oase calculated with this formula was that of 80 per cent 25 followed by $6^{\prime \prime}$ he and then by $6^{\circ 1}$ Foo Horo acrit $=1.0530$ mip instaad of l． 5565 with infinite ric，showing that we 1080 about 302 per cent in mase by having the wC tramper finite eren if Fe is added．

Air Space between Core and Infinite Tamper
Here the voro of active material is assumed to extend to a radius a and the infinito tamper in ingin at
 the total flux of neutrons croseing the surface of the active waterial must equal that crossing the inizer surface of the tamper pe nust have

$$
\left(\alpha_{4}^{\left.\left.\left.m_{a}^{2} f_{1} / k_{1}^{2} o_{1}\right) \operatorname{grad} n_{1}\right)_{a}=\left(4_{4}^{m} f_{2}^{2}\left(k_{2}^{2} o_{2}\right) \operatorname{grad} n_{2}\right)_{b}\right)}\right.
$$

Equating $N_{2}\left(b_{p}-1\right)$ to $N_{1}(a,-2)$ gives the seoond of the tro equations nocessary to determine a and Ao a is given by:

$$
\begin{equation*}
\frac{\alpha_{1}^{2} k_{1}^{2}\left(1+f_{1}\right) e_{1}^{\sigma_{1}^{a}} I \operatorname{Ei}\left(\sigma_{1} a+i \sigma_{2} k_{1}^{a}\right)}{f_{1}\left[\sin k_{1} \sigma_{1}^{a}-\sigma_{1} k_{1} a \cos \sigma_{1} k_{1}\right]}+\frac{k_{2}^{2} \sigma_{2}^{2}\left(1+f_{2}\right) e^{\sigma_{2}^{b+\sigma_{2} k_{2}^{b}}}}{f_{2}\left(1+k_{2} \sigma_{2} b\right)} \operatorname{Ei}\left(\sigma_{2}^{b+\sigma_{2} k} 2^{b}\right)=0 \tag{12}
\end{equation*}
$$

Figure y shows how the oritical mass varies as a function of a/b。 It is jmportant for the gun to note that with a geometry of oores spuce of equal volunes and then tamper one oan put in at least 1.16 orits and still be suboritical. Since the gun plug has a atill leas farorable configuration one can safely put more than 2,2 arits into ito

Caloulations or oritioal radii from the above formulas are very simple using the graphs of LA. 234 . These give plots of what are essentially the terms in the above equations. By successive guessing and reading from the graphs rapid oomputations oan be mado.

Comparison with results obtained by Glauber with the spherioal harmonio method for $a / b \cong 1$ shows essentially complete agreenent with this method. Central Spherical. Hole in Aative Material

For the sake of the draplosion and the integral oxperiments it is dow sirable to know the offect of contral holos on the oritioal mass of both tamped

and untasted spheres.
Let us take the radius of the hole to be a and the outar radius of active material b. For the neutron density in the active mater al assume:

$$
n_{1}(r)=\left\{\sin \sigma_{1} k_{1} r+A \cos \sigma_{1} k_{2} r\right\} / \sigma_{1} r
$$

At b the boundary conditions are $N_{2}\left(b_{0}-i\right)$ and F continuous in the case of an infinite tamper At the edge of the hole (a) the condition of zero flux is imposed, ion

$$
\operatorname{grad} a)_{a}=0
$$

For an undamped sphere the formula for b is:

$$
\begin{equation*}
=I E i\left(\sigma_{1} b+i \sigma_{1} k_{1} b\right)+\frac{\left(\sigma_{1} k_{1} a-\tan \sigma_{1} k_{1} a\right)}{1+\sigma_{1} k_{1} a \tan \sigma_{1} k_{2} a} \operatorname{ReEI}\left(\sigma_{1} b+i \sigma_{2} k_{2} b\right)=0 \tag{13}
\end{equation*}
$$

For e. tamper extending to infinity the corresponding formula (assuming $n_{2}=B e^{\left.-k_{2} \sigma_{2} 2^{r} / \sigma_{2} r\right) \text { is }}$ $\left.\left\{1+f_{1}\right){c_{1}}^{2} \sigma_{1}{ }^{2} \sigma_{1} b^{b} / f_{1}\right\}$ $\left\{\frac{I E_{i}\left(\sigma_{1} b+i \sigma_{1} k_{1} b\right)-\left(\frac{\sigma_{1} k_{1} a-\tan \sigma_{1} k_{1} a}{1+\sigma_{1} k_{1} a \tan \sigma_{1} k_{1} a}\right) \operatorname{ReEi}\left(\sigma_{1} b+i \sigma_{1} k_{1} b\right)}{\left[\operatorname{ain} \sigma_{1} k_{1} b_{\infty} \sigma_{1} k_{1} b \cos \sigma_{1} k_{1} b\right]+\left(\frac{\sigma_{1} k_{1} a-\tan \sigma_{1} k_{1} a}{1+\sigma_{1} k_{1} a \tan \sigma_{3} k_{1} a}\right)\left[\cos \sigma_{1} k_{1} b+\sigma_{1} k_{1} b \sin \sigma_{1} k_{1}^{b}\right]}\right\}$ $-\left[k_{2}^{2}\left(1+f_{2}\right) \sigma_{2}{ }^{2} \sigma_{2}^{b+k_{2} \sigma_{2} b} / f_{2}\left(1+k_{2} \sigma_{2} b\right)\right] E 1\left(\sigma_{2} b+\sigma_{2} k_{2} b\right)=0$

To checi the validity of the formula for small holes a perturbation theory mas used. For the untamped oase with 100 per cent 25 and a hole of radius $0_{0} l$ mfp the perturbetion theory gave an irorease of the radius b over that which mould be obtained with no hole of 0.00058 mfp . The above formula gave 0.0006 mff a satisfactory chook.

From this we see that this method gives good results for small holes. In this region it also agrees with volumetric theory。 For larger holes we know that (14) will give too small a mess. Applying what in the light of experienoe (of. LAA-234) would seem to be reasonable corrections gives a curve which again agrees with volumotric theory. Moreover, checking volumetrio theory in the limit of very large holes (which oan be done by comparison with a properly ohosen planc slab problem) again shows it to be correot. Thus, instead of (14) the following simplo receipe oan be used. To calculate the critical mas with any aise central hole, merely assume the active material to be uniformly distributed in a sphere of radiue the same as that of the outer radius of the shell of active material. Our exparience indicates that this should give the eritical mass oorreot to within a fer por cent。

Conolusions:
In conclusion it can be said that this method serves to solve the more complioated oriticalomase problems rather conveniently in an approximation whioh is probably fairly good as long as ono stays away from extreme cases (suoh $2 s$ very large holes and very thin shells or tampers). However, for holes wo adrocate the use of volumetric theory instead of this method. In the above work no use was made oither in tho formulas derived or in the results quoted of the enpirioal fact that oror a. 0 fise iridec renge for which the correct answers are

known this method gives oritioal radii mich aro about 2 per cent too lows If one adds this 2 por cont to all radii caloulated from the formulas in this report resulte correct tol 1 or 2 per cent should be obtainablea Lereover. relative offects such as time per cent increase in oritical mass duo to using a thick, but still not infíaitos tamper should be given very accuratelyo

made in u.ema

国
（和： Mr

22
$\because 0$
0
0
0

\qquad Cop ${ }^{\text {Patar }}$量＂疗${ }^{4}$－

co：：：：
4－4．
，
ćW4$\stackrel{\text {＂}}{4}$TH：
形 （1） $\sqrt{4}$

－，
 ，
（4）W＋为
，
， ， ，

