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Following a suggestion

has been made of the effect of a

ABSTRACT

by Kistiakowaky

finite reaction

and Peierls (LMdS-188) an analysis

zone on the velocity of a detonation

wave, and in particular of the differenoc in this phenomenon between plane and expand-

ing waves; this analysis is limited to the asymptotic behavior of the velocity ae it

increases toward the Chapman-Jouguot limit. In the ca8e of plane waves the velooity
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behind the front at

whi~e for expanding

of a wave in a slab
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which the Chapman.Joug@ condition is approximately attained,

waves the decrease &e of the order (d/~).

of explosive is also found in the limiting

ness 18 large compared with the reaetion zone (the behavior in

be similar). In

slab. Numerical

process, showing
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this case the law is (d/~)4

valuek have been calculated

that deviations of about 5$

Tho steady velooity

case where the thick-

a finite stick should
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are

8pherical Wavea that hnve travelled distances of

elightly varied models auggeet that the absolute
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a particular model of the detonation

to be expected between plane and

the order of 10 cm; calculations for
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EFFECT W REACTION ZONE ON DET.ONATHXlVELOOITY

10 Introduction

The propagation of a symmetric detonation

well known in the ideal conditions that the size of

the Chapman-Jouguet condition is Batisfied, and the

ga8e8 follow a~-law; solution- have been given by

wave in 1, 2, or 3 dimensions is

the reaction zone is neglected,

equation of state of the exploded

Taylorl~ (these solutions are re-

ferred to below as the ‘tided” solutions). The phenomena involved in the reaotion

zone are too ocmplicatod and ill understood to permit any exact mathematical treat-

ment; we have attempted here only to find the asymptotic form of the deviations from

the ideal solution8 in some special problems, namely the variation of detonation

velo~ity with age in a symmetrio wave, and the steady velocity of a wave traveling

along an unconfined semi-=lnfiniteslab (this being the simplest approximation to a

citickof explosive).

Our results are based on a particular model of the detonation prooess,

which, we believe, takes account of Its significant features, at least in conditions

not far from the steadjrstate. This is based on ‘thehypotheses of von Neumann as to

2)the general atruoture c}fthe wave ; according to this theory the detonation front

consist8 of an initial shock in which the pressure is higher (by

the normal Chapmn-Jougue’t preseure, followed by a narrow region

tion takes place and the pres~re falls steeply. It is believed

generally rather less than 1 cm thick.
.-

1) G. I. Taylor, BM-49. AC-639

perhaps 5@) than

in which the reac-

that this zone is

2) J. vcn Neumann, OSRD No. 5!L9; reported in LA-165, “Shock Hydrodynamicsn.

~--
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Fig. 1

This is illu~trated graphically in the p-v diagram of Fig. 1. Yhe point

represents Conditions in the undetonated explosive. The shock wave raises discon-

A

tinuously the

curve for the

point in this

pressure to a value Ppk a the curve JIBwhich is the Hugoniat shock

undetonated explosive. The reaction begins and the representative

diagram of a particle describes the line BC, C being the “Chapman.

I
Jouguetn point on the Hugoniot aurve CD for the fully de%or.atedexplosive; the slope

of the line ABC is proportional to the square of the detonation velocity. This ap-

plies only to the steady state in whioh’the presrwre and denaity are

of the distwnoe bahind the front: until this i8 attain
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the pressure to a somewhat lower pressure (or higher pressure in the caso of ‘persis-

tencett)corresponding to a point BY on the curve AB. From there the path of the

representative point will move towards acme asymptotic mdiabat which will in general
*

be different from that reaohed in the steady state.

We describe theoe phenomena mathematically as follows: the asymptotic’adia-

bat for any particle is taken in the form

p= p(x)

where x is a coordinate labelling the

reaotioraiB completed pressures will be

therefore write

where ~(x,t) -j

V-y (1.1)

partiole under consideration. Before the

higher than given by this equation. We

(1.2)

Oast_+ co. The value of q is a measure of the amount of reaction

as yet uncompleted. We now

equation

asaume that the time variation of ~ is described by an

d@t= - 29/l(p,v) (1.3)

where f(p,v) is some given function of the pressure and volume. The faotor 2 is in-

serted for convenience in the case fien l(P~v] iS constant. Then ~de “*J4 and this

t corresponds more nearly to the usual definition of the reaction time as that time

after whioh the reaction is essentially ccmplete (in this case (1-e02) = 6~% complete).

One further assumption is needed to render these equations definite, namely

an equation to ftx the initial value qo(x) of a particle when it is

shock front. We have here assumed for simplicity that

but it

sot up

qo(x) = constant

could b~ replaced by&y relation bdween ~(x) and ~(x). We

the equations of our problem,

reached by the

{1*L)

are now ready to
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2. Unit8, Coordinates, and Equations for a Symmetric Wave

We take as unit of density the donaity of the undetonated explosive; the

unit of velocity will be the ultimate detonation velocity (which in the case under

consideration,a velocity approached asymptotically fram below$ will be ohown to be

the Chapman-Jouguet velocity as we should expect); the unit of length is not

epecified. .

The coordinate x will denote the position of a

by the shock; at a later time t, this particle “x” has a

pressure and specific volume. Then in k dimensions (k =

motion ia

and the equation of conservation

(Y/x)k”lwax =~ “

partiole when it is crossed

position y; p,v denote

1,293) the equation of

(2.1)

(2.2)

These two together with (1.2), (1.3) are four equations for y,pOv,~ as

funotion of x,t. To these must be added some boundary conditions; these we tipose

only at the shock front, for the rest we are interested in investigating only solu-

tions asymptotic to the ~ideal’tTaylor eolutions. We have already munaned (lb); in

addition we have the Iiugoniotcondithms at the shook. The path of the shock will

be given by

Then

x =f(t) (2.3)

y[f(t),t] = f(t) (2.4)

p* = (10v8)[f@ (2.5)

E(P8S%)= o (2.6)

Here p~ = p(t,t), Vg ::v(t,t) the values of p,v immediately behind the shock and

EI(p,v)= Clis the equation of the Hugoniot curve AB of Fig. 1.

-
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1We shall find it convenie t to change the independent variable x BO that

the path of the shook is fixed i+ o r coordinates; accordinglywo define s(x) by the

1“ ~~

.

equation

x f(s) ‘ (2.7)

where f(s) is as yet an unknown fun ti~. Wo nw- rewrite our equation8 taking (s,t)

as independent variables; the equtat~onsare

i3f’@ = - 2q/t(P,v)

y(t,~) = f(t)

Pa = (lL8)[f@

L

H(PS V8) = O

V@!) z = Oonstant

~s)= (v~-r.qo)-l ● p.

p = p(s)~-~ “ q(s.t))
I

-----+

3. A Transformation of the Equati a

We shall rearrange and o bine (2.6) to (2.16)

differential equation :t’orV3 ther~bywe absorb IRoetof

/

(2.8)

(2.9)

(2.10)

(2.11)

(2.12)

(2.13)

(2.4)

(2.15)

(2.16)

in the form of an integro.=

the boundary conditions and

have the equations in m form euitable for an iterative method

Frcm (2.9) -d (2.12)

I

t
y(s,t)= f(t) - v(.,t) p(ca,t)f$(a) dw

a

of solution.

(3.1)

where p(s,t) denotes the “weight faotor” [f(e)/Y(8,t)]b1. Therefore
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[

t
by(s,t)/M = f;(t)[lOv*] = (apv/at) f$(q) dw

“8
(3.2)

and

a2y(6,t)

[

= f“(t)[l.v.] - f’(t)&O (:) f’(t) - V* f?(t) “ &U(~Y/*L3 j
#

8 f(t)

“j–

J“t 2 (323)
b (W) fa{o) do

a ~t2

and

(304)

(3.6)

,

Also from (2.8), A

(SOT)

Combining (3.6), (3.7), we get

[
2fqt)Qq+[(

k-l)[f’(t)j2v@vs) ?)V
P(%t):PB+ [f”(’t)(l-v*)-

dt f(t)

. ] .+.

(J

+(x). ,e(.j}~ ,,Q(@,d@

t~2pv ‘~

)

(3.8)
f ‘ (LJ) pf’(~) dG d@

13 s

Coneider now

If we now add (3.8), (3.9) and substitute for, p from (2.10) and (2.11) we get the

.eBired equation,
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~(s) v-x + V(s,t) - I

{ (-[-)j+~.+.s-1}+W,[l-,(%tfl= P(S) q. exp

(3.10)

This formula simplifies considerably in the plane case when p ~ 1. The bo~dary con-

ditions remaining so that a solution of (3.10) may be a solution of our problem are

(2.13), (2.4), (2.16) whioh determine p~.v~ and~(s) in terms of the unknown function

f(s).

40 Stationary Solution in Plane case

A stationary solution is one forwhj.ch f$(s) = 1 and v is a function only

of (t-s); this

shows that

and therefore

This

can only exist for k = 1 and then since b2y/dt2 =#y/&32, (3.10)

p+v=l (4.1)

(4.2)

is an ordinary differential equation for v whichmy be solved

numerically for any given I(p,v).

5. S3.milaritySolutiona in Ideal Case

a) Plane case~ When k=l the ideal solution has a eimple analytic

In our notation,

representation;
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(5.11

with

-10=
~

x =1-2/(y+l) #At+l) .A
Y=E y-1

1

()

B Y-w(m)
P=—-~+1 t

r
~ 2/&+l)-a

()‘=~; 1

-P~v83 :Jf/(~+lf+~PO - (5.2)

b) Cylindrical and Spherical Cases: For k=29 3 no simple analytio representa-

tion is possible; the aolutiona have been determined numerically by Taylor3). Those

differ essentially from the plane solution in that there is an infinite pressure

gradient Immediately behind the chock front; the following expansions have been

determined in the case ~=3,

k=2(cyl) P =1~-

V:344+

k=3(spl) P =l&

lr.3/4+

Here ~ denotes

3/8fi 0- 5/64 (32- . . . .

3/8@%+17/6!+Q2+ . . . . }

3/0 e - 3/i6 fa2 - 9.**

3[8 Q +9/16# +....
)

(503)

(594)

6. perturbation of Ideal Solution (plane Case)

u WU suppose there is a small disturbance yl, pl, VI in the Valuea of

Y.P*V given by (5-1) and substitute these valueB into our equations we find

PI = 0 (YP/v) v~ = 0 (s/tj~-1 VI (6.1)

Consequently at the front pl+vl =0 and there is no first order change in

velooity. Therefore we may put f? =1 in (2.5), (2.9) and eliminating pl Vk we arrive

at the differential equation for yl,

(6.2)

5) G. 1. Taylor, $bid, and M-165.
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For the case ~:3 this may be solvod immediately, having the

solution

where $,~ arearbitrary fian.tion.. The condition (2.12) eliminates

The consequent change in detonation velocity is

C[$’(U12
--7--

general

(6.3)

the second

(6.5)

(6.6)

H(p,v) is the Hugoniot curve. The solution in higher orders is completely deter-.

mined by the one arbitrary function @(s/t), as we mi~ht expect.

The important point is that pl, V1 die away as l/t and this may be ex-

pected to be true for all y.

~. Perturbation Caused by Reaction Zone in Plane Case

Our objeotive is to find the asymptotic form of the perturbation in velo-=

city for a wave of finite age. We wish to find a solution p,v of our equations whioh

a) approximataa to the solution (5.1) at a distanae from the front at late
times.

.
b) Approaches tho stationary solution (4.2) in the immediate neighborhood

of the shock.

Consider now~. (3.10). In tiew of (b) and the ideal solution, we can be

sure that (d~/dt2

ideal solution in

. d2/ds2)v will be of small order near the front. If we insert the

this termwe get (p+v-l)id. For small deviations we have
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(PS + Va 0 1) = 0 2(1-v~) g(t) (791)

where g(t) = 1- ft(t) is the change in velocity. The third and sixth terms in

(301O) =niSh identic~lly, =d the fourth $S of.order (t-s) g’(t) ad may therefore

be neglected in comparison with g(t) when we are concerned only with values of (t-s)

that are o(t).

bracket 18 approximately equal 2g(w), and so long asIn the fifth term the

(t-a) = o(t) we may write this term as

/+
t a( v)

- 2g(t) ~ dwz. 2g(t)[v* - v(8,t)]
s.

(702)

If nowwe make these simplifications (3010) becomes

r(s) v-f + v(6,t) - 1 = p(s) q(s,t) - 2g(t)~ - V(s,t)] + [p +v-
1]id (7*3)

the equation

?orget about the second term; then for (t-8) ~c t, (7.3) is essentially

for the stationary case. Again if t=s >) to the last term dominates

and a SOhltiORi8 obvioudy P=pid, v=vid.

However. this isnot sufficient since the left of (7.3)

V=vc, say, for which its nlue is [(l+l)/t]VdIa The right-hand

haO a minimum at

side must therefore

pass through this value anQalso have a zero derivative with respeot to t at oon-

trtant 6, at this sam point; e16e we shall be on the wrong “branch”, and the SOIU.

tion will not approaoh the ideal solution. If g(t) be so chosen that these condi-

tions are satiofied then the solution of (7.3) as an algebraio equation

first approximation to the solution.

llow~(a) is defined by (2.16). Fmm (2.13)0 (2.4) we have

6p+6v=- a(~-v~) g(t)

so

Sp+ (. ap/i)v)Hh = o

bp &v 2(1-V8) g(t).— =.=
- {- ?@v)~ 1 (- ap/av)H 01

in v is our

(7*4)

(705)
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bvQ 1 b~ se 2rg(s)
V.

==7
#*l

Thereforo the minimal value of the left side of (7.3)

p 1 Z!rg(a)f+lb~=-—lra - 1: —
7 r y+l

(7.6)

i8

(7.8)

We are interested

fras below, i.e.. g(t) > 0.

here in the case of velocities approached asymptotically

Therefore the ~n~um value of (7.5) is negative; the

first and last terms are positive and g(t) must supply the difference. Clearly as

t -CO this minimum must tend to zero i.e.O v= M+f/(t+l), the Chapman-Jouguet

value. (If g(t) ~ O then since r < 14 Eq. (7.3) obviously aannot be satisfied at

the minimum; that is, the velocity can only exoeed the C-J value if it is maintained

byan artificial high-pressure baoking.)

Denote the right of (7.3) by Q(s,t). Then for a certain a =so(t) we

demand that

2rg(8) ,Q(~,t).—
X+1

bQ(f3,t)

}

(799)
o=—

*

These equations suffico to determine the nsymptotio form of g(t). Clearly

we may put p(a) = ~ in Q. IfWO differentiate the first of Eqs. (7.9) totally with

respeot to t and subtract the second it follows that

(7.10)
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or

Ww

and

obviously if t -

third. Thus the

Then we find

W)(:)*+ p-l],.+ *.O (7.11)

s = o(t) the 2nd and hth terms are of lower order than the first I

function s(t) is defined by

~(l.-r) ~(t)=pQ~(@) +——
ri’1

(
riinceg(s) = g(t)).

If we introduce a perturbation(ofthe

(7.12)

(7.15)

type oozmidered in 6) into our

‘ideal” solution we shall introduce terms of higher order into the term

(#v/bt2 - #v/bs2) J therefore the velocity eto. will only be affeoted in a higher

order. The defect in velocity (7.13) is independent (asymptotically) of initial

conditions (unless we are concerned with “persistence” effects, g < O).

The procedure outlined above clearly supplies an iterative method for

determining higher-order effects; in the next approximation, we should have to in-

clude terms arising from the departure of ‘f~p,v)from its stationary vzilue,and

neglected terms in (3.10).

8. Perturbation of EXpanding Waves l)ueto Reaction Zone

The treatment in the oases k = 2, 3 is essentially the same

some differences due to the extra terms in (3.10) and their different

but there are

relative orders

of magnitude. Of the term on the right of (3.10) the tjecondand fourth are treated

as before; the fifth will be

[

“b‘(~v) dw= -- 2g(t) 2g(t) [V6 - ~(6,t) V(8,t)] (8.1)

B
b
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Conaider the third term; y(s,t)= f(t) -T?(t=-s)where v

value of v over the region between (sat) and the shock.

Therefore

~~[ II

k-1
5
(

- p(s,t) :: 1 -
f(s) ~ (k-l)(I-?)(t-s)

f(t) - Ii{t-B) t

because of the exponential aharacter of the similarity solution we

by v= with emall error. So the second term is

[(k-Wl-)(t==d]/t

tf3mm avkmage

(8.2)

The last two terms remain; if in the last term we put the similarity aolu.

tion it becomes of order t-3/2; in tho stationary solution it is zero, 80 in this

case we may neglect the last term altogether in first approximation. The sixth term

is also of order t-3/2 in the ideal solution; but”it does not vanish for the station-

ary solution, for which however most of its value arises from immediately behind the

shock, and sinoe conditions there will be almost stationary at late times we may in.

Sert the Stationary 80hItiOn htO *MS t8rM.

We have in plaae of (7.3)s

p(s) v-v+V- 1 =Q(s,t)

= pod qs,t) - eg(t) [1o pv(s,t)] + v(8,t)[l0 p(e,t)] (8.3)

The same argument applies about the Chapman-Jouguet velooity; and Eq. (7.10) yields

in the same approximations as (7.12)

Now

Therefore we have

= - V(a,t) * :0PO ~~ (84)

q[%t)

[

fQ(s) pv(ast)—. (k-l) p f(~)—.
b8 - y(l!l,t)

1 \

p. h@3 = [(k-u %(1=%)]/t (8.5)
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and also

2(1-r)
—g(~)= F* ~(%t) + Vc(l-po) -
[+1 [o[*(l-,)]*t/.

9. Numerical Evaluation

a) Consider first the case when y=

peak pressure is about t%% greater than

plsm case, (5.1) give~, for (t-s) 4< t,

3, I is eormtant and q. = 1, so that the

the Chapman-Jouguet preemn-e. Then in the

while

/ The Eq. (7.12) i6 then

2J e-z
128

defining z s 2(t.s)\Zas a function

g(t) =*=
.

(8.6)

Of t/f and

where

g:(t) z
3/% z + 3/16 z~

(t/@

b) NOW consider the cases k = 2$3; the Eq. (8.5) gives

(901)

(9s2)

(9.3)

(9A)

(9.5)

(9.6)

inplaoe of (9.3). To find g(t) we have to estimate the integral in (8..6). Since

dl variables are funotions of (t-s) m have

(9*7)

3n our case the 2nd integral may be evaluated numerically; a rough esti-

mate, which is sufficient here, gives a value

O.ll(k-1) @t (9.8)
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Coneequentlywe find aJlalogou8to (9.5)

(9=9)

The functions gok(t) for k =1.2,3 are shown in Fig. 2which givws the

velooity (1-g) as a function of the age of the wave in units of the reaction zone

lmngth.

e) It i8 olear fran the above that the deviation go(t) is of the order (d/.@

(n ==2, plane ~ase, n =1, expanding cases), where ~ is the age of the wave and d

is the distance behind the front at whioh the Chapman-Jouguot condition8 are approxio

mately fulfilled. The faot that d~~ &t/Ti~ a consequence of our particular

model; if tha reaction were complete in a finite time then d would tend

8tant. We can consider 8ome variations of our model to see how sensitive

numerioal values are.

, Fir8t let y=~5 instead of ~=3. Then

()t-s 2
[Ptv+d ‘o.230 ~

So (9.3) becomes

-EC e-z = 0.230 z/(t/T)2
120

and instead of g~(t)

of 4Q%;

and

Ii+@)= o.11~ (2Z+ z2)/(t/t)2

Me* SUppOS@ ~ =o.32=d ~= 3, correspon~ng

thi8 leads to the equationa

.0675 e-z = (3/8) ● z/(t/T)2

gb(t) = [(3/8) ~ + [3/16) Z2](t/t)2

to a con- “

to it the

(9.10)

(9.11)

(9.12)

to an initial overpreOeure

(9*13)

(9A)

Finally consider a model in which the pressure gradient Is more steep im.

mediately behind the ahock~ 8uOhas

,=ew(-m) (9.15)
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(the faotor 1+is inaertod to make more oompwable the values of ~ in (9.16) and

(9.2) ). This leads to the equations

ge-<=~ s

& ~~ 16 @/02

and

(9.16)

(9.17)

The funotions gj, ga, g~jJ go W-O given for Ccm=i- in %* 50 AsYWtoticallY %

is of higher order than the others but the absolute differences are not great; these

romlts suggest that the absolute value of the velooity deviation IS not very aen8i-

tive to the modol ohosen (for variations of the kind considered abo=).

d) with regard to the f’aotorl/(l==r)occurring in (90b), it i8 ~fficult to -e

any ewtimate, but it seems likely that the adieba%io and Hugoniot ourves will be

closer than either i8 to the slope line ABC of Fig. 1, That iB, it is likely that

this

10.

factor is not mush greater than unity.

Ideal Solution for Sexni==InfiniteSlab

Coneider a plane detonation-wave of

infinite age traveling p~rallel to the free

surface of a semi-infinite slab of explosive.

Take a coordinate system in which the detona-

tion front OP is stationary and explosive ad-

vances toward it with velocity D.

Then the solution is known to be a

Prandtl-Meier expansion about the oornor O.

It is-convenientto use the notation of the

theoryof charaaterist:lcsdeveloped by Fuohs4). One s-t= of ckracteri8tios (+)

—

4) K. Fuchs in LA-16!5(seoti~ 4), mook~od~~cs”
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-a$?-

are the

then it

rays through 0s if such a ray makes en angle $ with the detonation front

carries a constant value of

a+ ~ I + F(y) = 23(GJ)- ~/2 (10.1)

where $ is the angle the velooity makes with the normal to the D-front. ~ is the

Maah angle (sin ~ =c/u), and (in the ease y = 3)

(10!?2)

The

The

11m

values Ofde are everywhere the same

cLe=jif-@9=fl/2 (10.3)

funotion 4!(0)is

Ideal Solution for Finite Slab
.

1$ i6 not poaaible to find a ,simpleanalytio representation for the solu-

tion of this problem; however, all we require for the application of our previous

methods is an expansion hear the D-front

This we find as follows.

Take the stationary coordinate

ness of the dab; take a plane section

normal to the surfaces so that 00Q rep.

resent8 the D-front. Let P be sane

other poiut in this seotion, and (X?,

OtPmakes angles ~, $$ with the D-front.

Near O, 0’ the solution must

be the aama as for a semi-infinite slab;

oarrying values

and near the oentral plane of the Slab.

system as before and let .2abe the thick-
0 free surfaoe

thus from O there start + characteristics

(3301)
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=*

.

Similarly from O* these start - oharacteriatios oarrying valueB

a 42.2*{Q9) (11.2)

Near 0. QC +0 and ag ●4~/2; therefore the complete solution of the problem could

be found by an iterative procedure a8 follows,

1)

2)

3)

l?or any point P, PO, POQ define ~, 68; and let at P,

a+ = C@> % =U-(W).

With this as first approximation we may oaloulate the slope of the character-
istics through P.

Use this to find the deviations of the characteristics from straight lines
and EO to find corrected angles Qs QQ belenging to an arbitrary point.

We shall carry out this procedure near the point C. With ooordlnates x, ymeasured

from C as shown,

tan ~ = x/(a-y), tan ee = x/(a+y) (11.3)

Near C, Q, 8@ are small, so approximately

(%)P: -fi/2-l/3e3 ● *.

@Jp = ff/2+1/5(3’3 ●.**
1

(11.1+)

So at P,

and

also

F(~ = - ~/2 - I/6(Q3+ ew3) (11.5)

p= @’@ - [e3+ 6’3]1/3

Consider a fixed small Q;-as P varies

from O to ~. Since along a oharaoteri8tio,

and since Q$ Qt are small we have approximately

(11.6)

(11.7)

from O to the central line, @ goes

(11.8)

that along the Q-characteristic—
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where

So that

.:e(a.y,.w~-yl~{~ +(+r~i,o]:

.
and on the central line y = O

NOW by Bernoulli?s thecn-em

80

or

on

that

&?

approximately

c=

the line y = O. This gives

L

Q = 0.942 x/a

C2 + U2 = 9/8

9

= 16(1+ $@&2 Y)

(3A)(1 - 92/24/3)

(11.9)

(11.10)

(11.11)

(11.12) “

(11.13)

(11.4)

12. Effect of Reaction Zone for Finite Slab

1) In Cartesian cclordlnatesthe hydrodynamioal equations of a steady-state

motion are

(12.1)

div (~)= O
J

Let us introduce coordinates z, t into our problem where z is defined by

(PZ) = W~Y)x; pu, = (W4Y (12.2}

so that at the shook front

(12.3)

‘.
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and t is the time since a particle crossed the D-front. Since z~zy z - uy/ux

z Is,conatat along a stream-line.

If we now treat z. t ae independent variables and x, y, pa v, as de-.

pondent we find the relations

From

t)

ix
Here

. a(xoy)

(a=($ir(ak)z“
(9)2=-(%)2(g!t+(i$!t(%)z

these we get

(P+v) =(Yt Yz +%xz)g+ (% Yzt” YtJczt)” (JCZ2+Y.2” 1) *

subscripts denote partial derivative.

2) Now for the ideal solution the shock

z = y at the D-front. Then x, y, p, v are

satisfying (12.6).

(12.4)

(12.5)

(12.6)

Velocity = 1 for all y, fIowe may take

known funotions X, Y, P, V of z, t,

When we take into acaount the reaction zono let the steady state velocity

be S aothatzz Sy at the shock front. Then the solution to whichwe must approxi-

mate behind the front is X* = x(z/s.t), ..... First sinoe X, YO ..... satisfy (12.6)

Then as before we substitute the approximate solution*, V* on the right of (12.6)

getting

(12.8)
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So that eliminating bp*/bz from these two equationa

;(p+v): +:; (P*+V*)+ (1-:)(X%-%X%) +(1-+)% (12.9)

and by integration

The last two terms

we get an equation

-fV+pv =

where z is to be

with respect to t

p+v = p*+v8 +(1/s2)(P*+v-1)

+ {1-1/s)
J
t (x:Y;t O~X:t) dt

r

o bp* ~t
t(l-@)

*T
(12.10)

will be of emall order at the critical point, so that as before

l:p (’12.11)-*/~. 2(1-V*) g(z)+ ~81 x 0.186 (t/z)4

equal to its value at the center of the slab, z = a neglecting

higher powora of (1 - S) = g(a). This may be tremted exaotly as (703); the curve

for g(a) as a funotion of a/t is shown in Fig. 40
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