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LEGAL NOTICE

This report was prepared as an account of Government sponsored work. Neither the United
States, nor the Commission, nor any person acting on behalf of the Commission:

A. Makes any warranty or representation, expressed or implied, with respect to the accu-
racy, completeness, or usefulness of the information contained in this report, or that the use
of any information, apparatus, method, or process disclosed in this report may not infringe
privately owned rights; or

B. Assumes any liabilities with respect to the use of, or for damages resulting from the
use of any information, apparatus, method, or process disclosed in this report.

As used in the above, ‘‘person acting on bebalf of the Commission” includes any em-
ployee or contractor of the Commission, or employee of such contractor, to the extent that
such employee or contractor of the Commission, or employee of such contractor prepares,
disseminates, or provides access to, any information pursuant to his employment or contract
with the Commission, or his employment with such contractor.

This report expresses the opinions of the author or
authors and does not necessarily reflect the opinions
or views of the Los Alamos Scientific Laboratory.

ne eoe oo e ooe o
o o o o e o o o0
o o ° e o o
o » [ e o [ ]
o 9 ° o .

00 000 000 008 PPH CO

o © 0 000 0 %0 oo
o o o o o o o o ¢
[ eeo . ® o o o

e 0 . [ e o
. o o @ ® o

APPROVED PF6R ‘PUBISI C° REP EASE




APPROVED FOR PULBI C RELEASE

This document consists of 24 paM& LA-3376 B LI TR R

- - ~ ¥

LOS ALAMOS SCIF.Ni'IF:IC LABORATORY
of the
University of California

LOS ALAMOS e NEW MEXICO

Report written: August 24, 1965
Report distributed: September 21, 1965

Numerical Methods for
Solution of the Integral Equations

of Multi-Dimensional Radiation Transport

B

VERIFIED UNCLASSIFIER

Per -
s NP4 4-AL29 LLPE, T2~ 13 Zopet, 10-2/- 72

(Title Unclassifiethsification changea to UNCLASSIFIED
by autherity of the U. 5. Atomle Eunergy Cammisejon,

s

BYM@M%L-M'ff by By REPOST LiBRARY LZ4/) zméﬁ;. B2 22
B— B. E. Freeman )
=_! PUBLICLY RELEASABLE
=3 Pm FSS-16 Date:_2-7f-
= B 4/81C-14 Date: 10-24- 75
== UNITED STATES
=9 ATOMIC ENERGY COMMISSION
=0, CONTRACT W-7405-ENG. 36
§§% Q NN\
=8 \:\\\
==m : Y B . -

[ XXX}
0

T UNCLASSIFIE)
API”F{CV CJ‘\*E{;BLLQ‘:'REL EASE |


ABOUT THIS REPORT
This official electronic version was created by scanning
the best available paper or microfiche copy of the 
original report at a 300 dpi resolution.  Original 
color illustrations appear as black and white images.

For additional information or comments, contact: 
Library Without Walls Project 
Los Alamos National Laboratory Research Library
Los Alamos, NM 87544 
Phone: (505)667-4448 
E-mail: lwwp@lanl.gov



APPROVED FOR PULBI C RELEASE

UNGLASS‘F‘E“ :.E ..E .E. E .E. :..
SEONMTENERPONDATA
Gabogory=SipTiret
LA-3376
USAEC, Headquarters Library, Reports Section 1-3
Lawrence Radiation Laboratory, Livermore 4
Manager, ALO 5
Sandia Corporation 6
DASA Field Command 7-9
Headquarters, DASA 10-11
Director, Air Force Weapons Laboratory 12-14
Military Liaison Committee 15
DCS/Research and Development, Headquarters, USAF 16
Chief, R&D, Army 17
Director, Defense Research and Engineering 18
Op-75, Navy 19
Bureau of Naval Weapons 20
DCS/Operations, Army 21
Commanding General, Army Combat Development Command 22-23
Commanding General, Army Materiel Command 24
Los Alamos Report Library 25-50

(NCLASSIFIED




APPROVED FOR PULBI C RELEASE

fbstract

The radiation transport equation and the equation for the change of
material energy through interaction with radiation are formulated as an
integral equation for the temperature. Geometric aspects of the inter-
action of distant source regions are incorporated into energy exchange
coefficients which are formulated for the case of pure absorption.

Primaery consideration is of the form of the approximating difference
equations for the evolution of the system in time. Given appropriate
energy exchange coefficients, the equations are applicable to quite gen-
eral configurations which may be subdivided into cells of arbitrary shape.
Boundaries of the system receive special treatment based on the assumption
that a very short mean free path exists there. Frequency depen&ence is
treated in the group approximation. The time dependence of the equations
includes the retardation of the sources and the centering of the energy
difference equation. The resulting equations are solved by an iteration
scheme.

3

e o A Nl 5o SR

PROVED *FOR® PUBLI C RELEASE




APPROVED FOR PULBI C RELEASE

INCLASSIFIED! CEE

NCLASSFED

APPROVED F&R P8BLE C RELEA@E



APPROVED FOR PULBI C RELEASE

=ririrn Mg

Introduction

A number of calculational methods for solution of transient radiation
transport problems in plane and spherically symmetric configurations has
been developed. Greatest emphasis has been placed on methods in which
the energy equation and the transport equation for the intensity are
approximated over a spatial cell and give difference equations for the
radiation intensity and material tempera.ture-l Smaller efforts have been
applied to the Monte Carlo2 and integral equation3 methods. The tech-
niques very widely in accuracy and the amount of calculetion and computer
storage requirements. Furthermore, the dependence of these quantities on
the number of spatial zones is different. Consequently, while extension
of each of these methods to configurations of higher dimensionality is
possible, considerable differences in code complexity and efficiency are
to be expected.

In this report an outline is given of the generalization of the
integral method.3 The formulation depends on the geometry and dimen-
sionality of the system only through coefficients which are assumed known.
Primary consideration is given to specification of the difference
equations in time, to methods for solution of the equations, and to gen-
eral properties of the energy exchange coefficients. The boundaries of
the system are given special treatment.

On the basis of comparisons between the difference and integral
methods, it is expected that for small numbers of zones the integral
method will be faster as well as more accurate. When the coefficients
are simply calculated or do not change with time, considerable advantage
in simplicity of the code is also realized.
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Experience in applying transport codes to multi-dimensional problems
is still limited, however. In order to be able to choose the best method

for a particular problem, additional calculations with the available
techniques are needed.

The Integro-Differential Equations

The equation for the change of the intensity I of the radiation 1s

1 3T _
S5t Q. 9L =p, (B-1) , (1)

where the intensity is the radiation energy traveling in the direction
Q) per unit area normal to 3, per unit time, per unit frequency interval,
and per unit solid angle. The absorption coefficient corrected for
induced emission is u., the Planck function is

2h

s v
2“1'1'{»7'9'"1'

e -

(¢]

associated with the material temperature 0, and c is the speed of light.

A solution of Eq. (1) can be obtained in integral form in which the inten-
sity in a particular direction is expressed in terms of sources along the
backward drawn ray from the point at which the intensity is to be evaluated
(see Fig. 1). Denoting distance along this ray by s,

S ¢ '
® -f u_ds
r=f 0% uBas . (2)

0

a

The quantities in the integrand depend on both position and time. While
the position dependence is evident, the time dependence is through the
retarded time t', that is, that earlier time such that the signal reaches

THCLASSIFIER
1
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Figure 1

the point s = 0 at the current time t,

"o .8
t =t - P .

The material energy E changes by virtue of hydrodynamics of the
material which changes the specific volume T, the pressure p, and the
radiative terms which account for the emission and absorption of radi-
ation,

%:-p(i‘—:+c£dvua"(f1dﬂ-hnB> . ‘ (3)

The absorption term is to be evaluated by using Eq. (2) for the
intensity,
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Since the system is considered to be bounded by regions in which the
mean free path is very short (walls) and which have a temperature giving
a Planck function Bw which is uniform several mean free paths into the
wall (although varying along the wall), an especially simple result is
obtained for the boundary. If the distance to the wall is 8, and the
ray mekes an angle ew with the wall normel, the integral over the wall

volume is
8 4 4
-J('J My ds
e ’
av — uaB
wall &
volume
sw s
_J(‘J ul dsl . _J‘; " dsl
W
=f ao £ % B_cos 8 fdse n!
wall 8 v s
w w
area
s'w
_j(‘) ul dsl
J e :
wall do 82 Bw cos 8 . (5)
area w
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Substituting these results in Eq. (3) gives

s
s w
. 4 e’ Syigas’
4dE _ 4aT ’ e e
E—-pﬁ-+cjdvua jquaB——;r—+jchwcosew——;r—-hnB s
0 volume walls w

in which the volume integral ranges over all of the system inside the
walls which can be reached by rays from the point P in question without
intersecting the walls, and the surface integral ranges over all of the
wall area first reached by these rays (see Tig. 2).

\/
i

Figure 2

The absorption coefficient enters the equations in three places:
in the source to determine the volume contribution, in the exponential
attenuation, and in the absorption at the position where the heating is
being evaluated.

[T AR A




APPROVED FOR PULBI C RELEASE

UNCLASSIFIED

Surface Equations

The walls are treated as special cases of these equations. By vir-
tue of the substantially isothermal surface layer of the wall, reradiation
of a blackbody spectrum at the wall temperature occurs. The equations
for the walls describe the disposition of the intercepted radiation as
lost into the wall interior and radiated as blackbody radiation at a
temperature sufficient to maintain the energy balance. The energy falling
on unit area of the wall is given by f, o I cos 9‘: dQ, where 6‘: is the
angle made by the ray with the normal to the wall element. Substituting
for T from Eq. (2) as before and identifying both volume and surface

sources gives

8
w
'f Mg ‘as’ —-% u;ds'
1 ¢
fdv cos ewuaB _—'"T'_ j do cos 6 cos B B ——-é——— . (7)
volume walls sw

Retardation of the time is required in Eq. (7) too. The loss rate
per unit area of the wall and per umnit frequency is denoted by L, and
reradiation takes place as wa. When integrated in frequency these terms
give the wall energy balance equation,

]

s w
" o '.6 ﬁads' -./6 u;ds'
%Tw =f dv fdv cos eéu;B g————§—+j‘ch cos Gw cos eéBw g——T——-L s
0 volume & surface Sy
(8)

where T v is the wall temperature.

Equations (6) and (8) constitute integro-differential equations for
determining the evolution of the system in time. To apply them to an
actual problem it is necessary to consider the spatial, frequency, and
time dependence of the equations. In the following paragraphs these
topics are treated successively.

[ Al
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Spatial Difference Equations

The system, composed of material surrounded by walls, is subdivided
into cells within which the temperature and material properties are uni-
form, representing an average value characteristic of the cell as a whole.
Two kinds of cells are distinguished: volume cells denoted by index i to
which Eq. (6) applies, containing material in a thermodynamic state having
density Py and temperature Ti; and surface cells denoted by K which, by
virtue of their blackbody behavior, are characterized by a surface temper-
ature TK and to which Eq. (8) applies. 1In order to obtain zone equations
it is necessary to evaluate the integrals of Eqs. (6) and (8) in the zone
approximation and to perform an average of the material energy over the
cell volume or the blackbody temperature over the surface cell area.

Neglecting the work term, the energy equation, Eq. (6), becomes

d _ -]
T (ViEi) = °f v (’“‘ZVJ”JBJ%J * “Z SPkPix - '*"Vi“iBi> ’
0 J K
where
. .8
'Jb u ds
- 1 e
o [ e [t
J Yy v 8
i J
and
s
W
-S u ds
B =—l-f av f a g, 2 ° (9)
iK ﬂsK l-li g cos K —-—T— D 9
v, S Sy .
i

Tn Eq. (9) the volume cells have volume V,, energy density E,, absorption
coefficient My and Planck function Bi’ while a second volume cell quan-

tity is denoted by index J. Surface cells have area SK and Planck
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function BK Summations in Eq. (9) range over all volume cells and sur-
face cells, respectively. In the exponentials of oy 3 and B K the sub-
script "a" and prime have been dropped, but the results are still
applicable only to the pure absorption problem. The energy equation,
however, is more generally applicable than to the pure absorption case.
Given, for example, coefficients determined by taking account of Compton
scattering, the evolution of the system can still be calculated by Eq.
(9).

Averaging the surface Eq. (8) over the area of zone K gives

a L
feamf o (’“‘ D VB D S - 1k> ’
0 3 L
where
'fosu ds
1 e
Bszhﬂ_ij do cos er dV———-é-—-
S v s
K J
and
8
W
-.f(; u ds
1 e
7KLzEf do cos er aceb-j-—— . (10)
‘C SK s{' SW

Tn addition to the remarks about notation above, the additional subscript
2 denoting a surface cell has been introduced.

Coefficient Properties

If the temperatures of all wall and volume cells are equal, then a
state of equilibrium must exist in which d.E/dt = 0. This requires that

APPRO\Z.EDE HOR$PUBLL E sFELEASE
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f.de (Mx; v'ju'jo;i'j +1tz 5Bk - l‘“"i“i) =0 .
0 K

When the loss term I‘k is zero and temperatures are sll equal the surface
equation of Eqs. (10) become

f dv B (MZ vj“jBKj + x Z SL7KL - :rSK) =0 .
J

o) 1

Since in equilibrium a state of detailed balance must exist, the
equilibrium equations can be written for each frequency as

1 _
Z Uiyt E Z 5Bk = Vit
3 X

and
1 _ 1 '
Z Vi*Pxy * § ; Skt T E S - (10%)
J

In order for a state of thermodynamic equilibrium to be achieved and for
the above equations to hold, it is necessary that for each physical proc-
ess by which radiation interacts with the material the inverse process
must be taken into account. Only when this is the case can the coéfﬁ-
cients be expected to obey Egs. (10'). For example, if the production
of electron-positron pairs is included it is necessary to also take
account of annihilation of pairs. These equations are considered further
in connection with the reciprocity relations described below.

The normalization of the coefficients ai 3 BiK’ iy’ and 7KL has
been chosen to simplify their calculation by Monte Carlo methods. They
obey sum rules

B

t C.RELEASE
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Z 2% *Z Pey = 1
i K
and
ZBiK+Z Ty =1 - (11)
i A

The first of these equations is equivalent to the statement that energy
emitted in zone J is absorbed completely in the rest of the system, while
the second equation makes the corresponding statement for energy emitted
from a surface zone K. Consequently, the coefficients describe the
fraction of energy emitted from the zone having the second subscript
which is absorbed in the zone of the first subscript. Clearly, the sum
rules of Egs. {11) are applicable if other interactions than pure absorp-
tion (e.g., scattering) are important.

Certain symmetries of the coefficient matrices can be recognized
from the equations of definition, Egs. (9) and (10). These reciprocity

relations are

uw,v

=44
%1 TRV, My

SK
ﬁKi = Ef;;v; BiK ’ (12)
and

_ 5

Tix sK7KL .

The relations of Egs. (10’), (11), and (12) are not all independent.
Substituting the reciprocity relations into Egs. (10') the normalization
equations, Eqs. (11), are recovered. Consequently, the reciprocity
relations are sufficient conditions for insuring that thermodynamic
equilibrium be attainable by the volume and surface equations.

CNCLASSIFIED
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The reciprocity relations of Egs. (12) nave been derived for the
case of pure sbsorption in the material. They are more general, however,

and are also valid when other interactions and their inverses are included.
Such is the case for the important problem when Thomson scattering is
present. When the energy loss of Compton scattering is taken into accounmt,
it is necessary to include the effect of inverse Compton collisions if

the reciprocity relations are to be satisfied.

Frequency Dependence of the Equations

First, the case of absorption coefficients satisfying the grey
atmosphere approximation is considered. Then it is possible to perform
the indicated frequency integrations in Egs. (9) and (10). Denoting the
frequency independent absorption coefficient by B the equations become

a _ - L 1 b "
I (viEi) = °a<z VT T R z SckPik " V1“1T1> )
J K

and

8 o b — a 4 ®
5 STk = aZVJ“JTaBKJ "R Z KR4 f Wi (13)
3 L °

The grey approximation is particularly applicable for (a) the surface
sources which are independent of the material absorption coefficieht by
virtue of the optical thickness of the heated surface layer and, conse-
quently, have a blackbody frequency dependence and (b) tne Cémpton
scattering by free electrons which is substantially frequency independent.
When the frequency dependence cannot be neglected the integrals are
approximated by forming frequency groups Vi sSys Vol in which the
absorption coefficient can be considered to be approximately constant.

UNCLASSIFIED




APPROVED FOR PULBI C RELEASE

9 @ v-mwmally,
oo o o000 eoo ooo oo
o o "'21 . o .
o o oo o o0 H .
o o o o e o o
o o o o e o o o
oo ®oo oo o o000 o

Denoting quantities associgted with the above frequency interval by the
additional subscript m the group equations become

d _ L 1 b I
T (ViEi)' °a(ZVJTJZ b i gm EZSKTK byPikn " Vi“piTi> ’
J m K m

and

a k ll- a k ®

Il Z 35 2, anPrim * EZSLTL P kim 'f av L, . (14)
3 m 1 m 0

In Egs. (14) the quantity bm is the normalized integral of the Planck
function over the frequency group given by

o % m+l u3 s
3
Ja T u eu -1
m
where
M
Yy = ;

obeying the sum rule E b m = 1. The partial Planck mean absorption coef-
ficient |.|.p is of use in Eqs. (14) and is defined as

Jm
f dv u B(T )
v

m m+l
f avB(T i)

Ym

Py

In terms of these quantities the Planck mean absorption coefficient u
J

UHCLASSIFIED
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appearing in Eqs. (14) is by = g mePp . The partial Planck mean absorp-
tion coefficient may also bedused for ugz in Eqs. (14). The fact that the

Rosseland mean does not enter these equations is another reminder of the
fact that the diffusion regime is not adequately described by the approx-
imation of constant temperatures within zones unless each zone is opti-
cally very thin. A higher approximation taking account of variation of
temperature within optically thick zones is needed for the correct limit-
ing value in the diffusion limit.

Difference Equations in Time

In the equations as discussed above the time dependence has been
omitted. Both the retardation of the source terms and the difference
approximation to the energy derivative must be formulated in a way which
gives adequate accuracy.

The treatment of retardation has two related aspects: first, the
heating rate is modified by sampling the source at distant positions at
an earlier time when the temperature was different; and second, the energy
stored in the radiation field is a consequence of the finite speed of
light and vanishes when this speed is made infinite. Consequently, in
order to include the effect of the specific heat of the radiation in the
material energy equations it is essential to take account of retardation.
This consideration is illustrated by the equations derived above. The
rate of change of the material energy of the entire system ET is obtained
by summing Eq. (9) over all material cells,

iaE% = C{ 2" (h“;vJ“JBJ Z%J ¥ “KZ Sk zam - ‘”‘;%“fﬁ) .

Equation (10) in which the wall loss has been set to zero is summed over

all surface cells and then added to and subtracted from the above equation.

sty NS

—
.
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Provided the sources are not retarded the terms can be grouped as follows:

% = °ﬁ"["“zva“333<z @y *) Py - l>+ ) SI?K(ZBiK"an 1>J
0 | 3 i K K i 4

Comparing with the sum rules of Eqs. (11) the result dET/dt = 0 is obtained.
It is clear in the derivetion, however, that the sources must be taken at
the same time as in the calculation omitting retardation, for the necessary
factorization of the equation to occur.

The differential equation in time of Eq. (9) is approximated by &
first order difference equation. The calculation is to proceed forward
in time by evaluation of quantities at a finite number of instants £°
separated by time intervals Atn: tn+l - 8 = at™. Denoting quantities
evaluated at the instant tn by the corresponding superscript (e.g., Tn)
the energy equation is approximated by

+1 n
el B [d(V.Ei)]n [d(ViEi)]
(vE)™ ™ = (viEi)n+ 3 T i ) (15)

which is a time-centered difference approximation accurate through terms
of order (Atn)g. Equation (10), being an algebraic equation to be eval-
uated at a particular time offers no difficulties other than the treat-
ment of the retardation. Both of the equations may be implicit in the
unknown quantities requiring the solution of simultaneous nonlinear
equations. The method of solution will be indicated in the following
paragraphs after the retardation is considered.

Evaluation of Retardation

The degree to which the above equations are implicit depends on how
information about the retarded source functions in remote zones is

APPROVER
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retained in the calculation. In this parasgraph the form of the retarded
source functions appearing in Eqs. (9) and (10) or Egs. (14) is spec-

ified. In each type of equation the expression is to be evaluated at a

+
particular time, £2 l, to which the retarded sources are referred. TFor

each pair of zones an additional coefficient having dimensions of time

is introduced. The coefficient TiJ between volume cells i and J is the
average time interval required for energy to be absorbed in cell i after
emission from cell j. Coefficients having the same interpretation are
introduced from a volume cell to a surface cell, TKi’ from a surface cell
to a volume cell, TiK’ and from a surface cell to a surface cell, TKL'
These time intervel coefficients, in simple problems may be calculated
analytically or, more generally, may be calculated by the Monte Carlo

method. In terms of these quantities the retarded time tlj when the

source in cell J emits radiation arriving in cell i at time tn+l is
t{d = tn+l - Tij' The retarded sources are to be approximated by inter-

polation in time between quantities tabulated at times bracketing the

retarded time. To make the interpolation possible for all zones it is
n+l

necessary to provide tabulated data at a time earlier than t - Tmax’

where Tmax is the greatest of all time intervals between cells. To
provide these data a number Q(~10) of arrays of the temperature are
stored. The times corresponding to adjacent arrays need not be sequential

cycles but are adjusted to cover the time interval Tmax approximately
g
J
time tg Using linear interpolation between adjacent values the temper-

ature for zone j at the time t!

uniformly. These temperatures are denoted by TS and correspond to the

11
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gy - Qs V) e
VIR ‘*( . smx>
ri(s)) (Tj )(t (:xila? :ggi)) Cig © £ e syl 4R
b L
I ol tﬁﬁl _(:g“) (7)o en, <8 )
As the calculation proceeds the earliest interval (t5-0, 87°) eventu-

ally will become of no use because even the earliest retarded time will
no longer fall in it. Thus, if tn+l - Thax 2 tg=2 the first array may
be replaced by the second, the second by the third, etc., and the last
by T§+l. In this way the interpolation arrays are maintained with
temperatures always spanning the required time interval for retardation.

Substituting the retarded temperatures from Eq. (16) in the expres-
sions for

[d(V E i)]n+l
dat

and the surface temperature equation, Eq. (10), gives expressions which
contain some terms which are known in terms of temperatures at t" and tg,
and other terms depending on T§+l. The latter terms are the ones which
may couple the equations together to form a system of implicit equations.
Symbolically, these equations are of the form

L&
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2 sK(TI‘{"’l) =Z B J(T’;+l) +Z CKL(TEH) te o (17)
J

where A 13° BIK’ BKJ,and C Kt are matrices which mey depend on T§+l, but
8, bi’ and x do not. If the time step is small compared to the T.j's
then many of the elements of Aij’ BiK’ BKJ’ and C KL will be zero, since
those terms will occur instead in bi and e

Tteration Equations

+
The equations for the material and surface temperatures at 2 1 are

nonlinear and may be implicit. An iteration method has been devised to
solve them based directly on Eqs. (15) and (17) and which contains a
series of steps which are detailed below. The iteration starts with the
energy equation and provides first an estimate of material temperatures
based on an explicit method. Surface temperatures are next brought into
conformity with the estimated material temperatures. Both sets of temper-
atures are then used to find a new set of material temperatures and sur-
face temperatures as before. As many cycles of this iteration are per-
formed as necessary to obtain an accurate solution. More specifically,
the steps are as follows:

1. The energy difference equation, Eq. (15), is solved for E?+i+l’
F
vErL = v . A [d_(VE)]n+[i-(VE)]n+l (18)
10 - V1B Y )l WViBy at ity )
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where k is an index denoting the iteration. In Eq. (15) [d/dt(V E; )R

is known, and [d4/at (ViEi)];: *1 is the value of the term in Egs. (17)
evaluated with Tg+i For each zone the temperature T§+i+l is obtained
2 2

from the equation of state and immediately placed in T-storage. Its
value is subsequently used for the remaining zones of the energy equation.
Consequently the notation of Eq. (18) is not precise in that the k + 1
terms on the left side are not indicated. The iteration resembles the
the Seidel methodh for linear equations. The sequence of calculations
of new material temperatures indicated above constitutes the volume cell
part of one iteration.

2. With the new material temperatures the surface cell equations
of Egs. (17) are next solved as follows:

%SK<;+i+l> z BKJ( xj”]];ﬂ)h +; CK&(nﬂ) toe o (19)

+1
skt
is placed in storage for use in the remaining equations. Upon com-

pletion of the calculation of Eq. (19) for all surface cells, the current
iteration is complete.

As in the material equations, the newly calculated temperature

3. Tests are performed to determine whether the iterations may be
terminated. Separate tests are performed for the volume cells and sur-
face cells,
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Values of Sl = 52 °-1o'2 are suggested. When either of the tests is not
satisfied steps 1 and 2 are repeated. When both are satisfied the cycle
calculation is considered complete.

L. The initial values for the iteration are based on T? i_o = T?'
Accelerated convergence doubtless could be achieved through use of a
method based on estimation of the first eigenvalue. Preliminery calcu-
letions indicate, however, that rapid convergence is attained without
the acceleration method.

Time Step Calculation

A variable time step a2 is desirable to balance the accuracy of
the integration throughout the problem. At early times more rapid changes
are expected than at later times so Atn can increase as the problem
progresses without incurring any large error. A presecription for choosing
Atn based on the rate of change of the material energy has the desired
properties. In preparation for the first iteration of a time cycle the
quantities [d/at (V,E,)]" are formed for use in Eq. (18). Using them
immediately before the iteration is started, At" is calculated,

55 zi: (v,E))
= min Ato, = ’ (21)
d
I maxilag-V.E |

n

At

i1

where Ato is the input number determining the maximum permissible time
step throughout the problem, I is the total number of volume cells, max
selects the maximum absolute velue of the energy change in each volume
cell, and 53 is an input test number (~0.1) determining the fraction of
the average zone energy which the largest energy change is permitted to
attain in one cycle.
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