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Abstract

radiation transport equation and the eqwtion for the change of

energy through interactionwith radiation are formulated as an

equation for the temperature. Geometric aspects of the inter-

action of distant source regions are incorporated into energy exchange

coefficientswhich are formulated for the case of pure absorption.

Primary consideration is of the form of the approximating difference

equations for the evolution of the system in time. Given appropriate

energy exchange coefficients, the equations are applicable to quite gen-

eral configurationswhich may be subdivided into cells of arbitrary shape.

Boundaries of the system receive special treatment based on the assumption

that a very short mean free path exists there. Frequency dependence is

treated in the group approxhation. The time dependence of the equations

includes the retardation of the sources and the centering of the energy

difference equation. The resulting equations are solved by an iteration

scheme.
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Intrcxluction

A number of calculationalmethods for solution of transient radiation

transport problems in plane and spherically symmetric configurationshas

been developed. Greatest emphasis has been placed on methods in which

the energy equation and the transport equation for the intensity are

approximated over a spatial cell and give difference equations for the
1

radiation intensity and material temperature. Smaller efforts have been
2 3applied to the Monte Carlo and integral equation methods. The tech-

niques vary widely in accuracy and the amount of calculation and computer

storage requirements. Furthermore, the dependence of these quantities on

the number of spatial zones is different. Consequently,while extension

of each of these methods to configurations of higher dimensionality is

possible, considerable differences in code complexity and efficiency are

to be expected.

In this report an outline is given of the generalization of the

integralmethod.3 The formulation depends on the geometry and dimen-

sionality of the system only through coefficientswhich are assumed known.

Primary consideration is given to specification of the difference

equations in time, to methods for solution of the equations, and to gen-

eral properties of the energy exchange coefficients. The boundaries of

the system are given special treatment.

On the basis of comparisonsbetween the difference and integral

methods, it is expected that for small.numbers of zones the integral

method will be faster as well as more accurate. When the coefficients

are simply calculated or do not change with time, considerable advantage

in simplicity of the code is also realized.
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Experience in applying transport codes to multi-dimensional problems

is still limited, however. In order to be able to choose the best method

for a particular problem, additional calculationswith the available

techniques are needed.

The Integro-DifferentialEquations

The equation for the change of the intensity I of the radiation is

(1)

where the intensity is the radiation energy traveling in the direction

(lper unit area normal to 0, per unit time, per unit frequency interval,

and per unit solid angle. The absorption coefficient corrected for

induced emission is v~, the Planck function is

associated with the material temperature 6, and c is the speed of light.

A solution of Eq. (1) can be obtained in ~tegral form in which the inten-

sity in a particular direction is expressed in terms of sources along the

backward drawn ray from the point at which the intensity is to be evaluated

(see Fig. 1).

The

the

Denoting distance along this ray by S}

. (2)

quantities in the integrand depend on both position and the. While

position dependence is evident, the time dependence is

retafied time t’, that is, that earlier time such that the

.
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Figure 1

the point s = O at the current time t,

t’= t.: ●

The material energy E

material which changes the

changes by virtue of hydrodynamics of the

specific volume T, the pressure p, and the

radiative terms which account for the emission and absorption of radi-

ation,

CiE—=
dt

- p ~+ c~mdv u; (~,dn - k,) . (3)

The absorption term is to be evaluated by using Eq. (2) for the

intensity,
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(4)

space

Since the system is considered to be bounded by regions in which the

mean free path is very short (walls) and which have a temperature giving

a Planck function Bw which is uniform several mean free paths into the

wall (although varying along the wall), an especially simple result is

obtained for the boundary. If the distance to the wall is Sw and the

ray makes an angle Ow with the wall normal, the integral over the wall

volume is

volume

‘~sw IL: ‘s‘
x
J ‘a -‘w ‘Os ‘w “
wall
area w

.8 . ● ●m.●0 ●00●:. 9 ●00. .

(5)
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Stistituting these results in Eq,.(3) gives

dE—=
dt

( )

-p~+c~-dvu; ~dVv~B_+jduBvcos ,v~-~ ,

volume walls w

(6)

in which the volume integral ranges over all of the system inside the

walls which can be reached by rays from the point P in question without

intersectingthe walls, and the surface integral ranges over all of the

wall area first reached by these rays (see Fig. 2).

Figure 2

The absorption coefficient enters the equations in three places:

in the source to determine the volume

attenuation, and in the absorption at

being evaluated.

contribution, in the exponential

the position where the heating is
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Surface Equtions

The walls are treated as special cases of these equations. By vir-

tue of the substantially isothermal surface layer of the wall, reradiation

of a blackbody spectrum at the wall temperature occurs. The equations

for the walls describe the disposition of the intercepted radiation as

lost into the wall.interior and radiated as blackbody radiation at a

temperature sufficient to maintain the energy balance. The energy falling

‘ is theon unit area of the wall is given bY~2x I Cos 0~ ~~ ‘here ‘w

angle made by the ray with the normal to the wall element. Substituting

for I from Eq. (2) as before and identifyingboth volume and surface

sources gives

Retardation of the time is required in Eq. (7) too* The loss rate

per unit area of the wall and per unit frequency is denoted by L, and

~. When integrated in frequency these termsreradiation takes place as x

give the wall energy balance equation,

‘( {ads‘ -&%p;ds ‘
m

J~
;T$= dv dV COS O;W~B e S2 J

+ da COS ew COS 0’B

)

VW--L ‘

o volume surface w

(8)

where Tw is the wall temperature.

Equations (6) and (8) constitute integro-differential

determining the evolution of the system in time. To apply

equations for

them to an

actual problem it is necessary to consider the spatial, frequency and

time dependence of the equations. In the following paragraphs these

topics are treated successively.
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Smatial Difference Eauations

The system, composed of material surrounded by walls, is subdivided

into cells within which the temperature and material properties are uni-

form, representing an average value characteristic of the cell.as a whole.

Two kinds of cells are distinguished: volume cells denoted by index i to

which Eq. (6) applies, containing material in a thermodynamic state having

density pi and temperature Ti; and surface cells denoted by Kwhich, by

virtue of their blackbody behavior, are characterizedby a surface temper-

ature T and to which Eq. (8) applies.
K

In order to obtain zone equations

it is necessary to evaluate the integrals of Eqs. (6) and (8) Ln the zone

approximation and to perfom an average of the material energy over the

cell volume or the blackbody temperature over the surface cell area.

Neglecting the work term, the energy equation, 13q.(6), becomes

where

(9)

In Eq. (9) the volume cells have volume .1, energy density Et, absorption

coefficient pi, and Planck function Bi, while a second volume cell quan-

tity is denoted by index j. Surface cells have area ~ and Planck
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function ~. Summations in Eq. (g) range over all volume cells and sur-

face cells, respectively- In the emonentials of ~ij and ~w the sfi-

script “at’and prime have been dropped, but the results are still

applicable only to the pure absorption problem. The energy equation,

however, is more generally applicable than to the pure absorption case.

Given, for example, coefficients determined by taking account of Compton

scattering, the evolution of the system can still be calculated by Eq.

(9).

Averaging the surface Eq. (8) over the area of zone K gives

where

and

(lo)

In addition to the remarks about notation above, the additional mibscript

4 denoting a surface celJ.has been titroduced.

Coefficient Properties

If the temperatures of all wall and volume cells are equal, then a

state of equilibrium must exist in which dE/dt = O. This requires tmt

● ☛ 99* ● *e
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When the loss tem ~ is zero and temperatures are all equal the surface

equation of Eqs. (10) become

Since in equilibrium a state of detailed balance must exist, the

equilibrium equations can be written for each frequency as

x ‘Jpjaij ‘k E%%( =‘ill,

J K

and

(10’)

In order for a state of thermodynamic equilibrium to be achieved and for

the above equations to hold, it is necessary that for each physical proc-

ess by which radiation interacts with the material the inverse process

must be taken into account. Only when this is the case can the coeffi-

cients be expected to obey Eqs. (10’). For example, if the production

of electron-positronpairs is included it is necessary to also take

account of annihilation of pairs. These equations are considered further

in connectionwith the reciprocity relations described below.

The normalization of the coefficientsczij,~iK, ~Kj, and 7K4 has

been chosen to shnplify their calculation by Monte Carlo methods. They

obey sum rules
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i K

and

(11)

The first of these equations is equivalent to the statement that energy

emitted in zone j is absorbed completely in the rest of the system, while

the second eqution makes the corresponding statement for energy emitted

from a surface zone.. Consequently, the coefficients describe the

fraction of energy emitted from the zone having the second subscript

which is absorbed in the zone of the first subscript. Clearly, the sum

rules of Eqs. (11) are applicable if other interactions than pure absorp-

tion (e.g., scattering) are important.

Certain symmetries of the coefficient matrices canbe recognized

from the equations of definition, Eqs. (9) md (10). These reciprocity

relations are

(12)

The relations of Eqs. (10’), (n), and (12) are not all independent.

Substituting the reciprocity relations tito Eqs. (10’) the normalization

equations, Eqs. (IL), are recovered. Consequently, the reciprocity

relations are sufficient conditions for insuring that thermodynamic

equilibriumbe attainable by the volume and surface equations.

uwcliss!~!~n

.- —
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The reciprocity relations of Eqs. (12) have been derived for the

case of pure absorption in the material. They are more general, however,

and are also valid when other interactions and their inverses are included.

Such is the case for the important problem when Thomson scattering is

present. When the energy loss of Compton scattering is taken into account,

it is necessary to include the effect of inverse Compton collisions if

the reciprocity relations are to be satisfied.

Frequency Dependence of the Equations

First, the case of abso~tion coefficients satisfying the grey

atmosphere approximation is considered. Then it is possible to perform

the indicated frequency integrations inEqs= (9) and (10)o Denot@ the

frequency independent absorption coefficientby Fthe equations become

and

(13)

44 v

The grey approximation is particularly applicable for (a) the surface

sources which are independent of the material absorption coefficient by

virtue of the optical thickness of the heated surface layer and, conse-

quently, have a blackbody frequency dependence and (b) the Compton

scattering by free electrons which is substantially frequency independent.

When the frequency dependence cannot be neglected the integrals are

approximated by forming frequency groups Vm 5 v ~ Vm+l h which the

absorption coefficient can be considered to be approximately constant.

UfWINIFiED
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Denoting quantities associatedwith the above frequency interval by the

additional subscript m the group equations become

In Eqs. (14) the quantity bm is the normalized integral of the Planck

where

function over the frequency group given by

u

J

m+l U3

bjm =$u
—du ,
u
e -1

m

%=h+ ‘

obeying the sum rule ~b
.1.

= 10 The partial Planck mean absorption

ficient p is of use in Eqs.
‘jm

~ ‘m+l

(14) and is defined as

J d’ V’ B(Ti)
ai

.- .
~PJm

J

‘m+l
dvB(Ti)

‘m

In terms of these quantities the Planck mean absorption coefficient

coef-

~Pj

?iK-
● ●::●:::.:●::●*ee

● ● 00 ● *

Y

(14)
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appearing in Eqs. (14) is P Zb p
Pt

. The partial Planck mean absorp-

= m ~ ‘~ in Eqs. (14).tion coefficientmay also be used for v The fact that the

Rosseland mean does not enter these equations is another reminder of the

fact that the diffusion regime is not adequately described by the approx-

imation of constant temperatures within zones unless each zone is opti-

cally very thin. A higher approximation taking account of variation of

temperature within optically thick zones is needed for the correct limit-

ing value in the diffusion limit.

Difference Equations In Time

In the equations as discussed above the time dependence has been

omitted. Both the retardation of the source terms and the difference

approximation to the energy derivative must be formulated in a way which

gives adequate accuracy.

The treatment of retardation has two related aspects: first, the

heating rate is modified by sampling the source at distant positions at

an earlier the when the temperature was different; and second, the energy

stored in the radiation field is a consequence of the finite speed of

light and vanishes when this speed is made infinite. Consequently, in

order to include the effect of the specific heat of the radiation in the

material energy equations it is essential to take account of retardation.

This consideration is illustratedby the equations derived above. The

rate of change of the material energy of the entire system
%

is obtained

by summing Eq. (9) over all material cells,

Equation (10) in which the wall loss has been set to zero is smmned over

all surface cells and then added to and subtracted from the above equation.
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are not retarded the terms can be grouped as follows:

O is obtained.

be taken at

the necessary

Cmparing with the sum rules of Eqs. (1.1)the result ~ldt =

It is clear in the derivation, however, that the sources must

the same time as in the calculation omitting retardation, for

factorization of the equation to occur.

The differential eqution in the of Eq” (9) iS approx~ted by a

first order difference equation. The calculation is to proceed fozward

in time by evaluation of quantities at a finite number of instants tn
n+l

separated by time intervals Atn: t - tn = Atn. Denoting q~ttties

evaluated at the instant tnby the corresponding superscript (e.g.) ~)

the energy equation is approximated by

(ViEi)n+l = ‘Ir-ln+’+r-lnl ’15)(ViEi)n + ~

which is a time-centered difference approximation accurate through terms

of order (Atn)2. Equation (10), being an algebraic equation to be eval-

uated at a particular time offers no difficulties other than the treat-

ment of the retardation. Both of the equations maybe implicit in the

unknown quantities requiring the solution of simultaneous nonlinear

equations. The method of solution willbe indicated in the following

paragraphs after the retardation is considered.

Evaluation of Retardation

The degree to which the above equations are @licit depends on how

information about the retarded source functions in remote zones is

Iaiiiiflrfi’
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retained in the calculation. In this paragraph the form of the retarded

source functions appearing in Eqs. ($))and (10) or Eqs. (14) is spec-

ified. In each type of equation the expression is to be waluated at a

particular time, t
n+l

, to which the retarded sources are referred. For

each pair of zones an additional coefficient having dimensions of time

is introduced. The coefficient ?ij
between volume cells i and j is the

aversge time interval required for energy to be absorbed in cell i after

emission from cell j. Coefficients having the same interpretationare

introduced from a volume cell to a surface celd.,TKi, frcxua surface cell

to a volume cell, Tm, and from a surface cell to a surface cell, T
KC“

These time interval coefficients, in simple problemq maybe calculated

analytically or, more generally, may be calculated by the Monte Carlo

method. In terms of these quantities the retarded time t[.iwhen the.
n+l

source in cell j emits radiation arriving in cell i at time t is

t! = tn+l
lj - ‘ij”

The retarded sources are to be approx~ted by inter-

polation in time between quantities tabulated at times bracketing the

retarded time. To make the interpolationpossible for all zones it is

necessary to provide tabulated data at a time earlier than t
n+l - ~

max’
- is the greatest of all time intervals between cells. Towhere ?

provide these data a number Q(z1O) of arrays of the temperature are

stored. The times correspondingto adjacent arrays need not be sequential

cycles but are adjusted to cover the time interval T- approximately

uniformly. These temperatures are denoted by T: and correspond to the

time tg. Using linear interpolationbetween adjacent values the temper-

ature for zone j at the time t’ is
ij
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L)(Tn tn+l
- %)+(%+1)4(4-‘n) ,,, q > .n

Atn

L)( J+ (’q+q’(t;,-tg), ,f#3 < ,;, s tg+l.,16,@ 4 tg+l - *9

~g+l -~e

g=l, #=2) eventu-
As the calculationproceeds the earliest interval (t

ally will becane of no use because even the earliest retarded time will
n+l - ~

no longer fall in it. Thus, if t
~ tg=a the first array may

max

be replaced by the second, the second by the third, etc., and the last

by $+1. In this way the interpolation arrays are maintained with

temperatures always spanning the required time interval for retardation

Substituting the retarded temperatures frcm Eq. (16) in the e~res-

sions for

[1d(ViEi) ‘+1

~

and the surface temperature equation, Eq. (10), gives expressions which

contain some terms which are kn- in terms of temperatures at tn and tg,

and other terms depending on ~+10 The latter terms are the ones which

may couple the equations together to form a system of implicit equations.

Symbolically, these equations are of the form

t

.9 9*. .*m
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and

(17)

‘here‘ij ‘ ‘iK’ ‘K$’‘d CK2
are matrices which may depend on ~+1, but

a~~ b~~ and w do not. If the the step is small compared to the IT:A~S,

t;en & of ~he elements of A ,
is

those terms will occur instead h

J.J

‘m> ‘Kj> and C
K~

will be zero, since

bi and ~.

Iteration Equations

The equations for the material and surface temperatures at t
n+~

are

nonlinear and may be implicit. An iterationmethod has been devised to

solve them based directly on Eqs. (15) and (17) and which contains a

series of steps which are detailed below. The iteration starts with the

energy equation and provides first an estimate of material temperatures

based on an explicit method. Surface temperatures are next brought into

conformitywith the estimated material temperatures. Both sets of temper-

atures are then used to find a new set of material temperatures and sur-

face temperatures as before. As many cycles of this iteration are per-

formed as necessary to obtain an accurate solution. More specifically,

the steps are as follows:

1. The energy difference equation, E!q.(15), is solved for E
n+l

i,k+l’

V.E?+l =vi~+g
1 i,k+l /[_(vj_Ej_)]n+ [&(viEi)]~l\ , (18)
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where k is an index denoting tne iteration. In Eq. (15) [d/dt (ViEi)]n

is known, and [d/dt(V E )]n+ln+l i i k
is tne value of the term in Eqs. (17)

n+l
evaluatedwith Tj,k”

For each zone the temperature Tj,k+l
is obtained

from the equation of state and immediately placed in T-storage. Its

value is subsequently used for the remaining zones of the energy equation.

Consequently the notation of Eq. (18) is not precise in that the k + 1

terms on the left side are not indicated. The iteration resembles the
4

the Seidel methcxi for linear equations. The sequence of calculations

of new material temperatures indicated above constitutes the volume cell

part of one iteration.

2. With the new

of Eqs. (17) are next

material temperatures

solved as follows:

the surface cell equations

(19)

As in the material equations, the newly calculated temperature
+1

$ ,k+l

is placed in storage for use in the remaining equations. Upon com-

pletion of the calculation of Eq. (19) for all surface cells, the current

iteration is complete.

3= Tests are performed to detemnine whether

terminated. Separate tests are performed for the

face cells,

and

V En+l
n+l

i i,k+l - ‘iEi,k s 51 x
vi<+:

>
i

the iterations may be

volume cells and sur-

(20)
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Values of 51 = 52 -10-2 are Buggested. When either of the tests is not

satisfied steps 1 and 2 are repeated. When both are satisfied the cycle

calculation is considered camplete.

4. The initial values for the iteration are based onT~+~=o = ~.

Accelerated convergence doubtless could be achieved through de of a

method based on estimation of the first eigenvalue. Preliminary calcu-

lations indicate, hwever, that rapid convergence is attained without

the accelerationmethod.

Time Step Calculation

A variable time step Atn is desirable to balance the accuracy of

the integrationthroughout the problem. At early times more rapid changes

are eqected than at later times so Atn can Increase as the problem

progresses without incurring any large error. A prescription for choosing

Atn based on the rate of change of the material energy has the desired

properties. In preparation for the first iteration of a time cycle the

quantities [d/dt (ViEi)]n are formed for use inEq. (18). Using them

immediatelybefore the iteration is started, Atn is calculated,

(21)

where At. is the input number determining the maximum permissible the

step throughout the problem, I is the total number of volume cells, maxi

selects the maxjmum absolute value of the energy change in each volume

cell, and 55 is an input test nusiber(4.1) determining the fraction of

the average zone energy which the largest energy change is permitted to

attain in one cycle.
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