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Curved Detonation Fronts in Solid Explosives:
Collisions and Boundary Interactions

John B. Bdzil
Los Alamos National Laboratory
Los Alanios. NM. 87545, USA

Tariq D. Aslam and D. Scort Stewart
TAM Department. University of linois
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Abstract: Detonation Shock Dvnamics (DSD) can be used to model the effects
that shock curvature. x has on detonation speed. D, (x). At the edeges of the
explosive, D, (k) is supplemented with boundary conditons. By direct nuerical
simulation (DNS). we study Liow the reaction zone interncts with the edge. DSD
theorv has been integrated with the level-set method of Osher & Sethian and
the Los Alamos DNS code Mesa to ereate a powerful tool for siimulating complex
explosive containing systeis.
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1. Introduction

To accurately predict the propagation of detonation through an explosive, one
needs to mnodel the physics that oceurs on the chemical reaction-zone scale,
ir- [0 sharp contrast to the structured shocks observed for guscous detonation,
those for heterogeneous solid explosives are broadly curved on the»), scale. The
speed of the detonation is strongly influenced by the curvature of the shock. &:
with reductions of speed of 4J0% in strongly divergent. Hows.

Safetv concerns have led to the use of explosives that satisty £/, = O(107).
where £ is a representative dimension of the explosive. Curvature eflects have
a strong influence on detonation in these svstemns. and highly-resolved multidi-
niensional simulations are “expensive.” A body of theory and supporting experi-
ments have been developed that treats these curvature effects called Detonation
Shock Dynamics (DSD) (Aslam. Bdzil & Stewart 1995). The DSD frout theory
derives a speed function D, (x) based on a weakly civergent. quasi one dimen-
sional (1D) model of the detonation reaction zone. This function can also be
deteriined directly from experitnents. The regious of strongest How divergence
are found near the explosives” boundaries. Boundary conditions (BCY must he
supplied in addition to Dy, (~) to treat these internetions. The DSD dynamies of
broadly curved frouts interacts with the edge through o narrow boundiary Lover
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2 C'urved Detonation Fronts in Solid Explosives

a few 5, thick. where the tlow is bhoth reactive and fully 1wo-dimensional (2D).

In Section 2 we give a brief review of DSD. Frout theories require a front
propagation algorithm. [n Section 3 we desenibe an engineering implementation
of DSD that uses a level-sot (LS) wlgoritlun (Osher & Sethian 1988) to prop-
agate the DSD front (Bdzil & Stewart 1989). (Aslam. Bdzil & Stewart 1995).
To iztegrate DSD front theory with hyvdrodyvnamic simulations, an accurate
method is needed to quickly burn the explosive and capture the detonation
state consistent with D, (x). Iu Section 4 we deseribe our uew burn model and
show a full DSD-based simulation. In Section H we discuss results obtained
fromn high-resolution simulations of two cdge problems, 1) the sudden loss of
confinement and 2) oblique interaction of detonation with a rigid wall. Owing
to reaction-zone effects, we find that detonatious exhibit von Nemmann reflec-
tion (Colella & Henderson 1990).

2. DSD Theory

DSD is the name given to the body of mmitidimensioual detonation theory and
experiments that is nsed to describe the dynamics of detonation with broadly
enrved shocks on the reaction-zone scale .. The model equations nsed to
describe this liit derive from the 2D. reactive Euler equations transforined to
shock-attached, intrinsic coordinates. Shown in Fig. (1). is our coordinate net.
of straight lines normal aud curves locally parallel to the shock, all moving with
the shock normal speed D,,.

wK >0 i K <0

Figure 1. A suapshot showing diverging detonation (o). coaverging detonation (b).
the intrlasic coordinates and the detinition of the bonadaryeedge angle w. ‘Tlie sposd
of the wave is Influencad by two fuctors. the convergence/divergence and the location
of the souic surfee,

2.1. Interlor How

The weak shock-tnrvature limit defined by & = O(e), where ¢ = (reaction -
sone scale)/(shock radius of cureature). is the basis of most theoretical anal-
viin of 2D detonation. ‘Fhis Hwit eavistons that O(1) changes in the Held vari-
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ubles oceur over (J(e™!) distances in the E-direction. .nd the How velocity in
the &-direction is no greater that ()(e). Under these assumptions. the DSD re-
Inted time derivatives are ()(¢). the How is principally in the spdirection and is
"nozzle"-like (xee Fig. 1). and 2D enters the How only parametrically. via ~(€.t).
This limit allows for rime dependence on the ()(1) reaction scale. provided no
()(1) velocities in the &-direction are generated. The various streamntubes then
conmunicate with one another only throngh the shock-surface compatibility
condition (i.e., through the LS equation or whichever propagation moethod we
use). The DSD reaction zone equations are:

(p) + P(Dn -U), = —pUs. (1)
HEY=P, = 0. (@)
Pe)=P@p) = 0. (3)

where (') = (9/0t)e+(Dn=U)(3/0n)1c und p, U, P. ¢(P. p. Aq). X and ¢ are the
density, laboratory particle velocity in the 1)- direction, pressure. specific internal
cnergy. degree of reaction and heat of detonation. respectively.  Henceforth,
when ¢, 3. €, etc. are used ny subsacripta they denote partial derivativen. The
master equation, derivixl from Eqs. (1-3) hel i ny analyze the 2D reaction zone

P.+ p(D, - U)W, = —p|(Dp - U)? = CHU, + 0 . (4)

where @ = —(ea/ep)R — pC*Uk and C. =(ex/ep)R 2 0 and (A) = R 2 0 are
the sound speed, heat-release rate and chemical rate law. respectively.

In its simplost realization, DSD theory assumes that D, /D¢y = 1 + ()(¢).
that the departures from the Zeldovich-von Newmann-Doring (ZND) limit are
small und neglects the inertin of the reaction zone (settlug ¢ derlvatives in
Eqgs. (1-4) to zero). The reaction-zone structure is then obtalned by solv-
lng the steady form of Equ. (1-3). subject to the shock conditions and gen-
crallzed Chapman-Jouguet (C\J) condition obtained from Eqg. (1) (i (D) -
U = (? = () when @ = 0, provided that & > 0). This detines an cigen-
value problem that obtainy D,(x). Flgure 1 shows that two effects contribute
to D, € D¢y 1) the divergence and 2) the movement of the sonic sur-
fuce. For wenkly convergent systems, offeet 1) dominates ad D, (x) 2 1)y
in derived by reauiring (D, = U7)? = €2 = 0 at the end of the reaction zone
thew A = 1), Detalls can be found In (Ikdzil 1981). (Bdzil & Stewart 1966).
(Stewart, Aslam, Yuo & Bdzll 1995), (Aslam. 1zl & Stowart 1995) aid refor-
ences therln, lmportantly for 12,(x). the shock evolves by parabolle dvnmnies
and 8o I8 smooth. For real heterogencous solld explostees 17 is not well known.
Then Da(a) Is determined direetly from experbnent. Fhe 12,(x) lor the explo-
slve PBX 9502 in shown In Flg. 2a. Note the (1) varlations of (1= 1)/ Dery.
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2.2, Boundary conditions

DSD dynamics of slow variations in the E-direction can break down st oxplosive
boundaries. There the How can be fully 2D and time-dependent on the (1)
reaction-zone xcale (Bdzil & Stewart 198G). On the slow-time DSD scale. this
region can appear to be steady. Then the DSD and bomndary regions are
coupled as follows: 1) the DSD rogion drives the boundary with information on
the shock slope and D,,. and in turn 2) the boundary region uses this data to
return a (possibly) maditied shock slope. ete. (Bdzil 1981). Using the boundary
angle w defined in Fig. 1, DSD supplies w,, to the boundary flow. which then
returns wey to the DSD region. The boundary is itsell characterized by two
angles that depend on the explosive/inert pair being considered: a critical angle
w, and a confinement angle w..

We've distilled these interactions into the following recipe. If wi, < w,. then
Wout = Wy, Otherwine, w,y = w.. The houndary dynamics are considered in
more detail later In this paper.

3. Front propagators

Together, the D,(x) function and the boundary conditions provide a complete
dynamical decription of the detonation frout at the DSD level. A second element
is needed to propagate the front: a shock compatibility conditlon that relates
how changes in the speed of the front affect its’ shape. One of the most widely
used forma of this condition is Whitham's ruy method (Whitham 1973). Every
section of the detonation front advances along a systein of rays that resemble the
bicharacterintic rays of geometrical optics, Although physlcally appealing such
methodds can be logically complex. The front-attached ruys converge and diverge
with thoe front, which can lead to nmnorleal problems. This is vne memeber of
the fanily of marker particle or Lagrangian methods. Snch methods are not. well
suited for engineering applications where the problem geometries are complex.

3.1. Level-set method

Osher and Sethlan (Osher & Sethian 1988) devised o powerful algorithm for
propaguting frouts with curvature dependent speed.  Their method obviates
the need for the complex logie to treat collisions and avoids the problem of
marker particle methods. They counider the shock as a lovel curve C'(e. g 1) = 0
embedded in o higher-ddimenslonal LS-funetlon ¢o(ir, g 1) that's detined on an
Eulerian grid. The evolution cquation for the LS-function is derlvidd by nsing
the property u(.r, y.1) = conatant alony, a level curve to obtain

vk Da(R)- V=0, (h)

Equation (5) Is the 1S-method surface compatibllity condition.
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The precise torm selected for ece. g, 0) is unimporeant. provided that iy, 0)
is single-valued. This insensitivity requires that. 1) D, depend only on diaa
from a single curve and 2) that 1he level curves vot cross with vime, The
first property is antomatic, since D, (x). The second property follows trom
the fuct that the distance between level curves. as measured by iy 1) =
|€L"(:I‘. Y. ())|/|€’-u-|. does not go to zero. By way of example. for D, = D¢y —ax
with o > 0. the d-equation (which is derived from Eq. (5)) is

dy + Deoyii -V (d) = an*d . (6)
for a cylindrically svinietric svsteln.  Since an® > 0 and d(r.y.0) = 1. d
ilicrenses with time. The result d(e. . ¢) > 0 continues to hold for fully 2D svs-
teis with strong divergence at the boundaries (Aslam, Bdzil & Stewart 1995).
I practice. we assign v' == 0 to the shock. with ¢* > 0 in unburne material awd

"1 vorging ' 1%
J._ | - brarch, ' LN 1882
.1 \ x>0 r 174 il
; D " 1019 19
= 784 ~ - 100.0
g a ne e
g 7 e r .
Eui- o ° - 789 . C me
Q" e T ] S .
K <0 e et
55‘[ = = ;!» ay
\ or o
0s 0 0s ( s 00 - - - TN
(a) K(1/mm) (b) £0.0 0.0 80.0

Figure 2. The D,(x) for a typical condensed phase explosive. PBX 9502 is shown
in Fig. 2a. Burn tilme coltows for aa engineering-stvle problemt obtained with the
LS-method are shown in Fig 2b. ‘The dar -reas are obstacles.

¢ < (0 in burut materinl. The burn time f,(z. y) is taken as the first time that
o< O ut o point. Figure 2a shows the vesult of o LS caleulation ot the burn
times for a engineering-style problem. [nitially, the detonation is a semi-cirele
with origin (0.0) and obeys Dy, = 8 i/ ps— 8 x 66 man? /s evervwhere. Bifur-
cation. merging. convergence and divergence of the wave are all well captured.
All of these ideas casily carrvover to 3D,

4. Hydi1odynamic siinulations using DSD

The work that has gone into DSD was motivated by the need o rapture
reaction-zone effects in mnmerical sinulutions of engineering svstems, Two ele-
ments are required to aceomplish this goal: 1) accurate front evolution and 2)
nn ability to deposit the proper detouation state (i.e.. £2(1,). p(D,). 170N,))
at the frout.
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To anddress clement 2). we've developed a mnmerical reaction-zone model tht
uses a " pseudo” divergence Q in place of & in sinmlations, so that a detonation
state consistent with D), is captured. To eliminate precursors to the D, (x) wuve.
we built a model uround the reaction zone EOS. «(P/A. p.q), which together
with the trigger provided by the DSD burn times #,(x. y). causes the munerical
“reaction zoue™" to be on the weak detonation brauch. Starting with P = 0 and
A = 0. at ty(x.y) the explosive is rapidly burned (i.e.. A — 1 in about the time
it takes the wave to traverse one compntational zone). From Eq. (4} it follows
that the ratio x/R deterinines D,. Since this nonphvsical nuinerical reaction
rate. R is associated with the size of the computational zones, we replace U
in Egs. (3-4), by

Us=>QR, R=R, (7)
and then solve for D,(€?). Elimination then vields £2(x), the "pseudo™ diver-

gence required to get the numerical detonation to be compatible with D, (x).
This 2-part model is implemented in a second-order, 2D. multimaterial. Enle-

Tw8us

Dn
—

(a)

Figure 3. Mesa calculation of the detonation cvlinder test. ‘T'he detonation wave is
moving to the right. Inset (a) shows the results wt £ = 8 ps from the D, = D¢y
model. (b) shows the Dy, (x) model at ¢ = 12ps.

rian grid hydrodvimmics code at Los Alumos called Mesa (Holion, ¢t al. 1989).
The results of two calculations of the detonation Cu eylinder test (one using
the standard D,, = D¢-y model and the other using DSD) are displayved in Fig,
3. The difference in the timing and wave shapes is striking.

5. Boundary condition study

A complete theoretical analvsis of fullv 2D. reactive edge tlows is ont of reach.
lHere we present some results obtained using high-resolntion munerical sinm-
latious. A limited sunount of supporting theory is otfered to help with the
interpretation ol these results.

We study a simplified Euler Hiuid model. and nse a polytropic KOS with o
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large ~ to mimic condensed phase explosive, where
« =Plp/(v—1)=qX. (8)

with v = 3. an initial density pp = 2000kg/m* and a heat of detonation ¢ =
4 x 10%mn2/s% w0 that Py = 3.2 x 10'N/m? is large. A simplified state-
independent rate law is used (A = 2.51 x 10%/s)

(N =R=kv/I=-X\. (9)

for which the 1D steady-state reaction-zone length is 4 x 10~ and the particle
reaction timme is 0.8 us. The numerical simulations were done using a second-
order Godunov code called Caveat (Addessio. ct al. 1990). The grid size used
in the calculations was 2 x 1071 in the streamwise direction. Two types of
boundary interactions are studied here. For botl, the detonation is initially a
plane ZND wave whose direction of propagation is colinear with a flat rgid wall
(i.e.. w = 90°). Problem 1) cousiders the reponse of the detonation to a sudden
loss of confineinent. while the interaction of the detonation with a converging,
rigid wedge is studied in problem 2).

5.1. Loss of confinement

A collection of the results forin problem 1) are shown in Fig. 4. Propagating up-

(shock) .dge

edge

o

T=0 T=lus Tw=24us

(a) (c)

L T3 ..‘___¥\‘ 2490 | o,
. ;

4\ = z/ref
7 (shocks)(  32°de" _

\ K‘ -0.4t
- Te0

(b) (d) |

PBX 9502
rz-1lmm Re=5mm
- .0 R/Re 1.0

Figure 4. Respouse of a detonation reaction zone to a sndden loss of continement.
Insets (). (b). (¢) and (d) show the reaction-zone pressure contours. the evolving
shock front shape, lnte time pressare contonrs and an experimettally measured shock-
front shape. respectively.
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wards initiallv. the detonation loses confinement along its right boundary at t >
0. Iuset (4a) shows strong 2D Hlow at the edge as evidenced by Pe = ()(1) and
the rapid change in the shock slope (w changes trom 90° to 55?). The Prandtl-
Meyer expansion that develops. limits the decrease in pressure atr the shock
which results in a fixed shock-edge anngle after a very short transient. as shown
in (4b). The rarefaction moves along the shock at (\/'C'-' — (D, = 1"))yop =

[VE

140
160

180!

Figure 5. The oblique interaction of a resolved reaction zone detonation with a rigid
wedge. Insets (n). (b). (¢). (d) and (¢) show the evolving lead shocks for a 402 and 20¢
wixlge, pressure profiles at £ = 24 us for the 40° and 20° wedge. a strong inert shock
over a 20° wadge and the carved “Mach™ interaction for PBX 9502, vespectively.

0.7D¢-y. Insct (de¢) shows a broadly curved DSD wave ut ¢ = 24 ps. The value
wr = HHY, corresponds to a How that is exactly sonic as measured with respoct
to the shock-edge intersection point. A discussion of the effect that increas-
ing confinement and changes in w,, have on these results is given elsewhere
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(Bdzil & Stewart 1986). (Aslam. Bdzil & Stewan 1995). The experimentally
measured shock arrival trace for a Re = 5 min detonating cvlinder of PBX
09502 is shown in (4d). The w. = 45, corresponds to the sonic angle for this
waterial. For this explosive 7, = 1 nnn. Measured on this scale. the shock for
this 10 nun diameter explosive is broadly curved.

5.2. Converging wedge

A collection of results from problem 2) is shown in Fig. 5. A ZND detonation
propagating to the left meets a rigid. converging wedge at .x = 190 rmmn (& = ¢
is at the left). Standard three-shock theory for a CJ-detonation predicts Mach
reflection for win, > 45°. A simulation of the 50° wedge problem shows regular
reflection. The evolving shock and D, for both a 40° and 20° wedge shown in
(5a) display irregular reflection. The pressure contours at ¢ = 21 us shown in
(5b) reveal the irregular reflection grows slowly for the 40° case. Although the
structure looks solmewhat classical. the reflected wave is clearly dispersed.

The pressure contours at t = 24 s for the 20° wedge reveal a totally noucla-
sical von Neumann reflection (Colella & Henderson 1990). The leading shock
is broadlv curved with no evidence of a reflected shock. This is a consequence
of the diffraction of the reflected wave by the reaction zone flow gradient. By
contrast, the Nach reffection of an inert shock of comparable strength. shown
in (5d). is classical. Figure (5e) shows "Mach™ reflection during the collision
of two PBX 9502 detonations. These ineasurements were made at Los Alamos
bv Larry Hull (Hull 1995, private conununication). With the progress of time
(time advances to the left), the wave interaction region (the earliest part of cach
trace) becomes wider and more “rounded.”

We present. a qualitative theoretical argument to help understand these ob-
servations. Equation (4) is exact along the shock

o _ (Yt (=D ,) (v+ 1) D, AT
(Dn)f - 3 ((, + l)D"_ (U'I)'FU + (‘Y - 6 (R)'I=() '3(_! - l)D”h .
(10)

Ditferentiating Eq. (10) with respect to €. using the shock compatibility condi-
tion and then transforming the resulting equation to a reference frame moving
at acoustic speed along the shock (v = ——(\[("2 = (D, = Uz with dw =
d€ — vdt) derives an equation for the amplitude of the leading edge of o weak
2D disturbance moving into a 1D ZND detonation

20 e LD R L ORD) Ol - (D)

h, = —3(‘7 + 1) VT G(y - 1

The varinble & = (KDeoy/k)mavetraa 18 the scaled shock curvature, r o= k¢
ix the scaled time and o measures the state-dependence of the rate (eg.. If =
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I\-\/I-—T\uxp (6D,; D¢y 1). The strensth ot vhie 2D disturbancee is K. with N} --
. denoting triple-point forimation on the shock. Dropping the order terms in
Eq. (11} setting ~ = 3 and solving. finds that for o < 1. R — 0 when Rosy, -
~(l=m)/6 and K — = . otherwise. Thus sufficiently wenk convergence, does
not lead to triple-points. This is what we see in our simulations. Suppressing
the reaction relaied terms in Eq. (11). finds that all levels of convergence load
to triple-points for inert flows. The DSD boundaryv conditions derived from
this example are: 1) when wi, < wy = 35% then w,u = wiy and 2) when
Win > oy = 352 then wyu = w. = WO,
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