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ABSTRACT

The Fokker-Planck equation is reduced to a form that is useful
from the viewpoint of doing practical calculations of problems involving
configuration space as well as velocity space, The basic technique is
a spherical haxmonic'decomposition in velocity space that reduces the
number of independent variables by two., As an example, we show how to
apply this method to a problem with theta-pinch geometry.
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I. INTRODUCTION

Realistic calculations of the plasma behavior in the theta-pinch
and other devices have been undertaken in the magnetohydrodynsmics
a.pprox:i.ma.’c:i.on.]'’2’3 In comparison studies with the Scylla-IV theta-
pinch,” we find that the dynsmics of the plasma occur so rapidly that
the assumption of ion-ion collision equilibrium cannot be expected to
be valid throughout much of the calculation where plasma temperatures
are high, although it is valid at the beginning stages, In fact, for
very high temperatures at peak compression of the plasma, we suspect
that the plasma may even act somewhat like a collisionless plasme,
Therefore, ideally, we should study the Boltzmann equation instead of
the MHD equations, so that we can operate in the regions where the
collision term is relatively unimportant, in the region where the
collision term dominates, and in the transition regions between the two,
Because of the relative unimportance of large-angle collisions in the
fully ionized plasma, we feel justified in using the Fokker-Planck
approximetion to the collision term,.

The purpose of this paper is to rigorously reduce the Fokker-Planck
equation to numerically tractable form, The procedure that allows us
to do this is the spherical harmonic expansion in velocity space.
Rosenbluth, MacDonald, and Judd have shown how to write the Fokker-Planck
collision term in spherical coordinates in velocity spa.ce.h
symmetry about the spherical harmonic axis, so that their azimuthal
angle drops out of consideration, We cennot assume such symmetry; how-

They assume

ever, the expression obtained below with the azimuthal dependence included
is not much more complicated, They then expand their collision term in
Legendre polynomials, Because of our lower symmetry, we must use
associated Legendre polynomials. Krook has used the spherical harmonic
expansion in connection with a method involving velocity m;:)men‘t;s.5 Our
method, in a.dd.ifion to being numerically tractable, is rigorous in that
we include as many spherical harmonic terms as are necessary, We




anticipate that there will be many situations in which the nuwmber of
spherical harmonics required will be quite reasonable,

In practical calculations we will, among other things, be interested
in the development and propagation of shock waves as they occur in plasme
dynamics, for example, in the theta-pinch problem. The transport theory
of shock waves is far from having been completely exploited, although
much work has been dxme.5 -10 The procedure outlined in this paper gives
the means to apply the Fokker-Planck approach to the nonequilibrium
aspects of shock waves and related dynamical phenomena in plasmas for

various configuration space geometries,
II, THE BOLTZMANN TRANSPORT EQUATION

Let us consider a gas composed of n components, The Boltzmann
transport equation for this problem can be written in the following way:

o df,
sr_ = Z 2| (a=1,...0) (2.1)
b=1 ab

where the symbol on the left-hand side stands for the phase-space velocity
-derivative or, in other words, the transport term; and the symbol on the
right-hand side stands for the collision term, In this section we will
discuss the transport term, and in Section IIT we will discuss the
collision term, Because the transport term involves only one subscript,
a, we will omit it in the remainder of this section, Therefore, we write

df
+ . .
ﬂf"sb— V-V +a va (2.2)
where V is the velocity, and a is the acceleration of an individual
particle, We assume that the acceleration a is that of a charged particle
moving in an external electromagnetic field:
V X B(x)
a= -3 [E(’.S) + “‘_;:._] (2.3)



The nature and origin of the electromagnetic field appearing in (2.3)
will be discussed in more detail in Section IV, The average velocity
V is given by

Y(?s:t) = f! T (35:}[,1") d! (2.4)

We can define the special velocity v by
v(x,t) = ¥ - Wx,t) (2.5)

However, we prefer to introduce an extra generality into the theory by
defining v(x,t) in tems of an arbitrary velocity function u(x,t):

X(’é:t) = X - E(f:t) (2.6)

Thus, we can go through the formalism just as easily and later, if we
wish, impose the condition

w(xst) = Wx,t) (2.7)

Alternatively, we keep in mind the possibility that we may find it
convenient to interpret i“(f’t) in some other way.

Our purpése is now to regard f as a function of (i‘.:l’:’“)° However,
we must keep in mind that v is a function of (f,t) and write

£ = f(;‘,z(i,t),t) (2.8)

Therefore, in (2+2) we must make the following substitutions (Ref, 11,
§3ol3): ‘ .

3
g-%--o g{- - (v 8) - 5% (2.9)




Veve=y % - (V1) (Y- Vul (2.10)

a ° vvf ~a - Vf (2.11)

Thus, (2.2) can be written in the form

D
Sf =%§+ v v+ (V1) - (a. —E-> - (v,0) - Ly - vl (2.12)

-
~

&

where

(2.13)

AR

g

(compare Ref. 11, page 50).
We will restrict our configuration space coordinates to be an
orthogonal, curvilinear system denoted by

X = (ﬂl:ﬂ2:ﬂ3) (2.ll+)
All vectors can be expressed in terms of their projections along the

local, orthogonal basis vectors &, of the systems (nl,na,nB). In this
system we write the gradient operator as

g, 2
£ — 2.
v Ny gﬁ; (2.15)

We observe the summation convention for repeated indices referring to
coordinate components, Here

h, = hi("‘:j) (2.16)

10




In terms of these coordinates, (2,12) and (2,13) are written explicitly
as follows:

Df , 'i df ) Dy v, du
8f=DT+1’T; an—i"'(vvf) <E-DT-1’_1; . (2.17)
i
u,
g_t_ = gg + L g__ (2.18)

Using the local, orthogonal basis of the curvilinear coordinates as a
basis for a system of rectangular velocity coordinates (vl,va,v3), we
proceed to transform to a system of orthogonal, curvilinear velocity
coordinates (gl,ga,%). Thus, we will have

£ = £(n,E,,t) (2.19)
and
4 2 (2.20)
where
gy = &;(¢&;) (2.21)

We must be careful to note that the basic vectors & i are different from
the basic vectors Ei of (2.15)s We may now write (2,17) in the form

v Du, v, ou )8& 3
Df , Vi Of . 1 i_k _J)\2i of (2.22)
ofF = 2 + L + =—la, - =% - = .
Dt hy dny 3i<*’ D " h O Sv; 3,

For our system E i we choose, in particular, the spherical coordinate
system, Thus, we may write

V' v 8in ¢ cos @

1
v, =V sin d sin @ > (2.23)
vz = Vv cos ¢ J

11



We use the script characters J and ¢p for the angles in velocity space to
distinguish them from the angles 6 and 3 in configuration space. Actually,
we find it more convenient to work with the cos w equal to cos 4 instead
of to J¢ Thus, we define our system gi by

=w = cos ¢ o (2.24)

and write the transformation in the form

S
v =v\/l-w2 cos @

1l

v, = vV - w2 sin @ } | (2.25)

For convenience we will sometimes use the € 4 botation, although we actually
refer to the specific system (v,w,p) as implied by (2.24).

We now write out (2.22) explicitly in temms of our spherical velocity
coordinates, In additlon to (2.3), (2.6), and (2.25) we will need the
following relations:

12




g, =1

=1
& /l'_—wa T (2.26)

gq>=v l-w2 J

cos @ P

%=-¢l-wigcos&p g;=

_w\/l-w
v
_w‘\/l-was
v

ov__ V1 - sin @ W _ in @ §;= cos (2.27)
vy &, 2 /l wa' T

: A =l-w2 -
3‘75_=w 3v3 v v3_0 J

Substituting (2.3), (2.6) and (2.25) - (2,26) - (2.27) into (2.22), we get

M,:]lf:'__*_v«/l-wa cos ¢ Of v/l - v sin @ df _ w df
h

+

Bt iy 3n; By oy by 3ny
E¥ EX D EX
{5 A e (2 2) T g (1),
o
-%T]:- a%":v(l-wa) cosa&p-}lTa- ;ulgv(l-wa) sin @ cos @

15



o o
-%T- ;1— vw'\ll-w2 cosq:-l—- u2v(l-wa) sin @ ~os8 @

3 'q5 h2 5-1E
L aua v(l-wg) s:i.n2 P - L aua W l-w2 sin @
> =, B &,

du d
1 9% /3 1 3 J .2 1 % 2l
-h—]-' nlW l-w cosqa-ia- Fﬂ;w l-w sinq;-ig 5;]—5-W v

m bt v m v
/ 3/2
aEF  Duz\ (3. ?) 1 9 w(1-vD)
B Dt 2 Tho 3 v cos @
v 1 M
P 0,3/2 du. 2, 2
1 ™M w(1-w) 1 M1 v (1-vw9)
+ sin @ cos @ + — cos @
h, a'q2 v h3 B'q3 v '
ou 2 3/2 . 2 3/2
+}17_ aa w(l -w°) sinq’coqu}lT auz v(1-w") 2
1 M v 2 92 v
o 2 2 du 2,2
1 T wS(1-w") 1 3 (1-w")
+ h3 31]3 v sin @ hl 5“1 - cos @
du 2,2 3/2 B
'rlTan3 L L (a-v?) oo
2 “N2 h, don v me v
3 3
By (1. w°) £ (qu AR
- P
¥ me cos P 5 F m Dt/ 2
v(l-w)



+ qu 2 cos® .1 au1 sin @ cos + 1 bu.l sin2 )
m Dt /3 2y h= o, h, o, 2
vi(l-w 1 1 val- 2 2 vafl-w

au1 w 1 bu.z cos2 au2 sin cos

du aB gB
1 2 1 2 .
- cos ¢ + cos @ + sin @
h3 31]5 v(l -w") ¢ y(1-w°) me  y(1- w2)
qB
23 1 g_ (2.28)
e va/l-w
where
u X B
E¥ =F + = S (2-29)

We now introduce a spherical harmonic expansion in velocity space:

7ln,,8,,t) =§n:fzm(qj,v,t) Y, (v,9) (2.30)

Because the Y«tm are complex, we will have complex components f{m even
though the complete function f is real., In order to write our result
completely in terms of real quantities , we introduce

m

£, o=f (2.31)

tm =T tif

where £~ are both real, Substituting (2,30) and (2.31) into (2.28),
tm * .
multiplying on the left by Yt » and integrating over the solid angle

15



dQ = dw dp, we obtain
(82), = (Sf);m +1 (80)g (2.32)

where

+
Df E : . + of
(&f)i ~ _Im + v It ,m+1 afz,’m_*_l + Il',m+l r m-l)
im Dt K hl im -—ETT]T— 1"4m ﬁl

af:F bf:F ~ art
v 2,m+l fomtl _ _f\m-1 im-1 v 'm 'm
T <1Izm &, 1lm —h, > ™ (2Izm By )

)
lIlm sv * lIlm

ar* art
( E; Duy o+l 9T gimtl fm-1 “Fgm-l
bt v

F F
of P of

qEX Du2 ) ( 1 1 1 )
e 2 imtl _ Ahm-1 2\m-1
:F( m Dt lIlm sv lIIm 5#

®f Dhyy ml L phml gt
“\m Dt 2 \3 fm ‘m¥l 3 4m £4m-1

qEE Dus\ 4 Imél T fm-1 F
* (T "Dt ) 2 (BIlm fpmt1” 3%m T ',m-l)
qE¥ D
3 u'p' 1 2'm _t
*(T - DT) z (ulzm fl‘m)

16



+

+

4T _ Dj) 1 It',mﬂ_ t_ pbhmel ot
bt F 6" tm f[',m-i-]_ 6 fm £,m-1

e L il F
mev \5 4m Sim+l © 574m 2,m-1
qB 1 1

o mlopx . )
cv \5 im im+l  57im 2im-1

fm-1 F )
vl T tIm Teimel

EF  Dup)y hwl ¥ gfeel F )
m ~ Dt/ 2 \67¢ ol t 6T T yyme1

B 2) ml ok | Smel
cv \ 7 fm fim+l T im 2,m-1
qB 1
Bs ( t'm 7 )
cv <BItm Tom
+ +
19 o Ltme afz Lim-2 Ofysm o e o1
h) Bﬁz 9 fm 5 * ol tm ov 9
o 3t
1 Y L2 'm+2 L2 2o m-2>
tTa- 5'1']'2_ (9 Tom 5 - 9ltm é‘;
+ +
1 aul ( Il m+l afl‘,m-i-l + Il}m-l afl',m-l)
hs o"@ 10 4m oV 10" 4m T ov

17
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I+

UF‘I (= mb‘I (=

g

+

+

9I

du, o[ o2 Oyt meo _ thm-2 aff',m-z)
o"ﬁ 9" im T ov. 9 m v

+ +
du, o[ Ltm2 Fpme2 | Lhm-2 Fpma 5
5?{; 9™ 4m oV 9 m —ov

¥ T
du, o el Of pimel £m-1 of m-l>
6;; 10 fm v 10 fm 3

+ +
611'5 v I!’,m‘*‘l af!',nﬂ'l + Il',m-l afl',m-l)
aiI 10" 4m ov 10" 2m ov

T T
du o pml Of 1 me1 o hmel Ofp m1 )
aﬁ; 10" fm ov 10 fm v

+
dus of Am Ofyip )
3113 1174m ov
EEI v |\ 12°fm fo,m+2 127 4m £m-2
o g w2 T MHim2 F
3, v \12m m+2 T 127 4m 2m-2
du . .
1 1 MwA o o _hhmel gt

5’@ v \13m fLimtl 13 fm £4m-1
Mo a1 [ w2 F tm2 F )
aﬁz v \127fm fim+2 T 1274m 24m-2

18
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m

+
of "m
v

2'm _+
12I£m f!'m

)




+

+

I+

du
1 2 1 £,m+2 _+ m-2 _+ f'm _*
B, &, v <l2Ilm Tpme ¥ 120m Tpma -2 12Tm Tem
6u2 .
1 1 Il ym+l sz Il',m-l f‘F
by &g v \13fm fymtl T 13 4m fom-1
1 au3 1 Iz',m+1 ot + im-1 _+ >
h, ﬁ; v \1lktm 24m+l 148 gm f!',m-l
du .
1 3 1 I!,m'*'l f:F Il m-1 f:F
h, E; v \14"fm £m+l T 1k4m 2im-1
L Bu3 1 Am gt
by WB v \12°tm “f'm

1 1 1 Il',m+2 £ Il,m-2
2h; On) v \8m g,m2 - 8¢ t' m-2

1 % ( hwe F L pee o f'm
2h, oM, V 8 tm £ym2 + g1y t',m-2 8lim Tym
1 oy L( [imtl ok im-l o
TB E; v \T7Iim im+l " TLem im-1

du
1 2 1 ( tyme ¥ £m-2 r'm 7
2hy, On; v \8'm m+2 * 81 !',m ot 2 gl fyip
1 %y ( me ¢ tm-2 +
2h, on, v \8m Lim+2 = 8L t m-2
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2Itm

5I£m

2'm!
6I£m

2'm!
T 4m

2'm!
BIzm

2 1 ([  Aiml T
v \Tim 2ym+l

m-1 _F

* I fl’, m-l

T im

x Re *
(81) =( ),/Y‘ (8f) an
m Im m

L2

1
“a'tm a!,m,f‘\/l-w Pm Pm, aw

1
ana'lm a’!'m'jw P?Pz;' dw

ar?,
ra, & w(l- w2) P 4
fm “2'm' ]

3/2
2na, &, ,m,ﬂl- w2) P —— dw

2, m

1
™ 8y az'm'f_T 7

(1-w)

aw

' w m .m'
T By 8y 'm'fl_é'_ 2z Py &

1
= ym'a a.,,f—————-Pm
tnftm ) JIE

Pl;:dw

20
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9Ifl;lm' =5 a8 'm'ﬁl'wa) 7y ¥}, o

2'm!? _ [_-2' [
10T 4m = "@ym a’!'m'fw 1-w PI:PI:' dw

£'m' _ 2 m'
llIIm B aﬁatm 8y 'm'_[w PI: Pl' dw

1
3/2 ars
f'm' _ «x 2 2
127tm ‘Tazmaz'm'fw(l‘w) Py o ¥
ar®!
£'m' _ 2 2 2"
135m = "eyp az'm'fw (1-w%) P? T &

1
2'n' 2,2 5 9,
148 = TCom Eprpe (1-w7) Py . dw

/
and
e ==
g < (2.36)
VEE G meo

In (2.36) we have used the Condon end Shortley phase conven‘l:ion.l3 In
summary, let us point out what we have accomplished up to this point, For

each component of the gas (a.=l, ese, n) we have expanded the transport

21



quantity §f -defined in (2+2)- in terms of spherical harmonics and taken
the projections on a given spherical harmonic, At the expense of in-
troducing the (4,m) indices, we have removed two of the velocity variables,
The independent variables of our problem are now (x,v,t)e To complete

the project we must treat the collision term in the same manner., This

is done in the next section,

ITI, THE FOKKER-PLANCK COLLISION TERM

As mentioned in the introduction, we treat the collision term in
the Fokker-Planck approximetion and restrict our considerations to the

fully ionized plasme, Therefore, we write the collision term in the
1k
form~?

m
b= h“(;a:‘ - l) fa(fs:x:t) fb(’f‘:x:t)
=1

m, )31‘ (x,v,t) bsb(x,v,t)
“\g -2 Bvi avi
2°r (x,v,%) 3% (x,v,t)
t 5\ T oo (3.1)
1 9 Vi vy
where
224
A - lmzlzae. 5
a 2 fn (B—) (3.2)
m
a8
e
® S Eim (3.3)
£ (%% ,t)
Sp(Xs0,t) = woyT & (3.4)
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(x,v',t)
T, (X,¥,t) = - aﬂfsb Tvv o dy' (3.5)

Here Gm is obtained by setting the impact parameter equal to the Debye
length (see Ref, 14, page 175). Our plasme has two components, so we
let a and b run over the numbers 1 and 2, where 1 refers to -for example-
the electrons, and 2 to the ions, Next, we introduce the spherical
harmonic expansion of Sb and 'Jlb

Sb(fyz:t) = ;Sb,zm(?&"”t) Ylm(w’q)) (3.6)
Tb(fxz:t) =§'Tb,[m(§’v’t) Yzm("’:@) (3.7)

Also we separate into real and imaginary parts

+ -

SLb,!m = SLb,!m i SLb,tm (5.8)
T =0 43T (3.9)
b,4m b,im b,im :

We obtain

L4

+ . . ’2
SFCRRE 2 B A AR R C ROV UICRD

23




- 2 4 i 4 '2 4
Tt’{m(x,v,t) = - 35 F1 j: gL(v,v ) Sb,{m(.’f’v ,t) vI° av’ (3.11)

~

where
~ -
2
(v?)
NI ; v>v
= > (3.12)
g,(vsv') ﬁ
2
_T__v v < v!
(ve)FtL ’
. J

Now, let us write (3.1) :i.na gemassof spherical velocity coordinates,
First, we transform the factor 5;5 'aTrh to spherical coordinates:

i i
of oS of oS
a b _ ,Jk a b .
= A (3.13)
w N E
where
Ot . Ot
J _ 7J k
AT = 5, &, (3.14)
Using (2.,27), we obtain
3k _ 3
A 8 x A (3.15)

2L




‘'where

2
Al =1, A% - l“é , A = -2—1—2— (3.16)
v vo(1-w")
Hence,
of asb of 9
a _ ad e Sb
&, &, - A X, o, (3.17)

2
2, AT
Next, we consider the factor 2 which we write in the

form aviav:j aviavJ
2 32
Fr, Fn gt 3T °n,
v, S, SEIE, I IE,
2
, %t afrb+ a2rrb :_fg
OF 8E  OE " OE,OE  OE
of o
k! 8 b 8
+D % 3t (3.18)

where AF ana A are given explicitly by (3.16), and gl and DY are

defined by

: 2
T R T (3.19)
&, &, 3V v,
2 2 N
ke o O 3% (3.20)
Bviavj Bviavj

The first-order partial derivatives are given explicitly in (2,27)s The
27 second-order partial derivatives are given explicitly as follows:

25




4y - wacosaq>+ sinatp 2%y _vk(e- }Ja)cosacp - sinaq)] 82q> . 2 8in @ cos q)w
2 £

avlavl Lz ? &rlel v avlavl V2( 1 - w2)
Py - (wa-l)sin @ cos P 3 - w1 -w)sin 9 cos @ baq) - sinan- cosa<p
avlava\ v Bvlava v2 av lava va(l - wa)

4 - N - cos 9 B - (iwa-l) 1-w® cos P baqa
2 ’ 3V18V5

avlav5 v ’ t3vlav5 v

P - (wa- 1) sin @ cos @ 3 (1 w") sin P cos @ 32q> - sinaqa -cosaq>
£ 2
avaavl v Bvaavl V2 Bveavl ve (1- wa)

bao . 2sin@cos @

%y - wasinatp + cosaq> 2%
2
Bvabva v avaava

=wl(2- 3w2)sin2q>-cosaq>] ,

N

3v,5v5 v » F RV Ex Tl > (3.21)

azv L ¥V1-vw sin @ 2 - (Bwa-l)'\/l- wasin [ a%
2
3 v

%y W 1-v2 cos @ % - (iwa-l)Vl-wa cos @ a% =0
6v36vl v ’ aVBBvl V2 2 dv_ov.

3771
4 - -w'\/l-wa gin @ 4%
2

av5av2 v av5m2

- (3wo-1)A/1 -v° sinp 3% =0
V2 ’ av56v2

P _1-ve 3w wlvt-1) 3%
2

= » =0
aV53V5 v 3v53v5 v Bv5§v5 )
; . . . 2knm
By using (2.27) and (3.21),we now obtain explicit expressions for B and
Dkz .
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111

121

211

221

231

311

321

331

131 _

11

"rml M

21 _

WP

31

v5(l -w2)

Bll2 =0
B122 v
82 = o
B212 w =l

8232 = o
312 = 0
B2 = 0
5332 _

v
D22 - _%

v
D32 =0

27

B =0
B3 = o
133 1
B =
v3(w2-l)
%1% = o
3222 = o
B233 W
=%, _2,
v (1-w")
313 _ 1
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Using (3.15) through (3.23) and (2 27), we write (3.1) explicitly as

follows:
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When the collisions involve like particles, the second term drops out,
if that is any consolation. There is one simplifying feature, however,
None of the coefficients in (3.24) depends on p, This will greatly
simplify the spherical harmonic integrals,

Next, we substitute the spherical harmonic expansions (2.30), (3.6)
and (3.7) into (3.2L4), multiply on the left by Y'Zm, and integrate over
the solid angle ) =dwdyp. We obtain

+ -
13;% B} _l_%fg. +1_1_?;j- (3.25)
A A A
a abf, a &b/ 4 & 2/ i
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These integrals are all real, In equating the transport term to the
collision term, we must remember to multiply the expressions in (3.26)
by Aa. We now have a rigorous reduction of the Fokker-Planck equation.
We have not indicated explicitly the various §-functions and vanishing
integrals that are obtained when we carry out (3.28), but this is best
taken care of by doing the algebra of these integral coefficients autoé
matically on a computer, The problem is still quite formidable for
general three-dimensional configuration space dependence, However, there
are many interesting problems which have a high degree of configuration
space symmetry. An example is given in Section V.

IV, THE SELF-CONSISTENCY CONDITIONS
In order to discuss the self-consistency conditions, we must first
define some velocity-integrated quantities, The space density of particles

is defined by

N (x,t) =f £, (%x,¥,t) dy (k.1)
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Substituting the expansion (2,30) into (4.1), we obtain

N(x‘t;)-«/-..‘/‘l7

8. 00 (x:V:t) V dv

The average velocity is defined by

1
Making use of the separation in (2.6), we obtain

e ),

1

Substituting the expansion (2.30) into (L4.5), we obtain

where
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where

>  (k.7)
I

Lo

= 2 _F1
I!,:!:l = “a!’il‘/“\/{-w Pl dw
o
2“a'zo’/‘w Pl av
The &, 8re given by (2436)e

In the present formalism, l"a(f’t) is arbitrary. If we setu =0,
then our distribution is given in terms of the absolute velocity, If we
want u, to be the average velocity according to (2.7), then we must in-
clude the self-consistency condition,

<ya> =0 (4.8)

Next, we write the mass and charge densities:

This is optional, of course,

pg(x,t) = m N (x,t) (4.9)

pea(§,t) ana(;s,t) (4.10)

The current density in emu is given by

g»a(’—s’t) = c (k.12)

For the total quantities, we sum over components, Thus,
N(x,t) =§a: N, (x,t) (k.12)
p(x:8) =3 o, (x,%) (4.13)

35



pe(xst) 5;‘ Peq(Xst) (4.14)

I(x,t) =D I (x,%) (4.15)

Using (4ell4) and (4.15) for the appropriate source densities, we solve
Maxwell's equations,

V-E = bmp, (4.16)
v-B =0 (+.17)
1 %E
VXB=lng+ o < (4.18)
1 9B
Vv X E = - T 31-;- ()4‘.19)

The self-consistency condition on the solutions E and B is that they
agree with the fields appearing in (2.33).

V. THETA-PINCH GECMETRY

As an example of how to apply the above method to a real physical
problem,' we consider the plasma dynamics of the theta-pinch in one con-
figuration-space variable, We assume axial symmetry so that only the
radial independent variable ('r]3 = r) occurs in the problem, Because the
average velocities will be in the radial direction, we choose our velocity
spherical harmonic axis to be along the radial configuration-space
direction, Therefore, we make the correspondence,

~ - N
V1°& = 8

=8 =% + (5.1)
N3 = 53 7 % J
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Inasmuch as charge separation will occur only in the radial direction,
we will have an electric field only in the radial direction:

E = & Es(r,t) (5.2)

The primary magnetic field under consideration, which is in the g-direction,
produces the theta-pinch and penetrates to a certain extent into the con-
fined plasma, However, the electric field defined in (5.2) gives rise

to a radial current density. This will produce components of § in the

-~
~ ]
8 and z directions. Therefore, we have

B = & B (r,t) + EB,(r,t) (5.3)

*
The effective field E appearing in (2.33) is given according to
(2.29) by ’ ‘

* uXxB
E =E+

(5.4)

(o]

Using (5¢2), (5.3), and (5.4) and the fact that the average velocities
will bée in thé radial direction, we obtain '

v o [ B2, . (A1), .
E =§-1<'. )+§2( )+£3E3 (5.5)

c c

Thus, we see that all three components in (5.5) are non-vanishing, even
in this simple geometry. ‘
For this problem, then, (2.33) reduces to the following equation:
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Again, we have used the fact that the average velocity is in the radial

direction. The expression (2,18) for D/Dt reduces in the present case

to .
Rl A (5.1

The collision term discussed in Section III will be the same for all
configuration-space geometries, In principle, (5.6), coupled with the
collision terms, is sufficient to do a good job of representing the
dynamics of the theta-pinch, both in the equilibrium and non-equilibrium
situations, However, we should point out one complicating feature.

With the electric fields and charge separation in the problem, the
equations will give a detailed treatment of phenomena such as plasme
oscillations that occur in times short compared to the times required
for the main theta-pinch dynamics., Therefore, a machine program will
spend much time calculating details that are not too important in the
main'problem; Thus, we may anticipate a calculation of excessive length,
It is likely that preliminary simple calculations will have to be done
with (5.6) in order to learn how to unscramble the various relatively
different types of phenomena,

Vi. GENERAL COMMENTS

We have outlined a difficult application in the previous section,
However, our equations can form a péiht of departure for a multitude of more
simple, but still interesting, problems., The effects of charge separa-
tion on shock wave propagation in a plasme have been recently investigated
in the MHD approximation by Jaffrin and Probstein.15 It may be of interest
to apply transport theory in a similar investigation.

Another property of this method is that it forms the basis of a
separation of depar%ures from the Maxwell-Boltzmann distribution into two
types: 1) departures of the dependence on the velocity magnitude, and
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2) departures from isotropye. In the first case, we keep only the Y‘m

terms but calculate f from the resulting integro-partial differential
equations, In the second case, we assume a form for i'j:m and do a spherical
harmonic analysis of the anisotropies, For simplicity, we may do such
problems with a uniform space-dependence,

We can investigate the transport coefficients in the near-equilibrium
region. In particular, we would like to determine the resistivity in the
transition region between weak and strong magnetic fields, Isolated
investigations of these various phenomens may allow significant improve-
ment in our MHD treatment of the theta-pinch,
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