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Abstract

The interpretation of the nuclear reaction excitation function by
statistical methods has been reviewed and some new results regarding
errors and corrections have been presented. Special emphasis is placed
on the effects of finite sample size on the amount of direct reaction
cross section extracted. Also treated are the effects of counting sta-
tisties, generalized frequency distribution functions, and the effect of

finite sample size on frequency distribution functions.
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I. Introduction

At very low excitation energy the nuclear reaction cross section
displays resonances as a function of energy. These resonances are gen-
erally well spaced, and their properties can be studied individually by
their angular characteristics. As the bombarding energy (and hence the
excitation energy) is increased, D, the average spacing of these reso-
nances, is found to decrease while TO, the average width, increases. As
a consequence the resonances are soon overlapping. We wish to consider
here the case in which the overlapping is ex‘l;rem.e,'r i.e., Tb/D >> 1.

Since individual resonances are no longer discernible in this region
we must ask questions about the behavior of the cross section as a whole.
This requires the use of a new technique, usually referred to as fluctu-
ation theory or the study of Ericson fluctuations.g’3 This technique
results from the merging of the basic concepts of reaction theory with
those of statistics.

In section II the results needed from reaction theory are derived,

while section III covers the statistical approach to the subject. 1In

TMoldauerl has investigated the consequences of the violation of this
condition.



all of the following sections both concepts are used as needed.

Section IV covers the finite sample size corrections to the results
obtained. It is shown that these corrections are related to the Heisen-
berg uncertainﬁy principle. The corrections due to counting statistics
are given in section V.

Parts of section IIi are generalized in section VI so that frequency
distribution functions, as well as the amount of direct reaction, may be
calculated at any angle.

The question of resolution is dealt with in section VII, and it is
shown how widths much smaller then the inherent resolution of the exper-

iment can be measured.

II. Basic Concepts fram Reaction Theory

As is commonly done, we shall divide reaction mechanisms into two
classes: direct and compound. By these terms we mean short time reac-
tions and long time reactions, respectively. The amplitude may then be
written

A=Ag* A
where AS is the short time reaction amplitude and AL is the long time

reaction amplitude. Since the energy average of the cross section* is

m = IAS|2 + IALI2 + 2 Re(AGA ) (1

.1-
Note that 7 instead of O is being used to denote differential cross
section to avoid confusion with the notation of statistics.



and we know that the short time amplitude is very nearly constant in
energy we may imply that Ki = 0. The argument goes as follows. Large
energy intervals correspond to short time intervals for the wave packet
interacting with the nucleus, and thus the long and short modes cannot
interfere and their amplitudes add incoherently. Thus, the third term
in eq. 1 is zero.

Let us consider for the moment only AL. The form usually taken for
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The approximation may be made that Px is independent of X(Px = PO). The

ax's are teken to be statistically independent complex numbers T with zero
meen. From these two basic assumptions we may compute most of the quan-
tities of interest. For example, we may compute the average cross section

over an energy interval S as follows.
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Trhis is meant to imply that Im(ax) is independent of Re(ax) as well as

that a, is independent of a
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Since the second term has zero average,we will drop it,but it may have

large fluctuations. The value of the first term is

while a rough estimate of the r.m.s. fluctuation of the second term is

2ﬂ,a|2 2rO S
CIgN D D °

Thus, the first term should be expected to give a good estimate of the
’21‘

average cross section only if —§9-<< l. Tt is this condition that is
most often violated, and the effects of this violation form the subject
matter of section IV. Since we have set up a statistical model for the
reaction amplitude in the region S, we might consider the same model
extended to an infinite energy range although, of course, the actual
nucleus does not have this property. The relation between the infinite
energy average and the finite average is treated in section IV.

We will adopt the notational convenience that a bar denotes the

10




average over an infinite energy region (e.g., ﬁ is the model expectation
of the average cross section) while brackets denote the experimental
average over some (implied) energy interval S (e.g., (n) is the measured
average Cross section). We may combine the processes by breeking up the
infinite region into pieces of size S and then averaging some function

of the local average (e.g., (n)°). The process implied by the bar is

an ensemble average.

With this notation, then, we may write

~ 2ﬂ|a|2
"1=—IOT . (3

With the same assumptions we may also obtain the value of the autocorre-

lation function defined below,

5
1 1+ &

H

-2
Re) = TEMET -3-_ 1 h<f$-> : (b
0

If we assume that the excitation function was measured in very small

energy steps,then the experimental average is expressed by
S

w =3[ ama (s
0

and since the ensemble average operation is linear

my=a . (6
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We may also compute ('rl)2 by the following means”

2

<T>2' n(E)dE

"
=

S s
=-1§/ d_E/ dE' MEIN(ET)
59 0
S S-E

=-1§/ dE/dx (E)n(E + x)
S

0 -E

= f ar f ax /1 + (from eq. 4)
S 0

I
S
o
+
S
o+
[u)
B
[
]
o
2
P
'—l
+
M
)
j -
=N
H
o’_’i“’
S—

From this we may see

—_— 2
Var ((n)) = (n)° - @Y

-1

~ 2

=n2 tan T__]__Log (1+T2)
T T2
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This gives us an estimate of the error we may be msking in a measurement
of the average cross section.

All of the preceding applies to all spinless particles and nuclei.
If we have a particle of spin s incident upon a target of spin I leading
to two final particles with spins I' and s', then Ericson2 has shown that,
in certain limits, the autocorrelation function, as defined by eq. &4,

becomes

-2
=NWENE+e) -n _1 (€
R(e) = = Wh(%) : (8

where

y = (28 + 1)(21 + 1)é2s' +u(er' +1) (9

One of the limits needed was that N be large, so we may expect this to be
only asymptotically correct. The meaning of this result will become
clear in the next section.

Up to this point we have been treating only the long time component.
If we have both modes contributing we may compute the autocorrelation

function as follows.

A=Ag+ A,
| *
1 =ng*+ g+ 2Re(AA)
2_ 2,2 %, 12 * *
17 =ag *np + 2ngny + (2Re AGAL)T + hng Re(AA) + bn. Re(ALAl),

13



2 _ 2. 2 - T3
1 =g toagtoengg + (2 ReASAl)

2 - t
As we have already noted, 'qi = 2an' For the last term we have:

(2 ReA;'AL)2 4 (A;A£ + AéAi)g

2 2

2~ 2
+< 4+ S - + - ¥ -
h( MTAGA 2 g AL>

Since
2 T2
AE = A and +A£ o ¥ | (10
* 2 —
(2 ReagA )™ = 2050
so that
2 —2
1 =g ten * kg
Since

TTne notation (+) and+( -) is used for real and imaginary parts of a
quantity (e.g,.,.t\S = Ag + 1As).

¥ : 2 2 - .

These follow from the assumption that ax = ax and aha)L = 0 which were
partially implied above.

1k




if we define

N5
y=-—= -
|
we find
2 - 72
So the general case may be written as
2
(1 -57) €
R(e) = —_— h(r> . (12

Thus, it is possible to determine the long time lifetime @—)and the
relative amounts of short and long time reaction cross sections(.)

One might note here that it would seem that higher moments of 7
might be useful. The third and fourth moments can be obtained by the
same methods used in this section, but, with much less trouble, the gen-
eral formula will be developed in the next section.

It might also be noted that PO is a natural unit of energy so the
convention that all energies are measured in unijbs of PO could well be

adopted. Such quantities will be referred to as specific (e.g., specific

resolution) but will be denoted by the same symbol.

15



III. The Statistical Approach

Since at any given energy the quantity Ai is made up of a large num-
ber of independent additive contributions (TO/D >> 1), we are led immedi-
ately to the central limit theorem of statistiecs. Let us state and prove

this theorem.

Central Limit Theorem: Let {xi} be a set of m numbers drawn from a
population with some distribution characterized by the distribution
function f(x). Further, let all of the moments of x be finite. Now con-

sider the quantity z defined by

3 -

m
zZ =
i=1

B~

Then
i) z=%x ,

i1) 0§ = Var (z) = 22 . Z°= IlHVar (x)

jii) In the limit of large m, z is normally distributed,

i.e., the distribution function of z, g(z), is given

by

(z-7)%/20®
glz) = z

SRCI

independent of what form is teken for f£(z).

1
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Proof:

m
i) z=1 X
m i
i=1 i=1
=x

. m
: 7 1
ii) z —_EZXixj
m- &~
1,J
m m
1 2,1 .
-] 1~ 2 X3%5
m- 4 m-
i=1 if]
=2+ L (@ - 1) %
m
2 =2
=;2+x -
m
?-—2=;'—1Var(x)

iii) To prove this part let us define the characteristic function

as the Fourier transform of a distribution function.

o(t) = f e £(x) ax
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Note

Now let

<« 0 [ o] m J
29 - fdxl jdxe dx %Z X f(xl)f(xe)---f(xm)
-00 -00 -0 k=1
i m
; dJ o 00 o ﬁlfi':lxkt
= (-1) ") fdxl fdx2 fdxm e f(xl)f(xz)“'f(xm)
-00 =00 =00 t:o
J m
-3 [
= (-1) at [Cp(m)] ’
t=0

SO
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For large m

©  ixt
o8 [ ™ rwn
.—m
_l+};t£-t72xz-...
2m

if all of the moments of x are finite, so that

_ o5 m m 1og(l_ + };Fl-li -
_ itx tx _
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If we now note that
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(z-')2 tz 2
- _2 (o]

00 ~ Z
20 17 -
feizt 1 . | . 5 ,
-00

_ (z-2)°
2
20
S(Z)-'—l—e z [1+®<—]=§>] asm =
\’2ﬂ o) m
z Q. E. D.

Note that i) and i1i) hold independent of the value of m, while iii)
is valid for large m only.

Since the form of eq. 2 is valid for each amplitude corresponding
to a different M substate, we may say that for each set of spin projections
(sz » I, sz' s Iz') there is an amplitude z, (where i denotes a collection
of four numbers chosen from the set {sz, Iz, sz', Iz'}) such that the cross

section is given by

(2s+1)(21+1)(2s '+1) (21 '+1)

N D gl : (14

=1

The Z;s in accordance with eq. 10 and the ideas Jjust presented, will be

taken to have the following properties

20
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=
=]

ot g

i) z; and z£ are normally distributed.

¢

Since changing the signs of all spin projections does not change the
cross section,not all contributions to the sum (14) are independent. By

counting, the number of independent contributions may be seen to be

t t
N = (2s + 1)(21 + 1)(252 * 1)(21 *r1+1 (all spins integral) (15a

g o (s +1)(o1 + 1)é2S' +1)(er' + 1) (otherwise) . (15b

Let us rewrite (1l4) so that it contains only independent real num-

bers. We find thatf

2N

n=zy§A (16

i=1

TFor the case of all spins integral the equation presented is not quite

correct since the terms corresponding to s, = Iz = sé = Ié = 0 should

have a factor of 1/2 multiplying them. This could be absorbed into the
mean and variance of this term, however.

21



+
where the y, are simply the z, relabeled and multiplied by /2. Consider
now the case of “; = u£ = 0 and 0? = 02. This means we have only long
time reactions, and the average cross section through each of the M sub-

states is the same. This yields a X? distribution for 'q/c2 with 2N

degrees of freedom.

) =
f((%:m (c> e (17

or, since H = 2N02,

-na
N-1 TN

f(n)=—lN-—— (-’L> e . (18

2N - )¢ \q
which is a gamma distribution.
From the distribution function we may obtain a formula for all of

the moments of 1

m_ 1 (N-1+m)! -—m
TEETWwoDr o1 (19

For example

2 _NN+1) =2
"ol

]
3
+
|
3|

so that
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as in eq. 8.

IV. Sample Size Effects

Now let us suppose that an excitation function has been measured over
an energy span S and an autocorrelation function analysis gives an exper-
imental determination of Tb, T'. We would now like to know the number of
independent points that have been measured. We may proceed 5y assuming
that n independent points have been measured and solve for n by requiring
that the results of sections II and III be consistent.

If only n points contain all of the information, we need use only

these points to compute the quantities of interest. For example

n
<">=r1TZ"1

i=1
From the Central Limit Theorem ii)

-2

Var (n) = Var (n) =L . (20

Combining (20) and (7) we have

™

n = ~ 5 (21
2T tan T - Log (1 + T°)

25




23

as T = o«
[

Similar considerations using Var (nn'), where 1 and n' are two inde-

pendent cross sections, yield

2
n = ] - 3T o] - 5T . (22
57 tan - T - 2 Log (1 + T°) (6-:\:)

Similarly

Var ((n)z) yields n = %- (23
and

Var ((n2>) yields n - _Egl_— . (24

(157)

The n's resulting from eq. (22) and eq. (21) are plotted in Figure 1
along with T/x. Since the average cross section appears in every
expression,the result expressed by eq. (21) would seem to be the best
estimate of n to use. It may be observed from Figure 1 that in the

region considered a good approximation to eq. (21) is

+1 . (25

We now wish to consider the effect of a finite n on the value and
uncertainty of measured quantities.

A. Sample Size Effects on R(0)

The effect of a finite sample size on R(0) has been investigated by

24




Monte Carlo procedures. The quantity R(0) was computed many (= 5,000)

times from the expressions

oo - ()°

R(0) =
(n)
(26
2 = =
@iyt . W=ty
i=1

i=1

where the n; were chosen from a X2 distribution with 2N degrees of free-
dom. In this fashion NR(0) and Var (NR(O)) were obtained. NR(O) is
plotted for N = 1, 2, 3 in Figures 2, 3, and 4. The solid curves are
reasonable fits to order 1/n2. Tt may be noted that since R(0) = O for
n =1 and N(O) = 1 as n = «» there is only one free parameter in the fit.

All three cases were found to be fit by

W(o) = BV bW (27

ln

In Figures 5, 6, and 7 the variances are plotted for N = 1, 2, and
3. No such formula as appears in eq. (27) seems to be available, but it
is not as necessary in this case since this is an estimate of the error
involved and is slowly changing with N. The approximate values given by
Hall6 are plotted on the same graphs.

If we allow the possibility of some direct reaction we have in gen-

eral

25




Yy = fl(N,n,R)
and

2

op = fz(N,n,R)

These functions have been computed numerically for N = 1 and are plotted
in Figures 8 - 23. Figures 8 - 15 show y as a function of R for various
values of n. It may be noted that the interaction between y and n is

small, i.e., the curve may be reasonably represented by

1/2

_ [} _ han
y (m - 1)(%n -3)

which leads one to believe that the formula

1/2

;- [1 4nNR ] (28

" -1)(n - % +N)

may be a good approximation, at least for N = 1, 2, and 3.

The quantity 0; is plotted as function of R in Figures 16 - 23.
Thus, one may obtain the uncertainty in R, and by applying this to the
abscissa of the appropriate figure of y vs R obtain the error in y
without recourse to the propagation of error formula. Since we have
previously noted that 02

R
able to use NR(O) for the abscissa of both curves.

is a slowly varying function of N it is reason-

We may note that the results show that there is an apparent increase

of fast component because of a finite energy range. This is actually

26



related to the uncertainty principle, as we may see below.
If we prepare the nucleus in a long-lived state (or states) with

width To,the fraction which will have decayed after time t is

Tt
0
TR rbt

f=1-e¢e %T
Referring to the arguments given in section II, we consider anything as
fast which is coherent with the "instantaneous" component. This last is
occurring during the time it takes for the incident particle to cross

the nucleus

It is this instantaneous component that we usually associate with direct
processes and the part that decays with width PO that we associate with
compound processes. We see that there is a mixing of a little compound
process into the "fast." This fraction is TbKR/E wvhich usually is so
small as to be negligible. However, this assumes perfect time definition
at the nucleus. If there is some finite energy average (AE) involved
then there will be an uncertainty in the time of arrival of the bombard-
ing particle during which the decaying state can interfere with the
instantaneous process so that the fraction of compound coherent with
direct is Tb/AE.

Because of the nature of the extraction of the fast fraction it is

27



not clear what the equivalent energy averaging interval is. Note that
the ideas just presented give only an upper limit for this fraction since
we compute only the amount coherent with the fast mode, and hence the
part with non-zero mean. This coherent part is not required to be con-
stant.

B. Sample Size Effects on I

If one investigates the autocorrelation function for € >> TO it may
be observed that there are fluctuations which depend on & finite sample
for their existence. A calculation shows that the period of these fluc-
tuations is appreciably greater than T (~2I'). It is natural to assume
that these are the same fluctuations which cause the uncertainty at € = O.

With this reasoning we will write (for y = 0)

NR(€) = —=— + B(e) . (29
1+ ?E

0

Since B(e) is not as rapidly varying as the other term we will consider it

to be independent of €. Because
NR(0) = 1 + B(0)

we know the mean and variance of B(0). If we determine the value of T

by looking at the autocorrelation function near € = O we may say

d | NR(€) - lI-r12 __ 1
d? N-m)- rg?n-l)(hn-l++N) 12-

€=0

28




which leads to

r=roJ(n‘l)(l‘n‘l‘+N)

hnz

for the expected value of I' with a finite sample.

1"2=1"2(1+B)

0

the error in I" is given by

(30

Also since

(31

C. The Effect of Finite Sample Size on Frequency Distribution Functions

The number of entries in the sample taken has an effect on the form

of the distribution function one should expect to measure. This is owing

to the fact that since an absolute scale is difficult to establish for

the cross section, the measured values must be normalized to have mean

value one before they can be compared with the theoretical prediction.

To see how this can affect the form of the function, consider the

extreme case of a sample size of 1. This means we select a single

number, z, normelize it so that it has value 1, and then plot it. The

result is that we see a distribution function which is

£(z) = 8(z - 1)

regardless of the initial distribution.

29



If we draw a sample of size 2 we may see by similar arguments that
the resulting distribution will always be symmetric about 1.

The general problem would seem to be a difficult one. However, it
is easy enough to prepare a machine code which will transform any arbi-
trary distribution function to its finite sample size analogue by means
of Monte Carlo techniqués. The difficulty with this method is the com-
puting time required for sufficient accuracy.

For the distribution function given by eq. 18 the general transfor-

metion may be made analytically. The result is

£(z) =

(Nn - 1)! N-1 ( z
nN(N -1)YNn - N -1)!

where z = 1/(). This equation is derived in the Appendix.

V. The Effect of Counting Statistiecs

Since, in practice, the cross sections are measured by a counting
process and there are random fluctuations associated with this process,
one might worry that these fluctuations would strongly affect the
apparent values obtained. Let us consider this effect on the quantities

of interest. We may write, in general, for counting data

= + ,ln
n ho o Z (32
where N is the number of counts actually obtained, ho is the true number

of counts corresponding to the actual cross section, and z is a random

30



variable with mean zero and variance 1. If there is the same amount of
integrated beam on the target for each measurement, there is a single

constant, @, which relates the cross section to the number of counts.

~q=ah=ano+a\|ho z
1/2 1/2
=no+a/ no/z

where 1 is the true cross section. We may now calculate R(0) to be

5.~ =2
' 232 Mot My - Mg

_n_-n _
R(0) = —F—= >
1 L
_ a _ 1 A
= RO(O) + %— = RO(O) + = . (33a
0

R is the average number of counts taken in the set of data being analyzed.
If a total of m data points are used in the analysis, the variance of

R(0) due to the present cause is

1
0; R — (33b
4 mh
Both of the results above are valid only in the limit of large m.

For R(e) (€ > 0) there is no correction {(m = =) since no cross

section is multiplied by itself. It we compute [ by comparison with a

Lorentzian form, we have

31




R(e) _ Ro(O) 1

R(OY ~ 2 - 2
<1 + %)(RO(O) +-%-> 1+ Ige— :

rR(0) - =
= h .
‘ 2
R(O)<l + %)

This leads to a correction given by

r.g -2 Nr(0) > (3k

nr(o) -1 -
€

which depends on the value of € chosen for the comparison.

VI. Generalized Frequency Distributions

In the general case the restriction to all equal variances for the

long time reaction to different M substates is rather poor. ILet us now

investigate the consequences of relaxing the assumption.
If we write as before
N
_ 2
n yi }
=1

assume

32



_ - _ 1
O‘i = ci = é—a— > (35
i
and define
+2 _2 ¢
xi = lJ-i + lJ-i ) (3

then the frequency distribution function is given by

txiai

N - —

a, +t
f(q) = st I | o, (ozi rg)le 1 . (37
i=1

The quantity in the braces is the moment generating function with argu-

ment -t so that

txf’i
N e
m ¢, -t —_
d_ I |ai (@, -t)Tel =9 . (38
dtm 1
i=1

Note that 1ﬁzi is the average long time cross section to the ith
M substate and as such may be calculated by some sort of Hauser-Feshbach
expression (modified to correct for the interference with direct reaction).
xi is the short time reaction cross section to the itR M substate and
might be calculated by means of a direct reaction calculation (again
possibly modified).

Equation 37 cannot be inverted for the general case, but there are

some interesting special cases. For only one M substate (N = 1)

33



£(n) = e 1 2ram (39

Since this is the inverse Laplace transform of one factor in the braces

of eq. 37,any given case may be built up by convolution (numerically, if

necessary) .

For xi = 0,eq. 37 can be solved in general to give

N 'a]_"'l
fn) = H"‘i Z i e rn ey
i=1 cyclie 2 1 03 1 aN t
permu-
tations

N
If alla, = and we define X = ) Xy then eq. 37 gives
i=1

N-1
2

£(n) = a(g) o) 1 (/AR (41

This is a generalization of eq. 39.

We may now use eq. 38 to investigate the behavior of R(O) in this

more general case. For the first two moments we obtain

N
= - 2y
7. Z (“1 " xi> (42
i=1
n2=52+2<-1§+2&]:_> . (43
1=1 \%1 L

3h




Now define

1 Xy :
and
X
y= -
n

With these definitions we may write

R(0)

N N
(1-92) Beai-y) ) By,
i=1 i=1

(1 -y)2a+2y(l -yb . (45

The quantity 1/a is defined as Neff’ the effective number of M sub-
states. To see this significance we note that the relative cross section
for a reaction proceeding through a given M substate is determined mostly
by angular momentum considerations and only in second order by the
reaction mechanism. If this is true we may set é = b (since Bi = Yi)

and thus

R(0) = a(l - yg)



If calculations of a and b can be made, more exact values of y mey be

obtained from the data. Tne first-order correction is given by
y'=y+(1-y)a (46
where A = 2 - 1, y is the value extracted by use of Neff’ and y' is the
corrected value of y.
VII. The Effect of Resolution

Let us assume the measurement has been made with a resolution
described by a square resolution function with full width p. In this

case the cross section measured will be 'ﬁ‘(E) instead of the true value

1(E) where
E+5
n(E) = %j 7(E')aE' . (47
P
E-3

Using PO as the energy unit we have

E+g E+€+Z—
;(E)?],(E +¢) = —]:-2—'/ dE'f ae" n(E)q(EM
) p
2

p
E+e -3
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p
' —
E-E'+e+3

p
' —
E-EB'+e-3

©

' —
E-E +€+2

—2
~2 aF J/. dx 5
P 1+ x

P
LIS - —
E -E € -5

[
=
+
ca]
]
Mo

e
E+ 3

~2 _
2+1§f dE'I:tan-l(E-E'+€+g)-tanl(E-E'+e-%)]
P
E

1]
31

-2
2

-2
32 + ’#{(e + ) tan"I(e + p) - %Log [1 + (e + p)2]

+ (e - P) tanN(e - p) - %Log [1 + (e + P)2]

- 2¢ tan"t ¢ + Log (1 + ez)}

and

R(e) = 51-5 {(e + p) tan"Y(e + P) + (e - P) tan-1(§ - P)

-%Log[l+(e+P)2]-%Log [1+(e_p)2] (48

- 2¢ tan-l € + Log (1 + 52)}

37




Tor € = O we have

-1 2
R(o) - 2ptan p-log (1+0) (49
p

Figure 24 shows R(O) as a function of p. Since this curve is a

function only of the specific resolution, any units may be used as long

as the same units are used for the resolution and width.

If T is measured by the slope of the autocorrelation function at the
origin (e << 1)

-1 2
r2=[2" ten” p - Tog (1+ P )] (Le )12 . (50
P

For arbitrary € eq. 48 must be solved numerically to obtain the correction

function for T.

For e/p << 1 (but no restriction on the absolute magnitude of €) we
obtain

o

R(e) = 5= -i(el - 12> (51
E'+ 1 ) §.+ 1 1+9p
and, further, if € >> x
x €
= = - = . 2
R(e) = ( p> (5

In absolute units this becomes

38



T
") - 52 (1 - £) (53

so that measurements of very small widths may bé mede along with a simul-

taneous experimental determination of the resolution, i.e.,

_ €
Rer-L-5 - (55

One may note that R(0) as low as 0.03 might be easily measured so
that widths of the order of 0.0l p could be deduced.

A1l of the above is for N = 1. If N > 1, simply replace
R(0) - NR(O)

to obtain the more general result.

VIII. Appendix: Some Analytic Results

A. Finite Sample Transformation of a Gamma Distribution

Suppose a sample of size n, (xl, X, ,"'xn), is drawn from a popula-

tion with a gamms distribution of mean 1. Thus,

£(x) = (_ﬁ__l‘_INT -1 -Nx
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We wish to inquire as to the distribution of z where

%

n

DY
n i

i=1

since this is the process carried out in normalizing the experimental
cross sections to mean 1. By the same technique used in proving the
Central Limit Theorem but using the lLaplace transform in place of the

Fourier transform, we may write

.s:(f(z)) - [ﬁnj.)_:_]_ﬂfmdxlfmdxz...fmdxn oxp | - let

0] 0 0] x
i
i=1
(a1
n
xN'l xN-l xN-l e =
1 2 n
We now meke the transformation of variables
Xy
z = n > y2=x2, y3=x3, ” yn=xn 3
>
i
i=1
so that
n
=D v
X, = i=2 X X x =
l n -z 3 2 y2, 3 y3, 3 n yn




The Jacobian of this transformation is given by

n
n ¥y
J= 2 . (A2
(n - z)
With this change of wvariable, eq. Al becomes
| n n e Zt 00 o
.s:(f(z)) - —-———-—-—[(N : 1):]’“ f iz BE—p f dx2f ax_
0 0] 0
: (A3

From A5 it is easy to see that

f(z) =0 for z >n

and for 0<z <n

- -1
| (A

f(z) = '
(-0 @ - 2™
n
N
® n \¥ -1-512;2 1
fdxfdx Zx xN ---x-le n
2 n i
0 0 i=2

Thus, we are led to consider integrals of the following type.

L1




1 n)*N-1  n +N-1 'agiixi
= EE dax dx -+ ] dx x seex e
n.!n 'n teeen ! ¢/- 1 yf. 2 m 1l m
n Nn.ec°Nn l 2n3 m O O
1’72 m

3o

) ! (nl + N - 1)!(n2 + N - 1)!---(nm + N - 1)
- nl!nz!n3!---nm! n+tN n.+tN n_+N nm+N

n;,0,° 0, a 1 a 2 a 3 cee 8
m
Z:nd=N
J=1
1 N!(nl + N - l)!(n2 + N - 1)!---(nm + N - 1)!?
aN(m'*-l) L n1! ne! n3! nm!
1’72 m

B

Since the sum is only a constant we may drop it and find the normslization

at the end. This gives

zl\T-l

f(Z) “m ( -:T)

L2




This is easily integrated to obtain the normalization. The final result

is

£(z) =

(Nn - 1)! N1 ( z
nN(n -1)!{(Nn - N - 1)!

B. Analytic Determination of NR for n = 2

Suppose we measure two values, x and y, which come from a gamma dis-

tribution (eq. 18). We may express R(0) as

%‘-(x2+y2) -)1;(x+y)2

R )]_;' (x + y)2
(=Y s
Thus, we have
) o X-y 2
x<f(R)) - ____NZ_N____ [ dx] ay e'(i'*:i) txn-lyN-l S N(xty) |
[(N - 1)!]2 ! 4

Now mske the change of variables

(X -y -
p—(x+y> ’ ety o
then
1+
"=z(1-§) ’ y=z
and
II_ 2z
J —_ﬂ [ ]
(1 -p)

L3




Thus, we have

( )) 2 N fl Pt f aw-l(
L£if(R)) = —m—m——5 dp dz z
( [-mP 4 a-ef
_ 2Ny - 1): f P > (5 p)N'l (1 -
[(N-l) (2N) (1-p)2\-P
1 2
—[ 2(21\1)! 21\I‘/‘(l-p) e®* ap
(N - 1) A
1 N-1 2
_ 2 N(eN)! f (1-22)  eP*tap
(N)™ 2 A
1
N (2N)! N-1 e RP
= (L - R) —dr ,
(N!) E L A /R
from which it is clear that
N-1
f(R) N (2N)! (1 - R) O<R<l
(n1)2 2N /R
=0 R>1lorR<O

Meanwhile we get from eq. AT

L

(AT

(A8



1
oN° (2n)!

NR=——T-ﬁfP(1-P) dp . (A9
(n)™ 27

We may then compare these results with eq. 27 for the case of n = 2.
Note that this is a very stringent test of eq. 27 since it is exact at

n=1orn-=®and was fit to the calculations at n = 4. It is expected

to be the greatest in error around n = 2.

N NR ——3—1‘ I N

1 0.3333 0.3125
2 0.4000 0.3750
3 0.4285 0.4375
4 0. bl 0.5000

We may see that eq. 27 gives a good representation to within about 10%

even for the case of n = 2.
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Figure Captions

Figure 1. The effective number of independent observations (n) as a
function of the energy range covered (T). The lower (solid) curve
would be suitable for autocorrelation functions, while the upper
curve should be used in the comparison of two independent cross
sections. The dotted curve (T/x) is given for comparison. Energy

1s measured in units of PO.

Figures 2, 3, and 4. The expected value of R(0) as a function of the
sample size (n). The generated input data were characterized by a

X2 distribution with 2 degrees of freedom.

Figures 5, 6, and 7. The variance of R(0) as a function of sample size.
The generated input data were characterized by a x2 distribution with

2N degrees of freedom.

Figures 8 - 15. The fraction of direct reaction as a function of R(0)
forn=2, 4, 6, 8, 10, 12, 15 and 20. N = 1 for all of these

curves.

Figures 16 - 23. The variance of R(0O) plotted as a function of R(0) for

n=2, 4, 6, 8, 10, 12, 15, and 20. N = 1 for all of these curves.

Figure 2k. R(0) as a function of resolution for several values of PO.
Arbitrary units may be used for the resolution as long as TO is

measured in the same units.
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