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Abstract

The interpretation of the nuclear reaction excitation function by

statistical methods has been reviewed and some new results regarding

errors and corrections have been presented. Special emphasis is placed

on the effects of finite sample size on the amount of direct reaction

cross section extracted. Also treated are the effects of counting sta-

tistics, generalized frequency distribution functions, and the effect of

finite sample size on frequency distribution functions.
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1. Introduction

At very low excitation energy the nuclear reaction cross section

displays resonances as a function of energy. These resonances are gen-

erally well spaced, and their properties can be studied individuallyby

their angular characteristics. As the bcmibardingenergy (and hence the

excitation energy) is increased, D, the average spacing of these reso-

nances, is found to decrease while ~~, the average width, increases. As

a consequence the resonances are soon overlapping. We wish to consider

here the case in which the overlapping is extre.me,ti.e., rO/D >>1.

Since individual resonances are no longer discernible in this region

we must ask questions about the behavior of the cross section as a whole.

This requires the use of a new technique, usually referred to as fluctu-

2,3
ation theory or the study of Ericson fluctuations. This technique

results from the merging of the basic

those of statistics.

In section II the results needed

concepts of reaction

from reaction theory

theo~with

are derived,

while section 111 covers the statistical approach to the subject. In

*1401dauer1has investigatedthe consequences of the violation of this
condition.
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all of the following sections both concepts are used as needed.

Section IV covers the finite sample size corrections to the results

obtained. It is shown that these corrections are related to the Heisen-

berg uncertainty principle. The corrections

are given in section V.

Parts of section III are generalized in

due to counting statistics

section VI so that frequency

distribution functions, as well as

calculated at any angle.

The question of resolution is

shown hcm widths much smaller than

iment cm be measured.

II. Basic Concepts

As is comnonly done, we shall.

the amount of direct reaction, may be

dealt with in section VII, and it M

the inherent resolution of the exper-

from Reaction Theory

divide reaction mechanisms into two

classes: direct and compound. By these terms

tions and long the reactions, respectively.

written

A=AS+~

where AS is the short time reaction amplitude

reaction amplitude. Since the energy average

‘1 I +2Re~7

we mean short time reac-

!l!heamplitude may then be

and ~ is the long time

f isof the cross section

(1

4.

‘Notethat q instead of 0 is being used to denote differential cross
section to avoid confusion with the notation of statistics.

8
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and we know that the short time amplitude is very nearly constant in

energy we may imply that -~=O. !!?heargume ntgoesasfollws. Large

energy intervals correspond to short the intervals for the wave packet

interactingwith the nucleus, and thus the long and short modes cannot

“interfereand their amplitudes add incoherently. Thus, the third term

in eq. 1 is zero.

Let us consider for the mxnent OnlY ~0 The formusuallY taken

The approximation may be made that r~ is independent of A(rh - ro).

a~
‘s are taken to be statistically independent complex nuuiberstwith

for

(2

The

zero

mean. From these two basic assumptions we may compute most of the quan-

tities of interest. For example, we may compute the average cross section

over an energy interval S as follows.

‘This is meant to imply

that ah is independent

(s >> ro)

that Im(ah) is independent of Re(aX) as well as

of a
x’“

9



Since

large

while

(*E- EX-iI’O
ahap p )

(EV - EX)2 + $

the second term has zero average,we will drop i;,but it may have

fluctuations. The value of the first term is

21r~
~’

a rough estimate of the r.m.s. fluctuation of the second term is

%iq” ●

Thus, the first term should be e ected to give a good estimate

r

21-0
average cross section only if ~<< 1. It is this condition

of the

that is

most often violate& and the effects of this violation form the subject

matter of section IV. Since we have set up a statistical model for the

reaction amplitude in the region awe might consider the same model

extended to an infinite energy range although, of course, the actual

nucleus does not have this property. The relation between the infinite

energy average and the finite average is treated in section IV.

We will adopt the notational convenience that a bar denotes the

.

,
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average over an infinite energy region (e.g., ~ is the model expectation

of the average cross section) while brackets denote the experimental

average over some (implied)

average cross section). We

infinite region into pieces

of

an

the local average (e.g.,

ensenibleaverage.

energy interval S (e.g., (q) is the measured

may combine the processes by breaking up the

of size S and then averaging some function

(V)2)● The Process @lied by the bar is

With this notatio~ then, we may write

~= 2J7
-7’J7-” (3

With the same assumptions we may also obtain the value of the autocorre-

lation function defined below,

If we assume

energy steps,then

~

that the excitation function was measured

the experimental average is expressed by

[

s

q(E)dE ,

‘o

and since the ensemble average operation is linear

~=ij .

(4

in very small

(6

11
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We may also compute (q)2 by the following means5

[f 1
2

z= ; q(E)dE

=${”/-’” ‘+-%() (from eq. 4)

o -E l+%

‘o

–2 ‘~’ tan-l T ‘2=q +

()

~~g(l+T2) T=+- .
T-

T2 0

From this we may see

fi2

[

-1
2 tan T=

T 1‘~ LOg(l+T2) .
T

I

(7
.
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This gives us an estimate of the error we may be making in a measurement

of the average cross section.

All of the preceding applies to all spinless particles and nuclei.

If we have a particle of spin s incident upon a target of spin I leading

to two final particles with spins I’ and s’,then Ericson2 has shown that,

in certain limits, the autocorrelation function, as defined by eq. 4,

becomes

where

R(e) =

N’
(2s + 1)(21 + 1)(2s’ + 1)(21’ + 1) .

One of the limits needed was

only asymptotically correct.

clear in the next section.

z

that N be large,so we may expect

The meaning of this result will

(8

(9

this to be

become

Up to this point we have been treating only the long time component.

If we have both modes contributingwe may compute the autocorrelation

function as follows.

A.A~+ %’

13



-z
As we have already noted,q. = 2~~. For the last termwe have:t

Since

‘2R’=*!?J2‘ 4

~

%

(2 Rei?&)2

so that

= a-@L ,

(10

Since

2.

I!Fne notation (+) and ( -) ig used for real and imaginary pafis of a
quantity (e.g.,AS = ~ + iAs).

$ ~T—
These follow from the assumption that ai ~ and a+a- ==a O which were
partially implied above. ?&A

.

.

,
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if we define

n~
y== ,

n

we find

T -2
n -n
—= R(0) =(l-y2) .
:2

So the general case may be written as

R(E) =

Thus, it is

relative amounts

(1 - y2)
N ()‘r; “

possible to determine the long time lifetime
k)
~ and
o

of short and long time reaction cross sections.

(11

(12

the

One might note here that it would seem that higher moments of ~

might be useful. The third and fourth moments can be obtained by the

same methods used in this section, but, witn much less trouble, the gen-

eral formula will be developed in the next section.

It might also be noted that I’.is a natural unit of energy so tne

convention that all energies are measured in units of r. could well be

adopted. Such quantities will be referred to as specific (e.g., specific

resolution) but will be denoted by the same symbol.

15



III ● The Statistical Approach
.

.
Since at any given energy the quantity ~ is made up of a large num-

ber of independent additive contributions (rO/D >> l),we are led immedi-

ately to the central Mnit theorem of statistics. Let us state and prove

this theorem.

Central Limit Theorem: Let {xi] be a set of m numbers drawn from a.—

population with some distribution characterizedby the distribution

function f(x). )?urther,letall of the moments of x be finite. Now con-

sider the quantity z defined by

m
1

z =-
m x ‘i “

i=l

Then

iii) In the limit of large m, z is normally distributed,

i.e., the distribution function of z, g(z), is given

by

-( z-z-)2/2t3:
g(Z) =-..-Ler [ 01

l++
at Oz m

(13

independent of what form is taken for f(z)..— —— —— —
,

16



Proof:

i)

ii)

~

iii) To

as

,=:g.i=$~,
i=l i=l

=;

m

z

~=~ ~
m2 is

i,j

m m

E
?

Tl—
=$ ‘i +-# ‘ixj

i=l ij

.~~+ 1
~ (m)(m - 1) =2m

T.;2+X -Z2
m

- ;2
= ~Var (x)

prove this part let us define the characteristic function

the Fourier transform of a distribution function.

co

Jeix-tq(t) = f(x) d.

-.-

17



Note

~’(’)lt=o=ipl’~’(x)~=@●

-w

NOW let

m

VJm(t) =
f

~izt
g(z)dz

-m

.

ImtJiJzj=
ii: “

J=O

But we may write the moments of z in a different -er

=(-i) J&qlm

[01 I~tj m Y

t=0

so

18



For large m

+

ixt
iii-

e f(x)dx

● 0,

if all of the moments of x are finite, so that

( itz
t2-7

(

%27? m

)

mlogl+— -
~

)

+ .0.
m

qm(t) = 1 + g - .~. +.. .=e
a

or

%2.2

qm(t) =e

‘t’-+ F+($)]asm+rn.
If we nuw note that

19



(Z-Z)2

d )
~2=2

w -~
eizt le

itz - +
z

dz=e 9

c
2Yf(32-w

we may conclude

(Z-E)2

Note that i) and ii) hold independent of the value of m, while iii)

is valid for large m only.

Since the form of eq. 2

to a different M substate,we

(SzYIZS s;, I;) there is an

is valid for

may say that

amplitude z
i

each amplitude corresponding

for each set of spin projections

(where i denotes a collection

of four numbers chosen from the set {s-, 1-, s;, I:]) such that the cross
,aiz &&

section is given by

(2s+1)(21+1)(2s’+1)(21‘+1)

v= ~ IZJ2 ●
(14

i=l

.

.

The Zij in accordance with eq. 10 and the ideas just presented, will be

taken to have the following properties

.

20
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Since

cross

i) Zi = z; + iz - ,
i Var (z;) = Var (z;) = (Y:

7=
= JUT

‘izj 1 J

ii) z: and z: are normally distributed.
J. J.

,

changing the signs of all spin projections does not change the

section,not all contributions to the sum (14) are independent. By

counting, the number of independent contributions may be seen to be

N=

N=

Let

(2S + 1)(2I + 1)(2s’ + 1)(21’ + 1) + 1 (all Sptis ~~e~ral) ~15a

2

(2s + 1)(21 + 1)(2s’ + 1)(21’ + 1)
2 (otherwise) .

us rewrite (14) so that it contains only independent real num-

bers. We find that+

i=l

7For the case of all

(16

spins integral the equation presented is not Quite

(15b

correct SiIICe the tW31LS correspondi~ to s . I ‘. S’ = 11 . 0 sh~~d

have a factor of 1/2 multiplying them. ‘I&s cofid b: abs~rbed into the
mean and variance of this term, however.

21



where the yi are simply

+
now the case of Vi = v;

time reactions, and the

the z: relabeled and multiplied by@. Consider

= O and 02 -a2. This means we have only long
1

average cross section through each of the M sub-

states i.sthe same. This yields a X2 distribution for q/02with 2N

degrees of freedom.

()
N-1 -+2

f+=~ (%) e 2cJ

CJ 2N(N - 1): 0

or,since ~ = 2NC72,

f(q) =
# Tp’ -N:

() e 9

~(N-l)! ~

(17

(18

which is a gamma distribution.

From the distribution functionwe may obtain a formula for all of

the moments of q

l(N- I+m)l-m

‘=7 ‘N-l); “ “

For example

~=N(N+l) ~2

N2

(19

so that

.

22



as in eq. 8.

Iv. Sample Size Effects

Now let us suppose that an excitation function has been measured over

an energy span ~ and an autocorrelation function analysis gives an exper-

imental determination of rO, r. We would now like to know the nuniberof

independentpoints that have been measued. We lMy proceed by ass.~iw

that n independent points have been measured and solve for n by requiring

that the results of sections II and III be consistent.

If only n points contain all of the infomnation,we need use only

these points to compute the quantities of interest. For example

n

E(To=: vi “

i=l

From the Central Limit Theorem ii)

-2
Var (q) =*, Var (q) = *

Combining (20) and (7) we have

●

n= .!.
-1 ~

2T tan - Log (1+T2)

23

(20

(21



T-t- as T+w.
X {

Similar considerations using Var (qT’), where ~ and q’ are two inde-

pendent cross sections, yield

3T2 T
n=

5T tan-l T -
(n

4502Log(li-T2) FIC

Similarly

v= ((q)2)

and

Var ((q2))

The n’s resulting

along with T/IT. Since

(22

T
yields n ~; (23

yields n + -$-- .

()

(24

m*

from eq. (22) and eq. (21) are plotted in Figure 1

the average cross section a~ears in every

expression,the result expressed by eq. (21) would seem to be the best

estimate of n to use. It maybe observed from Figure 1 that in the

region considered a good approximation to eq. (21) is

Tn. -+1.
Yt

(25

‘Jenow wish to consider the effect of a finite n on the value and

uncertainty of measured quantities.

A. Sample Size Effects on R(0)

The effect of a finite sample size on R(0) has been investigated by

24

.



Monte Carlo procedures. The quantity was canputed many (~ 5,000)

times from the expressions

‘(0) =Q+#f
(26

where the qi were chosen from a X2 distribution with 2N degrees of free-

dom. In this fashion N~(0) and Var (NR(0)) were obtained. ~-(0) is

plotted for N = 1, 2, 3 in Figures 2, 3, and 4. The solid curves are

reasonable fits to order l/n2. It may be

n = 1 andN(0) ~ 1 as n ~~there is only

All three cases were found to be fit by

(n-l) (k- J+N) .
NE(O) =

4n2

In Figures 5, 6, and 7 the variances

3. No such fozmmla as

is not as necessary in

involved and is slowly

6
Hall are plotted on

If we allow the

eral

noted that since R(0) s O for

one free parameter in the fit.

(27

are plotted for N = 1, 2, and

appears in eq. (27) seems to be available, but it

this case since this is an estimate of the error

Cbnging with N. The approximate values given by

the same graphs.

possibility of some direct reactionwe have in gen-

25



Y= fl(N,n,R)

and

2
aR =

f2(N,n,R) .

These functions have been computed numerically for N = 1 and are plotted

in Figures 8 - 23. Figures 8

values of n. It may be noted

small, i.e., the curve maybe

15 show y as a function of

that the interactionbetween

reasonably represented by

[

1/2
4n2R

Y= l-(n-l)(4n-3 J
which leads one to believe that the fo?mmla

may be a

The

[~

1/2
4n%

y.~-

n- l)(4n - 4+N J

R for various

yandnis

good approximation, at least for N = Is 2, and 3=

quantity o: is plotted as function of R in Figures 16 - 23.

(28

Thus, one may obtain the uncertainty in R, and by applying this to the

abscissa of the appropriate figure of y vs R obtain the error in Y

without recourse to tinepropagation of error formula. Since we have

previously noted that a: is a slowly var@ng function of N it is

able to use NR(0) for the abscissa of both cues=

We may note that the results show that there is an apparent

reason-

increase

of fast component because of a finite energy range. This is actually

26



related to the uncertainty principle,as we may see below.

If we prepare the nucleus in a long-lived state (or states) with

width I’ the fraction which will have decayed after time t is
(Y

rot
-— rt

f=l-e h s%.

Referring to the arguments given in section II, we consider anything as

fast which is coherent with the “instantaneous”component. This last is

occurring during the time it takes

the nucleus

It is this instantaneous component

processes and the part that decays

for the incident particle to cross

that we usually associate with direct

with width rO that we associate with

compound processes. We see that there is a mixing of a little compound

process into the “fast.” This fraction is rOKR/E which usually is so

small as to be negligible. However, this assumes perfect time definition

at the nucleus. If there is some finite energy average (AE) involved

then there will be an uncertainty in the time of arrival of the bombard-

ing particle during which the decaying state can interfere with the

instantaneousprocess so that the

direct is I’O/AE.

Because of the nature of the

fraction of compound coherent with

extraction of the fast fraction it is

27



not clear what the equivalent energy averaging interval is. Note that

the ideas just presented give only an upper limit for this fraction since

we compute omly the amount coherent with the fast mode, and hence the

part with non-zero mean. This coherent part is not required to be con-

stant.

B. Sample Size Effects on r

If one investigatesthe autocorrelation function for e >>rO it may

be observed that there are fluctuations which depend on a finite sample

for their existence. A calculation shows that the period of these fluc-

tuations is appreciably greater than I’(-~)= It iS natmal to assume

that these are the same fluctuations which cause the uncertainty at e = 0.

With this reasoningwe will write (for y = O)

NR(E) =
--%+ B(’) “

(29

1+>

Since B(E) is not as

to be independent of

~

rapidly varying as the other term we will consider it

E. Because

NR(0) = 1 + B(0)

we know the mean and variance of B(O)* If we determine the value of r

by looking at the autocorrelation function near e = O we may say

.

.

28



which leads to

for tne expected value of rwith a finite sample. Also since
1

the error in I’is given by

F**

()‘:=& ‘m “

(30

(31

c. The Effect of Finite Sample Size on Frequency Distribution Functions

The nuniberof entries in the sample taken has an effect on the form

of the distribution function one should expect to measure. This is owing

to the fact that since an absolute scale is difficult to establish for

the cross section, the measured values must be normalized to have mean

value one before they can be compared with the theoretical prediction.

To

extreme

number,

see how this can affect the form of the

case of a sample size of 1. This means

z, normalize it so that it has value 1,

function, consider the

we select a single

and then plot it. The

result is that we see a distribution function which is

f(z) =5(Z - 1)

regardless of the initial distribution.

29



If we draw a sample of size 2 we may

the resulting distribution will always be

The general problem would seem to be

see by similar arguments that

symmetric about 1.

a difficult one. However, it

is easy enough to prepare a

trary distribution function

of Monte Carlo techniques.

machine code which will transform any arbi-

to its finite sample size analogue by means

The difficulty with this method is the com-

puting time required for sufficient accuracy.

For the distribution function given by eq. 18 the general transfor-

mation may be made analytically. The result is

f(z) =

where z = ?l/(?O*

(Nn - 1)!
~ Nn-N-l

N-1 (1 - -).- 2
nN(N - l)!(Nn -N

This equation

v. The Effect

is

of

-l): \- n/

derived in the Appendix.

Counting Statistics

sections are measured by a countingSince, in practice, the cross

process and there are random fluctuations associated with this process,

one might worry that these fluctuations would strongly affect the

apparent values obtained. Let us consider this effect on the quantities

of interest. We may write, in general, for counting data

rh=hO+ hO

where h is the number of

z (32

counts actually obtatied, hO is the true number

.

of counts corresponding to the actual cross section, and z is a random

30



variable with mean

integratedbeam on

constant, c%,which

.qo+

zero and variance 1. If tlnereis the same amount of

the target for each measurement, tnere is a single

relates the cross section to the number of counts.

where TO is the true cross section. We may now calculate R(0) to be

T -2
-z. .7.+050 -5:

R(0) =q
:: -2

no

Ii is

If a

R(O)

Both

= Ro(()) +_~= RO(0) +~ c

no F
(33a

the average number of counts taken

total of m data points are used in

due to the present cause is

in the set of data being analyzed.

the analysis, the variance of

of the results above are valid only in the limit of large m.

For R(e) (e > O) there is no correction (m - ~) since no cross

section is multiplied by itself. It we compute I’by comparison with

Lorentzian form, we have

( 33b

a

31
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This leads to a correction given by

$=?

[1

RR(o)
Is

~R(0) -1 -~
E

(34

which depends on the value of e chosen for the comparison.

VI.

In the general

Generalized Frequency Distributions

case the restriction to all equal variances for the

long time reaction to different M substates is rather poor. Let us now

investigate the consequences of relaxing the assumption.

If we write as before

m
q=

I
Y; 9

i=l

assume
.

.

32



+2 21
0 =U: =—
i 1 >

‘i

and define

+2 2
x. = p + 11-
1 i i’

then the frequency distribution function is given by

f(q) =s-l

The quantity in

ment -t so that

dm

dtm

txiai
N -—

rI ~i (ai + t)-1 e
ai+t I.i=l

(35

(36

(37

the braces is the moment generating function with argu-

txiai
N

n

-t
~i (~i - t)-l eai

x= 7“
i=l

t=o

(38

Note that l/cziis the average long time cross section to the ith

M substate and as such may be calculated by some sort of Hauser-Feshbach

expression (modified to correct for the interferencewith direct reaction),

x is the short time reaction cross section to the ith M substate and
i

might be calculated by means of a direct reaction calculation (again

possibly modified).

Equation 37 cannot be inverted for the general case, but there are

some interesting special cases. For only one M mibstate (N = 1)
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(39

Since this is

of eq. 37,any

necessary).

For x< ~

the inverse Laplace transform of one factor in the braces

given

O,eq.

case may be built up by convolution (numerically, if

37 canbe solved in general to give
1.

‘(n)= mz (a,-al)(a;y)..=(%-al)“(M
i=l cyclic

permu-
tations

If

This is

We

all ai ~ a and we define x = ~ xi, then eq.37 gives
i=l

N-1
-5-

()f(q) =a# ea(x+q) ~-l(afifi) ●

(41

a generalization of eqo 39.

may now use eq. 38 to investigate the behavior of R(0) in this

more general case. For the first two moments we obtain

67 i ($+xi)
i=l

(42

(43

.

.
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Now define

N

z=
z

1
a=

and

Y

.

(44

With these definitions we may write

=(1-y) 2a+2y(l-y)b . (45

The quantity l/a is defined as Neff, the effective number of M sub-

states. To see this significancewe note that the relative cross section

for a reaction proceeding through a given M suhstate is determined mostly

by angular momentum considerations and only in second order by the

reaction mechanism. If this is true we may set a =b (since f3 = yi)
i

and thus

R(0) = a(l -y2) .

Comparison of this expression with eq. 12 gives the desired correspondence.
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If calculations of a and b can be made, more exact values of y may be

obtained from the data. Tne first-order correction is given by

Y’ =y+

b
where A=L-l,y

corrected value of

Let us assume

described by a

case tne cross

9(E) where

(1 - y)A (46

is the value etiracted by use of Neff, and Y’ is the

Y“

VII. The Effect of Resolution

the measurement has been made with a resolution

square resolution function with full width p. In this

section measured will be ;(E) instead of the true value

Using rO as the energy unit we have

(47

.
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‘>./ “’J d.xq(E’)q(E’ + X)

E:.- E- E’+ ~.;

dx

1+X2

P)~+-- tan-l(E - 1P)2
E!+E-~

-2

=!’+~~
{
(e + P) tan-l(e + p)

[
-;Log 1+( G+P)2 1

+(e- 1

[
P) tan-l(E - p) - ~Log 1 + (e + P)’1

- 26 tan‘1 ~ i-Log (1 + ~’)

/
and

R(c) =
{

-$ (e + P) tan-he + P) + (e - p) tan-l(e - P)

1
[ 1 [ 1

‘LQ31+(E+ P)’ -* Logl+ (e-p)’-- (48

.
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For e = O we have

-1
R(0) =

2p tan p - Log (1 + P2)
D . (49

Figure 24 shows

function only of the

P-

R(0) as a function of P. Since this curve is a

specific resolutio~ any units may be used as long

as the same units are used for the

If I’is measured by the slope

origin (e << 1)

resolution and width.

of the autocorrelation function at the

For arbitrary e

function for r.

For c/P <<

obtain

“2p tan
-1

Log (1+ P2)1~ (l+pa)l$ ●

eq. 48

1 (but

must be solved

no restriction

,

numerically to obtain the correction

on the absolute magnitude of E) we

and, further, if c >> n

(50

e2/ 1
.

()R(c) =;l-; .

(51

(52

In absolute units this becomes
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(53

so that measurements of very small widths may be made along with a simul-

taneous experimental determination of the resolution i“e”>

r _R(0)P-—
0 fi

(54

while p may be extracted from

One

(55R(C) =l-; .
m

may note that R(0) as low as 0.03 might be easily measured so

that widths of the o?xler

All of the above is

R(0) ~NR(0)

of 0.01 p could be deduced.

forN = 1. If N > 1, simply replace

to obtain the more general result.

VIII. Appendix: Some Analytic Results

A. Finite Sample Transformation of a Gamma Distribution

Suppose a sample of size n, (xl, x2,-””xn), is dram

tion with a gamma distribution of mean 1. TI-LUS,

f(x) = 8 p e+ix
m=-m .

frcxna popula-

.—-
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We wish to inquire as to the distribution of z where

1
z =

()
n

Elx
ii i

i=l

since this is the process

cross sections to mean 1.

Central Ltiit Theorem but

Fourier transform, we may

carried out in normalizing the experimental

By the same technique used in proving the

using the Laplace transform in place of the

write

(Al
11

-N
N-1 N-looe &~N-1 e =

‘i

‘1 ‘2
.

n

We now make the transformation

nx,

of variables

-L

z =—
n > Y2=X2> Y~=x~>”””, Yn=xn ;

E
x.
1

i=l

so that

n

z
x

Yi

1=2
‘1= n-z ‘ ‘2 =y2’x3=y3’”””’xn= ‘n “

.

.

.

.
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.

The Jacobian of

With this

()
sf(z) =

n

this transformation is given by

n

T Y.
L’

J=
i=2

(n-z)z “

change of variable, eq. Al becomes

(A2

(A3

From A3 it is easy to see that

f(z) = o forz>n

and for O<z<n

f(z)

N-—
1-:

e

(A4

‘i

Thus, we areled to consider integrals of the following type.
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m

()~nj=”
j=l

z ‘ ‘[
(nl+N- l)!(n2+N - l)!”””(nm+N -l)!-N!

‘l!n2!%””””nm” ‘%+N ‘n2+” ‘n3+”
nm+N

‘1’n2”””nm
... a

x N!(nl+N - l)!(n2+N -l)!”””(nm+N -l)!

;&
.

nl! ~! .3! ● “” nm!

‘1’n2”””nm

Since the sum is only a constant we may drop it and find the normalization

at the end. This gives

~N-1 z I?n
f(z) =

()
1

(n -z)N+l ‘;

.

.

~z”-l ~ -z_Nn-N-l() .
n
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!Fnis is easily integrated to obtain the normalization. The final result

is

f(z) =
(Nn - 1)!

()
~N-1 ~ - ~Nn-N-l .

nN(n - l)!(Nn -N - 1)!
n (A.5

B. Analytic Determination of NE for n = 2

Suppose we measure two values, x and y, which come from a gamma dis-

tribution (eq. 18). We may express R(0) as

* (X2 + y2) - * (x + y)2
R=

* (x + Y)2

2

()
x -Y

‘X+y”
(A6

Thus, we have

Now make the change of variables

then

()l+px’z—
1 -P ‘

and

]Jl= 222 ●

(1 - P)
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Thus, we have

().Sf(R) =
2N

1

[(~-Nl)’l2 J
dp

(::)’ /’” ‘m-%$’:%’-1 0

2Nm(2N - 1)!

{[(N-1)’12(m)2N -1 ‘p‘~~’‘;:‘r-’
2(2N) !

1

~N-1 2

[@-1’’ 122N’ m-:(1-p) ‘-P” P

1

2 N(2N)!

J

(~ -p2)N-le-P2t ‘p

(N!)22~ o

1
N (2N)!

J

-Rt
(1-@-lL’R ,

(N!)22~ o &

from which it is clear that

f(R) =
N (2N)! (1 - R)N-l

(N!)22m G

=0

Meanwhile we get from eq. A7

(1 - p)a

CI<R<l

R>lorR<() .

(A7

(A8

.

.
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1
~- . 2N2(2N)!

/

* N-1
p2(l-p) dp .

(N!)2 *a ~

We may then compare these results with eq. 27 for

Note that this is a ve~ stringent test of eq. 27

n= 1 or n = ~ and was fit to the calculations at

to be the greatest in error around n = 2.

N m-

(A9

the case of n = 2.

since it is exact at

n=k. It is expected

1 0●3333 0.3125

2 0.4000 0.3750

3 o.h285 0.4375

4 0.4444 0.5000

We may see that eq. 27 gives a good representation to within about 10$

even for the case of n = 2.

45



Figure Captions

Figure 1. The effective number of independent

function of the energy range covered (T)=

observations (n) as a

The lower (solid) curve

would be suitable for autocorrelation functions, while the upper

curve should be used in the comparison of two independent cross

sections. The dotted curve (T/x) is given for comparison” ~ergY

is measured in units of rO.

Figures 2, 3, and 4. The expected value of R(0) as a function of the

sample size (n). ‘IMegenerated input data were characterized

X2 distributionwith 2N degrees of freedom.

Figures 5, 6, and 7. The variance

The generated input data were

2N degrees of freedom.

of R(0) as a function of sample

characterized

Figures 8 - 15. The fraction of direct reaction

for n = 2, 4, 6, 8, 10, 12, 15,and 20. N =

by a

size.

by a X2 distribution with

curves.

Figures 16 - 23.

n = 2, 4, 6,

The variance of R(0) plott~ as a

8, 10, 12, 15, and20. N= lfor

as a function of R(0)

1 for all of these

function of R(0) for

all of these curves.

Figure 24. R(0) as a function of resolution for several values of ro.

Arbitrary units may be used for the resolution as long as r. is

measured in the same units.
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