
(L9 EalKm’a.ti
+

*
LA-3292

ClC-l 4 REPORT COLLECTION

FEFWCMXXYTYON
COPY

LOS ALAMOS SCIENTIFIC LABORATORY
LOS ALAMOS of the NEW MEXICO

University of California

A FORTRAN Version of Nordsieck’s Scheme

for the Numerical Integration

of Differential Equations

—–-.——

.

_-E
:U .-- –.:..

iw - ‘-–-
:~ . .. ,

n“..
q :,- ,.

~Y)

Zo) . -–—

Em —..
—= -

-...

UNITED STATES
ATOMIC ENERGY COMMISSION

CONTRACT W-7405 -ENG. 36

~LE GAL NO TIC E-[
This re~rt was prepared as an account of Government sponsored work. Neither the United
States, nor the Commission, nor any person acting on behalf of the Commission:

A. Makes any warranty or representation, expressed or implied, with respect to the accu-
racy, completeness, or usefulness of the information contained in this report, or that the use
of any information, apparatus, method, or process disclosed In this report maynotinfringe
privately owned rights; or

B. Assumes any inabilities with respect to the uae of, or for damages reauiting from the
use of any information, apparatus, method, or process disclosed in this report.

As used in the above, “person acting on behalf of the Commission” includes any em-
ployee or contrackm of the Commission, or employee of such contractor, to tbe extent that
such employee or contractor of the Commission, or employee of such contractor prepares,
disseminates, or provides access @ any information pursuant to MS employment or contract
with the Commission, or his employment with such contractor.

This report expresses the opinions of the author or
authors and does not necessarily reflect the opinions
or views of the Los Alamos Scientific Laboratory.

Printed in USA. Price $2.00. Available from the

Clearinghouse for Federal Scientific
and Technical Information,
National Bureau of Standards,
U. S. Department of Commerce,
Springfield, Virginia

LA-3292
UC-32, MATHEMATICS
AND COMPUTERS
TID-4500 (41st Ed,)

LOS ALAMOS SCIENTIFIC LABORATORY
LOS ALAMOS of the NEW MEXICO

University of California

Report written: March 1965

Report distributed: June 22, 1965

A FORTRAN Version of Nordsieck’s Scheme

for the Numerical Integration

of Differential Equations

by

H. R. Lewis, Jr. and E. J. Stovall, Jr.

1

ABOUT THIS REPORT
This official electronic version was created by scanning
the best available paper or microfiche copy of the
original report at a 300 dpi resolution. Original
color illustrations appear as black and white images.

For additional information or comments, contact:
Library Without Walls Project
Los Alamos National Laboratory Research Library
Los Alamos, NM 87544
Phone: (505)667-4448
E-mail: lwwp@lanl.gov

ABSTRACT

Modifications of Nordsieck’s scheme for numerically integrating

differential equations are described which permit satisfactory operation

in floating-point arithmetic. The major modification, recommended for

both fixed-point and floating-point operation, is a reformulation of the

test for numerical stability. Also discussed, in relation to the present

floating-point scheme, are Nordsieck’s use of guard digits and novel

rounding techniques. A computer subroutine for the modified scheme is

presented in the FORTRAN-II and FORTRAN-IV languages.

ACKNOWLEDGMENTS

We express our appreciation to R. M. Brown and P. Ponzo of the

Coordinated Science Laboratory of the University of Illinois, and to

E. P. Gray and J. G. Monteabaro of the Applied Physics Laboratory of the

Johns Hopkins University, for kindly providing us with their floating-

point versions of Nordsieck’s integration scheme. The present work began

as a result of using their computer programs.

4

e

CONTENTS

I.

II.

III .

Iv.

ABSTRACT . .

ACKNOWLEDGMENTS

INTRODUCTION .

.

.

.

THE STABILITY TEST.

GUARD DIGITS AND SPECIAL ROUNDING PROCEDURES

THE FORTRAN SUBROUTINES

RESULTS OF SOME TEST PROBLEMS

REFERENCES

APPEND ICES

IA.

IB.

IIA .

IIB .

111.

IV.

FORTRAN-II LISTING OF DEQ FOR IBM 7094 .

FAP LISTING OF RNDN FOR IBM 7094 . . .

FORTRAN-IV LISTING OF DEQ FOR IBM 7094 .

MAP LISTING OF RNDN FOR IBM 7094 . . .

FORTRAN-IV LISTING OF DEQ FOR IBM 7030 .

FORTRAN-IV LISTING OF SAMPLE PROGRAM . .

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

3

4

7

8

12

14

18

23

. 24

. 28

. 29

. 33

34

. 38

5

.

INTRODUCTION

One of the important problems in numerical analysis which arises in
scientific and engineering research is the numerical integration of a
system of differential equations. Because of the frequency of this
problem, it is valuable to have a general-purpose numerical scheme with
which the integration of a large class of differential equations can be
reliably performed. One numerical scheme, useful as such a general
purpose method, and well adapted for efficient use with digital computers,
has been proposed by A. Nordsieck.1 This scheme is designed to solve a
system of first-order equations,

dy
i

—=fi(x, yl, yz, yn), i= 1, 2, . . ., n, (1)
dx

with given initial conditions, whenever the fi are such that a unique
solution exists. The basic formulas of the method are equivalent to
finding the fifth-degree polynomial approximation to the desired solution
of the differential equations which is determined from the values of yi
and fi at the current value of the independent variable x , and from the
values of fi at the four preceding values of x . The effective approxi-
mating $olynomia 1 is identical with that of the Adams method of integra-
tion.2’ However, Nordsieck has reformulated and modified the Adams
method in a way which is of interest for practical application.

An important practical feature of Nordsieck’s scheme is the auto-
matic increase and decrease of the elementary interval size during the
course of the integration. This is accomplished by means of two tests
that are performed at each elementary integration step. One test deter-
mines an approximate bound of the truncation error in the solution. The
other test is intended to guarantee that the integration scheme be numer-
ically stable throughout the integration; that is, those solutions of the
equations of the numerical method which are not related to the differen-
tial equations are supposed to be damped out if this test is always
satisfied.

Nordsieck formulated the integration scheme for fixed-point arith-
metic. The purpose of this note is to explain modifications of the
original formulation which allow satisfactory operation with floating-
point arithmetic. The major modification, discussed in the first

7

section of this report, is a reformulation of the stability test itself
in order to correct a flaw in the original formulation; this modifica-
tion is recommended for both fixed-point and floating-point operation.
The special procedures proposed by Nordsieck (novel rounding techniques
and the use of guard digits), which were helpful in avoiding malfunctions
of the test, as it was originally formulated, are discussed in Sec. II.
In Sec. III, the calling sequence and use of a FORTRA~ computer subrou-
tine for the modified Nordsieck scheme are described. Results of some
test problems are given in Sec. IV. Listings of three versions of this
subroutine, in the FORTRAN-II and FORTRAN-IV languages for the IBM 7094
and IBM 7030 computers, are given in appendices. In Appendix IV is the
listing of a sample FORTRAN-IV program for integrating the equation for
Legendre polynomials.

Modification of the stability test came as a result of two diffi-
culties which were sometimes encountered with earlier floating-point
versions of the integration scheme; these were 1) reduction of the
elementary integration interval to unnecessarily or absurdly small
values, and 2) unstable “blowup” of the solution.

Problems which have been done with floating-point versions of the
integration scheme include those reported by Nordsieckl and, also, inte-
gration of the equations of motion of a charged particle in a magnetic
field. The occurrence of difficulties was very much more frequent with
the latter problem. With the current floating-point version of the
integration scheme, all of the problems are done satisfactorily.

1. THE STABILITY TEST

In his original paperl Nordsieck proposes a sufficient condition
for insuring stability of the numerical method with a comfortable margin
of safety. In terms of the elementary integration interval h and the
eigenvalues of the matrix ?3f/Z3y,whose elements are bfi/byj, the

*The programming details of this subroutine are, in large measure, based
on the computer program of an earlier floating-point version of
Nordsieck ’s integration scheme which was kindly mde available by the
Coordinated Science Laboratory of the University of Illinois. That pro-
gram, dated October 1, 1963 and designated D2 (F) UOFI DEQ, was part of
the 1604 computer library of the Coordinated Science Laboratory. The
program of another earlier version, dated October 26, 1962 and desig-
nated BCC Library Routine No. 5.02.06, was made available to us by the
Applied Physics Laboratory of the Johns Hopkins University.

8

condition is4

(2)

for each eigenvalue ~. Nordsieck does not directly require satisfaction
of this inequality. Instead, he proposes a test which is intended to
insure satisfaction of the inequality, and which is more easily applied.
However, his test does not guarantee the validity of the stability
condition (2), except in the special case that only a single differential
equation is to be solved.

Let y and f denote the column matrices whose elements are yi and
f+s respectively. In the course of the iterative solution of the
implicit equations of the scheme, three approximations to y are com-
puted — first y(l), then y(2), and finally y(3).

are related to the square matrix bf/by through the
These column matrices
approximate equality5

(Y(3)- Y(2))= 95 haf
288 ~ (Y(2)- Y(l)). (3)

If there is onl
7

one differential equation to be solved (n = 1), then
y(l), y(2), y(3 , and bf/by are all single numbers, as opposed to true
matrix quantities, and we have

[y(3)-y(2) la-2.L $$ y(2) -y(l)l. (n=l)
288 Ih()11 (4)

The test to insure satisfaction of the stability condition (2) proposed
by Nordsieck for the case n = 1 iss

(5)

Indeed, for n = 1, the inequalities (2) and (5) are identical to within
the approximation that Eq. (3) is an exact equality. (If n = 1, then
A s af/ay.)

However, if there are two or more equations to be solved stiultane-
ously (n > 1), then the situation is different. Let a norm of a matrix
be denoted by enclosing the matrix symbol between double vertical bars;
then, with suitably chosen norms, the relation corresponding to Eq. (4)

9

is*

Let Amax be that eigenvalue of af/ay
standard ilequality relating I]aflayll

‘~a~l = Il*ll”

The stabil

IIY (2)- Y(l) il. (n>l) (6)

which has the largest magnitude. A
and llmaxl is’

(7)

ty test proposed by Nordsieck for the case n > 1 may be

where the column matrix norm used is either the largest magnitude of any
element, or the euclidean norm. Combining relations (6), (7) and (8),
we have

(9)

It is to be noted that no bound whatsoever is obtained on \]haf/ayll or
on lhAmax]. In fact, there are numerical examples for which the inequal-
ity (8), which represents the test, is satisfied while the inequality (2),
which represents the stability condition, is violated. A two-dimensional
case illustrating this point is the following. Let

(Y(2)

()-Y(l))= : ; then, using (3),

*lf the square matrix and column matrix norms are so chosen that (6) is
valid, then these norms are said to be consistent with one another.
Norms are usually chosen in this way; see, for example, Ref. 7.

10

()~y(3)- y(2)) =1 1
4

-1 “

With these choices, we have

if the “maximum element” norm is used.

+$++=

if the euclidean norm is used.

With either type of norm, we have

IYwyq ~
and the test (8) is satisfied.

IY(2)- Jq <3’

On the other hand, the eigenvalues of

are 1/4 and 1/2, so that

which does not satisfy the stability condition (2). mUS, it is evident
that the original formulation of a test to insure satisfaction of the
stability condition (2), and therefore to insure stability, is incorrect
except for the special case n = 1.*

The stability test used in the present FORTRAN version of the
scheme is precisely the basic stability condition expressed by (2). That
is, the elements of the matrix Z3f/i3yare evaluated — analytically if
possible, numerically otherwise — and either an upper bound of the

*
A. Nordsieck (private communication) agrees that the stability test as.
originally formulated does not insure s~tisfaction of the stability
condition (2).

11

magnitudes of the eigenvalues, or the largest eigenvalue itself, is
computed.

The original stability test was subject to malfunction because of
round-off noise. This difficulty was alleviated, in the fixed-point
version, by use of guard digits and novel rounding techniques. Such
round-off noise problems do not interfere with the new stability test.

11. GUARD DIGITS AND SPECIAL ROUNDING PROCEDURES

In the fixed-point version of this integration scheme, with the
stability test in the form given by expression (9), Nordsieck found it
desirable to carry more digits in y than in f — so-called guard
digits.8 The number of extra digits was the integer nearest to
logP(lhl-l). (~ is the base of the number system with which computations
are performed. For example, p = 2 with binary arithmetic.) The reason
given for this is to minimize the accumulation of round-off error in y
when the number of elementary steps is large. A different reason for
keeping the guard digits is that a certain form of
tends not to interfere with the functioning of the
test (8). This can be seen in the following way.
the inte ration scheme,l it is easily derived that

(Y(3)- Yt2)) and (Y(2)- Y(l)), can be expressed as

round-off noise then
original stability
From the equations of
the differences,

Y(3)
- Y(2) = ~

I
h f~+h,y ‘2)(X + h) -fx+h, y(’)1[1(x+h)] (lOa)

and

Y(2)
- Y(’) = ~

I
h f[x+h,y

II

(l)(x+h) - fp . (lOb)

The y(i) a re approximations to y for the independent variable equal to
x + h; fp, the “predicted” value of f, is a first approximation to the
value of f at x+ h. Using Eqs. (lOa) and (lOb), the inequality (8)
can be rewritten as

llf~+ h, Y(2)(X+ h)] - f~+ h, y(l)(X+ h)][l ,

(11)

S ~ Ilf[xi-h,)7(1)(X -1- h)] - fpll.

12

When the test is written in this form, it is evident that round-off noise
in the computed values of the derivatives can interfere with the func-
tioning of the test. This is accentuated by the fact that both of the
differences in the inequality can be quite small. The error in f(x, y)
due to an error in y , for the case n = 1, can be estimated as follows.
Letting Ay be the error in y and Af the corresponding error in f , we
have, in first approximation,

However, laf/ayl is bounded bythe stability condition

Combining (12) and (13), we have

(12)

(13)

(14)

In binary arithmetic (~ = 2), for the case n = I, an error equal to the

least count in y will usually give rise to an error less than the least
count in f , if logP(l/lhl) more digits are carried in y than in f .
Thus, round-off noise of the magnitude of the least count in y would
tend not to interfere with application of ‘a stability test in the form
of expression (11).

Because the number of figures in a floating-point number in a
digital computer does not change, guard digits cannot be easily used for
stopping the propagation of round-off noise from y into f , even in the
case n = 1. (An alternative would be to use double-precision arithmetic
for y.) Therefore, it is fortunate that the modified stability test,
which is identical with the stability condition (2), is not influenced
by such noise. Neither guard digits nor double-precision arithmetic has
been used in the floating-point version of Nordsieck’s scheme.

A novel way of rounding certain quantities which appear in this
integration scheme was introduced in the original fixed-point version;
this type of rounding was called “rounding away from zero.”g The pur-
pose of this rounding was to eliminate a type of noise which sometimes
interfered with the proper operation of the two tests that control

13

the size of the elementary interval. An analogous floating-point proce-
dure can also be devised. Such a procedure has been tried in the
floating-point version of the integration scheme which incorporates the
new stability test. However, with that version of the integration
scheme, we have not observed any overall improvement in the operation of
the interval control logic when the rounding procedures are included;
nor have we observed any malfunction of the interval control logic when
these special rounding techniques are omitted. The floating-point
“rounding away from zero,” at least when done with the FORTRAN language,
is rather time consuming, with the result that the computer time neces-
sary for a particular problem can be substantially longer with the
special rounding techniques than without. For these reasons, “rounding
away from zero” has been omitted from the floating-point version of the
integration scheme.

One
and
are

III . THE FORTRAN SUBROUTINES

There are three FORTRAN versions of the modified Nordsieck scheme:
for the IBM 7094 in FORTRAN-II, one for the IBM 7094 in FORTRAN-IV,
one for the IBM 7030 in FORW-IV. The calling sequence and use
the same for each version. The two versions for the IBM 7094 include

normal rounding of certain quantities which is accomplished via a sub-
routine called RNDN. (For the FORTRAN-II version, this subroutine is
written in the FAP language; for the FORTRAN-IV version, it is written
in the MAP language.) The version for the IBM 7030 does not include any
rounding. The other differences between the three versions are minor
ones having to do with differences between the FORTRAN-II and FORTRAN-IV
languages and between the IBM 7094 and IBM 7030 computers.

Listings of the FORTRAN-II version for the IBM 7094, the FORW-IV
version for the IBM 7094, and the FORTRAN-IV version for the IBM 7030
are
FAP

and
ing

given in Appendices IA, IIA, and 111, respectively. Listings of the
and MAP versions of RNDN are in Appendices IB and IIB, respectively.

Suppose that the differential equations to be solved are

dy
i

— = fi(% Yl> Y2S . ..>
dx

yn), i = 1, 2, n,

that the integration is to proceed from x = xl to x = X2. The call-
sequence for the integration subroutine is:

CALL DEQ(F, X, XLIMIT, Y, ERROR, NEQ, H, HMAX, JUMP, KSTEP, KCON, CLIP)

14

The allowable maximum number of equations that can be solved by DEQ is
the dimension of the dimensioned quantities. (They are equally dimen-
sioned,) As listed in the appendices, DEQ can solve a maximum of 20
equations.

The meaning of the arguments in the argument list is:

F

x

XLIMIT

Y

ERROR

An array of dimension n such that F(i) = fi. This array must
be computed by the calling program for subsequent use by DEQ.
The F(i) need not be computed until after the first return
from DEQ. (See JUMP, below.)

The current value of the independent variable x . When DEQ is
first called, it must be called with X = xl. Thereafter, the
value of X is adjusted by DEQ, and it must not be changed by
the calling program.

The final value of the independent variable
first called, it must be called with XLIMIT
is not to be changed before the integration
x =X2.

x. When DEQ is
= ~, and XLIMIT
has proceeded to

An array of dimension n such that Y(i) = yi. When DEQ is first
called, it must be called with Y(i) equal to the value of yi
at x = xl; that is, DEQ is first called with the elements of Y
equal to the initial values of the yi. Thereafter, the Y(i)’s
are adjusted by DEQ, and they must not be changed by the call-
ing program. When the integration is completed, and
X = XLIMIT, then the value of Y(i) equals the final value of

Yi, i.e., the value of yi at x = +.

A positive number, supplied by the calling program, which is
related to the absolute value of the error (as opposed to the
relative error) which is introduced in the values of the yi
when ,the integration has increased the value of x by one unit
(X+x+ l). The precise numerical relation of ERROR to the
accuracy of the integration cannot be given. However, ERROR
is an approximate bound on the sum of the truncation errors
incurred at each integration step during the process of inte-
grating over a unit interval of the independent variable. In
general, the error introduced at any given step will propagate
forward in a way primarily determined by the nature of the
differential equations being solved. Because of the propaga-
tion of errors, the sum of the truncation errors at each step
is not generally equal to the error in the final result of
integration due to truncation errors. (ERROR is the quantity

P‘e which is discussed in Ref. 1. Further details, including

15

NEQ

H

the relation of ~-e to other errors in the scheme, can be
found there. Note that the discussion in Ref. 1 assumes
fixed-point arithmetic.) It can be said that the test in DEQ
in which ERROR occurs tends to adjust the integration step
size in such way that a certain degree of accuracy in the final
result is economically achieved. With a given set of equations
to be solved, it is useful first to choose ERROR about equal
to the absolute value of the error allowable after a unit step,
and then to observe the effect on the final result of using
values of ERROR both larger and smaller than the first value.
In that way, it is possible to determine experimentally the
approximate relation between the value of ERROR and the final
accuracy. As ERROR is decreased it may eventually happen that
the accuracy also decreases because of increasing importance
of round-off error. Also, if ERROR is made small enough, then
the elementary step size will be-made too smll to be signifi-
cant. (See JUMP, below.)

NEQ = n, the number of equations in the system to be solved.

Current value of the integration step size. When DEQ is first
called, it must be called with H equal to some starting value.
It is convenient to let the starting value equal HMAX. There-
after, the value of H is adjusted by DEQ, and it must not be
changed by the calling program.

The maximum allowable absolute value of H equals the absolute
value of HMAX. (HMAX maybe of either sign, but only IHMAXI
is used.) HMAX should be chosen smaller than the width of any
fine structure in the solution, to insure that the correct
solution is followed over such fine structure.

JUMP The values of JUMP are -1, 0, and 1. When DEQ is first called,
it must be called with JUMP = -1. Thereafter, JUMP must not
be altered by the calling program. Whenever control is
returned to the calling program, the value of JUMP must be
ascertained. If JUMP = -1, then H has become small enough
that, to within the accuracy of the computer, X + H = X. The
integration cannot continue if this occurs. If JUMP = O, then
new values of the F(i) must be computed with the current values
of X and Y(i). Then, DEQ is called again, leaving JUMP = O.
(The F(i) need be computed only if control is returned to the
calling program with JUMP = O.) If JUMP = 1, then the inte-
gration to XLIMIT has ended. The integration can be carried
further in the same direction by changing XLIMIT to a new
final value ofx , and again calling DEQ, leaving JUMP = 1.

16

KSTEP A running index which counts the number of elementary steps
taken during the integration. If KSTEP is less than or equal
to 24, then the starting sequence is being executed. If KSTEP

is larger than 24, then the main integration procedure is being
executed. If KSTEP reaches the largest integer that can be
stored in the computer, then KSTEP is automatically set equal
to 28 at the next step. This insures that the procedure will
not revert to the starting sequence during the integration.
KSTEP need not and should not be set by the calling program.

KCON An integer, equal to O or 1, which indicates whether or not a
new value of CLIF is to be computed by the calling program,
using the current values of X and Y(i). If KCON = O, then
CLIF is not to be computed. If KCON = 1, then CLIF is to be
computed-

CLIF A number, computed by the calling program, which is used by
DEQ for adjusting H to insure numerical stability of the
method. CLIF is to be greater than or equal to the magnitude
of the largest eigenvalue of the matrix whose elements are

aij = ?3fi/byj. That is, ifhi(i= 1, n) is the i~
eigenvalue (possibly complex) of this matrix, then
CLIF Z ILilmax, so that CLIF is an upper bound of the magni-
tudes of the eigenvalues. The stability condition which is
applied is expression (2) of Sec. I. Upper bounds of l~i!max
are provided by the following two expressions:

max = ‘ax ~]ajkl

ajk I

These two bounds are generally different and m= be signifi-
cantly larger than l~ilmax. If it is very inconvenient to
determine an upper bound, then an appropriate value for CLIF
(one which makes the method stable) must be chosen intuitively
or on the basis of experience.

In Appendix IV is the listing of a sample FORTRAN-IV program for
integrating the equation for Legendre polynomials, in steps of 0.1, from
an initial value of x to a final value not greater than 0.95.

17

IV. RESULTS OF SOME TEST PROBLEMS

In addition to results obtained with the four test problems
described by Nordsieckl (Problems 3 through 6, below), we also report
results with two other problems (Problems 1 and 2, below).

Problem 1

d2y

—=-Y
d~

!llhisequation was integrated from x = O to x = 10 m, with the
initial conditions y = O and dyldx = 1. The results, for three values
of ERROR, are shown in Table I.

TABLE I

x Y dy/dx ERROR Versione— — — —

1.415926 -.21389202 X 10-5 .99999816 ~~4 FORTRAN-II,

-.89575723 X 10-6 .99999980 10-6
IBM 7094

-.10448896 X 10-5 1.0000004 10-8

11.415926 -.22733957 X 10-5 .99999823 10-4 FORTRAN-IV,

-.95797372 X 10-6 .99999984 10-=
IBM 7094

-.10048494 X l(J_5 1.0000004 10-s

11.415926 -.18014973 X 1~5 .99999809 10-4 FORTRAN-IV,

-.56000062 X 1~= .99999998 lr6 IBM 7030

-.53630424 X 10-6 1.0000000 1(Y8

18

Problem 2

d2y dy
(l-x2)—- 2X — +J(l+l)y=o

d~ dx

The Legendre polynomial of order 4 is a solution of this equation.
The equation
conditions y

dy
—

dx

The results,

was integrated
= P1(-.9) and

dPJ
=—

dx ~=

for .4
The initial values
formulas for PA(x)

fromx=-.9tox= .9, with the initial

.

.9

= 4 and two values of ERROR, are shown
quoted in the table were computed from
and dP4/dx.

TABLE II

in Table 11.
the exact

x Y (1 - #) dy/dx ERROR Version
—

-.9 .20793745 -1.1414249 FORTRAN-II,

.9 .20793735 1.1414254 lr3
IBM 7094

.20793742 1.1414250 10-6

-.9 .20793748 -1.1414249 FORTRAN-IV,

.9 .20793732 1.1414254 10-3
IBM 7094

.20793740 1.1414250 lr6

-.9 .20793750 -1.1414250 FORTRAN-IV,

.9 .20793743 1.1414255 10-3
IBM 7030

.20793750 1.1414250 10-6

19

Problem 3

{

O, for lx - *I > 2_a1
C&=
dx

P, for lx-~l<2_31

This equation was integrated on the IBM 7030 from x = O to x = 1,

with y(o) = O and HMAX = ~-s . The exact value of y(1) is 2_6 = .03125.
The results, for three values of ERROR, are shown in Table 111. The
minimum value of the integration step .sLzej win> which occurred during
the integration and the value’ of KSTEP at the end of the integration are
also given. (KSTEP-24) is the number of steps after the starting
sequence. The width of the rectangular pulse is too small for the prob-
lem to be done on the IBM 7094. However, the equation

{

O, for lx - +1 >Z22
&J=
dx

25, for lx - *I < 2-22

was integrated on the IBM 7094 with results similar to those in Table III.

TABLE 111

I

! ERROR KSTEP kin Y(1)

2-30 440 2- 37
.0310059

2-2.4 476 2--41 .0312347

~41
538 2-48 .0312497

Problem 4

dy (&’)2
—= 27

dx X2 + (&)2

This analytic derivative is similar to
The equation was integrated on the IBM 7030

20

the derivative in Problem 3.
from x = -1/2 to x = 1/2,

with y(-1/2) = O and WAX = 2_8 . The exact solution is

1 x
220y = ~ tan-l (229) + ~ tan-l ~ .

2-

‘rhus,#Oy(l/2) = 0.39269908. The results, for three

are shown in Table IV. The value of KSTEP at the end
is also given.

TABLE IV

values of ERROR,
of the integration

I ERROR I KSTEP I 220y(l/2) I
I 2-32 I 453 I .39274749 I

2-36
518 .39270319

.2740 643 .39269939

Problem 5

*=20~
dx x

This unstable equation was integrated on the
tox= 1, with y(l/2) = 2-21 and HMAX = 2_4. The

IBM 7030 from x = 1/2
exact solution is

Y =$2°.

Thus, y(l) = 1/2. The result,
At the end of the integration,

for ERROR = 2-2s, is shown in Table V. “
KSTEP was 126.

TABLE V

?
x Y

-

.50 4.76837 X 10-7

.5078125 6,50520 X 1~7

1.0 .500195

21

Problem 6

d2y dy
● 2 —+x —+[# - (16)21y = O

d~ dx

A solution of this equation is the Bessel function of order 16.
The equation was integrated from x = 6 to x = 6138 with HMAX = 1 and
initial conditions y(6) = 1.201950 x 1~8 and dy/dx = 2.986480 X 10_6.
The results, for ERROR = 2-23 and ERROR = T2S, are shown in Table VI
and Table VII, respectively.

TABLE VI (ERROR = ~23)

KSTEP x y(DEQ) y(correct) dy/dx(DEQ) dy/dx(correct)
—

6.0 1.201950x 10_8 2.986480 x10_6

29 6.125 1.633716 xl~8 1.633712 x10-8 3.963782 x10-8 3.963764x 10-6

59403 6138.0 1.360368 xl~3 1.362485 xl~3 1.008985 xl~2 1.009251x 1~2
>.

TABLE VII (ERROR = ~28)

STEP x y(DEQ) y(correct) dy/dx(DEQ) y/dx(correct)

6.0 1.201950x 10-6 2.986480xl@

102721 6138.0 1.362435 xl@ l.362485x 1(T3 1.009249 xl~2 1.009251x 1~2

22

REFERENCES

1. A. Nordsieck, Math. Comp. I-6, 22 (1962). [See also A. Nordsieck,
Proc. Symp. Appl. Math., Amer. Math. Sot., Vol. XV, pp. 241-250
(1963)].

2. W. E. Milne, Numerical Solution of Differential Equations (John
Wiley and Sons, Inc., New York, 1953), pp. 53-55.

3. L. Collatz, The Numerical Treatment of Differential Equations,
3rd Ed. (Springer-Verlag, Berlin, 1960), pp. 83-86.

4. Reference 1, Eq. (8) and pp. 29, 30, and 36.

5. Reference 1, Eqs. (8) and (20).

6. Reference 1, Eq. (22a) and p. 36.

7. J. H. Wilkinson, Rounding Errors in Algebraic Processes (Her
Majesty’s Stationery Office, London, 1963), pp. 79-82.

8, Reference 1, pp. 25, 35, and 46.

9. Reference 1, PPO 38-39 and Appendix C.

23

APPENDIX IA. FORTRAN-II LISTING OF 13EQ FCR IBM 7054

SUBROUTINE OEQ(FF,XX,XL IMIT,YYSERROR ,NEQ,HH,HMAx,JuMptKKSTEf’ ,
lKCCN,CCLIF)
ODIMENSION STARTY(20),Y(20)SSY12C), SAvEY(20) tF(20),Fpt20) t
10ELTA (20),DALTA (20),A(201,B(20),C(20) ,D(20)c
2AA(20), 13B(20),CC120)*CP (20), SF(20)9FF(20)SYY(2G J

NE = NEQ
H=HH
X=xx
KSTEP=KKSTEP
00 1100 I=lrNE
F(I)=FF(I)

L1OO Y(I)=YY(I)
CLIF=CCLIF
IF(KSTEP-32767)993,991, 991

991 KSI’EP=28
c TEST FOR TYPE OF ENTRY

993 IF(JUMP)1,998S999
998 GO TO IA, (lOOG,lls 21t802t803)

c JUMP POS. RESTORE VALLES
999 X=SAVEX
992 JUMP=O

ou 901 I=l,NE
F(I)=SF(I)

901 Y(I)=SAVEY(I)
GO TO 1G2

c JUMP NEG. INITIALIZE
1 DO 5 I=l,NE

STARTY(I)=Y(I)
A(I)=OOOOI
13(xl=o.ool
C(I)=O*OO1

5 D(I)=O.001
KSTEP=O
KDELAY=O
KCON=il
T=95./(288.*64.)
U=863./(l2.*5O4O.)
V=95.1288.
P=25.124.
0=35./72.
R=5./48.
s=l./l2o.
ASSIGN 1000 TU IA
JU!IP=O
GO TO 1101

c BEGIN INTEGRATION STEP
1000 00 1111 I=l,NE

SF(I)=F(I)
1111 SAVEY(I)=YII)

c H TOO SMALL, RETURN WITH JuMp NEG.
600 IF(ABSF (X+H1-ABSFtx))605, 601,605
601 JUIIP=-1

GO TO 1101
605 X=X+H

DO 10 I=l,NE
Y(II=Y(I)+H*(F(I)+A([t+B(I)+C(I)+O(I)) ‘
Y(I)=RNONF(YI I))

10 FP([)=F (I)+2.0*A(I)+3.0*8(1)+4.0*C(I)+5.0*0(1)

.

>

24

ASSIGN 11 TO IA
CO TO 1101

11 DO 12 I=l,NE
12 SY(I)=Y(I)

DO 20 I=l,NE
DELTA (I)=F(I)-FP(I)

20 Y(I)=Y(I)+V*OELTA [II*H
ASSIGN 21 TO IA
KCGN=L
GO TO 1101

21 KCCN=CI
DO 30 f=l,NE
DALTA (I)=F(I)-FP(I)
OALTA(I)=RNONF(DALTA(I))

29 Y(I)=SY(I)+V*CALTA (l)*H
Y(I)=RNCNf(Y(i))

30 CONTINUE
c TEST FOR STARTING SEfJbENCE

31 IF(KSTEP-28)35 ,40,40
c APPLY TEST 2 ON ~ERIJTH STEP

35 IF(KSTEP)50,50,60
c HALVING TESTS

40 DO 45 i=19NE
IF(ABSF(DALTA (1)1-ERRoR/AHsF(H))45,45, 55

45 CONTINUE
50 IF(V*H*CLIF-O .125160,60 ,55
55 X=X-H

c FAIL TESTS, HALVE H
223 H=H/2.O

KDELAY=G
DC 56 I=l,NE
A(I)=A(I)/2.o
6(1)=8(1)/4.0
CIIl=C(I)/8.O
F(I)=SF(I)
Y(I)=SAVEY(I)

56 D(I)=D(I)/16.C
GO TO lCOO

c PASS TESTS, CORRECT A,B,C,O
60 KSTEP=KSTEP+l

DO 65 I=l,NE
A(I) =A(I)+3.0*B(I)+6 .C*C(I)+lO.O*O(I)+P*OALTA (I)

62 tl(I)=t3(I)+4.0*C([)+lG.0*0([)+Q*CALTA(It
64 C(II=C(I)+5.0*O(I)+R*CALTA (1)
67 D(I)=D(I)+S*OALTA(I)
65 CONTINUE

c IF IN STARTING SEQUENCE, BRANCH
IF(KSTEP-24) 70,9C,1G0

700G0 TO (lOOC,lCOO, 1OOO,74,1OOO, lCOO,lOOOr 78,1CCG,1000c 1000,74s1000,
11000,1000,86,1000,1000, 1(JO0,74, 1OOO,1OOO,IOOO) ,KSTEP

c 4TH ,12TH,20TH STEP,GO BACK
74 H=-H

DO 75 l=l,NE
A(I)=-A(I)

75 C(I)=-C(I)
GO TO lCOO

c 8TH STEP, GO FORWARD
78 H=-H

[)0 79 I=l,NE
Y(I)=STbRTY(I)
A(I)=-A(I)

79 C(I)=-C(I)

25

GO TO lCOG
c 16TH STEP, HALVE H, APPLY TEST 1

86 H=H/2.o
DO 87 I=l,NE
A(I)=A(I)/2.o
tl(I)=e(I)/4.o
c(I)=c(I)/8.o

87 0(1)=0(1)/16.C
DC 88 I=l,NE
IF(ABSF(DALTA (1))-ERROR/ABSF[H))t38 ,88s89

88 CONTINUE
c PASS TEST GO FCRWARO WITH HALVED H

GO TO 78
c FAIL TEST @EGIN AGAIN WITH HALVED H

89 H=-H
00 92 I=l?NE

92 Y(I)=SThRTY(I)
GO TO 1

c 24TH STEP, DOUBLE H, STARTING SEQUENCE ENDS
90 H=H*2.O

00 91 I=l,NE
A(I)=A(I)*2.O
8(I)=E(I)*4.O
C(I)=C(I)*8.O

91 0(I)=D(I)*16.C
GO TO 78

100 KOELAY =KDELAY+l
c WILL NEXT STEP MOVE PAST XLIMIT

102 IF(AE$SF (XLIMIT-XI-ABSF (H))103,1C3,11O
c YESSAVE X ANC Y, INTEGRATE TU XLIMIT, RETURN.

103 ENOH=XLIMIT-X
OC 105 l=lrNE
AA(I)=ENOH*A(I)/H
BB(I)=cNoH**2*8(I}/H**2
cc(1)=ENDH~*3~c(I)/H**3

1C5 rlo(I)=ENoH**4*o(I)/H**4
SAVEX=X
00 80G I=l,NE
SF(I)=F(I)

800 SAVEY(II=Y(I)
801 X=XLIMIT

DO 106 I=l,NE
Y(I)=YI I)+ENCH*(F(I)+AA(I)+8B(I)+CC(I)+OO(I)I
Y(I)=RNONF(Y(I))

106 FP(I)=F [I)+2.C*AA(I)+3.C*B8(1)+4.0*CC[I)+5.0*00(1)
ASSIGN 8132 TO IA
GC TO 1101

B02 DC B05 I=l,NE
805 SY(I)=Y(I)

00 107 I=l,NE
OELTA (I)=FII)-FP(I)

107 Y(I)=Y(I)+V*CELTA (I)*ENCH
ASSIGN 803 TO IA
GO 10 llCl

803 DO 108 I=lsNE
DALTA (I)=FII)-FPII)

108 Y(I)=SY(I)+V*CALTA (I)*ENOH
Y(I)=RNONF(Y(I))
JUMP=l
GO TO 1101

c NOTEST F(IR DOUBLING. IF OK, BEGIN NEXT STEP AFTER DCUBLING
‘ 110 IF(ABSF (X:IMIT-X)-A8SF (Z.*H))1OCO,1COO,11L

26

111 IF IKDELAY-4) 1COC,120,12C
i20 IF(A13SF (2.*H)-A8SF (HPAX)) 121,121S1CC0
121 DO 1251=1,NE

IF(ABSF(DALTA (1))-ERROR/(128.*ABSF(H)))125,125,1CO0
125 CONTINUE

IF(V*H*CL IF-O.06Z5)1?0, 101.)O,100C

i30 CONTINUE
335 H=2.O*H

DO 135 I=l,NE
A(I)=2.C*A(I)
B(I)=4.O*B(I)
c(I)=e.o*c(I)

135 D(I)=16.O*C(I)
KDELAY=C
GO TO lCOO

llCL NEG=NE
HH=H
Xx=x
KKSTEP=KSTEP
DO 1102 I=l,NE
FF(I)=F(I)

1102 YY(I)=Y(I)
CCLIF=CLIF
RETURN
ENO

27

APPENDIX [B. FAP LISTING OF RN(IN FOR IBM 7094

● FAP
●RNCN NORMLL ROUND

ENTRY RNDN
RNDN FRN

TRA 1,4
END

28

APPENOIX 11A. FORTRAN-IV LISTING OF OEQ FOR IBM 7094

SUBROUTINE OEQ(FF,XX,XLIMIT,YY, ERROR ,NEQ,HH,HMAX,JUMP,UKSTEP ,
lKCON,CCLIF)

OIMENSION STARTY(20),Y(20),SY(2C), SAVEY(20) ~F(20),Fp(20) ,
10ELTA (20),CALTA (20),A(20),R(20),C[20),D(20),
2AA(20), BB(2C),CC(20), CO(20), SF(20), FF(20),YY (20)

NE = NEQ
H=HH
X=xx
KSTEP=KKSTEP
00 1100 I=l,NE
F(I)=FF(I)

1100 Y(I)=YY(I)
CLIF=CCLIF
lF(KSTEP-32767)99?,991,$91

991 KSTEP=28
c TEST FOR TYPE OF ENTRY

993 IF(JUMP)19998*999
998 GO TO IA, (100C911,21s802, 8C3)

c JUMP POS. RESTORE VALUES
999 X=SAVEX
992 JUMPZO

00 901 I=l,NE
F(I)=SF(I)

901 Y(I)=SAVEY(I)
GO TU 102

c JUMP NEG. INITIALIZE
1 DO 5 I=l,NE

STARTY(I)=Y(I)
A(II=O.001
13(Il=oeool
C(l)=O.001

5 0(1}=0.001
KSTEP=O
KDELAY=C
KCON=O
T=95.O/(288.0*64.C)
U=863.O/[12.0*504C.0)
V=95.O/288.O
P=25.O/24.O
Q=35.0172.O
R=5.O/48.O
s=l.o/120.o
ASSIGN 1000 TG IA
JU!IP=O
GO TO 1101

c BEGIN INTEGRATION STEP
1000 DO 1111 I=l,NE

SFII)=F(I)
1111 SAVEY(I)=YII)

c H TOO SMALLS RETURN WITH JUMP NEG.
600 IF(A8SI X+H)-AES(X))605, 601,605
601 JUMP=-1

GO TO 1101
6G5 X=X+H

DO 10 I=l,NE
Y(I)=Y(I)+H@(F(I)+A(I)+8(I)+C(I)+O(I))
Y(I)=RNON{Y(I))

10 FP(I)=F (I)+2.0*AII)+3.O*B 11)+4.0*C(I)+5.O*C(I)

29

11
12

20

21

29

30
c

31
c

35
c

40

45
50
55

c
223

56

c
60

62
64
67
65

c

ASSIGN 11 TO IA
GO TO 1101
DO 12 I=l,NE
SY(I)=Y(I)
00 20 I=l,NE
OELTA (I)=F(I)-FP(II
Y(I)=Y(I)+V*OELTA (I)*H
ASSIGN Z1 TO IA
KCON=l
GO TO L101
KCON=O
00 30 I=l,NE
OALTA (I)=F(I)-FPII)
DALTA(I)=RNCN(OALTA(I))
Y(I)=SY(I)+V*OALTA (I)*H
Y(I)=RNON(Y(I)}
CONTINUE
TEST FOR STARTING SEQUENCE
IF(KSTEP-28)35,40S40
APPLY TEST 2 CIN ZEROTH STEP
IF(KSTEP)50,50~60
HALVING TESTS
DO 45 I=l,NE
IFIABS(DALTb (1))-ERRGR/ABS(H))45s45 ,55
CONTINUE
IF(V*H*CLI F-O.125)60,60,55
X=X-H
FAIL TESTS, HALVE H
H=H/2.o
KCELAY=O
DO 56 I=l,NE
A(I)=A(I)/2.o
B(I)=l?(I)/400
c(I)=c(I)/8.o
F(I)=SF(II
Y(I)=SAVEY(I)
0(1)=0(1)/16.0
GC TO lCOO
PASS TESTS, CORRECT A?B,CCD
KSTEP=KSTEP+l
00 65 I=l,NE
A(I)=A(I)+3.0*13(1)+6.O*C(I)+lO.C*D(I)+P*OALTA (1)
B(I) =E(I)+4.0*C[I)+1O.O*O(I)+Q*CALIA(I)
C(I)=C(I)+5.0*O(I)+R*CALTA(1)
o(I) =D(II+S*DALTA(I)
CONTINUE
IF IN STARTING SEQUENCE, BRANCH
IF(KSTEP-24) 70,90,1C0

700G0 TO (lOOC,lCOC, 1OOO,74O1OOO, 1CO0,1000,78,1CC0, 1OOOS 1000,74,1000,
lloOO,lOOO, 86,1OOOS1OOO, 1000,74t 100C,l@OOS100cl cKsTEp

c 4TH ,12TH,ZCTH STEP,GC BACK
74 H=-H

00 75 I=l,NE
A(I)=-A(I)

75 C(I)=-C(I)
GO TO 1000

c 8TH STEP, GO FORWARO
78 ti=-H

00 79 I=l,NE
Y(I)=SThRTY(I)
Al I)=-A(I)

79 C(I)=-C(I)

.

.

30

GC To 1000
c 16TH STEP, HALVE H, APPLY TEST 1

86 H=l+/2.o
DO 87 I=l,NE
A(I)=A(I1/2.O
8(I)=@(I)/4.O
C(I)=C(l)/8.O

87 D(I)=D(I)/16.C
DO 88 I=l,NE
1F(A8S(DALT4 (1))-ERRCR/ABS(H))88,88 ,89

88 CONTINUE
c PASS TEST GO FORWARO WITH HALVED H

CO TO 78
c FAIL TEST BEGIN AGAIN WITH HALVEO H

89 H=-H
DC 92 I=i,NE

92 Y(I)=STARTY(I)
GO TO 1

c 24TH STEP, DOU8LE H, STARTING SEQUENCE ENOS
90 H=H92.O

00 91 I=l,NE
A(I)=A(I)*200
B(I)=t?(I)*4.C
C(I)=C(I)*8.O

91 0(I)=D(I)*16.O
GO TO 78

100 KOELAY =KOELAY+l
c WILL NEXT STEP MOVE PAST XLIMIT

102 IF(A8S(XLIMIT-X)-ABS(H))103,103,110
c YESSAVE X ANO Y, INTEGRATE TO XLIMIT, RETURN.

103 ENOH=XLIMIT-X
DO 105 I=l,NE
AA(l)=ENOH*A(I)/H
8B(I)=ENOH**2*B(I)/H**2
cc(I)=ENoH**3*c(l)/H**3

105 oD(I)=ENoH**4*o(I)/H**4
SAVEX=X
DO 800 I=l,NE
SF(K)=F(I)

800 SAVEY(I)=Y(I)
801 X=XLIMIT

00 L06 I=l,NE
Y(I)=Y(I)+ENCH*(F(I)+AA(I) +B8(I)+CC(1)+00(I))
Y(I)=RNDN(Y(I))

106 FP(I)=F (I)+2.0*AA(I)+3 .C*B8(I)+4.0*CC(I)+5.0*00 (I)
ASSIGN 802 TO 1A
GO 10 1101

802 DO 805 I=l,NE
805 SY(I)=Y(I)

DO 1.07 I=l,NE
OELTA (I)=F(I)-FP(I)

167 Y(I}=Y(I)+V*OELTA (I)*ENOH
ASSIGN 803 TO IA
GO TO 1101

803 00 108 l=l,NE
OALTA (I)=F(I)-FP(I)

108 Y([I=SY(I)+V*DALTA (I)*ENOH
Y(I)=RNDN(Y(I))
JUMP=l
GO 10 1101

c NOTEST FOR 00U13LING. IF OK, 13EGIN NEXT STEP AFTER 00UflLING
110 IF(A6S(X LIMIT-X) -ABS(2*O*H))1OOC,1CCO,111

31

111 IF(KDELAY-411COC, 120,120
120 IF(A13S(2.O*H)-ABS(HMAX))121,L21,1OCC
121 DO 1251=1,NE

IF(A13S(CALTA (1))-ERRCR/(128.O*ABS(H)))125,125,1CO0
125 CONTINUE

IF(v*H*CLI F-O.0625)13C, 100CI,1OOC
130 CONTINUE
335 H=2.O*H

DO 135 I=l,NE
A(I)=2.O*A(I)
B(I)=4.O*B(I)
C(I)=8.O*C(I)

135 0(1)=16.0*0(1)
KOELAY=O
GO TO 1000

1101 NEG=NE
HH=H
Xx=x
KKSTEP=KSTEP
00 1102 I=lsNE
FF(I)=F(I)

1102 YY(I)=YII)
CCLIF=CLIF
RETURN
END

.

.

\

32

APPENDIX IIB. MAP LISTING OF RNDN FOR IBM 7094

$IBMAP RNDN
ENTRY RNDNF

RNCNF CLA* 3,4
FRN
TRA 1,4
ENO

33

APPENDIX 111. FORTRAN-IV LISTING OF OEQ FOR IBM 7030

llCO

991
c

993
998

c
999
992

901

c
1

5

c
lGOO

1111
c

bet)
601

605

10

SUBROUTINE DEO(FF,XX,XL IMIT,YY,ERROR ,NEQ,HH,I-IMAXCJUMP,KKSTEPS
lKCONCCCLIF)

DIMENSION STARTY[20),Y(20)tSY(20), SAVEY(20),F(20)*Fp(20) ,
10ELTA (20),CALTA (2C),A(20)*B(20),C(20)90(20),
2AA(20), E?B(20),CC(20),CO(20)9 SF(20),FF(201*YY(20)

NE = NEQ
H=HH
X=xx
KSTEP=KKSTEP
00 llCO I=l,NE
F(I)=FF(I)
Y(I)=YY(I)
CLIF=CCLIF
IF(KSTEP-99999999999 19~39991,991
KSTEP=28
TEST FOR TYPE OF ENTRY
IF(JUMP)1*99B*999
GO TO IA, (1OOO,11,21,8O2,8O3)
JUMP POS. RESTORE VALUES
X=SAVEX
JUMP=O
00 901 I=l,NE
F(I)=SF(I)
Y(I)=SAVEY(I)
GO TO 102
JUMP NEG. INITIALIZE
DO 5 I=l,NE
STARTY(I)=Y(I)
A(I)=O.CO1
13(1)=0.CO1
C(I)=C.CO1
0(1)=0.001
KSTEP=O
KOELAY=O
KCON=O
T=95./[28B.*64.)
U=863./(l2.*5O4O.)
V=95.O/288.O
P=25.0124.C
Q=35.O/72.C
R=5.O/48.O
S=l.01120.C
ASSIGN 100C TC IA
JUMP=O
GO TO 1101
BEGIN INTEGRATION STEP
DO 1111 I=l,NE
SF(I)=F(I)
SAVEY(I)=Y(I)

H TOO SMALLt RETURN WITH JUMP NEG.
IF(ABS(X+H)-ABSIX))605 ,1501,605
JUMP=-1
GO TO 1101
X=X+H
00 10 I=l,NE .

Y(I)=Y(I)+H@(F(I)+A(I)+13(I)+C(II+O(I))
FP(I)=F (I)+2.0*A(I)+3.O*B(1)+4.0*C(I)+5.0*0(1)
ASSIGN 11 TO IA

34

GO TC 1101
11 DO 12 I=l,NE
12 SY(l)=Y(I)

DO 20 I=l,NE
DELTA (I)=F(l)-FP(I)

20 Y(I) =Y(I)+V*OEL”TA (I)*t-i
ASSIGN 21 TO IA
KCON=l
GO TO 1101

21 KCON=3
00 30 I=ltNE
OALTA (I)=F(l)-FP(I)

29 Y(I}=SY([I+V*OALTA (I)*H
30 CONTINUE

c TEST FOR STARTING SEGUENCE
31 IF(KSTEP-28)35,40,40

c APPLY TEST 2 ON ZEROTH STEP
35 IF(KSTEP)50,50,60

c HALVING TESTS
40 00 45 [=l,NE

IF(ABS(OALTA (1))-ERROR/At)S(Hl)45,45 ,55
45 CONTINUE
50 IF(v*H*CLI F-O.125)60, 60,55
55 X=X-H

c FAIL TESTS, HALVE H
223 H=H/2.o

KOELAY=C
DO 56 I=l,NE
A(I)=A(I)/2.o
tJ(I)=B(I1/4.O
c(I)=c(I)/8.o
F(I)=SF(I)
Y(I)=SAVEY(I)

56 D{I)=D(I)/16.C
GO TO 1000

c PASS TESTS, CORRECT A,B,C,O
60 KSTEP=KSTEP+l

00 65 I=l,NE
A(I)=A(I)+3.0@f3(I)+6 .C*C(I)+lO.O*O(I)+P*OALTA (1)

62 BII)=E! (I)+4.0*C (I)+lC.0*0(I)+Q*OALTA(I)
64 C(I)=C(I)+5.0*D(l)+R*CALIA(1)
67 0(1)=0(I)+S*OALTA(I)
65 CONTINUE

c IF IN STARTING SEQUENCE, BRANCH
IF(KSTEP-24) 70,90,iCC

700G0 TO (lOOO,lGOO, IOOO,74,1OOO, 1CO0,1000S7881CCCJ? 1OOO, 1000,74?1000,
llOOO,lOCO, 86,1OOO,LOOC, 1000,74, 1OOC,1OOO,1OOO) ,KSTEP

c 4TH ,12TH,20TH STEP,GO BACK
74 H=-H

DO 75 I=l,NE
A(I)=-A(I)

75 C(I)=-C(I)
GO 10 1000

c 8TH STEP, GO FORWARO
7B H=-H

00 79 I=l,NE
Y(I)=STARTY(I)
A(I)=-A([)

79 C(I)=-C(II
GO TO 1000

c 16TH STEP, HALVE H, APPLY TEST 1
86 H=H12.O

35

DO 87 I=l,NE
A(I)=A{I)/2.O
B(I)=B(I)/4.o
C(I)=C(I)/8.O

87 l_l[I)=D(I)/16.C
DO 88 I=lsNE
IF(A8S(DALTA (1))-ERROR/ABS(H))88,88 ,89

88 CONTINUE
c PASS TEST GO FORWARD WITH HALVED H

GO TO 78
c FAIL TEST 8EGIN AGAIN WITH HALVED H

89 H=-H
00 92 I=l~NE

92 Y(I)=STARTY(I)
GO TO 1

c 24TH STEP, CL!UBLE H, STARTING SEQUENCE ENDS
90 H=H*2.O

DO 91 I=lcNE
A(I)=A(I)*2.O
B(I)=H(I)*4.O
C(I)=C(I)*8.O

91 D(I)=D[I)*16.C
GO TO 78

100 KOELAY =KDELAY+l
c WILL NEXT STEP MOVE PAST XLIMIT

102 IF(ABS(XLIMIT-X)-ABS(H))103,103,110
c YESSAVE X AND Y, INTEGRATE TO XLIMIT~ RETURN.

103 ENDH=XLIMIT-X
00 105 I=l,NE
AA(I)=ENOH*A(I)/H
BB(I)=ENoH**2*B(I)/H**2
cc(Il=ENDH**3*c(f)/H*@3

105 Do(I)=ENDH~*4*o(I)/H**4
SAVEX=X
DO 800 I=l,NE
SF(I)=F(I)

800 SAVEY(X)=Y(I)
801 X=XLIMIT

DO 106 I=l,NE
Y(I)=Y(I)+ENCH*(F(I)+AA(II +BB(I)+CC(I)+DD(I))

106 FP(I)=F(I)+2.0*AA(I)+3.O*BB(1)+4.0*CC(I)+5.O*DO(I)
ASSIGN 802 TO IA
GO TO 1101

802 DO 805 I=lsNE
805 SY(I)=Y(I)

DO 107 I=I,NE
OELTA (I)=F(I)-FP(I)

107 Y(I)=Y(I)+V*DELTA (I)*ENDH
ASSIGN 803 TO IA
GO TO 1101

803 00 108 I=lsNE
OALTA (I)=F(I)-FP(I)

108 Y(I)=SY(I)+V*OALTA (I)*ENOH
JUMP=l
GO TO 1101

c NOTEST FOR DOUBLING. IF OK, BEGIN NEXT STEP AFTER 00UBLING
110 IF(ABS(XLIMIT-X)-ABS (2.O*H))1000s1000,111
111 IF(KDELAY-4)1CO0,120,12C
120 IF(ABS(2.O*H)-A13S(HMAX))121,121,1OCO
121 DO 1251=1,NE

IF(ABS(DALTA (1))-ERROR/(128.O*ABS(H)))125,125,1CO0
125 CONTINUE

36

IF{V*H*CLIF-O
130 CONTINUE
335 H=2.O*H

00 135 I=l,NE
A(I)=2.O*A(I)
B(I)=4.O*B(I)
C(I)=8.O*C.{1)

135 0(1)=16.O*C(I
KDELAY=O
GO TO 1000

1101 NEQ=NE
HH=H
Xx=x
KKSTEP=KSTEP
00 1102 I=l,NE
FFII)=F(I)

L102 YY(II=Y(I)
CCLIF=CLIF
RETURN
ENO

06Z51130,1 OOO,1O!JO

37

APPENDIX IV. FORTRAN-IV LISTING OF SAMPLE PROGRAM

v=F6.0)

c SAMPLE FORTRAN-IV PROGRAM FOR COMPUTING
c LEGENDRE PCILYNIIMIALS. Y(2) = LEGENDRE
c POLYNCIMIAL OF ORDER V. Y(1) = (1.-X+*2) TIMES
c OERIVhTIVE OF LEGENIYRE POLYNOMIAL.

OIMENSION Y(2),F(2)
c INPUT TflPE = 10. CIUTPUT TAPE = 9.

51 llEAO (10~5C)XC,V, ERROR,Yl,Y2
50 FCIRMAT(1P5E12.71

X=xo
Y(l)=Y1
Y(2)=Y2
WRITE (9,11)ERRCIR,V

11 F13RNAT(7H-ERRCJR=,ELO.4, 26H
WRITE (9,1)X,Y(1),Y(2)

1 FORMAT(3E16.8)
HMAX=O.125
H=HMAX
JUMP=-1

6 XLINIT=X+O.1
5 CALL DEQ(F,X,XLIM IT,Y,ERRQR,2,H,HMAX ,JUMP,KSTEP,KCCIN,CLIFI

IF(JUMP)2,?S4
2 WRITE 19,3C)

30 FCIRMAT(8H JUMP=-1)
CALL EXIT

3 F(l)=-V*(V+l.)*Y(2)
F(2)=Y(l)/(1.-X**Zl
IF(KCQN)5,5,21

21 CLXF=SQRT(ARS(V*(V+l.) /(l.-X**Z)))
Ga To 5

4 WRITE (9,1)X,Y(11,Y(2)
IF[.95-X)51S51,6
END

.

●

38

