Q.g : AMES A, PHILLINS
LA-3292 '
CiC-14 REPORT COLLECTION

REPRODUCTION
COPY

LOS ALAMOS SCIENTIFIC LABORATORY
LOS ALAMOS =———=of the === NEW MEXICO

University of California

A FORTRAN Version of Nordsieck’s Scheme
for the Numerical Integration

of Differential Equations

UNITED STATES
ATOMIC ENERGY COMMISSION
CONTRACT W-7405-ENG. 36



LEGAL NOTICE

This report was prepared as an account of Government sponsored work, Neither the United
States, nor the Commigsion, nor any person acting on behalf of the Commission:

A, Makes any warranty or representation, expressed or implied, with respect to the accu-
racy, completeness, or usefulness of the information contained in this report, or that the use
of any information, apparatus, method, or process disclosed in this report may not infringe
privately owned rights; or

B. Assumes any liabilities with respect to the use of, or for damages resulting from the
use of any information, apparatus, method, or process disclosed in this report.

As used in the above, *’person acting on behalf of the Commission’’ includes any em-
ployee or contractor of the Commission, or employee of such contractor, to the extent that
such employee or contractor of the Commission, or employee of such contractor prepares,
disseminates, or provides access to, any information pursuant to his employment or contract
with the Commission, or his employment with such contractor.

This report expresses the opinions of the author or
authors and does not necessarily reflect the opinions
or views of the Los Alamos Scientific Laboratory.

Printed in USA. Price $2.00. Available from the

Clearinghouse for Federal Scientific
and Technical Information,

National Bureau of Standards,

U. S. Department of Commerce,
Springfield, Virginia




. UBS.

LOS ALAMOS NATL.

I

403 8039 _

Il

AHIAAL

39338 00

LA-3292

UC-32, MATHEMATICS
AND COMPUTERS
TID-4500 (41st Ed.)

LOS ALAMOS SCIENTIFIC LABORATORY
LOS ALAMOS =———=0of the === NEW MEXICO

University of California

Report written: March 1965
Report distributed: June 22, 1965

A FORTRAN Version of Nordsieck’s Scheme
for the Numerical Integration

of Differential Equations

by
H. R. Lewis, Jr. and E. J. Stovall, Jr.



ABOUT THIS REPORT
This official electronic version was created by scanning
the best available paper or microfiche copy of the 
original report at a 300 dpi resolution.  Original 
color illustrations appear as black and white images.

For additional information or comments, contact: 
Library Without Walls Project 
Los Alamos National Laboratory Research Library
Los Alamos, NM 87544 
Phone: (505)667-4448 
E-mail: lwwp@lanl.gov






ABSTRACT

Modifications of Nordsieck's scheme for numerically integrating
differential equations are described which permit satisfactory operation
in floating-point arithmetic. The major modification, recommended for
both fixed-point and floating-point operation, is a reformulation of the
test for numerical stability. Also discussed, in relation to the present
floating-point scheme, are Nordsieck's use of guard digits and novel
rounding techniques. A computer subroutine for the modified scheme is

presented in the FORTRAN-II and FORTRAN-IV languages.



ACKNOWLEDGMENTS

We express our appreciation to R. M. Brown and P. Ponzo of the
Coordinated Science Laboratbry of the University of Illinois, and to
E. P. Gray and J. G. Monteabaro of the Applied Physics Laboratory of the
Johns Hopkins University, for kindly providing us with their floating-
point versions of Nordsieck's integration scheme. The present work began

as a result of using their computer programs.



ABSTRACT . . . .
ACKNOWLEDGMENTS . . . . . . .
INTRODUCTION . . . . . . . . .,
I. THE STABILITY TEST . . . .
II. GUARD DIGITS AND SPECIAL ROUNDING PROCEDURES
III. THE FORTRAN SUBROUTINES . . . . .
IV. RESULTS OF SOME TEST PROBLEMS . . .
REFERENCES e e e e e
APPENDICES
IA. FORTRAN-IT LISTING OF DEQ FOR IBM 7094
IB. FAP LISTING OF RNDN FOR IBM 7094
ITA. FORTRAN-IV LISTING OF DEQ FOR IBM 7094
IIB. MAP LISTING OF RNDN FOR IBM 7094
ITI. FORTRAN-IV LISTING OF DEQ FOR IBM 7030
IV. FORTRAN-IV LISTING OF SAMPLE PROGRAM .

CONTENTS

12

14

18

23

24

28

29

. 33

. 34

. 38






INTRODUCTION

One of the important problems in numerical analysis which arises in
scientific and engineering research is the numerical integration of a
system of differential equations. Because of the frequency of this
problem, it is valuable to have a general-purpose numerical scheme with
which the integration of a large class of differential equations can be
reliably performed. One numerical scheme, useful as such a general
purpose method, and well adapted for efficient use with digital computers,
has been proposed by A. Nordsieck.® This scheme is designed to solve a
system of first-order equations,

dyi

;—=fi(xa Yis Y25 ¢ Yn), i=1, 2, ..., n, (1)
X

with given initial conditions, whenever the f. are such that a unique
solution exists. The basic formulas of the method are equivalent to
finding the fifth-degree polynomial approximation to the desired solution
of the differential equations which is determined from the values of y
and f; at the current value of the independent variable x, and from the
values of f; at the four preceding values of x. The effective approxi-
mating golynomial is identical with that of the Adams method of integra-
tion.%? However, Nordsieck has reformulated and modified the Adams
method in a way which is of interest for practical application.

An important practical feature of Nordsieck's scheme is the auto-
matic increase and decrease of the elementary interval size during the
course of the integration. This is accomplished by means of two tests
that are performed at each elementary integration step. One test deter-
mines an approximate bound of the truncation error in the solution. The
other test is intended to guarantee that the integration scheme be numer-
ically stable throughout the integration; that is, those solutions of the
equations of the numerical method which are not related to the differen-
tial equations are supposed to be damped out if this test is always
satisfied.

Nordsieck formulated the integration scheme for fixed-point arith-
metic. The purpose of this note is to explain modifications of the
original formulation which allow satisfactory operation with floating-
point arithmetic. The major modification, discussed in the first




section of this report, is a reformulation of the stability test itself
in order to correct a flaw in the original formulation; this modifica-
tion is recommended for both fixed-point and floating-point operation.
The special procedures proposed by Nordsieck (novel rounding techniques
and the use of guard digits), which were helpful in avoiding malfunctions
of the test, as it was originally formulated, are discussed in Sec. II.
In Sec. III, the calling sequence and use of a FORTRAN computer subrou-
tine for the modified Nordsieck scheme are described.* Results of some
test problems are given in Sec, IV. Listings of three versions of this
subroutine, in the FORTRAN-II and FORTRAN-IV languages for the IBM 7094
and IBM 7030 computers, are given in appendices. In Appendix IV is the
listing of a sample FORTRAN-IV program for integrating the equation for
Legendre polynomials.

Modification of the stability test came as a result of two diffi-
culties which were sometimes encountered with earlier floating-point
versions of the integration scheme; these were 1) reduction of the
elementary integration interval to unnecessarily or absurdly small
values, and 2) unstable '"blowup'" of the solution.

Problems which have been done with floating-point versions of the
integration scheme include those reported by Nordsieck! and, also, inte-
gration of the equations of motion of a charged particle in a magnetic
field. The occurrence of difficulties was very much more frequent with
the latter problem. With the current floating-point version of the
integration scheme, all of the problems are done satisfactorily.

I. THE STABILITY TEST

In his original paper1 Nordsieck proposes a sufficient condition

for insuring stability of the numerical method with a comfortable margin
of safety. In terms of the elementary integration interval h and the
eigenvalues of the matrix 3f/dy, whose elements are Bfi/ayj, the

*The programming details of this subroutine are, in large measure, based
on the computer program of an earlier floating-point version of
Nordsieck's integration scheme which was kindly made available by the
Coordinated Science Laboratory of the University of Illinois. That pro-
gram, dated October 1, 1963 and designated D2 (F) UOFI DEQ, was part of
the 1604 computer library of the Coordinated Science Laboratory. The
program of another earlier version, dated October 26, 1962 and desig-
nated BCC Library Routine No. 5.02.06, was made available to us by the
Applied Physics Laboratory of the Johns Hopkins University.



condition is
1
== |n\| = 5 (2)

for each eigenvalue A. Nordsieck does not directly require satisfaction
of this inequality. Instead, he proposes a test which is intended to
insure satisfaction of the inequality, and which is more easily applied.
However, his test does not guarantee the validity of the stability
condition (2), except in the special case that only a single differential
equation is to be solved.

Let y and f denote the column matrices whose elements are y; and
f;, respectively. 1In the course of the iterative solution of the
implicit equations of the scheme, three approximations to y are com-
puted — first y(l), then y(z), and finally y(3). These column matrices
are related to the square matrix 3f/dy through the approximate equality®

vy Py = Fn I B,y 3

If there is only one differential equation to be solved (n = 1), then
y(l), y(z), y(3 , and 3f/dy are all single numbers, as opposed to true
matrix quantities, and we have

D= 5Pl = 2 () 152 D)L = @

The test to insure satisfaction of the stability condition (2) proposed
by Nordsieck for the case n = 1 is®

1y P2 Ly Dy (5)

Indeed, for n = 1, the inequalities (2) and (5) are identical to within
the approximation that Eq. (3) is an exact equality. (If n = 1, then
A = 3f/dy.)

However, if there are two or more equations to be solved simultane-
ously (n > 1), then the situation is different. Let a norm of a matrix
be denoted by enclosing the matrix symbol between double vertical bars;
then, with suitably chosen norms, the relation corresponding to Eq. (4)



is

2 95 £ 2 1
5 520 = 255 1 ZEN 152yl > ®)

Let A ., be that eigenvalue of af/ar which has the largest magnitude. A

standard inequality relating ”af/ay and kmax is'7

Mpax| = || || (7)

The stability test proposed by Nordsieck for the case n > 1 may be
written as®

- y P = ¢ Iy®- v, (8)

where the column matrix norm used is either the largest magnitude of any
element, or the euclidean norm. Combining relations (6), (7) and (8),
we have

55 |

42
= | = 2 h2E = ly(2 o1

= 288 "y (2) (1)” 8 . (9)

max

It is to be noted that no bound whatsoever is obtained on “h d£/dy|| or

on |h}\max . In fact, there are numerical examples for which the inequal-
ity (8), which represents the test, is satisfied while the inequality (2),
which represents the stability condition, is violated. A two-dimensional
case illustrating this point is the following. Let

-1 2
95 ., of 1
h===+ and
288 dy 4 (_3 4)

3
(y(z)- y(l)) =(2) ; then, using (3),

*If the square matrix and column matrix norms are so chosen that (6) is
valid, then these norms are said to be consistent with one another.
Norms are usually chosen in this way; see, for example, Ref. 7.

10



1
-y - %( 1).

With these choices, we have

(3) (2) f%’ if the "maximum element' norm is used.
-y

ly -
(2) _ y(1)|

ly

7%%=, if the euclidean norm is used.

With either type of norm, we have

(3)_ y(2)‘

ly 1 . e fs
< =, and the test (8) is satisfied.
1 8°
(2)_ 4( )|

|y

On the other hand, the eigenvalues of

95 , of
288 © 9y

are 1/4 and 1/2, so that

95

288 hApax =

N =

1
>-§,

which does not satisfy the stability condition (2). Thus, it is evident
that the original formulation of a test to insure satisfaction of the
stability condition (2), and therefore to insure stability, is incorrect
except for the special case n = 1.%*

The stability test used in the present FORTRAN version of the
scheme is precisely the basic stability condition expressed by (2). That
is, the elements of the matrix 93f/dy are evaluated — analytically if
possible, numerically otherwise — and either an upper bound of the

%

A. Nordsieck (private communication) agrees that the stability test as
originally formulated does not insure satisfaction of the stability
condition (2).

11



magnitudes of the eigenvalues, or the largest eigenvalue itself, is
computed.

The original stability test was subject to malfunction because of
round-off noise. This difficulty was alleviated, in the fixed-point
version, by use of guard digits and novel rounding techniques., Such
round~off noise problems do not interfere with the new stability test.

II. GUARD DIGITS AND SPECIAL ROUNDING PROCEDURES

In the fixed-point version of this integration scheme, with the
stability test in the form given by expression (9), Nordsieck found it
de31rab1e to carry more digits in y than in f — so-called guard
digits.® The number of extra digits was the integer nearest to
log (|h| 1). (B is the base of the number system with which computations
are performed For example, B = 2 with binary arithmetic.) The reason
given for this is to minimize the accumulation of round-off error in y
when the number of elementary steps is large. A different reason for
keeping the guard digits is that a certain form of round-off noise then
tends not to interfere with the functioning of the original stability
test (8). This can be seen in the following way. From the equations of
the 1nte%rat10n scheme,1 it is easily derived that the differences,
(y( ) and (y 2) - y(l ), can be expressed as

y Py . B 3 tetn, y P+ m] - et n y Pt h)]s (10a)

and

y(2)_ y(l) = ;g; h g [§-+ h, y(l)(x + h)] - £P s. (10b)

The y(l) are approx1matlons to y for the independent variable equal to
x + h; fP, the "predicted" value of f, is a first approximation to the
value of f at x + h. Using Egs. (10a) and (10b), the inequality (8)
can be rewritten as

”f[} + h, y(z)(x + h)] - flx + h, y(l)(x + h)]“

(11)

sLidx+n, yPa+m] - .

12




When the test is written in this form, it is evident that round-off noise
in the computed values of the derivatives can interfere with the func-
tioning of the test. This is accentuated by the fact that both of the
differences in the inequality can be quite small. The error in f(x, y)
due to an error in y , for the case n = 1, can be estimated as follows.
Letting Ay be the error in y and Af the corresponding error in f, we
have, in first approximation,

|ag| = I%fjl |ay| . (12)

However, |af/ay| is bounded by the stability condition

3f 1
|g§| = T (13)
288 :

Combining (12) and (13), we have

36 1
ol )
ag] 5 38 (L) fay| = p PV TRDpg, (14)

In binary arithmetic (B = 2), for the case n = 1, an error equal to the
least count in y will usually give rise to an error less than the least
count in f, if log (1/|h|) more digits are carried in y than in f.
Thus, round-off noise of the magnitude of the least count in y would
tend not to interfere with application of 'a stability test in the form
of expression (11).

Because the number of figures in a floating-point number in a
digital computer does not change, guard digits cannot be easily used for
stopping the propagation of round-off noise from y into f, even in the
case n = 1. (An alternative would be to use double-precision arithmetic
for y.) Therefore, it is fortunate that the modified stability test,
which is identical with the stability condition (2), is not influenced
by such noise. Neither guard digits nor double-precision arithmetic has
been used in the floating-point version of Nordsieck's scheme.

A novel way of rounding certain quantities which appear in this
integration scheme was introduced in the original fixed-point version;
this type of rounding was called 'rounding away from zero."® The pur-
pose of this rounding was to eliminate a type of noise which sometimes
interfered with the proper operation of the two tests that control

13



the size of the elementary interval. An analogous floating-point proce-
dure can also be devised. Such a procedure has been tried in the
floating-point version of the integration scheme which incorporates the
new stability test. However, with that version of the integration
scheme, we have not observed any overall improvement in the operation of
the interval control logic when the rounding procedures are included;
nor have we observed any malfunction of the interval control logic when
these special rounding techniques are omitted. The floating-point
"rounding away from zero," at least when done with the FORTRAN language,
is rather time consuming, with the result that the computer time neces-
sary for a particular problem can be substantially longer with the
special rounding techniques than without. For these reasons, "rounding
away from zero' has been omitted from the floating-point version of the
integration scheme.

IITI. THE FORTRAN SUBROUTINES

There are three FORTRAN versions of the modified Nordsieck scheme:
One for the IBM 7094 in FORTRAN-II, one for the IBM 7094 in FORTRAN-IV,
and one for the IBM 7030 in FORTRAN-IV. The calling sequence and use
are the same for each version. The two versions for the IBM 7094 include
normal rounding of certain quantities which is accomplished via a sub-
routine called RNDN. (For the FORTRAN-II version, this subroutine is
written in the FAP language; for the FORTRAN-IV version, it is written
in the MAP language.) The version for the IBM 7030 does not include any
rounding. The other differences between the three versions are minor
ones having to do with differences between the FORTRAN-II and FORTRAN-IV
languages and between the IBM 7094 and IBM 7030 computers.

Listings of the FORTRAN-II version for the IBM 7094, the FORTRAN-IV
version for the IBM 7094, and the FORTRAN-IV version for the IBM 7030
are given in Appendices IA, IIA, and III, respectively. Listings of the
FAP and MAP versions of RNDN are in Appendices IB and IIB, respectively.

Suppose that the differential equations to be solved are

dyi

E;— = fi(x, Vis Yoo 0o yn), i=1, 2, ..., n,

and that the integration is to proceed from x = x; to x = x;. The call-
ing sequence for the integration subroutine is:

CALL DEQ(F, X, XLIMIT, Y, ERROR, NEQ, H, HMAX, JUMP, KSTEP, KCON, CLIF)

14



The allowable maximum number of equations that can be solved by DEQ is
the dimension of the dimensioned quantities. (They are equally dimen-
sioned.) As listed in the appendices, DEQ can solve a maximum of 20
equations.

The meaning of the arguments in the argument list is:

F An array of dimension n such that F(i) = f;. This array must
be computed by the calling program for subsequent use by DEQ.
The F(i) need not be computed until after the first return
from DEQ. (See JUMP, below.)

X The current value of the independent variable x . When DEQ is
first called, it must be called with X = x,. Thereafter, the
value of X is adjusted by DEQ, and it must not be changed by
the calling program.

XLIMIT The final value of the independent variable x. When DEQ is
first called, it must be called with XLIMIT = x,, and XLIMIT
is not to be changed before the integration has proceeded to
X = Xg.

Y An array of dimension n such that Y(i) = yi- When DEQ is first
called, it must be called with Y(i) equal to the value of y;
at x = x,; that is, DEQ is first called with the elements of Y
equal to the initial values of the y;- Thereafter, the Y(i)'s
are adjusted by DEQ, and they must not be changed by the call-
ing program. When the integration is completed, and
X = XLIMIT, then the value of Y(i) equals the final value of
yi> i.e., the value of y; at x = x;.

ERROR A positive number, supplied by the calling program, which is
related to the absolute value of the error (as opposed to the
relative error) which is introduced in the values of the y;
when the integration has increased the value of x by one unit
(x » x + 1). The precise numerical relation of ERROR to the
accuracy of the integration cannot be given. However, ERROR
is an approximate bound on the sum of the truncation errors
incurred at each integration step during the process of inte-
grating over a unit interval of the independent variable. In
general, the error introduced at any given step will propagate
forward in a way primarily determined by the nature of the
differential equations being solved. Because of the propaga-
tion of errors, the sum of the truncation errors at each step
is not generally equal to the error in the final result of
integration due to truncation errors. (ERROR is the quantity
B¢ which is discussed in Ref. 1. Further details, including

15



NEQ

JUMP

the relation of B-e to other errors in the scheme, can be

found there. Note that the discussion in Ref. 1 assumes
fixed-point arithmetic.) It can be said that the test in DEQ
in which ERROR occurs tends to adjust the integration step

size in such way that a certain degree of accuracy in the final
result is economically achieved. With a given set of equations
to be solved, it is useful first to choose ERROR about equal

to the absolute value of the error allowable after a unit step,
and then to observe the effect on the final result of using
values of ERROR both larger and smaller than the first value.
In that way, it is possible to determine experimentally the
approximate relation between the value of ERROR and the final
accuracy. As ERROR is decreased it may eventually happen that
the accuracy also decreases because of increasing importance

of round-off error. Also, if ERROR is made small enough, then
the elementary step size will be 'made too small to be signifi-
cant. (See JUMP, below.)

NEQ = n, the number of equations in the system to be solved.

Current value of the integration step size. When DEQ is first
called, it must be called with H equal to some starting value.
It is convenient to let the starting value equal HMAX. There-
after, the value of H is adjusted by DEQ, and it must not be
changed by the calling program.

The maximum allowable absolute value of H equals the absolute
value of HMAX. (HMAX may be of either sign, but only |HMAX|
is used.) HMAX should be chosen smaller than the width of any
fine structure in the solution, to insure that the correct
solution is followed over such fine structure.

The values of JUMP are -1, 0, and 1. When DEQ is first called,
it must be called with JUMP = -1. Thereafter, JUMP must not
be altered by the calling program. Whenever control is
returned to the calling program, the value of JUMP must be
ascertained. If JUMP = -1, then H has become small enough
that, to within the accuracy of the computer, X + H = X. The
integration cannot continue if this occurs. If JUMP = O, then
new values of the F(i) must be computed with the current values
of X and Y(i). Then, DEQ is called again, leaving JUMP = 0.
(The F(i) need be computed only if control is returned to the
calling program with JUMP = 0,) If JUMP = 1, then the inte-
gration to XLIMIT has ended. The integration can be carried
further in the same direction by changing XLIMIT to a new
final value of x , and again calling DEQ, leaving JUMP = 1.

16



KSTEP

KCON

CLIF

A running index which counts the number of elementary steps
taken during the integration. If KSTEP is less than or equal
to 24, then the starting sequence 1is being executed. If KSTEP
is larger than 24, then the main integration procedure is being
executed. If KSTEP reaches the largest integer that can be
stored in the computer, then KSTEP is automatically set equal
to 28 at the next step. This insures that the procedure will
not revert to the starting sequence during the integration.
KSTEP need not and should not be set by the calling program.

An integer, equal to 0 or 1, which indicates whether or not a
new value of CLIF is to be computed by the calling program,
using the current values of X and Y(i). If KCON = O, then
CLIF is not to be computed. If KCON = 1, then CLIF is to be
computed.

A number, computed by the calling program, which is used by
DEQ for adjusting H to insure numerical stability of the
method. CLIF is to be greater than or equal to the magnitude
of the largest eigenvalue of the matrix whose elements are
ajy = 0f;/dy;. That is, if Aj(i =1, ..., n) is the 1th
eigenvalue (possibly complex) of this matrix, then

CLIF = kkilmax’ so that CLIF is an upper bound of the magni-
tudes of the eigenvalues. The stability condition which is
applied is expression (2) of Sec. I. Upper bounds of ‘ki|max
are provided by the following two expressions:

|>\i|max = Max Z |ajk|
k

xilmax = Max Z |ajk|
h|

These two bounds are generally different and may be signifi-
cantly larger than lki max* If it is very inconvenient to
determine an upper bound, then an appropriate value for CLIF
(one which makes the method stable) must be chosen intuitively
or on the basis of experience.

In Appendix IV is the listing of a sample FORTRAN-IV program for

integrating the equation for Legendre polynomials, in steps of 0.1, from
an initial value of x to a final value not greater than 0.95.

17



IV. RESULTS OF SOME TEST PROBLEMS

In addition to results obtained with the four test problems
described by Nordsieck! (Problems 3 through 6, below), we also report
results with two other problems (Problems 1 and 2, below).

Problem 1

dzy

—_—= -y
d<?
This equation was integrated from x = 0 to x = 10 n, with the

initial conditions y = 0 and dy/dx = 1. The results, for three values
of ERROR, are shown in Table I.

TABLE I
X v dy/dx ERROR Version

31.415926 -.21389202 x 10°® .99999816 1074 FORTRAN-IT,
-.89575723 x 10°° .99999980 1076 LIBM 7094
-.10448896 x 10°° 1.0000004 1078

31.415926 -.22733957 x 10°° .99999823 1074 FORTRAN-IV,
-.95797372 x 10°° .99999984 10-6 IBM 7094
-.10048494 x 107° 1.0000004 1078

31.415926 -.18014973 x 10°° .99999809 1074 FORTRAN-IV,
-.56000062 X 10°° .99999998 1078 IBM 7030
-.53630424 x 10°° 1.0000000 1078

18



Problem 2

.. Py dy
(1 -x°) — - 2x —+ 2L+ Dy
dx® dx

I
o

The Legendre polynomial of order 4 is a solution of this equation.
The equation was integrated from x =-.9 to x = .9, with the initial
conditions y = Pz(-.9) and

dy sz

dx dx X = -.9

The results, for £ = 4 and two values of ERROR, are shown in Table II.
The initial values quoted in the table were computed from the exact
formulas for P,(x) and dP,/dx.

TABLE II

x .y (1 - ¥°) dy/dx ERROR Version

-.9 . 20793745 -1.1414249 FORTRAN-II,

.9 .20793735 1.1414254 1072 IBM 7094
.20793742 1.1414250 10°®

-.9 .20793748 -1.1414249 FORTRAN-TIV,

.9 .20793732 1.1414254 1072 IBM 7094
.20793740 1.1414250 10°°®

-.9 .20793750 -1.1414250 FORTRAN-TIV,

.9 .20793743 1.1414255 1072 IBM 7030
.20793750 1.1414250 107°

19




Problem 3

dy

0, for |x - %| > 78!
dx

2B, for |x - %l < 78

This equation was integrated on the IBM 7030 from x = 0 to x = 1,
with y(0) = 0 and HMAX = 27°8. The exact value of y(l) is 7% = ,03125.
The results, for three values of ERROR, are shown in Table III. The
minimum value of the integration step size, Hgi,, which occurred during
the integration and the value of KSTEP at the end of the integration are
also given. (KSTEP-24) is the number of steps after the starting
sequence. The width of the rectangular pulse is too small for the prob-
lem to be done on the IBM 7094. However, the equation

dy _ 0, for |x - %l > 7722
dx

2®, for |x - §| < 7722

was integrated on the IBM 7094 with results similar to those in Table III.

TABLE IIT
ERROR KSTEP Hyin y(1)
730 440 737 .0310059
784 476 741 .0312347
4t 538 248 .0312497

Problem 4

2
dy (27%°)
—_— 2'7

dx X + (27397

This analytic derivative is similar to the derivative in Problem 3.
The equation was integrated on the IBM 7030 from x = -1/2 to x = 1/2,

20




with y(-1/2) = 0 and HMAX = 778, The exact solution is

1 - 1 - X
2%y = 3 tan 1 (2®%) + g ten 1 730 -

Thus, 2°°y(1/2) = 0.39269908. The results, for three values of ERROR,
are shown in Table IV. The value of KSTEP at the end of the integration
is also given.

TABLE IV

ERROR KSTEP 22%y(1/2)
282 453 39274749
288 518 .39270319
7740 643 .39269939

Problem 5

This unstable equation was integrated on the IBM 7030 from x = 1/2
to x = 1, with y(1/2) = 272! and HMAX = Z7%. The exact solution is

y =3 x°.

Thus, y(1) = 1/2. The result, for ERROR = 272®  is shown in Table V.
At the end of the integration, KSTEP was 126.

TABLE V
X y
.50 4.76837 x 1077
.5078125 6.50520 x 1077
1.0 .500195

21



Problem 6

dzy

d

y
¥ —+x—+[¥ - (16)3]y=0

dx®

dx

A solution of this equation is the Bessel function of order 16.

The equation was integrated from x

6 to x = 6138 with HMAX = 1 and

initial conditions y(6) = 1,201950 x 10°® and dy/dx = 2.986480 x 10°°.
The results, for ERROR = 2723 and ERROR = 228, are shown in Table VI

and Table VII, respectively.

TABLE VI (ERROR = Z2%)

kSTEP X y(DEQ) y(correct) dy/dx(DEQ) dy/dx(correct)

6.0 1.201950x 10°© 2.986480 x 10°°

29 6.125 |1.633716 x 107©|1.633712x 10°°!3.963782 x 10°%{3.963764 x 10°°

59403 (6138.0/1.360368 X 1072 |1.362485 x 10°2]1.008985 x 1072 1.009251 x 10°2
TABLE VII (ERROR = Z2°°8)

STEP X y(DEQ) y(correct) dy/dx(DEQ) i{dy/dx(correct)

6.0 1.201950x 10°° 2.986480%x 10°¢

102721/6138.0/1.362435 x 1072} 1.362485 x 1072 {1.009249 x 1072{1.009251x 1072

22




REFERENCES

A. Nordsieck, Math. Comp. 16, 22 (1962). [See also A. Nordsieck,
Proc. Symp. Appl. Math., Amer. Math. Soc., Vol. XV, pp. 241-250
(1963) 1. '

W. E. Milne, Numerical Solution of Differential Equations (John
Wiley and Sons, Inc., New York, 1953), pp. 53-55.

L. Collatz, The Numerical Treatment of Differential Equations,
3rd Ed. (Springer-Verlag, Berlin, 1960), pp. 83-86.

Reference 1, Eq. (8) and pp. 29, 30, and 36.
Reference 1, Eqs. (8) and (20).
Reference 1, Eq. (22a) and p. 36.

J. H. Wilkinson, Rounding Errors in Algebraic Processes (Her
Majesty's Stationery Office, London, 1963), pp. 79-82.

Reference 1, pp. 25, 35, and 46.

Reference 1, pp. 38-39 and Appendix C.

23



APPENDIX IA. FORTRAN-II LISTING OF DEQ FCR IBM 7064

SUBROUT INE DEQ{FF+XXyXLIMIT,YY, ERROR¢NEQsHHyHMAX y JUMP 4 KKSTEP,
1KCCN,CCLIF)
ODIMENSION STARTY(20),Y(Z20),SY(2C),SAVEY(20)},F{20),FP(20),
1DELTA (20),DALTA (20),A(20),B{20},C(20},D(20),
2AN(20),8B(20),CC(20),CCL20),SF(20),FF{20)},YY(2C)
NE = NEQ
H=HH
X=XX
KSTEP=KKSTEP
DO 1100 I=1,NE
FUI)=FFL(I)
1100 Y(I)=YY(I)
CLIF=CCLIF
IF(KSTEP=-32767)993,991,991
991 KSTEP=28
C TEST FOR TYPE OF ENTRY
993 IF({JUMP)}1,998,999
998 GO TO 1A,(100G,11,21,802,803)

C JUMP PQS. RESTORE VALLES
999 X=SAVEX
992 JuMP=0
DU 901 I=1,NE
FLI)=SF (I}
901 Y(I)=SAVEY(I)
GO TO 1¢G2
C JUMP NEG. INITIALIZE

1 DO 5 I=1,NE
STARTY(I)=Y(I}
A{I})=0.001
8(1)=0.001
C(I)=0.001

S D(1)=0.001
KSTEP=0
KDELAY=0
KCON=Q
T=95,/(288.%64.)
U=863./(12.#5040.)
Vv=95,./288.
P=25./24.
0=35./72.
R=5./48.
S=1./120.

ASSIGN 1000 TO IA
JuMP=0
Go 10 1101
C BEGIN INTEGRATION STEP
1000 DO 111l [=1,NE
SF(I)Y=F(I)
1111 SAVEY(I)=Y(I)

C H TOO SMALL, RETURN WITH JUMP NEG.
600 IF(ABSF(X+H)-ABSF{X))605,601,605
601 JuMP=-1

GO 10 1101
605 X=X+H

DO 10 I=1.NE
YOII=Y(I)+He (F(I)+ACT)4BOI)+C(I}+DLI))
Y{I)=RNDNF(Y(I})

10 FP{I)=F(I)+2,0#A{1)+3,0eB(1)+4.08C(1)+5.0#D(1)}

24




ASSIGN 11 TQO IA
GO TO 1101
11 DO 12 I=1,NE
12 SY(1)=Y(I)
DO 20 I=1,NE
DELTA (I)=F(I1)-FP(I)
20 Y(I)=Y(I)+VeDELTA (I)#H
ASSIGN 21 TO IA
KCON=1
GO To 1101
21 KCCN=9
DO 30 I=1,NE
DALTA (I)=F{I1)}-FP(I)
DALTA(I)=RNDNF(DALTA(I))
29 Y(I)=SY{I)+VeCALTA ([)*H
YC{I)=RNENFLY (1))
30 CONTINUE
TEST FOR STARTING SEQUENCE
31 IF(KSTEP-28)35,40,40
APPLY TEST 2 ON ZEROTH STEP
35 IF(KSTEP)50,50,60
HALVING TESTS
40 DO 45 I=1,NE
IF(ABSF(DALTA (1))-ERROR/ABSF(H))45,45,55
45 CONTINUE
50 IF(VeH®CLIF-0.125)60,£0,55
55 X=X~H
FAIL TESTS, HALVE H
223 H=H/2.0
KDELAY=G
DC 56 I=1,NE
ALLI)=A(1)/2.0
BLI)=8(1)/4.0
CtI)=Cl1)/8.0
FUL)=SF(I)
Y(I)=SAVEY(I)
56 D(1}=D(1}/16.C
GO TO 1€0G
PASS TESTS, CORRECT A,B,C,D
60 KSTEP=KSTEP+1
DO 65 I=1,NE
AUI)=A(1)+3.0%B(1)+6.C#C(1)+10.0%D(1)+P#DALTA ()
62 B(1)=B(1)+4,0eC([)+1G.0*D{ 1) +QeCALTA(I)
64 C(I)=ClI)+5,0%D(1)+R*CALTA(I)
67 D(I1)=D(I)+S«DALTA(I)
65 CONTINUE
IF IN STARTING SEQUENCE, BRANCH
IF(KSTEP-24) 70,9C,1G0
70060 TO (100C,1C00,1003,74,1000,1C00,1000,78,1CGGC,1000,1000,74,1000,
11000, 1000,861000,1000,1000,74,1000,1000,1000) ,KSTEP
4TH ,12TH,20TH STEP,GO BACK

T4 H=-H
DO 75 I=1,NE
All)=-ALI)
75 C(I)=-C(1l)
GO TO 1cC00
8TH STEP, GO FORWARD
78 H=-H

D0 79 I=1,NE
Y{L}=STARTY(I)
All)=-AL])

79 Cll)=-C(I)

25



86

87

88

89

92

90

91
100
102
103

1¢s

800
801

106

802
805

107

803

108

110

GO TO 1COG

16TH STEP, HALVE H, APPLY TEST 1

HxzH/2 .0

DO 87 I=1,NE

AlL)Y=A(1)/2.0

B(I)=B(I}/4.0

C(l})=ClI}/8.0

D(I}=D(I})/16.C

DC 88 I=1,NE

IF(ABSF(DALTA (I))-ERROR/ABSF(H))88,88,89

CONTINUE

PASS TEST GO FCRWARD WITH HALVED R
GO TO 78

FAIL TEST BEGIN AGAIN WITH HALVED H
H==H

DO 92 I=1,NE

Y{L)}=STARTY(I)

GO T01

24TH STEP, DGCUBLE H, STARTING SEQUENCE ENDS
H=H#2,0

DO 91 I=1,NE

AlI)}=A(1)=2.0

B{I}=B(I)#4.0

Cll)=C(I)#8.0

D(I})=D(I}#l6.C

GO TO 78

KCELAY =KDELAY+1

WILL NEXT STEP MOVE PAST XLIMIT
IF(ABSF{XLIMIT-X)-ABSF(H}}103,1C3,110
YESeseeeSAVE X ANC Y, INTEGRATE TU XLIMIT, RETURN.
ENDH=XL IMIT-X

DC 105 I=1,NE

AA(I)=ENDHR#A({I}/H

BB(I1)=ENDH##2#B8(])/Hue2
CC(I)=ENDHs#3#C([)/He»3
DD(I)}=ENDH##4#D([)/Hen4

SAVEX=X

DO 80C I=1,NE

SFLI)=F(1)

SAVEY(IL)}=Y (1)

X=XLIMIT

DO 106 I=1,NE
Y{I)=Y(I)+ENCHe(F(I)+AA(I)}+BB(I)}+CC(I)}+DD(I})
Y{I)}=RNDNF(Y(I1})
FPUI)=F(I)42.CoAA{1)+3.C#BB(1)+4.0#CC(I)+5.0+DD(I)
ASSIGN BN2 TO IA

GC 70 1101

DC 805 I=1,NE

Sy(ry=vy(n

DO 107 I=1,NE

DELTA (I)=F(I}-FP(I)

Y(I)=Y([)+VeCELTA (1)#ENDH

ASSIGN 803 TO IA

GO 10 1l1c1

DO 108 I=1,NE

DALTA (I)=F(I}-FP(I)}

Y{I)=SY(I})+V#CALTA (I)#ENDH
Y{I)}=RNDNF(Y(I)})

JuMP=1

GO TD 1101

NOeoo oo TEST FOR DOUBLINGC. [IF OKy BEGIN NEXT STEP AFTER DCUBLING
IF(ABSF(XLIMIT-X)-ABSF(Z.#H)})}10C0,1C00,111

26



111 IF(KDELAY-4)1C0C,120,12C
120 IF(ABSF(2.#H)-ABSF{HMAX))121,121,1CC0
121 DO 1251=1,NE
IF(ABSF(DALTA (I1))-ERROR/{128.#ABSF(H)))125,125,1C00
125 CONTINUE '
IF(VeHsCLIF-0.0625)120,1000,109C
130 CONTINUE
335 H=2,0#H
DO 135 I=1,NE
A(LI)=2.CeA(])
B(I)=4.0%B(1)
ClI)=8.0#CtlI)
135 DUI)=16.0%C(1])
KDELAY=C
GO TD 1C00
11C1 NEC=NE
HH=H
XX=X
KKSTEP=KSTEP
DO 1102 I=1,NE
FFUI)=F(I)
1102 YY(I)=Y(I)
CCLIF=CLIF
RETURN
ENC

27




APPENDIX IB. FAP LISTING OF RNDN FOR IBM 7094

L] FAP

#RNCN NORMAL ROUND
ENTRY RNDN

RNDN FRN
TRA 1,4
END

28



APPENDIX IT1A., FORTRAN-IV LISTING OF DEQ FOR IBM 7094

1100

991

993
998

999
992

901

1000
1111

600
601

6G5

10

SUBROUTINE DEQU{FF ¢XXoXLIMIT,YY, ERROR,NEQsHH, HMAX 3 JUMP ,KKSTEP,
1KCON,CCLIF)

DIMENSION STARTY(20)},Y(20),SY(2C),SAVEY(20),F(20),FP(20),
IDELTA (20),CALTA (20),A(20),B(2D)},C(20)},D(20},
2AA(20)4BB(2C)sCCL20),CD120),SF{20),FF(20),YY(20)

NE = NEQ

H=HH

X=XX

KSTEP=KKSTEP

DO 1100 I=1,NE

FUI)=FF(I)

YUL)=YY(])

CLIF=CCLIF

IF(KSTEP-32767)992,991,591

KSTEP=28

TEST FOR TYPE OF ENTRY

IF(JUMP}1,998,999

GO TO 1A,(100C,11,21,802,8G3)
JUMP POS., RESTORE VALUES
X=SAVEX

JUMP=0

DO 901 I=1,NE

FLI)=SF (1)

Y{I)=SAVEY(I)

GO 10 102

JUMP NEG. INITIALIZE
DO 5 [=1,NE
STARTY(I}=Y(I)
A(l)=0.001

B(I1)=0.001

Ctl}=0.001

D(I1)=0.001

KSTEP=0

KDELAY=C

KCON=0
T=95.0/(288.0#64.C)
U=863.0/(12.0#504C.0)
Vv=95,0/288.0
P=25,0/24.0
Q=35.0/72.0
R=5.0/48.0
$=1.0/120.0

ASSIGN 1000 TG IA
JUMP=0

GO 10 1101

BEGIN INTEGRATION STEP
DO 1111 I=1,NE
SFLI)=F(I)
SAVEY(I)=Y(I)

H YOO SMALL, RETURN WITH JUMP NEG.
IF(ABS{X+H)-ABS(X))605,£01,605
JUMP=-1
GO TO 1101
X=X+H
DO 10 I=1,NE
YOI)=YUL)¢HSUFCIY+ACT)4BOI)I+CLIY+D(T))
YUI)=RNON(Y(I})
FPLI)=F(I)+2.0#A(1)+3.0#B8(1)+4.0#C(I)+5.0%0(1)

29



ASSIGN 11 TO IA
Go 10 1101
11 DO 12 I=1,NE
12 Sytly=y(l)
DO 20 I=1,NE
DELTA (I)}=F{I)}-FP(I)}
20 Y(I)=Y(I)+VeDELTA (I)}sH
ASSIGN Zz1 TO IA
KCON=1
GO 10 1101
21 KCON=0
DO 30 I=1,NE
DALTA (I)=F(I}-FP(I)
DALTA(I)=RNCN{DALTA(I})}
29 Y{(I)=SY(I)+VeDALTA (Il)sH
Y{I)=RNON(Y(I)})
30 CONTINUE
TEST FOR STARTING SEQUENCE
31 IF(KSTEP-28)35,40,40
APPLY TEST 2 ON ZEROTH STEP
35 IF(KSTEP)}S50,50,60
HALVING TESTS
4C DO 45 I=1,NE
IF(ABS(DALTA (I1))-ERRGR/ABS(H)}}45,45,55
45 CONTINUE
50 IF{VeH#CLIF-0.125)60,€0455
55 X=X-H
FAIL TESTS, HALVE H
223 H=H/2.0
KCELAY=0
DO 56 I=1,NE
All}=a(1}/2.0
B(I}=8(1)/4.0
C(l)=C(I}/8.0
FLI)=SF(I)
Y{I)}=SAVEY(I)
56 D(I)=D(1}/16.0
GC TO 1co00
PASS TESTS, CORRECT A,8,C,D
60 KSTEP=KSTEP+1
DO 65 I[=1sNE
A(1)=A{1)43.,08B{)+6,0#C(I)+10.CoD(I)+PaDALTA (I}
62 BUI)=8(1)+4,0#C{1)+10.0D(1)}+Q=CALTA(I)
64 C(I)=ClI1)+5,0«D(1)+R#CALTA(I)
67 D(I)=D(1)+S#DALTA(I)
65 CONTINUE
IF IN STARTING SEQUENCE, BRANCH
IF(KSTEP-24) 70,90,1C0
700G0 TO (100C,1C0G,1000,74,1000,1€00,1000,78,1CC0,1000,1000474,1000,
11000,1000,86,1000,1000,1000,74100C»1000,100C)KSTEP
4TH 412TH,2CTH STEP,GC BACK
74 H=-H
DO 75 I=1,NE
AlLY=-A(I)
75 C(I)=-C(1I}
GO TO 1000
8TH STEP, GO FORWARD
78 H=-H
DO 79 I=1,NE
Y{I)=STARTY(I)
AlL)Y=-A(I)
79 C(I)=-CtI)

30




GC TO 1000

16TH STEP, HALVE Hs APPLY TEST 1
86 H=H/2.0

DO 87 [=1,NE

A(l)=A(I1}72.0

B{I)=B(I}/4.0

C(r)y=Cc(1)s8.0
87 D(I1)=D(I})/16.C

DO 88 I=1,NE

IF{ABS(DALTA (I1))-ERRCR/ABS(H))E8,88,89
B8 CONTINUE

PASS TEST CO FORWARD WITH HALVED H

GO TO 78
FAIL TEST BEGIN AGAIN WITH HALVED H
89 H=-H

DC 92 1=1,NE
92 Y(I)=STARTY(I])
GO T0 1
24TH STEP, DOUBLE Hy STARTING SEQUENCE ENDS
90 H=H#2,0
DD 91 I=1,NE
A(l)=A(])»2,0
B{I)=B([)#a,.C
C{I)=C(1)#8,0
91 D(I)=D(1)#1lé.0
GO 10 78
100 KDELAY =KDELAY+1
WILL NEXT STEP MOVE PAST XLIMIT
102 IF(ABS{XLIMIT-X)-ABS{H))103,103,110
YESeeee «SAVE X AND Y, INTEGRATE TO XLIMIT, RETURN,
103 ENDH=XLIMIT-X
DO 105 I=1,NE
AA{1)=ENDH#A(I)/H
BB(I)=ENDH##2sB([)/Hes2
CC{I)=ENDH##3sC([)/Hue3
105 DC(I)=ENDHs=#42D(][)/Hung
SAVEX=X
DO 800 I=1,NE
SFLE)=F(1)
800 SAVEY(I)=Y(I)
801 X=XLIMIT
DO .06 I=1,NE
Y{I)=Y{I)+ENCHe{(F(I)+AA(L)+BB(I)+CC(I)+DDI(I})
Y(I)=RNDN(Y(I))
106 FPUI)}=F(I)+2.,0#AA (1) +3.CeBB(I1)+4,0«CC(I1)+5.0«DD(1)
ASSIGN B02 TO 1[A
GO 70 1101
802 DO BOS [=1,NE
8GS SY(L)=Y(I)
DO 107 I=1,NE
DELTA (I)=F(I)}-FP(I)
1067 Y(I}=Y(I)+VeDELTA (1)#ENDH
ASSIGN 803 TO [A
GO TO 1101
803 DO 108 [=1,NE
DALTA (1)=F(I)-FPL(I])
108 Y(I)=SY(I)+VsDALTA (I1)=ENDH
Y{I)=RNDN(Y(I))
JumMp=1
GO 10 1101
NOeeoese TEST FOR DOUBLING. IF OKy BEGIN NEXT STEP AFTER DOUBLING
110 IF(ABS{XLIMIT-X)-ABS(2.0#H))100C,1CCO,111

31



111 IF(KDELAY-4)1C0C,120,120
120 IF(ABS{2.0#H)-ABS(HMAX)})121,121,10CC
121 DO 1250=1,NE
IF(ABS{CALTA (I))}-ERRCR/{128.,0#ABS(H)))125,125,1C00
125 CONTINUE
IF(V#H*CLIF-0.0625)13C,1000,100C
130 CONTINUE
335 H=2,0%H
DO 135 I=1,NE
A(L1)=2.0=A(1)
B{I)=4.0%8(1)
CtI)=B.0sC(I)
135 D(I1)=16.0#D(1)
KDELAY=g
GO TO 1000
1101 NEG=NE
HH=H
XX=X
KKSTEP=KSTEP
00 1102 I=1,NE
FF(IL)=F(I)
1102 yvy({l)=v(l)
CCLIF=CLIF
RETURN
END

32



APPENDIX 118, MAP LISTING OF RNDN FOR I[BM 7094

$IBMAP RNDN
ENTRY RNDNF

RNCNF CLAs 3,4
FRN
TRA 1,4
END

33




APPENDIX III. FORTRAN-IV LISTING OF DEQ FOR [BM 7030

SUBROUT INE DEQ{FF¢XXoXLIMIT,YY,ERROR ¢NEQ,HH,HMAX » JUMP ,KKSTEP,
1KCON,CCLIF)

DIMENSION STARTY(20),Y(20),SY(20),SAVEY(20),F(20),FP(20)},
1DELTA (20),CALTA (2G),A(20),8120),C(20),D(20),
2AA120),BB{20),CC{20),CD{20),SF(20),FF{20)4,YY(20)

NE = NEQ

H=HH

X=XX

KSTEP=KKSTEP

DO 11CO I=1,NE

FIL)=FF(I)

11C0O0 Y(I)=YY(I)
CLIF=CCLIF
IF(KSTEP-99999999999 )963,991,991
991 KSTEP=28
C TEST FOR TYPE OF ENTRY
993 IF{JUMP)1,998,999
998 GO TO IA,(1000,11,21,802,803)
C JUMP POS. RESTORE VALUES
999 X=SAVEX
992 JUMP=(
DO 901 I=1,NE
FLI)=SF (I}
901 Y(I)=SAVEY(l)
GO TO 102
C JUMP NEG. INITIALIZE
1 DO 5 I=1,NE

STARTY(I}=Y(I)

AlI}=0.CO1

8(1)=0.C01

c({I)=c.COl

S D(I1)=0.001

KSTEP=0

KDELAY=0

KCON=Q

T=95./(288.%64.)

U=863./(12.%5040.)

v=95,0/288.C

P=25,0/24.C

Q=35,0/72.C

R=5.,0/48.0

$=1.,0/120.C

ASSIGN 100C TC IA

JUuMP=0

GO TO 1101

C BEGIN INTEGRATION STEP
1600 DO 1111 I=1,NE
SF(L)=F (I}
1111 SAVEY(I)=Y(I)
C H TOO SMALL, RETURN WITH JUMP NEG.
600 IF{ABS({X+H)-ABS(X))605,£01,605
601 JUMP=-1
GO TO 1101
605 X=X+H
DO 10 I=1,NE .
Y(D)=Y(I)+He(FLI)+ACT)+BCI)I+CLI)+D(I))
10 FPUI)=F(I)+2.0%A({[)+2,0#B([)+4,0#C([)+5.0#D(1)}
ASSIGN 11 TO IA

34




GO TC 1101
11 DO 12 I=1,NE
12 sSY(I)=y(1)
DO 20 I=1,NE
DELTA (L)=FLi)-FP(I)
20 Y(I)=Y(1)+VveDELTA (1)=H
ASSIGN 21 TO IA
KCDN=1
GO v0 1101
21 KCON=3
DO 30 I=1,NE
DALTA (I)=F(Ll}-FP(I)
29 Y(I13:=SY(I)+VeDALTA (I)sH
30 CONTVINUE
TESY FOR STARTING SEGQUENCE
31 IF(KSTEP-28)35,40,40
APPLY TEST 2 ON ZEROTH STEP
35 IF(KSTEP)}S50,50,60
HALVING TESTS
40 DO 45 [=1,NE
IF(ABS(DALTA (I))-ERROR/ABS(H))}45,45,55
45 CONTINUE
50 IF(VeHsCLIF-0.125)6C,€0,55
55 X=X-H
FAIL TESTS, HALVE H
223 H=H/2,0
KDELAY=C
DO 56 I=1,NE
All)=A(l}/2.0
B{I}=8(I}/4.0
cltI)y=c(I)/8.0
FLI}=SF(I)
Y{I)}=SAVEY(I)
56 D(I)=D(1)/16.C
GO TO 1000
PASS TESTS, CORRECT A,8,C,sD
60 KSTEP=KSTEP+1
DO 65 I=1,NE
A(LI)=A(1)42,0%B(1)+6.CoC({I)+10.0#D([)+PDALTA (I}
62 BUI)=B([)+4,0#C{1)+1C.0D(1)+QeDALTA(I)
64 C(I)=C(I1)+5,0«D(I)+R=CALTA(I)
67 O(I)=D(I)+S#DALTA(I)
65 CONTINUE
IF IN STARTING SEQUENCE, BRANCH
IF(KSTEP-24) 70,90,1CC
70060 TO (1000,1G00,1000,74,1000,1C00,1000,78,1CCC+1000,1000,74,1000,
11000,10C0,86,1000,100C,1000,74,100C,1000,1G00)},KSTEP
4TH 412TH,20TH STEP,GO BACK
74 H=-H
DO 75 I=1,NE
AlL)Y=-AL1)
75 ClI)=-C(I)
GO TO 1000
BTH STEP, GO FORWARD
78 H=-H
DO 79 I=1,NE
YUI)=STARTY(I)
AlL)=-A(1)
79 C(l)=-C(I)
GO TO 1000
16TH STEP, HALVE H, APPLY TEST 1
86 H=H/2.0

35




87

88

89

92

90

9l
100
102
103

105

800
80l

106

802
805

lo7

803

108

110
111
120
121

125

DO 87 I=1,NE
A(l)=A(I)/2.0
B{I)=B(I}/4.0
cCtI)y=C(I)/8.0
DCI)=D(I}/16.C
DO 88 I=1sNE

IF(ABS(DALTA (I1})-ERROR/ABS(H))B8,88,89

CONTINUE

PASS TEST GO FORWARD WITH HALVED H

GO 10 78

FAIL TEST BEGIN AGAIN WITH HALVED H

H=-H

DO 92 I[=1,4NE
Y{I)=STARTY(I)
GO TO 1

24TH STEP, DCUBLE H, STARTING SEQUENCE ENDS

H=H#2,0

DO 91 [=1,sNE

AlL)=A(1)%2,0

B{I)=B(1)#4,.0

C{I)=C(1}#8,0
D(I)=D(I}#l6.C

GO TO 78

KDELAY =KDELAY+1

WILL NEXT STEP MUVE PAST XL

IMIT

IF(ABS(XLIMIT-X)}-ABS(H))103,103,110
YESeeeesSAVE X AND Y, INTEGRATE TO XLIMIT, RETURN.

ENDH=XL fMIT-X

DO 105 I=1,NE
AA(T)=ENDH#=A(I)}/H
BB(I)=ENDH##2#B([)/Hes2
CCU(IJ=ENDH&a#3aC(])/Hea3
DD{(I)=ENDHs#4#D([)}/Hen4
SAVEX=X

DO 800 I=1,NE
SFLI)=F(I)

SAVEY (1))=Y (I}

X=XLIMIT

DO 106 I=1,NE

Y{I)=Y(I)+ENCHe(F(I)+AA(I)}+BB(I)+CC(I}+DD(I})
FPUI)=F(I)+2.0#AA([)+3.,0#BB(I[)+4.0sCC(I}+5,0#DD(1])

ASSIGN 802 TO IA

Go 10 1101

DO 805 I=1,sNE
SY(I)y=y(I)}

DO 107 I=1,NE

DELTA (I)}=F(I1)}-FP(I)}
Y{I)=Y(1)+V=DELTA (I1)}#ENDH
ASSIGN 803 TO IA

GO 10 1101

DO 108 I=1,NE

DALTA (I)=F(I}-FP(I)

Y{I)=SY(I)+veDALTA (I1)}#ENDH

JumMp=1
GO 10 1101
NOeosees TEST FOR DOUBLING.

IF OK,

BEGIN NEXT STEP AFTER DOUBLING

IF(ABS(XLIMIT-X)-ABS(2.0#H})1000,1000,111

IF(KDELAY-4}1C00,120,12C

IF(ABS(2.0#H)~ABS(HMAX))121,121,10CQ

DO 125I=1,NE

IF(ABS({DALTA (I1)})-ERROR/{(128.0#ABS(H)}}}125,125,1C00

CONTINUE

36



130
335

135

1101

1102

IF{VeHsCLIF-0.0625)130,1000,1000

CONTINUE
H=2,0#H

DO 135 [=1,NE
A(l)=2.0#A(1)
B(I1)=4.0#B(1)
C(I)=8.0+C(I)
D(I}=16.0+C(1I)
KDELAY=0

GO TO 1000
NEQ=NE

HH=H

XX=X
KKSTEP=KSTEP
DO 1102 [=1,NE
FFLL)=F(I)
YY(L}=y(I)
CCLIF=CLIF
RETURN

END

37



APPENDIX IV, FORTRAN-IV LISTING OF SAMPLE PROGRAM

C SAMPLE FORTRAN-IV PROGRAM FOR COMPUTING
C LEGENDRE POLYNOMIALS. Y{2) = LEGENDRE
C POLYNOMIAL OF ORDER V. VY{1l) = {(l.-X##2) TIMES
C DERIVATIVE OF LEGENDRE POLYNOMIAL.
DIMENSION Y(2)},F(2)
C INPUT TAPE = 10. OQOUTPUT TAPE = 9,

S1 READ (10,5C)XCsVsERROR,Y1l,Y2

50 FORMAT(1PSEl2.7)
X=X0
Y{l)=Yl
Y{2)=Y2
WRITE (9,11)ERROR,V

11 FORMAT{7H-ERROR=4E10.4,426H V=F€.0)}
WRITE (9,1)X,Y{(1),Y(2)

1 FORMAT(3Elé¢.B)
HMAX=0,125
H=HMAX
JuMpP=-1

6 XLIMIT=X+0.1

S CALL DEQ(F Xy XLIMIT,YsERRORy24HyHMAX  JUMPKSTEP 4 KCON,CLIF)
IF(JUMP)2,2,4

2 WRITE (9,3C})

30 FORMAT(8H JUMP=-1)
CALL EXIT

3 FUl)=~Vea(V+l,)nY(2)
FL2)=Y(1)/(l.-Xuuz)
IF{KCON)S5,5,21 .

21 CLIF=SQRT(ABS(Ve(V+l.)/(le—Xun2}))
GO T0 5

4 WRITE (951)X,Y{(1),Y(2)
IF({+95-X)51,51,6
END

38




