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ABSTRACT

The stability of one-dimensional, steady detonations to periodic
disturbances transverse to the flow is ekamined in the limit of small
wavelength, i.e., 2r/e = O, Tt is found that any unstable disturbance
grows in time t as exp (7t) with Im(T)/enand Re(71) of order . The
asymptotic criterion for stability is found to depend largely upon the
steady-state profile of ci - u2 (where co is the frozen sound speed and
u is the mass velocity relative to the von Neumann shock) as a function
of distance behind the shock. Detonations for which ci - u2 decreases
monotonically are found to be stable (in the € - ® 1limit), but stability
in cases in which this quantity increases elther monotonically or up to
a maximum (and decreases beyond) is determined through simple integral
functions of the steady-flow variables., More complicated profiles are
not treated explicitly. In contrast to the labor involved with applica=
tion of the general theory of detonation stability, the current asymptotic
result can be readily applied to any detonation, irrespective of the
number of chemical reactions which occur, provided knowledge of the

eqﬁation of state and reaction kinetics is at hand.




The criterion is applied to an idealized, one-reaction (A — B)
detonation., Unstable regimes are found only if the ratio of specific
heats A is less than 2, for which case all detonations are found to be
unstable for sufficiently large values of the activation energy, For low
heats of reaction, it is found that instability, although not reported in
an earlier numerical application of the general theory to long wavelengths,
persists for all (positive) heats, unless the activation energy is also
small. On the other hand, for more realistic heats of reaction, the
present (asymptotic) criterion predicts stability for small activation

energles, where long-wavelength,unstable modes were previously found.
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GLOSSARY OF SYMBOLS

This glossary contains the principal symbols used in the main text
of this report, but does not list those occurring only in the appendices.
Symbols which are not included are components of vectors and matrices;
these symbols are subscripted versions of the principal symbols, with
the overhanging arrow (=) for a vector or underscore (w) for a matrix

omitted,

In the following list, the superscripts and subscripts i and j

are understood to take on any positive integer (or zero) value, while

v denotes any signed integer or zero.

scripts have a specilalized meaning.

Symbol.
a.(z)

1

Az &)

.ex(x)g
A ()

bl(T’ €)
b,y (7, €)

b, (2)

B(z, &)

|

Section
Description Introduced

Polynomial coefficlents in the solution of the 6
second-order related equation.

Polynomial in 1/® with coefficients ai(z), 6
entering the solution of the second-order
related equation.

Matrix functions of the steady flow which enters 2
the § differential equation.

Integrals over the reaction zone involving 2
steady-flow variables and 6.

Polynomial coefficients in the solution of the 6
second-order related equation.

Polynomial in 1/& with coefficients bi(z), 6

entering the solution of the second-order

related equation.

All other subscripts and super-



ggx, €)

a(x)

ngs £)

e(x, €)

gi(xs £, v)

GLOSSARY COF SYMBOLS
(Continued)

Matrix function of the steady flow which enters

the 8 differential equation.
Frozen sound speed in the steady flow.

Coefficients of admissible asymptotic solutions

in the continuation problem for 3.

Polynomial coefficient in the solution of the

(n + 2)-order related equation.

Polynomial in 1/e with coefficients Zi(x)
entering as factor in ;(X, €), the solution

of the (n + 2)-order related equation.

Contour of integration for the definition of
(e, ¢, v).

Matrix of n + 2 linearly independent columns
Zi(x, €).

Derivative of cin with respect to x in the steady
flow.

Coefficients of admissible asymptotic solutions

in the continuation problem for 3.
Diagonal matrix, similar to go(x, £).

Correction term in the second-order related

equation; the element J2l of matrix gﬁx, €).
Unit vector, having ith element only.

Leading term in the ;i series in 1/e.

10




E*

'%(x> £, v)
f

f“'i(x’ C, D)

GLOSSARY OF SYMBOLS
(Continued)

Activation energy for the idealized systems.
A transformed version of gi(x, V).

Degree of overdrive of the steady idealized

detonation.
. 0 . - 3 3
First correction term in the n, series in 1/e.

Exponential coefficient of l/el in the trans-

-
formation sequence from T to V.

Functions of the steady flow which enter the
integrands of bl(T, €) and bE(T, €).

Combination of the heat of reaction Q and the
heat capacity ratio 7o for the idealized

system,

Coefficient of € in the exponential of the

-
asymptotic series for ni.

hi(x’ C) —‘hj(X, C)-

-~

Vector functions of the steady detonation,

. entering into V(t, €).

Regions in the complex z-plane.

Transformed version of @;(x, v).

(-1)2.

Generic designation for the integrand for
bl(T, €) and b2(T, €).

Integrand of the expression for Be(Ci) for the

idealized system.

11




NN

i(z)

igxs €)

k(®

Koo

Ko1

ki(xs ¢, )

kﬁ(X, ¢, v)

GLOSSARY OF SYMBOLS

(Continued)
Unit matrix of order i. 6
. 2
Anel
Function of longitudinal distance entering the 6
solution of the second-order related equation.
Correction term in the (n + L4)-order related 6
equation.
Pre-exponential factor in the Arrhenius rate T
constant for the idealized system.
Coefficient of &~ in k(&). 6
Polynomial in 1/& with coefficients k, entering 6
the solution of the second-order related
equation.
The » independent part of ke 6
The coefficient of v in k. 6
Coefficient of eo in the exponential of the 3
asymptotic series for ;i'
Part of ki(x, {, v) which remains finite at the 5
turning point.
Path of integration from x = O to = , 5
Quantities independent of € and v, . 6

Factor of I,(Z) for B2(Ci) for the idealized system. 7




4(x)
(%)

L ()

L(e, Q:D)

e

L; (%)

llld“(x, €)

n(x)

X; (x)

GLOSSARY OF SYMBOLS
(Continued)

Function of the steady flow; its value behind the

shock enters Ll and 12.

Element 21 of the matrix -’éi(x), entering the

second-order related equation,
Contributions to L(e, {,v) in the asymptotic
limit.

V(t, €)/e for v = et + v.

_The Onsager matrix of order n.

Coefficient of €™ in the power series for the
coefficient matrix for the W(j)’ (5 21)

differential equation,
i-1 .
Polynomial Y. € YL (x).
=0 |
J
™, o).

An arbitrary integer, greater than O, but fixed

throughout the discussion in Section 6.
Generic symbol for a large positive number,
Confluent hypergeometric functions.

Lower (n + 2)-order block of J(x, €).

The integer number of independent chemical

reactions,
Function of the steady flow entering‘yb(x).

Lower (n + 2)-order block ofé&i(x).

13
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p(x)
Po(2)
p, (2)
P, (z)

Exxs Ty

a(x, €)

GLOSSARY OF SYMBOLS
(Continued)

Pressure in the steady detonation,

Leading coefficients in the 1/€ expansion of the

second-order related equation.

Paths in the complex z=-plane used to establish
the admissibility of 61 solutions.

Coefficient matrix of the fundamental 3

differential equation,

Power series in 1/e which enters the second-order

related equation,
Coefficient of &~ in the power series for Q(z, ).
Transitional value of Q, determined by 7"
Reduced heat of reaction for the idealized system.
Reduced activation energy for the idealized system.
Transformed version of q(x, €).
Transformation matrix, which is part oflgi(x, €).
Chemical rate in the steady detonation.
Coefficient of e-i in the power series for‘ggx, €).

Correction term in the (n + L4)-order related

equation for B(x, &, v, €).
2 2
Square root function of ¢ 1 and ¢ .
Specific entropy in the steady flow.

Sectors of the complex z-plane.

14
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ﬁi(x: €)

sM, o

"Sv(xs €)

T(x)
LI;(X, t)

u(x)

u(z, @)
uv(z, &)
H(x)

U(j)(x)

il

R(J) (x, €)

9, (x)

H(x, €)
v(x)

Vv(zs (T))

GLOSSARY OF SYMBOLS
(Continued)

Transformation matrix, entering the sequence

s

from 8 to ¥,
The)product :§0 . ~S-l e ‘§1
(m
5 (x, €).
Time .
Temperature in the steady flow.

Transformation matrix which diagonalizes go(x, £).

x component of velocity in the steady detonation,

in the frame of reference of the steady shock.

Solution of the second-order related equation.

Mass velocity in the steady flow with components
u(x) and 0.

Coefficient of e-i in the power series for
R(J) (x, €).

Portion of coefficient matrix of the $(J)
differential equation not in the block-
diagonal form of hI_'.'(J)(x, €).

.[”I:Em) (x).
A['I"(m) (x, €).
Specific volume in the steady flow,

Contribution to uv(z, ®) in the second-order

related equation,

15



V(t, €)

W(T, €)

Wv[w, k()]

Wksp(w)

W, (¥)

X

Hk

X,5(%)

y(x, €)
yi(xs €)
§(xs €)
S;i(x: €)

%

GLOSSARY OF SYMBOLS
(Continued)

Fundamental function whose roots in the t-plane
determine stability.
Contribution to the shock distortion from the

initial perturbations.

A solution of the confluent hypergeometric

differential equation.
Whittaker functions.
Variant of W, 1(¥).
kyiy

Longitudinal coordinate in the frame of reference
of the steady shock.

Value of x at a turning point.

The greater of a pair of turning points.
Particular value of X.

Function of the steady flow entering (e, V).
Spatial coordinate transverse to the steady flow.

Component 1 of y(x, €) or ;i(x, €); solutions of

the second-order related equation.

Solutions of the (n + hj-order related equation.

Spatial variable derived from X. Except in

Section 6, it denotes the analytic continuation

of x to the complex plane, In Section 6, it

represents x - x¥,

16
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GLOSSARY OF SYMBOLS
(Continued)

N>

Variable of integration, replacing x, used in

several contexts,

z(¢) Variable of integration for 62(Ci) for the
idealized system.

(e, £,v) Coefficient of the W,-type contribution to [
for turning points associated with profiles
M and I.

a(e, v) Function having the properties of Q(e, ¢, v), but
for the turning point at the maximum of
profile M,

B(es €s D) in a(es g, D)-

Bl(Ci) Coefficient of -ie in B(e, ¢, v).

62(§i) Contribution to B(e, {, V) independent of e and v.

55(Ci) Coefficient of -vin B(e, ¢, V).

%o Ratio of specific heats for the idealized system.

I'(a) Garma function.,

o) Either i or 1, depending on whether the steady
detonation has a maximum or minimum at the
extremum of cin.

A(x, &, )

A (2) . . .

1 . Factors in the asymptotic expressions for the

AZ(Z) integrands of bl('r, €) and b, (7, €).

Ah(z)

€ Wave number of the disturbance (times 2x) in the

transverse spatial coordinate y.

17

A o (S, I B BN )



9
n(x)

g(x, T, €)

6(x, £, v, €)

ei(xs £, v, €)

3(¥)

i (xs £, Y, e)

k(x)

Kot

M%)

(%)

Ai(x’ €)

v (e, v)

GLOSSARY COF SYMBOLS
(Continued)

Leading term in the assumed dependence of

Ton €; 1T=¢€f + v,
Im(§) «
Sonic parameter in the steady flow,

Bounded solution, as x — @, of the

fundamental differential equation.

Solution of the fundamental differential

equation, irrespective of the boundedness

condition.

Series expression for 61, analytically
continued around a turning point to

sector Sv'
Mach number in the steady flow.

Shock Mach number for idealized detonations
marking the transition from profile

M to profile I behavior.

Progress variable in the steady flow for the

idealized system.
Progress variable in the steady flow.

Coefficient matrix for the W(i) differential
equation.

Coefficient of e in the power series
expansion of the eigenvalues of

- }1’(00, te + v, €) in 1l/e,

18




u, (x, )
My s(xs 8)
v

A"

+B(e, vy

E(N)

Ce

tx
t(T, €)

;t.(x, £, v, €)

GLOSSARY OF SYMBOLS
(Continued)

Eigenvalue of Eb(x, ).
l‘li(xs £) - uj(xs £).
Compression ratio v+/v for the steady shock,

Coefficient of € © in the power series
expansion of the eigenvector of

- P/(», te + v, €).
LY

Monotone function of the progress variable

for the idealized system.
Value of {(A\) at chemical equilibrium; {(O).
Value of {(\) at the turning point.

Fourier-Laplace transform of the shock

distortion,

T(x, €)™+ 8(x, €, v, €).

7 06 6 0, &) T(x, 07 ¢ B(x, &, 0, €).

I(z)

E(X, €)
a(v)
(%)

Z

v

2(z, &)

Factor in the solutions of the second-order

related equation, u,(z, €).
Solution of the (n + 2)-order related equation.
-1,
Thermodynamic function in the steady flow.
Sector in the complex ¥-plane.

Combination of coefficients in the second-order

related equation.

19
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)
o(z)
@1(2)

B(x, &, v, €)
Bo(xs €)
8 (x5 8)
Y(t, €)
¥y, t)
#(z, &)

1_l;( i) (x’ €)

\_V.(X, €)
Wi(x, €)

GLOSSARY OF SYMBOLS
(Continued)

Laplace time transform parameter.
Part of T assumed independent of €.
Im(v).

Factor in the solutions of the second-order

related equation uv(z, &) «
arg(z - x¥).
arg(x¥ - z).
1
2
Po( Z) .

Integrals of ul(x, ¢) and u2(x, {), entering

the asymptotic expressions for bl(T, €)

and b2(¢, €).

Solution of the (n+ L4)-order related equation.

Leading term in € of - Ef(x, te + v, €),
Part of - P'(x, te + v, €) independent of e.
Fourier transform of ¥(y, t).

Distortion of the shock.

Stretched coordinate in the second-order

related equation.
Transform of 8(x, £, v, €) by S(i)(x, €).
A~
W(m)(x, €).

Independent solutions of the $ differential

equation,

20
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&>

o4

max

CJ

GLOSSARY OF SYMBOLS
(Continued)

Parameter for the idealized system determined

by detonation velocity and 7o
Large parameter, de,

Parameter for the idealized system determined

by detonation velocity and 7o°

Interval of the real x axis on which T(x, ¢)

is differentiable.

Subscripts

Evaluation in the steady flow, behind the shock.

Evaluation in the steady flow, in front of the
shock,

Evaluation at the polnt in the steady flow where

2 _ . .
¢ N is maximum,

Evaluation for the Chapman-Jouguet detonation
velocity.

21






1. INTRCDUCTION

The phenomenon of detonation has been the subject of continuing
theoretical analysis ever since the pioneering work in the nineteenth
century., As a result-of a certain amount of agreement between theory
and experiment, this effort resulted in the general acceptance of the
so=called von Neumann-ZeldovicheDoering theory. The fundamental notion
in this theory is that the phenomenon consists of a shock propagating
into the quiescent material, with a resultant initiation of exothermic
chemical reaction behind this front. A quantitative description of the
structure of the detonation wave is presumably complicated in its early
stages, but the theory directs its attention to the situation after all
transients arising from the initiation of the detonation have vanished.
It 1s supposed, then, that the detonation ultimately becomes a steady,
one-dimensional flow when viewed in the frame of reference of the shock.
The investigation of the consequences of these assumptions, with
particular attention to the Chapman-Jouguet hypothesis for the determina-
tion of the velocity of the shock front, has been a principal concern of
theoretical endeavors in this field.

Beginning approximately in 1959 the experimental evidence was in-

creasingly seen to be not entirely compatible with the above picture. In

23




particular, numerous instances of three-dimensional structure of an

2
apparently non-transient nature have been reported.l’

From a theoretical point of view, the possibility, that the
supposed one-dimensional, steady detonations do not actually occur, is

3

subject to analytic investigation. The author” has attempted to deter-

mine the so-called hydrodynamic stability of steady detonations; that is,

whether or not small disturbances imposed upon the steady flow at some
instant will die out with time. Should any infinitesimal disturbance
grow, the detonation is said to be hydrodynamically unstable.

The key to the hydrodynamic-stability theory is that the equations
of reactive hydrodynamics are linearized in the deviations of the per-
turbed flow from the steady flow. By virtue of this, the dependence of
the perturbations on the coordinates transverse to the steady flow is
removed by Fourier decomposition and one is left with the stability
problem for a given transverse wave number &/2x.

Now the general theory of detonation sta‘bility3 can be carried
to the definition of a criterion based upon the roots in the complex
T=-plane of a certain function V of T, €, and the steady flow. The
determination of V(t, €) for a given steady flow is by no means simple,
requiring the solution of a system of ordinary differential equations of
order n + 4 (for detonations involving n independent chemical reactions)
whose coefficients depend upon the steady-detonation structure in the
reaction zone as well as T and €, Ordinarily, then, the stability

problem is expected to require numerical solution with results, therefore,

2l




limited to a finite range of wave numbers. A recent calculationu for an
ideal-gas, unimolecular-reaction system was able to establish instability
of certain detonations over finite ranges of €. However, any assertion
of the stability of a given detonation was necessarily qualified to
include only those values of € which were numerically accessible to the
calculation., Thus, we are led to investigate the stability criterion in
the limit of small wavelength, i.e., large €.

Since the present theory neglects the transport effects of
diffusion, viscosity, and heat conduction, the unit of length in the
problem is determined by the gradients in the steady flow. Hence, the
analysis of the € - « 1imit is expected to apply to wavelengths which
are short relative to the reaction-zone length.* On the other hand,
transport effects are expected to become important, at least for
finite disturbance magnitudes, for wavelengths comparable to a mean
free path. Although the validity of our theory cannot be ascertained
without recourse to the transport equations, it is not unreasonable to
suppose the restriction of our present considerations to wavelengths
which are long relative to a mean free path and short relative to the
reactlon-zone length to be physically meaningful.

The mathematical considerations which are attendant upon the

investigation of the € - = limit are those of the so-called parameter

The reaction zone is formally of infinite extent. The phrase "reaction-
zone length' refers, of course, to any convenient measure of the region
over which state variables change substantially, e.g., the distance to
half-completion of some reaction.

25



problem for linear differential equations. This branch of analysis is
essentlially complete for systems of differential equations of any order,

provided there are no so-called turning points, but is limited to certain

second-order equations and specific high-order equations when a turning
point is involved, For large systems of equations there does not seem

to be any appreciable analysis in the litera@ure for the turning-point

problem,

Turning points of rather simple types play a central role in the
analysis of the small-wavelength 1limit, so that we require that the small,
but troublesome, gap associated with the (n + L4)-order system of equations
first be bridged. A large portion of this report is involved with pre-
cisely this problem.

After establishing asymptotic expressions for the desired function
V(T, e), the stability of the idealized system previously investigatedh

is examined in the small-wavelength limit.
2, RESUME OF THE GENERAL THEORY

The time evolution of an initial perturbation from a steady
detonation, moving along the x axis,.is reflected by the secular behavior
of the.distortion V(y, t) of the leading shock, If x is the coordinate
in the direction of the steady-state flow and the origin (x = O) is
located in the (distorted) shock, while y is the coordinate transverse

to the steady wave,T then - ¥(y, t) is the x coordinate of the

TFor brevity, we use only one transverse coordinate._ The stability
criterion is identical to that for three dimensions.

26



unperturbed shock at time t. The general theory of detonation sta.bility3
has shown that for infinitesimal disturbances the Fourier transform

of @ on the transverse coordinate has its laplace time transform

4

(b, €) = e gy, t) ay - (2.1)
given by
e(T, €) e-TtW(ts €) dt

o=

= W(t, €)/V(7, €). (2.2)

The function W(t, €) is determined by the e-Fourier component of the
initial perturbations in the state variables [say, specific volume v,
mass velocity a (a 2-vector), specific entropy S, and chemical composi-
tion X (an n-vector)] throughout all of space, and has been shown to’
contain no singularities in the rigﬁt half T-plane.

The function V depends upon the steady flow but not on the

initial perturbations. It is given explicity by
V(T, €) =f%ﬁn d-+i@2h3e)- MO,T,e)'(ﬂ%-ride
® 1
b(n @ = B oo s AN CEax (@)

0]

@

oo O =f B w @) ¢ AT ¢ Eax

The vector function 3(x, T, €) is the solution of the differential equation

2T




%% = - P'(x, 7, €) ° [
-1 .
N%’_(x, T, €) = - A (eI + :_e’f\._y(x) + B(x)] (2.4)
which is bounded in the reaction zone for Re(t) > 0; i.e.,

B(x, T, €) = O(1) as x = = for Re(7) > O. (2.5)

- -

The prime denotes the transpose matrix., The vectors 6, Et, gy, Ht’ and
ﬁy are (n + 4)-vectors, one component for each state variable, while
ék(x),‘éy(x), B(x), and I are (n + 4)-order square matrices; I is the
unit matrix and the remainder of these quantities (given in Ref. 3) are
completely determined by the steady detonation, with Ht and ﬂy being
determined solely by the von Neumann shock itself, i.e., by the equation
of state of the unreacted explosive and the steady detonation velocity.

The occurrence of instability, in the sense of exponentially
growing contributions to V¥(t, €), is seen to be occasioned by roots of
V(7, €) lying in the right half t-plane. The problem of detonation
stability resolves into determining whether or not V has such roots.
The only general result in this regard is the fact that for ITI large
(at fixed values of the detonation velocity and €) with Re(t) = 0, V is
of order |7 | 2 and has no roots at infinity.

Now in obtaining V(T, €) asymptotically in €, it is of importance
that the magnitude of T be permitted to depend on €, the dependence
being such as to reproduce the asymptotic dependence of the roots of V on

€, For this purpose, we let
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T=el + v (2.6)

whence Eq. (2.3) and (2.4) become

V(7T, €) = eL(e, §, v)
L(e, &, ) = Cbl + ib, - _9.(0, £, vy €) [Cﬁt + iﬂy] (2.7a)

—_

-] =2
+ € [bl - 6(0, &, v, €) = ht]

%‘i= [eog(x, £) + & (x, ©)] = B

%= a5 -tz +18)Y | (2.7)
g - & (g DY

8 = 0(1) as x - @, for Re(t) >0 . (2.7¢)

The significance of the substitution, Eq. (2.6), is that the

leading term of § (as € —» =) depends, as we shall see, upon both &. and

2
®_, and any unstable roots of the leading term of V(T, €) occur on the
MR

axis Re({) = O, Thus, the sign of the real part of ¥ will determine

whether such roots are stable,

3. FORMAL: SOLUTIONS

In this section, we obtain, following the theory of the parameter

problem,5

the leading terms in the e-asymptotic solutions of Eq. (2.7b).
The validity of these expressions in the asymptotic representation of

T will be the concern of Section L.

29



Series solutions of Eq. (2.7v) are obtained from diagonalization
of the leading matrix 90' If there exists a similarity transform

T(x, {), differentiable on an x interval X, such that
-

T e 9 T = D(x, £) = Diag(ys Hys ees By (3.1)

(the second equality denoting that D is diagonal and. defining its

elements), then the transformation of ? by T'l yields the system of
L aad

equations,
x=T1.8
%: (?2-*—3) '; (5'2)

i_.l

« [ (x, ©) * T(x, €) - az(x, £)/dx].

o~

E(x, £, v) =E_(x3 t)

>

.1-
Following the scheme given by Friedrichs,” we substitute

I_f.i = [_e.i(x, C, 'O) + 6-1%.1(3{, C’ D) + ---:] exXp [ehi(x, C) + ki(X, C’ D):]

(3.3)
in which subscript i distinguishes among the solutions which will arise.

The unknowns hi’ gi’ ki’ fi e«ss are found by equating powers of € in

Eq. (3.2); one obtains

The factor exp (ki) is not separated from gi and T, by Friedrichs, but
this is not a cons&quential difference, +
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nle 0 = f7 w0, ) o (5.

but the determination of the remaining quantities depends largely upon
whether or not the eigenvalues, K, are distinct., The solution ;i is
saild to be of the “i type.

The eigenvalue-eigenvector problem for Eb can be solved explicitly

and, in fact, is similar to that which occurs in the problem of shock

stability.6 In Appendix A, we compute Eb and find its eigenvalues to be

=
I

1 = = k(K¢ + s)/mu

= = k(kt = 5)/m

=
n
|

(3.5)

i
I

3 l~1)+= ...=l~1n+)+=g/u

[€2 + Cin]% .

0
I

The notation of Eq. (3.5) is as follows: n(x) is the sonic parameter
2,2
'q:]_..u/co

in which co(x) is the frozen sound speed and u(x) is the mass velocity in
the steady frame of reference; K(x) is the local Mach number u/co. The
square root s(x, {) is to be understood as a function of ¢ with parametric
dependence of x, whence it suffices to specify that s is the Eositive
branch of the function with a branch cut along the imaginary { axis between
+ iconé. The matrix of right eigenvectorslgland its inverse are also

given in Appendix A, along with certain elements of‘gg'which will be

required,
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Now in the subsonic reaction zone, we see from Eq. (3.5) that only

u. has, for Re({) > 0, negative real part. It is not surprising that

1

;l will be of primary importance in finding 6 since the latter must
satisfy the boundary condition Eq. (2.7c). The determination of the

unknowns in ;l is straightforward;

gl(x, C, D) = él

dkl(x: € D)/dx = Ell(x’ ¢, v) (5-6)

X
kl(x, ¢, D):Z/;o Ell(x , £, v)dx

where éj denotes the unit vector having only its jth component non-zero,
The lower limit of integration xo need only be selected on the X interval
in order to ensure existence of the integral., The next-order term is

found to be

Z_L‘ By fyn/(vy -

=2

E:l(x’ Es D) = - E2l/(u2 = “l) . (5'7)

Esp/(Hg - 1y)

where X, is not necessarily the same as in Eq, (5.6) but does lie on

X. Higher terms are readily written down for this series.
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Now it will be convenient to denote the solutions of Eq. (2.7b),
irrespective of the boundary condition Eq. (2.7c), by subscripted
symbols 6i as determined by the inverse transform from ;i' As we noted,

then 31 is bounded in x for Re({) > 0. For Re({) = O, K, has negative

1
1

real part for x large only if |Im(¢) | < (conz)x_w. For pure imaginary ¢

of greater magnitude, it is seen that 61 is bounded if Ell has a non-

vanishing, negative, real part. From Appendix A, Eq. (A.16), we find,

using linearization of the reaction rate T near equilibrium,7

Ell(w’ €, '0) = { - E—%E—;T]——K-sl [2'0 + Ci?)‘. . E"e . 8] } (5.8)

X=m

where'gé is the symmetric, positive-definite, Onsager matrix (order n)
and 0 is a thermodynamic function, related to the heat of reaction.7

1
It follows that, for Re(t) = 0, |t ]| > (e n?),__» and Re(v) = 0, we have
Re[E (=, ¢, v)] <oO. (3.9)

Therefore, 61 is bounded as x —» ® for all Re(t) = O [except, of course,
for ¢ = + i(con%)x=w, for which the interval of definition R must be
bounded away from x = =],

Although 31 has the desired boundedness property, it will be seen
that Bé is also required explicitly. The evaluation of the latter is

-
evident from our expressions for © Thus

l.
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- 1-

T, = [82 + € 7f, + «oo] exp [eny(x, £) + ky(x, &, v) ]
X
h, =[ u2(x', t)dx’ (3.10)

X
7
ks =.[ E22(x', ¢, v)dx .
o]
tions ©,, © [ £ th % d not

The other solutions 52 O)s eees O ) all o e u5 ype, need no
concern us other than the fact that their series exist; the prescription
given by Friedrichs5 applies to this degenerate case as well, although
explicit determination of ;5, ess in terms of elementary functions is
not generally possible.

The region of definition of the 31 depends upon the existence and
differentiability of the transform‘gﬁx, C). As is seen from Appendix A,
the intervals R can be terminated only at a point x¥ at which s(x¥, ()
vanishes or where u(x¥) = {. It is convenient then to classify the

values of C‘according to the properties of the matrix 2;

L L
Class III: Re({) = O and min (conz) = ¢ ] s max (conZ),
x X

Class II: Im({) = O and min (u) < ¢ < max (u), (3.11)
x x

Class I: All other ¢, with Re({) 2 O.

For { in Class I, a single interval X extends from x = O to ®», In Class
ITTI and Class II, the x axis is broken up into two or more open intervals,
and we denote these Nl, N2, eess beginning at the right. It is of interest

to note that in Class II, the solutions 3é and 65 become "identical" at
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x¥ in the sense that the eigenvectors of & (see Appendix A) corresponde-
ing to Hy and u5 become identical, as, of course, do the eigenvalues

themselves., Similarly in Class III, 31 and 3é become identical at x¥%,
4. ASYMPTOTIC EVALUATION OF 6

The desired solution 8 is defined by the boundedness condition,
Eq. (2.7c). For large x, the behavior of the solutions of the differ-

ential equation (2.7b) was shown previously5

to be exponential growth
or decay, the coefficients of x in the exponentials being just the
eigenvalues of the coefficient matrix, evaluated at x = @, Moreover,
for Re(T) positive, it was shown that a single eigenvalue has negative
real part.

The formal solutions Eq. (3.3), derived in the last section,
behave in the same fashion for large x, for the hi and ki integrals
become linear in x near the region of chemical equilibrium., Now for
large €, the eigenvalue problem at x = « has a perturbation solution8

through a power series in e-l,

[e go(= &) + & (=, V) - (eu(o) s u® o Sh@ «ea)I]
- 00, (), «ee] =0

which exists provided that so(w, {) has distinct eigenvectors. Then,
with the exception of the case of degenerate eigenvectors of‘&b(w, t)

L
. s i _ s .
[viz., ¢ = + 1(con )x_ and { = (u)x which we do not treat directly],
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it is seen that the x — = solutions agree with the expressions of the
last section when carried to large x. The € = @ limit and the x - =
limit are, therefore, interchangeable; and the solution § can be investi-
gated directly through the x — = behavior of the e-asymptotic solutions.
The validity of the expressions, Eq. (5.5), as asymptotic solutions
of the differential equations (2.7b) depends, according to the theory
of the parameter problem,5 only on the behavior of the functions hi(x, t).
Tt will be convenient in what follows to regard the formal solutions as
defined not only on the axis of real values of x but also for complex
values z. For € real, then, the region of validity (the admissible region)
Hﬁ of the z-plane for the ith solution depends upon the existence of paths
Pj(z) in M& for every z such that Pj is of bounded contour length and

such that hj --hi is, in real part, non-increasing along the path, i.e.,

Re[hji(z') - hji(z)] >0

hyy = by =By (%.1)

for all z’ on Pj’ from an origin zg to the point in question z. The
existence of such paths for every j is sufficient to prove the
admissibility of solution i in Mi.

In order to consider condition (4.1) in connection with 31, we

write

h21(z) =.4: uel(z')dz'

hg(2) = 0y (2) = cee =h ) 4(2) =[Z by, (2)az’ (k.2)
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We consider h21 and h along the real axis for the present, restricting

31
attention to an interval K for which 31, Eé, ees are defined. As long as
Re(ugl) and Re(usl) do not change sign, Re(h2l) and Re(h}l) are monotone
in x. If Re(hil) is monotone non-increasing, then a suitable path Pi
originates at the left and extends to increasing values of x, If Re(hil)
1s monotone non-decreasing, then a suitable path Pi originates at a
large value of x.and extends to the left., In either case, an admissible
region Mi can be found, which includes that portion of the real axis on
which neither Re(uel) nor Re(uBl) vanishes. In view of the interchange-
ability of the € and x limits, it is clear that such a region can be

extended to infinite x.

From Eq. (3.5), we compute

Moy 2ks/mu

May (¢ + ks)/mu. (4.3)

Now for any £, it is seen that Re(u2l) and Re(uBl) do not change sign in
any interval of definition X of 31, gé, esey for the points where s
vanishes are Just the endpoints of the intervals for Class III values of
t.

Similarly, the validity of 52 is proved by consideration of

- 2ks/mu

Mo

by = (8 = k8)/m (1)

whose real parts elther vanish identically or do not vanish at all

(depending on ) on the R intervals.
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For { in Class I, it follows that the admissible region Mi

includes the entire x axis so that

T ~ é’l for all x. (4.5)

For Class IT and Class III, however, we have

8~9,  for x on R (4.6)

but are left with the problem of the continuation of [ to the left of the

so=called turning points x¥.

There are essentially two techniques used in solving turning-point
problems and it seems appropriate to pause to mention some general
characteristics of these, The first involves an attempt to proceed
around the turning point by analytic continuation into the complex z
(independent variable) plane. Ordinarily this process is terminated at

certain Stokes lines across which the asymptotic form of the solutions

to the differential equations changes abruptly. Usually this approaéh
involves solution of the "connection problem;" that is, it involves
the determination of the solutions at the turning point itself by
means of an appropriate "stretching transformation.™ This first
approach, although extensively investigated, seemingly has not been
developed to any degree of generality, with proofs of its validity
being not entirely satisfactory.

A second approach is that of Langer and McKelvey9-12 which
concentrates at the outset on the nature of the equations at the turning

point, in much the manner of the solution of the connection problem, but
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in such a way as to develop a series which is valid both at the turning

point and away from it. The process of "

piecing togetheg" solutions is
thereby avoided and the proof of asymptotic validity becomes relatively
direct.

Now it will not be surprising to find that the nature of the
present problem at the turning point depends upon whether { is in Class
IT or Class III and in the latter case on the behavior of cin at x¥,
Thus several types of problems involve us here and it will be convenient
to employ both approaéhes to the turning-point problem, Most of the
problems encountered here can, in fact, be solved by the first approach,
without the necessity of attacking the connection problem at all, while
the Langer method seems more direct for the purpose of completing the
analysis. The remainder of this section is concerned solely with the
first approach and requires no additional analysis beyond the application

of the condition, Eq. (k4.1).
Class II Values of ¢

For the sake of simplicity, let us suppose that a single point at
which u =-C exists; it will be evident that the procedure described here
applies equally well irrespective of the number of such points. Accord-
ing to Sec. 3, there exist solutions 31, Eé, e defined on Nl(x* < x)
and a second set, 61, éé, «+. defined on R, (0 < x < x¥)., Rather than
deal with these, however, it is simpler to redefine the 61 to be the set

of functions obtained from the set valid on Nl by analytic continuation
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throughout a region X of the complex z-plane, Now the matrix Eﬂz, ),

the analytic continuation of‘g(x, ¢) to complex z, is differentiable in

some strip centered on the x axis, punctured in the neighborhood of x¥,

as shown in Fig. 1, and in fact is single-valued there. Since 31,

32, ees involve only functions which are regular throughout ¥, and

integrals thereof, it follows that as long as X is simply connected, as

in Fig. 1, 31, gé, ees are regular and single-valued,

Im(2)
* Im(hj))=CONSTANT
P. P
j J
0 - A\
x* X
SHOCK
ALTITETEEAREAEARA N R R RRRENANANE A NS NAAANAAAAANN
CUTC
Re(hjI )=CONSTANT

Fig. 1 The region X of the complex plane through which the series

solutions 31 can be defined by analytic continuation for Class II values

of €.

The turning point x¥ and its neighborhood are excluded. By virtue

of the cut C, X is simply connected. The light curves are lines of con-
stant Re(hjl) and the paths Pj of the type illustrated (heavy curve) have
non-increasing Re(hjl)'




We can now investigate condition (4.1) using Eq. (4.3). Since Moy

31 h21 and h51 are

monotonically increasing with x. In region ¥, then, the lines of

and M., are real and positive on the real axis,
constant Re(hjl) are perpendicular to the x axis, as shown in Fig. 1.
Therefore paths Pj’ originating on the right, can reach all points of X,
except the shaded area, simply by proceeding along the x axis and
alternately along lines of constant Re(hjl) and Im(hjl) with decreasing
Re(hjl)’ as shown in phe figure. Since this argument applies for both

J =2 and 3, it follows that 31 is admissible throughout ¥, except in

the neighborhood of the cut. Thus we conclude
g ~ é’l for all x # x*, (%.7)

Class III Values of

2
Turning points where c- 7 increases

In this case, we begin by considering the case of a turning point
through which cin increases, although the case in which it decreases is
related by a simple sign transformation of the independent variable.
These cases in which cin is not an extremum at x¥ can be reduced to an
application of a minor generalization of the "singular turning-point

problem” 13

for second-order differential equations, the generalization
being required by the increased number of equations, iceey, n+ L
(rather than 2) equations.

As for Class II values of {, we begin by generalizing the intervals

of definition of the series solutions to the complex z-plane, Now,
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however, the point x¥ is a branch point of the z-plane analytic continua-
tion of the square root s(x, {), whence x¥ is also a branch point
of ul and u2. Analytic continuation of 31 and 3é will yield results
which depend upon the path of continuation and some care must be exercised
with regard to notation.

B

Begin, then, with the functions 31, 92, 95, ees 5 defined in Sec. 3,

on the interval R, and compute uzl(z) and M, (z) in the neighborhood of x¥,

31

uel(z) [2Kd%/nu]x*(z - x*)%[l + 0(z - x¥)]

s (2) [1/n3) [1 + 0(z - x%)] | (4.8)

where
2
a = a(cCn)/ax,

and where we have taken { to lie on the upper imaginary axis. We need
not consider the conjugate points at all, since roots of V(t, €) occur
in conjugate pairs, as is proved in Appendix B. It follows from Eq. (4.8)

that for z ~ x¥,

[ika?/3ma) (2 - )2 4 ..

by (2) - by

by (2) - by = [i/ﬂ%K]x*(z - X¥) + ... (%.9)
n¥s = by (%)
The loci, |
Re[h2l(z) - hgl] = 0
Re[h5l(z) - h%l] = 0 (4.10)




are referred to as transition lines, whose significance will be evident
in what follows. Near x¥, we see that these are radial lines emanating

from x¥, viz.,

o = arg(z - x¥)

(p2l = * ﬁ/}, + Tt’ + 5“/5’ sse (Ll"ll)

where the subscripts élassify these values of ¢ in accordance with the
h21 or the h51 condition. Note that the line ¢51 = 4+ nt and the
®2l =+, * 31, ... lines are exact transition lines, while the others
hold only in the limit z - x¥,

Now the solution 31, which is defined and whose validity has been

established for x on N\ presumably will retain its validity in the

l’
zZ=-plane near Nl. To examine to what extent this is true, we refer to
Fig. 2 which shows the transition lines for ®2l and the sign of
Re(h21 - hgl) for the neighborhood of x* and = x < ¢ < x. It is
observed that Re(hgl) diminishes on paths originating at the right and
these paths can be extended outside the sector - n/3 < ¢ < n/3, to
include the entire plane with the exception of the axis, ¢ = + x, by
employing paths of constant Re(h2l) as shown in the figure. The axis
is excluded by virtue of the fact that 31 is singular at s = O and hence
no path can be extended through the turning point.

To proceed with the description of the asymptotic solutions of the

differential equations, we now introduce some additional notation. We
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4 $=mw/3

*
Re(hzl-h2|)<o

Re (hy=h3)) >0
_/./ PZ(ZZ)

S
Zy
——
P x*

- X
¢=t1f 1
S
(o)
Py (z;)
Re(h,,) <CONSTANT
s'-l
Re (hy,~h3) <0 P3(z3)
¢p=-m/3

Fig, 2 Paths P2 in the complex z-plane on which Re(h2l) diminishes and
P5 on which Re(h}l) diminishes for asymptotic solution é.l’ defined by
analytic continuation from the real axis x > x¥ to points with lcp I <,
(o = arg(z - x¥)]. Points z, and z, on opposite sides of the slit at

® = + x both lie on such paths, although P2(z2) is not shown.
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define "sectors" S; in the (z - x¥)-plane by means of the transition

lines; near x¥ these approach the sectors
So:-n/5<q><n/5

S, 1 /3 <9 <x
. - (k.12)
S,:-1<@<-x/3

S, 1 <@ <51/3

If we denote the analytic continuation of solution 6. to sector Si by

3§l), then our discussion in the last paragraph proves that 3§0), 3&1),

3£-l) form a solution, which we denote simply 6(0), i.e., by its central
sector, asymptotically admissible, with respect to condition (4.1) for
h2l’ in the plane slit at @ = £ x, We refer to the latter as the Stokes
lines for 6(0), since the continuation of g(o)across them has not been
shown to be valid (and, in fact, is not valid).

Similar considerations can be applied to the solution gé for we

have near x¥,

hl2(z) - h¥, = - tth%/Bnu]x*(z - x*)5/2+
1
h52(z) - n¥, = [1/n2c] 4(z - x¥) + ... (4.13)

yielding precisely the same set of transition lines as for 31. In Fig. 3
are shown the transition lines for h12 on - /3 <¢< 5n/3 and the sign

of Re(h12 - hié) is shown in the sectors §,, S;, and S,. Paths of
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Im(z)

¢=1r/3

S

*)>0

-
Z4

So

be

- X

= (1)

a2 8 'STOKES LINE

6 STOKES LINE

Re(hlz-h:;)<0 A

S, il

STOKES LINE

¢p=-m/3

Fig. 3 Paths Pl in the complex z-plane on which Re(h12) diminishes and
P5 on which Re(h52) diminishes for asymptotic solution 3(l)defined by
analytic continuation of 6é from the real axis x > x¥ to points with

- n/} < < 5n/5. Points Zq and Z5 on opposite sides of the slit both

lie on P, paths (that for z, is not shown) but two types of P, paths are
required. The dashed P5 paths cannot enter sector S2, while the solid
P5 paths cannot enter the ¢ < 0 region.

L6




decreasing Re(h12) then originate in sector S, and cover the plane slit

1
at @ = = /3, 51/3. The solutions é’él), é’ée), é’éo), denoted simply 83,
are, therefore, admissible with respect to condition (4.1) for h12, and
have Stokes lines at ¢ = - x/3, 51/3.

These considerations can be applied to the continuation of the 31
and §é series into other sectors to establish a collection of solutions
which are admissible on certain slit-planes, as seen in Table I, where
again condition (4.1) has been applied only between h, and h,. Although
this 1ist could be extended indefinitely, it is readily seen that, at
each point z, only two distinct solutions exist. Thus §§i) and 3éii5)
differ by a constant factor, so that Table I contains but three distinct

-1) g(-2)

solutions, say 3(0), 3(1), and 3( s although solutions 3(2) and ©

will also prove useful.,

TABLE T

System of asymptotic solutions of differential Eq. (2.70), admissible
with respect to condition (U4.1) for (i, j) = 1, 2, near a turning point

x¥ at which cin is increasing.

Solution Definition Stokes lines arg(z = x¥)
3(0) -g:(LO), 5:(Ll)’ g&-l) +
2(1) -e'él)’ —evée)’ 5§o) w5, S/
3(-1) -e'é-l)’ »—%-2)’ -e'éo) Cs5a/3,  x/3
3(2) -9'52)’ -9'55)’ -5:(L:L) 5, /3
#(-2) 5:(L-2)’ 55-5)’ 5:(L-1) /3, - )3

T




It is of interest to note that in the central sector of the plane
slit by the Stokes lines, the solution is recessive but is dominant
in its outer sectors. For example in SO’ 6(0) is recessive, since
h21 - h%l has positive real part and §éo)grows in magnitude relative to
3(0)
el

. =2(1). . e .
as € increases, In S however e( )1s recessive, In fact, it is
. 4 > Yo )

1
Jjust this property of the central sector which is used in establishing
the condition (4.1).

Turning now to the validity of this condition for j = 3, we
employ the second of Eq. (4.9) and (4.13) from which it is seen that
P5 paths must proceed in the upward direction in the z-plane, For 3(0),
it is seen from Fig. 2 that such paths exist for all points in the region

previously found to be admissible with respect to the h condition.

21
Similarly for 3(-1) which has Stokes lines at ¢ = n/}, - 5n/5, the slit-
plane is entirely covered by P5 paths. For 6(1), however, the Stokes
lines extend downward, as in Fig. 3, so that for points with Im(z) < O,
the P5 paths must originate on the same side of thg Stokes line, Thus

the h5 condition splits this solution into two portions:
valid in 0 < ¢ < 5n/3
3(12) ya15a in - x/3 < ¢ < x. . (k.1k)

Since 3('2) differs from 3(1) by a factor, a similar splitting is imposed

on it,



Turning points where cin decreases

2
For turning points at which con decreases, the solutions and their
Stokes lines are somewhat altered. It is straightforward to apply the
above methods to’obtain the corresponding solutions. We begin with
- - '

el, 92, ees s not on Rl, but to the left of x¥ and proceedﬂby analytic

continuation as Yefore., Thus, the first of Eq. (4.9) becomes

hyy(2) = gy = Dc(-0)2/3ml ok - 2)7/2 4 L. (1.15)

Defining sectors S S

02 Sqs ee by the transition lines which near x¥ are
given by
$ = arg(x¥ - z)

£ 10/3, £, eeo

Py

~

Qsl =0, £ n

as indicated in Fig. H, we can readily obtain the system of solutions in
Table IT. The regions of validity refer, as in Table I, only to the
condition (H.l) applied between 31 and 3é. Note that Eé is now recessive
in SO.

Imposing the condition (4.1) for j = 3 leads again to P5 paths

directed upward in the z-plane, whence 6('1) and 5(2) are seen, from

Fig. 4, to be split into two parts, for example:

8(-11) va1iq in - 51/3 < § < 0
g(-12) valid in - x < § < n/3. (k.16)
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Im(z)
4;:—17’/3

S

* -
Re(hy—hy) <O |

hi'i >

so g:i'ﬂ'

aE==1T/3

Fig. 4 Definition of sectors SO’ Sl’ and S 1 for a turning point x¥

through which cin decreases., The sign of Re[hgl - hgl(x*)] obtained
from the analytic continuation of 61 and 62 from the real axis x < x¥

is indicated. Py paths on which condition (4.1) is valid proceed

upward in the z-plane, as indicated.
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TABLE IT

System of asymptotic solutions of differential Eq. (2.2), admissible
with respect to condition (L.1) for (i, j) = 1, 2, near a turning point

x¥ at which cin is decreasing.

Solution Definition Stokes lines arg(x¥ - z)
7O g0, gD, - £

2(1) 5:(Ll)5 '9’52), ‘9’:(L°) - n/3, 5n/3
3(1) (-0, (-2, 30) -5n/3, /3
3(2) -9'§2)’ 'e'éi), 'e'él) n/3, /3
3(-2) %-2), g, g - /3, - n/3

Continuation problem

The continuation of the asymptotic expression for [ beyond a
turning point divides into two problems, then, depending upon whether
cin is increasing or decreasing at x¥*§ and a complete determination of
3 for all x will depend upon the configuration of turning points along the
x axis. It i1s convenient to carry out the.determination of 8 under the
assumption that cin has some simple form, although more complicated forms
can be treated with little additional difficulty. Three profiles will be

considered, as shown in Fig. 5; each occurs for certain values of the
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parameters for the idealized, one-reaction detonations whose stability
has been studied numerically.h Profile'I designates those steady detona-
tions in which cin increases monotonicallys; profile D, those in which cin
decreases monotonically; and profile M designates those in which cin has

a single maximum as a function of x.

Fig. 5 Profiles of c n in the steady flow which are consmdered Profile
M includes both cases w1th regard to the relative values of ¢ n at x = 0O

and X = ® ,
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Profile I. For detonations having profile I behavior, we first note
that (for § in Class III) to the right of x¥, i.e., on interval R, , we
have § A«@l, Eq. (4.6), and cin increases at x¥. The asymptotic expres-
sions of Table I,.as modified by Eq. (4.14), are directly applicable.

Thus 31 is contained in 3(o)which breaks down at ¢ = + r. To solve the
continuation problem, we write 8 as a linear combination of two independ=-

ent solutions, valid on @ = n [see Table I and Eq. (4.14)]
§ - 08011 4 430 (4.17)
1 1
and on @ = = 1

§ = o804 a3, (4.18)

Contributions from the remaining n + 2 solutions need not be included,
for reasons which will be given later. Now in S, 3(0) and Eq. (4.17)
are valid. Since g(ll) and 6(2) are identical, viz. 32}), in 84 and
3(11) is recessive there, it follows that dl = l. Similar considerations
in S_l prove that d2 = 1.

The remaining coefficients are determined by the condition that )
is single-valued. Equating Eq. (4.17) and (L4.18) for x < x¥ and
utilizing the fact that 3('1) and 3(2) differ by a constant factor, as do

g(ll) and 3(-21), we see that

3 _3(-21) g _ 35-1) N ggll). (4.19)
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That is, B is obtained by adding the analytic continuations of el_via
both the upper and the lower half-planes.

The absence of the n + 2 other solutions from Eq. (4.17) and (L4.18)
is justified by the consideration of B in S2 and S-l’ respectively. Since,
for these 2z, h51 and h52 have larger real parts than at x¥, any contri-
bution of a us-type §olution would be dominant over the ul- and u2-type
solutions. Since B itself is known asymptotically in S-l’ Viz.,

35"1), it follows by single-valuedness that us-type contributions are
not permitted.

_Tt can be readily seen that 651) contains for ﬁhe.squaré root s,
for x < x¥, s = i |s| and hence is a b, =type solution, while 3§-l) has
s = =1 ls] and hence is a ue-type'solution. To express § in most
convenient form, we now specify 31 and 32 completely (to highest order)
by specifying the lower limit of integration in Eq. (3.6) and (3.10) to
be xo = 0, The k.i integrals then exist for all x ¥ x¥ and continue to
have derivatives Eii’ provided the integration path for x > x¥ avoids the
turning point by a small excursion into the upper half z-plane. With

this understanding, then,

s _ 5
5(-1) - o8, ~ | (4.20)

—DN—D - <
) el + 092, for x < x¥

with the coefficient & found to be
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a(e, ¢, v) exp B(e, {, v)

B(e, s D)

_[ len, + B, ldz (4.21)

where C is the contour enclosing x¥ shown in Fig. 6.

Im(z)

Fig. 6 Contour C in the complex z-plane used for the definition of
o(e, ¢ V), Eq. (4.21), required for the continuation problem at a

turning point x¥ at which cin is increasing with distance from the shock,
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Profile D. For Class III values of {, cin decreases at the turning
point. The asymptotic expressions of Table II, modified by Eq. (4.16)
are now applicable. For x > x¥, we had by Eq. (4%.6), ] ~'31, Now the
entry in Table II which is valid for x > x¥ and of ul-type is 3&1), as
is readily verified by consideration of ul in the neighborhood of x¥,
Now ggl)is contained in 3(1) which is valid for x < x¥ as well, i.e.,

for § = 0. Thus for profile D,

é':(Lo) for x < x¥

351) for x > x¥,

If we now utilize definitions of 31 and 3é analogous to those for profile
I, viz., x_ = 0 in Eq. (3.6) and (3.10), with the integration paths for
hl’ h2, kl’ and k2 avoiding x¥ by a lower half z-plane excursion, this

can be written simply as

[ N'Bl for all x # x¥. (4.22)

Profile M. To treat profile M, we consider the value of

1

{ =1 (c_n?)

o ) ax separately, for the turning point in that case apparently

differs from those we have already considered. We return to its study
in Sec, 6. For all other Class IIT values of {, we simply combine the
results for profile I and profile D, We denote by xi the turning point,
if any, where cin is decreasing and simply use x* to denote the point,
if any, at which cin is increasing. For those { for which only one
turning point exists, the considerations of profile I or D apply. For

those { for which two turning points exist, the outer one xf is of the
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profile D type. The continuation problem there yields

8 ~ 8 for x > x¥, x £ x¥ (4.23)

where 8. and 8, are defined as for profiles T and D, i.e., x = O, and
1 2 o ’
the hi’ ki integration paths excise x¥ via the upper half-plane and
xf via the lower half-plane, The continuation problem at x¥ is therefore

typical of profile I, and we obtain
§ ~ é’l + 0B, for x < x¥ (4.24)
with @ given in Eq. (4.21) and with contour C encircling x* but not x¥,
5. ASYMPTOTIC EVALUATION OF V(T, €)

The asymptotic evaluation of V(t, €) requires, according to
Eq. (2.Ta), the determination of the function L(e, ¢, v) which to highest

order in € is
L(e, &, V) = le + ib, - 3(0, £, v, €) (Cﬂt + iﬁy). (5.1)

The evaluation of bl and b2 will evidently be the major task of this
section, since the scalar product is essentially known from our expres-

5
sions for 6.
f in Class I

Here we distinguish between those { for which hl(x, ¢) is pure
imaginary and those for which it has a real part. The former, Re({) = O,
1
mm(¢) > (Conz)max’ we denote as Class Iaj and the latter, Re({)=0,

L
Im(¢) < (conz)min’ or Re(f) > 0 but { not in Class II, we designate as
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Class Ib. Now the integrals bl and b2 have the asymptotic form

by ~ [ B(x, &, v) exp [en, (x, £)Jax

A(x, €s D) = exXp [kl(x’ €s D)] [;rw(xs C) ° él] * Aé_;l * E‘t (5-2)

with hl and A regular functions of x, For Class Ia, hl is pure
imaginary and
X 4 4
Ihll=f i (x7, g)ax
0
increases monotonically with x. Thus, we can transform to 2 = lhll as

integration variable to obtain a Fourier-type integral, viz.,

© ~
b ~:/~ e~ i€z A(x, €, D)[iul(x, C)]-ldﬁ .
0
Since Et is proportional. to the chemical rate (see Ref. 5) which vanishes
exponentially with x, as x —» @, and since 2 is linear in x for large X,
it follows that A and all its derivatives with respect to Z vanish at
2 = », Thus bl can be evaluated asymptoticallylu in € to satisfy the

order relation

by = o(1/e) . (5.3a)
Identical considerations show also that

b, = 0(1/e) . | .' (5.3D)

For Class Ib, hl

linearly with x as x » », Thus, Eq. (5.2) yields a Laplace-type

has a real part which is negative and decreases
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integral;r

@

b s.é e Ja(x, €, 0) | [- Re(n,)T"a2

Z2(x, €) = - Re[hl(x, 1.

Since |a| [- Re(ul)]-l is bounded (say, by M), it follows that

lbll < Mfw e~Zay - 0(1/e) . (5.4)
0

The same order relation is satisfied, of course, by b2.

£ in Class II

For those (real) { in Class IT, (] AJEl remains valid except in

the neighborhood of the turning points x%. To evaluate b, and b2 for

1
this case, the path of integration can be deformed into the upper half
z-plane so as to excise the turning points, without altering the values

of bl and b2. Along such a path K, B ~'§l is valid, and we have to

highest order

b, A:4:exp Leh; (x, €)1 a(x, §,0)dx,

as in Eq. (5.2); K extends to x = ©, of course. It is seen from the

expression for E in Appendix A that the integrand is regular at the

11

The symbol Z is used repeatedly within this section as a variable of
integration, but its definition varies with each usage.
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turming points (although correction terms in 31 might be singular there),
and the path K can be replaced by the real axis once more. Just as for

{ in Class Ib, then,

b

b, o(1/e). (5.5)
£ in Class III

The discussion in Class III becomes considefably more complicated
by virtue of the singularities in 31 and 32 at the turning point. As

a preliminary to our discussion, it is useful to first write these

—_

asymptotic expressions 6, and 32 so that the infinity associated with x¥

1

is evident. From the expressions for E.. and E22 (which determine kl

11
2

and k2) in Appendix A, it is seen that, for turning points at which e N

is not an extremum, kl and k2 are infinite at x¥* only in the contribution

from the - 34 4n s/dx term, Eq. (A.16); the 1/s terms lead to finite

contributions., Thus we write

ki(xs g, D) = - % 4n z%i_'% + k:)f(xs g, D)

k%(xs g, v)

X

f (B, + 2d 4n s/dx’Jdx’ (5.6)
0

and, using subscript + to denote evaluation behind the shock, we write

8.(x) = (L * 8,)(s,/8)% exp [en + 18]
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Before considering the specific evaluation of the b integrals, it
is profitable to make some general observations concerning them. The
contribution to the b's from the neighborhood of the turning point will
require special attention, for the asymptotic expressiohs of the last
section are singular at a turning point and are not valid in its neighbor-
hood. The method of evaluation is that introduced for Class II values of
€; the path of integration is deformed to bypass the turning points withe
out affecting the values of the integral. A certain &-neighborhood can
be avoided by writing, in schematic notation,

-8 © 1y i
b =f T(x)dx + iéf I(x* + 8e™P)e™Pag
0 4

+fw I(x)dx . (5.7)

X¥+0

The integrand I(x) is evaluated then from the asymptotic formulas and is,
of course, singular only at x¥, Thus, the result for b will be inde-
pendent of 8§ and we are free to employ the 6§ — O limit without regard to

the fact that the asymptotic expression for B loses its validity near x*,
Profile I

To evaluate b, for profile I, we consider four contributions. First

from the (0, x¥) interval, we have, in view of Eq. (4.20), contributions
*
e [ T
x%

- -] .
b, =-é 6, * A * gdx . (5.8)
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Now “1 and W, are pure imaginary on this interval and the branch points
of 31 and 62 at x¥ can be factored by a change of integration variable.

Thus, we introduce a real variable
A 03
z = - 1is

so that Eq. (5.8) becomes

2 .
+ N ~ ~
biq =_[ exp [iep (2)] 2

5
by, = 'é *exp [ien,(2)] E0,(2)at

(5.9)
fa3 x 2"‘ 22“1 A
cpi(Z) = Im[ l‘lidx = Im.é- . dz
(- 1s)%
2(=- is o
8,(8) = —gm (T + 8;) * AT T o ()

where d is the derivative of cin introduced in Eq. (4.8), and where the
dependence on ¢ and v has been suppressed., Clearly Qi(ﬁ) and Ai(ﬁ) are

analytic for all O = z < 2+ so that we can apply the method of stationary

phase15 to obtain

byq = O(G'B/M)

b, = 0(6-5/h). \

12 (5.10)

From the path around the turning point arises the contribution

0-4 -] - icp
b15=16.[ el-‘é\.«-gte do .
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1
Since the integrand is of order & * for small &, it follows that in the

limit & ~ O,

b5 =0 | (5.11)

Finally the contribution beyond the turning point is
[
b, = B.oe At e Bax
14 1 wx t 2

and M, is complex with negative real part. A suitable asymptotic bound

1

on blh is obtained for its absolute value,
® s 1 1
=mEZ|(X) =5 = ~ -] -
Ibl’-lj SL e ( )S 2 !sf(g. el) . Ax . gt exp (k%-(-) l dx
X
5 =[ (ks/mu)dx”’.
*

Now it can be seen that Z has a powef series expansion in s,
begiming with the cubic term. Thus conversion to the integration

variable Z yields

-] eg 1
- A—'é' A A
Ibld < z ™" 272 (£)az

n® = (5) B lsfg - &) - £ - F oo ()

S

Since Et vanishes exponentially in x and k¥ has, for Re(v) = 0,
negative real part and is linear in x [Eq. (3.8)], it is seen that 4) is

bounded, whence

63




T S § _1
o] smf e”-"272a2 = 0(e"?). (5.12)
1k
(0]
To establish the order of bl’ then, we yet require the order of the

coefficient & of b But ¢ depends on € only through the integral of

]2.
o (i.e., hl) which is pure imaginary on the x < x¥ portion of contour C

of Eq. (4.21). Since p. is finite at x¥* itself, the portion of C around

1
x¥ yields zero in the limit of vanishing radius, whence we obtain

@ = 0(d) (5.13)

and we combine Eq. (5.10), (5.11), (5.12), and (5.13) to yield
R .
b, = 0(e™2). (5.14)

Identical considerations apply to b2 as well,

Profiles D and M

The derivation of order relations in both of these cases is similar

to that for profile I and in both cases the relation (5.14) is recovered.
Expressions for L

It follows, then, that the b's can be ignored in Eq. (5.1) and only
the scalar product remains., For { in Class I and Class II, the only

contribution to 6(0, ¢, v, €) is that from 61 which yields
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L(e, §, v) ~ L (t)

u (1-v.) [4.8(¢ + «.s,) 2
Ll(§)=- = v |:+ +n+<l"C )]

L wu
(5.15)

£=2-(1-n)(1-v v p/T
v, = v+/v_ .
The new symbols in Eq. (5.15) are T, the temperature, and Pg» the
entropy derivative of pressure p at constant volume v and composition
5\.’. Here we have used subscripts + and - to denote evaluation in back
of and in front of the shock, respectively. This is simply the value
of V for a step shock.

For { in Class III, the value of [} at the shock depends upon
whether we are considering profile D or profiles I and M, In the

former case, we still have 8 ~ 31 so that
L~ Ii(C) for profile D; . (5.16)

but for those cases where cin increases with distance at the shock, we

have

L~ Ll(g) + 0(e, C,1>)L2(C), for profiles I and M (5.17)

where IQ(C) differs from L , Eq. (5.15), only in the appearance of = s,

instead of S, > il.e.,

u (1=v_) ZC(Q-K+S+) 2
12(€)=_-an I:+ — +n+<1_u§u )].

+ -
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Determination of ¢

The coefficient @ of the non-shock (1.2) contribution to L for
profiles I and M is defined in Eq. (4.21). Ietting the radius of the

circular part of C approach zero, one finds, using E’from Appendix A,

the logarithm of & to be
B(e, £, V) = 4n (e, €, v)

B(e, &, ©) =mif2 - iepy(§;) + By(8;) = vB5(E,)

By

()« [ 1 an_ "Ps o7
52=€_[ TEIT & T T ©

2u3-}' ) Vo .rv] e
(1-1) (u2+C§_)

_fx*(gi) 2K|s | ax
B T
0

(5.18)

+

() ok

BB;Qij ?ﬂ—s—rﬁdx

0

ue
I

ig, .

1

The subscript v on the rate T denotes the partial derivative at constant
entropy and composition, We note that Bl, 62 , and 55 are all real and

that Bl and B, are positive but 62 depends on the equation of state and

b)
kinetics of the particular system. For profile I, however, it is seen

that B, becomes negative for Ci sufficiently near the value (cin)x:w,
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and in fact approaches - =, by virtue of the fact, noted in Sec. 3, that
only the 3 . ;v term continues to contribute to the integral for large x,

and ; . ?V is necessarily positive at chemical equilibrium.
Stability

At the outset, it is expeditious to assume that the equation of
state of the unreacted explosive is such that the von Neumann shock is
itself stable (i.e., it would be stable if the reactions behind it were
somehow suppressed), for we thereby concentrate attention on instability
which arises solely from the reactions. Thus, we assume that Ll(C) has
no roots in the right half-plane, and in fact we require that its roots
have negative real part. It follows that the asymptotic expression for
V is non-zero for all Class I and Class II values of {, whence any

unstable roots are to be found with { pure imaginary and in Class III

with Re(v) 5 O. Moreover, detonations characterized by profile D are

stable for large €, since the shock expression for V holds for Class IIT

values of £ as well, Thus we now confine our attention to profiles I and M,
Now the behavior of Ll has been given in the discussion of shpck

stability,6 from which it can be seen that sur assumption, that Ll(C)

only has roots with Re(f) < O, implies that Ll(C) is positive for

2
Ci > (cin)+ and increases monotonically with Ci (see Case Ib of Ref. 6).

Now @, Eq. (4.21) and (5.18), is periodic in € and has magnitude

o | = exp [B, - Re(v)Bs] .

If'y therefore, for { in Class III, we have the inequality
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I1,(58,) [ exp [85(8;)] < T (565) (5.19)

it follows that for Re(v) 20, L = L, + OL, has positive real part
irrespective of € and Im(V). Hence, for those {, for which Eq. (5.19)
holds, V has no unstable roots.

However, if'for some Ci, we have

1, (i8,) | exp [By(8,)] > L (48,) (5.20)
then unstable roots occur for Re(D) satisfying

L= |, | exp [B, - Re(v)By] (5.21)
at periodically distributed values of Im(v), vize.

Im(v)

i

[(21'1 - %‘)Tf - 65115513 I? > 0,

n

In(0) = [(2n + Bx - 8 187", I, <o,  (5.22)

forn=0, £1, «e. . It follows, then, that every point on the vertical
line in the v-plane satisfying Eq. (5.21) is asymptotically a root of V

for periodically distributed values of e,

m
|

[(@n - B - In(v)B, 16T, I, > O,

[(2n + P - m(o)B 18T, T, <O,  (5.23)

m
n

for integer values of n sufficiently large.
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To understand the behavior of these roots, we consider the
asymptotic expression for V for finite €. Let us suppose that Ll/L2
and exp (62) behave as in Fig. 7, which is appropriate for a cin profile
I. The value zero at the right for exp (62) occurs by virtue of the
approach of 62 to - » as the turning point recedes to x¥ = =. Between
gil and Ci2’ Fig. T, unstable roots occur, as given above, while at
Cil and Ci2 neutrally stable roots occur., This Ci interval is seen to

correspond to a series of unstable e-intervals, which for Im(D) = 0 are

L, 7L |

exp(8,)

>

|
|
!
|
|
|
|
.'
|
|
|
|
|
|
|
|
|
|
l
|
i

Fig. 7 Sketch of the functions lLl/Lé and exp (62) for profile I
(see Fig. 5) detonations for 6 = Im(7)/e traversing the Class ITT
segment of the {-plane. Instability is obtained in the € —» o limit

for a detonation which has exp (62) greater than lLl/Iﬂ s as In the
interval (Ci

l’ gig) .
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(2n - 3)n/BL(8;,) < € < (2 - Bn/B(45)s (5.24)

forn =1, 2, «es .« As n increases these intervals overlap, so that for
¢ above some value all wave numbers are unstable and no estimate of the
range of unstable € values is obtained., If the exp (62) and Ll/12 curves
do ﬁot cross, then no unstable roots occur for large €.

Two additional points should be noted. First we observe that Ll
and L, are equal at Ci = (cin)+. Since we had ¢ = O at Ci = (cin)xzm
for profile I, it follows that the asymptotic expression for V behaves
continuously as Ci traverses the boundaries between Class I and Class III
for profile I as well as profile D. Because of this continuity, the
asymptotic value of V for Ci =‘@in)x=w, a point excluded from all our
considerations, is taken simply V = eLl(C), as 1s obtained by approach
to this point from either Class I or Class IIT.

A second point for considerations is concerned with profile M. It
is evident that V behaves continuously with Ci both at Ci = (cin)+ and
Ci = (cin)x=w. At the maximum value of cin, however, continuous behavior
can be lacking. Although 62 does become infinite ét this point, as can
be seen from Eq. (5.18), its sign can be either + or - simply on the basis
of the kinetic coefficients ;v' If 62 - + o, & is also infinite, whence
12 dominates Ll’ while for Ci > (cin)max, only the Ll term appears in the
asymptotic formula. It is clear, then, that the complete stability be-
havior of profile M requires an asymptotic expansion for 3, valid at the

maximum. This task is reserved for the next section.
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6. TURNING-POINT PROBLEM FOR AN EXTREMUM IN cin

Although the method of Sec. 4 can presumably be employed to solve
the continuation problem facing us here, it is certainly a far more
difficult problem. In particular, the discussion of Ref., 5 indicates
the need to solve a connection problem of a rather difficult sort.
Instead, we turn to the so-called "related-equation method" of Langer,
with the hope that much of the present problem has already been solved
in its essentials by virtue of the known solution of certain turning-
point problems for second-order equations. These second-order equations,

of the form

2

ij‘% . [a?qo(.x) + By (x) + R(x, a)] w=0

@
ad ;
R =Z ri(x)/a) (6.1)
i=0 -
(the absence of a term in du/dx implies no loss of generality9), have

been solved asymptotically in & for the case of a simple zero9 of qo(x)

and a second-order zero.lo By writing Eq. (6.1) as a system

(6.2)

1o

- (qo + ql/& + R/&? 0

7L



we see that the simple zero corresponds to the problem of Sec. 4 in so
far as the difference in the eigenvalues of the leading matrix vanishes
as (x = x*)%, while the case of a second-order zero of qo(x) coincides,
in the same sense with the problem at hand. The present section is
based upon the exploration of this correspondence.

The procedure which will be followed is as follows., Non=-singular
transformations of our equations are devised which yield a second-order
system of the form of Eq. (6.2) and an (n + 2)-order system, with
interactions between the two systems first appearing with terms of order
e in the coefficient matrix, for arbitrary m. The related equations
are taken to be independent systems of order 2 and order n + 2, with
coefficient matrices agreeing with the transformed system also to order
e-m. The significance of the related eQuations derives from the fact
that their solutions are known. In particular, the related equation of
order 2 is taken to be the related equation of McKelvey,lo while the
asymptotic series given by Friedrichs form the related-equation solutions
for the (n + 2)-order equations, The proof that there are actual

solutions asymptotic to the related-equation solutions has essentially

been given by McKelvey and is not detailed here,
Related Equation

We begin once more with Eq. (2.7b)

g§.= [egy(x) + 8 ()1 - 8 (6.3)
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and restrict our attention henceforth to Class III values of { and
suppose that the x interval under consideration contains a single
turning point. We wish to obtain a related equation, for any integer

m1,

—_

%:;_12 = [eso(x) + gl(x) + e-mﬁ(x, €) ] -

2]

R(x, €) =.VZ=; VR (x) (6.4)

such that a complete system of n + L solutions of Eq. (6.4) are known.
To accomplish this task, we proceed inversely by transforming
Eq. (6.3) so that it will resemble equations with known solutions. We

look for a similarity transform

Sy =.Q(x) exp [%e_!x(ul + ue)dx’] ‘(6.5)

such that, to highest order in the coefficient matrix, the Tl!'(o)
differential equation will be composed of a second-order equation of
the form Eq. (6.2) and a diagonal, (n + 2)-order system. In the Tl;(o)

equations,

(&



d;g-g)-= [e&o(x) + A}gx)] . i’.(o)

B = G5 [0 - ¥ 0y v L] S (6.6)

B - [ 5 - s/ |

(the dependence on { and v being suppressed for the present) we observe

that L. has, in view of Eq. (3.5), eigenvalues, 3 Moo %“21’ and

w0
1 . :
p‘il - Moy whence we require hI‘.'O be given by
0 1
0
Ly =[-4,(x) © : (6.7)
0 n(x)£n+2

£o(x) = =12 M= = (1= ) + <En)/n

n(x) = l‘lsl = p'21/2 = C/Tlu

where En. denotes the unit matrix of order i. It is important to note
that the exponential in Eq. (6.5) and the matrix L, do not contain
algebraic branch points at a turning point, for the square root s does
not appear. Thus, go(x) can be found as a regular function of x, and
this determination is given in Appendix C, In addition SO is a non-
singular matrix (i.e., ISOI # 0) for all x, In view of these properties

of Qy, it is clear that ~}‘I'(x), Eq. (6.6), is a regular function of x.
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To proceed further, we look for additional similarity transforms
which will turn the lower-order matrices of the differential equation
into block-diagonal form, with the upper 2-by-2 of the special form
displayed by Eq. (6.2), and at the same time not affect the leading

matrices which are already in this form. The existence of such matrices,

of the form
X
5 = [T+ e'k&{(;)] exp [e‘k“‘l [ gk_l(x')dx'] , (6.8)

for k 2 1, is suggested by the work of Turrittin.l6 We let

g = §..(.k) ) Tl;(k)
s as s s (6.9)

and require that

A (x5 €) =},ﬂ(k) (x5 €) + e'(k“Ll)HSk)

k

1;‘5 'L, (%) (6.10)

@

‘; ‘ESk) (x) v

1 (x, )

vy, o

(x)

]
I
>
<
—~
»
~
(@]

s V=21

i



The proof that such.ﬁ exists is also given in Appendix C and, again,

k

these transforms are regular functions of x. Obviously eachugk has an
inverse for e sufficiently large.
For any given integer m, the transformations in Eq. (6.9) can be

terminated to yield

Tl;(x, €)

Vimy 5 €)

X, €) = (m) X, €) = 3 VU (x
U(x, €) = U™ (x, €) VZ; 'y (x)
ICR I AR (6.11)

s(x, €) = 8 (x, )

g.z. = [el(x, €) + €7g(x, €)] - v .

If solutions y(x, €) of an equation resembling Eq. (6.11)

—_

d; =m -
E% = [€£k+ € gjx, e)] -y

I(x, €) = VZ; ™3, (%) ' (6.12)

are known, we will refer to Eq. (6.12) as the transformed related

equation, for it is readily seen that
Q:SOOS see S 'y=’§~'y (6.15)

P anail i

satisfies an equation of the form of Eq. (6.4). In fact, we find

R(xy €) =g (L-9 5 (6.14)
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which has the desired power series expansion, since the exponential

=V - .
factors in the S  cancel in Eq. (6.14) while the (I + €™ Q) L matrices
have well-known power series expansions for € sufficiently large. Thus,

we regard both Eq. (6.4) and Eq. (6.12) as related equations.
Solution of the Related Equation

Now it is clear that the matrix'i_in Eq. (6.12) is to be chosen
to have the special black-diagonal form of the ;w(v > 1) matrices;

for then Eq. (6.12) decomposes into two independent differential

equations
d2y 2
:‘;2"* (e Zo+ €£l+ a(x, €)J y=0
y(xs €) = ¥(x, ) * &
m-2 1
-V -+
alx, €) = Z; e, o(x) + €T e(x, €) (6.15)
V=
dp -
'a‘xe'= [e,.l\l,(xs €) + e my‘(x’ e)] * P
m

N(x, €) = VZ‘G eV (x) 5 (6.16)

-
where p is the projection of § onto the lower (n + 2)-space and where

we have written

T



0 0

El(x, €) =|-e(x, €) O .

0 M(x, e)

Equation (6.15) is the type discussed by Langer and McKelvey and we will
choose e(x, €) so that it is precisely their related equation. We can
first dispose of the 3 equation, irrespective of the nature of the
turning point, i.e., irrespective of the order of the zero of ZO’

Eq. (6.7).

Solution of the (n + 2)-order system

Now Eq. (6.16) is of the type considered in Sec. 3 and L except
that there are no turning points; instead the eigenvalues of the leading
matrix, n(x), are everywhere identical, and series solutions can be

>

derived by the method described by Friedrichs. Thus, we set

o(x, €) = c(x, €) exp[e fox n(x')d.x'] ‘ (6.17)

whence

—

de 1

4 _151.%] . 2. (6.18)

mel ~1:an
€ €

We now demonstrate that, for proper choice of M, Eq. (6.18) has a complete

set of n + 2 independent solutions which are polynomials in l/e N

= 2 e, (6.19)
V=
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with the degree p as yet unspecified. Substitution into Eq. (6.18) yields

m=1
—v — _ —IJ.-V . - - . Y
v§— € dcv/dx = vi uz_ TN, e myu c . (6.20)

Equating coefficients of e-v for v < m, we obtain relations independent

of M,
L

v

v - -
m— == e ° < .
dx Al\L]_ cv + g_;gml CV..p.’ v mn (6 21)

in which we define E'k = 0, for k > p, the degree of the polynomial. The
first of these relations (for v = 0) is seen to be a linear homogeneous
differential equation and has n + 2 independent solutions which form

the columns of the solution matrix Eo(x), which can be specified uniquely

by the initial data,

So0) = Lo - (6.22)

The remainder of the differential equations (6.21), i.e., V < min

(m = 1, p), are inhomogeneous, with inhomogeneous terms dependent only
on Zk with k < v, Therefore, these can be solved serially in terms

of the solution matrix ”(50 of the homogeneous part. In particular, we

obtain a set of n + 2 solutions for each v, namely

x v
LIRS AORY JoS ORID I MO RE-ANOES (6.23)

Now it can be seen that the degree p of the polynomial c cannot

be less than m - 1, for Eq. (6.21) would yield for p < Vv Sm - 1 an

9



algebraic linear relation among the Zk, k < v, which is not in general
satisfied., Hence, we have p 2 m - 1, and in fact it suffices to choose
p=m- 1.

Now if we remove the early powers in l/e from Eq. (6.20) through

Eq. (6.21) and let ¢ denote the matrix of polynomials e, viz.,
m-1

CADY S (6.24)

then Eq. (6.20) is found to determine M,

m=1 mel

-v+1 -1
= - € ° ° .
- 1; ; ) Sntvelop ~ (6.25)

Sincelg:l has a power series expansion for e sufficiently large, it
follows that the ELcontribution tO,ﬂXx: €) has the power series expansion
required by Eq. (6.12). A complete set of solutions for Eq. (6.18) are,
therefore, known, and through Eq. (6.17) the solutions ? of Eq. (6.16)

“are given.

Solution of the second-order equation

To find solutions for Eq. (6.15), we must now specialize to a
particular turning-point problem. Without appreciable increase in effort,
we can simultaneously treat both types of extrema in cin. In order to

apply the formulas of McKelveylo for the so=called second-order
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turning-point problem, we transform thus:

& = be
. 2 2
6 =1 for d Zo/dx >0 at x¥
2 2
§ =1 for d zo/dx < 0 at x¥
Z = X = X¥
w(z, &) = y(x* + z, &/8) (6.26)
(z) = - 8728 (x% + 2)
p,(z) = - ) (x* + z)
1 1
oz, &) =

- q(xx + z, &/6) = 32; a5(2)&™

to provide a notation similar to Ref. 10. The final equation defines
the low-order terms q in terms of the low-order terms of Eq. (6.15).
The latter equation becomes
d2u 2
—s - (& po(z) + wpl(z) + Q(z, &) u = 0> (6.27)
dz
and Eq. (6.27) satisfies the hypotheses made by McKelvey. In particular,

note that po(z) is non-negative for real values of z. [It should be

The reader is cautioned that several specialized symbols are introduced
and used, particularly between this point and the end of this subsection.
Many resemble symbols used elsewhere in the report, but differ in some
detail. Thus, in Eq. (6.26), u, py, and py are not to be confused with
mass velocity and pressure, In addition, the independent variable =z
differs from that of Sec., 4 and 5 by virtue of a translation of the origin
by x¥, but the symbol is identical.
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recalled that we restricted attention to an interval containing only a

single zero of Zo(x).] Following McKelvey, we define

o(2, &) = 3,(2)2

¥(z, &)

2&_é'z¢(z)dz (6.28)

o]

¢(zi%

=

(z) =

Note that ¢(z) is analytic for all real z if we let arg ¢ = O for

z >.0 and arg ¢ = ¢ for z < 0, Thus, arg ¥ = arg & for z > 0 and

arg ¥ = 2x + arg & for z < 0, [For arg(®d), we use, of course, either O
or t/2.] Finally we note that Il is regular and non-zero at z = O, The
introduction of the variable ¥ has the character of a "stretching trans-
formation" since it appears in the final solution below as the
independent variable in the differential equation for the leading part
of the solution.

Now McKelvey has shown that the behavior of the solutions of Eq.
(6.27) for large |& depends essentially only on po(z) and pl(z) and that
the solutions are asymptotically given by the confluent hypergeometric
functions, 17 both for finite z and for the neighborhood of z = 0. 1In
particular, for proper choice of the function e(x, €), Eq. (6.15),

McKelvey has shown that Eq. (6.27) has series solutions of the form,

u (2, &) = Nz, Az, B)v,(z, &) + Bz, Bv/(z, D)/B]  (6.292)
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where the prime denotes the derivative with respect to the spatial
coordinate and where subscript v appears explicitly, not only to label

the independent solutions but also to show that the polynomials A and B,

Me

Az, ®) = a. (z)&~t
m=2

B(z, (B) = Zbi(z)&-l s (6.29p)
1=0 .

are independent of v, The leading term in these solutions will be our

principal interest, so we observe:Lo that

cosh j(z)

3(2)

bo(2) = 6% sinh (2) (6.29¢)

5o (z") .

/ L L .
j(z)=£ p,(z) - p,(0)I7°(0)/1"(2 )dz,

It is important to note that j(z) is regular at the turning point,

z = 0, We have for T the determinant

A B/&
T(Z, (T)) =
A + BL/& A+ B'/& ]
5 - a2 N L L p .
= &7py(2) + dp, (O)I(0)/N'(2) + N(2)/N(2) + k(&) (6.299)
Ml

AN N}
k(d) = ;;)kiw

Ky = = do, (0)1(0) .
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Finally, the functions vv(z, &) are essentially the solutions of the

leading part of the differential equation and are conveniently written
AN -'L AN
v (2, &) = )V, [9, k(@] . (6.29¢)

The Wv’ which are of central importance in the sequel, are independent

solutions of the confluent hypergeometric eq_uationl7

2

d W 2
v+[_%+%+%-p ]W =0, (6.30)
P " v

for the special value p = & .

Now the choice of the function e(x, €) whereby the u (z, &)
become the exact solutions of the second-order related equation need not
concern us (beyond the fact of its existence). Instead we now concentrate
attention on describing the behavior of these u, functions along the (real)
z axis, particularly with regard to the analytic continuation through the
turning point at z = O,

Now the neighborhood of z = O is seen from Eq. (6.28) to correspond
to finite values of ¥ for which the u, functions can be found through the

power series expansions of the confluent hypergeometric functions,l8

W0 1) = e ()

(6.31)

=
o]
Y
E
]
%_Lv—'
o]
® I
&
r—;rﬂ
+
4y
+
o]
I
b
=
+
——
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Although of considerable importance in proving that the given differential
equation and the related equation are equivalent asymptotically, these
relations are of no practical importance in obtaining the desired asymp-
totic estimates for the u, functions. With regard to the latter point,
we need to consider only non-zero values of z for which the asymptotic
behavior of the W, is seen to be important. Thus, for large |&], we
evaluate Eq. (6.29a), using for T the result from Eq. (6.29c) and (6.29d)
T~1,

whence we obtain

u (2, &) ~ 1(z) ¥°% [cosh 3(2W, (9,%,)

(6.32)

dw&(w,ko)
+2sinhj(z)—-@.—-—] .

Moreover, the derivative of u,s which enters into the vector solutions
¥, Eq. (6.12), is found, on using the differential Eq. (6.30) to evaluate

the second derivative of W&, to satisfy for non-zero z

a?- ~ ¢de 4 2 cosh j(Z) ——-—d-zF-———

+ sinh §(2)W, (¥, ko) ] . (6.33)

Now rather than use the M o hypergeometric functions, Eq. (6.31),
2
it is more convenient for purposes of asymptotic analysis to use the

Whittaker functions which can be definedl9 as



W ) w (¥) + i) STNC) | (6.34)

k
’P [(5-p-k) T(5+p-k)
. . . 10
and particularly the variant given by McKelvey

-Vrtl
W (¥) = Wok’%(we Y, v=0,%1, £2, ...

o= (-1)" (6.35)

in which the argument of the product of complex numbers is understood

to be the sum of their arguments, and where

-vni)

arg(e = = VK.

These have the asymptotic form,2o

W (4) = eV (4™ 71 4 0(1/#)], for ¥ on 3,

E,: (v - 3/2) <arg ¥ < (v+3/2) . (6.36)

The asymptotic behavior of the derivative of Wv follows from the

derivative of the Whittaker functions21

Tp i) (k- W K - 3
—dWL— ( -Z)Wk’p "( -Z)Jklp

whence

EWK ~ - %e‘vﬂiwv, for ¥ on Z, . (6.37)




Now it is evident from the definition of the Zv intervals that
Eq. (6.36) and (6.37) are not sufficient to complete the expansions of
‘v, Eq. (6.32) and (6.33), for z both positive and negative. Therefore
we require a continuation formula for the Wv functions. For this purpose,
we employ Kummer's "first" formula,e2 which is particularly convenient in

the form given by McKZelveylo

Mk,p(w) _ ivepvniMCk’P(we-vni)

for v any signed integer or zero. Using this result in conjunction with

the definitions, Eq. (6.34) and (6.35), and employing the "reflection"

formula25 for the gamma functions, we obtain
ki
orie’ 2qkri
W (¥) = W (¥) + € W, .o (¥) (6.38a)
v l—‘(r]r-ok) I"(5/ll--ok) v+1 v+2 ‘

connecting three "adjacent" W& functions and

W) = ey gy, 2T (¥) (6.38b)
v vi2 [(3e0k)T(3/baok) V2
It is evident that Eq. (6.38a) permits the continuation of the asymptotic

expression for Wv from ZV to the intersection N(Z while Eq.

v+1° >:v+2)

(6.380) permits extension to N(Z

V4D 2v+5)' These sectors are found to

overlap, and further continuation is given by application of the

formila,

W00 = - W (9, (6.38¢)
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which is obtained in the same manner indicated above.
Now it can be shown that any pair of four "adjacent" W, are

linearly independent [except for special positive values of k = $ or 3/4
(mod 1), for which only adjacent pairs are independent]. It is convenient,
for the purpose of finally solving the stability problem, to consider the
v=0and v = 2 pair and to obtain from these u, functions the correspond-
ing solutions of the original second-order related equation, Eq. (6.12),
ruv(z, )

§(v)(x, €) = e-lduv/dz (6.39)

0]

0]

We compute now asymptotic expressions for §(o)on z > 0, where arg(¥) = 0

or x/2, by using Eq. (6.36) and (6.37) directly in Eq. (6.32) and (6.33)

to obtain
L]
3(0)(x, €) ~ | -ks/mu H(z)e-(%w4j)wk-%, z>0 (6.402)
0
0
R 0

where ¢ has been evaluated explicitly from Eq. (6.7), (6.26) and (6.28).
For z < 0, arg ¥ = 2 or 5n/2, so that we employ the continuation formula

(6.38b) for W, and thence expand W,, W5 and their derivatives to obtain
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S;(O) (x, €) ~

°
In similar fashion, we obtain

nd -

1

¥, o)~ | ks/m

*(2)(x

y 36)"'

. 2kni Loy = 1

T(4-k)T(3/k4-k)

(6.40p)
H(z)e-(%¢*j)wk-%é-hkﬂi, z <0,
_—eni H(z)e%w}jwpk-%
T(£-X)T(3/4=k)
(6.41a)
(z)e (B dyhmiig-2lni
H(z)e-(%w4j)¢k-%e-2kﬂi, z <0, (6.41p)
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(1) 2(3)

We could, in similar manner, determine additional solutions ; and y
but shall not do so here, for we have no need for these in obtaining the
asymptotic formula for 3.

We have now obtained a total of n + L4 solutions of the related

Eq. (6.12), and we denote these 31’ ;é, oo, §n+h’ where

¥i(x, ) = TOx, o)

To(xs ) = TP (x, o) (6.12)

while the remainder are formed from the n + 2 éolutions o(x, €) given in
Eq. (6.17), (6.19), and (6.23). The final problem is to prove that there
exist solutions ¥ of the given Eq. (6.11) which agree with these 3& up to
terms of order e'm, where m is the arbitrary positive integer selected
in advance. The method of proof follows.closely that of Langer9 and is

sketched in Appendix D, Based on this proof, we have
V(x5 €) = ¥,(x, € [1+0(e™] (6.43)
for arbitrary m.
Asymptotic Evaluation of 8

We now turn to our main task of obtaining an asymptotically valid
expression for § for the specialized turning point under consideration,
Again we return to the specific case of a cin profile having a single
maximum (profile M). It is seen, then, that the function Zo(x), Eq. (6.7),

has a minimum, whence in Eq. (6.26) and the following discussion, 8§ = 1i.
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Now corresponding to each of our solutions Wv’ Eq. (6.43), of Eq. (6.11)
we have, by the latter equation, a solution gv of the original Eq. (6.3).
For large ¢, it is seen from Eq. (6.9), (6.8), and (6.5) that only the

transformation‘§0 is important, and we obtain

X
Sy~ %o * T, e Dheley + ) + g5) ax’ (6.44)

for all x.

To find § asymptotically, we require the particular gv’ Eq. (6.4k4),
which remains bounded as x — «», We contend that 61, in fact, satisfies
this condition; for, writing out the latter explicitly, using;&o from
Appendix C and $l ~'§(O) from Eq. (6.40), we have

k

8(x, €) ~ - 6(2)"3(z, - él)(2ie)k-%[[z¢(z')dz']

e@{[[%e(ul + By) + gglax’ +1[z[- iet(z’) (6.45)

p, (=) - BT/
20(z") ’

where T is the transform matrix Eq. (3.1) and where the variable z = x - x¥
must be carefully distinguished from x. Since for x > x¥, ¢(z), Eq. (6.26)

and (6.7), is the real positive quantity
N .
we see that the ¢ term in the exponential is

X x¥
[uldxw [ Jopax's (6.47)
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Thus, 31 is of the ul type in the sense of Sec. 3. Bringing the function

of x, other than (T » & into the exponential, we obtain the e-independ-
s - 1/°2 s

ent part of the latter to be

+z') - L 2 2! z’ 2"Yaz"
[go(x,)dx,_i[ g 0e0va’) = 4, (e ()F (2 [ e(aas’

26(z") ’

o(z") 1d 4n o
= 2

z
+[‘ kg ~ dz’ (6.48)
ol [
0

! 7
'¢(Z”)dZ” dz

where the point z, is an arbitrary positive number. Now by Eq. (6.294)
and. (6.26)

Ky = -3 iZl(x*)Hu(O) (6.49)

while from Appendix C, Eq. (C.8), (C.19), and (C.20),

2,(x) = %j: (Epy = Ep)
go(x) = % [Ell * By + T <%§> ] ’ (6.50)

whence it follows that Eq. (6.48) has as its x derivative E,,, as in the
. asymptotic expression (3.3), as seen in Eq. (3.6). (This is, of course,
a necessary conclusion since the present asymptotic expressions must agree
with those of Sec. 3 away from the turning point,) Therefore, the present
31 is, outside of a multiplicative factor, identical with 61 of Sections 3

and 4, and we have, as in Eq. (L4.6),
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8(x, ) ~T(x, o), (6.51)

but now without restriction on x.
The solution for x < x¥* is, therefore, given through Eq. (6.40b)

to be

= 21tie2kﬂi . -k-%— z¢ 2! z/]-k .2
5, (x5 <) {-r(%_k)r(i/u_k) et | JACOEN ICIES

. . z k
S e‘”k"l(aie)k‘% [[ ¢(z’)dz’] (T - &) (6.52)

exp x[ie:(u H,) + g ]dX’}
e-(%?lffj)} {'é- e

T
0(z)?
Since, for x < x¥, ¢(z) is the negative real quantity,

L B
¢(Z) = PS = %iu2l ’ x < x¥% (6055)

the first contribution to Eq. (6.52) is of the K, type and the second of
the Ho type. If we rescale 8 so that the ul-type contribution is simply

E . for x = 0, we can write for x < x¥

®1
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X
B(xs €) ~ (T,* &) expf (eny + Epj)ax’
0

X
+ ofe, O)(T + &) exp./o' (e, + Eypp)dx’

(6.54)
-k 2k [(f=k.)T(3/4-k.) x¥
a(e, V) =[— 2ie-[ ¢(z')dz'] © 0 Y exp[ (erqp + Xlz)dx'

2ni exp (6koni)

£ (eevz) = £, () 1%(0) /1(2)

Xp = o(2) y

This is precisely of the form of Eq. (4.24) for all other Class II values
of Ci for profile M, but with a redetermination of .

Now the expression for V(7, €) (whose zeros determine stability) is
to be obtained from Eq. (6.54) and (6.45) (the latter must first be
rescaled as above, of course) by following again the procedure of Sec. 5.
It follows once more that the final asymptotic expression is given by
Eq. (5.17) and we turn now to consider the nature of @ at the current
value of {. However, there is no need to locate the roots of L, as will
be seen by considering the magnitude of Q(e, v).

Since “12 is pure imaginary, lal > in its dependence of e, is seen
from Eq. (6.54) to be given by the factor €2k0. One finds for k.,

0
Eq. (6.49), using Eq. (6.28),

Ky = = 4, (x%)/4e(0) (6.55)
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and using Eq. (6.50) and the values of E

11 and E22 from Appendix A, this
becomes
Ko = Koo = V¥gy
. 6, { [(l-n)vps 22 1 23
= -z
© = e om LT T 2] T

(6.56)

L L [2(1-n) _
Ol Lo’ (0) 112 T]2 .

Since kol is positive, Re(ko) is clearly negative, provided v satisfies

Re(0) > max (0, ko /k). (657)

For such v, then, & vanishes in the limit and only the ul-type solution

contributes to § asymptotically. If, however, k

00 > 0, then in the range

0 < Re(v) < koo/kyy (6.58)

G becomes infinite. In the expressions for § and L, the u2-type solution
dominates in the € - « 1limit, This behavior is just that predicted for

profile M previously; for it is readily seen from Eq. (5.18) that, if ko

is positive, then B, (in the Sec. 5 expression for @) for ¢, near
1

: 2

i(e n®),

< is large and positive. Hence, the u2-type contribution also

dominates for Ci Just below the special value of Ci' Similarly, if ko is

2




negative, then 62 is large and negative and the ul-type contribution
dominates. In view of the criterion for instability arrived at in
Sec. 5, viz. Eq. (5.20), the criterion for instability at the present

special value of Ci is the inequality

Ko > © (6.59)

which is a purely algebraic condition on the equation of state and the

chemical kinetics, as opposed to the integral condition, Eq. (5.20).

Continuity of the Asymptotic Solution for Profile M

Having arrived now at a stability criterion for all Class III values
of £, we have completed the treatment of profile M, except that we still
have not demonstrated that the asymptotic expression for V(T, €) behaves
continuously with 7 = ef + v through the point { = i(con%)max. In terms
of 6, the contimuity of V requires that for x = O the §é contribution
should vanish when { passes from Class IIT to Class I; for we recall
from Sec. 4 that for { in Class I there is no 3é contribution,

From the discussion of the magnitude of (e, v), it is evident
that in the stable case (koo < 0), the gé contribution does vanish
continuously with Ci since Q(e, ¢, V), Eq. (5.18), approaches zero at

1
¢; = (e n?)

contribution vanishes discontinuously with { at this special value

« In the unstable case, however, it is clear that the gé

1
i(conz)max’ if Re(v) 1lies in the range Eq. (6.58). We now will
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demonstrate that, for less "violent" changes of T =¢f + v (i.e., changes
of v rather than ), the §é contribution also vanishes continuously.

Now we have already seen that by increasing Re(D) through the value
koo/kol [see Eq. (6.58)], the desired effect takes place. Similarly
for Re(v) < koo/k01’ we will now show that the magnitude of @ diminishes
with increasing Im(v) and that continuity holds in this direction in the
T-plane. To study the magnitude of ®(e, v), Eq. (6.54), with variations
2L

of Im(D), we first employ the Legendre-Gauss multiplication theorem

to write

L(k - ko) T(3/% = k) = (3 - 26 )52

Consider now the magnitude of @ for both € and Im(v) = o, large; using

the above identity with Eq. (6.54), we obtain

la(e, ©) | = Kbr(% - 2k) exp [2k0 In € - 5k01noi] (6.60)

with Kb composed of various factors independent of Di and €., The gamma

function is given asymptotically in Di by the formula25

1 ; ~ - -
I3 - 2 Re(ky) + 2iky,0, ]| K, exp [- 2 Re(ky) 4n v; - ky;xo, ]

with K, representing a constant. Combining this with Eq. (6.60), we see

that |®| becomes small for v, of order of 4n e, i.e.,

v, >0,
1 ic
ic

v, =K fne. (6.61)
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The continuity of the asymptotic theory for profile M is, ﬁhen,

established.
T. A - B DETONATIONS

The preceding theory is here applied to the idealized, one=reaction
A - B detonations, having Arrhenius rate constant.u The equations for
the steady flow are given in Ref. Lk and are repeated here only in so far
as required. The notation of that article is slightly modified here; we
note particularly that in the present notation the Mach number of the
shock is k_ (rather than «, which we use here for the local Mach number)
and that the frozen sound speed is c_ (rather than c), so that the frozen

sound speed in the quiescent gas is ¢ (rather than co).
2
Profiles of e

One readily computes this quantity in terms of the mole fraction

A of reactant A to be

() =1 - (1 -2 e
(7.1)

(€ = 1)/(y & + 1)

g
"

0]
I

7 (€ = /2 - &
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where Q is the heat of reaction in units of RT , and where £ varies
between 1 at the shock to some equilibrium value ge 2 0, Since A\ decreases

to zero monotonically according to the Arrhenius rate law
anfdt = - B\ exp (-E*/RT) (7.2)

(where &, the pre-exponential factor, and E*, the activation energy, are
constants), the derivative of cin with respect to x has the sign of
(2wt - 1).

A particularly simple case arises if the ratio of (frozen)
specific heats 7o is taken greater than 2, for then (2wg - l) is readily'
seen to be negative for € = 1 and hence for all O < A < 1, irrespective
of detonation velocity and irrespective of heat of reaction. In this
case, all detonations exhibit profile D and are stable asymptotically in
€.

For 1 < 7o < 2, we examine 2wt - 1 at the shock (& = 1) and find

it to be positive unless
2
K <3/(2 - 7).

For "normal" values of 7os Le€., less than the ideal-monatomic-gas value
of 5/5, it is not expected that detonations will have such small velocities,

but for sufficiently small heats of reaction, viz.

Q < Q(y,)

Alrg) = 7,0y + /62 = 7 )y, - 1) (7.3)
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the CJ Mach number

1
2 1L+h (1+ %h2)2 + %he

A,
1]

=
I

¢ 2(7i - 1)@/, . (7.1)

is less than 3/(2 - 70). Thus the situation for Q < § is that, for
Ké <3/(2 - yo), cin decreases with distance at the shock and throughout
the reaction zone and exhibits profile D once more.

For Ké >3/(2 - yo), cin is increasing at the shock, but not
necessarily throughout the reaction zone, Since £ 1s monotone-increasing
in X (which decreases with x) and since (2wt - 1) is monotone-increasing
in &€, it is seen that cin has at most a single maximum. Now the value
of (2wt - 1) at equilibrium is negative for the CJ detonation (for &
vanishes at A = O in this case) but becomes positive for sufficient
overdrive since, by Eq. (7.l), & remains unity throughout the reaction
zone in the limit K ==, There exists, therefore, a transitional
Mach number K_t above which (2wg - l) is positive throughout the

detonation, One finds

1
bt by N2 3422
2 p) 2 7 2 7 7
K—t = :-—;Z h + —E—o— +[(h + -To—) - —-—E-e— . (7'5)
(o]

The behavior of cin is summarized in Table IIT for all values of the
parameters, It should be remembered that the possibility of instability

is limited to profiles I and M.

100



TABLE ITT

Classification of the profile of ciﬂ versus distance x in the steady

detonation, according the types in Fig. 5, for the A - B idealized

detonation,
Heat capacity Reduced heat of Mach number of
ratio, 7o reaction, Q detonation, K_ Profile

>2 all all : D
<2 < Q(yo) K%CJ < Ké <3/(e - yo) D
3/(2 - 70) < Ké < K?t M
K?t < Ké I
< Q(yo) KéCJ < Ké < Két M
Két < Két I

General Considerations of the Stability Criterion

The implications of the asymptotic theory can be found by the
evaluation of exp (62) and Ll/L2 for Class III values of {, for specific
values of the reduced heat of reaction Q, the reduced activation energy
Q% = E*/RT_, the heat capacity ratio Y52 and the degree of overdrive
f = Ké/K%CJ' If we denote the value of &(\), Eq. (7.1), at the turning

point x¥* by g*, then the correspondence between Ci and £¥ is
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2
gi = uia)(yo-f 1) (1 - we*)ex/(1 - w) . . (7.6)
Transformation of Eq. (5.18) to the variable

L
2

2(g) = [(1 - wgx)ex - (1 - wt)t] (7.7)
yields for B,, after substitution from Eq. (7.1) and (7.2),

1 2L
B (&) = 20[(1 - wg*)g*]{é I,(2)aZ

1,(2) = [(1 - 08) (L + wry) T"F(ewe = 1K) (7.8)

. o (1307, 8) (1)
. z) _ ) E_ ] ) _ 1 N [¢] .
( (70 1) (RT € of (l-w§)2+(l)( 7o+1) (L-wE*) %

£(2) = (2<n)'l{l b L - boll - aex)ex + 1«»22]%} .

The activation energy term is given by

¥ (7o+l)2K2

= = o¥[1 + - W - .
i WQU wy &) (L - wt)] (7.9)

Now it is evident that 52 becomes large and positive for large activation

=

energy and, in fact, becomes linear in Q?. For any §i for which 12 is
non-zero, it follows that the detonation becomes unstable for all suffi-
ciently large activation energies. On the other hand, it can be shown

that for all sufficiently large detonation velocities

ILl/Lg l > exp (52) s
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and hence detonations are stable for large values of f,
In addition, a sufficient condition for instability can be derived
1
by a comparison of the derivatives of exp(B,) and Ll/L2 at §, = (con2)+.

The derivatives with respect to Ci itself do not exist, but we have

Te = 2 ' , 201
[dfz(l)L(l)=o (2(1,_1)(1_0)70)1E [(70 1) ( RT, 1) - ]

e
[ml/Le] - — (7.10)
dz(1) %(1)=0 (1+<D’>'o)E

where Z(1) is given by Eq. (7.7). If the former exceeds the latter, the
exp (62) curve leaves the value 1 at the left in Fig. 7 above the Ll/L2
curve, whence the flow is unstable. The neutral stability point with

respect to this condition yields a transitional activation energy Qi‘

for each Mach number

oo T, [ (2a>.1)(2:<f-1)]
1+

%
k) = 7 7.1

(7.11)

which is independent of Q. For Q? > Qi, the flow is unstable, while, for
Q? < Qi, the exp (62) curve begins below the Ll/L2 curve, For fixed
values of Q and o2 the value of Q* below which the latter situation
[with regard to exp (62) and Ll/L2] holds for all detonation velocities
is evidently given by the minimum of Qi. Now the minimum of Qi (for

profiles I and M) occurs at the smallest detonation velocity. Thus, for
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Q < §, the minimum is at the profile D-M transition, where
¥ ¥ 27, = (7 12
= - = < . . a
QUm = Q‘tB/(2 76)] 3{2_705 » for @ <Q (7 )

and, for Q > §, at the CJ detonation velocity,

Q’tm = Qﬁ(K%CJ), for @ > @ . (7.12p)

In order that a system with given Q and 7o be asymptotically stable for

¥ ¥
all detonation velocities, it is, therefore, necessary that Q < th.

Numerical Results

An IBM-T094 computer was programmed to evaluate 62, Ll’ and L2

throughout the turning-point region

1
(e 1), < &, < (en®)__,
s ps ¥ 2 2
for specified values of the parameters Q, Q , £, and 7o* For k_ < K 2
1
the value of k., Eq. (6.56), was also evaluated for Ci = (conz)max in

order to ascertain stability at the maximum of profile M. A plot of
exp (B,) and lLl/L2| as functions of {;, as discussed in Sec. 5 in
connection with Fig. 7, demonstrates instability by the presence of a
region for which the exponential lies above the ILl/L2 | curve. It is
to be noted, however, that, in the absence of a back reaction (B - 4),
52(Ci) does not approach - as {; - (Con%)x:w’ but attains a finite
value, as seen from Eq. (7.8). This value of &5 (corresponding to the
turning point being at x = «) is characterized by a discontinuous

behavior of 8 and V, much like that previously discussed for profile M.
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Inasmuch as this phenomenon is purely a result of the reaction model, there
seems to be no compulsion to investigate it further.

The results of our numerical analysis for y = 1.2 can best be
shown in the form of the neutral stability curves in the (Q, f)-plane.
In Fig. 8 are shown these curves for the activation energies of Q* = 50
and Q* = 10. It is seen from Eq. (7.12) that, in both instances, the
profile=D=to=profile=M transition locus, viz., K% = 3., 1s also a
neutral stability locus. The rightmost neutral stability curve has a
more complex structure for Q% = 50, The lower section, i.e., the portion
below Q ~ 1, corresponds within numerical error to the constant Mach
number root of Eq. (7.11) for Qz = 50, namely, K% = 7.084, In the
unstable region to the left of K% = 7.084, the exp (62) curve "begins"
above the lLl/L2| curve, but for some {, = {,, falls below the latter,
as in Fig. 7. With increasing f, Ci2 is found to deé}ease, apparently
merging with Cil = (con%)+ at K% = 7,084,

The upper section of the rightmost neutrally stability curve does
not correspond to the necessary condition, Eq. (7.11). For fixed Q
above Q ~ 1, the exp (Be) "begins" below the | Ll/L2 | curve when

2 1
K~ > 7,084, but for the range, 61 <8 (conz)x;m, lies above the

lLl/L2| curve, These Ci are then unstable, but, with increasing
detonation velocity, the unstable range of Ci decreases [ioeo’ gil

L
approaches (conz)x:w]’ finally vanishing (at the neutrally stable value

1
of f) with Cil = (conz)x=w.
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Fig. 8 Stability in the 1limit of vanishing transverse wavelength for a heat capacity ratio

7, = 1.2 and reduced activation energies of (a) Q,* = 50 and (D) Q,* = 10 for various values of

-CJ) . The light curve is the
transition locus from profile M to profile I (see Fig. 5). The heavy curves are neutral stability

the reduced heat of reaction Q and degree of overdrive f = (k /k

curves, the leftmost of these also being the profile-D-to-profile~M transition locus,

K2 =3/(2 - 70) . The dots indicate the values for which the calculation has been performed.




For the smaller activation energy, Q? = 10, the unstable regime
is considerably smaller, and the rightmost neutral stability locus lies
to the right of the root of Eq. (7.1l) for Qt = 10, at least for Q = 0.5
ani lies very near to this root for Q < 0.5. If a "bulge" of the type
seen for Q? = 50 exists, it is very small in this case. It should also
be noted in comnection with the Q? = 10 results that the previous long-
wavelength calculationsu found instability in regions of asymptotic
stability. Thus, the Q = 50 detonations were previously found to be
unstable, apparently for all degrees of overdrive while the asymptotic
theory predicts stability for all f > 1.0L.

The most astonishing feature of Fig. 8 is the presence of

instability for a range of f values at all positive heats of reaction.

This feature was not present in the long-wavelength calculationsu but

its correctness i1s indicated by the fact that we have been able to
calculate an unstable root for Q = 0.1, f = 4.0 by means of the numerical
program described in Ref, 4. This program is ineffective for large values
of € by virtue of the inability of the program to integrate the [}
differential equation when the magnitude of the eigenvalue (having negative
real part) of -33'(&, T, €), Eq. (2.4), is large. This is the case for
large €, except in the turning-point region of the t-plane. Therefore,

by computing B. and B, as well as B,, L. and L, for a particular value
1 3 2 2

1

of Ci for which the condition for instability holds, we find a root of

the asymptotic expression L, + OL, to occur at the point, [see Eq. (5.18)]

1
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Bo(8;) = n |1 (38,)/0,(48,) |

Re(Vv) =
BB(Ci)
5/29,(¢,)s  for Ly(it,) > 0
€= (7.13)
n/2si(gi), for L2(igi) <0
For Ci = 1.752818 u,, we obtained the asymptotic root
€ = 15.77521
T = 0,00181L + i 27.53626. (7.14)

We have also determined an "exact" root of V(t, €) for this value of ¢
by determining V, by means of the numerical calculation of Ref. 4, for
an array of values of T near the predicted root. Interpolation yields

the root,
T = 0,002138% + i 27.536277. (7.15)

The units of length and time for 1/¢ and 1/1, respectively, are the dis=
tance and time to half-reaction, as in Ref. 4. The accuracy of the "exact"
result cannot be expected to exceed the third digit to the right of the
decimal point.

The transition to stability for all Q and f has not been
intensively investigated; but for Q* < 4/3, it follows from Eq. (7.12)

that the sufficient condition for instability is not satisfied,
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irrespective of Q and f. Numerical evidence suggests that, as the
activation energy approaches Q* = h/} from above, the rightmost neutral
stability curve approaches the profile D-M transition locus. Hence
for Q? < h/} it is believed that all detonations in this system .are
stable for small transverse wavelengths, No attempt to prove this
conjecture has been made, but it has been proved to be at least
approximately true,

One final point seems worth mentioning, namely the approach to
Q = 0, the step shock. The exact expression for V(t, €) is known for

the step shock, of course, namely

V= eLl(C) H

and this has no roots on the imaginary { axis. As described above in
conjunction with Fig. 8, the asymptotic theory formally predicts for

Q = 0 a range of unstable shock velocities, dependent upon the
-activation energy, Q,* >U4/3., In the Q=0 limit, however, it can
readily be shown that Bl - 0 and 65 - o, Thus, according to Eq. (7.15),
the rate of growth of the predicted "instability" is zero while the
wavelength vanishes. Thus, while the asymptotic theory is not exactly

continuous at the Q = O point, it does not predict an incorrect result.
8. DISCUSSION

It is clear from the numerical results for the idealized system
that the asymptotic theory provides considerable additional information

on the behavior of detonations and. obviously should be an integral part
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of any stability calculation. In addition, the possibility that rather
small-scale transverse disturbances [the wavelength of the root, Eq.
(7.15), is about 0.1 in units of the distance to %% complete reaction]
are unstable, even though long wavelengths are stable, is certainly not
contréry to experimental evidencé. The latter seems to indicate the
presence of small-scale, transverse inhomogeneities even when the
conditions are well removed from those associated with spin.

Although the present theory does not completely describe the
stability behavior of a detonation, it does, nonetheless, provide a

computationally simple criterion, the fulfillment of which is a

sufficient condition for the growth of disturbances, The application of

the present theory would appear to be entirely feasible, irrespective of
the number of chemical reactions and the complexity of the equation of
state; in this respect, it might well represent the only theoretical
test of stability which is available,

In connection with two- or three-dimensional calculations of time-
dependent, reactive flows (should such ever become feasible), the
presence of asymptotic instability has the greatest importance., In a
calculatibn involving no transport effects, continued refinement of the
mesh would evidently increase the number of permitted unstable modes,
and a mesh extrapolation would apparently be meaningless. A realistic

inclusion of viscosity presumably would be required,
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of the state variables

The matrices A ,
awy

APPENDIX A

in the steady flow.

A , and B are given in Ref. 5 in terms of functilons
'A [

The inverse of A is readily
oy

found to be
1 1 (1-n)pg (1=n)pp
1 Tm nn? nn?
m 1an . (1-n)pg (1-n)p3
M M nm nm
Aamt oL 0 0 1 0 0 (A.1)
o u
0 0 0 1 0
0 0 0 0 I
- |

wheregn denotes the unit matrix of‘order n, m is the mass flux u/v, and
p is the pressure. Subscripts S, v, and N denote partial derivatives, with
the remaining variables of the set held fixed.

The calculation of 2, Eq. (2.76), involves a matrix product

yielding
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(1-n)¢ _mf _im o o
u nu 1-n
_3-n)g o (2-n)¢ 0 0 0
Tim nu
| i(ien i g
O = -LEF)' o 2 0 0 (A.2)
(L-n)pgt (1-1)pgt ipg ¢ .
2 mu m u
m u
(1-n) 2t (1=n)p3t by ¢y
2 TjmL m u i
nm u
The eigenvalue-eigenvector problem,
["(‘I')O - ui‘:!:-f-] . T.i =0 (A.5)

proceeds by finding the determinant of the coefficient matrix to be

n+2 2 o
(é-ui) I:(l'%l-&-& p.i) _Q?gi_g__%] . (A.4)

This has roots as follows:

K

lJ-l = - .T_]Tl- [KC + S:]
K
bo = = g [KE - 5] (4.5)
My =k = eee = ) =t/
1
s = [Ce + ci'f]]2 .
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The determination of the corresponding eigenvectors is somewhat

laborious but straightforward. The Ei form the columns of the matrix

ms ms im
K ~ ko T im ° ©
£ S i 0 0
u u
T = - i - i £ 0 0 (A.6)
A u
Ksp KSD
- S 0 1 0
mL mL
Ksp= Ksp=»
- A A 0 0
mL mu 1l
| -
which has inverse,
Ku u kl+s inqu o o
2Ts 75 T+Ks 2Ks(G+Ks
., 2
Ku _u_Kkbt-s inu o o
= Pms S C=KS = PKs(C=Ks
2
-1 iu ug
~ = ° =z g o o j(am)
¢ -u { -u
2 .
(1-n)pg U pg iupy
- 1 0
w n(tP) n(£o)
2 .
(l-n)px u iups
s - —— = 0 I
m m(§"=u") m(§"=u") i
e —
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The calculation of the matrix E, Eq. (3.2) is a laborious procedure,

which we now indicate., We had

B =0 @Rl
-1y 7
=W, - 1)(‘13'x ) (A.8)

whence we write

= E(o) + 'oE(l)

=4 X
NE.:,.(O) =’,£\-l . [”l . E\ - dE/dx] (A.9)

E(:L) _ E—l . (é;l), . o,

e [

The matrix w‘&l is obtained from Eq. (A.l), and matrix ']‘3' is given in Ref. 3
in terms of the gradients in the steady flow and certain rate coefficients,
The gradients can be written as products of thermodynamic functions and
the chemical rate, so that E‘ca.n conveniently be separated into a term

linear in the rates and a term linear in the thermodynamic derivatives of

the rates, Thus we write

R(x) =By + B (A.10)
with 30 vanishing at equilibrium, Explicitly
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Jor gr 0 0 0 ]
0] m7
mo« T m§.3n ger 0 r.V(PS) r'V(px)
= - D - m
T (1-n) " n
By = 0 0 0 0 0 (A.11)
NV
mevgo;‘. &‘o}. 0 7OV0'I' &‘ . ;
T T=M)T uT BT \T />
0 z 0 0 0
h u

andé&l has but two non-vanishing rows,

-h
~ — g d w
 y * 21 = [rvs 0, O, Tqs TX’] < T (A.12)
65 'Ea_=-[rvs 0, O, Tgs I‘X’] .

Here o is the important thermodynamic function defined in Ref. 7, V is
the gradient operator in X-space, also given in Ref, 7, while subscript by
denotes the partial thermodynamic derivatives, as previously noted. 1In
addition, we have the following identifications: T is the thermodynamic
temperature, 7o is the usual ratio of frozen specific heats, 2 is the

free energy increment, and Bo is the frozen expansion coefficient

B, = (3v/31)_ %
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Multiplication byué;l, Eq. (A.1) with subsequent transposition yields a

corresponding pair of terms,

W= “ M
_ -1 7
Mo = [aT Byl
-1 ,
M= L&x 'th *

The explicit formulas for each are

1
o= 0
var  (1-n)7¥(pg) oy (@n)FHeg)
A 4 A
My nm N0

A

i

(where ¢ o 1s the frozen, constant volume heat capacity); and

three non-vanishing rows,

RN RCE

[+

el

W

AN,

(A.13)

(A.1k)
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& *My=0  1=2,3

i 5w . B
gl'ﬂu=ﬁy"[-%g‘:‘%g‘sosﬁ—s%]
~ I‘S Vo uo &r
eu'iu‘ﬁ"'['ﬁ—"r’o’ﬁ—’,&n] (4.35)
e * W fg . [- AN ug 0 §E T ] .
5 mll U n ° n 7T ’sn

The calculation of E, Eq. (A.9), involves differentiation of'ELas

well as matrix multiplications, and we display only the final result for

several elements,

Thus, we obtain

- =

(©) _  1-q[Ps%T o Lo 2.1 dn
Bl = - Tm | T oot Ty Im(1-1) dx
ceb [ 7T V| i ams (4.16)

2ns | 1-n dx Tu m 2 dx *
K€+S Cgo?
+KS STu

g(1) _ _ K(G+ks)

11 uns

For E22 one obtains a result equivalent to Ell’ when the square root s

is replaced by =s.

The off-diagonal elements of Eldo not enter into our

final discussion in any important way but it is of interest to note that

the element
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21m ons | T-n & T nu m
(A.17)
1d4ns , Kias gor 2-31)¢
5t s 2n2u [%(2 ﬂ)*‘g-—g-l—

is singular at a Class II turning point, where (¢ - ks) vanishes. It is
seen from Eq. (3.7) that the first correction term to 61 is singular,

then, even though the leading term is regular.
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APPENDIX B

In this appendix, we prove that unstable roots of V(t, €) occur
in conjugate pairs in the t-plane, For this purpose, it is sufficient
to show that, by suitable choice of the arbitrary multiplicative constant
in 8(x, T, €), V(7, €) is an analytic function of 7 and is real for all
real values of 7.

Now V is given by Eq. (2.5) which can be written in the following

—_

fashion, using the vectors Et, Ey, h,, and Hy of Ref., 3:

t
81 0
. ) 8o ©
V('c,e)=.[é’-£;.{'c 0 + ie &5 }dx
Bl ©
g 0
L - (B.1)
-~ 4 - -
htl 0
ht2 0
- 3(0, T, €) ° { T 0 + ie hy5 }
hth 0
ht5 0
R ]
From Appendix A, Eq. (A.1l), it is seen that the products af;gf'with the

E vectors have the same zero elements as the g's themselves., It follows,

then, that V(r, €) is real and analytic (for real 7) if 8 is analytic and
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I
O

Re[B(x, T, €)] * 85

|

In[B(x, 7, €)] + & =0, i=1, 2, 4, 5. (B.2)

Now the differential equation for _9', Eq. (2.4), has the coefficient

. 4
matrix -P (x, T, €)
4 _ "'l . . 4
- NPW(X: T, €) = {NA.K [TE"* le;éy + E';]} (B.3)
which has real part
(a~t .« [ + B]}/ (B.4)
.4 N Y

and imaginary part

e(,;};l CA) (B.5)

From the fact that ,_lihas only zero elements in column 3 and in row 5
[See Appendix A, Eq. (A.11), (A.12)], it follows that the real part of
-E_' is diagonal with respect to element 3, i.e., it has the same block

. -1
diagonal form of .ﬁ‘x N

Mg, Mp O M), My
My M O M, My
0 0 M, 0 0 (B.6)
My Mp O My, My

M1 Yo 0 Y M55

L o

On the other hand, the imaginary part is found to be of just the
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complementary form, i.e., it has non-zero elements only in the off-
diagonal positions of row 3 and column 3. Hence, if 8 has the form of
Eq. (B.2), then d@/dx also does, and, by repeated differentiation, so do
all its derivatives. If, therefore, 6 has the form of Eq. (B.2) for any
X it does so for all x.

Unfortunately the only point in the reaction zone where B can be
determined is in the equilibrium state, x - », It turns out, however,
that the property (B.2) holds in this limit and its validity there is
sufficient to establish it everywhere. We begin by demonstrating that

the asymptotic form5 of 3, as x = «,

B(x, T, €) ~exu(T’ €) V(t, €) (B.7)

has the property (B.2). Now u(T,€) is the eigenvalue of -P'(=,7, €)
having negative real part and 7(7, e) is the associated eigenvector.
Sincelézis analytic in 7, p is also analytic and ¥ can be chosen to be
analytic.26 Now the complex conJugate of 12: has a single eigenvalue with
negative real part. It can be seen from the properties previously
ascribed to its real and imagiﬁary parts, Eq. (B.4t) and (B. 5), that the

following relationship holds:

- ,al*(“’, T, €) * Vl(:3 ) = k(7 e)vl('r: €)

Yo
vi(rs €)= | - vy (B.8)
Yy
Vv,
L 2
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where ¥ denotes the complex conjugate. Thus
u¥(t, €) = uk(7, € (B.9)

1Y - 03 . /
and 4 is real. Moreover, vf is also an eigenvector of -EL, whence the

eigenvector
V(1 €) = 300 + ¥x - i(¥ - V9] (B.10)

has the property (B.2).

To complete the proof, we obtain an explicit solution for 3,
valid in the neighborhood of equilibrium. To do this, define a new

independent variable

0 - (4= 5]

where S(x) is the entropy in the steady reaction zone which is constrained

N

(B.11)

to increase monotonically with x by virtue of the second law of thermo-

[

dynamics.' Thus z(x) varies monotonically between 1 at the shock and O
atx:“’.

The differential equation for § becomes

976_- =z, 1, €) - 8

dz

Q= 2z P'(x, T, €) (B.12)
/w-— 6 L 2 ? L]

where 8 is the entropy production, = ZF-?/T, a non-negative thermodynamic
function, The z = O point is a singular point of Q by virtue of the
NV

fact the & vanishes.
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Now throughout the reaction zone, the thermodynamic functions of
state, under the steady-state constraints, were shown by Wood and

7 to be regular functions of the progress variables 7\:, so that

Salsburg
45/ itself is regular at z = O, Near equilibrium, the entropy production
$ is of second order in n = X(w), and the entropy gradient in X’-space is

of first order. Thus N - ;\..(w) vanishes linearly in Zz, and Q has a

simple pole at z = O, In some neighborhood of Z = 0, the series

Q= (z)~t ;g;zﬁgk (B.13)

converges, and the leading term '90 is proportional to ﬁ’“'(w, T, €)
Convergent power series solutions of Eq. (B.l2) can be derived by
application of the theory of singularities of the first kind27, and the

lone solution bounded at z = O can be picked out, viz,

N]

8(z, 1, €) = A ,:3:.‘4»

=) Xk .
ngz ] . v2 . (B.lh‘)

k=0

Here we have employed I and 72 for the eigenvalue and eigenvector of EO’
so that {I is real and positive [opposite in sign to 1 of Eq. (B.7)] and
32 is given by Eq. (B.10) to have property (B.2). Now by Eq. (B.1lk) the
quantity

5= @F 33, 1, o (B.15)

is regular at z = 0, and its derivative

= 270
_ . B |2 p .
(2-22) (%2

SRk
SR

,I.,] E (B.16)
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will also have the property (B.2) at this point, as follows from
the previously discussed properties of ,.I.)..: . In fact, all the derivatives
obviously doj and, since these are precisely the higher coefficients

in Eq. (B.14), it follows that B itself has the desired property.
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APPENDIX C
The transformations of Sec. 6 begin with Q, which satisfies Eq. (6.6)

[og - 2 (by + )T * Q= Q& * Ly (c.1)

The simplest route to finding 80 is by first diagonalizing the coefficient

matrix on the left. We have, from Appendix A,

-] .
T° o [8 = 3(ky + )T * L= Diag [- 1y /2, 1y /2, n(x), «ee, n(x)]

(c.2)
and we require the transform
Diag [- p.2l/2, eeey n(x)] o E=E - L. (c.3)
One readily finds
1
-3 nu/2Ks
L 0
E= -1 - m/2ks (C.k)
0 n].:.n+2
b
Thus
o=LEE (c.5)
has columns
0 mn/(1-n)
-t/ 0
Qo =] * ) & " % T 0
| 9 | - pp/m
A (c.6)
BO.eJ.:Elej, J:},l{.’ ...’n-}-).l..



Moreover, since we had

-1
E=x" - [g - I-dt/aux]

AW

we have for the matrix H, Eq. (6.6)

-1

1

H = . [E -
A el

fur

—
=)
—
A

- dE/dx] .

(c.7)

Thus H differs from E only in the first two columns,
A

o

+

X -
n

[V n1
=
o

N~

E

12
- E

mu
PKs (Ehl

E

mu
3 srs (Bsy -

By

- By

+ E21

Eoy

52)
- Ehz)

52)

+ E

22
- E

- E

+ Eyp) = 4 zn(ﬂu/Ks)/dx

22)

)

(c.8)

22)

|

It should be emphasized that, despite the appearance afj% and s in Eq.

(C.7) and (C.8), H is a regular function of x by virtue of Eq. (6.6),

(C.6), and (A.6).

In order to prove the existence of the transforms Eq. (6.10), we

employ induction.
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Yoy =& Y

Sy =1[L+ e'lgg_] exp fxgodX' (c.9)
0
yields
d—.
-ngiz = [e},'o(x) + II'ZL(X) + e-lg(l)(x, €)] - W(l) . (c.10)

Now differentiation of Eq. (C.9) yields

oo - i;(l) (c.11)

S @ )T Uk B - @ gy - g /axd gl

12

Using the identity

(T + €-]:91)-1 -1- e-lgl N e-%gi . (£,+ e-%gl)-l ,
we have
Lot Go g% dotE-ad
PG @ )T -yt G )T kot @)
4 (T4 6'131)‘1 ¢ (B + g -dg/ax)] . - (c.2)

The terms within the bracket have the desired power series expansion

irrespective of the choice of Ql and gy SO that we need only show that
o "% -8 Lot H-gl=1; (c.13)
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for suitable choices for'gl and go.
To solve Eq. (C.13), it is convenient to drop the subscripts on

jh.and write the matrices in block form,

.}.L_L;L vP-L.LZ &ll 0
= > o © o
Hoy e 0 Lo

where H . is a 2-by-2 matrix and H,, is an (n + 2)=by=(n + 2). Then

Eq. (C.13) becomes

o 1
\nlﬂﬁ_l - 8022 - 9—’]_']_ * .]:'."]_l + ‘L.,]_]_ * ‘Q.,’]_‘L v]&'vll (C.lha)
O O
= Qo "o vl Q=0 (C.14p)
By =%y wll * 8y =0 (C.lle)
o} 1
oo - &lno =3 +Ioo * o =Ioo - (C.1ka)

. o .
Since Ly, is n(x)£n+2, Eq. (6.7), we have

Qo * Lop = n(x)Q5>

whence Eq. (C.1llb) yields

_ o] -1
S1p = - (L - n(OLTT - o - (C.15)
The inverse matrix on the right exists by virtue of the fact that the

eigenvalues of L°. are distinct from n(x). Similarly, Eq. (C.llc) has

wll

solution
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So1 = Moy ¢+ 3 - n(x)‘}g]-l . (C.16)

In view of the character of‘£g2, it is also evident that‘g22
disappears from Eq. (C.14d) and, thus, does not appear in Eq. (C.14) at all.

Hence, we can simply write

o =0
- -g.I (c.17)
Loo =doo = 85I 100 .

Finally, Eq. (C.lla) becomes in component notation (i.e., dropping

subscripts from Q11 and Hll’ but inserting subscripts for the four

individual elements),

Hp =8y + doQpp + @y = 0 (C.18a)
Hp = Qp +8p=0 (C.180)
Hyy * %% = 4oQy = = 4 (C.18¢)
Hap = 8y = Gy = %5 = O- ) (c.184)

Combining Eq. (C.18b) and (C.18c), we readily obtain

L = Ao, = Hyy

Qﬁ' Qp = Hp - (c.19)
Adding Eq. (C.18a) and (C.183), we get
gy =% (H, + H22)' (¢.20)

which serves to determine 8o The proof is completed by choosing
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a = 1
%, =
o
o

To complete the inductive proof of Eq. (6.10), we assume its

(c.21)

] !
AN
O&
+
N
&
no
|
=

validity for k - 1, with k 2 2, and examine the next transformation
V1) =3k V()

Sk

e * Y | (c.22)

(L+ e g0™ « ley = (T+ €7g)

e—kd&{/dx:] - e—k'*'lgk-]J:E-.

Employing the ldentity

-k -1 -k -2k 2 -k -1
(£+e~gk) =,:£."€~9.k+€ S (£+e vg,k) s
we have, from the properties of A ., Eq. (6.10),

(k-1) . kL

D = L (E(()k-l) -G "ot lo & - gD (C23)

We do not write out the terms in the bracket, but it is evident from
Eq. (C.22) that this remainder has a power series expansion. The

coefficient of e-k+l, on the other hand, agrees with that for k = 1,
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Eq. (C.12), except in the subscripts on the unknowns and the symbol for

the "knowns" H and ng'l), whence

.}lg-l =S Lo tIo 8 - &L= Iy (c.2h)

has a solution of precisely the same form as before. The proof is

therefore complete.
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APPENDIX D

The proof of the asymptotic equivalence of the (transformed)
given differential Eq. (6.11) and the (transformed) related Eq. (6.12),
i.e., the proof of Eq. (6..43), is briefly outlined here. It depends
upon consideration of the integral equation for the solutions of Eq.

(6.11),
Tl;v(x, €) = ;v(x, €) + e"m;%(x, €) fxvlf:l(s, €) '“I:'(S, €) - I_V'v(s, €)ds
.‘l:(x, €) =}i(x3 €) ‘i(x§ €) (D.1)

where Y denotes the matrix of columns §i, Eq. (6.42), and where the
N
lower limit of the integral on the right may depend upon the "matrix

element"

within the integral; i.e., if the integrand is written as a
sum, the lower limit may vary from term to term. The validity of Eq.
(D.1) is readily established by differentiation.

In order to establish Eq. (6.43), it is conducive to clarity to
consider the specific case § = 1 in Eq. (6.26), corresponding to a turning
point x¥ at which cin is a maximum. In fact, we will simply restrict
our attention to profile M, Fig. 5, for which there are no other turning
points on the x axis. By virtue of this specification, the "stretched"
variable ¥, Eq. (6.28) has argument /2 for z > O and 5r/2 for z < O,
Turning to the asymptotic expressions Eq. (6.40) and (6.41), we find that

the behavior of these functions with increasing € (i.e., increasing lwl)

L
depends on the wik-“ terms rather than on the exponentials in ¥.
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To prove the desired asymptotic result, it is important that the
set of n + 4 known solutions of the related equation,
§i(i =1, sesy, n + U4), be "asymptotically distinguishable" for all x.
This property is illustrated by the solutions §l and ;é if we assume
that Re(k) < 0. From Eq. (6.40) and (6.41), it follows that §l = §(0)
is recessive relative to ;é = 5(2) for z > 0, while for z < O, §(2)
is recessive., By virtue of the fact that one is recessive while one is
dominant for all z, these are said to be asymptotically distinguishable,

For the case of Re(k) > 0, ;(O) and §(2) remain linearly independ-
ent solutions. However, the leading part (for large €) of each is of the
dominant type, as is seen from Eq. (6.40) and (6.41). Therefore,
asymptotically they are not distinguishable and are not suitable in the
proof of Eq. (6.43). In this instance, it can be demonstrated that the

2(1) g 203)

pair y' /and y given through Eq. (6.39) are distinéuishable and should
be used for §l and §é in the proof, i.e., in place of Eq. (6.42).

For 31 and §é in the case Re(k) = O and for the solutions of the
(n + 2)-order related equation, §5, cee, §n+h’ the concept of asymptotic
distinguishability is not particularly important; for the various
solutions do not become recessive or dominant for large €. Instead, the
leadinglparts of these solutions in the € -» ® limit remain linearly
independent,

In view of the distinguishability of ;i and §é as defined in

Eq. (6.42) for Re(k) < 0, we will restrict our attention to this case in

the remainder of this Appendix, The Re(k) > O case is equivalent, once
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31 and ;é have been redefined in the manner indicated above.

The proof is based upon an adaptation of the theorem used by

Langer:9 Given the integral equation

X
B, €) = 8 &) + <™ [ K(x, 5, @)+ Hs, e)as (v.22)
with the order relations
g(x, €) = h(x, €)0(1)
x hi(s,e
fvli(x, s, €) I ds = o(1), € » o, (D.2b)
then
F(x, €) = 8(x, €) + n(x, €)o(e™). (D.2c)

The norm to be used for the arrays is
elements.

To begin with, then, we require

the maximum absolute value of the

The proof of the theorem is essentially given by Langer.

the kernel of our integral

equation in somewhat greater detail. In particular, the inverse of Y is

required.,

e~ u,

!

1
-1 F(e)
Y = —ll u
Ao € 'Llo 0
0
.

From Eq. (6.17), (6.24), (6.39), and (6.42) we obtain

(D.3)

g:l(x, €) exp .[x- en(x’)ax’
-

where F is the determinant of the upper 2-by-2 part of E;and hence is e-l

times the Wronskian of the solutions u., and u
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of the absence of a first derivative term in the latter, F is independ-
ent of x and is found, following McKelvey,lo to be proportional. to

1
-2

€ 2, Since n(x), Eq. (6.7), is pure imaginary and C is a polynomial

in €1, the (n + 2)-by-(n + 2) block of‘z:l is a bounded function of .
Sincelzgx, €), Eq. (D.1), has a power series expansion at 1/e = O,
it is bounded in € and the behavior of each element of the kernel of
the differential equation is known.

One now can apply the theorem (D.2) on any finite x interval,
say (0, 2x*), which includes the turning point. Since the behavior of
the 31 and 32 columns of‘}idepends critically on the value of x, we

divide this interval into three subintervals (0, x ), (x_, x+), and

(x+, 2x¥) by the condition

|#12(x,), 1] | = m | (D)

with M some large positive number. Since ¥ is linear in ¢ and of order
(x - x*)2 near the turning point, the central subinterval, containing
the point x¥, has length of order e-%.

By virtue of this decomposition, we can apply the z > 0 asymptotic
formulas for §l and ;é, Eq. (6.40a) and (6.41a), on the interval
(x+, 2x¥), and the z < O formulas Eq. (6.40b) and (6.41b) on (O, x ).
On the central subinterval, however, the asymptotic formulas no longer
apply so that we return to the full expression for the uv(z, &) functions
in Eq. (6.29). Since ¥ is bounded, it follows from the power series

Eq. (6.31) that the vv(z, &) functions in Eq. (6.29e) are also bounded.
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In addition, it can be shown from this power series that, although the
derivatives of the confluent hypergeometric functions are infinite at

¥ =0 (i.e., at the turning point), it is nonetheless true that v;

and vz are bounded throughout the subinterval (x_, x+). Thus u, and its
derivative, which determine ¥y and Yo through Eq. (6.59), are also
bounded,

To prove admissibility of either 31 or ;é, we begin on the
subinterval on which it is recessive, setting the lower integration limit,
for all matrix elements, in Eq. (D.1l) to the outer limit of the interval,
i.e., either O or 2x¥, For the sake of illustration, we will consider
the admissibility of §l’ so that we begin on (x+, 2x¥), We set the
function h(x, €) of the theorem to wk-%, so that, by Eq. (6.40a), the
order relation for the inhomogeneous part in Eq. (D.2) holds. The
required order relation for the kernel can then be established through
the asymptotic expressions for §l and 32 and the boundedness of §5, §h’
«ees thereby proving admissibility on one subinterval.

On the central interval, the function h(x, €) in the theorem
becomes simply unity, and the integral is split into a contribution
over the outer subintervgl (x+, 2x¥) and one from x, to x. The first
contribution involves only known functions, since Wl on (x+, 2x%) was
Just found to be §l in the last paragraph, and is grouped with the
inhomogeneous part of Eq. (D.1) to form the inhomogeneous part g(x, €)
of the theorem. The order relations are once more established using

the boundedness of the §i within the (x_, x+) and the fact that the
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interval of integration is of order e-%. Thus ﬁi is proved equal to
§l’ to order ¢, on (x_, 2x¥),

The final interval (O, x_) is considered by combining the integral
from x_ to 2x% in Eq. (D.1) with §l to form g(x, €) for Eq.-(D.2). One
shows that this part satisfies the first of Eq. (D.2b) for h = df‘k‘%
and then turns to the inhomogeneous part, using again the known

asymptotic expressions. The proof of admissibility is then complete,
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