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ABSTRACT

Two problems which are analyzed in this study are (1) the minimum-
time control of a nuclear-reactor fission process and (2) the optimal
control of a direct-cycle heat-exchange process to minimize the
congumption of coolant. Interest in these problems has been increased
by an attempt to develop nuclear-powered rockets for the space program.
The latter problem is particularly significant for the nuclear rocket
engine since a decrease in the amount of coolant required can result
in a direct increase in payload.

This study analyzes both problems in detail, then synthesizes
them in a physically plausible manner. The reactor state is defined
by the classic neutron kinetic equations in the first problem. 1In
the latter problem, the gystem is coupled to a single-stage, heat-
exchange model by coolant density reactivity and core temperature
reactivity. State-variable techniques and computer computations are
utilized in the analysis of these optimal control problems.

The neutronics control must bring the neutron density (reactor
power) from an initial steady-state condition to a desired terminal
steady-state condition in the minimum time. However, the allowable
reactivity change must be limited (i.e., confined to a closed set) for

safety reasons. Pontryagin's maximum principle is used along with

iii



iv

physical evidence to show that optimal control is a bang-bang process;
i.e., a two-level piecewise-constant variation in reactivity. For this
problem, there is no switching or discontinuity in control between end
points.

The above problem is treated by the general optimization theory
in which the desired terminal phase is defined by a set of points.
Once the terminal set (desired neutron density) is reached, it is
theoretically possible to maintain steady-state neutron density by

means of a continuous terminal variation in reactivity as given by

6 L]
LTC
i=] L

uE———-—
ny ’

where £ = neutron mean generation time, éi = time rate of change in
density of the ith group of precursors and ny = the desired terminal
neutron density. Mathematically, this variation in reactivity is in
the allowable control set. 1In practice however, such open-loop control
is unstable. By comparison, a dither type of control performs very
well. 1In fact, a simple continuous type of closed-loop control (with
reactivity physically constrained to the allowable set) approaches

the performance of the optimal system. A describing function analysis
is used to estimate the stability of this system.

The bang-bang process is found to be a candidate for the optimal
neutronics control with respect to other performance indices. However,
the consideration of singular types of solutions shows that the optimal-
control trajectory can be a connection of bang-bang trajectories and

singular types of trajectories.



The time-optimal neutronic control process is also a required
part of reactor control when attempting to minimize propellant con-
sumption of a nuclear rocket engine. Ideally, the optimal variation
in coolant mass flow rate is again a bang-bang process. This study
congiders constraint in reactor power and a stall constraint in the
pexformance of the propellant pumping system. These state-variable

constraints are found to further complicate the optimal control process.







PREFACE

This dissertation deals with the problem of controlling nuclear-
Yeactor processes in some optimal manner. After a brief statement of
purpose, Chapter I discusses theory and formulates models of a nuclear-
reactor figsion process, a direct-cycle heat exchanger and a simplified
nuclear rocket engine. These systems are found to belong to a general
clags called bilinear systems.

Chapter II presents an analysis of the optimal control of the
classical mono-energetic neutron kinetics. Various constraints on
reactivity and state-variables are considered in the analysis of this
problem. The theoretic terminal control is found to be unstable due to
its open-loop nature. Then a closed-loop dither process is introduced
as a terminal control and performs very satisfactorily. For most
purposes however, it is shown that a conventional type of continuous
ctlosed-loop control may be used.

Optimal control of heat-exchange processes and the ngclear rocket
engine are discussed in Chapter III. Coolant density reactivity and
conventional temperature reactivity are investigated. 1In addition to
the above neutronic constraints, consideration is given to constraints
in reactor power and to constraints in the pumping of coolant.

Chapter IV presents conclusions and an outline of areas which seem
fruitful for future research.
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Chapter 1
INTRODUCTION

The present need for optimal control of nuclear-reactor systems
has been brought about by the application of such systems to the space

program and the military program.

1.1 Objectives

The primary objective of this study is to examine the problem of
controlling nuclear reactors in some optimal manner. In particular, the
minimal-time control of the neutron kinetics with reactivity constraints
is to be analyzed in detail and synthesized in a practical and physically
realizable manner. It is shown that a two-level piecewise-constant
control may be the optimal reactor control for a portion of the time with
respect to a class of performance criteria. Also consideration is to be
given to the startup and shutdown of a simplified nuclear rocket engine
so as to minimize the consumption of propellant.

Phase-space constraints and control velocity limits axre to be
considered in the study. Modern control theory, along with analog and
digital computer simulations, are to be utilized to analyze and
synthesize the optimal control.

1.2 Background

Optimal control of the neutron kinetics has been considered in
other studies. T. P. Mulcahey1 (in a 1963 Purdue University Ph.D.
dissertation) designed a suboptimal reactor control system without
mathematical foundation. In another paper, Shen and Haag2 made a non-
linear transformation to arrive at a simple linear system. By use of

dynamic programming, they found that an extremely complicated controller
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minimizes a mean-square error of the transformed system. The error,
however, is a complicated function of reactivity and neutron level.
Optimal control of neutron level does not necessarily follow.

In addition to this dissertation (which has been summariged in
Reference 3) very recent work on optimal control of neutron kinetics has
been reported by Rosztoczky and Weaver4 and by I. Kligers. By means of
the maximum principle (to be discussed later), Rosztoczy and Weaver have
analyzed the optimal shutdown of a nuclear reactor so as to minimize
xenon poison buildup. Meanwhile, Kliger has analyzed the minimal-time
control of neutron density by application of Holder's inequality. In
his work Kliger assumed that the system constraint appeared as a func-
tional relationship involving reactivity and neutron level. This dis-
sertation considers different constraints and generally different
problems than previously analyzed.

The optimization problems treated in this study differ from
problems handled by the classical calculus of variations in that the
allowable control set is a closed set. But if the allowable set is
open, then a number of important necessary conditions for a control to
be optimal are found in the classical calculus of variations6’7.

In recent years the optimal control problem has been analyzed by
the maximum principles, dynamic programming9 and extensions of the
calculus of variations6. Kalmanlo s@ows that a version of the maximum
principle arises from the Hamiltonian-Caratheodory formulation of the
calculus of variations while dynamic programming is based on the prin-
ciple of optimalityg. This principle states that if the performance
index is Markovian, then an optimal control is optimal with respect

to any state which results along the optimal trajectory of the system.

The performance index is Markovian if it is a function of the initial



state and a functional of the control from the initial time to the
terminal time where the initial time is considered to be any initial

11 ’
time. C. A. Desoer = derives the maximum prin¢iple from the principle

of optimality.

L. I.Rozonoerlz, as well as L. §, Pontryagin and his collaborators%
show that for certain problems the maximum principle is a necessary
condition for a control to be optimal and is further a sufficient
condition for the optimal control of certain systems jointly linear

in the state vector and control vector.

1.3 Optimal contxol

Modern control theory is usually concerned with the general class

of processes which can be described by a system of oxdinary differential

equations,
dxi
""—t—'-'-"- fi(xl’...’xn;“l’...’“m) (i’l,.-.,ﬂ), (1.1)

with prescribed initial conditionss Here xi(t) are the state variables
of the process, uz(t)’°°"um(t) are the control variables and t is
time. In this study it is assumed that afi/axj are continuous in
Xq and u, for all 1, q, ] and k. (1.1) is frequently written in vector
notation,

- -t = =

x = £f(x5u) ,

(1.2)

where the dot represents differentiation with respect to time. Here

- '
x is the state vector with components xl(t),..., xn(t). : is the

control vector with components u (t),...,um(t). The control vector
1




must belong to an admissible class. :(t) is an admissible control if
it is piecewise continuous and lies in a closed region U, i.e., u € U.
(It will be assumed that U is time invariant in this dissertation.)

An optimal control problem may be stated as follows: Given a
process deécribed by (1.2), determine an admissible control ;(t) that

will transfer the process from some prescribed initial state

x(ty) = x, (1.3)
(where t, = initial time) to some terminal state

x(t) = x (1.4)

1

(where t1 terminal time) in a manner designed to minimize an index

of performance J,

tl - -
3= f cim ) dt, (1.5)
to

where C is frequently called the cost function.

1.4 Maximum principle

The following formulation of the maximum principle is only a
formal presentation. The reader is referred to Chapter 1 of Reference 8
for precise theorems and expla;ations.

Suppose one is interested in showing the optimality of some given
trajectory *x(t) [where ;(t) is a solution to (1.2) for some ;(t)] which
connects a given initial condition, ;(to) = ;;, with a given terminal

condition, ;(tl) = ;a. Although the initial time is specified, the

terminal tdime is assumed to be free in this study. For such a trajectory
to be optimal it is necessary that a costate vector ;(t) is related to

x(t). through Hamilton's equations. Hamilton's equations are discussed



below and relate the state vector of the system to a costate vector by
means of a scalar function. The form of the optimal control is that
which maximizes this scalar function. A simple application of this
theory is presented in Section 2.1.1; this analysis should afford the
reader a better understanding of the method.

For convenience the system may be considered to be of order n + 1
by letting the cost function be fn+1 and adding the equation ih+1 = fn+1
to (1.2) with xh+1(to) = 0. Then Hamilton's equations, which form the
basis of the maximum principle, take the following form:

'i}-(-‘—; -:":'(;;;1.) =

L (1.6)%
)

[with specified end conditions, x(t,) = ioand i(ti) =x ]

and
dp _ _ 3R
dt % )

where E is a costate vector, not identically zero, x is a state vector
and both are of order n + 1. It is assumed in this study that f is not

*k
an explicit function of t. The scalar R in (1.6) is

- .. nt+l
R(x;p;u) = (p,f) = gl pyf; - (1.7)

T e Uty

* For convenience, the partial derivative of a scalar with respect to

a vector is considered to be a vector rather than a row vector in this
dissertation.

%% A time-variant system may be transformed to one which is time in-
variant by defining x, = t vhere xo(to) = to and xo(tl) = t, , with x;, =1.0.




Then the Hamiltonian ¥ is defined by

K(x;p) = max R(x;p;u) . (1.8)
Y (S )]

That is, the Hamiltonian is an absolute maximum with respect to all
controls in the allowable set. In order that z(t) force ;(t) from
some initial point ;(to) = ;; to some terminal point ;(ti) = ;a 8o

as to minimize J = xn+1(t1), it is necessary the :(t) and ;(t) are re-
lated to a continuous costate vector p(t) by equations (1.6) to (1.8).
These equations, along with the necessary continuity conditions given in
conjunction with (1.1), form the maximum principle. Furthermore it is
shown in Chapter 1 of Referance 8 that the Hamiltonian is a constant and
identically equal to zero for the free end-time problem. Also P, is a

+
non-positive constant if equations (1.6) to (1.8) are satisfied. That is,

X(xsp) = 0 (1.9)
and

Poy, SO (1.10)

for t, s t <t
From (1.7) it is seen that the costate system is adjoint to the

original system (1.2). Thus
4 3R _ MY -
dt ™ x * "|3%] P (1.11)

where the superscript T refers to a matrix transpose.
If the cost function is unity, the process is time optimal. Then

the maximum principle may be formulated as follows:

R = + R ,
Phty (1.12)



where R = (p,?) and the system is again of the order n. Then Hamilton's

equations are

t 3P (1.13)
)

[with x(to) = x, and x(t:1 = X ]
and
dp _ _ R
dt =~ 3%

The Hamiltonian H is an absolute maximum of R with respect to all

.admissible controls:
H(X:P) = max R(ps0) . (1.14)
u€y
Again it is necessary that equations (1.12) to (1.14) are
satisfied along with the necessary end conditions if the control and
trajectory are to be time-optimal for tp st st. Also , the neces-
sary continuity conditions must be valid. The Hamiltonian for this

minimal-time problem is a non-negative constant,
H(x;p) 20 , (1.15)

for t, s t s t, . Again, the costate system is adjoint to (1.2):
. =\T
3 =(5-_f-.) P (1.16)
ax

If the foregoing equations which formulate the maximum principle

[pCe) # 0].

are satisfied by only one trajectory which satisfies the required end
conditions and if (from physical arguments about the problem) it is

known that an optimal trajectory must exist, then the discovered trajectory



is the unique optimal trajectorys’ 10. Note, however, that the mathe-

matical question of existence of an optimal trajectory is quite involved
and will not be discussed here.

-
In case the system is jointly linear in the state x and the control

u, i.e. as defined by
X = AX + Bu (1.17)

(; is of dimension n), then for certain problems the maximum principle
is sufficient for a control to be opﬁimal. Furthermore, for such prob-
lems the time-optimal control (with each component of the control mag-
nitude constrained) is a piecewise-constant process. If the eigenvalues
of the A matrix in (1.17) are real, it is shown on pages 120-123 of
Reference 8 that there is a maximum of (n-1) switchings between con-
straints in each control variable.

The érevious formulations have assumed that the terminal phase
is fixed, while the terminal time is assumed free. In this study it
is necessary to consider the case for which the terminal phase may
be confined to a specified smooth hypersurface S; [i.e., ;(ti) €s,].
If Ty 1is the plane tangent to S; at the resulting terminal phase
;(t;) = ;; , 1t is necessary that the system costate vector ;(tl)
be orthogonal to T; at ;% . Let #(x) = O define the terminal hyper-
surface of interest. Then the necessary costate condition may be written

as follows:

-P’(ti) = U'g—g )

where vV is a nonzero constant.
-
When x; is known beforehand the problem becomes the classical one

with a fixed terminal point. The mathematical details of this problem,



along with the more general case (i.e., both end points confined to
gpecified smooth manifolds, with ;(t) orthogonal to the corresponding
manifold's tangent plane) is discussed in detail in Reference 8, pages

45-50.

1.5 State-variable constraints

In addition to control constraints, the process is frequently
constrained in its state variables. Optimal control of processes with
restricted phase co-ordinates was pioneered by Pontryagin, Boltyanskii,
Gamkrelidze and Mishchenko (see Chapter 6 of Reference 8). Later
this work was related to the classical calculus of variations by

L. D. Berkovitzl3. Recent contributions in this area include publi-
15

cations by S. S, L. Chang14 and Bryson, Denham and Dreyfus
This dissertation follows the work of Reference 8. A summary

of such work is presented in Appendix A. The object of this section
is to review the theory presented in Appendix A for the case of scalar
control. Only the necessary conditions (i.e., necessary for the scalar
control case) presented here are used to discuss the neutronic constraint
problem in Chapter II. One interested in the more complicated optimal-
control problem with phase constraint and vector control should read
Appendix A. The necessary conditions for the case of vector control
are considerably more complicated than those given below and only tend
to confuse the reader interested in neutron-kinetic applications. After
obtaining an optimal control by physical arguments in Chapter III, the
more general theory is used to substantiate the optimal startup for a
nuclear rocket engine in Appendix E.

The optimization problem considered here consists of selection of an

allowable scalar control whose phase trajectory x lies in a given fixed
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region G of the (ntl) dimensional phase space, satisfies the state
equations [given by (1.1) along with necessary end conditions; and

minimizes a performance index J = xn+1(t1) [given by (1.5)].

Following Appendix A, let the .region G be defined by
s(x) s 0. (1.18)

Assume that: (1) S(x) is negative (i.e., optimal motions are not on
the phase-constraint boundary) for the time interval (to,t,),

(2) S(x) is zero (i.e., motions are on the phase-constraint boundary)
for the interval (ta,tb) and (3) S(x) is negative (i.e., motions

are not on the phase-constraint boundary) for the interval (ty,t1) .

During the time that trajectories are not on a phase-constraint
boundary ([i.e., during the intexrvals of time (tc’ta) and (ty,ty) 1,
the previous conditions stated by the maximum principle are valid.

For the interval (ta,tb) the solution is on a phase-constraint

boundary and

s{x(t)] = s(x) = 0. (1.19)

Equation (1.19) requires that all time derivatives S(k) must vanish,

Assume that the required u(t) may be computed from S = 0, where

. S S
S(x;u) = g%{EI = [é%é¥i] E(eu) (1.20)

Furthermore, assume that such required u(t) is an interior point of U

(the set of allowable controls). If an optimal trajectory is on a



11

constraint boundary, it is shown in Appendix A that the costate vector

must be a solution of

S {m . 2E(x;u) [28Guw] ™ [28 ki) T (1.21)
3x du . du dX P ’

where

S(x:
(1)5—61’6‘—.'1‘-240,
(2) Pot1 = @ nonpositive constant,

(3) ﬁ(téﬂ is a nonzero vector and ﬁ(téa is not collinear with
3S(x)/dx. [The relation between E(ta+) and ﬁ(ta~) is discussed

below. ]

Further, for the interval (ta, tb) it is necessary that p is non-positive,

where

RS2 S(R-u)1-?!
o =2 SEi [§§15=22] . (1.22)

Equation (1.21) represents n equations of the vector form:

B { fsx,uz fgx,ug [ Sax u SSx,qur

(1.23)

and one equation:

= 0, with p s 0.

Phr+l ntl

For the whole interval of time (tg, t;) the Hamiltonian is

Kﬁ(;;ﬁ) =0,
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During the intexrval of time (ta tb) the maximum principle states
b

R(x;p;u) = [p,E(x;u)] = 0,
where u(t) is the control required to keep ;(t) on the phase-constraint

boundary.

Again, for the minimal-time problem let

- . - -
R(x;p;u) = R(x;p5u) + P4y >
- - - - - X
where R(x;p;u) = [p,f(x;u)]. Then for the interval (to,ta) the
maximum principle states as above that
H(X;P) = max R(X;p;u) = a non-negative constant

u€u
Since X = 0 and Py, = & non-positive constant for the entire interval
(toty) R(;;g;u) = a non-negative constant for the interval
(tg,tp) » where u(t) is the control required to keep ;(t) on the phase-
corn~traint boundary. Again H(;;;) is a non-negative constant for all
time (to,ty)

From equations (A.7) and (A.9) with S(x) = S(;), the costate

variables may be discontinuous at the entrance corner to the phase-

constraint boundary, i.e.,

2t <) = 1 §§422 (1.24)
Pt m) = p(E#) + w5597 .

An alternate equation (A.8) is not needed in this thesis. Across exit

corners, the costate variables are continuous, i.e.,

;(tb") = -P.(tb+) . (1°25)

1.6 Nuclear-reactor processes

This dissertation is primarily concerned with the minimal-time

control of a nuclear-fission process. The problen is then extended
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to include a heat-exchange process. A study is made of the optimal
control of a nuclear rocket engine. In order to understand the
optimal control of such systems, it is necessary to first consider
their dynamical behavior and the necessary assumptions to arrive at
a workable model.

1.6.1 Neutron kinetics

The classical one-energy group spatially independent neutron
kinetics are heuristically developed below. A similar development,
as well as a rigorous treatment of this system, is presented in
reference 16, pages 10-20, and reference 17, pages 223-232. Define
the effective multiplication factor ke to be the ratio of the average
number of neutrons in any one generation to the average number of
neutrons in the immediately preceding generation for a given reactor
of finite size. The mean generation time £ is the average time which
elapses between successive neutron generations in a finite reactor.
Then, if all neutrons are produced promptly, the average change in

neutron density n per generation is

do _ -
y) il (ke 1) n . (1.26)
Let reactivity dk = ke - 1,
Then
dn _ 8k
qt =t - (1.27)

The idea of a reactor period T (with T = n/n) stems from (1.27). A
portion B of the neutrons generated in each fission is delayed. These
delayed neutrons are emitted from certain precursors (radioactive

fission products) which are formed in the fission process of the fuel
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nuclei. The rate of formation of delayed neutrons in any group is

equal to the rate of decay of the corresponding precursor and hence

the rate of formation of all delayed neutrons is %xici , where Xi is
the decay constant of the ith delay group with density Ci' Six of these
precursors have been observed. Hence, from (1.26) the rate of change

of neutron density dn/dt is given as

k (1-g)-1 6

t z R e S (1.28)

Q.

The rate of change of the precursor density is the birth rate minus the

death rate, or

dCi ] keBin

dt 7T MG (1.29)

(1=1,...,6), where B is the portion of neutrons which is delayed due
[

to the ith precursor group and i§1 pi = B. For most cases the reactor

is operated very near ke = 1 (this condition is referred to as critical-

ity). Then equations (1.28) and (1.29) may be approximated very accurately

by
dn _ Bk-8 b _ Bk & .
t =« Mg MG =T n-un G (1.30)
and
S L S (1.31)
ac = 2 €1 .

(i=1,...,6).
Although usually negligible, an external neutron source S (used to start

the chain reaction) would effect (1.30) as shown below:

dn _ 8k-p S
- F ntaE MG ts . (1.32)
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The following assumptions are made in the derivation of equations
(1.30) and (1.31): 1) all neutrons are generated at the same average
energy; 2) space dependent effects are separable from time depen-
dent relations; 3) the system is near criticality; and 4) delayed
neutrons have exactly the same effect as the total population in
regards to fissioning fuel nuclei. From assumption (2) it is possible
to relate the neutron density in a small region to the total neutron
population in the reactor by a proportionality constant. This total
population is then proportional to the number of fissions which in
turn is proportional to the prompt portion of reactor power. A very
small percentage of the power comes from the decay of various fission
products and not from the fission process itself. This post-fission
power is usually negligible except in the case of large decreases
from high power. The properties of delayed neutrons given off in

the fission process of y2=®

18
1.1™". This spatially independent model is very adequate for con-

by thermal neutrons are given in Table

trol analysis (including optimal contxrol) of conventional reactor designs.

Table 1.1 Precursor-neutron properties for U**° fission process
by thermal neutronsl8,

Paxt of Total Neutrons Decay Constant
108 Bi , xi, sec *
0.22 0.0124
1.43 0.0305
1.28 0.111
2.58 0.301
0.75 1.13

0.27 3.00
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The neutron kinetics as defined by (1.30) and (1.31) are linear
in the dependent variable n for a time specified reactivity function.
The system, however, is generally nonautonomous. Reactivity ®k is the
forcing function used to control the fission process. This control
may take the form of wobile poison control rods or poisoned coolant
in the core which absorb neutrons, reflector cylinders on the core
periphery which control the reflection of neutrons, or mobile fuel
rods.

1.6.2 Direct-cycle heat-exchange process

The heat-exchange process between the reactor core and coolant
is complicated, nonlinear and distributed in nature but a finite
difference model is frequently utilized to describe the heat-exchange
dynamics at prescribed points. The model may be further simplified
since reactor cores are generally designed so that there are no major
variations in temperature in the radial direction. Then the heat-
exchange process may be represented by an average model of one cool-
ant passage. A qualitative description of the heat-exchange dynamics
may be obtained with a one-stage model of the reactor (no axial or
radial subdivisions). Such a one-stage model is represented below by
equations (1.33) to (1.35). These equations may be formulated
heuristically by writing an energy balance as follcws. The heat rate
generated from the fission process is equal to the rate at which heat
is stored in the core (which results in a core wall temperature
change) plus the rate at which heat is transferred from the core wall

to the coolant. That is,

4t
Q=MC G+ bA(T-T) (1.33)
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where

Q = heat rate generated from fission process, proportional to n,

&
1

reactor core effective mass heat capacity,

T = average core temperature,

Tg = average coolant temperature,

A = heat-transfer ares,

h = heat-transfer coefficient
and

t = time .

The rate of heat transfer to the coolant is equal to the rate of heat

storage in the coolant plus the rate of increase in enthalpy of the

coolant. That is,

hA (T - T)) =w e, f§% +w ¢, (To - T, (1.34)
where
w = weight of coolant in the core,
cP = specific heat of coolant,
W = coolant weight flow rate,
To = coolant temperature at the core exit
and

|

Ti = coolant temperature at core entrance.
The average coolant temperature is a weighted average of the inlet

and exit temperatures,

. Ti + 0To
g l1l+¢ ° (1.35)
where @ is a positive weighting factor dependent on the axial power

distribution.
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Equations (1.33) and (1.34) are generally nonlinear since
the coefficients are functions of the corresponding temperature. For
gaseous coolants the mass heat capacity term wcpig is negligible
and at high temperature the coefficients are nearly constant with the
exception of the heat-transfer coefficient. In nuclear reactors the
resistance to heat transfer due to conduction through the core is
usually negligible compared to the resistance due to convection through
the fluid film. TIf the coolant is a gas and the flow is turbulent, the
convective heat-transfer coefficient is approximately proportional to
w8 19. With these assumptions and with the coolant weight flow rate

specified as a function of time, the heat exchanger is a linear non-

autonomous system.

From (1.34) and (1.35), with the coolant mass heat capacity and
inlet temperature negligible, it is seen that

I
~(2 2 + _8_
T (hA 1+9)T° )

(1.36)

Substitution of (1.36) into (1.33) with Tg related to T, by (1.35)

shows that

dT Q9 T
> - — (1.37)
dt MC Tﬁ

where (since h = W% & w)

) 1 1
T, =
p = MC [cpv‘v(eﬂ) + ha ] ~ e
and (1.38)

a = a heat-transfer constant.
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Notice that (1.37) is approximately bilinear in w and T. This simple
model is found to be a good approximation of the actual process if
the effective mass heat capacity is selected according to the axial
position of the temperature of interest.

Heat-exchange processes (including the foundation of the above
model) are discussed in detail in Reference 19.

The heat-exchange process is usually coupled to the neutron
kinetics by temperature reactivity. As the core temperature increases
the core expands and more neutrons escape. Also the various neutron
cross-sections change with core temperature. The net effect is usually
a negative reactivity feedback which may be approximated by

Bk & e T, (1.39)
where e is a temperature coefficient of reactivity (usually negative).
This coupling has a stabilizing effect on the power reactor. It is
important to realize that the coupled neutronics  heat-exchange
process is a nonlinear system even if the heat-exchange process is
linear.

1.6.3 The nuclear rocket engine

Conventional control and dynamic analysis of nuclear rocket
engines are treated in Reference 20. Such a system can be approxi-
mated by the equations given below along with the above neutronics
heat-exchange dynamics equations.

Thrust and specific impulse are variables of prime interest to
any rocket engine. Thrust F is approximately derived from the stag-

nation pressure at the nozzle entrance Pc and the nozzle throat area
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At 21. That 1is,

F a;cfAtPc s (1.40)

where Ce is a nozzle constant. Coolant or propellant temperature at

the nozzle entrance (reactor exit) determines specific impulse Isp

as shown by

- E

= e, (Tonmt, (1.41)

€

Isp
where ¢, = a constant for the nozzle and MW = propellant molecular
weightZI. Equation (1.41) shows the importance of specific impulse
to rocket propulsion. The promise of nuclear rockets and hydrogen
propellant for space travel is shown by (1.41). Hydrogen is a good
moderator and hence a density reactivity further couples the heat
exchanger to the neutron kinetics. Assume that the propellant is

gaseous in the core. Then the density may be computed from the gas

equation:

p= P/RTg , (1.42)
where

p = average propellant density in the core,

R = gas constant
and

P = average propellant core pressure.

The density reactivity contribution is computed by the following:

8k =k _V 1.
0 P P> (1.43)
where
kp = propellant density coefficient of reactivity (positive)
and V = reactor core void volume.
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The flow is assumed choked through an exit nozzle and static
conditions are approximately equal to stagnation conditions due to

the low core exit mach number. Then pressure at the core exit is

3

PC ~ C_n w To > (1.44)
21 imations: P < P_ and
where c, = 3 nozzle constant . With the approxima : c
T « Tg, the propellant density reactivity is
c.w

£, 1.45

where cp = a constant. The magnitude of propellant reactivity may
very well be greater than that of the classical temperature reactivity.
Although the reactivity of the propellant is positive, its derivative
with respect to temperature is negative. This fact further enhances
reactor stability.

A hypothetical nuclear rocket engine configuration (at rated
design conditions) is presented in Table 1.2. The dynamics of the
propellant flow system will be neglected in this study but constraints
due to pump cavitation and stall are discussed in Chapter III.

The computer studies which are to follow in Chapters II and III

utilize the data given by Tables 1.1 and 1.2 unless otherwise specified.
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Table 1.2 Hypothetical nuclear rocket rated design condition820

Thrust, F 100,000 1b
Specific impulse (with losses), Isp 760 sec
Reactor power , Q 2260 megawatts
Propellant flow rate, w 130 lb/sec

Reactor exit propellant temperature, To4500° R
Nozzle throat area, At 61 in.z
Nozzle expansion ratio, 20

Heat exchanger thermal time constang‘ﬁll.S sec

Inlet propellant temperature , Ti 120° R
Neutron mean-effective lifetime, g 3 (10)"5 sec
Propellant reactivity, akp 0.0065
Temperature reactivity, Skt -0.0065

Effective core mass heat capacity, MC 1140-——?&“——



Chapter II

OPTIMAL NEUTRONICS CONTROL

The optimal-control problem emphasized in this chapter may be
stated as follows: (1) given an initial state of the neutron kinetics,
find the allowable control reactivity which transfers the system to a
desired state in minimal time; (2) it is required that the system have
steady-state initial conditions and a steady-state terminal neutron
level; (3) 'the allowable control reactivity is defined by {dk| < yB,
where y is a constant and 8 is the amount of reactivity required to
make the reactor prompt critical. (Prompt criticality exists when
the system is critical without the presence of any precursor neutrons.)
The value of vy depends on the system design and its application. It
will be assumed that the control reactivity is a linear function of con-
trol position for the reactivity required. Reactivity dk 1is replaced
by u, the control variable, in the following analysis.

Although the negative reactivity constraint may safely be less
than the positive constraint, symmetrical limits are assumed for con-
venience. This assumption allows the forthcoming equatiéns to be
written more compactly without appreciably affecting the results.
Furthermore as u becomes greatly negative, control effectiveness is
lost due to precursor dominance. Hence, it doesn't make the system
much faster if a large negative reactivity constraint is allowed.

This lack of controllability for large negative reactivity is shown

by Figure 3.2 on page 31 of Reference 16.

23
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Minimal-time startup and shutdown are especially desirable for nu-
clear rocket engines and nuclear-reactor power generation in space.
Physically, the reactivity may be changed very rapidly and control rate
of change constraints, particularly for space applications, are frequen-
tly negligible. In some instances however (primarily in regard to com-
mercial reactors), safety dictates a low constraint on control velocity.
Furthermore, physical constraints require that the neutron density must
be positive and less than some maximum.

Time-optimal control will be considered for the prompt neutron kin-
etics prior to the study of the one-precursor-group model. After a
detailed analysis of the one-precursor model, comparisons are made with
the six-precursor model.

From physical arguments, one might expect the time-optimal control
of these neutronic processes to be maximum allowable effort. The
following analysis shows that such control is time optimal but the
analysis presents details of the control process which are not so ob-
vious.

2.1 Prompt-neutron kinetics

In order to introduce the more complicated neutronic optimal-
contrcl processes, it is convenient to first consider the prompt-
neutron kinetics:

dn

Ty A (2.1)

=le

This approximation to the neutron kinetics is valid for C which is
small compared to # [see (1.30)and (1.31)]. Assume that the system is
originally at steady-state with u = o and n(to) = ng. The optimal-

control process is to take the neutron level to some prescribed steady-
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state level in such a manner as to minimize the time elapsed. The
following analysis will give consideration to constraints oé reactivity
and the rate of change in reactivity.

2.1.1 Bang-bang control

The inner product (3,?) for this system (2.1) is
R(n;p;u) = gup (2.2)

and the adjoint equation of the system defines the costate:

'g% = - %p . (2.3)

Let the allowable control set U be defined by |u| < vyB (this
constraint is seen to limit the inverse reactor period in direct
proportion). Again, as shown by (1.15), the Hamiltonian is a non-

negative constant:

H(n;p) = max R(n;pju) (2.4)
) u€y

and the control which maximizes R lies on the boundary of the allow-

able set. Hence, the optimal control is a bang-bang process such that

u® = yB sgn np (sgn F = F/lFl) (2.5)

for to < t < t;. Since n(t) > 0, switching is determined by the sign

of the costate variable p. In other words,

u® = yB sgn p . (2.6)
Therefore, since p [the solution to (2.3)] cannot change sign for this
piecewise-constant control, the optimal increase or decrease in neu-
tron level requires constant maximum or minimum reactivity until the

desired terminal neutron level is reached. At the terminal phase,
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reactivity is returned to the null position to maintain steady-state.
The absolute value of the inverse reactor period is at the maximum
value of YB/4 between end points.

Although (2.6) indicates the form of the optimal control, the
corresponding state and costate trajectories must be solutions to (2.1)

and (2.3). The solutions of these equations,

t
n = o exp([\u dc/l) (2.7)
k«to
and
t
P = Po exp (‘ J‘ u dc/ﬂ) ) (2.8)
=)

provide a constant non-negative Hamiltonian,Yfn, | Po|/4, with

p(to) = po positive for increasing neutron level and negative for de-

creasing level. Only the bang-bang control process, however, makes

the Hamiltonian a maximum. Furthermore, since only one bang-bang con-

trolled trajectory connects the desired end p;ints, the optimal solu-

tion is obviously unique if it is assumed that an optimal control

exists, Typical optimal trajectories are shown in Figures 2.1 and 2.2.
Although one variable uniquely defines the state of a first-order

system, a plot of n vs n is introduced since such plots are used later

to treat the one-delay group case. For u® = + yp the optimal time

solutions to (2.1) and (2.3) are

- noeivs(t-to)/z

=]
|

(2.9)
and

_ . +yB(te-t)/2
P = Poe (2.10)



27

— N
no n|
SLOPE A = Zf
O-a:u=yB
a-1l:u=0

FIGURE 2.1 TIME-OPTIMAL
INCREASE OF PROMPT-
NEUTRON DENSITY

3

SLOPE B = —IE

O-a:u=-yB
a-1:u=0

FIGURE 2.2 TIME-OPTIMAL
DECREASE OF PROMPT-
NEUTRON DENSITY

No| .t

FIGURE 2.3 TIME-OPTIMAL
STARTUP OF PROMPT-
NEUTRON KINETICS WITH
VELOCITY-LIMITED
CONTROL




28

2.1,2 Velocity-limited control

Velocity constraint is sometimes required due to the possibility
of failures in the control system (see pages 226-236 of Reference 16).

After the previous analysis it would be expected that the time-
optimal control process with velocity-1limited control would still be
maximum allowable effort. In other words, for a minimal-time increase
in neutron level one might hypothesize that reactivity should be in-
creased at its maximum allowable rate until it reaches a maximum
allowable value at t = ta. Then at some appropriate time tys reactivity
should be decreased at its minimum allowable rate until reactivity is
zero at t = t;. This zero value should be held to maintain the desired
neutron level for t = t;. For some problems n(t;)-n(ty) or the allowable
rate of change of reactivity may be so small that it is necessary to
decrease reactivity at the minimum allowable rate before the reactivity
magnitude constraint is reached. The following analysis shows for
either case that such trajectories do satisfy the necessary conditions
set forth by the maximum principle.

Control processes which only use two values, the maximum and mini-
mum allowable velocity, without using the control-magnitude constraint
value frequently are called pang-pang control. Similarly, processes
which only take on the values of control-velocity constraint and control-
magnitude constraint frequently are referred to as pang-bang processes.

With control velocity constraint, it is convenient to define the
velocity as a control variable u and the reactivity as a new state

variable 8k. Then the system is represented by
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+ Bk
n = 7-n
and (2.11)

5& = u,

with n(to) = no and Bk(tg) = 8k,. Here it is desired to find the time-
optimal control which forces the process from some steady-state
initial condition, n(tg) = ny and ﬁ(to) = 0 [8k(to) = 0], to some higher
steady-state terminal condition, n(t;) = n; and ﬁ(ti) = 0 [8k(t,) = 0].
Here lul < TB is a control constraint and lSk( = yB is a phase con-
straint. Then the phase constraint boundary is defined by
s = |sk| - yg = 0.

While lSkl < ¥B, to <t< t or ty <t< t1 and the maximum prin-
ciple may be applied to this problem. The inner product (;,?) and

adjoint equations are

R = _gk_nﬁlf + ppu, (2.12)
. _ =P8k
h=""7

and (2.13)
b= -

Maximization of ( 212) requires a pang-bang process such that

e
[t}

T8 sgn po, for |sid < vp
and (2.14)

W =0 ,for|6k|=yaandé=o.

With &= TB(t-tg) < yB, the solutions of (2.7), (2.8), (2.12) and

(2.14) yield the following for the initial portion of the trajectory:
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n = no exp [k(t-to)/22] , (2.15)
P1= P1o exp [-Bk(t-to)/22] ,
(2.16)
P2 = Pao - PioTo(t-to)
and g
H=|pyo| B 20, (2.17)

where the o subscripts refer to the initial state and costate, to < t < t_,
and tg = to + Y/T. Also, pyo and pgo are positive for me < my.

The problem of minimal-time increase in neutron level has the
solution which is given below and presented by Figure 2.3. The neutron

level for the initial portion of the trajectory is

n = exp [MB(t-t5)%/22] , (2.18)
where tg £ t < ta . First, suppose that ny and n; are such that

&k=yB for t, < t < t,- Then n(t,) is

n, = Ny exp (v*B/21£) (2.19)

and

n=n_ exp EX% (t-ta)] (2.20)

for t, s t«< tb . At the constraint exit point, the neutron level

n, = n(tb) is computed by solving (2.11) from t; and n; with time

reversed. Hence,

n, =y exp (-¥?B/20) , (2.21)

where ny = n(t;) and t;= terminal time. Then the log of equation
(2.20) shows that the time transpired while the trajectory is on the

state-variable constraint dSk=yp is computed by
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t, =t + = log— . (2.22)

During the final negative control ramp to 8k =0, the neutron level

[as computed from (2.7)] is

Tla(ta-ti)
n = o expi % (t-t) ~ ——5——|(. (2.23)

The maximum principle requires that the adjoint equations have a
solution. These solutions are given by (2.16) with 8k = NB(t-tg) and
to st< ta' At t = ta and t = ty the adjoint vector must satisfy
certain constraint corner conditions. These conditions are given by
(1.24) and (1.25). Although the Hamiltonian is constant and defined
by (2.17) for tg S t S t;, the costate may be discontinuous across the
entrance cérner, i.e.,

P(E,-) = p(e+) + (2.24)

%:E%

where
L_[O]
- = bk
dx sign
Across the exit corner the costate is continuous, as shown by

Bl -) = plet) . (2.25)

Then, since n(t) and H are continuous for to < t £ t,, it is necessary

from (2.17) that

£4Tp2 o
g

Prg = P (t+) = = p, (¢ -)
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Therefore, from (2.15) and (2.16)

P20 = ProToY/T¥
and
p,(t,-) =0
o

From (2.24) P, (ta+) = = Pla“a(tb"ta)/" Since 3S/dx = of » 1t ts

seen from (1.21), (2.25) and (2.16) that for the interval (ta,tb)

P, = P, exp [-vB(t-t,)]

1

Pro exp [-yB(t-t5) ]
and (2.26)
P2 = B - prang(t-tg)/4
= Plono(tb‘tycl-
Hence, since Pa(tb) =0, Pa(ta+) = o= plana(tb~ta)/£ = on“b(tb't.)“ .
Since p, (t) is piecewise-constant of one value, u(t) can only

change sign once if the trajectory is to satisfy the necessary condi-
tions at to’ ta’ tb and t1'

During the interval (tb’t1)’ the adjoint variables are again

defined by (2.16) with 8k = yg - ﬂp(t~tb).

As shown in Figure 2.3, the adjoint variable p; is initially selected
to be any positive value. Along with p;o, the complete solution is
determined by np and ny. Similarly, a solution could be generated for
minimal-time decrease in neutron level with p; (ty) of arbitrary nega-
tive value.

Next, consider a time-optimal startup but suppose ny and n, are

such that u(t) never reaches the constraint boundary yB; in other words,
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n, from (2.21) is less than n, from (2.20). Then the maximum principle
can be applied as before with u® = 7B sgn pp. Furthermore, since ﬁ;(t)
is constant [from (2.13)] there is only one sign reversal of u°(t).
For this case: e, to St< ta
u® =
~TB t. <ts t1
t, 1s computed below and then may be related to t by t = L o+ 2t
The time solutions, (2.15) to (2.17), are again valid with
Bk=mp(t-t,) for t S t <t . . The same solutions describe the time
response for ta <t S‘t1 if the o subscripts are replaced by 1 sub-
scripts and time is reversed. Observe that |pai] = P20l
Equating the two solutions n(t) (i.e., the solution for
t, St<t, is equated to the solution for ta <ts cx) one can compute
t, by
(ta -t ) = —z-.log
Time-optimal shutdowns may be computed similarly.
The abové results may be applied to the neutron kinetic process
in which most of the delayed neutrons are lost to the process. Such

systems may be approximated by

]
-g-‘t-‘ = L, (2.27)

where u' = 3k~ g,

2.2 Single-precursor group neutron kinetics

For many applications and to obtain a qualitative description,

the six-group neutron kinetics [as given by (1.30) and (1.31) ] may be

approximated by a one-delay-group model:
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don _u-g .
rrially) n+ AC = T o Cc

and (2.28)
-g—%:-%n-)\c,

where A is an average decay constant (computed so that the one-group
model approximates the six-group model), lul < yB, n(tg) = ng and

C(to) = Cy. Equation (2.28) may be represented by the vector equation:

= A(u)x = £(u,x) (2.29)

®l

where lul = ¥YB, X1 n, x; = C, and ;(to) = ;5. This system will be
analyzed in some detail since it is of low order and closely approxi-
mates the higher-order system for fast control.

2.2.1 Time-optimal control with the two state variables m and C
The logical choice of state variables, following equations (2.28),

is neutron density n and neutron-precursor density C. Then the costate

i8 defined by the adjoint system:

P = -aTwp , (2.30)

where ;(to) = ;6 and lul £ yB. The optimal trajectory is to connect an
initial steady-state no, Co to a terminal steady-state n;, C; in mini-

mal time. The inner product of (;,?) for this system is
- u ¢
R(n,C;p;u) = ynp + C(pa-p) (2.31)

where C is not an explicit function of u. Again R becomes a maximum
on the boundary of the allowable control set with a bang-bang process
producing the time-optimal control. Since n is positive, the control

is determined by
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u® = yg sgn py (2.32)

-
and the Hamiltonian is a non-negative constant evaluated on x(t) and

p(t). That is,

H(H,C;P) 3%3 n | p~.| + é (PQ"P!.) 2 0. (2.33)

The solutions to (2.28) for u = + yB are given in Appendix B and
are characterized in the phase plane by a saddle point (for u = ypg) and
a stable node (for u = -y8). Such a phase portrait of n v8 C is pre-
sented in Figure 2.4. Although trajectories converge sharply to the
eigenvectors (to be computed below) in all the phase planes presented
in this chapter, it must be realized that each phase trajectory repre-
sents & unique solution of the state differential equations (with time
eliminated). Hence trajectories really don't coincide and points b, c,
d and g (in Figure 2.4 and other forthcoming phase portraits) are on
their appropriate trajectory and a very small distance away from the B
or D eigenvector. Since the eigenvectors vf the A matrix help determine
these phase-plane trajectories, their computation will follow.

The eigenvalues of the A matrix for constant u (i.e., the roots
of the determinant lA~Ipl = 0) are given by
b+ (b° + '40)%

2 s
where (2.34)

P, pz =

b =‘2‘i-ﬁ - X and ¢ =-%5 .

If 4c << b°, then the Taylor series for (2.34) indicates that

Py ~ -c¢/b and p; ~ b . Furthermore, assume that Al << 8 -~ u in
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the above equation for b. (For most reactors AL is less than about

10™* seconds.) Then these eigenvalues may be approximated by the

following:
Au * Ay
Pr & — = "
B-u (1+y)
(2.35)
u-g BC* v-1)
pz ~ 2 = 2

If u-p >> A4, the first assumption (i.e., 4c << b®) requires
that (u-8)%/u > 4\4. This assumption is valid for all values of
negative reactivity. For positive reactivities, the accuracy of this
approximation depends on £ and u. For values of u less than 0.6 8 this
approximation is good for mdst reactors but for larger values of
u the approximation is limited to lower values of £ (or neutrons of
higher energy). If u = 0.9 for example, the approximation is only
accurate if £ should be of the order of 5(10)~° sec or less. Hence,
the approximation is accurate for many applications such as the
nuclear rocket reactor.

The eigenvectors corresponding to these real and distinct roots
of the characteristic equation are computed by appendix equation
(€.6). With u = + yB, the tangents of these eigenvectors are given

as follows:

pl"al “X p (I;Y)
81 = ~ - +
as (Y'*'l) AN
and (2.36)
Pa-ay
82 = ~ 0
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For typical values of 4

Sl%% (I;Y) ’

where a = (u-B)/£ and a; = A. Table 2.1 presents evaluations of these
eigenvector tangents and eigenvalues for v = 0,5 and vy = 0.9. From
(2.34), it is readily seen that p, is slightly smaller than (2.35)
indicates for u = -yf and slightly larger for u = y8. Thus, S, is

slightly negative for u = -y and slightly positive for u = vB.

Table 2.1

Approximate one-delay group neutronic eigenvalues and
eigenvector tangents

u 0.5 8 -0.5 8 0.9 p -0.9 8
P1/y 1 -0.333 9 -0.47
Lo, -0.5 p -1.5 B -0.1 g -1.9 8
£)S, 0.5 B 0.15 0.1 B+94A 1.9 B
iS, o+ 0- 0+ 0-

For the adjoint system
0.5 1.5 0.1+ 9%5 1.9

saA O+ 0- O+ 0-

Equation (2.29) indicates that the optimal switching is deter-
mined by the adjoint system. Hence, it is of interest to exan:ine the
behavior of the costate variables. The time solution to the adjoint
system (2.30) is presented in Appendix B.

The eigenvalues of ~AT(u) in equation (2.30) are equal in mag-

nitude but opposite in sign to the eigenvalues of A(u). Despite this
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similarity, the eigenvectors are generally very different than those

of A(u) as shown by their tangents:

£
A B

7]
-
|

(Pr~a1) = (1+y) - Mﬁ‘——
B(y+l)

(2.37)

(72}
LY
|

£
A~ _B' (pz'al) r’tﬂ Oi
and for typical values of £

Sia ~ (Lxy) .

These eigenvector tangents are evaluated for vy = 0.9 and v = 0.5

in Table 2.1.

Figure 2.5 describes the plmase behavior of the adjoint system
with u = 0.98 for positive p; and u = -0.98 for negative p;. The
phase in the right-half plane is described by a saddle point while
that in the left-half plane is typical of an unstable node. Since
these adjoint variables are continuous without phase-plane constraints,
it is seen from Figure 2.5 that p, can only have one zero in finite
time. For any value of y, the eigenvectors for the one-delay-group
kinetics are similar to those shown in Figure 2.5, i.e., they are
always in the quadrants shown and with the directions indicated. Hence.
there cannot be more than one switching for the time-optimal bang-bang
process,

Since the constant u trajectories are unique solutions of the

differential equations of the system, Figure 2.4 indicates there is only

one possible trajectory which joins any reachable state from some initial

state with a maximum of one switching and therefore such a trajectory
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mus t be optimal (e.g., trajectory a-d-f has u = yg from a to d and
u = -y from d to f). Also the principle of optimality (viz., any por-
tion of an optimal trajectory is optimal) shows that if a desired ter-
minal state can be reached from a given initial state with no switchings
and lui = yB, then the joining.trajectory is optimal,

An example optimal-gtartup trajectory, linking an initial steady-
state phase ng, Co with a desired terminal steady-state phase ny, Cy
is represented by trajectory a-d-f in Figure 2.4. Initially, the
system is in steady-state with zero reactivity. Then reactivity is
made equal to the maximum positive constraint yp while p; is positive.
At point d, p; goes through zero and becomes negative as reactivity is
switched to the minimum negative constraint. When the desired phase
point f is reached, reactivity is returned to zero to maintain quies-
cence. A time-optimal decrease in state is analyzed similarly with
Pro negative. For steady-state end conditions, the Hamiltonian has the

positive value given by the following equation:

H(n,C;p) = ng |pol = Xny |puy |, (2.38)

where the © subscript represents initial values and the 1 subscript
represents terminal values.

The switching point for the time-optimal startup process is con-
veniently determined by the neutron level n (or the neutron-precursor
level C) at point d. Since the trajectory is asymtotic to the eigen-
vector B in Figure 2.4, for any significant difference, (nmj-ng, the
switching point is nearly independent of the initial state. 1In many
physical systems, it might be desirable to switch to a simple control

law which is a continuous function of the system state within some
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small predetermined region of the desired terminal phase. The size
and shape of this region could be determined by the accuracy of the
equations in defining the physical process, the accuracy of the measur-
ing devices and the capability of the new closed-loop control. Hence,
the exact switching point might not be too important.

Time may be eliminated from the solutioms given by (B.7) if a
knowledge of the eract switching point is desired. Then the trajectory
passing through any desired phase may be computed as shown in Appendix
D. If the desired terminal phase is n;, C;, the following equation

(2.39) must be satisfied at point d in Figure 2.4.

“P22 P12

(paztA)C - %Il (p1otA)C- '% n
8
2

(Pg2+M\)Cy - %na (P13+M)Cy - ¥y

»  (2.39)
where the second subscript 2 of p refers to u = -yg, However, as
shown in Figure 2.4, C = C, at the switching point.

A time-optimal shutdown is shown in Figure 2.4 by trajectory
f-g-a. Again the switching point is almost independent of
the initial state and can be determined by n at point g. The exact
switching point g, however, could be determined by the equation given
below, which is similar to (2.39) with the eigenvalues replaced by

P1; and pgy 3 i.e., those for positive reactivity vyB.

~Pa1 ~P11

(931+)\)C s '%n (911+)\)C - S

ohko =t

(P21 +A)C "%nx (P11+M)Cy - gy (2.40)
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For example, equation (2.39) describes a switching line for a time-
optimal startup to a desired terminal phase (m;, C;). Below this line
u = yB and when this line is reached u = -yp until the desired terminal
phase is reached. Similarly, equation (2.40) defines a switching line
for a time-optimal shutdown with u = -yB above the switching line.

If a knowledge of n and C are available, an on-line computation
could be made (e.g., digitally or by means of an analog function
generator and a comparator) to determine the switching point from

(2.39) or (2.40).

2.2.2 Time-optimal control of neutron level

In practice it is generally desirable to traverse from some
initial steady-state neutron level to a terminal steady-state neutron
level in minimal time without the terminal precursor level necessarily
being at steady state. This problem may be specified by merely de-
fining the terminal set to be a line n = n; in the n vs C phase plane
shown in Figure 2.4, Optimization problems with a variable terminal
point belonging to a specified hypersurface were discussed in Chapter I,
page 8. 1In general, the costate vector must be orthogonal to the tan-
gent plane of the terminal hypersurface at the free terminal state.

In regards to this neutronic control problem, the terminal hyper-
surface is simply the line n = ny in the n vs C phase plane. Hence,
the adjoint vector must be perpendicular to this terminal line.

With p; (t;) = O and time reversed, it is seen from Figure 2.5
that p, (t) can have no zeros for t < t; . Similar plots, with the
eigenvectors in the same quadrants, could be obtained for other values

of yv. Hence, the time-optimal control with a reactivity constraint
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is constant for to < t < t;. This fact is substantiated by the solu-
tion to the adjoint system with time reversed which is similar to the

neutronics solution (B.7).

With p;(ty) = 0 and time reversed (t S ty)

P11 I
1 P (ry-t) -t
b= Pz P2 (cne s + °f1epe(t1 )) ’ (2.41)

where py (t;) = p11, Pa(ty) = 0, c1; = p, + % (1%y), &, = -[p1+%(1iy)]
and u = + y8. Then, from (3.35) and (B.6) [with p, slightly larger

than (3.35) predicts for u = yB and slightly smaller for u = -yg]

cl; ~ 0f and ¢, ~ - _X%‘— +-% (lly)‘] (2.42)
(1+Y)

Order of signs is read according to order of u = + y8.

For u = yB, both coefficients of the exponential terms in (2.41)
are of the same sign and p; (t) cannot have any zeros. Also, for
u = -yB, both coefficients are negative; hence, p; (t) can have no zeros
and there can be no switching in the control process.

The time-optimal solution to the neutron kinetics [ equation (2.28)]
is again given by (B.7) on the interval (to, ti).

At the terminal time the neutron-precursor level is not yet at
steady-state. Therefore, reactivity nust be different from zero to
maintain constant neutron level n(t) = n, for t 2 t;. From equation
(2.28) it is seen that the following equation is required to hold the

neutron level constant:

us=-— =8-—-—- . (2-43)
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For constant neutxon level m; and t, < t, the solution to (2.28) is

Bn. A (-
C = %Xni + [é(t1) -'in] e MEE) (2.44)
Then
¢ = ~{C(t1) - ’;—m} re MEE1) (2.45)
and
a(t) = [B i ZXC(tJ)]e-k(t-tl) . (2.46)
m

With reference to a typical startup trajectory a-b-£f, as pre-
sented in Figure 2.4, it is seen that & diminishes according to (2.45)
and Figure 2.6 (phase plane of C vs C) for n = n, and would only be-
come zero at C(t) = %Knl’ according to equation (2.28). This state
is never reached in finite time, as shown by (2.44).

It is interesting to recognize the similarities in the optimal
control of the prompt kinetics and the single-precursor-group kin-
etics; e.g., both require no switching, except at the end points, to
vary neutron level from one state to another in minimal time.

2.2.,3 Admissibility of the terminal control

The allowable set of controls for the optimization process has
been defined by lul S yB. To assure that the terminal control is
contained in the set of allowable cuntrols for the case of unsymmetri-
cal limits, let reactivity be limited by -y;8 < u < y,B. From the
following analysis it will be seen that the required terminal contxrol
belongs to this allowable set for initial equilibrium conditions.

From equation (2.46), it is seen that
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£NC(ty)
-(1+-\(1)S-T SVz"l (2.47)
or
np o B
(I-vz)— = C(y) < Aty )7y - (2.48)

In other words, if C(t,) satisfies (2.47), the terminal control is

in the allowable set. The first of equations (2.36) along with (2.34)
shows that, for u = y,B, the left side of (2.48) is true for any
trajectory which starts from the left side of the B eigenvector in
Figure 2.4. That is, since the eigenvector cannot be crossed, the

following inequality is valid:

(1-v;)pn Y2

c(t) = Iy + v, n . (2.49)

l-vo
Then certainly C(t;) > Y By and the terminal control

u(e) < vyzB .
From the eigenvector D in Figure2.4 (for u =-y,f) it is seen
that for any trajectory which starts to the right of D. the following

inequality must be satisfied:

(1+y,)Bn Y1
c(t) = 3N - T, . (2.50)

Then certainly C(t;) < %I (1+y; )n; and the terminal control u > -v;B.
Hence, there is always a step change in reactivity from the boundary
and into the allowable set when n(t) = n; and the required terminal
control is in the allowable set thereafter.

2.2.4 Consideration of other state variables

Since the rate of change of neutron level has physical interest
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and is usually measured, one would suspect that n and n would be a
good selection of state variables for control purposes. With state

varisbles n and ﬁ, equation (2.28) may be represented as follows:

& n _ u-g _ dn Autu
> = (t )«)-d—t-: + (——-£ )n . (2.51)

This equation may be written conveniently in vector form (with X; =1

and x, = n) as

%l
1
2
”~
e
e
A
%

(2.52)
where
. 0 1
Ao @ = s wp (2.53)
N 7 A .

Since the eigenvectors of (2.53) for constant u lie in such a manner
that the position vector and velocity vector point in the same direc-
tion (see Appendix C), it is apparent that the eigenvectors have slope
equal to the eigenvalues of (2.53). These eigenvalues are given by
equation (2.35) .

Although not drawn to any scale, Figure 2.7 gives a qualitative
description of several piecewise continuous n vs n phase-plane trajec-
tories, which approximately correspond to continuous trajectories
presented in Figure 2.4. 1In this phase plane, t; - to =j;:1-% dn
and thus the above time-optimal process is substantiated by the fol-
lowing argument: With maximum or minimum allowable reactivity (i.e.,
u = + yB), the trajectory is farthest away from the n axis that the
control constraint allows. Then the time evolved in changing neutron
level between steady-state conditions is minimized by the bang-bang

process with no switching between the end states.
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The discontinuities in n at the switching points, however,
generally make it an undesirable state variable for the bang-bang
controlled process. As shown by equation (2.28) and again below
by (2.54), the rate of change of neutron-precursor level C is gener-

ally continuous for piecewise-continuous reactivity.

2
g£¢ _ fu-B )4 , Au, (2.54)
FPE £ dt £

The continuity of C makes it interesting to study the C vs é
phase plane. For constant reactivity, the C vs c trajectories are
identical to the n vs n trajectories but the former trajectories
have the convenience of continuity between the saddle-point portrait
and the stable-node portrait at the switching points. An example of

such a superposition is presented in Figure 2.6. Figure 2.8 shows

the effect of the neutronic source term (which is generally negli-
gible) as it appears in equation (1.32).

Consider the problem of traversing from some initial steady-state
precursor level Cp to a desired steady-state precursor level C; (see
Figure 2.4). Again, when the trajectory for maximum or minimum
reactivity intersects this set, the adjoint vector is perpendicular
to the line C = C;. Therefore, py(t;) = 0 and hence from Figure 2.5
with time again reversed, it is seen that there can be no switching
in reactivity for t < t;. The control required to hold the neutron-
precursor level constant is u = (4n)/n. Again, the time-optimality
of this process is substantiasted by the convenient time relationship

in the C vs C phase plane. However, the time traversed in going from
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point d to point f with u = vp in Figure 2.4 and Figure 2.6 is very
small and thus the bang-bang control discussed previously (i.e.,
no, Co to n;, C; via trajectory a-d-f) is nearly optimal for this
new problem also. ‘

2.2.5 Time-optimal control with phase-plane constraint

Another neutronic optimization problem pertains to the analysis
of the time-optimal trajectory which links steady-state ng, Co with
a desired terminal steady-state ny, C; (see 2.2.1), while including
an additional constraint on the amount of overshoot in neutron level.

Suppose there is a requirement of no overshoot in n. It is seen
from Figure 2.6 (e.g., see trajectory a-b-f) that neutron-precursor
level cannot be inéreased in such a manner in finite time, because

(with At =JE§1 % dC) any steady-state phase (C = 0) can only be

reached or left in finite time by trajectories perpendicular to the
axis at é = 0. A phase very close to the desired phase (see ¢
in Figure 2.6), however, may be reached in finite time. This point
¢ could be reached by a constant reactivity y8 followed by the varia-
tion similar to that defined by (2.43) for the proper n. At point €
the trajectory would continue to approach the steady-state terminal
phase or a conventional closed-loop control could be introduced so
that the phase would approach point f. The optimal trajectory, a-b-¢,
is shown below to satisfy the necessary conditions of the maximum
principle and the optimization techniques with phase-space constraints.
The initial portion of the trajectory (i.e., for n = n;) was
analyzed by the maximum principle in Section 2.2.1.
Then, in order that the trajectory does not cross the constraining

line n = n; but coincides with this line, it is necessary that the
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control be generated according to equation (2.43). Following the
designation used in Chapter I, the constraint boundary is represented

by 8§ = n-n; = U and S =n= (u-g) n/£ + AC. As discussed in Chapter I,
the Hamiltonian is constant across the entering corner to the constraint

line (point b in Figures 2.4 and 2.6). Hence,

H(n,C5p) |, . = H(acsp) |, , 2 0. (2.55)
a a

With the constraint explicitly independent of C, equation (1.24)
indicates that the following equations must also be satisfied at the
entrance corner.

P, (tg-) = p, (tg+) + 1
and (2.56)

p,(t-) = p (£, +) .
From equations ( 255) and ( 2.38), with ﬁ(ta+) = 0, it is seen that

apy + Cp, =H , (2.57)

= éPa
- +
ta ta

where

_._1':2 *
H = L2 n, |Plcl . (2.58)

Furthermore, since C(ta-) = C(ta+) and p,(t,-) = Pz(ta+)’ it is seen

from (2.57) that

py(t-) = 0. (2.59)

L T Y

* For the sake of brevity, the arguments of a function, e.g., H(n,C;;),
are often dropped in this dissertation where they are obvious or
previously defined.
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Therefore, it is indicated by Figure 2.5 that the optimal control has
no switchings for t < ta. For the optimal trajectory to correspond
to the constraining line, one sees from equation (1.23) that the co-

state dynamics must behave according to

_0. - - - "'1 o T T-.
EEE T e
ox ox
For the problem at hand [see (2.28) and (2.29):
of '%;E Mo aw (2.61)
ox B/& -\
- . -1
9f _ |n/g 38 _
e [ 0 ] ’ [au] = 8/n (2.62)

and
(2.63)

Qé T
ax

Therefore, the costate is defined by terms appearing in the adjoint

. 1t
£

YL

>
—_

equation (2.30) plus other terms given above, which yield

P = '% P2
and (2.64)
i’a=)\pz

for t > ta. The solution to (2.64) for t 2 ta is

ek(t-ta)

1

Pza

and -~ (2.65)
a A(e-t)) B
P =- X e ( a’ + (Pla + z)\Pe a) ’

i
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where
Paa = Pz (ta+) and P:.a = Pl.(ta+)

In order to satisfy (2.56) to (2.58), it is seen from equation (2.45)

that P1(ta+) = - W and

=0, (2.66)

where

or

Pog = A |Pio| , (2.67)

where
Yo

"I 2XCa
TN u

Recoenire that 3s8/du is nonzero for (t.,tb) and ;(ta+) is

A

nonzexo and noncollinear with 35/3x as required in Section 1.4.
Furthermore, since py, is non-negative, substitution of (2.65) into
(2.64) shows that 5(t) = f)l (t) is non-positive for (ta,tb)' as required
in Section 1l.4.

The optimal-time responses are defined by equations (2.44),
(2.65) and (2.67) for n(t) = n and ty < t. Then substitution of

Pra = O into the solution of the adjoint equations (see Appendix B) -

for t < t, (with time reversed), yields the following:
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P (t) = BAIRol [epl(ta‘t)~epg(taW()] (2.48)

L(pl 'pg)
and

P (L) = %Jﬂtd‘[}Pg+A)epl(ta't)- (pl+A)epz(ta't1
2™ F1

(2.69)

Therefore, [from (2.59)] the necessary relation between the initial

costate components is

P2o =

%LE];L[(DQ'*’).)GPI (ta' to)_ (p1+)\)ep‘,: (ta‘to)] . (2. /’.1)
2P

The time solutions of the state variables for t < t, are ziven by
equation (B.7) and corresponding optimal phase-plane trajectories
are designated as a-b-¢ in Figures 2.4, 2.6 and 2.7.

Suppose neutron level is allowed to overshoot n but not n .
Then from the previous analysis, along with the &t relation for
Figure 2.6, it is readily deduced that trajectory a-c-e-f is a
minimal-time trajectory between points a and f with the added
constraint of n(t) s - Also, part of this trajectory is the
time-optimal trajectory between n, and oo

An actual example as obtained from the analog computer is shown in

Figure 2.9, where the reactor is started with steady-state initial power
level and precursor level. The data may be interpreted as the time-
optimal process between the given initial condition and a desired
terminal steady-state power level and steady-state precursor level
with a power constraint, Q < Q = 4.28(10)® Btu/sec; or the process
may be considered as time optimal between the given initial condition
and a desired terminal steady-state power level Qm' with v = 0.9

and £ = 3(10) “ sec, it is seen in Figure 2.9 that the time elapsed
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to quadruple the power level is about 0.2 sec. The time elapsed to
double the neutron level and force the precursor level to steady-
state along with the neutron level at the terminal point is about
4.4 seconds. Such minimal-time startup transients were simulated
by the analog computer schematic diagraﬁ shown in Figure 2.10,.
Although an exit gas temperature is recorded, temperature and
propellant reactivity coupling were neglected. Notice also that
the precursor level is still represented by C but the units of
C must be units of power to be consistent with (2.28).

Various optimal trajectories are plotted in Figure 2.11 with
the circuit diagram shown in Figure 2.10. Elapsed times, between end
points, are listed in the accompanying table. Trajectories 1, 2, 3
and 5 merely compare time-optimal trajectories between various initial
quiescent states to a desired terminal quiescent state with the same
constraint on neutron level (or power level). Trajector;es 4 and 5
show the decrease in transition time for an increase in the maximum
neutron level constraint. Trajectories 4, 6 and 7 compare transition
times for various constraints in reactivity. Again, these trajec-
tories may be considered as optimal between ny, C, and n, or between
ng, Co and n, C;. These data indicate a considerable reduction in
transition time, t, - to, may be obtained by increasing v to 0.9.

2,2.6 Singular solutions

In the event that the switching function of the control equation
[e.g., py in (2.31)] should vanish for any finite period of time, the
control is undefined and is classified as a singular control. If
such a singular solution satisfies the necessary conditions of the

maximum principle along with the boundary values of the problem,
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the singular control (as indicated in Reference 22) 1is a candidate

for the optimal process. Such control, however , has not appeared

in the above optimal-control problems.

Indeed the only possibility of a singular solution to exist in
the above neutronic processes is for p,, the switching function in
(2.32), to vanish for some finite interval of time. If n # 0, it is
seen from the adjoint equation [see (2.30)1],

ﬁl = % np; + C% n-AC) (pz ~ P1)> (2.71)
that p; cannot vanish for any finite time. Hence a singular solution
cannot exist since the neutron level and precursor level is positive.

Once the numerical value of the Hamiltonian has been established,

then as is shown in Reference 22 (see statement 1, page 6), any con-

trol which renders such a value for R is a candidate for the optimal

control.
[ ]
Suppose p, (t) = 0, n= 0, us= fs and n(t) = o, for ta < t< tb;
then, from (2.31),
Hence [ from (2.28)],
. B ]
C=%n -2, (2.73)
[ from (2.71)]
b =0
and ) (2.74)
P2 = AR

The solutions to (2.73) and (2.74) are:

N
c=f n + [ca - T;‘] e ME ) (2.75)
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[where c, = C(ta)],
Pph = P1a
and (2.76)
A(e-t
P = Ppg € ¢ a) >
where p; 4 = p(ta) and p,, = Pz(ta)- Substitution of (2.73), (2.75)

and (2.76) into (2.72) yields

18 -
R = [1, na )«Ca]pga . (2.77)
Then R = H if
Poy = —_—_H———_ﬁ . (2.78)
g Na - )‘Ca

For example, with the Hamiltonian given by (2.38):

Pra = MPaPio . (2 79)

AL
ng- E—C a

For steady-state initial conditions, the denominator of (2.79) is
positive for time-optimal increases in n and is negative for time-
optimal decreases in n., The adjoint trajectories given in Figure 2.5
indicate the possibility of Pla = 0, (with Pa, positive for u = vy8
and negative for u = -yB) and hence, along with (2.79), a singular
type of solution does exist for ﬁ £ 0. With respect to the previous
analyses, such a solution is only optimal for the problem with
neutron-level constraint and the problem with a free terminal

state. However, the optimal control of these processes was obtained
properly in a different manner, as analyzed in sections 2.2.5 énd

2.2.3 respectively. Notice that the optimal control problem with

phase-plane constraint also allows a jump discontinuity in p; at
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t

1

ta. Other singular solutions do not meet the required end

conditions.

Even though singular control is of little significance for the
minimal-time neutronic control problems, it can be important for other
neutronic optimization problems. Since the neutron kinetic equations
(2.28) are linear in the control, it is readily seen from the maximum
principle that a bang-bang reactivity variation is a candidate for the
optimal control if the cost function is linear in the control. Fox
these problems singular control could be important and it is generally
possible to construct singular control surfaces by means of the equations
developed in Reference 22.

Although the conditions required by the maximum principle have
only been necessary for the control to be optimal, consideration of
singular solutions and the dynamics of the system substantiates the
uniqueness of the optimal process., The simple relations for the time
changes in the n vs A and C vs C phase planes have been very useful
in this respect.

2.2.7 Reachable zones of the time optimal controlled neutronics

From Figure 2 .4 it is seen that for bang-bang control processes,
any steady-state condition is reachable from any state with physical
constraints of C20, n20 and | “|5YB- Typical trajectories are shown in
Figure 2.4 for y = 0.5, along with several first quadrant eigenvectors
for various values of y. Note, howeyer, that states to the right of the
eigenvector for positive reactivity are not reachable from states to the
left of the same eigenvector (e.g., eigenvector B in Figure 2.4).
Similarly, states to the left of the eigenvector for negative reactiv-

ity (e.g., eigenvector D in Figure 2.4) are not reachable from states
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to the right. The eigenvectors of interest are approximated by equa-
tion (2.36). Thus the zones which are unreachable are set off by

lines whose slopes are approximately proportional to lz:—x for u = vyB,
and to lzi—x for u = -yB. However, any physical limit of n = n_ con-
strains the reachable zones to the left of n . In practice, one would
not be interested in attaining these unreachable states anyway. In
fact, constraints have been applied to guarantee that we can't attain
these undesirable states.

These limitations on the reachable zones are also obvious from
Figures 2.6, 2.7 and 2,11, For example, in the phase plane of n vs n,
it is not possible to reach states above the line n = (yB/4)n or below
the line n = -(yp/l)n from the steady-state and only can these»lines
be reached with an ;brapt change in u = + yp. A small constraint in
control velocity further limits the reachable zone to periods somewhere
between the eigenvectoxrs of slope given by (2.34) and shown by lines
B and D in Figure 2.4, The line of C = 0 has the equation n = (u/4)n
while n = 0 requires that é = (u/£)n, but n and é can only be zero if
u = 0. From Figures 27 and 2.11, it is seen that from states between
the eigenvectors only similar states can be reached. Again, the
reachable zones are further constrained by the line of constant n, or
C = B/4 o AC. Obviously, zones for negative n or C are physically
unreachable. The lines of n = 0 and C = 0 have slopes of -\ and
;LL4%—XlE— in Figures 2.11 and 2.7 respectively. The source term in
the neutronics equations (1.32) does increase the reachable zones
slightly as shown by Figure 2.8 (e.g., n = 0, C = 0 can be left in

finite time).
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In general then, in addition to the mean neutron generation time,
the reachable zones are limited by constraints in reactivity and neutron
level. These constraints are caused by physical and safety con-
s'derations. The eigenvectors in Figures 2.6 and 2.7, however, have
their slopes approximated by (2.35). Hence, if the lower limit can
be reduced, the unreachable zones below line D in Figures 2 .6 and
2,7 and to the left in Figure 2.4 may be further reduced. The mean
neutron generation time £, in addition to affecting reachable zones,
also affects the switching point of the bang-bang control process.

This result is obvious from the effect of & on the indicated eigenvectors
in Figure 2.4; i.e., since the slope is approximately inversely propor-
tional to £ [see (2.36)] the neutron level at the switching point is

also approximately inversely proportional to £, Also from (2.34) and
Figures 2.6 and 2,7, the total elapsed time varies directly with £.

The neutronic system is contxollable in the sense that any
steady-state can be transferred to any other steady-state in finite
time (i.e., for 0 < n < n and 0 < C)., From (2.34), it can be seen
that the control variable has little effect on one mode of response
for u << B. With the terminal control u = 2C/ny, it is seen from
Figure 2.6 that the state C = 0 is not reachable in finite time.

2.3 Six-precursor group neutron kinetics

The one-energy-group neutron kinetic equations were introduced
in Chapter I along with the assumptions made for this classic six-
delay group model. For the minimal-time control problems, these

equations are repeated below for convenience.
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i=1 =2
and , (2.80)
dCy By
d—t = Tn - }\ici (i=1’--°’6)
with
)
lu|<yBand =2 B -
. i=1
The inner product (3,?) is
u 7. 1
R=%nn + 5C ,(Py-py) . (281

R is again a maximum for the control on the constraint boundary of the
allowable control set and hence, for motion evaluated on the interval

(tO’ tl)

H(n,C ;;) = max R(n,C ;;;u) 20, 2.
i €y i (2.82)

The optimal control 1is again bang-bang with the form of solution given
by uo = 'YB sgn p1 (2.83)
since n(t) > 0.

It is necessary that the costate be defined by the adjoint

equations:
7 B
dpy, _ B-u - i-1
= 2 P L TPy
i=n
and (2.84)
dpi
-a?-::ki"l (Pi"Pl), i=2’o.o’7 .

Again, the problem of most physical interest is one for which the term-

inal set is a hypersurface n = n; in a seven dimensional phase space
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while the initial state is usually a fixed point. The costate vector is
then orthogonal to the tangent plane of the terminal hypersurface which

implies that
Pi(t1) =0, fori4£1. (2.85)

A computer seérch for various values of y with time reversed shows
that p; (t) the solution to (2.84) with u given by (2.83), cannot
change sign for t < ty, if (2.85) is satisfied. Hence, there can be no
switching in reactivity. Various such transients obtained from an
analog computer simulation are shown in Figure 2.12. From (2.85) we see
that it is unnecessary to check other terminal magnitudes of p; since

the value of v alone determines the form of solution and therefore the

number of zeros. This is seen from the solution to (2.84) for a fixed
u, py(ty) Lay exp py (t-ty) +...+ a; exp p, (t-ty)], where t decreases
from ty and the constant coefficients a, and Py (i=1l,..., 7) depend on
u, but are independent of p, (t;). Here p;(t;) is positive for u(t,)
positive and negative for u(t; ) negative. But there is no change in
sign of p, (t) or switching of u(t).

An analog computer circuit diagram of the neutronics adjoint
system which was used to obtain Figure 2.12 is presented in Figure 2.13.

The terminal control required to maintain steady-state conditions

| ]
at the terminal set n(t) = n; is obtained from (2.80) with n = 0. This

thecoretical terminal control is given by

u = — zr C (2.8¢)
0y 1= 1 i -

The following analysis shows that with initial steady-state con-
ditions the above terminal control satisfies the inequality constraints,

“yv1B Su < yp8. Inequality constraints are considered to show that the
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arguments are general in this respect. The solution to (2.80) for

t1 < t with n(t) = ny is

By g0 7 -Ag(t-t)
C, =‘;',;ir\. + [Ci(tl) - -%f;]e ! ; (2.87)
then
e &r,C,(t )
= - __LL.L_ -Ai(t-t
u(t) = § [pi ~ ]e 1(t-ty) (2.88)

If equation (2.88) is substituted into the control constraint in-
equality, it is seen that the following relation is necessary for u(t)
to belong to the allowable set:
£ 6
- < - —
i =1 By 121 kici(t:.) = Y

or

1 e By
(I-v2) == = 4L MCi(e) = A +vy) 7 - (2.89)

Although this condition only shows that u(t) satisfies the
constraints at t = t;, it is shown next that the terms enclosed by
brackets in (2.88) are all negative or all positive hence proving
the inequality at t = t, proves it for t > t;.

Sﬁppose n and Ci are at steady-state initially and u = v, > 0
for the interval (to, t;). Then, since neutrons are born at a faster
rate than they are lost for positive reactivity, n(t) is positive.
(This is substantiated by the responses given on pages 29-31, Reference
16.) Furthermore, 1if ﬁ(t) is positive, and éi(to) is zero, each
precursor level increases since precursors are born at a faster rate

than they decay for positive reactivity. That is kici(t) < pin(t)/£
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Lor éi(t) is positive] and Ci(tl) < [ain(tl)]/(zxi). Then if
n(ty) = n,

8

i3 MCi(e) < 'EIZ}L ’

and certainly

8
Bn.
1B MOy(6) < Qy)) ==

Furthermore, since n(t;-) is positive.(for u = YzB from to to t;),
and n(t) and Ci(t) are continuous at t = t,, (2.80) shows that

fny 8
(Q-ve) & < & )«ici(tl).

A similar argument can be made for u = -v;8 and ng > ny. Hence,

éi(t) is negative and from (2.87)

By
Ci(tl) > in (i=1,...,6).

Then certainly
: 3
i§1 kici(t1) > (lhya) £ n1

Also, since n(t;~) is negative, (2.80) shows that
3 pny
1_2_;1 kici(tl) < (1+)g1 )T

Summarizing these results, the equation

6
v oy > B A C (6D > A 4, (2.90)

is a valid relation for time-optimal increases or decreases in state
with steady-state initial conditions. Hence, the terminal control
satisfies the required inequality constraints.

The above analyses of this section produce the same results that
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were obtained for the single precursor model. Furthermore, in many
cases time response of the single-precursor model can closely approxi-
mate that of the six-precursor model. A comparison of such optimal
responses for six-precursor groups and one-average-precursor group is
presented in Figure 2.14. Notice that n(t) is held essentially con-
stant by a multiple bang-bang or dither control process. Such a process
is discussed below. Utilization of the arithmetric average decay
constant shows that there is hardly any noticeable difference for such
fast transients. 1If slower transients are of interest, it is necessary
to reduce the average A in order to closely approximate the reactor
neutron kinetics. Then one would generally expect the optimal-control
analysis of the one-average-precursor-group model to apply to the
actual six-precursor-group system.

2.4 Terminal control synthesis

It has been shown that the théoretical control required to maintain
a constant terminal neutron level n(t) = n is u = xigl éi/nl. Such
a variation in reactivity, however, is open loop and cannot be imple-
mented in practice due to errors in measurement and synthesis.

If there exists a small error in the measurement of n, then the
following analysis ghows a divergence in neutron level. Suppose the
error in the measurement is represented by An, and the theoretic

terminal control can be engaged in zero time at t = ta. The one-

delay-group neutronics approximation with u = ﬂé/ni is

dc ~ n (2.91)

for ta St. Let n=n; +An and C = Cy (t) + AC. Then neglecting
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second-order terms (2.91) becomes

G,
AEIN_AH s
o
(2.92)
which has the following solution:
On s An_ exp -I—C (¢) - ¢C
a ny 1 l1a ’
(2.93)

where An_ = n(ta) - m and G4 = C;(ta). From (2.28) the response

in precursor level C, (t) due to the theoretical terminal control is

F2N

= B A(t-
C, (t) = ot (Ca B QQ e At t,)
‘ (2.94)
If'(2.93) is approximated by the linear terms of a Taylor series for

small [Cy (t)-Cy,l1/ny,

C,(t)-Ciq
An x An 1+ ———————
a o

(2.95)
Hence, one might expect the divergence in neutron level to vary in a
manner similar to the variatiom in precursor level for small changes
in An(t) and €, (t) - C;,. The following argument, however, shows that
for certain conditions the divergence of An(t) may be described by
a time constant that is smallexr than 1/A.

Consider (2.9+) for (t~ta) << 1/A:

C; (t) "I%'nl + (Cia~'7%-n1)[1~x(t~ta)+...]
or

Cl(t) (=1 C18 + ("'%X n - cia))\(t"ta).
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Then, from (2.93)

fn &~ An_ exp [(a/l)wcia/nl))\(t-ta)] : (2.96)

At equilibrium C = (B/£A)n, but thereafter n(t) increases faster than
C(t) for positive reactivity (e.g., see trajectory a-b, Figure 2.4)

and decreases faster for negative reactivity. Equation (2.36) and
Figure (2.4) show that if n; is much larger than ny, then B/4\ is

much more than Cy4,/ny. For example, consider trajectory a-b-f in

Figure 2.4 with C at point b equal to C;,;. Using the approximations for
(2.36) Cyg/ny ~ (1-y)8/4A. Hence the rate of divergence of An(t) depends
on C1a/n1, but for n; >> ng the divergence can be considerably faster
than that predicted by (2.95). Such an instability is not surprising
since the basic problem is the failure of an open-loop control. The
same problem exists in attempting to maintain constant n(t) with
steady-state initial conditions.

The failure of this control is shown more accurately by Figure
2.15. These various power transients were obtained from an analog
computer simulation for very small changes in the constant term of
the theoretical terminal control. The initial dropoff or rise in
power 0 (when terminal control is engaged) is due to negative or posi-
tive Ana, as explained by (2.96). The subsequent long-period rise,
however, is due to the reactivity not decaying to zero as it should,
but decaying to a small positive value due to inaccuracies in computer
equipment. (It could just as well be negative, in which case Q would
would finally decrease exponentially.) In a similar manner, analog
computer solutions show that use of n(t) instead of n; in the denomi-

nator of the terminal control yields an unstable solution.
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The terminal control for the simulation shown in Figure 2.15 was
switched into the simulation (which has time slowed down by a factor
of ten) by a fast acting differential relay system. This relay
system has a frequency variant hysteresis characteristic, which is
shown in Figure 2.16. The input to the differential relay was a
sawtoothed wave of various frequencies, for the results shown in
Figure 2.16. Just as this characteristic enters into the simulation,
it could enter into the actual control synthesis of a physical
reactor.

Since failure of the theoretic terminal control may be attributed
to its open-loop nature, closed-loop control should certainly be
investigated. Such control is studied below in Section 2.5 but for
the moment consider a control which is more closely related to the
above theoretic terminal control.

Although the theoretic terminal cgntrol is unstable, intuitively
it might be expected that a multiple bang-bang type of control (which
switches to values above and below the theoretical value) is worth
investigation. The following discussion presents an example of such
control, which was successfully tested on an analog computer and is
called a dither control process. For a time-optimal startup followed
by such a dither process, reactivity should be yf until n(t) = n, + A,
where 2A is a predetermined amount of hysteresis (see Figure 2.17) of
very small positive magnitude. At this time reactivity switches to a
low approximation to the theoretically required process (i.e., u(t)
is smaller than but approximately defined by (2.86)] until n(t) = n, - A,

Then reactivity is switched to yB again and the process continues
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repeatedly., The synthesis of this control process (which utilizes
a differentidl relay with hysteresis is presented in Figure 2.17.

During the dither process, relay A in Figure 2.17 oscillates
between the positive and negative positions. That is, relay A is in
the positive position with u = y8 for n, S -A and in the negative
position with u = ké for n, 2 A, k is set so that the parallel compen-
sation output ké is slightly lower than that of the theoretic control.
The dither process as it results from hysteresis in the differential
relay is shown at the bottom of Figure 2.17.

Typical reactivity pulses and power transients of such an actual

dither process, as obtained using the analog computer to mechanize

Figure 2.17, are shown by Figures 2.18 and 2.19. Although finite
switching time was not discussed above, it is included in this syn-
thesis of the dither process. The simulation was slowed down by a

factor of ten (from that of the original simulation) in order to

study the frequency variant effect of the relay system. It is seen

that power variations are reduced considerably by slowing down the prob-
lem and effectively decreasing the hysteresis. The hysteresis character-

istic of the differential relay is presented in Figure 2.16. The lack

of symmetry of the reactivity pulses in Figure 2.18 is caused by the
spring forcing of the relay in one direction and the magnetic forcing
in the opposite direction. Application of solid-sgtate devices to the
synthesis of such a physical system would be very desirable.

The results of analog computer simulated time-optimal startups
have been ghown by Figures 2.9 and 2.14., Both of these systems actually

utilized the dither terminal control system to maintain a neutron
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density that is essentially constant; only the theoretical control,
however, is recorded in Figure 2.9.

2.5 Optimal control and conventional control

The key to the synthesis of the time-optimal control appears to be
the ability to maintain neutron density essentially constant while the
precursor level is not near steady-state.

Although the bang-bang neutronic control is synthesized very
simply, the required terminal control is slightly more complicated. 1In
many cases a conventional type of closed-loop control is satisfactory
and may even approach the performance of the optimal process. Even
for these cases, however, the optimization analysis provides a yard-
stick of performance. One convenient technique of approximating the
optimal process is to synthesize a continuous feedback control system
which is fast acting but limited in control variations. The startup
of such a system is shown in Figure 2.20. 1Initially, the system is at
steady-state with a neutron level of less than one-twentieth of the
terminal level. Then 0.98 of reactivity is added until the neutron
level is about one-eighth of the terminal value. At that time, a pro-
portional-plus-integral type of feedback controller replaces the con-
stant control process. The controller was introduced at that time to
limit the magmitude of the controller integral signal. (Below, in
Section 2.5.1, it is shown that by controlling the log of power the
loop may be closed for the entire run., Also, if integral control were
limited separately, a limited effort proportional-plus-integral control
could probably be introduced immediately.) This controller is defined

as follows:
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t
u= 1.8/ (10) °® Qe + 6.24 (10)‘9f Qe do (2.97)

where Q, = Q, - Q Btu/sec and Q =~ n. Due to the high gain of the system, -
the reactivity stays at its constrained value of 0.98 until the termi-

nal state is approached. After this small rise time, Q(t) has a small

overshoot followed by a slow decay toward the desired steady-state

value. The slow decay is caused by the slow birth of precursor neutrons.

For most applications such small overshoot is insignificant and this

simple suboptimal closed-loop control could be utilized. Nevertheless,

the dither terminal control (as shown in Figure 2.14) maintains constant

power more accurately.

The describing function N for the simple limiting nonlinearity is
given in Table 2.223. Then Figure 2.21 presents Nyquist plots of the
open-loop transfer function. The limiting nonlinearity is represented
by the critical-point locus, -1/N(A). ' Transfer functions of changes
in power with respect to both changes in reactivity [plot (a)] and
changes in power error [plot (b)] are plotted there. Sketches (a)
and (b), shown at the top of Figure 2.21, approximate AQ/Au(jw) and
AQ/AQe(jw) mappings of the s-plane contour shown in sketch (c). Sketch
(a) also approximates the shape of AQAAQe(jw) for proportional control.
Applying the Nyquist stability criterion (with the -1 point replaced
by ~1/N in Figure 2.21) indicates that the system cannot have a limit
cycle.

The transient response of a system with only proportional control
is presented in Figure 2.22. 1In this case, the simple control was

carefully engaged at the desired terminal power but due to the precur-

sor neutrons the error again approaches zero very slowly. The lack of
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Table 2.2 Describing function for reactivity limitin323.

u
A
yB..
} - W
-a a
-yB{
Ala N(A) L
N(A)
N(a) = XB for w < q x o/yp for o=vp
@ 0 to 1 1.0 1.0
N(A) = xg (2¢+s5in2d), for w > 1.5 0.76 1.32
n 2.0 0.6 1.67
3.0 0.42 2.38
4.0 0.32 3.1
where
6.0 0.22 4.54
A = amplitude of input sine 8.0 0.16 6.25
wave
10.0 0.12 8.33
w = input 20.0 0.064 15.6
u = limited reactivity 50.0 0.0255 39.2
& = arcsin (Q/A) 100.0 0.0127 78.5
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integral control causes the residue of this slow mode to be slightly
larger and its response slower than that of Figure 2.20. Notice, how-
ever, that Figure 2.21 shows that the neutron kinetics with simple
proportional closed-loop control is more stable than if the system is
controlled according to (2.97).

In addition to the usual precautions, which must be taken in
making conclusions based on describing-function analysis, it should
be realized that the neutron kinetics as defined by (2.28) represent
a structurally unstable systémz4 (i.e., any small change in reactivity
from zero, changes the qualitative phase behavior). At zero reac-
tivity, the neutronics phase plane shown in Figure 2.4 has a border-line
sort of portrait and there exists a line of equilibrium points.
Similarly, for the six-~delay-group neutronics there exists an equi-
librium line in a seven-dimension phase space. For a slight positive
reactivity the C vs n portrait is characteristic of a saddle point
and for a slight negative reactivity the phase-plane portrait is
characteristic of a stable-node type of behavior. For the problems

considered here however, the response is of such short duration that

the transfer-function analysis is a good approximation. Furthermore,
the describing function approach is a valid approximation since (1) the
limiting non-linearity is time invariant and (2) harmonics greater

than the first are attenuated.

Although an average core temperature is computed in the analog
computer simulation and shown in Figures 2.14 and 2.22, no reactivity
coupling was considered at this time. Coolant mass flow rate was held
at a minimum constant value but was increased to maintain steady-state

at the terminal point. Such variations in flow rate will be discussed
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as optimal in Chapter III. Notice that the temperature transient
indicates a desirable type of response.

Figure 2.23 ghows that the dither control is adequate for a sgtart-
up time as low as 9 ms, where the terminal power is again more than
twenty times the initial power.

2.5.1 Time-optimal, suboptimal logarithmic, K and conventional logarith-

mic contrxol of a Kiwi-B system

The variations in dynamic behavior of the neutron kinetics with
neutron level n or power level Q, may be seen crudely from a transfer
function of the linearized neutron kineticsl6. This function is

-]
Aj _ Qoigl (8+)\i)
HNu T

)/ sﬁl (s+ri)
where Au is a perturbation about zero reactivity which causes a power
1
perturbation, AQ, about some steady-state power Qg; s is the Laplace
transform complex variable; and r, locates the poles of the transfer
function. By feeding back the logérithm of power, the dynamics are
roughly independent of power as shown by
plog 9 _ £0/%
Hu Hu

Using this type of control, conventional design procedures pro-
vide good performance for extremely low powers as well as for high
power levels. In this section logarithmic proportional-plus-integral
control is compared to a time-optimal process.

A Nyquist plot [see Figure 2.21, plot (b)], indicates that
stability of closed-loop neutronic systems, which employ proportional-
plus-integral control, increases with loop gain. Systems with high

gain, however, require more reactivity than those of low gain and as
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discussed previously, reactivity should be limited for safety reasons.
For nuclear rockets, a limit of 0.9p is a safe constraint.

Various logarithmic proportional-plus-integral controller designs
are shown by Table 2.3. Then Figures 2.24 and 2,25 present startup
data for a Kiwi-B (nuclear rocket test reactor) system which uses these
closed-1loop control systems. In all cases, logarithmic power demand
is stepped from steady-state log Qy to about log 24 Qo at the initial
time. Figures 2.24 and 2.25 are plotted against such a slow time scale
so that the slow mode of response may be examined. These data are

compared below to time-optimal startups shown in Figure 2.26.

Table 2.3 - Controller gains for data presented in Figures 2.24 and 2.25

Run No. Proportional Gain Integral Gain

» kp ki’ sec-1
1 6.5 (10)73 1.3 (10)7%
2 3.25 (10)"3 3.9 o™t
3 5.71 (10)"% 1.17 (10)~2
4 2.6 (10)3 2.6 (10)72
5 3.25 (10)73 6.5 (10) 3
6 6.5 (10)73 3.25 (10)73

Control Equation:

t
Bk = kp log,, Q,/Q + kif log,, Qs/Q do

The minimal-time startup with u = 0.9 is given in Figure 2.26
and requires about 0.12 sec to increase power by a factor of twenty

four. Again, in Figure 2.26, the desired terminal power is maintained
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by a dither process. Two suboptimal startups, with the same end con-
ditions as those given in Figure 2.26 are shown by Figure 2.25. Though
similar to the suboptimal controller discussed above [see equation (2.97)
and Figures 2.20 and 2.22], the use of a fast-correcting logarithmic
controller (with reactivity limited to values less than 0.98) allows

the loop to be closed during the entire operation. Controller gains

for these sub-optimal designs are given under runs 5 and 6 in Table 2.3.
Again, the suboptimal control requires the same time difference as the
optimal control to reach a value close to the desired terminal value

for runs 5 and 6. This initial fast rise is followed by a slow decay
toward.the desired terminal value. This slow decay is again caused

by the slow birth of precursor neutrons. For most applications either
run 5 or 6 would bé very satisfactory. In other cases (e.g., in fast
reactors with low thermal time constants) very little overshoot, if

any can be allowed and run 6 would be more desirable.

By cut and try, a controller of the suboptimal category (e.g., as
given in Table 2.3 under run 4) can be designed which requires no more
than a specified amount of reactivity. The suboptimal startup with
reactivity less than 0.98 is presented by run 4 in Figure 2.25. For
run 4, however, reactivity never quite reaches 0.9B and rise time is
slower than that of runs 5 and 6.

For many applications such suboptimal startups would be sufficient.
Though the suboptimal control is synthesized in a simple manner and may
be more desirable for these cases, the optimal startup has still pro-
vided a measure of performance.

Various nonoptimal startups are presented in Figure 2.24. Notice

that runs 1 and 2 require approximately 0.98 of reactivity at the



96

start and exhibit performance that is far from time optimal. Without
knowledge of the time-optimal startup, a designer could unwittingly
use such a nonoptimal controller.

A conservative nonoptimal startup (to a step increase in logarith-
mic power demand) with reactivity always less than 0.58 is exhibited
by run 3 in Figure 2.24, The corresponding controller design is given
in Table 2.3. After reaching the desired power in about 0.6 sec,
the power or neutron level overghoots the desired value by about 8
percent and slowly decays toward the desired terminal power @ = 24 Q.
Such response is far from optimal for the minimal-time startup, with
¥ = 0.5, is presented in Figure 2.26 and requires about 0.1l7 sec.

Summarizing these comparisons we see that it is possible to design
and synthesize a suboptimal neutronic control by conventional means.
Knowledge of the optimal performance, however, is required to evaluate
the conventional controller. Further, the small terminal transient of
slow decay (which always exists for simple suboptimal control with
finite gain) hardly appears if the terminal control is a closed-loop

dithexr process.




Chapter III

OPTIMAL CONTROL OF NUCLEAR-REACTOR DIRECT-CYCLE HEAT-EXCHANGE PROCESSES

As discussed previously, the heat exchanger and neutronics as
separate processes are bilinear in the state variables and the control
variables (reactivity and coolant weight flow rate). As a coupled
process the system is generally nonlinear, but in any event, the system
is approximately linear in the control variables. Hence, with reference
to the maximum principle, the bang-bang control may be optimal for a
class of performance indices if the contxol is constrained. Again,
for trajectories on state variable constraint boundaries, for periods
of singular solutions or when the desired phase is reached, the optimal

control will not generally be bang-bang.

The aséuﬁptions and dynamic equations of the heat-exchange
model are discussed in the introduétion. This model is most impor-
tant to describe the state of high-power reactors. The optimal-
control problem considered below may be stated as follows: Given an
initial reactor steady-state, bring the system to a desired terminal
steady-state so as to minimize the consumption of coolant, For a
nuclear rocket engine, pounds of propellant saved will allow less
bulky propellant tanks and more payload. Although nuclear rockets
allow a much higher specific impulse than chemical rockets, their engines
are heavier and more complex than their chemical counterparts.
Minimization of the nuclear system weight becomes necessary.

With a negligible inlet temperature, the time rate of change

of average core temperature as presented by (1.37) is
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ar _ Q_
dt =~ MC

—\I'—!

h ’ (3.1)

where T(tg) = Tp, f(to) = 0, Here T is the average core temperature and Q
is the rate of heat generated in the reactor. Letting the weighting
factor © = 2 in equation (1.38) (this value of © is found to be a

good estimate for many reactorszo), we obtain the following expression

for the thermal time constant Tht
2 1 1
T = MO ['3—;‘;" * h_A] e (3.2)

3.1 Optimal heat-exchange process

Consider the optimal control of (3.1) between steady-state end
points so as to minimize coolant consumption with ‘flow rate

constrained as follows:

u Swsu
a b 2 (3.3)

with Q(to) =u. u is a minimum flow rate necessary to insulate sub-
stantially the reactor from its outside pressure shell. This outside
shell is necessary to hold a high-pressure reactor together but can-
not withstand extremely high temperature. For gross decreases in
power, it may be necessary to increase u, in order to remove the
post-fission after-heat. uy is the maximum flow rate the coolant
system can develop.

For the time being, assume that the reactor power Q can be
changed instantly with the following constraint:

0sQs Qm

and Q) = Q, (3.4)
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where Q, is the rated design power of the reactor. The cost function

for this problem is coolant flow rate. Then, with reference to Chapter I

(equation (1.7)], (p,f) is

R(T;p;Q,w) = Tp, + wpp = —é—q - auT p; + wps (3.5)

and the Hamiltonian is

¥(T;p) = max R(T;p;Q,w) (3.6)
u€y
Equation (3.5) is made a maximum by
Q for P >0
=" (3.7)
0 for py <O
and
R u, for pp-~ aTpy < O
we = (3.8)
uy for p; - aTp, > 0 .
The costate is defined by the adjoint equation:
P = awp (3.9)
and p, is a non-positive constant. The solution to (3.9) is
t .
P1 = P1o exp (a Ito v do , (3.10)

1

where p; o
and there is no switching for t;, < t < ty.
it is required that

Q¢ = Q

for tg < t < t, and p;, is positive.

p, (tg). p; cannot change sign since aw is always positive

Hence, to increase temperature

(3.11)

Since the system (3.1) is initially at steady-state with the

minimum coolant flow rate [i.e., w(ty) = ua], the required initial

power is
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Q, = MC,u,T_ . (3.12)

At the terminal time it is desired that T(t;) = 0, T(t;) = T, and

Q(t;) = Q,; then from (3.1)

Q

‘.’(tl ) = HCaT;

(3.13)

Since temperature is increased most rapidly by low coolant flow rate w
and high reactor power Q [see (3.1) and (3.2)1, it is obvious that the
minimal coolant trajectory utilizes w = u between end points., Thus
from (3.10)

P = Pyo exp [a u (t - t5)] (3.14)
on the interval (tp, t;). After discussing the temperature transient,
it is shown below that this constant coolant flow process along with
(3.14) satisfies the maximum principle. Thus the optimal process in-
volves constant maximum power and constant minimum propellant flow rate
between end points. Switching occurs at the end points to leave or
reach the steady-state conditions. An optimal decrease in state with
the above initial and terminal conditions reversed is caused by the
above variation in power and flow rate with time reversed.

Solutions to (3.1) for constant coolant flow rate are discussed
next so that the core temperature transient may be defined for the
optimal process analyzed above and below in section 3.2. Equation
(3.1) is a linear differential equation of first oxder if Q(t) and
é(t) ar2 functions of time., Tnis equation is made exact by multi-
plication by an integrating factor exp[fa&dt]. Then the solution

to (3.1) is
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exp(-af[w dt) . .
vi:f Iexp(afv dt) Q dt + ¢ exp(-afw dt) (3.15)

T =

(¢ is a constant of integration)

If w is constant and Q(t) is defined for t 2= tg, equation (3.15) masy

be written as

_ -aw t-t "a‘:’t t .
T = T(ty)e 2%W(t-to) s e fto S o 4o (3.16)

Then for a step change to the power level Qm applied at t = to,

Q, ]e~a€v(t~to)+ Q,

T= [T(t°) " MC aw MC aw (3.17)
For very small coolant flow rate, (3.17) may be represented by the

linear terms of a Taylor series. Then the solution to (3.1) is

Q=Q cat(t-
T ’*—'[r(to) + ‘ig"'a-%] e aw(t to). Tea Attocked (3.18)

Errata Sheot

Optimal startup trajectories (for the idealized problem analyzed above)
are presented in Figure 3.1.

That w = u, (for t,st< tl) satsifies the adjoint system, is
shown by substituting (3.14) and (3.17) into the switching function
p, - afp . With p > 0, this function has no zeros. Also X = 0

[see (3.6)] requires that

Pzo = Pro {aT(to) - [Q(ty) - Qto)l/Me u ) . (3.19)

From these trajectories, another physical constraint can be
conveniently considered., Thermal stresses in the reactor core are
roughly minimized by utilization of a linear increase in average

core temp2rature, These thermal stresses however, frequently
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necessitate a constraint on T. At low flow rates equation (3.18)
shows that this new constraint may be approximated by a constraint on
power. (Such a power constraint Q, may very well be less than the
rated design power.)

It is obvious from the system dynamics that the above minimal-
propellant process is also one of minimal heat energy and minimal time.
Although the power and coolant flow rate cannot be changed instantly,
their change can be very rapid compared to the temperature response
(see the minimal-time neutronics control as analyzed in 2.2.2). Core
temperature reactivity and coolant density reactivity coupling as
discussed below complicates the process somewhat.

3.2 Optimal neutronics heat-exchange process

Suppose the rate of change of the precursor-neutron densities and
the reactivity coupling are negligible. Then the neutronics heat-

exchange process may be represented by the following equations:

U
Q 2

and (3.20)
i = —ga - auzT,

where
u, = reactivity, S5k

and

u, = coolant weight flow rate, w

The allowable control set is defined by:
<
lu | < vs
and (3.21)
ua s u2 = ub ’

where ua > 0,
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Consider the optimal programming problem with given initial and term-

nal steady-state conditions such that T(t:o) = To’ u (t:o) =u,
T(t,) = '1‘1 and Q(t1) = Q . Find the optimal trajectories if the cost
1

function is £, = u, and there is no constraint on power. Then (p,f) is

Q(Q,T;E’;K) = %-Qpl + %p2~ - au,p,T + u,p, . (3.22)

R is made a maximum by a bang-bang process such that

u; = Y8 sgn p, , (3.23)

u2 = U, for P, - a'l.‘pa >0
and
u =u., for Py - a'l.‘pa < 0.

The costate is defined by the adjoint system:

. u 1
Pl"ILPI-ITc'Pz ’

l.’a = aug po
and . (3.25)
Ps = 0.
The solution to (3.20) (for constant comtrol with to, = 0) is com-

puted as follows:

Q= Q@ exp(ut/L), (3.26)

where
Q(0) = Q = MCau, (0)T(0) .

The average core temperature is obtained from (3.16). Then

- -~auyt t
T = Tge 292 4+ & T _[ %= q(0) do , (3.27)

where

T(0) = Tp .
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Similarly, the solution to (3.25) is

p; = a constant s 0, (3.28)
auy t
P2 = one ’ (3.29)
' t
~u t/4 1 -
p = e [Pm - g;c‘f A ) dc]
° (3.30)
or
- £ P2 -
P= moe ¢/ 4 — T (" . eauzt) » (3.31)
MC(ZL + aq% :
where

P, (0) = pyo and pp (0) = poo

These solutions, (3.26) to (3.31), sre substituted into (3.22) to ob-

tain
R:Ezﬂ-Q-Q- ]_-u_"-l—_a_%’_' pt+11_1_ +PaO
MC ( o o) © 7% \PeTye
+ ~ a T + Q
U Ps Uy Pao [o MCp] , .32)
where
u
p = ZL + auy, .
It is necessary however, that the Hamiltonian is zero; i.c..
¥ @ = 0. (3.33)

Equation (3.33) can only be satisfied if

Pz = Pao <0,

Pzo = 0 =ps (3.34)
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and

e
Prp =Fi0 € § s (3.35)
where, from (3.32),
Luzpae
Pio =~ —F5 ° (3.36)
b,

Then for optimal startup pyjo > O and for optimal shutdown
Pi~ < 0. Since the switching functions in (3.23) and (3.24) cannot
change sign, the optimal control between end points is constant with
uf = yB for startups, uy = - YyB for shutdowns and u; = u, for either.
At the terminal end it is necessary that u; be instantly increased to
Q /MCaT, for startup and u; is decreased instantly to u_  at the initial
time for shutdown. Q is computed from (3.26). The corresponding termi-
nal reactivity and initial reactivity are zero for steady-state
conditions.

The above analysis establishes a background for optimal control
of the more involved six-delay-group neutronics heat-exchange processes
which are to follow. Rather than analyze the complicated costate of

the system, the following analysis will depend on an understanding of

the system dynamics, as well as the maximum principle, in order to

obtain optimal trajectories. Total reactivity and coolant weight flow
rate will be treated as control variables with magnitude constraints

on flow rate and total reactivity. The end points of these control
variables will be specified by the end states in question. Further-
more, power is constrained to have no overshoot. Again total consump-
tion of coolant is the performance index to be minimized in the

following work.
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The neutronics heat-exchange process may be approximated by a

mono-energetic neutron kinetics and a single-lump heat-exchange model.

This model is discussed in the introduction and is very accurate in
defining the temperature at any point if the proper mass heat capacity
is utilized. Such a model with inlet coolant temperature neglected, is

described by the following system of equations:

- . 6
%:‘%ﬁq+ T AaC=%Q- B G, (3.37)
i=1 1=y
dC; By
dc - 2 QMG
(i=1’.o"o,6) (3 .38)
and
dT _ Q. T __9 .
t - MC Ty T MO auwT (3.39)
where
T & (aw) s (3.40)
Bk = uy = u‘+ Skt + bkp ’ (3041)
42
8k, ~c, T, (3.42)
C
Bk =~ s (3.43)
L

u, = total reactivity, u, = control reactivity and u; = coolant flow
rate = w. Generally . <0 and c, > 0. Notice that n has been
replaced by Q (power), and C, must have units of power in (3.37).
Suppose it is desired again to startup the system, from some
initial steady-state Qy, Ty with u, = ua, to some desired terminal

steady-state Q , T, with power constrained and with coolant con-
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sumption held to a minimum such that Q < Q;. Then the cost function
for this problem is u, and (p,f) is

[ (2;5): I (;;ﬁ) + 21%21 + (pg - apgT) uw, , (3.44)
where the componénts of x are Q, C;,...,C¢, T and u,; I (X;p) is
that part of R not involving the control explicitly. Again the flow
rate u, 1is constrained by (3.3). The constraint on the neutronics
control is on total reactivity 8k rather than control reactivity. For
this reason B3k is treated as a control variable in the following
discussion. Such reactivity constraint is discussed in Chapter II
and appears as

lus | s v B. (3.45)

Then (P,£) 1s maximum for U on the constraint boundary of the allow-
able control set. That is, the optimal reactivity process is u{ = yp sgn p;

or the optimal control reactivity is

ul = vp sgn p - (8k, + Bky)

(3.46)
[Skt + Skp is computed from (3.42) and (3.43).]
and
u, for F(x,p) < 0
u® = . (3.47)
a
u, for F(;,ﬁ) >0
vhere from (3.44)
F(x;p) = po -~ apgT . (3.48)
Meanwhile the Hamiltonian is
3(x;p) = max R (x;p;u) = 0 . (3.49)
g€y



The costate is defined by the adjoint equation while the traj-

ectory is within the phase constraint boundary. When the trajectory

is on the phase constraint boundary, however, the costate is con-
siderably complicated by the presence of vector control. Such pro-
blems are discussed in Reference 8, Chapter 6 and briefly treated
in Appendix A. 1In Appendix E it is shown that the necessary costate
equations are satisfied by proper selection of p(ty).

It is not necessary, however, to solve the costate equations
along with the two-point boundary-value problem in order to arrive
at the optimal process. With reactivity coupling the heat-exchange
process to the neutron kinetics, equations (3.37) and (3.43) show
that either of the control variables could be utilized to change
power level. Since there is a constraint on total reactivity, however,
no increase in flow rate u, would permit a faster change of state
than does u; = yB for startups and u; = -yB for shutdowns. Hence, the
power is changed in minimum time if lull = yB and any increase in
flow rate u, would require the system to consume more coolant. Optimal-
ity of this process is not surprising; after the analysis of the pre-
vious problems, one would again suspect the optimal process to require
a time-optimal power change.

At the constraint surface Q(t) = @ , it is necessary to maintain
steady-state power. Theoretically, thisg requires that u = tigﬁ éi/Q
but again such open-loop control is unstable. A closed-loop dither
type of control, however, is found to do the job adequately. 1In this
case, the rod reactivity u, dithers between + vg - (Skt+8kp) and a rough
approximation to the theoretical terminal control. The optimal start-

up of such a system is given by Figure 3.2, At the desired terminal
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core temperature, coolant flow rate is increased from u

, =u = 20 1b/sec

to the required terminal value: u (tl) = Q /MCaTy; = 130 lb/sec in oxrder
to maintain i = 0 in equation (3.39). In practice it would be simpler
to increase the constraint y on reactivity (if this can be allowed)

at low temperatures and neglect the corrections due to reactivity
coupling from the heat exchanger. This is relatively safe for some
applications with weight flow rate low because the negative temperature
reactivity causes the net total reactivity to steadily decrease as temp-
erature increases. Such a gystem is really in the suboptimal category
but approximates an optimal solution. Figures 3.3 and 3.4 show such

a response with vy = 1.5 and vy = 1.6. These figures indicate that for
the model considered (see Table 1.2), it is not necessary to compensate
for the feedback reactivity as long as v is at least 1.6. If the temp-
erature reactivity were less or the propellant reactivity were more than
that used for this system, then the reactivity required to keep the
process optimal and yet so simple would be less.

The analog computer simulation ugsed to obtain these data utilized
a circuit diagram that is similar to Figure 2.10 with the addition of
a six-delay-group neutron kinetics. The heat-exchanger time constant
is varied according to equation (3.2).

For most systems the power response is so rapid that any sub-
optimal power control has little effect on the slower temperature re-
sponse. Hence, such closed-loop suboptimal systems as discussed in
Chapter 11 are adequate for most minimal coolant processes.

Notice from Figure 3.2 that temperature increases approximately
linearly for the interval (to,ty;). For small flow rate, (3.39) predicts

that T /~ Q /MC and substantiates the response shown in Figure 3.2.
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Hence, as mentioned in Section 3f1 power magnitude constraint may alsc
be interpreted roughly as a T or core thermal-sgtress constraint for
such minimal-coolant processes. This constraint may require that
T s e~ Qm/MC, where Q may be less than Q .

In addition to power constraint the coolant pumping system may
be constrained. Such constraints are treated in the following section.

3.3 Flow system constraints

The coolant may be supplied from a pressurized tank or may be
pumped from a low pressure supply tank. With regards to nuclear
rockets, the latter is more desirable due to the saving in tank
weight and the pump is driven by a gas turbine. The output flow rate

of the system is constrained by the velocity of the flow control valve

(which is very fast), mechanical stresses and certain regions of
performance on the pump map. The following discussion assumes the
first two constraints are negligible,

A hypothetical pump performance map is presented in Figure 3.5.
This is a plot of pressure rise across the pump (approximately propor-
tional to nozzle entrance pressure) vs pump flow rate. Constant
specific-speed lines are parabolic on this mapzs. Temperature lines
refer to the nozzle entrance and are approximately linear due to the
nozzle equation (1.44). The quantity, specific speed, is defined

according to

1

3, 3
N NQ=/H* , (3.49)

8

where N = pump speed (rpm), Q

]

flow rate (gpm) and H = pump pressure
head (ft.)zs.
The importance of specific-speed may best be explained by a

pump map (See Figure 3.5). Here the flow system is constrained by
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regions of stall and cavitation. Above some specific speed Nss the
pump stalls and below some specific-speed Nsc cavitation exists.
Operation in either of the regions is not tolerable for any finite
time. A typical optimal trajectory o-d-e-c in Figure 3.5, with a
bang-bang flow variation, shows a pump constraint violation. For such
a case the temperature could only be allowed to increase to Ts' At
point s mass flow rate and temperature would have to be increased so
as to maintain constant specific-speed Nss' If flow rate were increased
at some lower temperature or power, more coolant would be consumed
upon reaching the desired terminal temperature. At point e mass flow
rate could be stepped to point c.

éuppose the pressure during stall specific-speed operation is

approximated by
2
P=b ¥" (3.50)

where bs is a constant. Substitution of the nozzle equation (1.44) into

(3.50) (with T = T, ) yields

. c' T?12
w = _n ’ (3.51)
b
s
where c& is a constant, Then for T > T_, the optimal trajectory

(as discussed in section 3,2) is altered as follows. At T (ts) =T,

(where t < t < ¢
a s

) Py
b c'Te
uw == . (3.52)

Assume uy (t) remains so small that temperature increases nearly
linearly, i.e., T ~Q (t ~ ts) + Ts’ where ¢ = Q, /MC. Then it is

seen from (3.51) that

cI

n

3
v () ~ g fog (e - e) + T I? (3,53)
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for ts <t<t . At the terminal end, T = T;, and Q = Q ; then from

(3.39) with T=0 recognize that flow rate must be increased to

up (£) =§%:ﬁ : (3.54)

In summary then, the optimal-control process as defined in
Section 3.2 should be pieced together continuously with (3.50) to
(3.53) if the pump stall constraint must be considered.

It is possible to bypass some of the coolant back to the tank
and only send the minimum mass flow rate to the reactor but increased
energy is required to pump this bypass flow. 1In a bleed-cycle or
topping-cycle nuclear rocket, the turbine gets this energy from the
reactorzo. In practice such a process requires more coolant than the
previous one due to energy losses.

The arguments presented in this section are not rigorous, but
the constraint problem is so complicated (involving vector control
with a constraint explicitly including both control and phase) that
physical arguments are much simpler. Furthermore, the theoxry
developed in Reference 8 and discussed in Appendix A does not apply
to optimization problems with constraints which involve both phase
and control jointly.

Again in practice, a simple closed-loop suboptimal process would
be desirable for most applications. Such closed-loop systems for a
nuclear rocket engine are presented in Figures 3,6 and 3.7, There the
inputs are limited to meet the necessary constraints that were dis-
cussed above. Though the latter control system is simplified by the
coupling from propellant reactivity (i.e., an increase in flow rate
causes an increase in power), the more complicated system allows the

negessary constraints to be applied in a simpler manner. Notice
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that control reactivity still appears in Figure 3.7 and may be used
to bias appropriately the total reactivity.

As mentioned in Chapter 1, specific impulse (or temperature) and
thrust (or pressure) are the variables of most interest to a rocket
engine. Hence, these are the variables controlled directly in Figure
3.6. Temperature and pressure determine flow rate from the nozzle
equation (1.44). Therefore, flow rate can be held approximately con-

stant by programming pressure demand from temperature according to

the nozzle equation for constant flow rate. An alternate suboptimal
scheme could use a closed w loop. Notice from Figures 2.22 and 3.2
that the variation of the suboptimal power trajectory from that of
the minimal time case has no noticeable effect on the temperature

trajectory.




Chapter IV
CONCLUSIONS

Optimal control of nuclear-reactor processes has been analyzed and
synthesized above by means of physical considerations as well as mathe-
matical arguments. Modern techniques of optimal-control theory, along
with the state-variable approach and computer analyses, have been
applied to this problem.

Although safety limitations of many commercial reactors require
more stringent constraints than those given here, the techniques may
still be applied to the optimal-control design.

Based on the above study, the following conclusions are of partic-
ular value:

1. The time-optimal startup or shutdown of neutron density (with
steady-state conditions at the initial state and terminal state) requires
no switching in control between end points (see Section 2.1.2). The
key to this time-optimal neutronics control is the ability to maintain
essentially steady-state neutron density at the desired terminal level
while the neutron-percursor densities are not near steady state. The
theoretical terminal control, being open loop, is unstable in practice;
a closed-loop dither type of control, however, is found to be stable
(see Section 2.4). Furthermore, a continuous type of terminal feed-
back control, although suboptimal, is analyzed in Section 2.5 and
found to be satisfactory for most practical purposes. A describing-
function analysis indicates the stability limitation of such systems.
2. The minimal propellant consumption control of neutron dynamics

direct-cycle heat-exchange processes, such as that of the nuclear

119



120

rocket engine, is at least partly a bang-bang process. Though osten-

sibly a minimal propellant process, this problem leads to a minimal-
time control process, as analyzed in Chapter III.

3. Physical constraints on maximum power level, (approximately
equivalent to constraints on rate of change of core temperature or
core thermal stress) and the coolant flow system performance are dis-
cugsed above. These constraints, as analyzed in Sections 2.2.5, 3.2
and 3.3, cause the optimal control trajectories to be a connection

of those due to bang-bang and continuous types of control.

4,1 Suggestions for further work

The optimal control of more complicated reactor models should be
analyzed. 1In particular, distributed model core heat-exchange processes
with thermal-stress constraints should be studied along with optimal
reactor processes. Indeed, the optimal process is only as good as the
constraints and the model. Vibrations (such as those experienced in
nuclear rocket reactor cores) may require consideration of constraints
thus far ignored. Furthermore, the stability of these optimally
controlled systems could be analyzed by such techniques as Liapunov's
direct method. The effects of reactor noise should also be studied.

Bilinear systems (i.e., systems for which the state X and control
: appear linearly but for which products of these linear terms may
exist) in general seem to be a fruitful area for future research.

The neutron kinetic equations, (1.30) and (1.31), describe a particular
bilinear system. Since (with reference to the maximum principle) the
bang-bang process is a candidate for the optimal control for a broad
class of problems it would be worthwhile to compute the maximum number

of possible switchings. It is apparent that there can be more switchings
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than the maximum for the system jointly linear in the state and the
control. Sufficiency of the maximum principle should be rigorously
proved for at least a sub-class of optimization problems relative to

the bilinear system.



APPENDIX A

OPTIMAL PROCESSES WITH CONSTRAINED STATE VARIABLES

For many problems, not only the region of admissible control,
but also the region of allowed phase values, must be restricted. In
these cases, the optimization problem consists of selecting an
allowable control whose phase trajectory X lies in a given fixed
region B of the n-dimensional phase space. ; also satisfies the equa-
tions of state (along with necessary end conditions) and minimizes
a performance index J (see equations 1.1 and 1.5).

The object of this formal presentation is to summarize the
necessary conditions which are used in this thesis. The reader is
referred to Chapter 6 of Reference 8 for detailed theorems and the
necessary assumptions.

In addition to the restrictions placed on the allowable control
region U in Section 1.2, assume that :(t) is composed of piecewise smooth
components and furthermore, that the admissible control set satisfies
certain "regularity" conditions in a neighborhood of its boundary points.
These regularity conditions are defined below.

Let u, be an arbitrary boundary point of U which belongs to U and let
ql(z)(ixl,...,s) be continuocusly differentiable scalar functions such
that U is given by ql(;;) = 0 (i=1,...,8) in the neighborhood of u; .
Furthermore, the vectors aql/aﬁ (i=1,...,8) are linearly independent.

Let the closed region B (in the n-dimensional phase space) be

smooth and defined by

s(X) < 0.
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S(;), also, must have continuous second partial derivatives near the
boundary S(x) = O and the vector as(Q)/aQ must not vanish on the
boundary.

As in Chapter I, the system is made to have order n + 1 by letting
;n+1 = fn+1 (;;K) = C(;;H)_ with xh+1(t°1 = 0 and xh+1(t1) = i. The
optimal trajectory must connect ;(to) = [g(t°)] with x(t;) =[::(tlzt )]

ntl' !
so that xn+1(t1) takes on the minimum possible value.

Every function which depends on ; can be considered to be a
function of x;e.g., S(;) = S(x). Hence, let the closed region G in the
(n+1)~dimensional phase space be defined by S(x) < O.

For S(x) negative, i.e., optimal motions not on the phase con-
straint boundary, the previous éonditions stated by the maximum principle

are valid. Necessary conditions Hr solutions to be optimal on the

phase-constraint boundary,

S(x) = S(x) = 0, (a.1)

m

s(x(t)]
are discussed below.

(k)

Equation (A.1l) requires that all the time derivatives S must

vanish. Assume that the required :(t) may be computed from S = 0, where
s a - [as@]T Lo
S(x3u) = 77— S(x) = f(x;u) = 0. (A.2)

Also, assume that the phase trajectory x is "regular" with re-
-— - -
spect to u3. That is, for each x on the trajectory x is regular, where

regular means the following conditions are satisfied:
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(1) é(;;;;l) = é(;c;;fl) =0 ,

(2) .a_s.ag%ml_l;go

and

( BGsw) | 2 g g

dd ad

arce linearly independent. If U [as determined by (A.2)) is an interior
point, condition (3) doesn't appear. Let w(x) designate the set of all
adéissible controls for which x is regular. If u, is an interior
point, w(x) is a point.

With these assumptions, the maximum principle may be extended as
follows (see pages 267 and 268 of Reference 8). If x(t) 1is an opti-
mal trajectory of X = f(;; 3) for corresponding ;(t) and x is located
entirely on the toundary of G, then a continuocus ﬁ(t) and a piecewise

smooth p(t) exist such that

dp ’ (A.3)
DL RGED , , G (40
X ox
and - _
Hx(t);p(t)] = max R[x(t);p(t);ult)] = 0,
d€w (%) (A.5)

where as before R(x; P W) = [;, F(x;w]. p(t) is determined from

(A.5) as a Lagrange multiplier for aé(i;K)/aK in

M(Epim) . a8Guw) . & . 2%
A R L M R (4.6)
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Also, pn+1(t) is a nonpositive constant; B(ta+) is a nonzero vector and
is not collinear with as(i)/ai and 5(t) is nonpositive. ta+ is the
time at which the trajectory i(t) initially is on a phase-constraint
boundary.

We now have necessary conditions for optimal trajectories on
phase-space constraint houndaries. For interior points the maximum
principle as presented previously yields the appropriaﬁe necessary
conditions. Next consider the necessary conditions such optimal
trajectories must have at their junction points (i.e., points where
phase trajectories meet phase-constraint boundaries). Consider a junction
time L such that the trajectory is on a phase-constraint boundary for

t > ta and is not on a phase-constraint boundary for t < ty- Then either

P(t,-) = p(e+) + uég—-f-‘l (A.7)

or

B(ta") 'WM'—'O’ p‘#o’

3% (A.8)
where | is some real number (of opposite sign to that of Reference 8).
Hence, p(t) may be discontinuous at the junction time.

In References 8 and 15, it is noted that an arbitrary jump [pro-
portional to 3S(x)/dx] can be added to P during (ta,tb). This arbi-
trary jump can be utilized (as is done in Reference 15) so that if the

phase leaves the phase-constraint boundary at t = t., then p(t) can be

b’

assumed continuous at t = tb. The necessary costate conditions at ta
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and t, could be interchanged but following the convention of Reference 15,

b
assume this arbitrary jump is utilized to make p(t) continuous at the
exit corner, t = tb.

Hence,

p(e,*) = plry-). (A.9)

It is shown in Reference 15, also, that R(Q;i;ﬁ) is continuous
at both entrance corners and exit corners.

Time-optimal neutronic processes with phase-constraint and scalar
control are discussed in Chapter II. For these processes u is an

interior point of the allowable controls. Hence, from (A.6)

o = 3R (x; 5 ;u) [aégi;ug]'l
B du du '

(A.10)
Substitution of (A.10) into (A.4) shows that the optimal trajectories

on the phase-constraint boundary must satisfy

ou

S aﬁggizsu) . MGpiu) [asgi;u{]‘l[aé x;u ] . (A.11)
X du ¢ dX )

Since R = fTﬁ ,

-

P - (A.12)

; - - a%g?;uz - a%gz;ug [aégi;uz]‘l [aégi;uz]'r T
53 du du X

Thus, for such problems equations (A.4) and (A.6) combine and simplify

to yield (A.12).




Appendix B

SOLUTION TO THE SINGLE-PRECURSOR NEUTRON KINETICS
AND THE NEUTRONIC ADJOINT SYSTEM FOR
CONSTANT REACTIVITY
The solution to the neutronic system (2.28) for u = + yB may be

obtained by conventional means (e.g., see Chapter II of Reference 26 ).

Thig system may be written in vector form as

®iv

> B.1)

%l

= A

where x; = n, Xx; = C and A is a constant matrix defined by:

u-g
A= é A » for u(t) constant (B.2)
4 =)\

The solution to this autonomous system (B.l) for u(t) constant is

x = ehtt) T (s .3)

A(t-t5)

where %, = x (tg) . The transition matrix e is the solution

to the matrix equation
X=AX , (B .4)
with X(ty) = I, the identity matrix.

Elements of the exponential transition matrix for the neutronic

system are as follows:

py (t-ty) Py (t-tg)
c,.e + cz e

A(t-to) _
€ - Ti4 i ’ (B'S)

where the ij subscript refers to the i, jth element of the matrix and
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]

pa-l—%(l;'y)

[¢]
()
-

n

hednrfaiy]

ciz =2 A= -c ia
(B.6)
1 = % = ~ ¢z
Gz = N+ P,
c§2 = - (A +p,) .
Here the oxder of signs is read according to u = + +B.
P, and p, are computed by (2.34) or approximated by (2.35).
Hence the solution may te written as follows:
. t- . t-
o =(Hano * cHaG)e® TNy (o ngue, goyef (750
pg - P
and (B.7)
t- -
¢ = (Bimo + 2aG) P1{E )y (20 4+ 2 g, )ef2 (B t0)
Py = Py

1f (.: is initially zero then % n, = \C, [see (B.1) and (B.2)] and the

solution (B.7) may be written as:

(py + vB/l)neepi(t " ) | (py + YB/J%)noepa(t " o)
n=
P2 =~ Py
and (B.8)
. pgcoep"(t - to) _ p;%epe(t - to)

Po =~ Py
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The solution to the adjoint system'; = -AT;.is (see p. 27 of Reference 28.)

T Altmt) 5.9

- -
where pg = p (ty). Hence, the adjoint solution is given by (B.9) where

the exponential matrix is defined by (B.5) and (B.6) but the argument

(t-ty) is reversed in sign. In other words, the adjoint solution is

similar to the solution of the original system with time reversed.



Appendix ¢

PHASE~PLANE EIGENVECTORS

S -
Consider the system x = A x, For this system to have a nontrivial

solution of the form ;(t) = CePt

it is necessary and sufficient that p
be a root of the characteristic equation:
|a - pI| =0 . (c.1)
ruppose the system is of order n and there are n real and distinct

characteristic roots or eigenvalues. Then there are n principal direc-

29
tions or eigenvectors along which

= px . (c.2)

These eigenvectors ;1 must satisfy the following relation:
(4 - p,1] X0 , (C.3)
where 1 = 1,...,n.

Consider the second-order system with Aij components of the A matrix

and with real and distinct eigenvalues p, and p,. The eigenvectors must

satisfy
i
M1 - Py Ay X
i =0 (€.4)
A2y Az - Py X2
or
i i
(A1 = P)) Xy + By =0
(C.5)
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Hence, the tangents of the eigenvectors are

i

s -A "%}
x_"’i- Pihay | (C.6)
Xy

Ao pi~A22

where i =1, 2 .



Appendix D

COMPUTATICN OF PHASE-PLANE TRAJECTORIES
Computation of phase-plane trajectories for constant reactivity
may be made as follows. The analysis is valid for x, = n or x = C.

The form of solution with t5 = O is

= Prit Pait

and _ (p.1)

= Prit
X T Mi% ;e

1

Pzit
t PeicCaje ,

X2

where i = 1 for u = y8 and 1 = 2 for u = -yB.

s t
Then 921 X3 -~ X5 = C§ (p2i - pli) epll
or
log (PziXy - X3) = log ¢yj + log (a3 ~ P1i) * P1it . (D.2)
Similarly

i

log (0y4%) =~ X3) = log (~cgj) + log (P =~ P1y) + Pajt (D.3)

Eliminate t from (D.2) and (D.3):
o » - - - Py * ~
tog [(91 17,100 (b g3 me) P21] = tog [y )P ey PRt (g gy yPa1 P 1]

Let x;3 (0) = %4 and x5 (0) = x50, then

PziXi0 - X35
Cii =

Pzi ~ P1i (0.4
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and
PyiX10 -
Cai_ = 11 10 20 (D.5)
Pri =~ Pri
Hence,
-..p -p 'Y
PaiXy = X5 21 Prixy = X5 11
— = . (n.6)
PaiXi0 X0 PriXie - X30

Furthermore, t = to = O can apply to any given point for this piecewise

autonomous system,
Then compute the trajectories for the phase plane n vs C by substi-

tuting the C = x, equation (2.28) into (D.6) with x; = C.

<

Hence,

B “Pai B “014
(P2 i+A) c-7n (py i+)\)C~Z-n
= , (D.7)

(pg i"')\)co"% 0o (P i+)\)C°-%n°

where n(0) = ng and C(0) = Cy but t = tg = 0 can apply to any given
point. If ns, Cy is a given point on the trajectory, then all n and C

on this trajectory must satisfy (D.7).




Appendix E

NEUTRONICS HEAT-EXCHANGE SWITCHING PROBLEM FOR OPTIMAL STARTUP WITH Q S

It is seen from equation (3.44) that

R 1) + B + (ps - apsTu; . (E.1)

Hence, the optimal control is described by

ur = 5k° = yB sgn p (E.2)
and
u for F <O
up® = a (E.3)
ub for F > 0 ,
where
F = Ps - ang . (an)

The costate is defined by the adjoint system for an interval of no phase

constraint (i.e., t < ta)’

F.’1 ’%P-LPI N 1;;:1 %Piﬂ "% ’
Py = Ay, (Pyp)
(3 = 2,...,7),
ﬁs = 8y, Ps : (E.5)
and
pg = O.

Also, py is non-positive .

Equation (E.5) shows that F as given by (E.4) cannot change sign
if pg(ty;) is non-negative since aT is positive. Algo the behavior of
p. 1s only changed slightly (from that of Chapter II) by the addition

of a particular solution of slow transient due to pg(t), if ps(to) is

134
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selected small enough. Hence, one wou}d expect that ;(tg) may again be
chosen so that p, (t) does not change sign.

It is shown below in (E.1l4) that pj(ta) =0 for j = 2,..., 7. This
is also the terminal condition that yields no zeros for p; (t) in
Chapter II (see Figure 2.12).

While Q(t) = Q;, it is seen from (A.4) that with ta <t<t,

s _ R, 38
P=-3% " P3> (E.6)
(“175)/L
where S = Q -~ Q. Since 3§/d3%k = M ,
. 1
Ae
0
. Bw e By P, (w-p)
P = J) P i§l y) Pi+1 MC + P p>
Pj = kj'i (Pj‘Pl) + XJ-IP , (E.7)
(j = 2,. ’ 7)
ﬁe = au;pg
and
po = O .

6 . .
As hypothesized in Chapter III, let u = £ i;& Ci/Q1 and u o =w=u

for the interval (ta,tb). Then from (A.6)

AR

i (E.8)

1
pel
2l
+
<
I

Qv

where
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Substituting (E.1) into (E.8) one obtains:

p‘TQ =%9. (E.9)
and

F = (pg - apgT) = ~ v
Hence, from (E.9)

b = py (E.10)

and from (E.7)

Pg = Pga SXP [a J;t up (9) d"] ’

a

where Pag = Pe(ta+) is the value of pg at the point where the trajectory

enters the phase constraint boundary. Therefore,

F = p, - apg, T(t) exp [a J;t u, (¢) dc] - (E.11)
a

Then since T and u, are positive, the switching function, (E,11),
cannot change sign if pg, is non-negative.

The other switching function p; is described by

. e B, P
P = "1£; T pi"',l = MC 3 (E.IZ)
where
Py = Ay1 Py,
(3=2,.0., 7
or

. S M (t-tg) P t
p = ~i§1.7f Pi*i(ta)e 1 (t-tg) | i%! exp [%J; u, (o) dc]. (E.13)

a
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Since the terminal manifold is defined by T(t;) = T; and Q(ty) = Q,

py(t,) = 0 (for j = 2,...,7). Then

pj(t) =0 (E.1l4)
and
1 = " ¥
or
1 ot
= - .1
PRy [ Pe (@) 4o, (E.15)
a

where tg<t s t, and Pig ™ pl(taf). Substituting (E.10) into (E.1l5),

P
P1 = Py ~‘§%§ J‘t exp [% J‘c u, () d{} do. (E.16)
a

t ty

from (A.7),

(t,-)

I
o
G
”~~
ml"f
+
~

pj (E.17)

and

Pl(t.") ='p1(t.+) + e,

where, since there is no constraint exit corner, Wi may be set to zero.

Hence, by selecting Pa large cbmpared to pea or p

Lo large compared to

Pec, Py (t) remains positive. Purthermore, p(t) = p, (t) is non-positive
for t <t < t and i(ta) 1s not collinear with 3S(x)/dx (as required).
In summary then the costate system of equations is satisfied by
the optimal startup control if: 1) pg(ty) is a small noﬂ-negative
numbex; 2) ps 1is a negative constant; 3) p;(ty) is selected positive

and considerably larger than pg(t,) so that p, (t) doesn't change sign;



4) Pj(t1) =0, j=2,...,7; and 5) the actual initial values of py, pg,
and p; should be selected so that 3 = 0,

The actual solution of the costate equation should again progress
from the terminal end. By selecting the above conditions (1), (3) and
(5)Talong with (4) at the terminal end], the costate equations can be

solved and there are no switchings in control between end points.

An example startup trajectory with steady-state power and tem-
perature at the end points is presented in Table E.l. Recognize that
the switching functions g(t) and F(t) = pg -~ a T pg are positive and
negative respectively, between end points and hence the hypothesized
constant control satisfies the maximum principle. These data were

obtained from an IBM 7090 computer.
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Table E.1 Optimal reactor startup trajectory with Q(t) = Q

Input Data:

u;

1

0, t < 0.1 sec = tp

u = 0.9P; t20.1, p, >0 and Q< Q = 2.142(10)® Btu/sec

uy =£i£ ci/Q"Q’Ql
u =2 lb/sec, T< Ty and F < 0

1

&
1

Qy/MCaT,, T =Ty = 4501.1° R

&
1

1

=0,to<t<t

a = 1.153(10) "%, T(0)

n
n

500° R, Q(0) = 1(0) = 0 = 61(0) (1=1,..., 6).

t(t,) = Q(ti) = 0, other data given by Table 1.2

Time Power Temperature py (t g (t)
sec 10~* Btu/sec 1072 °Rr 10° sec® /Btu 102 sec/°R
0 1.3144 5.0000
to = 0.1 1.3144 5.0000 11.946 7.2139
0.2 13.253 5.0651 9.2838 7.2306
0.4 24,889 5.3720 5.6093 7.2640
0.6 42.642 5.9257 3.3932 7.2976
0.8 71.793 6.8790 2.0589 7.3313
1.0 119.91 8.4903 1.2663 7.3652
t,=1.24 214,20 11.911 5.0718 7.4101
1.4 214,20 14,868 4.,9676 7.4375
1.6 214,20 18.549 4.8368 7.4718
1.8 214.20 22.213 4,7054 7.5064
2.0 214,20 25.860 4.5734 7.5411
2.2 214,20 29.490 4,4408 7.5759
2.4 214.20 33.104 4,3076 7.6110
2.6 214.20 . 36.701 4.1737 7.6461
2.8 214,20 40,281 44,0393 7.6815
ty = 3.08 214,20 45.011 3.8500 7.7751
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