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ABSTRACT

Methods of preparing discrete ordinates quadrature coefficients are
described. Quadrature sets which satisfy complete symmetry conditions
and various moment conditiohs are derived and tebuleted, and critical
thicknesses of one-~dimensional slabs, spheres and cylinders are calcu-
lated with these sets. Prescriptions for relaxing symmetry conditions
and point location requirements are discussed, and orthogonal (Legendre-
Tschebyschev) quadrature coefficients applicable in one-dimensional cy=
lindrical or two-dimensionsl rectangular geometry are tabulated. Re=
cipes are described for preparing biased direction sets, and a method
of basing the bias upon material composition is outlined.

Preliminary computationsl results indicate that double Legendre and
half-range moment satisfying quadrature sets are most accurate in onee
dimensional plane geometry, while even-moment satisfying completely syme
metric sets are recommended for other geometries. At the present state
of the art of discrete ordinates computations, results indicate that
boundary condition treatment and, in curved geometries, the handling of
the ray=to=ray transfer (streaming) terms can affect accuracy as much as
further refinement of angular quadrature. Since computational results
may depend upon sll three of these quantities, further work is needed

before an optimumm quadrature method can be selected.
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INTRODUCTION

The evolution of the selection of numerical quadrature sets for the
numerical integration of the Boltzmann transport equation has been

guided by two main principles:

1. Physical symetry

2. The arrangement of discrete directions on latitudes on

the unit sphere.

Selection of quadrature sets that satisfy the first principle guarantees
that solutions will be independent of geometrical orientations. The
first Sn quadrature set, which represented the angular varisble, p, by
connected line segments, was equivelent to mechanical quadrature with
abscissae, My located asymmetrically, with respect to p = O, on the
interval [-1,1] (see the Appendix). Although quite accurate in appli-
cetions in homogeneous media, (1) this set did not give consistent re-
sults when, say, slabs of verying composition were geometrically in-
verted. Quadrature sets that are selected according to the second prin-
ciple have the distinct adventage of pexrmitting a double angulaxr quad-
rature to be accomplished as a single direct sum. This report explores
methods of selecting quadrature sets that satisfy symmetry conditions
and also examines the relaxations of symmetry that are possible when

geometric dimensionality permits.



COMPLETELY SYMMETRIC QUADRATURE SETS

Coordinate systems for rectangular, cylindrical, and spherical. syme
metries are shown in Figure 1. In each case the direction variable 5’
is defined with respect to an orthégona.l rectangular coordinste frame
(,M, &) which is locally aligned with respect to the unit vectors of the
geometrical coordinate system. The possible orientations of the angular
direction vector Q define a unit sphere in (u,n, &) space. Complete syme
metry requires that the (u,7n,&) coordinates of points on the unit sphere
chosen to represent 5’ be invariant under all 90-degree rotations about
the u, 1, or & axis. Hence, each set of coordinates must be symmetric
with respect to the origin, and, further, the set of points on each axis
mst be the same. Thus, a description of one octant suffices to describe
the arrangement of points on the unit sphere. For n points on each axis,
[-1,1], there are n(n + 2)/8 points per octant on the unit sphere,
n=2U4.... Figure 2 shows the arrangement for n = 6. Because these

points lie on the unit sphere
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Fig. 1. Coordinate systems for rectangular, cylindrical, and spherical
geometries.
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Completely symmetric point arrangement, n = 6.
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oy since the coordinates are from the same set,

2 2
Ky + 2“1 =

!
(=]

(2)

]
(]

2 2
2y + 1y

Because of the complete symmetry the indices, i, J, k, of the coordinates

of a point on the sphere sum to n/2 + 2. That is, in general,
2 2 2 _
R “n/2+2-i-j = 1.0 (3)
vhere i =1,2,..., n/2; j=121,2,...,nf2«1+1
The relation (3) is solved by (2,3)
2 st -1)a i=12...n/2 (4)
By By 9 Cy
where

a=2(L=3u°)/(a - 2) (5)

Hence the requirement of complete symmetry fixes all Ry except My and
the freedom of Guassian quadrature is not present. In addition, ro=-
tational invariance dictates that weights for points on the unit sphere
be chosen in a symmetric fashion. D;Lagra.ms showing points of equal
weight are displayed in Figure 3. For a given latitude on the unit

spherg, the sum of the point weights, Py» defines a level weight, wJ..



4 x V=2
11 Vp = Py
1 W =2+ P
6 2 2 Wy = 2p,
L 2 1 Vim By
. ¥y = 2 + 20
8 2 2 V2=2p2+ P3
2 3 2 w3=2p2
L 2 2 1 W, = Py
x Wy = 2py + 2y + Pg
10 2 2 Wp = %pp + 2p),
3 % 3 W, = 2p, + P
3 3 4
2 4 4 2 W, = 2p,
L 2 3 2 1 Vo= By
L wl-2pl+2p2+2p3
1 2 2 Vp = 2P + 29, + By
3 b3 ¥3 7 2p3 + 2oy
3 5 5 3 Wy =23+ By
2 5 4 2 w5=2p2
L2 3 3 2 1 vg= By
1k L wl=2pl+2p2+2p3+ph
2 2 Wy = 2pp + 205 + 20g
3 5 3 v3=2p3+2p6+ Pq
y 6 6 L4 Vh=2ph+2p6
3 6 7T 6 3 w5=2p3+ P5
2 5 6 6 5 2 W = 2p, and Py + 2pg = Py + Pg + Py
1L 2 3 4 3 2 1 Wp = Py
16 1 "1=21’1+292+2p3+2p’+
2 2 w2=2p2+2p5+ p7
3 5 3 wy = 2py + 2pg + 2pg
4 6 6 L Vh=2ph+2p7+ pa
» 7 8 T 4 s = 2py + 2pg
3 6 8 8 6 3 w6=2p3+ p5
2 5 6 7 6 5 2 vy = 2py
1 2 3 % & 3 2 1 vg= Py
and

P+ Pg +Pg =Py +Pg+ Py

Fig. 3. Points of equal weight as & function of n. The equations are
the relations between the point weights, Py» and the level weights w 3
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These relations are also given in Figure 3, and the level weights are
the weights corresponding to & one~dimensionsl. angular quadrature. For
2<n<1: there are n/2 - 1 different point weights. For n > 1k the
number of different point weights increases rapidly. To fix the nunber
of different point weights at n/2 = 1, it is assumed that point weights
are chosen as a sum of a fundamental set of "axis" weights (a.i, a.j,a.k)
with 1 + J + k = n/2 + 2. Then, enough additional relations among the
p; are provided to maintain n/2 - 1 different point weights. TFor ex-
ample, the relation Py + Pg+ Pg = Py + Py + Py (n = 14) is established

by noting that the point weights may be represented as

p3=a5+a3+81 Py = 8, + 8 + 8
Pg = 83 + & + 8 P = ag + 8y + 8
Pg = &) + 8y + &g Py = 85 + 83 + 35

SUM=a.._‘_+2<'=|.2+3a.3+2a.h+a.5
Therefore, with complete symmetry, there are n/2 quantities, the n/2 - 1
;pJ. and s vhich can be selected, as opposed to n quantities in a Gaussian
quadrature. However, it is not difficult to shcw(u) that 1if

n(n+2)/8 n/2

)X

I .j>=:1 vyt (6)




LY

that is, if the area of the octant is measured in units of n/2, then

P
jz=:l Viky =3 (7)

so that one moment condition is satisfied by any completely symmetric
set. Hence, one can choose by and the Wj to satisfy the n/2 + 1 even=

moment conditions

1 21 1 n/2
podp ei.  _ 1 _ 21
{1 2 {) WU = T jfp WiHy (8)

for 1 = 0,1,...,0/2. Completely symmetric quadrature sets (which auto-
metically satisfy the odd moments over the entire range of p because of
symmetry) obtained by satisfying (8) are given in Table I. However, for
n > 22,such sets lead to negative w 3 which are undesirable because of
numerical truncetion errors.

As an alternstive to matching even moments, all half-range moments

1 n/2
1. 1 1

i=0,1,...,n/2, can be matched, but this procedure leads to negative
weights for n > 12. Table II displays sets obtained by satisfying equa=
tion (9).

A method of moment matching which does not lead to negative weights
is obtained by matching half-range level moments. Instead of satisfying
successively higher moments by choice by level weight, sequences of lower

order moments are matched by choosing point weights. For example, in




TABLE I

Completely Symmetric Quadrature Sets Satisfying
Even Moment Conditions. &

2
Hy Hy Yy Py
n=h 1 0.3500212 0.1225148 0.3333333 0.3333333
2 0.8688903 0. 7549704 0. 1666667
n=6 1 0.2666355 0.0710945 0.2547297 0.1761263
2 0.6815076 0. h6hh527 0.1572071 0.1572071
3 0.9261808 0.8578110 0.0880631
n=8 1 0.2182179 0.0476191 0.2117283 0.1209877
2 0.5773503 0.3333333 0.1370370 0.0907407
3 0. 7867958 0.6190476 0.0907h07 0.0925926
4 0.9511897 0.9047619 0.0604938
D= 12 1 0.1672126  0.027960L  0.1639814  0.0707626
2 0. 4595476 0.2111840 0.1190886 0.0558811
3 0.6280191 0.3944080 0.0631890 0.0373377
4 0. 7600210 0.5776319 0.0624786 0.0502819
5 0.8722706 0. 7608559 0.0558811 0.0258513
6 0.9716377 0.9440799 0.0353813
n = 16 1 0.1389568 0.0193090 0.1371702 0.0489872
2 0.3922893 0.1538909 0.1090850 0.0413296
3 0.5370966 0.2884727 0.0Uk2097 0.0212326
4 0.6504264 0. 4230545 0.0643 754 0.0256207
5 0. 7467506 0.5576364 0.0400796 0.0360486
6 0.8319966 0.6922183 0.0392569 0.0144589
7 0.9092855 0.8268001 0.0413296 0.0344958
8 0.9805009 0.9613820 0.0244936 0.0085179
n = 20 1 0.1206033 0.0145452 0.1195893
2 0.3475743 0.1208079 0.1026829
3 0.4765193 0.2270706 0.0282212
L 0.5T773503 0.3333333 0.0739389
5 0.663020L4 0. 4395960 0.0181985
6 0.7388226 0.5458588 0.0471265
7 0.8075404 0.6521215 0.0313726
8 0.8708526 0.75838L42 0.0270754
9 0.9298639 0.8646469 0.0332842
10 0.9853475 0.9709096 0.0185105

a’The welghts given sum to 0.5.

The point weights are those of Fig. 3.
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TABLE II

Completely Symmetric Quadrature Sets Satisfying
0dd Moment Condi'bions.a'

2

Hy Hy Y3 Py

n = h < renmm— N —_—_— — —
0.2958759 0.0875425 0.3333333 0.3333333
0.9082483 0.8249149 0.1666667

n=6 0.1838670 0.033807L 0.2178992 0.1024651
0.6950514 0. 14830964 0.2308682 0.2308682
0.9656013 0.9323858 0.0512325

n=28 0. 1422555 0.0202366 0.1721829 0.1090122
0.5773503 0.3333333 0.2101402 0.0631708
0.8040087 0. 6464300 0.0631708 0.2939388
0.9795543 0.9595267 0.0545061

n = 12 0.0935899 0.0087591 0.1168911
0.4511138 0.2035036 0.2531215
0.6310691 0.3982482 «0.1410287
0. 7700602 0.5929927 0.2658355
0.8875457 0.7877373 -0.0388597
0.9912022 0.9824819 0.0440403

&The weights given sum to 0.5.

«llw

The point welghts are those of Fig. 3.



Figure 2, the normalized integral of n on the unit sphere along the

latitude of p, is o1 - p.12 x. Defining this quantity as
o1 - u1§ x = Zp.u,/Tp, (10)

where the point weights are those belonging to the Hyo gives a sequence
of low=order moment conditions, one for each p level. ' These moment equa=

tions for Figure 2 are then
[1..2
Pyiy + Doy + Pyug = (P + Dy + 1)V 1 = 1y 7/m
N
Ppity + Polty = (D, + D)L = (1)
2pl~/l - u32 s

Py

For general even n, the relations analogous to (11) give n/ 2 relations

for the n/2 quantities p; and . However, the last two relations

By + By = afl - “i/a-l 7 (12a)
b = all - “i/ x (12v)

cannot both be satisfied. To obtain a consistent set of equations, Eq.
(12b), representing the smallest latitudinal area, is deleted and, in=-
stead, (6) is satisfied so that (7) is also satisfied. Thus the zeroth,
second, and a sequence of first-order moments are matched. Then (12a)

with (4) serves to define By

~15-




_ (n=-2)1-N1l=a)=(n=-5)

(13)
(n -5 = (n=2)a -~ 8)

and hence all My Above, o = [(u/n)Q - 1]2

. The remaining n/2-lpj
are found from equations analogous to (11). sSets obtained in this man-
ner are displayed in Table III. Weights obtained in this manner are

apparently always positive.

BIASED SYMMETRIC QUADRATURE SETS

Complete symmetry is required only in three-dimensional geometries.
In lower dimensional geometries a relaxation of symmetry requirements
allows additional degrees of freedom. A simple such relaxation is to
keep the point and level arrangement of complete symmetry while allowing
the points on each axis to be chosen from an independent set. In this

case the requirement that points be on the unit sphere

2 2 2
Ry +'r1'j + gk = 1.0 (14)

is solwved by

um2 = ”12 + (m - 1)A

nm2 = n12 + (m = 1)a

§m2 ) 512 . (m=1)a (15)
A= 2(1 - P-l2 - ﬂ12 = §12)/(n - 2)

whem m = 1’2’ ooo’n/ao




n=1.
n=6
n=28
n=12
n=16

TABLE IIT

Completely Symmetric Quadrature Sets Satisfying

Ievel Moment Conditions. a

Hy

0.3120418

0.8971121

0.2390944
0.6865981
0.9410992

0.2010510
0.5773503
0. 7913565
0.9587268

0.1596536
0. 4584710
0.6284124
0.7613203
0.8742511
0.974L773

0.1364305
0.3917822
0. 5370040
0.6505792
0. 7470832
0.8324742
0.9098865
0.9812102

2
By

0.0975949
0.8048102

0.05T1661
0. 4714169
0.885668

0.04ok215
0.3333333
0.6262452

0.9191570

0.0254893
0.2101957
0.3949021
0.5796086
0. 7643150
0.9490214

0.0186133
0.1534933
0.2883733
0.4232533
0.5581334
0.6930134
0.827893L4
0.9627734

Yy

0.3333333
0.1666667

.1501748
.0915792

.2174330
.1283389
. 0910220
.0632048

oo NoNe [oNeoNeo]

.1726823
.1022793
.0738241
.0605145
.0516366
.0390632

ol eoNoNoNoNe

0.1475402
0.0874396
0.0631648
0.0519818
0.0451381
0.0402906
0.0361672
0.0282776

2582459

Ps

0.3333333

0.1831585
0.1501748

. 1264098
.0910232
.07h6315

[oNeoNeo]

.0781264
.0516366
.0429194
.0351903
0309047

leNoNoNoNe/

0.0565552
0.0361572
0.0285758
0.0262421
0

8
The weights given sum to 0.5. The point weights are those of Fig. 3.
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If complete symmetry is required, ule = 'q12 = gle, and equation (4) is

obtained. Requiring rotationsl symmetry about the & axis means that

By = nl but §12 is a free parameter, say §12 = bule. Then

p.m2 = u12 + (m=-1)a
g% = b+ (m = 1)a (16)

a=2[1-(2+ b)ulal/(n - 2)

Point weight diagrams for this case are given in Figure 4. Here, two
different sets of level weights are defined by the point weights, one
set corresponding to p or n levels and one set corresponding to & levels.
Again it 1s assumed that point weights are formed as a sum of basis

weights (a;, a,, by ) to maintain 2(% - 1) different point weights.

J
There are now more conditions which can be satisfied and more ways in
vhich they can be satisfied. Half-range moments similar to (9) could
be matched along the ¢ axis and whole-range conditions matched along the
p (and hence n) axis. Half.range, low-order moments could be satisfied
in the two different directions. For example, for n = 6 the low-order

moment conditions axe

(p, + 2, + p3)2~/l - ulz = Pyl + Pokp + Pahig (172)
(v, + 1)1 = uaiE T = Doty + Dby (170)
1 a1 - u32/1r = Pghy (17¢)

«18-



Fig. L.

4 1 wl=pl+p2

2 2 Wy = Pp up = 2P
6 1 V1=Pl+P2+P3
2 2 Vy =Py + D)
3 3 V3 = P U3 = @3ty
8 1 W1=P1+P2+P3+P5
2 2 Wo = Py + D) + Py
3 0403 V3 = Py + B
5 6 6 5 wh=p5 uh=2.95+2p6
10 1 W1=Pl+P2+P3+P5+P7
2 2 Wo =Py + P +Pg+ Pg
3 ¥ 03 W37 P3+Pg+ Py
5 6 6 5 ¥, = P + Pg
T 8 9 8 T W5=p7 u5=2p7+298+p9

P3 + Pg+ Pg =Py + Pg + Py

12 1 wl=pl+p2+p3+p5+p7+pm
2 2 Wy =Py + D) + Pg+ Pg+ Py
3 % 3 W3 =Py +DPg + Py + Pp
5 6 6 5 Wy = Py +Pg+ Py
7T 8 9 8 1 W5 = Pg + Py
10 11 12 12 11 10 Vg = Py ug = 2(pyy + Pyp + Pyp)
end

Py +Pg+ Pg =Dy + P + Py
P + Pg + Py = Pg + Py + Ppp

1k 1 W1 =Py ¥ Pyt Pyt Py Pyt Pyt Pog
2 2 V2 TPt Py tPgtPgt Py Py
3 % 3 W3 = Py + Pg+ Py + Py + Pig
5 6 6 5 Wy = Pg + Pg + Ppp + Pig
7 8 9 8 1 W5 = Dg + Py + Py
10 11 12 12 11 10 Wg = Py + Dy
13 1 15 16 15 113 w=pyg uz = 2(py3 + Py, + Pyg) + g
and

By +PBg +Pg =P, +P5 +Pg
p5+p9 +Pu=P6+P7 +pl2
Pp ¥ P1p ¥ Py = Pg *+ Pip * Py
Pg + P1p * P15 = Pg + Py + Pig

Point weight dlagrams for half-symmetry. The level weights w

apply to the p or n levels, and the level weights u, correspond to ¢

levels.

Only the different u level weights are showl for each n.
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(2pg + 2 )21 - g, °/x = Pghy + Dk, + Pohig (18a)
2

2P2 all - §2 /Ir = pap'l + p2u2 (18b)

p, A1 - 532/1r = Py (18c)

Keeping b as a free parameter gives five (n - 1) quantities, p, and

P P Pyr By to be determined. Deleting (17c) and (18c) and satisfying
the condition ¥p, = 1 gives five (n - 1) equations. &y (J-bul) is then
determined by (18b) and the remaining equations are linear in the P

An alternative is to define accumlated weights

J
W, = X w
Jooga
(19)
J
= X
it oW
so that Wj+l - W'j = W,j+l and Uj+l - U'j = uj+l and assume that the W'j
and U'j are separated by the same delta as the “,j and §j:
Wy =Wy + (i - 1)A
U = Uy + (2= 1) (20)

a=2[1-(2+ b)ulal/(n - 2)

Then the three independent quantities Hqs Wl, and Ul can be fixed by

matching the normeligation. condition

n/2 n/2
5w, = % u =1 o1
4=1 + g1 1 - (21)



and the two secondsmoment conditions

n/2 nf2

2
Z owp = I ope =1/3 (22)
1=1 i"i {=1 i°1

for a given b. A consequence of equation (22) (but independent of the
assumption (20)) is the simpler relation
n/e=-1
S W, +U,=n-2 (23)
=1 9 J

Sets of quadrature coefficients have been prepared using the last=-
described receipe, and the resulting weights were found to be positive
for the particuler value of b = 2/3 used. Since such sets depend upon
b, the spread of directions along the ¢ axis can be varied relative to
the p and n axes dlrection spreads.

In the gbove, the numbexr of independent point weights has been
severely limited both by using the point arrangement of Figure 2 and by
assuming various relationships among the point weights. A general method
of choosing quadrature weights which removes these restrictions has been
developed in the method of moments, described in Reference 5. In these
methods, direction sets can be chosen so that discrete ordinates quad=-
rature is equivalent to a generalized spherical harmonics method with a
given boundaxry condition, say a Mershak boundary condition for no ine-
coming flux. Once the direction sets are chosen the quadrature weights

are found by satisfying a general set of moments. Here, only the case



in which points are arranged as in Figure 2 is discussed. Then, given a
set of directions on each axis (with, however, p.ia + 1 32 + §k2 = 1),

the moment conditions for the n(n + 2)/8 point weights are given by the

following triangulsx a.rra.y(5 )

VYoo Yoo Vou ‘ Vo, n=2
1]!20 1];22 . .

Wl'o ) )

Iyn-2 5O

n = 2,4,6,..., vhere symbolizes & moment of the form
In

(-2 EEd)

I mn
Py, = (24)
Z 1 r(-]2=)r(‘ + Iél-!- 33

Above, Py is a point weight corresponding to the point located by My and
Ny To illustrate, consider n = 2. Then p, = 1 is the single equation
to be satisfied. When n = b4 there are three weights and three equations

1/3 (25)

Yoo

2 2 2
Voo Py Py + Paiy

2 2 2
\"02 Plﬂl +I>2ﬂl + 93711 = 1/3




Given the directions Hy and 1 3 the above set can be solved for three
point weights, that is for a completely unsymmetric choice of directions.
The above formalism contains the helf-symmetric case and the completely
symmetric case. In particular, for the halfesymmetric case only the
diagonal. and belowediagonal moments of the triangular array are needed.
For n = 4 there are only two different point weights and the moment

equations become

Yoo Pt 2P = 1

(26)
1/3

Yoo ulapl + (u12 + uaa)p2

For n = 6 and four point weights in the half-symmetric case there are

four equations

Yoo P, + 2p, | + Py + 2p), = 1
2
Yo mpp + (% )n, + u22p3 + (4 u32)pu =1/3
b
Y0 ulupl + (b + ual*)p2 + uaup3 + (ulu + u3u)pu = 1/5

Yoo ulanlapl + (u:,_ana2 + uaanla)p2 + u22n22p3 + (;1121r132 + uéanla)pu 1/15
(27)

For the n = 12 half-symmetric case there are 12 different point weights

illustrating that the mumber of different point weights is not restricted

to n = 2. For the completely symmetric case only the first colum of the

triangular array of moments need be used indicating thet even-moments

matching is all that is required. The completely symmetric case is also
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contained in the half-symmetric case. For example, for n = 12 and the
ey (and hence nj) of Table I, solution of the 12 moment equations

gives five different point weights, exactly equal to those of Table I.
The above formuletion is more general than previous methods since the
direction sets can be determined independently, and, although not il-
lustrated here, can be extended to more general point arrangements. Be-
cause of the generality, the above method is conveniently coded to pro=-
duce quadrature sets (a general metrix formulation caen be written).
However, lacking any a priori choice of directions, meaningful com-
parisions of different quadrature sets are difficult to make.

Most of the above serves only to describe possible ways in which
the additionsl degrees of freedom obtained by relaxing symmetry can be
utilized, and no attempt has been made to exhesust possibilities or to
determine, say, optimum moment conditions or procedures for choosing
free parameters. Numerous additionsl symmetry relaxations are possible.
The same number of points can be kept on each axis, but Hys Tps and §l
can be chosen independently; or different numbers of points can be
chosen on each axis. Level conditions can be relaxed on one axis or all
exes. The same number of points on each level can be used. One such
scheme which is suited to orthogonal quadrature is the following. Sup-
pose the quadrature of the surface of the unit sphere is accomplished by

(for one octant)

A=§-{) a [ a (28)
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withw defined as n=~/l-§2 sin w and p=~/l-§§ cos ®w. Then

-t (29)

with p = Jl - §2 y. This suggests that the y integration be accom=
plished by Tschebyschev quedrature and the § integration by lLegendre
quadrature. Then, for example, for quadrature with three y points for
each of three ¢ points (Figure 5) there arenine points on the unit sphere
octant,with the distribution of p (and n) points being determined by
the & point selection. Now points lie on the unit sphere on ¢ levels
but not on p or 1 levels, and point weights are the product of Legendre
and Tschebyschev weights. If it is argued that three y points are not
needed on each ¢t level, then a different order Tschebyschev quadrature
can be used on each level as illustrated in Figure 6. This sort of
scheme gives a significant improvement over completely symmetric quade-
rature when one-~dimensional cylindrical critical radii are calculated.
For a given set of ¢ levels [gl,ga,...,gn/a) By < 8y < ... < gn/2
and weights [wl,wa, ce ey W n/2] corresponding to & Guassian quadrature on
the ¢ interval [-1,1] the use of the same Tschebyschev quadrature on

each ¢ level gives the p abscissae and point weights



->

Fig. 5. Point arrangement for the same order of Tschebyschev quadrature
on each ¢ level. The order of the gquadrature need not be the same as
the number of & levels.

6=




Fig. 6. Point arrangement for different order of Tschebyschev quadrae
ture on each ¢ level. Points do not all lie on the same n or p levels
as in a completely symmetric arrangement.
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-1 - Py =0

Hi0 ©
N N on - 23 + 1 Y
p-ij - 1 §i cos ( on ) pi - n (30)
i=1,2...,n/2 J=1,2,..05n

Here the p points with zero weights are those incoming directions used

as starting directions in the current version of the Sn discrete ordi=-
nstes transport code. The p values are such that a complete quadrant

is integrated, and the weights are such that the area of the quadrant

is unity. For the same gi and LA the use of a different order Tschebyschev

quadrature on each & level (as in Figure 6) gives the p and point weights

-1 g Py =0

M40
(31)
_ 3 on = Ui -23+5 Yy
Byg =Nl =& cos (S —") P "5y oo
i= l,2,...,n/2 j= 1’2’000’(n+2-2i)

These quadrature coefficients for the _E,i corresponding to

n=-1
for n = 4, 8, and 16.

P and DPn /2_1 quadrature are given in Table IV through Table VII
Finally, quadrature schemes that are dependent upon material com-

position can be prepared. As a simple example consider the angular de=-

pendence of the flux of the monoenergetic transport equation in an

=28~




P
Ne=

1(€)T_ (1) Quadrature Sets - Same Order

Tn Set On Each & Level.

“ij

«0.5083741

0.1829577
0.4696763
-0.9404323
0.3598878
0.8688459

=0. 2790043
0.0544310
0.1550065
0.2319836
0.2736433

-0. 6044192
0.1179163
0.3357973
0.5025562
0.5928054

«0.8507736
0.16597767
0. 472664
0.7073924
0.834k4262

-0.9830319
0.1917800
0.5461432
0.8173612
0.9641432

0.0
0.01265357
0.01265357
0.01265357
0.01265357
0.0
0.02779763
0.02779763
0.02779763
0.02779763
0.0
0.0392133
0.0392133
0.0392133
0.0392133
0.0
0.0L453355
0.0453355
0.0453355
0.0453355

£

0.8611363

0.3399810

0.9602899

0. 7966665

0.525532l

0.1834346



/2 l(§)T () Quadrature Sets - Same Order

T, Set On Each § Tevel.2

M5 Py &y
n = -0.6148102 0.0 0.7886751
0.2352776 0.125
0.5680104 0.125
=0.9774159 0.0 0.2113249
0.37h0L08 0.125
0.9030143 0.125
RS ~0.3661187 0.0 0.9305682
0.0714262 0.0217409
0.20340k46 0.0217409
0.3044166 0.0217409
0.3590838 0.0217409
=0. 7423696 0.0 0.6699905
0.1448291 0.040T591
0.4124384 0.0407591
0.6172578 0.0407591
0.7281052 0.0407591
~0.9439776 0.0 0.3300095
0.1841609 0.0407591
0.52L4h458 0.0407591
0. 7848887 0.0407591
0.9258394 0.0407591
~0.9975867 0.0 0.0694318
0.1946195 0.0217409
0.5542294 0.0217409
0.8294630 0.0217409
. 0.978418L 0.0217409

8cor convenience the sets have been ordered as they would be entered in
present Sn codes. For brevity the negative-weighted p directions (same
in magnitude as the positive directions) have been omitted.
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Pn_l(g)Tn(u) Quadrature Sets = Different Order

T_Set On Each ¢ Levell

“ij

~0.5083 741

0.3594748
~0.9404323
0.3598878
0.8688459

«0.2790043

0.1972858
-0.6044192

0.2313012

0.5584103
~0.8507736
. 2201964
.6015878
.8217842
.9830319
.1917800

.8173612
.9641432

|
[oNeoNoNoNoNeoNoNo]

-0.1452095
0.1026786
-0.3282956
0.1256333
0.3033056
~0. 5006822
0.1295861
0.3540358
0.4836218
«0.6552589
0.1278346
0.3640423
0. 5448278
0.6426683

5461432 -

Py

0.0
.373927h
:1630363

eNoNe/

.0
.0506143
.0

-0555953

0555953
0]

.052284Y
.0522844
.0

0453355
-0l453355
0453355
.0453355

0.0
.01357623
0

.01556338
.01556338
.0

-01585975
.01585975
01585975
0.0

0.01557862
0.01557862
0.01557862
0.01557862

oo NoNoNoNoNoNoNoNoRoNoNoNe/

[oNeoNeoNoNoNeoNoNo/

-05228lk .

&1
0. 7886751

0.2113247

0.9602899
0. 7966665

0.525532L

0.1834346

0.9894009
0.9445750

0.8656312

0.7554044



TABLE VI (Continued)

n = 16 contimued

Hij p; €4
-0. 7862754 0.0 0.6178762
0.1230006 0.01495960
0.3569615 0.01495960
0.5559807 0.01495960
0. 7005765 0.01495960
0. 7765950 0.01495960
-0.8889436 0.0 0.4580168
0.1160304 0.01409638
0.3401839 0.01409638
0. 5&1_131;5 0.01409638
0. 7052463 0.01409638
0.8212765 0.01409638
0.8813385 0.01409638
~0.9595308 0.0 0.2816036
0.1074405 0.01304310
0.3169175 0.01304310
0.5105032 0.01304310
0.6784908 0.01304310
0.8124567 0.01304310
0.9056836 0.01304310
0.9534967 0.01304310
=0.9954761 0.0 0.0950125
0.0975737 0.01184066
0.2889715
0. 4692641
0.6315234
0. 7695135
0.8779316
0.9526112
0.9906826

&ror convenience the sets have been ordered as they would be entered in
present Sn codes. TFor brevity the negative-weighted p directions (same
in megnitude as the positive directions) have been omitted.
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TABLE VII

npn/2 l(g)T () Quadrature Sets = Different Order

T Set On Each § Level?

-0.6148102

0. 4347364
«0.9774159
0.3740408
0.9030143

-0.3661187
0.2588850
~0. 7423696
0. 2840925
0.6858599
=0.94397762
.2443193
.6674930
.9118123
9975867
.1946195
.554229l
.8294630
.9784184

-0.1982824
0.1402068
~0.4393147
0.1681184
0. 4058737
~0.6466Th
0.1673716
0.4572678
0.6246394
-0.8061455
o.t272712

78704
0.6702855
0.7906557

[eNeoNoNoNoNoNoNo]

a3
e

00000
oo
§§oS

o:oel7ho93

2530714

779763
779763

02614222
02614222
0.02614222
0.0

0.022667T4
0.02266TT4
0.022667T4
0.022667T4

0880

0.
0.
0.
O.
0.
0.
0.
0.

£

0.7886751

0.2113249

0.9305682
0.6699905

0.3300095

0.0694318

0.98014493
0.89833324

0. 76276620

0.59171732



TABLE VII (Continued)
n = 16 continued

=0.9128556 0.0 0. 40828268
0.1428021 0.01813419
0.41hho77 0.01813419
0. 6454864 0.01813419
0.8133602 0.01813419
0.9016167 0.01813419
«~0.97145258 0.0 0.23723380
0.1268000 0.01307111
0.3717588 0.0130711L
0.5913828 0.01307111
o.77o7ogl 0.01307111
0.8975049 0.01307111
0.9631417 0.01307111
-0.9948151 0.0 0.10166676
0.1113917 0.00794218
0.3285724 0.00794218
0.5292775 0.00794218
0. 7304429 0.00794218
0.8423356 0.00794218
0.9389910 0.00794218
0.9885625 0.00794218
-0.9998029 0.0 0.01985507
0.0979998 0.00316339
0.2902275 0.00316339
0.4713038 0.00316339
0.6342682 0.00316339
0.7728581 0.00316339
0.881747h 0.00316339
0.9567517 0.00316339
0.9949885 0.00316339

a‘For convenience the sets have been ordered as they would be entered in
present S codes. For brevity the negative-weighted p directions (same
in megnitude as the positive directions) have been omitted.
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infinite medium (isotropic scattering)

B(n) = l—fz-,%;(;
Xo = c'ba.nh-l)\.o (32)

o
"

(5, + vEg)/z,

Picking a two-point quadrature such that this angular dependence is

correctly integrated gives

Wl = loo

(33)
2

!

L - el/ry

which also correctly integrates pf(p) and uejé(p). For [c = 1| << 1,
xoa ~3[1 - c| 5o that u ~ Y3 which is the result cbtained by re-
quiring wlu12 = % as in 82 or diffusion theory quadrature. As ¢ -0
(pure absorption) p, —1.0 indicating that to integrate a flux that
is becoming more biased in the forward direction By should be chosen
closer to unity. As ¢ - e p -0. Using Ky determined by (27) gave
improved answers in critical slsb thicknesses compared to using

T 1A3. Higher order quadratures can be obtained in & similar
manner by requiring more moments of P(u) to be satisfied. However, in
a realistic problem, material properties change as a function of enexrgy
and position so that gains in a.ccura.cy obtained by using material de-

pendent quadrature would seemingly be offset by the more complicated
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computation necessary for including the quadrature coefficient material
dependence.

Although the completely symmetric quadrature sets are designed for
three=dimensionsl geometries, one-~dimensional monoenergetic critical
thicknesses were calculated using the sets of Tables I through IIT.
These results, for a variety of secondaries ratios c = (Z:s + vzf)/zt,
are displayed in Tebles VIII through X. Comparsble calculations for
Pn-l and DP n/2-l sets are given in Reference 1 from which the exact
results were taken. Of the three sets compered, the set prepared by
satisfying even-moment conditions (Table I) is paxrticularly good in
cylindrical geometry and is better than the other two sets in spherical
geometry. The set generated by matching odd moments (Table II) is ef=
fective only in plane geometry where the 88 set is better than or com=~
parable to the other two 8,6 sets. This behavior is analagous to that of
DP_ /21 sets (half-range Causs-Legendre quadrature) which, due to a
combination of favorable circumstances, are particulaxrly accurate in
one-dimensional plane geometry. Although no complete test of the
Legendre-Tschebyschev sets was made, for c¢ = 1.02 in a cylinder the
P3Tu set (Table VI) gave a critical radius of 9.0353 compared to a DP, T,
(Teble VII) radius of 9.0264. These results bracket the S), results
obtained using the quadrature set from Table I.

For the general use of quadrature sets it is recommended that the
DP n/2-l sets always be used in one~dimensional plane geometry. In one-

dimensional cylinders the completely symmetric sets of Table I or the

«36= -
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TABLE VIII

Monoenergetic Critical Thicknesses (MFP) Calculated
Using Quadrature Sets of Teble I.

Slabs (Half=-Thickness)

5.68291 5.67065 5.66855 5.6655
3.32171 3.30659 3.30245 3.3002
2.13864 2.11998 2.11555 2.1134
1.32271L 1.29710 1.2918%4 1.2893
0.78186 0. 74758 0.73964 0.7366
0.56329 0.52656 0.51579 0.5120
L4066 0.40637 0.39369 0.3887
0.36551 0.33091 0.31706 0.3108
Cylinders
Sy, Sg _——— Exact
9.03379 9.04364 9.0433
5.39784 5.40970 5.4118
3.56045 3.57335 3.5783
2.27052 2.28245 2.2884
1.38380 1.39215 1.3973
1.01122 1.01642 1.0209
0.80073 0.80356 0.8067
0.66414 0.66524 0.6673
nexres

S), Sg 816 Exact
12.01730 12.02130 12.0229 12.0270
7.25660 7.26797 7.27197 T.2772
4.85011 4.86577 4.86982 4.8727
3.14533 3.16268 3.16887 3.1720
1.96022 1.97657 1.98206 1.9854
1.45371 1.46828 1.47316 1.4761
1.16338 1.17635 1.18072 1.1833
0.97267 0.98432 0.98826 0.9906
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TABLE IX

Monoenergetic Critical Thicknesses (MFP) Calculated
Using Quadrature Sets of Table II,

Slabs jHan;Thiclmess)
5.62241 5.66694 5.6655
3.25389 3.30066 3.3002
2.06750 2.11367 2.1134
1.25270 1.28847 1.2893
0.72152 0.73266 0.7366
0.51256 0.50665 0.5120
0.39934 0.38375 0.3887
0.32786 0.30716 0.3108
Cylinders

S), Sg Exact
8.97433 9.02093 9.0433
5.34554 5.38904 5.4118
3.51360 3.55496 3.53%2

2.226L47 2.26442 2.2
1.34377 1.37426 1.3973
0.97458 0.99820 1.0209
0.76735 0.78510 0.8067
0.63367 0.6467h 0.6673

neres

S), Sq Exact
11..97480 12.00510 12.0270
7.22622 7.25991 T7.2772
L4.82443 4.85785 4.8727
3.12868 3.15830 3.1720
1.9488) 1.97416 1.9854
1.44513 1.hk6662 1.4761
1.1564% 1.17508 1.1833
0.966837 0.98329 0.9906
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TABLE X

Monoenergetic Critical Thicknesses (MFP) Calculated
Using Quadrature Sets of Table III.

Slebs (Half-Thickness)

S), Sg 816 Exact
5.64343 5.65669 5.66343 5.6655
3.27617 3.28879 3.29616 ' 3.3002
2.090LL 2.10091 2.1088l 2.113k4
1.27495 1.27710 1.28446 1.2893
0. 74089 0. 72800 0.73171 0.7366
0.52880 0.50853 0.50796 0.5120
0.41322 0.39012 0.38617 0.3887
0.33990 0.31624 0.31004 - 0.3108

Cylinders

Sy Sg —— Exact
8.99519 9.0303 9.0k433
5.36340 5.39658 5.4118
3.53025 3.56176 3.5783
2.24195 2.27073 2.2884
1.35734 1.38131 1.3973
0.98692 1.00622 1.0209
0. 77853 0.79397 0.8067
0.64381 0.65619 0.6673

Spheres

S), Sg S1g Exact
11.99720 12.01610 12.018L40 12.0270
7.24297 7.26417 7.26841 T.2772
1.83668 4.8592L 4.86742 L.8727
3.13624 3.15837 3.16669 3.1720
1.95406 1.97387 1.98098 1.9854
1.44909 1.46633 1.h7241 1.4761
1.15968 1.17482 1.18012 1.1833
0.96957 0.98307 0.98777 0.9906




PnTn sets are recommended. In one-dimensional spheres, the ,DP n/2-l or

the sets of Table I seem best suited. In two- or three-dimensional
geometries the completely symmetric sets of Table I or Table III would
seem best, but more computational experience is needed. In special
situations the biased helf-symmetric sets and the material dependent
sets can be useful. For the former, two-dimensional cylinders with
small height=to=diameter ratios require accurate angulaxr representation
for directions nearly parallel to surfaces. The accurate representation
can be obtained by proper choice of the parameter b. For neutron or
photon transmission problems, accurate representation in the inwexd and
outward directions is needed. In these problems either the helf-
symmetric or materisl dependent sets can be used to choose blased
directions sets.

Finally, it should be mentioned that recent work(5 ) has indicated
that proper treatment of the boundary conditions, and, in curved geom=
etries, proper handling of the ray-to-ray transfer terms can be as
important as choice of the angular quadrature. For example, in plane
geometry, part of the accuracy of DPn /2_1 sets is due to the fact that
the Marshak boundary conditions for zero incoming flux are satisfied.
Numerical experiments in which one of the Marshak boundary conditions
was approximetely satisfiedhave significantly improved P3 results in
plane geometry.

Thus, the problem of choosing numerical anguler quadrature sets is

indeed complicated. The work presented in this report should serve as a



guide to future work and permit the intelligent preparation of quadrature

sets tailored to specific needs.
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APPENDIX

The original S method(l) represented the angular flux in plane

geometry by connected line segments. That is,
n
N(x,n) = 3 [(u = by N5 + (uJ. - u)N(r,uJ._l)] (A-1)
with

Substituting (A-l) into the transport equation for plane geometry
(isotropic sources)

ON(x

250 4 oN(x,pn) = s(x) (a-3)

7

and integrating on p from “j-l to “j gives the original Sn difference

equation

=
“jax+°N3=s(x) j=o0

. + K, an. Ry + 20, an, (A=lt)
J g1} _d ([ =) =l (w4 ow,
3 dx J J=
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where Nj = N(x, uj). To find a system of discrete ordinates equations

equivalent to (A-l4) with directions given by (A-2) let

_ J
and choose b\ = 1 so that -I\To = N,- Next form linear combinations of
equations (A=4) with coefficients &5 with 250 = 1. That is, form a

first equation by adding the j = 1 equation of (A=l4) and a,, times the
J = 0 equation of (A=k):

2

+o(N) + (1 +a4)N) = (2+a,)s

Then form a second equation by adding to the j = 2 equation of (A-}4)

851 times the j = 1 equation and ass times the j = 0 equation to obtain

ou,., + Bs + 2 8. (2u, + p.) + 2
a {He “1N+[2 o N e o-|N+[“1 0,
& | 3 2 3 3 1M 3 21

(a-7)
+ 8'22“4 N% + o[N2 + (1L + azl)Nl + (8‘21 + aae)N(J = (2 + 2a, + a22)s

Proceeding in this manner to form the jth equation by adding to the jth

equation of (A=4) a 3k times the koD preceeding equation, k = 1,2,...,J



~

gives

ou, + B =1 (. + 24, .a. +(2n.'. + )a
-g—'x- —d _J=1 N + % ( Jtl=i J"l) Jyi-1 ( J=1i J=i=l’"3, 1 N
3 a1 3 J=1

by o+ 2p.o
* [_3"_ 25,3-1 F BoPy;| Yo (a-8)

J J
+ o]N. + Z (a. + a, N =|la.,+2 T a, S
[J 1=1 ( Jpi-1 J:i) J-i] <JJ 1-1 J:i"l>

For these equations to be equivalent to a discrete ordinates system

in Nj

+ oN, = S (a-9)

"3 J

J

& &

the coefficients a’jk mist be chosen so that an equation of the above

type is formed. For example, in equation (A=6)

2p1 + M + 24
- 0 By 0
(2 + a.u) TR (—3——) N, + ( 3 + “oall) N, (A-10)
and
(2 + a‘:l_l)Nl =Ny + (1 + a‘:l_l)No (A-11)
2ul + By _

Letting —— gives the same coefficient for N; in (A=10) and
(A=11). Then if a,, satisfies

b+ 2, 2y + Wy -

St gy = |\ —5— L+ a.u) = ul(l + a’:l_l) (a-12)

45



that is, if a4, = -1/2, the coefficients of N, are the same.
Finally, since Ny = byoN; + by Ny Dby = /(2 + aq,) = 2/3 and by =
(L + all)/(a +8q,) = 1/3. In general, with Ej = (2uj + “3-1)/3 the

a,_ mst satisfy the relations

5k
(B gpnmg + B0gg)2g 000+ By + biagen)ege] = 38y (ey g+ 2y0)

i=212...,5=1 (A-13)

in addition to (A=12). The bjk are given by

J
bjo = l/<2 121 a’j,n.-l + a’j,j)

: ; (A-1Y4)
Pk = (aj,k ¥ a.i,k-l)/ (2 2 St JJ)
Since the original quadrature was trapezoidal, that is,
1 nel
[ Nap = (NO/2 + z Ny + N /%)/n (A=15)
-1

the weights associated with the equivalent discrete ordinates quadrature

are given by the identity

(A-16)

!

™M

=

™M e
o

=



.

Equating coefficients NO, Nl’ etc., gives a set of equations which may

be solved for w,:

J

1
E-w&w+wb
l = w.b
n

1 _

= =

1 _

5 =

+ Wby

o0 0 Wb
n nn

oo Wb

n n,n=-1

s e 0 Wb

n n,n=2

n no

(A-17)

Following this formalism through for n = 2, 4, 6 gives the following

discrete ordinastes weights and directions:

n=2

:wmonu mwolu

47-

My
-]l

23/440
13/54
11/k5
19/72
59/297




O\\H-F‘UOI\)!—‘OIC—'-

W

J

3/85

116/729
60L/3645
ol7/1458
118/729
257/1458
1640/12393

As is readily seen these weights are directions of an equivalent dis-

crete ordinates system representing a nonsymmetric quadrature.
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