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NONLINEAR DIFFUSION

IN PLANAR AND

OF PULSED MAGNETIC FIELDS

CYLINDRICAL PLASMAS

by

Albert Haberstich

one-dimensional,
fields in planar

ABSTRACT

one-component, nonlinear diffusion of pulsed
and cylindrical geometries is examined. The

diffusion coefficient ~ depends-abruptly o; the current density j associ-
ated with the gradient of the magnetic field. The coefficient-l.-is large
when j ~ jl, small when j ~ j2, and depends linearly on j in the interval
j2 < j c jl, where jl and j2 are given current densities. A traveling
wave solution is obtained in planar geometry and it is found that the
product ~j remains continuous in space in the limit (jl - j2) + O. Ana-
lytic and finite difference solutions of the traveling wave problem are
compared, numerical stability conditions are found, and an estimate of
the numerical error is obtained. The pulsed magnetic field problem is
then solved numerically in the two geometries. Large portions of the
magnetic field profiles exhibit a nearly uniform current density distri-
bution at some time during the diffusion.

I. INTRODUCTION

Plasmas are compressed and heated in theta

and Z pinches by a fast rising external magnetic

field. This magnetic field is produced by an ex-

ternal coil in the theta pinch and by a current

running through the discharge in the Z pinch.

Due to the finite electrical resistivity of

the pinch, the pulsed magnetic field gradually dif-

fuses into the plasma. The rate of diffusion was

measured in both configurations and was found to

be more rapid than expected from classical electri-
1-4

cal resist ivity. The diffusion is enhanced dur-

ing the early stage of the pinch when the current

density induced by the magnetic field gradient is

concentrated in a narrow discharge region. The

anomalously large resistivity appears to be due to

a microinstability that is excited when the abso-

lute value j of the current density exceeds a

1-3
certain threshold jc.

This effect can be included in hydromagnetic

calculations by allowing the electrical resistivity

to become anomalous whenever the local value of j

1-5
exceeds jc. The hydromagnetic calculation then

involves solving a highly nonlinear diffusion prob-

lem. We propose to explore some of the analytical

and numerical properties of this diffusion problem.

We write the diffusion equation in a one-

component, one-dimensional form and assume that the

diffusion coefficient ~, associated with the elec-

trical resistivity of the plasma, is of the form

shown in Fig. 1. The problem then becomes similar

to
6

a Stefan problem. The diffusion coefficient

of the Stefan problem, however, would depend onB
rather than on the spatial derivative of B. There-

fore, the Stefan solution does not seem to be

directly applicable.

Here we seek a traveling wave solution of the

diffusion equation in planar geometry. We divide

this solution into the three regions, where j > jl,

j < j2, and j2 < j ~ jl, and find that the spatial

width of the transition region j~ S j 5 jl remains

finite in the limit (jl - j2) -+ O. The product ~j,

which is proportional to the electric field in the

plasma, then remains continuous in space.
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P+
The transition from WI to V2 takes place linearlY

over the current density interval jl to j2. Thus ,

P,

$

j2 jl

Fig. 1. Diffusion coefficient u as a function of
the absolute value of the current density j.

We also solve the problem numerically using

finite difference explicit and implicit schemes.

We write these schemes in such a way as to conserve

magnetic fluxes. We find that, for small time and

space increments, the numerical solutions can be

stable and that they agree closely with the analytic

traveling wave solution. It appears, therefore,

that the scheme used in our earlier numerical MHD
4

calculations is adequate to handle this type of

diffusion problem, at least in a planar

approximation.

We make use of the explicit difference scheme

to solve basic pulsed magnetic field diffusion prob-

lems in planar and cylindrical geometries, and find

that large portions of the pinch may become part of

the transition region, and may therefore exhibit a

uniform current density distribution.

II. ANALYTIC TRAVELING WAVE SOLUTION IN PLANAR
GEOMETRY

The nonlinear diffusion problem discussed

above can be reduced to the one-dimensional, one-

component diffusion equation

(1)

where t is the time, x is the x-coordinate, B is the

magnetic field, and ~ is the diffusion coefficient

of the form shown in Fig. 1.

In Fig. 1, j = laB/@l is the absolute value

of the current density. The coefficients U1andU2
areconstants, respectively proportional to the

anomalous and classical resistivities of the plasma.

2

where

j= =+(31

We assume that

Equations

+ jz) ,

+ 112) , and

U1 is always

Aj=jl-jz,

4=1.L1-W2 .

larger or equal to V2.

(1) and (2) have an analytic travel-

ing wave solution, which is defined as a solution

that travels undistorted at constant velocity v,

here chosen in the positive x-direction.
i’

In Fig.

2, B(x,t) then consists of a leading edge x > x2

where j < jz, a transition region xl ~ x ~ x2 where

j25~5j1D and a region x c xl where j > jl. The

boundaries xl and X2 satiafy Xl = XIO + vt and

+ Vt.
‘2 = ’20 ‘ither ‘lo ‘r ’20

can be chosen

arbitrarily.

3
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Fig. 2. Analytic traveling wave solution for v = 1,

~1
=2, W2=l,jc = 0.5, and Aj = 0.1.



We solve Eqs. (1) and (2) in the three re-

gions, match boundary conditions at xl and X2, and

obtain

w2j2

()

x-x
B=—

2
exp -v —

v V2

X>x
2

ul-il ()x-xB=—
1

exp -v —
v l.1~

X<x
1

and

.-.fi~[@,+] - (b2+4av13)*

,

, (3)

,

, (4)

+b1nb+(b2+4avB i

2(w1 + b) ‘1‘l~x~
where

,

‘2 ‘
(5)

44 v1j2 - u2j1
a=

Aj
and b=

Aj “

The ratio of the magnetic fields B(xl) = B1 and

B(x2) = B2 at the boundaries of the transition re-

gion follows from Eqs. (3) and (4),

‘1 vljl

~=— “w2j2

Taking the spatial derivative of Eqs. (3)

through (5), we obtain the absolute current densi-

ties

()x-x 2
j=j2exp-v—

‘2

The width (X2 - ~x ) of the transition region is a

special case of Eq. (8),

( 32)12Au+bln- .
‘2-X1=V J1

(9)

It is of interest to note thata

1im J&A
Aj_l)(x2-xl)=v .

(lo)

Thus , the transition region width remains finite in

the limit Aj + O. Letting Aj + O in Eq. (8), we

find that j becomes a linear function of x in the

transition region and that the product Vj, which is

proportional to the electric field in the plasma,

remains continuous throughout x-space.

111. NUMERICAL TRAVELING WAVE SOLUTION IN PLANAR
GEOM3TRY

Equations (1) and (2) are solved with the fol-

lowing magnetic flux conserving explicit and implicit

difference schemes9

B?: - B:
At

l+= 1+* = —
[(

B?
(Ax)*

1+3/2 -

and

At
B~~ - B;++ = —

[(

ml-l
B.(Ax)2~i-312 -

-(Bn+l n+l
i+$ - ‘i-$ )

(11)

)Jf+ W;+l

g 1

)M-l ml-l
B.
1+$ ‘i+l

1M-1Ui , (12)

respectively, where t = n At and x = i Ax. The dif-
n+l

fusion coefficients ~~ and u. are given by
1

j = jl exp

and

f-

x- ‘1

X>x
2’

(6)

x-x
1

v—
~1 )

>

X<x
1’

(7)

U2

n,n+l .
‘i

(

+.AU. j.>

Uc Aj :~

l.1~

ij)+blnjl

1
,

.n,c-+1< j2 ,
Ji

)
-j=,

.n,*l < 11,
j2S]i _

.n,ml-l
, Ji >j

1’

(13)
and

.n,n-tl
Ji

(

n,n+l
=2 B.

n,n+l
- B.

1-+ +$ )
. (14)
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In the regions of uniform Q, Eq. (11) is sub-

ject to the numerical stability condition

–~ils 1/2,
(Ax)

whereas Eq. (12) is always stable.9

stability of the explicit scheme in

region is derived in Appendix A and

At 1
~pc<~

()

. .

(Ax) 1+%+*
Uc

(15)

The numerical

the transition

is given by

(16)

The advanced diffusion coefficient in the transi-

tion region is not known a priori. We therefore

n+l
determine Ui by the iterative procedure

n+l,m+l
= (1

n+l,m
Vi -A) p.

- n+l,m
+Avi

1 2

(17)

where O < A ~ 1 is a relaxation factor. The dif-
n+l,mtl

fusion coefficient u. is used in the new

n+l,m 1
iteration, Vi is the coefficient used during

- n+l,m
the mth iteration, and Ui is calculated by

Eqs. (13) and (14), using the magnetic fields ob-

tained by the mth iteration. This procedure is
- n+l,mtl n+l,m+l to

repeated until Ui approaches p
i

within a certain accuracy. The stability of the

implicit scheme then depends on the convergence of

the iteration scheme. The stability condition,

derived in Appendix B, is

The accuracy of the two numerical schemes

can be determined by comparing numerical solutions

of the traveling wave problem with the analytic

solution. The numerical error in the uniform ~ re-

gions

error

can be predicted.

c as

(e=B numerical -

We define the relative

B
y

B
analytic analytic ,

and find it to the lowest order in Ax and At,

(19)

where the upper and lower signs apply to the ex-

plicit and implicit schemes, respectively. This

numerical error can be eliminated by adding a small

correction @ to the diffusion coefficient. For

small values of AX and At we find that

1
-v--~.LA- 6

(Y2- ,
+V++.vAX

for the implicit scheme,

lL
and that

(20)

1\,-—

‘=’(=s=
for the explicit scheme,

The accuracy of the

(21)

where v = u At/(Ax)2.

numerical schemes in the

transition region 18 determined experimentally.

Starting at t = O, with the initial state pre-

scribed by Eqs. (3) through (5), we numerically

advance the traveling wave solution shown earlier

in Fig. 2. The values of B at the boundaries

x = O and x = 5 are varied at the rates predicted

by Eqs. (3) and (4). Here we add the small cor-

rection @ to the diffusion coefficient to allow

for the error anticipated in the regions of con-

stant U, and thus delay the effect of the bounda-

ries x = O and x = 5 on the numerical error in the

transition region.

A typical observed error c is shown in Fig.

3 as a function of x at four consecutive times in

the diffusion. The shape of c(x) varies aa the

transition region traverses the mesh structure.

A plot of the peak absolute error 1~1 as a func-

tion of time is shown in Fig. 4, whereas (Icl),

the absolute value of e averaged over the interval

O < X5 5 as a function of time, isshown in Fi&.

5. Figures 4 and 5 were obtained with the implicit

scheme with Ax = 0.033. Similar calculations have

been performed with Ax = 0.05 and the two calcula-

tions have been repeated with the explicit scheme.

The peak value of 1$1 at time nearest t = 0.1

is plotted in Fig. 6 as a function of At for the

implicit scheme for the two values of Ax. The peak

error is essentially independent of At. For small

values of At, 1~1 isprOportio”al to(Ax)2. Mean

values of (Icl) at time t = 0.1 are plotted in Figs.

7 and 8 as functions of At for Ax = 0.05. Figure 7

4
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Fig. 3. Observed numerical error c at times

t = 0.1, 0.11, 0.12, and 0.13 of the trav-
eling wave solution, Fig. 2, for m = 0.033
and At = 5 x LO-4. Implicit scheme.

-5
8xI0

1$1 4X165

o~
o 0.I 0.2

.L
Fig. 4. Peak error 141 as a function of time for

the conditions of Fig. 2 for Ax = 0.033
and At = 2 x LO-4. Implicit scheme.

‘X”:m
-’l-A<l&l> Ixlo

Fig. 5.

la

o 1111111111111 II

o 0. I 0.2

t“

Mean error (]c I) over the interval O : x < 5
as a function of time for the conditions ~f
Fig. 2 for Ax = 0.033 and At = 2 xLO-4.
Implicit scheme.

I0-3. I,1,110I, 1111I1IQ

1
v v v v I

-4
10

“

‘0/

,,5~
10+’ IO-4 IO-3

Fig. 6. Peak
as a
Fig.
Ax =

At

value of 1$1 at time nearest t = 0.1
function of At for the conditions of
2 with LX = 0.05 (triangles) and
0.033 (circles). Implicit scheme.
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I0-4 I I ! I I 1111 1 1 I IIrIq1- •17/-
P:,/”

/~/“_-,—_————---
//////

~’;1//’-/~-----—-

t

,0-5

Fig. 7.

At

Mean error <!.s!> at time t = 0.1 as a
—

function of At for the conditions of Fig.

2 and AX = 0.05 . 1.1 averaged over the
interval O ~ x ~ 5 (triangles) and over
the transition region only (circles).
Implicit scheme.

corresponds to the implicit scheme and Fig. 8 to

the explicit solution. The triangles indicate av-

erages over the interval O ~ x ~ 5, whereas the cir-

cles correspond to averages over the transition re-

gion only. The dashed lines obtained from Eq. (19)

show the error associated with the regions of uni-

form VI and y2. The Ax = 0.033 calculation indi-

cates that for small values of At, <Iel> is propor-

tional to(Ax)2
as in the uniform p caae. For large

At, <Icl> increaaea with At in the implicit case.

The large At region is not accessible to the

explicit scheme.

The results obtained in this section indicate

that the explicit and implicit schemes can be

stable and that the numerical errors can be made

negligibly small by choosing a small Ax, which in

turn calls for a small value of At to satisfy

stability requirements.

IV. DIFFUSION OF PULSED MAGNETIC FIELD IN PLANAR
GEOMETRY

Having established the stability and accuracy

of Eqs. (11) and (12), we can uae

calculate the diffusion of pulsed

into a semi-infinite plasma. The

and extends over the region x = O

6

these schemes to

magnetic fielda

plasma is uniform

to infinity. The

<lEl>

L 8 I1I1111I [18IIIIT

t
stable

P2
[

{
““stab’s P2,

I

t
,.

il ;1I1I1II1!I 1 tI1L
10-5

-4
10

At

Fig. 8. Same aa Fig. 7, but

magnetic field is uniform in

minus infinity and is pulsed

explicit scheme.

the region x = O

from zero to B =

IO-3

to

B. at

time t = O. Thus , in addition to Eqs. (1) and (2),

we must satisfy the initial and boundary conditions.

o, X>o, t<o,

B=

B. , X.o s t~o. (22)

Figure 9 shows an explicit solution obtained

with jc = 0.5, Aj = 0.01, PI = 2, and V2 = 0.02.

The magnetic field satisfies Eq. (22) at x = O,

whereas B = O at x = 5. A transition region is

seen to develop. Due to the small value of Aj,

B(x) is nearly linear in the transition region. The

speed at which the transition region propagates can

be predicted aa a function of its width. In the

limit y2 - 0

dx2 VI

K=X2-X1 “
(23)

For a semi-infinite plaama, this expression remains

valid as long aa the transition region does not

extend to the origin x = O.

v. DIFFUSION OF PULSED NAGNETIC FIELDS IN
CYLINDRICAL GEOM?TRY

The plasma here is cylindrical, axially and

azimuthally synmetric, and has the radi.ua ra. The

magnetic field can have two components, B= and Bo.

We consider the two caaea separately.



2

B

1

0 2 3 4 5
x

(a) B(x) as a function of time. The dashed line
shows the trajectory of B(xL); B(x2) is close
to the abscissa.

The Bz field case is typical of a theta pinch.

B= is uniform in the outer region r > r and is
a

pulsed from zero toB = Bzo at time t = 0. me
z

initial and boundary conditions are

I

O , r< ra , t<o,

Bz =

B r=r t>o.
20 ‘ aS—

(24)

The diffusion equation in cylindrical coordinates

becomes

(25)

where p is now defined in terms of j = Ijel, with

aB
je..# ,

and j~ = O on axis.

Equation (25) can be solved by finite differ-

ence schemes similar to Eqs. (11) and (12). Al-

though the accuracy of these schemes has not been

checked in cylindrical geometry, it is believed to

be comparable to that of the linear schemes. It

might be necessary, however, to study this point

further.

The explicit difference scheme in cylindrical

coordinates can be written as
5

4

3
x

2

1

0

I I I I I I I I I I I

1- (b) t

X2
classical \

transition

1 1 I I 1 I 1 I 1

0 0.4 0.8 1.2 1.6 2,0
t

(b) xl and X2 as functions of time.

Fig. 9. Diffusion of pulsed magnetic field in
planar geometry. Bo=2, pl=2,
U2 = 0.02, jc = 0.5, and Aj = 0.01.

(26)

where the Bz flux is conserved. The diffusiOn coef-

ficient p; is defined in terms of Eq. (13) with

Figures 10 and 11 show the numerical results

obtained with jc = 0.5, Aj = 0.01, U1 = 2, and

~2
= 0.02. ‘1 and rz are the outer and inner bound-

aries of

call the

ing that

the transition region, respectively. We

case shown in Fig. 10 suPercritical, mean-

B~o~r
a jc”

The transition region here

7



3

2

B

1

0

(a)

5

4

3
r

2

1

0

0 I 2r3 4 5

B=(r) as a function of time. The dashed line

represents Bz(rl); Bz(r2) is clOse to the
abscissa.

I I I I I 1 I I I

classical

I I 1 1 I

o 0.4 0.8 1,2 1.6 2.0

t

(b) rl and r2 as functions of time.

Fig. 10. Diffusion of pulsed magnetic field in
theta-pinch geometry with I.Ll= 2,

u?.= 0.02, j= = 0.5, and Aj = 0.01.

B = 3, supercritical.
Zo

can extend over the entire plasma radius. This

situation is not possible in the subcritical case

B <r
Zo a jc

shown in Fig. 11.

2

B

1

c1

5

4

3

r

2

1

0

Fig.

0123
r

I I I I I

transition

F

45

I 1 I I I 1 I 1 I I I

o 0.4 0.8 1.2 1.6 2,0
t

11. Same as Fig. 10 with Bzo = 2, subcritical.

The speed of propagation of the transition

region can be predicted in terms of its width

(rl- zr ) and in its position. In the limit U2 ~ O,

Zrlul
dr~

-——.
dt 22”

‘1 - ‘2

This formula applies as long as the transition

region does not reach the axis or the edge ra of

the plasma column.

(27)
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The Be field case is similar to a pure Z pinch.

Be falls as l/r in the outer region r > r and the
a’

field at r = r is pulsed from zero to B
a eo

at time

t=o. The initial and boundary conditions are

I
O ,r<r t<o,

a’
B=

B
00 ‘

r=r ,t~o.
a (28)

The diffusion equation becomes

(29)

where u depends on j = {j=! and

The explicit difference scheme is written in

the form

f-l-l n
e,i-1+ - ‘e,ifi

= [-(& ~:+1 n n

(Ar)2 ‘i+l
‘i-i-3/2‘e,i+3/2 - ‘ifi ‘e,i@ )

P:

(

n-— r.
r.

)]z-@ ‘e,i@ - ‘i-* ‘~,i-+ ~
(30)1

where the Be flux is conserved everywhere except on

the axis. The diffusion coefficient y: is defined

in terms of Eq. (13) with

.n11
(

n
)‘i‘E<‘i+&‘O,i*-‘i-$B~,i-$“

Figures 12 and 13 show numerical solutions for

jc = 0.5, Aj = O.0~, pl = 2, and ~2 = 0.132. Super-

and subcritical are now defined as Be. being larger

or smaller than rajc/2, respectively. A supercriti-

cal Z pinch eventually becomes entirely anomalous,

whereas a subcritical pinch becomes completely

classical.

The speed of propagation of the transition

region, in the limit ~
2

- 0, is given by

dr2 WI

K = - r2 ln(rl/r2)

until the transition region

(31)

reachea r = O or r = ra.

1.5

1.0

B

0.5

0.0

I I I I I I I I I
(a)

/

~

/’

t = 2.0
16

’14
1.2

10

1/
01 2345

(a)

5

4

3
r

2

1

0

Be(r) as a
represents
abscissa.

r

function of time. The dashed line

Be(rl); Be(r2) is close to the

I I I i I I I I I
(b)

anomalous

5

classlcal

I I I I 1 1 1 I

o 0.4 0.8 1.2 1.6 2.0
t

(b) rl and r2 as functions of time.

Fig, 12. Diffusion of pulsed magnetic field in Z-
pinch geometry with ~1 = 2, 92 = 0.02,

jc = 0.5, and Aj = 0.01. Boo = 1.5,
supercritical.
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B

1,0

0.8

0.6

0.4

C12

0.0

5

4

3
r

o 1 2
r

34 5

I I I

classical

0 I I I I I [ I I I

o 0.4 0.8 1.2 1.6 20

t

Fig. 13. Same as Fig. 12 with B90 = 1.0, subcritical

The results obtained in this section indicate

that large regions of both the theta and Z pinches

can become part of the transition region. The cur-

rent density can then be nearly uniform over a

1.

large portion of the discharges. This effect per-

sists in the limit Aj + O. It is related to the

fact that the magnetic flux must be conserved when

!-1~changes to VI.
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APPENDIX A

STABILITY OF THE EXPLICIT SCHEME IN THE TRANSITION REGION

We expand both Bn and B
n+ 1

to the third order

in (,xabout a mesh center point situated in the

transition region and write

B~+2 = a.

B~-; = a. + al
2

~x + a (fix)
2

n 2
‘i+3/2 = a. - al Ax + a2(!x)

and

B:~: = b.

B::! = b. + bl AX + b2(&x)
2

> (A-la)

> (A-lb)

> (A-lc)

> (A-2a)

, (A-2b)

. (A-2c)
n-l-l 2{X+b2(&x)

‘i+3/2 = ‘O - bl -

(14) and Eqs. (A-la) throughFrom Eqs. (13) and

(A-lc),

and

al -

P:+l =IIc+*(al-
After substituting Eqs,

the explicit difference

that

bo-ao=2~ta
2

[
@c +

jc +a2tix) (A-3a)

jc - a2Ax) ‘. (A-3b)

(A-la) through (A-3b) into

equation, Eq. (11), we find

A (2a1 - jc)
Aj 1

To determine the stability of the explicit

scheme, we add a small perturbation of wavelength

21x and amplitude Ca to Bn.

Thus ,

$

l’hen

and

(A-5a)

(A-5b)

(A-5c)

(A-6a)

(A-6b)

We assume that this perturbation gives rise to a

n+lsimilar perturbation s~inB , such that

B:: = b. + ~b (A-7a)
.

2
B~:~ = b. + bl @X+b2(Ax) - ~b , (A-7b).

and

B
n-l-l 2
i+3/2 = b.-bl3X+ b2(Ax) - cb . (A-7c)

Substituting Eqs. (A-5a) through (A-7c) into the

difference equation, Eq. (11), we obtain

(b. - ao) + (cb - Ca) =



We now subtract the unperturbed Eq. (A-4) from Eq.

(A-8), solve For Cb, and find

(A-9)

where

[

~.1.4L,J 1+*(2al - j=) (A-1O)(Ax)2c
Forstability, y must satisfy Iyl ~ 1, that is,

[ 14 ~ ,,=+ & (2a1 - jc) > 2 . (A-11)

(Ax)

The worst condition occurs for al = jc + Aj/2. The

stability condition then becomes

-&- <&
1

(Ax)
2 “c –

( -)

1+~ 1+;
1,
c

(A-12)

Equation (A-12) is plotted in Fig. A-1 where it is

compared against stability limits observed experi-

mentally on the computer.

I
AlPC(112

01

dol

0001

t

1’ -!

1
I I , , t I!1,, , 11, ,1111, [ 1I IIll-1

001 0.I g I 10

IC
Fig. A-1. Explicit stability limits of ~cht/(Ax)2

as functions of Aj/jc for several valuesofI!lf*c.Thecurves are calculated
fromEq. (A-12). The squares are limfts
observed with X2 - Xl = 2.04 and AX =
0.05.

APPENDIX B

STABILITY OF THE IMPLICIT SCHENE IN

We assume that the implicit difference equa-

tion, Eq. (12), has been solved exactly. f! ISII-I-1
thengivenbyIZqs. (A-2a) through (A-2c),

To

scheme,

Substituting Eqs. (A-1a) through (A-2c) and Eqs.

(B-1a) and (B-lb) into the difference equation, Eq.

(12), we find that

THE TRANSITION RECION

ml-l!li =PC+f!(bl-jc + b2 AX) > (B-la)

and

*1
Iii+l = Uc +fi(bl-jc-b2 Ax) . (B-lb) and

b -a=
o

[ 12&t b2~c+~(2bl-jc).
o (B-2)

determine the stability of the iteration

Eq. (17), we add a small perturbation of

wavelength 2Ax and amplitude . to the diffusion co-.P

efficient. Then

n-+-l,mI-Ii =p+~(bl -
C

jc + b2 {$X)+ i:

(B-3a)

n+l,m
‘ii-l

=I,c+fl(bl-j - b2 AX)-em.c ;1
(B-3b)

We assume that this perturbation causes a similar
n-l-lperturbation of amplitude ~b in B . Substituting

Eqs. (A-1a) through (A-lc), Eqs. (A-7a) through

12



(A-7c), as well as Eqs. (B-3a) and (B-3b) into the

implicit difference equation, Eq. (12), we find

that

b
{[

-ao+c~=2At b2 ~c+&(2b0 1 - jc)1

(B-4)

We subtract the unperturbed Eq. (B-2) from Eq.

(B-4), solve for c:, and obtain

(B-5

where

bl AX~=2_AL__

[ 1
(Ax)21+4~yc+fi(b1- jc) “

(Ax)

(B-6)

In terms of B*l’m,

-*l’m=”c+*Fl-jc+f2’x-2$Jlvi
(B-7a)

and

-n+l,m=Uc+~[bl- jc-(b2Ax-2$)]o
‘i+l

(B-7b)

With these coefficients and using Eq. (17),
n+l,mtl

P becomes

n+l,ml-1
Pi . vc+fl(bl-jc+b2Ax) +C~l

(B-8)

where

ml-l
CP

[ 1=c~(l-A)-2A&~ . (B-9)

For stability, it is necessary that

I mtl~cm,‘u P (B-1O)

that is,

(
Ali-2%~

AJ Ax)
52. (B-n)

Substituting for y, we obtain the stsbility

condition

2

4+5 1-1 .

(Ax)
( )[

bh-~.lAjA
1

1 wc+f$(bl -j)c

(B-12)

The right-hand side of this expression is smallest

for bl = j - 6j/2. The stability condition then
c

becomes

&

(Ax)
2PC5+5[(+$2]-(+”‘B-13)

Equation (B-13) is plotted in Fig. B-1 for

&l/uc = 1/1.5. It is compared against stability

limits observed experimentally on the computer.

k

0.00I 601 ~ o.I I

Fig. B-1. Implicit limits of ~cAt/(Ax)2 as func-
tions of Aj/j for several values of the
relaxation fa~tor A, with AU/vc = 1/1.5.
The curves are calculated from Eq. (B-13).
The squares are limits observed with

U1 =2,U2= 1, and Ax = 0.05.
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