

UNITED STATES ATOMIC ENERGY COMMISSION CONTRACT W-7405-ENG. 36 This report was prepared as an account of work sponsored by the United States Government. Neither the United States nor the United States Atomic Energy Commission, nor any of their employees, nor any of their contractors, subcontractors, or their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness or usefulness of any information, apparatus, product or process disclosed, or represents that its use would not infringe privately owned rights.

> Printed in the United States of America. Available from National Technical Information Service U. S. Department of Commerce 5285 Port Royal Road Springfield, Virginia 22151 Price: Printed Copy \$3.00; Microfiche \$0.95

LA-5051 UC-34 ISSUED: October 1972

Cross Sections and Analyzing Powers in Deuteron Elastic Scattering

,

by

R. A. Hardekopf
D. D. Armstrong
L. L. Catlin
P. W. Keaton, Jr.
G. P. Lawrence

.

CROSS SECTIONS AND ANALYZING POWERS IN DEUTERON ELASTIC SCATTERING

Ъу

R. A. Hardekopf, D. D. Armstrong, L. L. Catlin,

P. W. Keaton, Jr., and G. P. Lawrence

ABSTRACT

All tensor analyzing powers have been measured for 15-MeV deuterons elastically scattered from ⁴He, ⁵²Cr, ⁵⁶Fe, ⁶⁰Ni, ⁹⁰Zr, ¹²²Sn, and ¹⁹⁷Au. The results are presented in tabular and graphical form along with relative cross sections obtained for all but ⁴He.

INTRODUCTION

The data presented here were obtained as part of an investigation of the deuteron optical-model potential.^{1,2} A complete and consistent set of deuteron-scattering data on several nuclei at one energy were required for comparison with opticalmodel calculations.³ Although an optical-model fit to the deuteron differential cross section and analyzing tensors could be credible only if it spanned several energies as well as several atomic numbers, to date no one has obtained a fit to these five observables at a <u>single</u> energy for <u>any</u> target nucleus.

The data acquisition was made possible by the development at the Los Alamos Scientific Laboratory (LASL) of a high-intensity, Lamb-shift polarized ion source,⁴ a rotating scattering chamber, and rapid methods for reliable determination of all four analyzing powers in deuteron-induced reactions.^{3,5}

Except for helium, all targets were isotopically enriched metallic foils ~ 0.1 to 0.5 mg/cm² thick. The helium was contained at 1.0 atm in a gas-scattering cell made of 0.0025-mm-thick HAVAR* foil.

*HAVAR is the trade name of a high-tensile-strength alloy manufactured by the Hamilton Watch Co. Four detector telescopes at azimuthal positions corresponding to left, right, up, and down were used. The LASL tandem on-line computer controlled the reaction-chamber rotation sequence, the deuteron-beam nuclear magnetic substate, $m_{\rm I}$, and measurament of the beam polarization.⁵ Beam polarizations⁶ of typically 80% $m_{\rm I}$ = +1 or 0, were used for the measurements. The notation and coordinate systems used are consistent with the Madison Convention.⁷

The data are presented both in tabular form and graphically. We assign an absolute uncertainty of ± 0.02 to all of the analyzing-power data. Statistical uncertainties for these data were generally less than ± 0.01 . Only relative differential cross sections were measured, and these data are assigned a relative uncertainty of 5%. This estimate includes contributions from counting statistics as well as beam integration and dead-time correction. The cross-section angular distributions have been normalized to opticalmodel predictions.³

REFERENCES

- P. W. Keaton, Jr., E. Aufdembrink, and L. R. Veeser, Los Alamos Scientific Laboratory report LA-4379-MS (1970).
- 2. P. W. Keaton, Jr., and D. D. Armstrong, to be published.

- 3. D. D. Armstrong, R. A. Hardekopf, and P. W. Keaton, Bull. Am. Phys. Soc. 17, 686 (1972); and to be published.
- 4. J. L. McKibben, G. P. Lawrence, and G. G. Ohlsen, Third Symposium Polarization Phenomena in Nuclear Reactions (Univ. of Wisc. Press, Madison, 1971) p. 828; G. P. Lawrence, G. G. Ohlsen, and J. L. McKibben, Phys. Letters 28B, 594 (1969).
- 5. G. P. Lawrence, G. G. Ohlsen, J. L. McKibben, P. W. Keaton, Jr., and D. D. Armstrong, Third

Symposium Polarization Phenomena in Nuclear Reactions (Univ. of Wisc. Press, Madison, 1971) p. 855.

...

ų,

- 6. G. G. Ohlsen, G. P. Lawrence, P. W. Keaton, Jr., J. L. McKibben, and D. D. Armstrong, ibid., p. 842.
- 7. Madison Convention, ibid.

DEUTERON FL	ASTIC SCATTERING	DN HELIUM	-4 AT 15	MEV	OFILT	EPON ELASTIC	SCATTERING	ON CHROMI	1M-52 AT	15 MEV
THETAICHI	A1Y1	A1271	A1X21	.5A(XX-YYI	THETAICHE	(44/591	A1Y)	A(22)	A (X 7 1	.5A(XX-YY)
29.91	014	007	.06A	090	11.39	40670.000				
37.24	054	06A	.070	138	12.44	18067.000				
44.57	227	106	.940	240	15.5A	7794.000				
48.16	429	197	.004	292	20.76	2232.000				
51.7A	6A9	318	113	353	25.94	532.800				
55.32	764	404	131	257	31.11	166.900				
58.87	-,575	264	072	099	36.27	125.200				
62.38	119	131	.011	.061	41.47	48.960	.027	079	.006	017
65.A4	142	.014	.0A7	-130	46.57	51,500	003	004	007	014
72.67	.051	.102	.203	.243	51.70	27.710	07#	.015	.044	060
79.34	-099	.1AA	.273	.335	56.82	14.450	199	.077	.095	044
85.63	.063	.200	263	.413	61.92	9,621	224	.003	.0A7	026
92.13	00A	.146	.252	.459	67.01	5,882	- 045	016	.039	092
98.22	096	.203	.251	.510	72.09	1, 175	.744	.02A	.003	080
104-08	194	.744	.231	.529	77.15	2.484	. 298	.040	096	025
109.71	- 292	.253	.211	.529	A2.19	2.91A	.043	.027	054	.015
115-08	374	.235	189	.480	87.21	3.005	191	019	005	023
120.21	191	.749	.147	.414	97.77	2.4R0	146	123	.004	107
125.08	747	.237	.138	.261	97.21	1.461	445	173	.049	192
129.71	177	.714	.124	.050	102.19	.603	338	-,276	.137	291
134-08	.986	.166	.084	173	107.15	. 372	. 183	.0+0	003	105
138.22	. 175	.157	.077	337	112-09	.513	.494	.172	074	022
142-13	.578	.112	.059	447	117.01	.757	.176	.139	055	. 720
145-83	.685	.100	.949	450	121.92	.859	098	001	036	037
149-34	.692	.117	-116	392	126.A2	.818	333	085	063	052
152.67	-64R	.124	.082	313	131.70	.555	521	237	058	125
155-84	- 405	.071	.000	252	136.57	. 356	640	371	043	748
161-78	+ 12	079	.074	124	141.43	.206	502	- 385	- 106	- 274
167-28	- 314	.093	-042	072	146.27	.148	.102	.032	.025	.013
• • • • •					151.11	.169	. 401	-417	-207	. 30 9
					155.94	. 223	. 189	-286	.146	.277

116.76 121.68 126.59 131.49

136.37 150.97 155.82

1.014

1.206 1.063 .815 .505 .316 .261 .306 .385

.417

DEDTERON FLASTIC SCATTEPING ON 1PON-56.AT 15 MEV

THETALCHI	(48/50)	A1Y)	A(ZZ)	A1XZ)	.54(XX-YYI
10.36	48670.000				
12.43	22620.000				
15.57	9747.000				
20.71	2719.000				
25.A7	669.900				
31.03	236.600				
36.18	172.400				
41.33	120.100	003	022	.007	025
46.46	AD. 770	011	006	.002	042
51.5#	27.240	065	.020	-041	040
56.69	14.4=0	134	.074	.075	042
61.79	16.450	077	.027	.063	048
66.47	7.694	.076	.003	.041	038
71.94	5.276	.190	.015	.010	059
76.99	4.115	.105	001	000	015
82.03	з. 688	115	024	074	.041
87.06	2.892	269	067	-014	056
92.06	2.116	119	125	.072	095
97.04	1.064	744	0.000	.070	158
102-03	.554	.205	0.000	.036	036
106.99		.400	0.000	058	.132
111.94	. 816	•17A	0.000	061	.035
116.87		062	0.000	004	052
121.79	,R77	748	6.000	.000	157
126.69		191	0.000	.023	194
131.58	. 405	4 75	0.000	009	254
136.46		277	0.000	.029	195
141.33	.171	•152	0.000	001	035
146.18		. 136	0.000	.039	.270
151.07	.744	•16A	0.000	.018	.305

DEUTERON	FLASTIC.	SCATIFPING	ON VICKEL+60	15 MEV

0.000 -.015 -.025

-.0×8 -.0×5 -.0×7 .0×7 .0×7 .0×7 .0×7 .1×7 .117 .007

-.150 -.264 -.361 -.238 .136 .322 .309

.202

-.044

-.106 .030 .101 .080

-.146 -.214 -.329 -.326 -.015 .146 .155

-145 -10A

.03h .079 .093 .n54 -.n24 -.n14 -.004

-.004 .017 .029 .103 .041 .030 -.027

-.05A -.0AA

DEILLE THETALCHI 144/50) A1#71 .5A1XX-YY1 A171 41271 141.004 70.440 29.002 17.050 14.177 11.801 4.507 3.104 4.507 3.111 1.920 1.209 -.022 -.042 -.042 -.027 .013 -.011 -.021 -.037 -.020 -.044 -.075 -.052 .027 .045 41.25 44.37 51.49 56.59 61.76 71.82 76.87 81.93 91.94 91.94 91.94 101.91 106.87 111.82 .005 .017 .046 -.01A -.01A -.002 .056 .011 .010 .034 .047 .047 .019 .007 .010 .035

.045 .041 -.042 -.237 -.180 .144 .327 .1580 -.373

-.040 -.272 -.398 -.493 -.097 .316 .398 .202

-.074

2

OFHIERON ELASTIC SCALTERING ON ZIRCHNIN-ON AT 15 HEV			15 MEV	DEBTERIN FLANTIC SCATINGING ON TIN-122 AT 15 MEV							
THF T& (C**)	144/58)	A1Y)	41271	A1X7)	•HA (XX-YY)	THE TAICH)	1***/583	411)	A1771	A (X Z)	.5A1×X-YY1
10.22	155700.000					40.61	17%.609	- 024	014	. 027	004
12.27	AP110.000					45.47	195.433	04 1	. 0 2 0	.033	016
15.17	26540.010					59.71	103,158	049	-016	028	020
20.44	7A14.000					55.79	59,145	-002	-014	. 0.19	018
25.54	2497.000					60.83	39.763	.045	.003	026	025
30.64	857.800					65.46	29 A22	-046	- 006	015	- 011
35.74	417.100					70.90	22, 121	121	003	- 006	008
40.83	1 19.200	017	.005	.047	047	75.92	10.176	- 074	006	0.24	- 025
45.91	106.300	.051	008	.021	035	R0.94	9.45.	0	.003	061	026
50.94	5H. AAO	.034	.005	00A	004	A5.95	5, 896	-006	.016	060	006
56.05	54.570	054	.005	.001	.009	90.95	•• •• 74	.153	-0.28	. 1154	011
61.11	19,160	- 155	022	.061	054	95,94	4. 16 3	.077	008	.009	- 0.09
66.16	19.030	201	014	.094	053	109.94	4.116	029	- 011	007	013
71.21	4.075	034	.006	.034	116	105.92	3.103	130	044	.020	020
76.74	6.197	.10.	.026	005	023	110.90	2,250	137	044	.072	037
81.26	7.424	.102	.030	046	.061	115.46	1.447	. 00'+	- 045	100	042
86.28	7.891	056	.012	946	.052	120.43	1.160	. 1A'	- 00#	0.74	-004
91.28	6.055	217	069	.005	054	125.7A	1.129	.171	.034	.031	-015
96.28	3.663	354	118	.051	10A	130.73	1.140	.942	.010	.006	-013
101.26	1.751	30A	160	.099	181	135.67	1.112	040	9.24	- 403	024
106-24	1.047	.142	.002	.071	125	140.61	. 444	164	047	.011	036
111+21	1.136	. 151	.1A7	012	.098	145.55	. 77>	125	070	.044	058
116-16	1.523	.154	-109	037	.040	150.48	.605	01H	056	.031	024
121+11	1.521	040	.007	.052	032	155.40	.572	.132	041	. 149	.049
126.05	1.361	312	127	020	108						
130.94	.976	44 3	- , 277	043	268						
135.91	. 4 75	389	336	.04A	27A						
140.43	.416	914	130	.033	153						
145.74	. 774	. 119	.247	.074	.194						
150.64	. 171	.236	.415	.043	.294						
155.54	.453	109	.255	066	.289						

OFOTEDON FLASTIC SCALLEDING OF GDID-197 AT 15 YOU

1HF TA 1(H)	1	A1Y)	A1771	A(27)	-21XX-YY)
10.10	NH4720.000				
12.17	307430.000				
15.15	114400.000				
20.20	75540.1196				
25.25	14457.00				
30.29	70 11.000				
40.74	1434.000	004	.004	. nn4	012
45.41	10+5.000	006	005	005	n0e
50.45	607.400		.005	7	024
55.4A	371.200	007	002	0.00	*11
60.50	272.400	010	.007	.01*	017
65.53	156.206		014	.0n×	025
70,55	113.600	00.4	00/	-1015	014
75.57	77.446	013		.0n×	012
80.54		-1014	004	010	011
85.54	14,280	01*	003	.012	.014
90.59	25.310	.005	007	.025	.00 T
95.58	21.550	. 36 .	*0 G.M.	.024	.00*
100.58	17.200	011	.012	.032	023
105.57	14.100	.010	001	.004	020
110.55	10-040	021	005	, 174	015
115.53	H_AH4		01+	.007	.610
120.51	7.41.	061	011	.011	.02A
125.48	A.217	• 0 > 0	024	•114	.027
130.45	5 . 53k	.003	005	• n 1 ^µ	022
135.41	5.122	00 -	0.0	. ^ ? ?	.007
140.77	•••14	01 +	•124	- 020	.002
145.34	7,-157	014	n 1×		•00•
150.29	7.462	004	055	.01M	.020
155.25	1.125	-002	010	.017	.014
160.20	3,063	.007	0 IR	.014	010

•

1

.

•

Ŷ

4

KT: 480 (204)