ATW Simulations and the Role of Nuclear Cross-Section Data

Holly Trellue TSA-10, Nuclear Systems Design & Analysis Los Alamos National Laboratory October 31, 2000 LA-UR-00-5448

Assumptions for Current ATW Design

- Cylindrical lead-bismuth-eutectic (LBE) target (18 to 25 cm in radius) with proton beam entering from top
- Hexagonal/cylindrical blanket surrounds target (radius ~100 cm)
- Blanket consists of actinide/zirconium fuel rods with stainless-steel (SS) cladding and LBE coolant (this may be changed to sodium)
- ATW fuel is plutonium and minor actinides plus 0.005% residual uranium in transuranic (TRU) fuel from light-water-reactor(LWR) spent fuel

Neutronics Issues

- As material is burned, so are fissile isotopes, and the effective multiplication factor (k_{eff}) drops
- To maintain chain reaction/power, (1- k_{eff}) fraction of neutrons must be produced by accelerator – higher (~0.95 to 0.97) and more stable k_{eff} preferred
- The harder (faster) the spectrum, the higher the actinide fission-to-capture ratio, which allows more effective transmutation
- Once the system is started, fission products and uranium are removed each cycle (4-6 months) and new actinides added until an equivalent amount of each actinide added is burned (steady state)

Sample Composition of ATW Fuel

lsotope	Average Core Composition
U-238	0.17
Np-237	3.36
Pu-238	5.95
Pu-239	27.29
Pu-240	35.68
Pu-241	5.46
Pu-242	10.12
Am-241	6.15
Am-242m	0.54
Am-243	1.90
Cm-242	0.43
Cm-243	0.03
Cm-244	2.15

АТИ

Cross-Sectional View of LBE Target/Blanket Configuration

Cross-Section Studies

- Isotopes Examined
 - Pu-238
 - Pu-239
 - Pu-240
 - Pu-241
 - Pu-242

- Np-237
- Am-241
- Cm-242
- Cm-244
- Libraries
 - JEF-2
 - JENDL-3.2
 - BROND-2
 - CENDL-2

For each MCNP run, the library of one isotope was changed, with ENDF-VI libraries being the default

Parameters Examined

- k_{eff} and assoc. error
- Delayed Neutron Fraction (β)
- v number of neutrons generated per fission
- Capture and Fission Cross Sections
- Fission-to-Capture Ratio
- Void Reactivity Coefficient (0 and 10% coolant)
- Temperature Reactivity Coefficient (980K 1580K)
- Remember: Statistics DO affect results!!! (this contributes to large changes in void react. coeff. and positive temp. react. coeff.)

Basecase Parameters

- k_{eff} = 0.95726
- β = 0.00418 = one \$ in further reactivity calculations
- v = 3.01
- σ_c = 0.117 barns
- σ_f = 0.145 barns
- Temperature Reactivity Coeff = -\$0.18
- Void Reactivity Coeff = -\$75
- 10% Coolant Reactivity Coeff = -\$63.5

measure	JEF	JENDL	BROND	CENDL
keff	0.95037	0.957	0.95117	0.9573
error	0.00165	0.0018	0.00194	0.00199
capt. xs	0.12481	0.12461	0.12677	0.1233
fiss. xs	0.16964	0.16868	0.16862	0.16985
fiss/capt	1.35927	1.35364	1.33014	1.37757
nu	3.00617	3.00915	3.00148	3.0032

measure	JEF	JENDL	BROND	CENDL
keff	0.9504	0.95035	0.96168	0.95388
error	0.00185	0.00167	0.00155	0.0016
capt. xs	0.12763	0.12759	0.12729	0.12487
fiss. xs	0.16868	0.16782	0.16899	0.16824
fiss/capt	1.32159	1.31529	1.32762	1.34726
nu	3.00227	3.00506	3.02187	3.0069

Np-237

measure	JEF	JENDL	CENDL
keff	0.95593	0.95771	0.95489
error	0.00184	0.00188	0.00186
capt. xs	0.12489	0.12456	0.12392
fiss. xs	0.16898	0.16905	0.16889
fiss/capt	1.3531	1.35722	1.36298
nu	3.01574	3.0094	3.00781

Am-241

measure	JEF	JENDL	CENDL
keff	0.95626	0.95531	0.95798
error	0.00181	0.00184	0.00228
capt. xs	0.12561	0.12207	0.1244
fiss. xs	0.16881	0.16878	0.16896
fiss/capt	1.34395	1.38261	1.35825
nu	3.00767	3.0044	3.00713

Cm-242

measure	JEF	JENDL	BROND
keff	0.95699	0.95791	0.95257
error	0.00166	0.00211	0.00168
capt. xs	0.12487	0.12516	0.12406
fiss. xs	0.16948	0.1694	0.16929
fiss/capt	1.35727	1.35349	1.36454
nu	3.01205	3.01078	3.00932

Cm-244

measure	JEF	JENDL	BROND
keff	0.95494	0.95836	0.95639
error	0.00164	0.00183	0.00184
capt. xs	0.12397	0.12368	0.12352
fiss. xs	0.16894	0.169	0.16883
fiss/capt	1.36278	1.36641	1.3668
nu	3.00381	2.99994	3.02053

measure	JEF	JENDL	BROND
keff	0.9564	0.95914	0.95947
error	0.00169	0.00174	0.00166
capt. xs	0.12284	0.12322	0.12247
fiss. xs	0.16919	0.169	0.16877
fiss/capt	1.37732	1.37152	1.37801
nu	3.00717	3.00078	2.996

measure	JEF	JENDL	BROND
keff	0.95531	0.95252	0.95703
error	0.00179	0.00158	0.00186
capt. xs	0.12593	0.12493	0.12407
fiss. xs	0.16886	0.16893	0.16876
fiss/capt	1.34088	1.35216	1.36019
nu	3.00828	3.00385	3.01076

measure	JEF	JENDL	BROND
keff	0.95366	0.94999	1.03128
error	0.00173	0.00178	0.00202
capt. xs	0.12507	0.12443	0.11645
fiss. xs	0.16904	0.16852	0.19241
fiss/capt	1.35163	1.35435	1.65222
nu	3.00299	3.0102	2.97714

Conclusions

- Variances are seen by using different libraries
- Cross-section libraries had largest effects on most abundant isotopes (Pu-240 is best example)
- Pu-242's BROND library showed greatest deviation in k_{eff}
- Better accuracy is needed to reduce statistical effects

