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Executive Summary

We present a derivation and a demonstration of the Equilibrium Discrete Di�usion Monte
Carlo (EqDDMC) method for 1-D di�usion problems in which the radiation �eld coexists with
matter in local thermodynamic equilibrium. Our goal is to demonstrate the e�cacy of the
EqDDMC method on simple slab problems as a �rst step toward applying Discrete Di�usion
Monte Carlo to non-equilibrium di�usion.

1. Introduction

Urbatsch, Morel and Gulick [1, 2] have developed a spatially discretized, hybrid di�usion Monte
Carlo method for neutronics calculations. This method has been called Discrete Di�usion Monte
Carlo (DDMC). The general description of this method is that Monte Carlo particles traverse
discrete space according to a single-cell, deterministic, di�usion solution. The intent has always
been to apply this method to di�usive regions of thermal radiative transfer problems. In particular,
we have hypothesized that this method could prove to be an e�ective replacement for the Random
Walk method [3] in Implicit Monte Carlo [4]. This study represents the �rst e�ort at applying the
DDMC method to radiative transfer problems.

In this research note, we derive an Equilibrium Discrete Di�usion Monte Carlo (EqDDMC) method
and demonstrate its properties on simple slab problems. This study foreshadows the development
of multidimensional DDMC in general thermal radiation-hydrodynamics problems.

2. The Equilibrium Di�usion Equations

Morel, Wareing, and Smith [5] have derived asymptotically the equilibrium di�usion equation,

(Cv + 4aT 3)
@T

@t
�

@

@x

4acT 3

3�R

@T

@x
= 0 ; (1)

where Cv�Cv(x; T (x; t)) [jerks � cm
�3 � keV�1] is the speci�c heat capacity of the material, a =

0:01372 [jerks � cm�3 � keV�4] is the radiation constant, c = 299:79 [cm � sh�1] is the vacuum light
speed, and T � T (x; t) [keV] is the temperature that characterizes both the radiation and the mate-
rial. The opacity, �R��R(x; T (x; t)) [cm�1], is the Rosseland Mean opacity. Equation (1) is de�ned
without external sources. Additionally, we can de�ne a di�usion coe�cient, D � D(x; T (x; t)) [cm],
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as follows,

D =
1

3�R
: (2)

The left-most term in Eq. (1) represents the radiation-material coupling. The equation is non-linear
in temperature, both from terms containing T explicitly and implicitly through �R and Cv.

The di�usion approximation results by assuming that the radiation intensity,  , is linear in angle
such that the �rst two angular moments of the radiation intensity are conserved,

 (x; �; �; t)!
1

2
[�(x; �; t) + 3�F (x; �; t)] ; (3)

where �(x; �; t) is the scalar radiation intensity and F (x; �; t) is the radiation 
ux, de�ned as the
zeroth and �rst angular moments, respectively, of the radiation intensity,

�(x; �; t) =

Z 1

�1
 (x; �; �; t)d� ; (4a)

F (x; �; t) =

Z 1

�1
� (x; �; �; t)d� : (4b)

When the radiation �eld coexists with matter in complete thermodynamic equilibrium at temper-
ature T , the radiation intensity is independent of space, direction, and time, and is given by the
Planck function

 (�) = B(�; T ) : (5)

The Planck function (or Planckian) is de�ned as,

B(�; T ) =
2h�3

c2

�
e
h�

kT � 1
�
�1
; (6)

where h is Planck's constant and k is the Boltzmann constant.

In local thermodynamic equilibrium (LTE), when gradients are small over characteristic lengths
and time (a condition that is valid in the di�usion approximation), the radiation intensity can be
written as (see [6], p.328)

 (x; �; t) = B(�; T ) ; (7)

where T � T (x; t). The assumption of LTE will continue to hold through the remainder of this
note.

Using Eqs. (4) and (7), we de�ne the gray (i.e., integrated over all photon frequencies �) scalar
radiation intensity; this links the scalar intensity to the fourth power of the temperature,

�(x; t) =

Z
�

4�B(�; T )d�

= acT 4 :

(8)
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The Marshak boundary condition [7] su�ces for this work,

4F (�)(x) = �(x) +
2

3�R

d�(x)

dx
n � i : (9)

We consider the incoming partial 
ux for three speci�c conditions: (1) if the boundary condition
is re
ecting, the incoming partial 
ux is equal to the outgoing partial 
ux; (2) if the boundary
condition is vacuum, the incoming partial 
ux is zero; (3) if the boundary condition is de�ned by
a black body at temperature TB at the boundary, the incoming intensity is Planckian and the
incoming partial 
ux is �T 4

B [6], where � = 1
4ac is the Stefan-Boltzmann constant. In summary,

F (�) =

8><
>:
F (+) re
ecting

0 vacuum

�T 4
B black body

: (10)

Finally, Fick's Law relates the radiation 
ux and the gray scalar radiation intensity,

F (x; t) = �D
@�(x; t)

@x
: (11)

Fick's law will be used extensively in the derivation that follows in x 3.1.

In what follows, we shall de�ne Eq. (1) in terms of T 4 instead of T . Thus, using the transform

@T =
1

4acT 3
@� ; (12)

we write Eq. (1) in the following form,� Cv

4acT 3
+

1

c

�@�
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= 0 ; (13)

whereby Eq. (1) is transformed into a 1-D equilibrium di�usion equation for the gray scalar radiation
intensity. Equation (13) will be used in the following section to derive the 1-D EqDDMC method.

3. 1-D EqDDMC Method

In this section we shall derive the EqDDMC method. The �rst part will consist of deriving the 1-D
EqDDMC equation from the equilibrium di�usion equation, Eq. (13), given in x (2). The second
part will describe the Monte Carlo implementation of the method.

3.1. 1-D EqDDMC Equations

Equation (13) must be linearized before it can be solved with standard Monte Carlo techniques.
We shall linearize the equilibrium di�usion equation by using the following time discretization,

� Cn
v

4acTn 3
+

1

c

��n+1 � �n

�t
�

d

dx
Dn d�

n+1

dx
= 0 (14)
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FIG. 1: Spatially discretized cell. Fluxes superscripted by a (-) sign are incoming, and 
uxes
superscripted by a (+) sign are outgoing.

and by evaluating T 3, Cv, and D at the beginning of the timestep, tn. Thus, Eq. (14) is time-
implicit in �, but it is time-explicit in T 3, Cv, and D. Also, Eq. (14) is linear in each timestep,
where the (n+ 1)th timestep is de�ned over a time �t = tn+1 � tn.

The time-derivative of � on the left-hand side of Eq. (14) can be subdivided into an implicit and
explicit portion. The explicit portion, which is evaluated at tn, can be moved to the right-hand
side of Eq. (14) as an explicit source,

� Cn
v

4acTn 3�t
+

1

c�t

�
�n+1 �

d

dx
Dnd�

n+1

dx
=
� Cn

v

4acTn 3�t
+

1

c�t

�
�n : (15)

To begin a spatial treatment of Eq. (15), consider the 1-D cell shown in Fig. 1. First, D and Cv are
de�ned constant in a cell. Operating on Eq. (15) with

R xr
xl
(�)dx and utilizing Fick's Law, Eq. (11),

yields � Cn
v

4acTn 3
c �t

+
1

c�t

�
�n+1c �x+
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� Cn

v
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c�t

�
�nc�x ; (16)

where �n+1c = 1
�x

R xr
xl
�n+1dx, �nc = 1

�x

R xr
xl
�ndx, and Tn

c = 1
�x

R xr
xl
Tndx. Evaluating the integral

term and recognizing that the parenthetical expression is a material coupling coe�cient that acts
like an absorption/emission cross section, Eq. (16) becomes

~�nc �
n+1
c �x+ Fn+1

r � Fn+1
l

= ~�nc �
n
c�x ; (17)

where

~�nc =
� Cn

v

4acTn 3
c �t

+
1

c�t

�
[cm�1] ; (18)

�nc = acTn 4
c [jerks � cm�2 � sh�1] ; (19)

Dn =
1

3�nR
[cm] : (20)

Equation (17) is a photon balance equation, which states that the photon absorption at time tn+1

and the sum of the net (outgoing) 
uxes on the cell-edges is equal to the material radiation emission
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in the cell at time tn. To complete the EqDDMC description, we must derive expressions for the
cell-edge 
uxes. In particular, we want the cell-edge 
uxes to be de�ned in terms of the incoming
partial 
uxes at the cell-edges. The incoming partial 
uxes will be represented in the EqDDMC
algorithm by the weights of Monte Carlo particles entering a cell.

We can write discretized expressions for the cell-edge 
uxes by utilizing Fick's Law. We apply
forward-di�erencing to Eq. (11) yielding

Fn+1
r =

�2Dn
c

�x
(�n+1r � �n+1c ) ; (21a)

Fn+1
l

=
�2Dn

c

�x
(�n+1c � �n+1

l
) : (21b)

Discretizing the Marshak boundary condition, Eq. (9), while considering Fick's Law, Eq. (11),
yields expressions for the cell-edge incoming 
uxes at each side of the cell

F (�)n+1
r =

1

4
�n+1r �

1

2
Fn+1
r ; (22a)

F
(�)n+1
l

=
1

4
�n+1
l

+
1

2
Fn+1
l

: (22b)

Eliminating the cell-edge scalar intensities between Eqs. (22) and (21) results in the following
expressions for the cell-edge 
uxes,

Fn+1
r =

2Dn

�x+ 4Dn
�n+1c �

8Dn

�x+ 4Dn
F (�)n+1
r ; (23a)

Fn+1
l

=
8Dn

�x+ 4Dn
F (�)n+1
l

�
2Dn

�x+ 4Dn
�n+1c : (23b)

Thus, forms for Fn+1
r and Fn+1

l have been derived that are functions of the incoming partial 
uxes.

Using Eqs. (23) and (17), an expression for the cell-centered scalar radiation intensity, in terms of
the incoming partial 
uxes, is

�n+1c =
h
~�nc�x+

4Dn

�x+ 4Dn

i
�1h

~�nc �
n
c�x+

8Dn

�x+ 4Dn
(F (�)n+1

r + F
(�)n+1
l

)
i
: (24)

In the EqDDMC algorithm, partial incoming 
uxes, F (�)n+1
r and F

(�)n+1
l

, will be represented on
the 
y by Monte Carlo particles. The other quantities in Eq. (24), ~�nc , �

n
c , and D

n, are all explicit
at time tn and can be calculated using Eqs. (18), (19), and (20), respectively, with the results from
the previous timestep.

Equation (17) shows that knowledge of the cell-edge 
uxes is required to solve the di�usion problem.
Since incoming partial 
uxes are represented by Monte Carlo particles, expressions for the outgoing
cell-edge partial 
uxes are necessary to solve the balance equation. Using the de�nition of the
radiation 
ux in Eq. (4), the net 
ux (in the forward or � > 0 direction) can be de�ned as

F (x) =

Z 1

�1
� (x; �)d�

= �

Z 0

�1
j�j (x; �)d�+

Z 1

0
j�j (x; �)d� :

(25)
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Applying Eq. (25) at the right- and left-hand boundaries of a cell produces the following discrete
expressions for the cell-edge 
uxes:

Fn+1
r = F (+)n+1

r � F (�)n+1
r ; (26a)

Fn+1
l = F

(�)n+1
l � F

(+)n+1
l : (26b)

Equations for the outgoing cell-edge 
uxes can now be formulated by use of Eqs. (26) and (23),

F (+)n+1
r =

2Dn

�x+ 4Dn
�n+1c +

�x� 4Dn

�x+ 4Dn
F (�)n+1
r ; (27a)

F
(+)n+1
l

=
2Dn

�x+ 4Dn
�n+1c +

�x� 4Dn

�x+ 4Dn
F

(�)n+1
l

: (27b)

Note that, aside from physical and computational parameters, these expressions for the outgoing
partial 
uxes are dependent only upon the cell-centered scalar intensity and incoming partial 
uxes.

To complete the derivation of the EqDDMC equations, the net cell-edge 
uxes in Eq. (17) must be
evaluated in terms of incoming and outgoing partial 
uxes. This is accomplished by substituting
Eq. (26) into (17) yielding

~�nc �
n+1
c �x+ F (+)n+1

r + F
(+)n+1
l = ~�nc �

n
c�x+ F (�)n+1

r + F
(�)n+1
l : (28)

This balance equation states that the e�ective absorption of photons through the ~�nc term and the
sum of the outgoing partial 
uxes are equal to the contributions from the time-explicit source and
the incoming partial 
uxes. Equations (24), (27), and (28) form the basis of the EqDDMCmethod.
We will now explain how these equations are used to solve the 1-D equilibrium di�usion problem
stochastically.

3.2. EqDDMC Implementation

The source terms are represented by the particle weights, w, of the Monte Carlo particles. Relying
on the linearity of the solution in each source term, the particle weight can be written as

w = F (�)n+1
r + F

(�)n+1
l

+ ~�nc �
n
c�x ; (29)

where only one of the three terms on the right-hand side is nonzero at any given time in the life of
the particle:

F (�)n+1
r =

(
w if entering from the right;

0 otherwise;
(30)

F (�)n+1
l

=

(
w if entering from the left;

0 otherwise;
(31)

~�nc �
n
c�x =

(
w if born in the cell at time tn;

0 otherwise:
(32)
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Dividing Eq. (28) by the total source in the cell (i.e., RHS of equation) yields the following proba-
bility equation,

~�nc �
n+1
c �x

Stotal
+
F

(+)n+1
r

Stotal
+
F

(+)n+1
l

Stotal
= 1 (33)

where Stotal � ~�nc �
n
c�x+ F

(�)n+1
r + F

(�)n+1
l

. The probability equation can also be expressed as

Pabs + Pleak r + Pleak l = 1 (34)

where the probabilities for absorption and leakage are as follows:

Pabs =
~�nc �

n+1
c �x

Stotal
; (35)

Pleak r =
F

(+)n+1
r

Stotal
; (36)

Pleak l =
F

(+)n+1
l

Stotal
: (37)

This probability equation completes the mathematical description of the EqDDMC method. We
shall now proceed to outline the method.

We have derived the EqDDMC equations such that the problem is linear in a single timestep. Thus,
N particles are sampled each timestep and the cell-centered scalar intensities are output at the end
of each timestep. In a timestep, the EqDDMC method is performed in the following steps:

1. sample one particle (cell and weight) from the source:

(a) time-explicit volume emission from ~�nc �
n
c�x;

(b) surface source boundary condition, F (�)n+1
boundary

;

2. calculate �n+1c using Eq. (24);

3. calculate the outgoing partial 
uxes using Eqs. (27);

4. calculate the probabilities for e�ective absorption, right-, and left-leakage using Eqs. (35),
(36), and (37), respectively;

5. accumulate the cell-centered scalar intensities at time tn+1;

6. if the particle is absorbed or leaks out of the system, the particle history is complete; start a
new particle (go to step 1);

7. if the particle leaks into an adjacent cell, go to step 2;

8. When all the particles have been processed, divide the accumulated cell-centered scalar in-
tensities by the total weight of source particles (i.e., the total energy in the system at time
tn) to get the total cell-centered scalar radiation intensity.

This concludes the description of the 1-D EqDDMC method.
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4. 1-D EqDDMC Test Code

We have implemented the EqDDMC method, as outlined in the foregoing section, in a Fortran
1-D test code. This so-called \eqddmc" test code is an adaptation and extension of the analogous
\ddmc" suite of Fortran routines developed by Urbatsch, Morel and Gulick [1, 2] for neutronics
calculations.

The eqddmc code retains the geometry capability, an adaptation of the source normalization,
and an adaptation of the Monte Carlo estimation algorithms of the ddmc routines. Additionally,
eqddmc incorporates new algorithms required by EqDDMC, including the time-stepping and all
the necessary updating of time-explicit quantities.

5. 1-D EqDDMC Test Problems

The EqDDMC method was tested on two simple, degenerate problems.

Test Problem 1. Initial Uniform Nonzero Temperature in a Homogeneous In�nite Medium.
The problem speci�cation is modeled by a �nite slab, with re
ecting boundary conditions, at a
given temperature. As de�ned, this problem is in steady-state. Computationally, the temperature
should not change over time except for statistical 
uctuation.

Test Problem 2. Spatial and Temporal Equilibration of Temperature.
This test problem is somewhat less degenerate and, as such, more interesting and evaluative than
the �rst problem. Again, the boundary conditions are re
ecting, but the initial temperature is not
uniform. Over time, the temperature should equilibrate to a temperature that is characteristic of
the total energy in the system. The detailed problem speci�cations are as follows:

Geometry: 10 cells in a one-region homogeneous slab;

Dimensions: 0 < x < 2 [cm]; �xcell = 0:2 [cm];

Boundary Condition: re
ecting on both sides of slab;

Initial Condition: Tinitial(x) = 0:8 + 0:1x [keV];

Physical Properties: �R = 10:0 [cm�1]; � = 1:0 [g � cm�3]; Cv = 0:01 [jerks � cm�3 � keV�1];

Execution Parameters: 500 timesteps; �tstep = 0:001 [sh]; 106 particles per step.

6. Results and Discussion

Test Problem 1 was run with the eqddmc code. Except for statistical 
uctuation, the temperature
remained constant over time, as required.

Test Problem 2 was run with the eqddmc code, and, for comparison, with the Milagro IMC code [8].
Figure 2 focuses on the spatial equilibration of temperature as computed by the eqddmc code.
The results of both runs are compared in Fig. 3, focusing on the temporal equilibration of the
temperature in the �rst and last (tenth) cells.
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FIG. 2: Temporal equilibration of temperature as a function of position, as computed by EqDDMC.

The analytical �nal equilibrated temperature was computed to be Tf = 0:906 [keV], and is repre-
sented in Fig. 3 as the solid horizontal line. Recall that the �nal temperature should not be the
average of the initial-condition temperature pro�le, because it is the energy (� aT 4) that is being
conserved.

At 0:3 sh, the Milagro IMC result had a 1:02% energy error (gain). The temperature corresponding
to the total initial energy plus a 1:02% gain is 0:908 keV and is plotted as a dashed line in Fig. 3.

The eqddmc code converges to the equilibrium temperature. Moreover, the temporal equilibration
for the eqddmc-code result compares favorably with its Milagro benchmark counterpart, which
lends credence to the EqDDMC method.

7. Conclusion

The Discrete Di�usion Monte Carlo (DDMC) method, a hybrid Monte Carlo method for time-
independent neutronics calculations, has been applied to equilibrium di�usion radiative transfer.
This new method, Equilibrium Discrete Di�usion Monte Carlo (EqDDMC), has been derived and
outlined for one-dimensional, slab geometry. The new method has been successfully tested on two
di�erent benchmark problems and showed good agreement with analytical results and with an
existing, veri�ed Implicit Monte Carlo radiative transfer code.

The EqDDMC method, when extended to multidimensions, may be a competitive tool compared
to deterministic di�usion, especially since EqDDMC is a candidate for exponential convergence
with residual methods. Finally, EqDDMC is the �rst signi�cant step toward applying DDMC to
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FIG. 3: Spatial and temporal equilibration of temperature, as computed by EqDDMC and by
Milagro IMC.

non-equilibrium di�usion and coupling it to Implicit Monte Carlo.
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