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1-D Equilibrium Discrete Di�usion Monte Carlo

T.M. Evans?, T.J. Urbatsch??, and H. Lichtenstein? ? ?

Los Alamos National Laboratory (LANL), Los Alamos, New Mexico, 87545 USA

Abstract. We present a new hybrid Monte Carlo method for 1-D equilibrium di�usion
problems in which the radiation �eld coexists with matter in local thermodynamic
equilibrium. This method, the Equilibrium Discrete Di�usion Monte Carlo (EqDDMC)
method, combines Monte Carlo particles with spatially discrete di�usion solutions. We
verify the EqDDMC method with computational results from three slab problems.
The EqDDMC method represents an incremental step toward applying this hybrid
methodology to non-equilibrium di�usion, where it could be simultaneously coupled to
Monte Carlo transport.

1 Introduction and Motivation

Urbatsch, Morel and Gulick [1] have developed a spatially discretized, hybrid dif-
fusion Monte Carlo method for neutronics calculations. This method has been
called Discrete Di�usion Monte Carlo (DDMC). The general description of this
method is that Monte Carlo particles traverse discrete space according to mul-
tiple single-cell, deterministic, di�usion solutions. The intent has always been to
apply this method to di�usive regions of thermal radiative transfer problems.
In particular, we have hypothesized that the DDMC method could prove to be
an e�ective replacement for the Random Walk method [2] in Implicit Monte
Carlo (IMC) [3].

This paper describes the �rst e�ort at applying the DDMC method to ra-
diative transfer problems. We derive an Equilibrium Discrete Di�usion Monte
Carlo (EqDDMC) method in one-dimensional, slab geometry for the equilibrium
di�usion equation, an approximation to the radiative transfer equation, where
the radiation and material are in local thermodynamic equilibrium. We demon-
strate the method's properties and verify its correctness by successfully running
three benchmarked problems.

2 1-D EqDDMC Method

We begin with the equilibrium di�usion equation [4] with no external sources,
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where Cv�Cv(x; T (x; t)) [Jerks � cm�3 � keV�1] is the speci�c heat capacity
of the material, a = 0:01372 [Jerks � cm�3 � keV�4] is the radiation constant,
c = 299:79 [cm � sh�1] is the vacuum light speed, and T � T (x; t) [keV] is the
temperature that characterizes both the radiation and the material. The opacity,
�R��R(x; T (x; t)) [cm�1], is the Rosseland Mean opacity.

After recasting Eq. (1) in terms of the equilibrium radiation energy density,
� = acT 4, we discretize over a timestep and over a spatial cell to obtain a
discrete equation that is nonlinear in temperature. We linearize the equation by
evaluating the coe�cients at the beginning of the timestep, time tn. Utilizing
discrete expressions for Fick's Law, the Marshak boundary condition, and the
de�nition of the net 
ux, we obtain the EqDDMC balance equation,
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3 EqDDMC Implementation

In practice, each piece of the source on the right hand side of the balance equa-
tion, Eq. (2), is modeled with particles. When a particle enters or is born in
a cell, the cell-centered scalar radiation intensity and the exiting partial 
uxes
are solved for that particular particle. When divided through by the source,
the balance equation with its newly calculated solutions provides a probability
equation that can be sampled to determine whether the particle is absorbed in
the cell or leaks out one of the sides of the cell. This process is repeated while a
particle goes from one cell to another until it escapes the system or is absorbed.
The temperature at the end of the timestep is obtained from the cell-centered
scalar radiation intensity, which is accumulated each time Eq. 3 is solved (i.e.
whenever a particle is born in or enters a cell).

For wave propagation through cold slabs, we implemented a treatment that
enables transmission through their opaque cells. This commenly used treatment
is necessary when the opacity is proportional to T�3. The idea amounts to
utilizing an opacity-de�ning cell temperature, which is simply taken as the larger
of the two cell-edge values. Each edge value is taken to be the average of the two
cell-centered values on either side of the edge.
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4 EqDDMC Veri�cation Results

The EqDDMC method (`the method') was successfully tested in a FORTRAN
code (`eqddmc' or `the code') for three test cases. Most aspects of the test
cases have analytic solutions to which the eqddmc results were compared. In
one case, the eqddmc results were compared to a well-veri�ed IMC code.

4.1 Homogeneous, In�nite Medium in Steady State

One early test was a steady-state, homogeneous, in�nite medium problem. The
result was that, except for statistical 
uctuation, the computed temperature
remained constant over time, as expected.

4.2 Spatial and Temporal Equilibration

The method was also tested on a �nite slab of 10 uniform cells with re
ecting
boundaries and a sloped initial temperature. Figure 1 shows the equilibration
over time of the temperatures in the left-most and right-most cells. The code pro-
duced the correct analytic equilibrium temperature of 0.906 keV. The temporal
equilibration matched that of a veri�ed Implicit Monte Carlo code, Milagro [5],
which is also depicted in Fig. 1.

4.3 Marshak Wave Solution

This particular Marshak benchmark [6] is in slab geometry, with a delta-function
source of 0.01 Jerks at x = 0 cm and at t = 0 shakes. The actual modeling of
the delta-function source was �nessed starting the problem at t = 0:1 shake with
the analytic solution as the initial-condition temperature pro�le. The analytical
data used to compare output and to produce the initial source (i.e., based on the
temperature distribution at 0.1 shake) was obtained from the LANL Transport
Methods Group Analytical Test Suite [7]. We used a slab material opacity of
10/T3 cm2/g, a speci�c heat of 0.1 Jerks/g/keV, and a density of 3.0 g/cm3.
Figure 2 shows the results of a series of eqddmc calculations for this Marshak
benchmark.

The �nal pro�le computed by eqddmc is the computed mean (with 1-
standard-deviation precision error bars) for 11 uncorrelated runs, accomplished
by varying the random number seed for each run. It must be noted, however,
that this estimated precision does not include any inaccuracy (i.e., di�erence
from true physical quantity being estimated) inherent in the calculation as a
result of modeling approximations. One such approximation is that the initial
eqddmc temperature pro�le, with its 20 values, can not resolve accurately the
initial wavefront. This approximation introduces a systematic error that prop-
agates along with the wavefront and is not accounted for by the Monte-Carlo
estimated precision for the calculation. For further discussion of the di�erence
between the precision and accuracy of a Monte Carlo calculation see Ref. [8].
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Spatial and Temporal Equilibration 
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Fig. 1. Spatial and temporal equilibration of temperature, as computed by EqDDMC
and by Milagro IMC.

Of the 15 non-zero mean-value estimates, 7 were within 1 standard devi-
ation (1�) of estimated precision from the corresponding analytic values, 11
were within 2�, and 13 were within 3�. The two estimates in the knee of the
propagated wave were within 8�. It should be noted, however, that the knee
of the propagated wave is di�cult to resolve with such a small number of dis-
crete points, especially when modeling approximations are known to contribute
a systematic error (inaccuracy).

In order to analyze these results statistically, let us assume that each cell's
results are independent and that we may collapse the independent results over
space and treat this ensemble as if it represented a set of estimates for one
stochastic quantity. In so doing, the 15 estimated non-zero mean values and
associated �s (corresponding to the �rst 15 points of the spatial temperature
pro�le) produce coverage rates of 47%, 73%, and 87% for 1�, 2�, and 3�, re-
spectively. Eliminating the 2 estimates around the knee of the pro�le, results in
coverage rates of 54%, 85%, and 100%, for 1�, 2�, and 3�, respectively. These
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Fig. 2. Propagation of a �-function-driven Marshak wave through a slab.

coverage rates compare reasonably well with the theoretically expected coverage
rates of 67%, 95%, and 99%, respectively, bearing in mind the impact on our
computed results from the inherent modeling errors noted above.

5 Conclusion

This new method, Equilibrium Discrete Di�usion Monte Carlo (EqDDMC), has
been derived for one-dimensional equilibrium di�usion radiative transfer in slab
geometry. The new method has been successfully tested on three benchmark
problems. The EqDDMC results agreed with analytical results and with the
results from an existing, veri�ed Implicit Monte Carlo radiative transfer code.

The EqDDMC method, when extended to multidimensions, may be a com-
petitive tool compared to deterministic di�usion, especially since EqDDMC is a
candidate for exponential convergence with residual methods. Finally, EqDDMC
is the �rst signi�cant step toward applying DDMC to non-equilibrium di�usion
and coupling it to Implicit Monte Carlo.
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