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NOMENCLATURE
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magnitude of ~

frustum height

payoff function to be minimized

penalty constant

length of support leg edge

vector from origin of XYZ to origin of
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vector from origin of XYZ to end point of
support leg edge

vector defining location of support leg”
edge relative to okgin of x’y’z’

vector from origin of XYZ to a point on
the frustum surface

perpendicular distance from the pipe cen-
terline to an arbitrary point on the cir
cumference of the small end of the
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terline to an arbitrary point on the
frustum surface
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radius of an arbitrary frustum circular
cross section
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outer beam radius

radius of the large end of the frustum

radius of the small end of the frustum

unit step function

vector directed along the support leg edge

orthogonal wansformation matrix from
xyz to XYZ system

vector from origin of XYZ to origin of
Xyz

vector from origin of xyz to a point on

the frustum surface

width of a support leg

coordinate system with origin at the pipe
center

coordinate system fried to the frustum

coordinate system f~ed to the support
plate

perpendicular distance from the large end
of the frustum to an arbitrary cross-
sectional plane

Euler rotation angles

angle measured
of the frustum

column vector

in a cross-sectional plane

x-coordinate of a vector

vector in XYZ coordinates
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AN ITERATIVE PROCEDURE FOR ALIGNMENT
IN UNDERGROUND NUCLEAR TESTINGf

●

✎

by

E. A. Kern

ABSTRACT

A new method is presented for &tcrmining the mounting geometry for a
frustum witiin the tunnel of an underground nuclear testing site. l%ii method

is based on a sequence of linear iterations in conjunction with a Davidon

iterator for finding the minimum of a function of several parameters. Success-

ful convergence of the method has been demonstrated on a time-sharing CDC

6600 computer. We believe this method could be generalized to other similar

alignment problems.

I. INTRODUCTION

In the past, difficult geometric alignments associated
with experiment packages in underground nuclear tests
have been accomplished at the Los Alamos Scientific
Laboratory by tedious drafting layouts. Recently, it was
decided to attempt a computer solution of an extremely
difficult alignment problem involving the placement of
the frustum of a cone in the test tunnel. Early in the
analysis it was concluded that an iterative-type approach
would offer the best solution for this problem. Using a
series o: linear iterators in conjunction with a Davidon
iterator, we successfully solved the problem with a CDC
66OO time-sharing computer system. This report describes
the problem and presents the method of solution. To
avoid security classification of this report, specific dimen-
sions and computer results are not included.

H. DESCRIPTION OF THE PROBLEM GEOMETRY

0
#

A frustum’ of a cone is mounted in the test pipe as
shown in Fig. 1. The beam diameters dl and d2 depend Fig. 1.

Location of frustum witbin a radiation pattern.
●W. C. Davidon, “Variable Mernc Method for Minimization,” AEC
Research and Development report ANL-5990 (1959).



on the distance from the radiation source. The frustum is
to remain in contact with the large or otiter beam and is ,
to be tangent at some point to the small or inner beam.
This inner beam tangency requirement is imposed so that
the frustum does not interfere with experiments fafiher
down the test pipe. In addition, the centerline of the
frustum is to be inclined at some given angle @with the

test pipe centerline. The frustum is mounted on a flat
plate that, in turn, is supported on the wall of the test
pipe by four support legs perpendicular to the mounting
plate. The orientation and location of the frustum relative
to the mounting plate and the location of the support legs
relative to the mounting plate are fixed quantities (see
Fig. 2). The basic problem is to determine the mounting
locations and the dimensions of the four support legs on
the test pipe so that the frustum satisfies the required
alignment geometry.

111. ITERATIVE SOLUTION OF THE FRUSTUM
ALIGNMENT PROBLEM

The first step in the solution is to determine how the
frustum should be located and aligned relative to the
inner and outer beams. For this purpose we define an
XYZ-coordinate system with origin at the pipe center,
with the Z-axis directed along the pipe centerline and the

X-axis directed vertically upward (see Fig. 3). We also
define an xyz-coordinate system fried to the frustum
with the x- and y-axes in the plane of the frustum base
(large end of frustum) and the origin at the point where

1 1
Mounting plate

the outer beam and the frustum base are tangent (see Fig.
3). The origins of the XYZ and xyz systems lie in the
same cross+ectional plane of the pipe. The frustum is
shown in Fig. 3 at the bottom of the pipe with the x-, y-,
and z-axes respectively parallel to the X-, Y-, and Z-axes
to simplify the geometry of the figure.

When the frustum is located and oriented correctly,
the ongin of the xyz system will not generally lie at the
bottom of the pipe nor will the x-, y-, and z-axes be

parallel to the X-, Y-, and Z-axes, respectively.
Because the xyz-coordinate system is f~ed to the

frustum, the orientation and position of the fxustum will
be determined by the origin and orientation of the
xyz-coordinate system relative to the XYZ system. If the
geometry of Fig. 3 is used as a starting point, the orient-
ation and position of the xyz-coordinate system can be
defined by a translation and three Euler angle rotations in
the following manner.

(1) Translate the origin of the xyz system through the
angle 13along the large beam circumference and simultaneo-
usly rotate the coordinate system about the z-axis so
that the x-axis still points toward the center of the pipe
(Fig. 4). In effect, the xyz system has been translated and
rotated through an angle (3 in the negative sense (right-
hand rule) about the z-axis.

(2) Rotate the new xyz system in a negative sense
about the x-axis through the angle /3.

(3) Rotate the new xyz system in a positive sense
about the y-sxis through the angle T.

This translation through the angle 6 and the Euler
rotation angles 0, ~, and y defines the position and orie-
ntation of the xyz system (hence the frustum) relative to

,*.

‘.,

.

.

Fig. 2. Fig. 3,
Frustum mounting geomety. Definition of the XYZ- and xyz-coordinate systems.
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Fig. 4.

Di+iacement and rotation of the XYZ system

though tbe angle 0.

the XVZ system. Thus, the entire alignment procedure
centers around the determination of the angles 0, /3,and 7
so that the frustum satisfies the specified requirements.

(1) The frustum base and the end of the frustum
opposite the base are tangent to the large beam.

(2) The centerline of the frustum is inclined to the
pipe centerline at some angle@

(3) The surface of the frustum is tangent at some
point to the inner beam.

A direct method for finding the angles 6, (3, and ‘y to
satisfy the above three requirements did not immediately
present itself; therefore, the following iterative approach
was used.

(1) Estimate the pipe station at which the smaller end
of the frustum (end opposite the base) is tangent to the
outer beam and the pipe station at which the surface of
the frustum is tangent to the inner beam. This establishes
an estimate for the beam diameters at the corresponding
tangency points.

(2) Guess the angles 0, p, and ~.

(3) Perform a linear iteration of the angle 7 so that the
end of the frustum opposite the frustum base is tangent
to the outer beam.

(4) Perform a linear iteration on the angle ~ so that
the centerline of the frustum is inclined by the desired
angle $ to the pipe centerline. For each new angIe B ,
retu m to step 3 and reiterate on the angle T.

(5) Perform a linear iteration on the angle 6 so that
the surface of the frustum is tangent to the inner beam at
some point For each new angle 0, return to steps 3 and 4
to reiterate on the angles 7 and ~.

(6) Compute the actual pipe stations where the

smaUer end of the frustum is tangent to the outer beam
and the surface of the frustum is tangent to the inner

beam. If the actual pipe stations differ by more than
0.0001 in. from the estimated pipe stations, set the esti-
mated pipe stations equal to the actual pipe stations and
return to step 2 of the iteration.

The above iteration procedure has proved successful in
determining the angles 0, /3,and y and thus establishes the
location and orientation of the frustum. The mathemati-
cal details associated with each of the above steps were
purposely omitted so as not to obscure the basic iterative
procedure.

The beam diameters along the pipe for both the outer
and the inner beams increase as the distance down the
pipe increases. Therefore, we must know the exact pipe
stations at which the tangency points described in step 1
occur so that the outer and inner beam diameters can be
established at these points. Because the pipe stations for

the tangency points are not” known initially, they must
be estimated and then iterated. Note in step 6 that the
iteration loop on the pipe stations is closed by setting the
estimated pipe stations equal to the corresponding actual
pipe stations at which the tangency pointa are computed
to occur.

Very simple linear iterations are used in steps 3,4, and
5 to determine the angles ~, /3, and 0. Consider a linear
iteration on the angle (3 where it is desired to obtain a
specific inclination angle @as an example. Let

d = @desired - @actmd,
dn = value of d on tbe nth iteration,

and

/jn = value of /3on the nth iteration,

To compute/3 for the (n+l )th iteration, compute

i3n-13n-1
slope = a d

.
n- n-1

(1)

Assume that this slope remains constant over the (n+l)th
iteration, i.e.,

8n+l - $n
slope = .

‘n+l-dn
(2)

It is desired that dn+ ~ be zero on the (n+l)th iteration.
Setting dn+ ~ = O in Eq. (2) and solving for ~n+ ~ gives

Bn+l = 6n - slope (dn) .
(3)

3



Iteration for (3 continues until the absolute value of d

becomes less than a prespecified tolerance. The linear
iterations on ~ and 0 are performed in the same manner.

In step 3 of the iteration, we must determine the angle

y so that the small end of the frustum (end opposite the
base) is tangent to the outer beam ci$umference. This is
accomplished by defining a vector R, which locates a
point on the circumference of the small end of the frus-
tum relative to the center of th~ pipe (see Fig. 5). Let the
x-, Y-, and Z-components of R be denoted by Rx, Ry,
and RZ, respectively, and let rc be the distance of a given
point on the small end of the fmstum from the pipe
center. Then it follows that

(4)

The value of rc will vary as ~ moves around the small end
of the frustum. The maximum value of rc, rcma, defines
the point on the small end of the frustum that is farthest
from the center of the pipe. If rcm ~ is smzller than the

outer beam radius, the small end of the frustum lies inside
the outer beam, whereas if rcm ~ is larger than the outer
beam radius, a portion of the small end of the frustum lies
outside the outer beam. For the small end of the frustum
to be tangent to the outer beam, the rcmm must be equal
to the outer beam radius. Linear iteration on T is there-
fore performed until rcmn is within 10-8 in. of the outer
beam radius.

x
m

Pipe

I

z

x
Frustum Y

Fig. 5.

Vector E from pipe center to point on circumfer-
ence of small end of frustum.

(5)

We compute rcma for a given angle ~ as follows.
From Fig. 5 we have

;=:+< ,

where

+
U = the vector from the origin of the XYZ system to

the origin of the xyz system

and

+
V = the vector from the origin of the xyz system to

a point on the small end of the frustum.

The vector U is easily established because the origin of the
xyz system lies in the XY plane. Referring to Fig. 5 and
letting r. be the radius of the outer beam, we note that

,.

.,

‘x = -r
o

and

‘Y - ‘o

Cos e

sin 0

(6)

. (7)

The vector ~ is most easily determined in the xyz system
and is then transformed into the+XYZ system. Here we
consider Fig. 6 where the vecto~V ~+shown e$ivalent to
the sum of the three vectors, VI, V2, and V3, and the

Fig. 6,
The vector ? locating an arbitrary point on the

small end of tbe jhstum relative to tbe xyz system.



radii of the large and small ends of the frustum are given
by rl and rz, respectively. The angle $ is measured in the
plane defined by the small end of the frustum and is
measured from a line parallel to the x-axis to the vector
+
~. ~he frus~m height is denoted by h. Thus, the vectors
Vi, V2, and V3 are as follows in the xyz system:

[1

‘1

. 0:

0

Because‘.

[1
o

. 0:

h

it follows that

[1‘1 + ‘2 Cos $

[13 = r2 sin *
Xyz

h

[ 1
r2 eos +

= r2 sin * . (8)

o

(9)

To find the ve~tor ~ we must transform the coordinates
of the vector V into the XYZ system. The orientation of
the xyz system relative to the XYZ system is defined by

the Euler angles 6, /3, and y. This then defines an orthog-
onal transformation ~atrix T that transforms the coordi-
nates of the vector V from the xyz system to the XYZ
system, ie.,

[1+XYZ = [T ~lxyz

where

[1
PI P~ p,

T= P2 Plj P8

P3 P~ P9

(lo]

and

p, = COS6 cos~-sin 6 sinpsin~,

p2 = -sin 6cos T-sin (3sin Tcos6,
p3 = -3in -ycos /3,
p~ = Cospsin e,
p~ = Cos e Cos p,
pe = -sin f?,
p7 = cos 6 sin y + sin 8 sin Ocos y,
p8 = -sin 6 sin T + cos 0 sin (3cos ~,

and

p9 = Cos ‘yCos p.

Substituting Eqs~(6), (7), (9), and (10) into Eq. (5)
gives for the vector ~ in XYZ coordinates

[q XYZ = r.
I

sin f3

10
[

‘1 + ‘2 ‘Os

+ T r2sin~

1- h

. (11)

The X- and Y-components of
used in Eq. (4) to solve for rc.

The point on the small end

the vector ~ can then be

of the frustum tiat yields.
rcm ax is found by a one-dimensional search on the param-
eter $. Iteration on the Euler angle ‘y is complete when
rCmax is equal to the outer beam radius. This is equivalent
to the small end of the frustum being tangent to the
circumference of the outer beam.

In step 4 of the iteration, angle ~ is set to yield the
desired angle @ between the pipe and the frustum axes.
Now the frustum axis is parallel to the z-axis. Thus the
cosine of the angle between the pipe and the frustum axes
will be equal to the dot product of the unit vectors
directed along the Z- and z-axes. This is equivalent to
element pg of the matrix T. Hence,

$ = COS-l (Cos y Cos 6) . (12)

Linear iteration is performed on the angle ~ until the
actual inclination angle @ is equal to within lCi6 rad of
the desired inclination angle.

With T and ~ determined, the angle 6 is computed by a
linear iteration so that the surface of the frustum is
tangent to the inner beam. This tangency point is deter-
mined in a manner similar to that used for determining
the tangency point at the outer beam and small end of the

i5
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frustum. Here, however, the tange~cy point can lie at any
point on the frustum surface. Let R be the vector directed
from the origin of the XYZ system to any point on the
frustum surffce. The geometty of Fig. 5 is applicable if
the vector R J not restricted to the small end of the
frustum. Let U b~ the vector joining the XYZ and xyz

systems, and let V be the vector from the ~rigin of the
xyz system to the end point of the vector+R. Equations
(5)-(7) are applicable here. The vector V can be ex-
pressed in terms of xyz coordinates by a consideration of

the frustum show+n in+Fig. 7. Again ~ is equal to+he sum
of the vectors VI, V2, and V3. The vector VI is as
defined in Eq. (8). The vector 72 is still directed along
the z-axis but it is now of variable length ZP, i.e.,

o

[1 []ii2xyz=o”

‘P

(13)

The vector ~3 lies in a plane parallel to the xy plane and
is directed from the frustum centerline to the frustum
surface. Let rf be the radius of the frustum at a cross
section lying at a distance ZP from the frustum base. Then

I&.2,
‘f=rl - h

(14)

Fig. 7.
The vector ; locating an arbitrary point on the

fiwstum surface relative to tbe xyz system.

where

rl = the radius of the frustum base (huge end),

r2 = the radius of the small end of the frustum,

and

h = the height of the frustum.

With IJJdefined as the angle in a plane parallel to the xy
plane and meassured between a line parallel to the x-axis
and the vector V3, it follows that

(15)

Sum~ing the vectotx ?1 from Eq. (8), ~z from Eq..J 13),
and V3 from Eqs. (14) and (15) gives for the vector V

[
‘1

-z
P

1-Zp (r, - r.j cos

h

v]‘1 - ‘2 sin +

‘P

(16)

The ve$or ~ can now be obtained by transforming the
vector V b~ way of the matrix T and adding the result to
the vector U defined by Eqs. (5) and (6), i.e.,

M XYz= ‘o

.

.Cos

sin

o

[

+r-zllp 1U f-o’:
h

[
‘1 - ‘p 1G.-3*in+

h

‘P
.

i

(17)
6
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As s$en from Eq. (17), for freed angles 9, /3,and T, the
vector R is a function of the distance ZP and the angle ~.
We now find that point on the frustum surface that lies
closest to the pipe centerline. With

rc f = to the perpendicular distance from the pipe
centerline to the frustum surface

it follows that

*C, = (1$2+ y’)% . (18)

The minimum value of r=~, rc~min, is the minimum dis-
tance between the pipe centerline and the frustum sur-
face. Thus, if rcfmin is less than the inner beam radius, a
portion of the frustum surface lies inside the inner beam,
whereas if rcfm in is greater than the inner beam radius,
there, is no common point between the frustum and the
inner beam. When rcfm in is equal to the inner beam
radius, the inner beam and the frustum surface are tan-
gent. Therefore, we must compute rcfmin.

For fixed angles 0, ~, and T the distances Rx and RY
are functions of Zp and!. Hence, rcfmin can be found by
minimizing rcf wnth respect to the parameters ZP ~d $

subject to the constraint that the minimum point actually
lies upon the frustum.
to be minimized. Then

( )J= RX2+R2%

+@z; )-h

Let J be the function of ZP and IJ

(zP-h)’
“fP)’l?j ‘

where

K = large penalty constant

and

{)lf>o
s(f) = step function =

Of<o .

(19)

Note from Eq. (19) that the function J is com osed of
the quantity to be minimized (rcf =~~p)and a
penalty term to ensure that the minimum does not lie at
some value of z , which is not on the frustum surface.
The values of z p and ~, which minimize the function J

$and consequen y rcf, are obtained with the aid of a
Davidon iterator. The Davidon iterator is a second-order
method for finding the minimum of a multiparameter
function. Rapid and reliable convergence to the minimum

can be obtained with this iterator for the type function J
defined by Eq. ( 19). With the minimum of rcf computed
in this way, linear iteration on the angle 6 is executed
until the difference between rcfmin and the inner beam
radius is less than 10* in.

IV. COMPUTATION OF THE FRUSTUM SUPPORT

GEOMETRY

Exact determination of the frustum location and orien-

tation has been outlined above. As shown in Fig. 2, the

frustum is mounted on a flat plate that, in turn, is

supported by four support legs welded to the pipe wall.

The location and orientation of the frustum relative to

the support plate and the location of the legs relative to

the support plate are prespecified quantities. We must

determine the dimensions of the support legs and the

points at which the support legs should be welded to the

pipe.
A typical support leg is shown in Fig. 8. The top of the

support leg is fastened perpendicular to the support plate

while the bottom surface of the support leg rests on the

inside surface of the test pipe. All cross-sectional plages of

the support leg that are parallel to the top are squares of

width w. We must find the lengths Q1, Q2, Q3, and Qd of

the support leg edges so that the support legs will rest

firmly on the pipe surface and at the same rime provide

the proper location and orientation of the frustum. In

addition, the points at which these edges intersect the

w

/

----- -

14 /

12

r Bottom

Fig, 8.
Support leg geometry.
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pipe are needed to locate the support plate properly

within the pipe.

A support leg edge, along with the support plate and

pipe,is shown in Fig. 9. The XYZ-coordinate system,with

origin at the pipe center and the Z-axis directed along the

pipe centerline, is identical to the XYZ system previously

defined. The x’y’z’-coordinate system shown in Fig. 9 is

freed to the support plate with the origin of the system

lying in the center of the plate bottom. The x’-axis is

normal to the plate surface and the z’-sxis is directed

along the centerline of the bottom surface. The origins of

the XYZ and x’y’z’ systems lie in the same cross-se~tional

plane of the pipe. The x’y’z’ system can be derived from

the xyz system by translating the origin of the xyz system

from the bottom of the frustum to the bottom of the

support plate and by rotating this translated system about

the y-axis through some angle q so that the z’-axis lies in

the bottom surface of the plate. Thus, the Euler angles

that define the orientation of the x’y’z’ system relative to

x

Fig. 9,
+++

Vectors O, P, Q, and? dej?ning the extremities of a
support leg edge relative to tbe support plate and

tbe pipe centey.

the XYZ system are 6, ~, and T’, where 6 and P are the

same as defined in Sec. 111and

Let T’ be the matrix that transforms the coordinates of a

vector from the x’y’z’ system to the XYZ system. Then T’

can be obtained from the matrix T defined in Sec. III by

replacing 7 withh#.

The vector O shown in Fig. 9 locates the origin of the

x’y’z’ syste~ relatige to the XYZ system, and the sum of

the vectom Q and S locates the extremity of the support

leg edg~ relative to the origin of the x’y’z’ system. The
vector P locates the extremity of the edge relative {o the

XYZ system. Therefore, the point at which the+edge
intersects the pipe is defined by the coordinat~s of P, and
the length of the edge is equal to the length of S.+

We must dete~mine the length of the vector S so that
the end point of S touches the inner wall of the pipe. This
is equivalent lo requiring that the radial distance of the
end point of S from the center of the pipe be equal to the
pipe radius. Let PJ and PY be the X- and Y-coordinates,

respectively, of P. Then the radial distance from the
center of the pipe will equal (Pi +~$)l? Hence, we must
determine the length of the vector S so that

( )pipe radius = 2 + PY2 h .
‘x

(21)

From F>. 9 we know that ~ is the sum of the vectors++
O, Q and S, i.e.,

~he ve~tor ~ can be represented as the ~m of the vectors
U and G (see Fig. 10), where the vector U is directed f~m
the origin of XYZ to the origin of xyz, and the vector G is
directed from+the origin of xyz to the origin of x’y’z’,
Both vectom U an$ ~ lie in the XY plane with the X- and
~-coordinates of U given by Eqs. (6) and (7). The vector
G has a specified length equal to g and is dkected along
the negative x’-axis, i.e.,

[1
-t?

[1
8=0.~lylzl

o

(23)

8



x

N ~tytzl [1=;”QZI

(25)

where ~, and%, are known values.
The vector S has a component only in the negative x’

direction because this vector is normal to fie ~ ofi
w

plate and therefore normal to the y’z’ plane. Hence, S can
be represented in the x’y’z’ system as follows:

E
ii Frustum bottom

“[l
-L

, Y

6; z’ p] r o>~lylzt

Support plate bottom o

“MYl

Fig. 10.

Representation of the vector d as the vector sum of
; and G.

where L equals th~ unkn~wn length of the vector ?
Transforming Q and S from Eqs. (25) and (26), respec-

tively, by means of the matrix T’ and substi~ting these
transformed vectors along with the ~ector O from Eq.
(24) into Eq. (22) gives for the vector ~

‘B]XYZ=F’3+T’[-I’24)

(26)

Transforming the vector ~ into the XYZ sy~tem by means
of the ~atrix T’ and forming the vector O as the vector
sum of U and ~ gives

[?]
XYZ =

The vector ~ shown in Fig. 9 provides the location of the

support edge relative to the plate. Hence, the y’- and
z’-coordinates of Q ~, and ~ are readily obtainable as

input to the $Iignment problem. Ol@ously the
x’-component of Q will be zero because Q lies in the
bottom of the support plane and x’ is normal to this
plane, i.e.,

-r o 1
eos 9

r ~sin O+T

10J

-g-L

%’

Qz,

. (27)

With the expression for ~ as above, a linear iteration on
the length L is carried out until Eq~ (21) is satisfied to
within 10-6 in. This yields the desired length of th~
support leg edge. Also, the coordinates of the vector P
define the point where the support leg edge touches the

inside of the test pipe.

9



V. CONCLUSIONS

This iteration technique has worked successfully in

solving the problem of aligning the frustum of a cone in
the test tunnel of an underground nuclear testing site.
Thus, the feasibility of using an iterative approach in
conjunction with a high-speed digital computer to handle
complex geometric alignment problems of this nature has
been proved. Rapid convergence of the iterator was expe-
rienced with the total computation time on the CDC
66OO computer being less than 3 sec.

Single precision arithmetic was used throughout the
computation to conserve computer core storage on the
time-sharing system. For the CDC computer this provides

about 14 decimal digits of accuracy. The Davidon iterator
had to be “tuned” to operate within these accuracy
limitations because 14 decimd digits are only marginally
sufficient to ensure reliable convergence of this type of
iterator. Double precision arithmetic, which essentially
doubles the number of accurate decimal digits, would
have eliminated these difficulties.
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