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APPLICATION OF A MEAN FIELD APPROXIMATION TO TWO SYSTEMS
THAT EXHIBIT SELF-ORGANIZED CRITICALITY

James Theiler

In this exposition, a mean field analysis will be applied to predict and explain some of the
features observed in two systems that are known to exhibit self-organized criticality: the
sandpile model of Bak, Tang, and Wiesenfeld (1], and a variation using continuons values
that was introduced by Zhang [2]. It will be argued that mean field of ‘I'ang and Bak [
is problematic in that it fails to conveige. The modification suggested here introduces
a parameter to account for sandgrains falling off the edge of the sandpile; this balances
the sandgrains which are dropped on the sandpile froin above. The nodified analysis is
then applied to the equilibrium state of the sandpile, and to the tiime evolution towitrd
equilibrium. The analysis is then extended to other systems which exhibit sclf-organized
critical behavior.

1. Introduction

For dissipative dynamical systems with extended degrees of freedom, a vancty of ap-
parently collective phenomenon have been observed, including spatio-temporal chaos [1],
robust inteninittency [5). long quasistationary transients [6]. attractor crowding [7] and
clustering [8. 9], “amplitude death” [10], and self-organized criticality [1]. Self-organized
criticality, in particular, has been invoked to explain hehavior of a wide variery of physical
systems, from earthquakes to avalanches.
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The mean field is one of the few analytical tools that are available for the under-
standing of systems with many interacting components. The approach of the inean field
is to replace individual components with statistical averages. It is a relatively crude ap-
proximation which ignores the spatial aspect of the system, but it is general enough to
be applied to many different systems, and i% usually leads to a computationally tractible
approximation.

After introducing the sandpile model, I will discuss the the mean field analysis that
was developed by Tang and Bak [3]. and show how a slight modification makes the
analysis more sensible. The modified analysis will then be compared to simulations and
the quantitative agreement (and disagreement) will be discussed. Finally, the analysis
will be extended to the continuous system of Zhang [2]. and it will be shown that the
self-organized discretization which this system displays can be understood in terins of a
mean field.

2. The sandpiie model

The sandpile mode! was introduced by Bak, Tang, and Wiesenfeld [1], hercafter 3TV, to
illustrate a property they called self-organized criticality. At each site (z,y) on a square
lattice, there is an integ number 3(z.y) of what are often, bul not quite correctly, called
sandgrains. (It would Le only slightly more correct to call 3(z.y) a “local slope.” b
“sandgrains” provide a more concrete picture.| There is a critical value A" = i above
which a iattice site is unstable. If any site on the lattice is unstable, then the lattice as a
whole is cousidered unstable, rnd is permitted to relax in a series of discrete steps. Four
sandgrains at each unstable site are redistributed, one to each of the tour neighboring
sites, in a kind of diffusion that is highly nonlinear. Here,

:(r.y) = =(r.y)-4.
s(~yxl) — (zr.yxl)+1, (1)
s(rxly) = s(xxliy)+1.

The relaxation process continues until every site vn the nttice is stable.

The dynamies then proceeds by sceding at a single random (vr a fixed [I1]) site:
H(rathy) = 2(Louyu) + 1. If this leads to an unstable lattice, the lattice “s allowed to
rolax by the above rule until it becomes stable again. Thus there are “long™ time steps
between cach seeding, and “short™ time steps, during which the lattice relaxes,

In simulati-ms, one usually waits until the lattice iy finished relaxing until the nexa
secding: the point of this is to ensure that the two tine scales (slow seeding and Tast
relaxing) are fully separated. ‘Fhe physical process which does the seeding presumahly i
doing so at a slow rate that is indepondent of the state of the lattice.



2.1. Notation

The Jattice in the BTW system needn’t be two dimensional, nor need it even be a lattice.
Let x represent a site on the lattice, and z(x) be the value at that site. Each site is
connected to its neighbors x' € Ny, (Note that there is a bi-directionality in the case
of a lattice: x' € N implies x € Ny..) It is possible to represent the external seeding
by a field term h,(x), which is zero almost all of the time, but equal to one when the
x is seeded. (The ¢ here corresponds to short time steps.) Further, write &;(x) as the
“backflow” from neighboring sites. Let b = | Vx| be the number of bonds per sii¢ (also
called the “coordination number”), and let A be the threshold value (note b = k' =
for the original two-dimensional BTW system).

Zpa(X) = 2(X) + he(x) = bF(z(x)) + &(x) (2)
&(x) = Z;r F(z(x")) (3)
X'€ENX

where F(z) is the threshold function: its value is 0 for z < K (inactive), and 1 for = > I
(active).

3. The mean fleld of Tang and Bak

In the mean field introduced by Tang and Bak [3). hereafter TB, the approximation is
inade that the sites are statistically independent and identically distributed. The site
value z is treated as a random variable whose cvolution is given by the equation

Si41 =2.—bF(:f)+h¢+€¢ (‘)

where h; is a random variable that takes a value of 1 with probability & and a value of
zcro the rest of the time. The backflow, &, is a random variable given by

b
fi=) F(:" (1)
tml
where ! are random variables that correspond to the neighbors of 2. By the issmnprion

of the mmean field, these are taken to be independent but with the same distribution as
5. Now &, takes on a value of £ waen exactly r of Jie site's neighbors are active. Tlns,

Pl =r)= ( : ) AT (6)
whers, following ‘T'B. I have written A := P{}(z) = 1} = P{z 2 K} as the probability
that a site is active, and / := [ =1 = P{z < K} s the probability that a site is inactive.

Now, | can write a transition matrix for the Markov process, Let Ty(z « )

Ti2][2"] := P{z241 = 2| & = 2} be the probability of a transition at the lidoeial site
from a value of 2’ to a value of z. In general, | have
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" Plhy+&=2-2) forz <K, -
z[’][‘]—{p{h.+€,=z-z’+b} for ' > K, )

which we can write T;[z][z’] = Ty[z — z' + bF(2')] where the transition vector T is defined
by

T(z] := P{h+E&=z) (3)
= (1-h)P{{=z}+hP{{=2~1} (9)
< o (b)arran( b ) amre -

The transition matrix 7; allows us to evolve the vector of current probabilities P,[:] :=
P{z = z}. We have, in matrix notation, Py, = 7;P,, or more explicitly

Pifz] = Z,T.[z][z']l’.[z'] (1)
iz Z'T.[Z - 2' + bF(Z')]p¢[Z'I ( ‘3)

Thus, we can derive the time evolution of the probability distribution of the random
variable :. Because the the matrix 7; depends on the vector T,, which depends un
and I;, both of which in turn depend on P,, one can think of the evolution of probabilitics
in Eq. 12 as a nonlinear map: '

P = f(Py) (13)

3.1. The problem of nonconvergence

‘The problem with this version of the mean field is that it does not converge. IFor any h >
0, there is no solution P[z] which satisfies P = f(P). In particular, it is straightforward
to show that for this model, the average value (2;) := T, zP,[s] does not converge,
Instead, we have, from Eqs. (4) and (5), that

(:(“) =(.'|)+.'l. (i

This is in retrospect not really surprising, since the dynamies preserves the total anber
of "sandgrains” (cach sand grain lost at site x is picked up agnin w a neighboring site
X'), and a steady field & is being added at cach step. In an actual BT simalation, this
iy not a problem, since avalanches oceasionally carry those added grnins of sa ol ofl the
wdge.




4. Modifled mean field: introducing edges

One solution to the problem of nonconvergence is to mimic what happens in an actual
BTW lattice, and to let sandgrains fall off the edge. It isn’t instantly obvious how to do
this, since a mean field approximation by definition eliminates the lattice structure from
the problem, and fails to distinguish edges from interior sites. The suggestion herc is to
state that a fraction e > 0 of the sites are on the edge; we can later take e very small
if that is desired, but we need some mechanism to “lose” those grains of sand that are
being added by the field. Having a finite fraction of edge sites alters the equation for
the backflow £. It is still the case that £ is equal to the number of active neighbors. hut
the number of available neighbors depends now on whether the site is on the boundary
or not. With probability e it is on the boundary, and has b — 1 available neighbors: with
probability 1 — e it is in the interior, and has b available neighbors. 1hus,

p{{:z}:(l—t)(f_)A"l“"’-{-e(b;l)A‘l"l". (13)
and the modified transition vector is given by
Tilz) = (1-4) [(1 —e)( z ) L+ e +c( "; ! ) A,‘I{’""]

+ h[(l —e)( . b | )Af"l,""+e( 2:11 )Af"l,"""‘ : (16)

The first thing to noie is that e = 0 lcads to the original TB mean field. [However, in
this case, we have that the average evolves according to

(2041) = (20) + h - €A, (17)

Thus, a steady state can be achieved, with the balance b = eA corresponding to external
input on the left hand side, and loss over the cdge on the right hand side. Note that this
balance equation does not make sense in the original model of T'B, where ¢ = ().

4.1. Finding the self-consistent solution

Having defined the modified mean field equations (12) and (16), it is straightforward to
solve for tie probabilities P. Numerically, one need only evolve the probabilities forward
in time until a steady state is reached. ‘The solution exists for nonzero b and ¢ as long
wh<e.

In particular, it is possible to show [12] that in the simultansous limit A — 0 and
¢ =20, with h/e — A

for 0 < =< b, P[:] = (|/b)i ( t ) AX(1 = )=t (1%)

k=0)



b
for b < z < 2b, Plz] = (1/b) Z (:)A"(I—A)""‘ (19)

k=x~b
forz>2b Pz] = 0. (20)
This leads to the result
(z) = (b—1)/2 + bA, (21)

which although linear in A, is in fact is exact for 0 £ A < 1. The sandpile niodel dues
not re-seed until the lattice is finished relaxing: this is equivalent to saying h — 0 for
fixed, but arbitrarily small, e, Thus, the A — 0 limit is appropriate as an approximation
of the sandpile model. This in fact is the same equilibrium probabilities that 1'B claim
to get in the A — 0 limit for their analysis.

4.2. Some comments on computing exponents

In TB. four equations are presented, Eqs. (1a-d) in their paper, with four nuknowns
(FPo. Py, P2, P3) and one parameter (k). A second paranieter (8, which is the same ax (=)
is introduced as a function of the four variables. All of these are combined into a singic
cquation, Eq. (5), which appears to exhibit two degrees of freedom; that is, bhoth A awd
0 are treated as though they were free to vary iandependently of cach othcr. From this. a
varicty of exponents are coinputed. But A and 0 are not independent. As Obukhov [13]
has pcinted out, simply adding a ficld & brings the system away from froin the eritical
point, so that “the paranieters which describe both the proximity to the eritical point and
the magnetic field are coupled together.” HHowever, | would argue that not only are there
not two independent degrees of freedom; there is not even one. For while there is conplete
degeneracy in the solution when A = 0 (constrained only by P[0] 4 --- + P{b—1] =1 and
P[h) = P[b+1] = .- = 0), taking h to any nonzcro value leads to inconsistent cquations
with no solution at all. The edge paraineter e provides orre mathematically valid way to
break the degeneracy.

For the mean field analysis presented here, the edge parameter is considered fixed,
so there is recally only one degree of freedom, in ihe control paraincter k. So | cannot
compite exponents as they are defined in 'I'B. Because of this, | have concentrated not
on predicting exponents (even though these are arguably tie most interesting feinures),
but rather the relative frequencies of the valnes on the lattice, P[], and in partienlio,
the average (2). 1 shounld comment that there ire other approaches which also go by 1the
name "mean ficld” but which are based on treating an avalanche as a bhranching provess:
these are discussed by Alstrem [14] and Obukhov [13]. Unlike the mean fiekd aualysis
presented here, these approaches are able to predict nontrivial exponents.



4.3. Comparison with Simulation

The mean field analysis predicts P[z] = 1/b for £ < b and P[z] = 0 for z > b, giving
(2) = (b—1)/2. It is of obvious interest to compare these predictions with values obtained
from numerical simulations of the BTW sandpile. The assumption of the mean ficld is
that is that sites are statistically independent. Disagreements between mean field thcory
and simulations therefore point to the importance of site-to-site correlations.

For the one dimensional sandpile (with b = K = 2) the sandpile self-organizes into a
state in which almost all of the sites are minimally stable. in the limit of large lattice
size, P[1] = 1, and (z) — 1. By contrast, the mean field predicts P[0] = P[1] = 1/2,
and (z) =1/2.

A two dimensional square lattice has b= K = 4, and the mean field predicts P[0] =
P(l] = P[2) = P[3] = 1/4. and (z) = 1.5. However, precise numerical simulations by
Manna [15] find P = (0.073,0.174,0.307, 0.446) £ 0.003 and (z) = 2.124.

Because the mean field is better at predicting the equilibrium state of a two dimen-
sional system than a one dimensional system, one is led to presunie that it will he even
better for higher dimensions. It is often the case for critical phenomena that there ix
an upper critical dimension, beyond which all behavior is independent fo dimension and
depends only on coordination number. Indeed. a nurnber of authors have suggested that
there is an upper critical dimension for the sandrile [2, 3, 13, 14, 16, 17]. However, these
authors are concerned with the critical exponents; | do not know of work which suggests
that the individual probabilities P will be exact for lattices above a critical dimension.

4.4. Time evolution

I'he mean field analysis not only predicts a self-consistent equilibriuin state, but also
the time evolution of the system as it evolves toward equilibriuin. In comparing the
imean field to simulations on the BT'W sandpile, however we must first inake sure that
equivalent notions of “time” are used.

'T'he t in the mean feld approximation refers to the short time steps during whirh
the lattice is relaxing. Since A is the probability of seeding a single site at a given short
tiine step. 1/h is the average number of short time steps between seedings of a partienlar
site. If there are a total of § sites, then 1/(hS) is the average number of short time steps
hetween each seeding of the whole lattice; that is, the length of the long time step. Then,
r = hSt is Lime 1neasured in units of long time steps.

In Fig. 1(a), the time evolution of a 10 x 10 sandpile lattice is simulated, starting
with the initial condition of 2(x.y) = 0 for every site. Plotted are the frequencies of
ocenrrence of site values 0, 1, 2, and 3. The time plotted is mnnber long time steps
divided by the lattice size: 7/8 = 7/100.

In Fig. 1(b), the mean field is evolved wiing the evolution equation Eq. 13 with very
small . llere, the time axis is At where ¢ is the short time step in Fe. 13, FPhe mean fielkd
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Figure 1: (a) An average of 50 simulations of a 10x10 lattice, showing the probabilitics
P,[z] for the stable values z = 0,1,2,3 as a function of time 7 scaled by the area of the
lattice $ = 100. The initial condition was for all sites to be zero. (b) Evolution of the
mean field equations, with time ¢ scaled by the field parameter A.

model is in good agreement with the simulation for short times, and does reasonably well
predict the time required for equilibrium to be reached.

5. Continuous Lattice system of Zhang

A variation of the sandpile model of BTW was proposed by Zhang [2]. This moael uses
continuous instead of discrete values ~ and whenever the value at a site exceeds a critical
value I, the site relaxes according to the rule

z(z,y) — O
z(zkl,y) — z(zxl.y)+ z2(z.y)/4 (22)
Hx,yxl) = z(z.yxl)+ 2(z,y)/

Seeding is done by addition of a random input uniformly chosen in the range (0. 24 /h]
(so that the average input seed is equal to /V'/b which corresponds to the BTW sysies)
at a random site. Zhang notes that, like the BTW sandpile, this system also exhibits
self-organized critizcality.

Another kind of self-organization is alsn observed. Aflter a period of evolution, oue
finds that a histogram of = values exhibits distinct peaks. For a two dimensional square
lattice, there are four such peaks, which is just how many distinct states are available to
a site in the original BTW sandpile. (See Fig. 2(a)) One of the peaks is a delta function
at z = 0, and the others are sharp but of finite width.
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Figure 2: (a) Simulation of the Zhang model on a two-dimensional 50x50 square lattice.
Not shown is the delta function peak at z = 0. (b) Mean field approximation for the
Zhang model with e = 0.05.

While leaving the details to a forthcoming paper [12], I comment that the modified
mean field analysis which was used in §4. for the sandpile model is readily adapted
to Zhang's continuous model. As Fig. 2(b) shows, the mean field is able to predict the
discretization observed in the simulations. As in the case of the BTW sandpile. the details
of the distribution of P(z) are only approximately captured. Further experiments [12]
indicate that the widths of the peaks can be attributed to the finite size of the lattice: they
are made sharper in the mean field approximation by decreasing the edge parameter e.

This work was initiated during a visit to the Complex Systems Group (T-!3) at Los
Alamos National Laboratory; w:ork at MIT Lincoln Laboratory was sponsored by the
United States Air Force and the Defense Advanced Research Projects Agency (DARPA).
rurther work continued at Los Alamos under the auspices of the Department of Fnergy.
| am grateful to Bill Bruno, Bette Korber, Wentian l.i, and Kurt Wiesenfeld for w«cful
discussions. and | particularly want to thank Lui Lam for his enthusiasm and generosity
before and during this excellent conference.
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