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DIFFERENTIAL EQUATIONS INVARIANT UNDER TWO-PARAMETER LIE GROUPS

WITH APPLICATIONS TO NONLINEAR DIFFUSION

Roy Arthur Axford

ABSTRACT

This report considers two general problems, viz., (1) the determination of the
general forms of second-order, linear and nonlinear, ordinary differential
equations that are invariant under two-parameter Lie groups, and (2) the ex~
ploitation of invariance properties to solve nonlinear differential equations

that arise in diffusion phenomena.

1. INTRODUCTION

The application of the theory of continuous
groups of transformations to the solution of ordi-
nary differential equations, partial differential
equations, and systems of ordinary and partial dif-
ferential equations provides a unified approach in
the task of obtaining explicit solutions. The
theory of continuous groups is developed by Liel
and Eisenhart.2 The application of the theory of
continuous groups to the solution of differential
equations is given by Lie,3 Cohen,h Dickson,5 and
Engel and Faber. A discussion of the use of in-
finitesimal transformations in the determination of
the Riemann function of second-order, hyperbolic
differential operators has been given by Daggit.7

The second section of this report shows how
the general form of second-order, ordinary differ-
ential equations invariant under two-parameter Lie
groups in canonical form may be obtained from a
knowledge of the invariants and the first and the
second differential invariants of these groups.

The third section contains proofs of the in-
variance of the general forms of 16 second-order,
orindary differential equgtions under 16 two-
parameter Lie groups not in canonical form. In each
cagse the type of two-parameter group is identified
because this fact is necessary for the reduction of

a differential equation invarient under a two-

parameter group to its canonical form, which is
more easily integrated.

The fourth section contains detailed, exact
solutions of nonlinear differential equations that
arise in diffusion phenomena. These solutions are
obtained by exploiting the fact that the nonlinear
diffusion equations are invariant under continuous
groups of point transformations. Although the fact
of this invariance was arrived at indirectly, rigor-
ous proofs of the invariance properties are given.
Particuler emphasis is given to establishing condi-
tions that must be satisfied for the existence of
solutions of the nonlinear diffusion equations as
well as to obtaining their explicit solutions.

2. DIFFERENTIAL EQUATIONS THAT ARE INVARIANT UNDER
TWO-PARAMETER LIE GROUPS IN CANONICAL FORM

2.1 Cenonical Forms of Two-Parameter Lie Groups

Let
- af af
Uit = &y (xy) 30+ 0y (x,y) 5y’ (2-1)
and
- af ar
Upf = E50x0y) 3 + nolxay) 55 (2-2)

be the symbols of the infinitesimal transformations
of two one-parameter, continuoys groups of point

transformations in two variables. Then, in accord-
ance with Lie's principal theorem,l’3 these trans-
formations may be regarded as the basis transforma-

tions that generate a two-parameter group of point



transformations provided that the commutator of U

1
and U2, viz.,
(U uy)r = Uy (Uyf) - Uy(U 1) (2-3a)
= [Uy(g,) - Uy(g))] %
+ [u (ny) = U (n))] 3 a0 (2-3v)
assumes the form,
(U U )f = e U f + e U S, (2-4)

11 272
in which e and e, are constants.
Two-parameter Lie groups may be classified in-
to four basic types3 in accordance with the value
assumed by the commutator of the basis transforma-
tions and whether or not one of the basis trans-
formations may be obtained from the other by multi-

plying through by an arbitrary function of x and y.

That is, the four fundamental types of two-parameter

Lie groups satisfy one of the four following sets
of relations.

(1) For the first type,

(u,u,)f = o, (2-5)
and
&) (x,¥)U; + 6,(x,7)U,f # 0. (2-6)
(2) For the second type,
(U Uy)f = 0, (2-7)
and
9, (0, 7)U £ + a,(x,¥)Uf = 0. (2-8)
(3) For the third type,
(u,u,)f = U,f, (2-9)
and
6, (x,¥)U £ + 0, (x,7)U L # O. (2-10)
(4) For the fourth type,
(U1U2)f =Ur, ) (2-11)
and
41 (,¥)U £ + o5(x,7)UF = 0. (2-12)

In the first and second types, e, = 0 and e, = 0,
whereas e = 1l and e, = 0 in the third and fourth

types. In the second and fourth types, U2f may be
obtained from Ulf upon multiplying through by

( Xl (2-13)

plx,y) = - m, -13

put U2r may not be obtained from.Ulf in the.first.

and third types by multiplying U,f through by an

1
arbitrary function of x and y.
If the functions El(x,y), 2(x,y), nl(x,y)

and na(x,y), which appear in the symbols of the in-

finitesimal transformations of Eqs. (2-1) and (2-2),
take on certain elementary forms, then the corres-
ponding two-parameter Lie groups are said to be
canonical form. There is a canonical form for each
of the four basic types of two-parameter Lie groups,
and these four cases will now be discussed.

It El(x,y) = 1, n (x,y) = 0, £,5(x,y) = 0, and
ny(x,y) =1, then

of
and
af
U f = 3y (2-15)

are the basis transformations of the canonical form

of a two-parameter Lie group of the first type, be-

. cause Egs. (2-5) and (2-6) are satisfied, as may be

verified by evaluating the commutator of the symbols
of Egs. (2-14) and (2-15). "

If £, (x,y) = 0, n (x,y) = 1, £,(x,¥y) = 0, and
ny{x,¥y) = x, then the symbols
Ut = §§3 (2-16)
and
of
Uf =x = (2-17)
2 9y

represent the basis transformations of a two-param-
eter Lie group of the second type in canonical form.
if El(x,y) =0, nl(x,y) =1, £,(x,y) = x, and
n2(x,y) = y, then the basis transformations of a
two-parameter Lie group of the third type in canon-

ical form are contained in the symbols

af
u = oy (2-18)
and
af f
Upf = x o+ y 3 5y (2-19)

In a two-parameter Lie group of the fourth
type, El(x,y) =0, nl(x,y) =1, 52(x,y) = 0, and
n2(x,y) = y, and the symbols of the basis trans-

formations of the canonical form are

af
Ur =3 (2-20) |
and
_ . af
Upf =¥ 3y (2-e1)

We turn now to the derivation of the invariants
and the first and ;écond differential invariants of
the four fundamental types of two-parameter Lie
groups in canonical form.

2.2 Invariants and Differential Invariants of Tws-
Parameter Lie Groups in’Canonical Form

In this section the invariants and the first



and second differential invariants will be derived
for each of the basis transformations of the four
basic types of two-parameter Lie groups written in
canonical form. Upon comparison of the invariants
and the first and second differential invariants of
each of the basis transformations of a given two-
parameter group in canonicel form, we can write the
general form of a second-order, ordinary differen-
tial equation that is invariant under the canonical
The four
general forms of second-order, ordinary differen-

tial equations admitted by the four canonical forms

form of the given two-parameter group.

of two-parameter Lie groups will be given in the
next section after the invariants and the first and
second differentiel invariants have been obtained.

Let
af af af
Uit = g (xy)es + ng Gy gy + nilxaysy' Yo

+ n;(x,y,y',y")giw, (2-22)
wherein i = 1,2, be the symbols of the twice-extended
one-parameter groups of point transformations
generated by the infinitesimel transformations
represented by the symbols of Eqs. (2-1) and (2-2).

In Eq. (2-22),

an, dEi
ni(x.ysy') = 37Hxy) - ! = xy)s (2-23)
(i =1,2),
and
dan! dag.
06y, y") = xyay') -y (xay), (2-24)
(1 =1,2).

Then the invariants and the first and second dif-
ferential inveriants of the one-parameter groups
generated by Uif for i = 1,2 may be found by solving
the first-order, linear, partial differential equa-
tions obtained by equating the symbols of the
corresponding twice-extended groups to zero, i.e.,
by solving

Uit =0, (i=1,2). (2-25)
The systems of ordinary differential equations that
are equivalent to Eq. (2-25) are

dx _ _dy _ dy’ _ dy"
£,06y) 7o Gey) T onifGeyaytl oGy Tyt
(2-26)

An arbitrary function of three linearly independent

solutions of Eq. (2-26) will be the general solu-
tion of Eq. (2-25), and such a function may be

interpreted as a second-order, ordinary differential

equation admitted by the one-parameter group gen-
erated by the infinitesimal transformations with
the symbol, Uif. These three linearly independent
solutions provide, in fact, an invariant, the first
differential invariant, and the second differential
invariant of the continuous group with the symbol,
Uif.

Now consider the first type of two-parameter
Lie group in canonical form with the symbols of
Egs. (2-14) and (2-15). The symbols of the twice-
extended basis transformations of this group are

found to be

ult = %, (2-27)
and
urr = &L (2-28)
2" 9y’

with Eqs. (2-22) through (2-24). The system of

ordinary differential equations that corresponds to

U;f = 0 is

dx _ dy _dy' _ dy" _

1 0 0 0’ (2-29)
and three linearly independent solutions of this
set are

ul(X,}') =Y (2"'30)
ui(x’y’y') =y', (2-31)

and
“i(",y,y' ') =y". (2-32)

In these last three equations, ul(x,y) is an in-
variant, ui(x,y,y') is a first differential invari-
ant, and u;(x,y,y’,y") is a second differential in-
variant, all of the one-parameter group of point
transformations whose infinitesimal transformation
has the symbol of Eq. (2-14). The general form of
a second-order, ordinary differential equation
admitted by the one-parameter group of point trans-
formations with the symbol of Eq. (2-14) is

fly,y',y") = o. (2-33)
However, this differential equetion is not invari-
ant under the two-parameter group of point trans-
formations generated by the two infinitesimal
transformations with the symbols of Eqs. (2-14) and
(2-15).

The invariants of the second one-parameter
group in the two-parameter group defined by Egs.
(2-14) and (2-15) are obtained by equating the
right-hand side of Eq. (2-28) to zero, i.e., U'f =

2
0, and solving the corresponding system,
dx _dy _dy' _ &"
o= == —%—. (2-34)



This produces

u2(x’y) = Xy (2"'35)
ué(x,y,y') =y', : (2-36)

and
uy(x,y,y',y") = y" . (2-37)

as an invariant, a first differential invariant,
and & second differential invariant, respectively,
of the one-parameter group of point transformations
generated by the infinitesimal transformation with
the symbol of Eq. (2-15). The general form of the
second-order, ordinary differential equation ad-
mitted by this one-parameter group is

flx,y',y") = 0. (2-38)
However, again, the differential equation of Eq.
(2-38) is not invariant under the two-parameter Lie
group defined by the symbols of Egs. (2-14) and
(2-15). The general form of a second-order, ordinary
differential equation admitted by the first type of
a two-parameter Lie group in canonical form as de-
fined by the symbols of Egs. (2-14) and (2-15) will
be given in the next section together with those ad-
mitted by the canonical forms of the remaining three
types of two-parameter Lie groups.

The symbols of the twice-extended groups of
point transformations of the basis transformations
for the two-parameter Lie group of the second type
in canonical form defined by Eqs. (2-16) and (2-17)

are
af

ujf = W : (2-39)
and
use = x %§-+ %§7. (2-40)

The invariant and the first and second differential
invariants that correspond to Eq. (2-39) are pre-
cisely those given in Egs. (2-35) through (2-37).
The system of ordinary differential equations that
is equivalent to the partial differential equation,
U;r = 0, from Eq. (2-40) is

dx _dy _dy' _dy" _
== 0" (2-b1)

Accordingly, from the first and second members of
Eq. (2-41),

u2(x,y) = x (2-42)
is an invariant, from the second and third members,
ul(x,y,y') = y' - % (2-43)

is a first differential invariant, and from the
second and fourth members,

uz(x,y,y') = y" (2-4k)

is a second differential invariant of the one-param-
eter group of point transformetions whose infinites-
imal transformation has the symbol of Eq. (2«1T).

In the case of the third type of two-parameter
Lie group in canonical form, the two one-parameter
groups of basis transformations contained in Egs.
(2-18) end (2-19) have twice-extended groups that
are generated by the symbols

ul af -
ur = 3y (2-45)
and
we o . 3L, 3L _ ndf _
Upf = x g+ ¥ 3y = ¥ 3y (2-46)

respectively. The invariant and first and second
differential invariants obtained from Eq. (2-45)
have been given in Egs. (2-35) through (2-37). The
first-order, linear partial differential equation
written from Eq. (2-46) has the following corre-
sponding set of four first-order, ordinary differ-
ential equations

dx _dy o dy' . dv (2-47)
"
X Yy 0 -y
The first two members of this set, viz.,
.4y (2-48)
x y

integrate out to yield
uy(x,y) = & (2-k9)

as an invariant of the one-parameter group of point
transformations whose infinitesimal transformation
symbol is that of Eq. (2-19). The first and third
members of Eq. (2-47) produce the first differen-
tial invariant,
up(x,y,y') = y', (2-50)
of the same group. A second differential invariant
of this group comes out of tﬁe first and fourth
members of Eq. (2-47) in the form
up(x,y,y',y") = xy". (2-51)
The symbols of the twice-extended groups of
point transformations of the two basis transforma-
tions of the fourth type of two-parameter Lie group
in canonical form as given in Egs. (2-20) and (2-21)

are .
af
U;f = 5?, (2-52)
and
" £ y of nw of
U2f =y 3y +y 3y’ +y W‘r' (2-53)

Again the invariant and the first and second dif-
ferential invariants that arise from Eq. (2-52) are
those of Egs. (2-35) through (2-37). The first-



order, partial differential equation, Ugf = 0,

from Eq. (2-53) is equivalent to the set,

dx _dy _dy' _ 4" -
o= == (2-54)

of ordinary differential equations. From the first
and second members of this set, we obtgin the in-
variant,

(2-55)
from the second and third members, the first dif-

uy(x,y) = x,

ferential invariant,

wpley,y') = I (2-56)

and from the second and fourth members, the second

differential invariant,
"

u'é(x,y,}",y") = yL’ (2-5T7)
all of the one-parameter group of point transforma-
tions with the infinitesimal transformation symbol
given in Eq. (2-21),

The principal results of this section have

In this table the in-

variants, first differential invariants, and second

been summarized in Table I.
differential invariants are listed for each of the

two basis transformations of the four fundamental

types of two-parameter Lie groups written in their

Table I.

canonical forms. The general form of a second-order,
ordinary differential equation that is invariant
under the group of one-parameter point transforma-
tions generated by the first basis transformation

of & two-parameter Lie group of the first type in
canonical form has been given in Eq. (2-33), and

that inveriant under the group of the second basis
transformation of this same two-parameter group, in
Eq. (2-38).

transformations of the two-parameter Lie groups of

The corresponding results for the basis

the second, third, and fourth types in canonical
form are as follows.

(a) For the second type,

uf = g—§ (2-58)
admits
f(x,y',y") = 0, (2-59)
and
Ut = x % (2-60)
admits
£(x,y'-Ly") = 0. (2-61)
(b) For the third type, U f = :—;;- admits Eq. (2-59),
whereas

INVARIANTS AND DIFFERENTIAL INVARIANTS OF THE POINT TRANSFORMATIONS OF THE

FOUR BASIC TYPES OF TWO-PARAMETER LIE GROUPS IN CANONICAL FORM

First Second
Basic Types of Two- Differential Differential
Parameter Lie Groups Invariant Invariant Invariant
First Type
£
U = % u(xy) =y uly,y') =y ulGoy,yty") = y"
u - E. ( = ] [ = ' " [ " "
2f = ay u2 x’y) =X u2(x,}',}' ) = y u2(x’y’y (24 )} = Yy
Second Type
of
Ut =3 W (x,y) = x uj(x,y,y') =y w(x,y,yty") = y"
U2f =X % “2(x,y) =X ué(x,y,y') =y' % ug(x,}',Y',}'") = }'"
Third Type
of
U],f = a_y. “l(x,y) =X “i(x,y,y') =y’ uz(x’y’y"y") = y"
ﬁ. af ¥. T 1] - 1] " 1] " "
Upf = x oo+ ¥y 5 | wplxy) =% uwyx,y,y') =y up(x,y,y'5y") = xy
Fourth Type
Uf"'& u(x )=x uv(x v)... [ n( [ n)_ "
1* = v 1 Y 1 Y =Y XY sY Y =Y
of . ' "
Uof =y & uy(x,¥) = x ui(x,y,y') = ;L. up(x,y,y",y") = }y,—




foxﬁ.’.yﬁ

2 ™ 3y (2-62)

admits
(2-63)

(c) For the fourth type, U;f = % admits Eq. (2-59),

and

f(i"y' xy") = 0.

x, - = 0 (2-64)
yy
is invariant under
of
U2f = y W. (2-65)

The fact being considered here is that the
general form of the second-order, ordinary differ-
ential equation that is invarient under each of
the one-parameter groups of point transformations
generated by each of the basis transformations of
one of the four fundamental types of two-parameter
Lie groups written in canonical form may be obtained
quite directly, as has been done above, as an
arbitrary function of an invariant, a first differ-
ential invariant, and a second differential in-
variant of the corresponding one-parameter group.
However, the general forms of the second-order dif-
ferential equations so obtained are not invariant
under the two-parameter groups of point trans-
formations. The general forms of second-order,
ordinary differential equations, which may be
either linear or nonlinear, and that are invariant
under one of the four fundamental two-parameter Lie
groups in canonical form, may be obtained by in-
spection of the invariants and the first and second
differential invarients listed in Table I.

2.3 General Forms of Second-Order, Ordinary Dif-

ferential Equations That Are Invariant under
the Four Canonical Forms of Two-Parameter Lie

Groups
Although the four general forms of second-

order, ordinary differential equations thet are in-
variant under the four fundamental types of two-
parameter Lie groups in canonical form may be ob-
tained by inspection, the actual proof of this in-
variance will be made on the basis of the invariance
of the first-order, linear partial differential
equation, which is equivalent to the second-order,
ordinary differential equation. If a second-order,
ordinary differential equation is written in the
form

y' = Flx,y,¥'), (2-66)
in which the right-hand side is to be regarded as

an arbitrary function of the indicated arguments,

then this equation is equivalent to the linear,
first-order partial differential equation,

MEK,’.},'K

o 5y (2-6T7)

+ F(x,}',}")g—i,.' = 0,

in three variables. This fact may be established
directly by writing Eq. (2-66) as & set of two
first-order, ordinary differential equations and
noting that Eq. (2-6T7) is equivalent to this set.
The general solution of Eq. (2-67) is an arbitrary
function of two linearly independent solutions of
the equivalent set of two first-order differential
Each of these two linearly independent

solutions will, in genheral, be a function of the

equations.

three variables, x,y,y', and, if the derivative,
y', is eliminated between them, then the general
solution of Eq. (2-66) is obtained.

Supposé that Eq. (2-66) admits & one-parameter
group of point transformations in two variables
whose infinitesimal transformation has the symbol

ur = &(x,y) %% + n(x,y) %%u (2-68)

Then the equivalent partial differential equation
contained in Eq. (2-67) will be invariant under the
once-extended group of point transformations gen-

erated by the symbol

af of
1] - —t— ———
u'r = g£(x,y) 3 * n(x,y) 3y

+ | Sxy) - v 5| s (2-69)
To determine whether or not Eq. (2-67) admits a
given one-parameter group, use3 may be made of the
fact that the commutator between the differential
operator, A and U', assumes the form

(U'A)e = A(x,y,y')Ar, (2-70)
wherein A(x,y,y') is an arbitrary function of its
Furthermore, if

the partial differential equation of Eq. (2-67) is

arguments, when Af = 0 admits Uf.

invariant under a one-parameter group of point
transformations, the second-order, ordinary differ-
ential equation of Eq. (2-66), to which it is
equivalent, is also invariant under this same group.
Also, if a first-order, linear partial differential
equation and its corresponding second-order,
ordinary differential equation are going to be in-
variant under a two-parameter Lie group, then Eq.
(2-70) must be satisfied when used with the once-
extended symbols of both of the basis transforma-
tions of this group. The preceaing facts will be

used to establish the invariance of second-order,
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ordinary differential equations under two-parameter
Lie groups.

Now consider the invariant and the first and
second differential invariants of the basis trans-
formations of the canonical form of & two-parameter
Lie group of the first type as given in Table I.

By inspection it may be asserted that

y" = Fly") (2-71)
is the general form of a second-order, ordinary
differential equation admitted by the first type of
two-parameter Lie group in canonical form. To
prove this assertion, we may first note that

of 1of

Af 3x+y3y

+ F(y')§§7 =0, (2-72)

in which F(y') is an arbitrary function of the
derivative, is the linear, first-order partial dif-
ferential equation equivalent to Eq. (2-71). The
symbols of the once-extended groups generated by
the basis transformations of the canonical form of
the first type of two-parameter Lie group are

of

T - ol
ur = = (2-13)
and
_ of _
Uéf = ay (2-Th)

With the operators eppearing in Eqs. (2-72) and
(2-73) we have

(ur 1A =0, (2-75)
and with those of Eqs. (2—72) and (2-T4),
(uga)e = o. (2-76)

These last two relations complete the proof that

(2-T1) is the general form of a second-order,
ordinary differential equation that is invariant
under the canonical form of the first type of two-
parameter Lie group in two variables.

For the second type of two-parameter Lie group
in cenonical form

y" = F(x), (2-71)

in which F(x) is an arbitrary function of its argu-
ment, is the general form of the second~order,
ordinary differential equation admitted by this
group. The corresponding first-order partiel dif-
ferential equation is

- af ,of
Af = ax y ay + F(x) 0, (2"78)

and the symbols of the once-extended basis trans-
formation groups are

Ul = %§, (2-79)

and

af | af
1 - ind
Uof = X5y * a7 (2-80)

Because the commutators formed from Egs. (2-78)
tk;rough (2-80) are

(UiA)f = 0, (2-81)
and

(uga)r = o, (2-82)
the invariance of Eq. (2-77) under the canonical
form of the second type of two-parameter Lie group
is established.

By inspection from Table I, the general form
of & second-order, ordinary differential equation
admitted by the third type of two-parameter Lie
group in canonical form is

" = Fly'), (2-83)
which is equivalent to the first-order partial dif-

ferential equation

- af o Elyt) af
Af = 55 X By = 0. (2-84)

The symbols of the groups of the once-extended basis

transformations are

Uif = %?, (2-85)
and
upe = =35 o y§§ (2-86)
From Eqs. (2-84) and (2-85),
(uja)r = o, (2-87)
and from Eqs. (2-84) and (2-86),
(UéA)f =0, (2-88)

which proves the invariance of Eq. (2-83) under the
third type of two-parameter Lie group in canonical
form.
The canonical form of the fourth type of two-
parameter Lie group admits
y" = Flxly'. (2-89)
The corresponding first-order partial differential

equation is

z of 3L L o LR S
Af = e T Y 5y + F(x) 0, (2-90)

and the symbols of the once-extended groups of the
two basis transformations for this case are
af

1] o —
Uit = 2y’ (2-91)
and
af 1 3f
Ut = Yo y' Frih (2-92)

The values of the commutators developed out of Egs.
(2-90) through (2-92) are

(uja)e = o, (2-93)
and



(UéA)f =0, (2-94)
which completes the proof thet Eq. (2-89) is in-
variant under the canonical form of the fourth type
of two-parameter Lie group.

The principal results of this section have
been summarized in Table II. The general forms of
the four second-order, ordinary differential equa-
tions that are admitted by the canonical forms of
the four fundamental types of two-parameter Lie
groups of point transformations are seen to be
relatively simple and easy to integrate. Conse-
quently, the quadrature question for these four
forms need not be discussed further here.

Table II. GENERAL FORMS OF SECOND-ORDER, ORDINARY
DIFFERENTIAL EQUATIONS THAT ARE INVARI-

ANT UNDER THE FOUR CANONICAL FORMS OF
TWO~-PARAMETER LIE GROUPS

Second-Order, Ordinary
Differential Equation
Invariant under the Group

Type of Two-Parameter
Lie Group

First Type

af
Ulf * x

af
Usf - 3y

y" = F(yl)

Second Type

e = 2L
M yn = F(x)

of
U2f = X 3y

Third Type
of

£ ==

Ul Yy

af af
Upf = x50 ¥ ¥ 3y

xy" = F(y')

Fourth Type
Ulf = ?.
Y yn = y'F(x)

U2f = y %§
We now turn to the determination of classes of

second-order, ordinary differential equations that

are admitted by given two-parameter Lie groups that

are not, however, in canonical form as was the case

in Sec. 2.3.

3. SECOND-ORDER DIFFERENTIAL EQUATIONS INVARIANT
UNDER TWO-PARAMETER LIE GROUPS NOT IN CANONICAL
FORM

3.1 Second-Order Differential Equations That Are

Admitted by Two-Parameter Lie Groups of the
First Type

Consider the pair of two one-parameter groups

of point transformations whose infinitesimal trans-
formations are represented by the symbols
of

Uyt = 3y . (3-1)
and
. Ut ”g_x (3-2)

This pair comprises, in fact, a set of basis trans-
formations for a two-parameter group of point trans-
formations of the first type because the commutator
obtained from Egs. (3-1) and (3-2) is
(u,u,)e = o, (3-3)
and, also, because
Ut ¥ p(x,y)U, . (3-4)

The second-order, ordinary differential equa-

tion
oy = Flxy'), (3-5)

in which F is an arbitrary function of the indicated
argument, xy', is invariant under the two-parameter
Lie group whose basis transformations are represented
by the symbols of Eqs. (3-1) and (3-2). This fact
may bé established in the following manner.

The first-order, linear partial differential
equation that corresponds to Eq. (3-5) is

=, 3  Flgy') 3f
Af_ax+yay+ 2 ayv'o' (3-6)
The symbols of the once-extended groups of basis

trensformations found from Eqs. (3-1) and (3-2) are

1o x 3T
U f W’ (3-7)
and )
te w 8L _ 19f _
Ut = Xox =~ ¥oy™r (3-8)
From Eqs. (3-6) and (3-7), we obtain the commutator
(uja)f = o, (3-9)
and from Egs. (3-6) and (3-8), the commutator
(Upn)r = UL(Af) - A(USf), (3-10a)
' af 1yt )OO
= [up1) - A 35 + vply S
+{U2[ 2 + Aly') 2y’ (3-10b)
of 1 9L =2 t Lo '
TR AL +{x£—§F(w ) +":§F (xy )]
' . Flxy*)ar
- T ] et -
Lr(xy') + 3 }ay., (3-10c)
w3 ,3f  Flxy') ar
ax y ayv x2 ayl' (3-10d)
Therefore,
(URA)E = - Af, (3-11)

L]




and Egs. (3-9) and (3-11) establish the invariance
of Eq. (3-6) and, hence, that of Eq. (3-5) under the
two-parameter Lie group of the first type with the
basis transformations with the symbols of Eqs. (3-1)
and (3-2).

The second-order differential equation,

T
y"=yF L (3-12)
wherein F(y'/y) is an arbitrary function of its
argument, is admitted by the two-parameter group

with the symbols,

= of
Upf =20 (3-13)
and
=y 3L
U2f =y T (3-14)

The basis transformations of Eqs. (3-13) and (3-1k)
define & two-parameter group of the first type be-
ceuse they satisfy Eqs. (3-3) and (3-4). The first-
order partial differential equation equivalent to
Eq. (3-12) is

- of  ,3f Zl)3£_ -
A =YY%t yF(y -

and the once-extended groupsAof basis transforma-

(3-15)

tions for this case are represented by the symbols,

af

1] = m— -
Uit = 35, (3-16)
and

1 = a_f. '—af
U2f 3y +y e

With Egs. (3-15) through (3-17) the commutators

(3-17)

work out to be

(UiA)f 0, (3-18)

and

(uA)f = o0, (3-19)
so that Egs. (3-12) and (3-15) are invaeriant under
the two-parameter group with the basis transforme-
tions of Egs. (3-13) and (3-1bL).

We next consider the two-parameter group with

the basis transformations,

_ .of
Ut = x5 (3-20)
and
af af
U2f = xﬂ- + yé;' (3-21)

These last two relations satisfy Eqs. (3-3) and
(3-4) and, thereby, comprise a two-parameter group
of the first type. The second-order differential

equation admitted by this group is

xy" = F(y' - %), (3-22)

in which F is an arbitrary function of the indicated

argument. This follows from the facts thet
. 3f 13 L1 ( ' Z)Eﬁ_ = _
Af = 9x vy 3y PV x/3y* 0 (3-23)

is the equivalent partial differential equation,
that
af , of

1] —— -
UIE = st gy (3-24)
and
1 = 88 af _
U2f = x50 + ys; (3-25)

are the symbols of the once-extended basis trans-
formations, and that the commutators formed from
Eqs, (3-23) through (3-25) are

(uja)f = o, (3-26)

and
(UéA)f = ~ Af. (3-27)
A fourth example of a two-parameter Lie group
of the first type is that group with the basis

transformations
-2
Ulf = xg3 (3-28)
and
< y3L
Upf = ¥5y (3-29)

vhich satisfy Egs. (3-3) and (3-4), This group ad-

mits the second-order differential equation
2 1]
xy" = yF(Ex—),
y
with the equivelent partial differential equation,

_ 3¢ W3f ¥ pfxr\3f
M=ty <2 F( y >3y' =0

(3-30)

(3-31)

as follows from the symbols of the once-extended

basis transformations, viz.,

U = xg- - y'E;T, (3-32)
and
Ut = y§§-+ y'%§7, (3-33)
and the commutators,
(UjA)E = -Af, (3-34)
and
(uzA)f = o, (3-35)

which come out of Egs. (3-31) through (3-33).

3.2 Differential Equations Invariant under Two-
Parameter Lie Groups of the Second Type

The two-parameter group of point transforme-

tions which is represented by the symbols,

af
ur = Xy (3-36)
and
2 af
Ut = x° 55 (3-37)



is of the second type because

(U1U2)r =0, (3-38)

and

Uyr = plx,y)u, £ (3-39)

2
with p(x,y) = x.
ordinary differential equation,

2
y" - 2xy' + 2y = F(x), (3-bo)
with the equivalent first-order partial differential

equation,
Af = gi y'gf [f y' - gE-y + EL%%]%ST = Q,
y x x= % (3-41)
The symbols of the once-extended basis transforma-
tions are
af af.
T — —
ujr = Tyt T (3-h42)
and
2 af
1 — -
Uyt = 3y x 2L, y (3-43)

The invariance of Egqs. (3-40) and (3-41) under this
group is a consequence of the values of the commu-
tators that arise from Egs. (3-41) through (3-43),

viz.,

(uja)r = o, (3-bb)
and
(UA)f = (3-45)
The second-order differential equation,
w" = (312 + Fx)y2, (3-46)

is invariant under the two-parameter group whose

basis transformation symbols are

of
Ur = X¥ay? (3-47)
and
of
U2f = ys;z (3-48)

This group is of the second type, since Eqs. (3-47)
and (3-48) satisfy Eq. (3-38) and Eq. (3-39) with
p(x,y) = 1/x.
transformations corresponding to Egs. (3-47) and
(3-48) are represented by the symbols,

The once-extended groups of basis

Uit = nra—+ (y + xy )a ™ (3-49)
and
afr . _,3f
Upf = yr+ Yoy (3-50)

The first-order partial differential equation
equivalent to Eq. (3-46) is

2
- 3f ar |y 3 . -
Af = ,é_x_ + yla_y. + [_1}7)_- + yF(X)]F o, (3 51)

and the commutators which come out of Egs. (3-49)

10

This group admits the second-order,

through (3-51) are

(uja)f = 0, (3-52)
and .
(uga)e. = o. (3-53)
The two-parameter group represented by
l ar . RYR -
Ut =3 ’ . (3-54)
and
x af
Upf = 3 2y (3-55)

is of the second type. It admits the second-order

differential equation,

"+ (312 = F(x), (3-56)
equivalent to
ar !x !
Af = -4 yios ay [—(—l Y } = 0. (3-5T)

The symbols of the once-extended groups of basis
transformations are

Urp « L 3L _y'af

Yy T (3-58)

and

UT.££+P_&%£% (3-59)

2 y 3y yo42 |
Evaluating the relevant commutetors with Eqs. (3-5T)
through (3-59) produces

(UiA)f =0, (3-60)
and
() = o, (3-61)
vhich establishes the invariance of Eq. (3-56)
under the group of the symbols of Eqs. (3-54) and
(3-55).
The nonlinear, second-order, ordinary differ-
ential equation
w"o-2lyn)? - %w' - i—2y2
is invariant under the two-parameter Lie group

= F(x)y3, (3-62)

represented by the basis transformation symbols

2 af .
u,f = oy '(3-63)
and
2.2 3f
U f = x7y " (3-64)

This group is of the second type, and the symbols

of its once-extended basis transformations are

2ar, 2 L i
U = xy  * (y© + 2xyy )ay" (3-65)
and
upe = %% S (20®  2fyEn (3-66)

The commutators formed with Egs. (3-65) and (3-66)
and the partial differential equation equivalent to



(3-62), viz.,

af af 2
Af L+ [E-E Y _(
Yy [} y)?

Eyv+Ey F(X)yz]gf,—.-

ax 2
=0, (3-67)
assume the valyes
(UiA)f = (3-68)
and
(ula)f =0

(3-69)
to complete the invariance proof. ‘

3.3 Differential Equations Invariant under Two-
Parameter Lie Groups of the Third Type

The basis transformations with the symbols
af

Uy == (3-70)
and
of af
U f = 237+ Yoy (3-71)

generate a two-parameter Lie group of the third type
as they satisfy fhe relations
(uu e =

UL, - (3-72)

and
Ut # p(x,y)Ulf. (3-73)

This group admits the second-order differential

equation
yy" = F(y') (3-7T4)
vith the equivalent first-order partial differential
equation
Af_a_f.+ vaf ._(I_)af = 0. (3_75)

9x ay Yy y'
The once-extended groups that arise from Egs.
(3-70) and (3-~71) are represented by the symbols
of

Ui = 2 (3-76)
and
- 2L, 3f
Uéf % + ys; (3-717)

The invariance of both Eq. (3-74) and (3-75) under
the two-parameter group represented by Egqs. (3~70)
and (3-~T1l) is a consequence of the fact that the

comutators formed with Egs. (3-75) through (3-7T)

assume the values

(uja)f = o, (3-78)
and
(UzA)f = - Af. (3-79)
The second-order differential equation
y"' = xB2 F(xlmn y') (3-80)

is invariant under the two-parameter group gen-

erated by the symbols

U.f = af

i = (3-81)

and
of af
UL = xo + el (3-82)

To show that this group is of the third type of two-
parameter Lie group, we introduce the basis trans-

formation symbols

_ of
Vif 2U L= o (3-83)
and
V,f = —Ur:%%#-yg—;-, (3-84)

and observe that

(v,v)f = v f (3-85)

together with

Vor # p(x,y)V £, (3-86)

The linear, first-order partial differential equa-
tion that corresponds to Eq. (3-80) is

_ of 1of n- l-n_,y3f _ _
Af = o +y 3y + x 2F(x Yy )5—— 0, (3-87)
and the once-extended groups that come out of Egs.

(3-81) and (3-82) are represented by the symbols,

u'f = a—f (3-88)

1 Ay’
and

ar

' 13
Uy = ny—- + (n-1)y v (3-89)

Because the commutators constructed from Egs. (3-87)
through (3-89) are
(uA)f = (3-90)

and

(uph)e

[u (1) - ()| 2 [u (y') - A(ny)]

{Ué’ P2p(x* " ')] - A[(n—l)y”ay.,
(3-91a)
{x’(n—2)xn~3F(xl-ny')
(l-n)y'F'(xl"ny')l

+ (n—l)y' n—2 PR nF'(xl-ny')

of 9f
x SRAFT oy

xn—-2xl--n--l

1-n v _
- (n-1)x""2F(x )}ay., (3-91b)
e v TR, (30t
= - Af’ (3"'91(1)

the invariance of Eqs. (3-80) and (3-87) under the
two-parameter group with the symbols of Eqs. (3-81)
and (3-82) is proved.

The two-parameter group generated by the two

infinitesimal transformations with the symbols

= oL of

11



and
(3-93)

is of the third type. This fact follows by select-
ing the basis transformations as

of

VifE UL = T (3-9%)

x_3f . n_ _of
Vof * ol ax * o1

and by noting that the commutator constructed with
Egs. (3-94) and (3-95) is

(3-95)

(v, v,)fr = v 1, (3-96)
and that
Vf # p(x,y)V, 1. (3-97)
The second-order differential equation’
(3-98)

n-1 X8

yn = xn—-2 ( x L)
together with its equivalent first-order partial

differential equation, viz.,

A,y “"21?(—1— Y—)a =0 (3-99)
Y

A2ty t nl m

are admitted by the group of point transformations
defined by Eqs. (3-92) and (3-93), because the

corresponding once-extended groups are generated by

the symbols

3f of
1] e - -
Ulf = x37 + n3 + (n l)y (3-100)
and
af af
1] — -
U2f = Xay + 3y’ (3-101)

and because the commutators that come out of Egs.
(3-99) through (3-101) assume the value

(UiA)f = - Af, (3-102)
and
(uza)e = o. (3-103)
The symbols
af
U = xgss (3~104)
and
af
Ut Xy (3-105)

yield a two-parameter group of the third type, be-

cause the basis transformation symbols, viz.,

= ar el
Vif = UL = xe ‘ {3-106)
and

- af
Vot = - Uy =

satisfy Egqs. (3~96) and (3-97). The symbols of the

(3-10T7)
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once-extended groups of point transformations from
Eqs. (3-104) and (3-105) are '

v o LOf _ 13T _
Ui = x> -y T’ (3-108)
and
' of of _
UpE = x5+ oy (3-109)
The second-order differential equation
x2y" = Flxy' - ¥), (3-110)

and corresponding partial differential equation

Af = af + y.ar ngx'2- ¥) gi' =0 (3-111)
x

are invariant under the group represented by the
symbols of Eqs. (3-104) and (3-105), because the
commutators formed with Egs. (3-108), (3-109), and
(3-111) are )
(UjA)f = - af, (3-112)
and
(UsA)E = 0. (3-113)

3.4 Differential Equations That Are Admitted by
Two-Parameter Lie Groups of the Fourth Type

. In this section we shall consider four two-
parameter Lie groups of the fourth type. The sym-
bols of the two infinitesimal transformations of
these groups are

(a) for the first group,

of
Ulf = XE', (3-114)
and
of
Upf = 5 (3-115)
(b) for the second group,
ar of
Ut =5t oy (3-116)
and
of of
U2f = xc + xs;q (3-117)
(c) for the third group,
ar of
Upf = ==+ Yoy (3-118)
and ,
of of
Ut = xo + oyt (3-119)
(d) for the fourth group, -
of of
Upr = =+ Sy (3-120)
and :
of 2 af
Uyt = xoo+x 3;' (3—121)

These four two-parameter Lie groups of point trana-
formations are all of the fourth type, because each

satisfies the relations




xe

(U1U2)f =uf, (3-122)

and

U2f = p(x,y)Ulf, (3-123)

vhich define the fourth type of two-parameter Lie
group.

The four second-order, ordinary differential
equatjions that follow are invariant under the above
four groups.

{a) The group of Egs. (3-114) and (3-115) admits

¥ = (y")%F(y); (3-124)
(b) That of Egqs. (3-116) and (3-117) admits

¥ = (v - 1%y - x)s (3-125)
(c) That of Egs. (3-118) and (3-119) admits
v = iléli + y(il-— 1)2F(1n v - x); (3-126)
(d) That of Eqs. (3-120) and (3-121) admits
¥ =1+ 2y - x)2F(ey - x2). (3-127)
In Egs. (3-124) through (3-127), the symbol, F,
denotes an arbitrary function of the indicated argu-
ment.
To prove the invariance assertion just made
relative to Eq. (3-124), we first note that its
equivalent first-order, linear partial differential

equation is

= of 1 9f ' af -
Af =4y 3y + (y )2F(y)ay, = 0. (3-128)

The once-extended groups arising from the symbols of
Egs. (3-11b4) and (3-115) are generated by the sym-
bols

£ ,of

9
1 ax Y oy

[=
[
]

(3-129)

and

10 = 88
Uyt = oo

The commutators formed from Egs. (3-128) through
(3-130) have the values
(uja)f = - Ar, (3-131)

(3-130)

and

(UpAlf = 0, {3-132)

which completes the proof.

The proofs for the invariance assertions made
above for Egs. (3-125) through (3-127) follow the
same pattern as that conteined in Eqs. (3-128)
through (3-132), and we shall merely summarize the
relevant relations below.

(1) For Egs. (3-116), (3-117), and (3-125) we have

D3, 3, o 1) at
M tyey?t [(y 1Ry - x)fgym = 0

"(3-133)

of 3

UIE = 5t S (3-134)
) 3 af
Uéf = xs% + x5§'+ (1 - y')s;?, (3-135)
(ujA)f = o0, (3-136)
and
(UAA)L = - Af. (3-137)

(2) For Eqs. (3-118), (3-119), and (3-126) we have

2
= 3f a  [&” bl 2 RN ) i
ar s vyl [ o y(y - 1) Flin y - x)| 57
=0 (3-138)
= of ,  of 3f -
Ujr = oo+ Yoy * y'ay,, (3-139)
af af af
Uéf = xs;-+ XYS? + [y + (x - l)y'IS;T, (3-1%0)
(UiA)f = 0, (3-141)
and
(UéA)f = -~ Af, (3-1k2)
(3) For Eqs. (3-120), (3-121), and (3-127) we have
- 3f af Y- - 2y L
Af = ax * y'ay + (1 + 2(y' - x)°F(2Y - x°) 2y
= 0, (3-143)
= of , 3f , af .
Uif = B + xay + T (3-1L4)
vo = L OF 2 of af _
UL = X x 5 + (2x - y')ay,, (3-1k45)
(UiA)f = 0, (3-146)
and
(ULA)L = - Af. (3-147)

The principal results obtained in Sections
3.2 through 3.4 are summarized in Table III, which
gives the symbols of the infinitesimal trans-
formations of 16 two-parameter Lie groups, the
group type, and the second-order, ordinary differ-
ential equations that are admitted by these groups.
In Table III, the following definitions are em-

ployed:
=L, (3-148)
and
q=an (3-149)

4. APPLICATION OF LIE GROUPS TO THE SOLUTION OF
NONLINEAR DIFFUSION EQUATIONS

In the ensuing part, explicit, exact solutions
of nonlinear diffusion equations will be found by
exploiting the fact that these equations are in-
variant under Lie groups. Particular emphasis is
given to establishing relationships among the
parameters appearing in the nonlinear diffusion
equations that must be satisfied for the solutions

to exist together with solution integrals.
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Table III.

SECOND-ORDER ORDINARY DIFFERENTIAL EQUATIONS ADMITTED BY VARIOUS

TWO-PARAMETER LIE GROUPS NOT IN CANONICAL FORM

.| Group
Group Symbols Type Invariant Differential Equation
UL = q3 Uyf =xp 1 x2y" = F(xy;)
1]
Uyt = p; UL = yq 1 y" = yF(%—)
Uif = xq3 Ut = xp + yq ‘1 xy" = F(yn - %)
1]
Ulf = Xp; U2f = yq 1 x2y" = yF(zi—)
U f = xq; U2f = x2q 2 x2y" -~ 2xy' + 2y = F(x)
U f = xyq; Uf = 2 " a ()2 + F(x)y®
1f = xvas Ut = yq w" =y x)y
UL = ?; Ut = ;3 2 "+ (y)2 = F(x)
22 2 2 2 2
ufr = xy2as U f = xy7q 2 w'-2y') - -5y = F(x)y>
: x

Uyf = p;3 Upf = xp + yq 3 yy" = F(y')

- 1-
Uif = q; Upf = xp + nyq 3 "o " 2F(x By1)

- 1]
U,f = xp + nyq; Uyt = xq 3 y" o xR L
1 2 n-1 n

x x

U f = xp; Uyl = xq 3 x“y" = F(xy' - y)
U,f = xp; Upf = p b ¥ = (y")%(y)
Upf = p+q; Uyf = xp + yq 4 Y=y - D - x)

12 ] 2
Uy f = p+yq; Usf = xp + xyq 4 y"' o= LI;l_ + y(%— - l) F(ln y - x)
Ulf =p+ xq; USf = xp + x2q 4 y' =14+ 2(y' - x)2F(2y - x2)
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4.1 Group Invariance Properties of yxy" +
A=1, ,,2 v
AY (y')" +ay =0

The nonlinear diffusion equation

Py ey M2 s ey =0 (4-1)
arises when the transport coefficient is propor-
tional to the A-power of the dependent variable,
and the source term is proportional to the v-power
of the dependent variable. This nonlinear differ-
ential equation is invariant under the two-parameter
Lie group, which is represented by the two infini-

tesimal transformation symbols

af
ht= e (h-2)
and

U g = 2 af

2 xﬁ' + nya_y" (4-3)

where in Eq. (4-3) the definition that follows has

1h

been introduced:

- 2
=T+ v

(b=b)
Accordingly, Eq. (4-1) is admitted by the group
defined by Egs. (4-2) and (4-3) provided that v #
1l + A. This exceptional case will be discussed in
Sec. 4.3.

The proof of the invariance assertion just
mede relative to Eq. (4-1) may be accomplished in
two stages. First, it must be shown that the
group represented by the symbols of Eqs. (4-2) and
(4-3) is, in fact, a two-parameter Lie group.
Second, the invariance of Eq. (4-1) under this
group may be established by demonstrating the in-
variance of its equivalent first-order, linear )
partial differential equation under the group.

The fact that the symbols of Egs. (4-2) and



(4-3) do generate a two-parameter Lie group is a
direct consequence of Lie's principal theorem (cf.
Sec. 2.1) because their commutator assumes the
value

(U1U2)f = Uf. (4-5)

Moreover, because these two symbols also satisfy
the relation
U2f # D(x,}')Ulf, (h"'s)

the two-parameter group of point transformations
generated by the two basis transformations of Egs.
(b-2) and (4-3) is, in fect, s two-parameter Lie
group of the third type. The identification of the
group type reduces the problem of the integration
of Eq. (4-1) to one of quadratures.

The linear, first-order partial differential
equation that corresponds to Eq. (4-1) is

) S & A=1p o 1y2 v-a]ag ~
Af =4y " {Ay (y*')° + ay 2y 0, (4-7)

and the symbols of the once-extended groups of
point transformations that come out of Egqs. (4-2)
and (4-3) are

_ of
Uif = —QX’ (l;...a)
and
e = oOf af 1yer Of _
U2f x—ax + ny‘g + (n l)y -é—y—r, (h 9)

respectively. The commutator constructed with the
differential operators appearing in Eqs. (4-7) and
(4-8) is

(uja)e = o.
The commutator from Egs. (4-7) and (4-9) is

(4-10)

(Usa)f = [Ué(l) - A0 [EE 4 [uptyt) - atan)|

-'{Uélky"l(y')z + uy“"xl

. (n—l)A(y')}g—;",-. (4-11)
Now, becguse
uy(1) - alx) = -1, (4-12)
Ux(y') - Alny) = -y, (4-13)
and
Ué[Ay"l(}")2 + uyv-)‘l + (n-1)A(y')
= ny’-ky"z(y')2 + u(v-k)y“"x"l]
+ (nn2yl(y)®
- (n—l)[xy"l(y')2 + uy“"ﬂ, (4-1ka)
= w7y - ’n(v-x) -n+ lluyv-x, (4-1kv)
=y 7y 4y, (4-1he)

where Eq. (4-1kc) follows upon substituting Eq.
(b-4) into Eq. (b-1kb), we find that Eq. (4-11) re-
duces to
(ULA)E = - Af. (4-15)

From Eqs. (4-10) and (4-15) it follows that the
linear partial differential equation in Eq. (4-T7)
is invariant under the once-extended groups repre-
sented by the symbols of Egqs. (4-8) and (4-9).
Therefore, the nonlinear diffusion equation of Eq.
(4-1) is invarient under the two-parameter Lie group
of the third type whose basis transformation symbols
are contained in Eqs. (4-2) and (4-3) provided that
vEL S+,

In the case wvhen v = 1 + A, Eq. (4-1) simpli-
fies to the form

"+ Ay + ay? = 0, (4-16)

which is invariant under the two-parameter Lie group

whose basis transformations are represented by the

symbols
_ 3t
Upf = 25 (4-17)
and
¢ = gL -
U,f = " (4-18)

This two-parameter group is of the first type be-

cause the symbols of Eqs. (4-17) and (4-18) satisfy

the defining relations
(u,u,)f = 0, (4-19)

and

Upf # o(x,y)U,f. (4-20)

The symbols of the once-extended groups arising from
Egs. (4-17) and (4-18) are

1y o OF
Ulf = 3% (4-21)
and
af af
UM = yor *+ Yoy (k-22)
and the linear partial differential equation
equivalent to Eq. (L4-16) is
_ A, . .0f “10y2 af_ _
Af = S +y 3y " [Ay (y')° + ay T 0. (Lh-23)

The commutators formed from the differential opera-
tors in Eqs. (4-21) through (4-23) reduce to
(uja)f =0, (4-24)
and
(uga)er = o, (4-25)
which establishes the fact that the two-parameter
Lie group of the first type with the infinitesimal

transformations of Eqs. (4-17) and (4-18) admits
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the nonlinear second-order differential equation
of Eq. (4-16).
(4-16) may be reduced to a quadrature problem,
vhich is worked out in Sec. 4.3.
4.2 Introduction of Canonical Variables

It has been shown that Eqs. (4-2) and (L4-3)

Accordingly, the integration of Eq.

comprise the basis transformations of a two-
parameter Lie group of the third type that admits
Eq. (4-1) if v ¥ 1 + A. Through the introduction
of the canonical variables, which we shall denote
by X and Y, these two infinitesimal transformations
may be brought into their canonical forms, viz.,

- 3
U= 3§, (4-26)
and
- 3 _af
U f = Xox + Yoy (4-27)

for a two-parameter Lie group of the third type.
Furthermore, if the nonlinear diffusion equation
given in Eq. {4-1) is expressed in terms of canon-
ical variables, then the resulting differential
equation will be invariant under the two-parameter
group in canonical variables generated by Eqs.
(4-26) and (4-27). It is known from Teble II that
Eq. (4-1) will assume the general form

- ()

(4-28)
ax ax

where F signifies an arbitrary function of the argu-
ment when it is written in terms of the canonical
variables of the two-parameter Lie group under
which it is invariant. A first integral of Eq.
(4-28) may be easily obtained by quadrature.
If

Ut = £ ()3 + ny (x)E, (4-29)

and

af afr
Upf = £,(x,y)50 + na(x,y)s;' (4-30)

are the symbols of the infinitesimal transforma-
tions of a two-parameter Lie group of the third
type not in canonical form, then the canonical
variables of this group may be determined3 from

- nydx + E.dy
d1ln X = 1 1

s (4-31)
noky - Mmés

which will be an exact differential, and from

n, - n,Y
ﬂ. = _.3___1.-_—’ (h_32)
¥  £yny - oM

and

16

- &, + &Y
.a!. = _.2__.1_. (h_33)
9y Eln2 - 52711
Relative to these last three relations, Eq. (4-31)

is obtained upon solving

El(x,y)%%-+ "1(x’y)%§" o, (4-34) -
and .

£plxy 1SE + nyle e = X, (4-35) ~
for X and Xy, whereas Egs. (4-32) and (4-33) are .
the solutions of

g )+ o ()=, (4-36)
and

Eplxsy Yoy + nolx,y)er = 1. (4-37)

For the two-parameter group generated by the symbols
of Eqs, (4-2) and (4-3), we find that Egs. (4-31)
through (4-33) become

x &Y e
d1n X = (4-38)
aY
ALy, (4-39)
and
oY Y -x
Ll g 2 =2 .
3y v (%-40)
respectively. Integrating Eq. (4-38) produces
x = y/7, (4-b1)
whereas
Y = x (k-k2)

obviously satisfies EBqs. (4-39) and (4-40). Accord-
ingly, the results given in Eqs. (4-41) and (4-42)
may be taken as the canonical variables of the two-
parameter Lie group of the third type generated by
the infinitesimal trensformations contained in Egqs.
(4-2) and (4-3).

In transforming Eq. (4-1) to canonical vari-
ables, we shall regard the canonical variable, Y,
as the new dependent variable and the canonical
variable, X, as the new independent variable. From
Eq. (4-42), it will be noted that the dependent and
independent variables are interchanged in the course
of the reduction of Eq. (4-1) to its cgnonical form.

To effect this reduction we may first observe
that

+ 3=y
aYy  3x 3y 7 (4-43)
ax = X, o ;
ax Yy y ~

becomes



g

a4 _n_ 1-(1/n)
ax =y Y (b-kk)

when the partial derivatives are evaluated from

Egs. (4-41) and (4-42). Next we note that
__=_;= ni_x_ ’(y,)"'l yl-(l/n) . (h—hﬁ)

However,

dx _y' (1/n)-1
Sty , (4-16)

so that Eq. (4-45) becomes
xi_y(l/n)-l QEL
n dx2

~-(1/n) _ nyl-(l/n)(}")—ey"- (4=47)

= (n-1)y
Now, because
x =Y, (4-48)
and
y =X, (4-49)
we find that Eqs. (4-Ll4) and (4-47) yield
[ n-1 ﬂ. -1 -
y = (L), (4-50)
and
2
" o_ - n—-2ﬂ_-2_ n—lﬂ.-3d_Y_ -
_y" = n(n-1)X (dx) nx (dx) = (4-51)

respectively. Substituting Egs. (4-49) through
(4-51) into Eq. (4-1) produces, first of all,

n(n_l)xnx+n-2(gl)-2 _ nxnk+n71(gx>-3 a®y
ax ax dx2

+ Anzxn(x-l)+2n-2(%>-2 +ax® =0, (4-52)
and simplifying this relation with the help of Eq.
(4-4) yields

X :_ié_ = ’n(lﬂ) - 1]3—;[(- + %(%)3 (4-53)

This last equation is Eq. (4-1) written in terms

of the canonical variables of the two-parameter Lie
group with the basis transformation symbols given
in Eqs. (4-2) and (4-3), and it is seen to have

the general form anticipated in Eq. (4-28).

The result obtained in Eq. (4-53) is valid
provided that v # A + 1. In the case v = X + 1,
Eq. (4-1) simplifies to Eq. (4-16), which has been
shown to be invariant under the two-parameter group
of the first, not third, type generated by the
infinitesimal transformations of Egs. (4-17) and
(4-18). If Eqs. (4-29) and (4-30) are now re-
garded as the symbols of the basis transformations
of a two-parameter Lie group of the first type,
then the cenonical variables of this group may be

found from the relations

_ X 3X ~
aX = 2= dx + 3 ay, (4-5k)
and
_ Y aY _
ay = = dx + o dy. (4-55)

In Eq. (4-54), the partiel derivatives are solu-
tions of the set

£ 3R+ n )= 1, (4-56)
and

Eplx )3 + ny(xy)E = 0, (4-57)
and in Eq. (4-55), of the set

£ (xy ey + ny ()i = 0, (4-58)
and

Eplx,y Vo + ny(x,y)e = 1. (4-59)

For the basis transformations of Eqs. (4-1T)
and (4-18), it is found that Egs. (4-56) through
(4-59) become

X

%0, (4-60)
yex = 0, (4-61)
Lo, (4-62)
and
el (4-63)

respectively. Accordingly, Egs. (4-54) and (4-55)

assume the forms

dx = dx, (h-64)
and
ay = ;%‘L, (4-65)
which integrate out to produce
X = x, (4-66)
and
Y=1ny (4-67)

as the canonical variables of the two-parameter Lie
group generated by the basis transformation symbols
of Egs. (4-17) and (4-18).

If the nonlinear differential equation con-
teined in Eq. (4-16) is written in terms of the
canonical. variables obtained in Eqs. (4-66) and
(4-67), it will assume, in accordeance with Table II,
the general form

- rE), (4-68)
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vhere F is an arbitrary function of the indicated
argument, which is invariant under the canonical
form of the two-parameter group arising from Egs.
(4-17) and (L4-18), vis.,

- af

6= 2L, (4-69)
and

- of

U2f =y (4-70)

To reduce Eq. (4-16) to its canonical form, we
first note that Eqs. (4-66) and (4-67) imply that

y = exp (Y), (4-T1)
y' = exp (Y) %%, (k-T2
and
%y jay 2]
¥ = exp (1) [ET 4 (41)2], (4-73)
P sz (dx)

Substituting Eqs. (4-T1) through (4-73) into Eq.
(4-16) and simplifying the result produces

&, (&P +e =0, (4-T4)

which is the canonical form of Eq. (4-16), as an-
ticipated in Eq. (4-68), and also the canonical
form of Eq. (4-1) when v = 1 + A.

We turn now to the integration of the two ca-
nonical forms that have been obtained above for Eq.
(4-1), that is, to Eq. (4-Th) when v = 1 + A and to
Eq. (4-53) when v # 1 + .

4.3 Solution for the Case when v = 1 + A

If we let

wzg (4-75)

in Bq. (4-T4), then the first integral is immedi-
ately obtained upon integration in the form,

day

ax = A tan[Cl - A(1+A)x], (4-76)
wherein Cl is an arbitrary constant, and

= u -
Az T (4-77)
The integral of Eq. (4-76) may be written as
1 1

Y = Sy in cos[cl - A(1+A)XJ + S 1in C2 (4-78)

with c2 as a second arbitrary constant. Upon re-
verting back to the original variables by means of
Eqs. (4-66) and (4-67), Eq. (4-78) becomes

(141) 1n y = 1n cos [cl - A(1+\)x] + 1n Cs» (4-79)

that is

¥+ = ¢, cos [C] - A(1#A)x].

s (4-80)

18

This last equation is the general solution of Eq.
(4-1) wvhen v = 1 + A, and, therefore, of Eq. (4-16).
The solution given in Eq. (4-80) does not hold,
however, if A = -1. Solutions of Eq. (4-1) valid
for A = -1 and v # 0 and for A = =1 and v = 0 will
be given later (see Secs. 4.5.6 and 4.5.7).

The two arbitrary constants in Eq. (4-80) may
be evalusted once the boundary or initiel condi-
tions are specified. For example, for the non-

linear, two-point boundary value problem such that

y'(0) = 0, (4-81)
and
y(1) =1, (4-82)-
we find that
c, =0, (4-83)
and
1
C, = cos [A(TIT" (4-84)
Accordingly, it follows that
1
(L-85)

y= <fos xva{l+d >1+A
cos [v/a{l#)]
is the solution of Eq. (4-1) when v = 1 + )\ pro-
vided that A # -1, y'(0) = 0, and y(1) = 1, i.e.,
of Eq. (4-16) under these same conditions.

4.4 Quadrature Formula for the Case when v # )1 + )

In this section an integral representation
will be derived for the solution of Eq. (4-1) when
v £ 1 + ) and for the nonlinear two-point boundary
value problem with the boundary conditions as given
in Eqs. (4-81) and (4-82). Ve mmy state that an
infinite number of solutions of Eq. (4-1) may be
found with the integral representation to be
derived. However, we shall limit ourselves to the
subsequent consideration of approximately two dozen
cases that effectively provide the solution of Eq.
(4-1) for a continuous variation of the parameters,
A and v, that appear in this equation. .

To find the integral representation mentioned
above, we begin with the canonical form of Eq.
(4-1), that is, with Eq. (4-53), which, with the
definition contained in Eq. (4-75), may be written

as

(4-86)
wherein
a< = % [n(1+r) - 1]. (L-87)

To express the boundary conditions, y'(0) = 0 and



ad

y(1) = 1, in terms of the canonical variables, let

¥(0) = y_ be the velue of the solution of Eq. (k-1)
at x = 0. Then from Eqs. (4-48) and (L4-49) it fol-
lows that

Y=0 (4-88)

and

x = y/m (4-89)
and from Eq. (lL-Ll)

dYy

ﬁ- m @, (h"go)
Hence, in integrating Eq. (4-86), use is made of

1/n

the fact that u + » as X » Yo

boundary conditions of Eqs. (4-81) and (4-82), that

is,

for the two-point

- v/
g aw = | rax. (4-51)
u'[(u')c + a<}

X

u

This integrates out to the form

2 2
1n< u 2> - 2: a 1n< )l(/n>’ (4-92)
u< + a ¥

o
or
2 m
u [ X
< - < l/n> (4-93)
u +a Yo
with the definition
2ua2
m = 5 = 2[n(1+x) -~ 1]. (4-9L)

Now from Eq. (4-93) we obtain

2/ x \®
2 a 1/n
dY ]

x = L \& (4-95)

()

o

When taking the square root of Eq. (4-95) either
the plus or the minus sign may be used. To decide
which one to use, it may be noted that for the
boundary conditions of Egqs. (4-81) and (4-82) the
solution of Eq. (4-1) will be such that y' < 0 on
the closed interval O < x < 1. Accordingly, it
may be concluded from Eq. (4-LL4) that the negative
sign is to be used if n is positive, whereas the
plus sign is to be used if n is negative. That
is, Eq. (4-95) yields

(4-96)

in which we take the plus sign, if n < O, and the
minus sign, if n > 0. In Eq. (4-96), the boundary
condition y'(0) = 0 has already been incorporated,
and the arbitrary constant, Yoo is interpreted as
the value of the solution of Eq. (4-1) at x = 0.

To put in the boundary condition y(1) = 1, we
observe from Eqs. (4-48) and (4-49) that this bound-
ary condition implies that Y = 1 when X = 1. Hence,
Eq. (4-96) yields

(4-97)

or

(4-98)

in which the upper minus sign is now taken if
n < 0, and the lower plus sign if n > 0. Upon
letting
X'
t= /e (4-99)

Yo
and upon reverting back to the original variables
with Eqs. (4-48) and (4-49), we find that Eq.
(4-98) becomes

1
(I_) /n
Yo
m
1 —X-F —t _at (4-100)
ay, n 1 -8
1/n

vhere the minus sign is used if n < O, and the plus
sign is used if n > O.

In summary, Eq. (4-100) comprises an integral
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representation of the solution of Eq. (L4-1) for the
boundary conditions y'(0) = 0 and y(1) = 1. These
boundary conditions have been incorporated into
this equation, which is valid if v # 1 + X.

The constant, y_, in Eq. (4-100) is the value
of the solution of Eq. (4-1) at x = 0 for the given
boundary conditions and is determined as a rooi of

the transcendental equation,

1/
(B

when this root exists. As will be seen later, Eq.
(4-101) may have zero, one, or two roots. When
this equation has no roots, as may happen for cer-
tain combinations of the values of the parameters
A, v, and a appearing in Eq. (4-1), then this non-
linear diffusion equation has no solution for the
boundary conditions y'(0) = 0 and y(1) = 1. Ac-
cordingly, we shall have to determine allowed
values of the parameters for which a solution of
Eq. (4-1) does, in fact, exist for the above stated
boundary conditions.

4.5 Reductions of the Quadrature Formula in the
Case when v # 1 + )

In this section 25 explicit, analytic solu-
tions of Eq. (4-1) will be found by specializing
the integral representation obtained in Eq. (4-100),
in which, from Eqs. (4-4), (4-87), and (L-94),

1 1+)x-v _
Z= ity (4-102)
1 a
;=(1+A-v)-|/2l+)‘+v, (4-103)
and
1+ A+ v
» = 25y (h-10)

4.5.1 Result for m = 1
If m = 1, then Eq. (4-104) implies that

v = %(1 +1), (4-105)

so v > 0, if A < -1. Also,

n = ETT_%—TT’ (4-106)
1
2 ha =7 (k-107)

so that, when X < -1, we may write

and

20

% = :ngl%_:_ll’ (4-108)
and a = iA, where

1 _ ke ’

;5 = §—(|A| - 1). (4-109)

Because n < 0, if A < -1, for this case Eq. (4-100)

becomes

1/n
Yy
y
(5)
ﬁ Tt dt, (4-110a)
° 1/n
(5)
yO
1/n
(%)
1 yo
t t
e ¢ &t (4-110b)
1/n 1

)

The value of the solution at x = 0 is a root of

-1
Y, /n
y-l/n
° — o |J——at, (4-111)
iA
l -t
1
and the solution itself is given by
-1/n
)
y
-1/n

xy, s
e )/l — dt. (b-112)

1
Now, because
ygl/ D1 (4-113)
and
v 1/n
o)
- 1, h-114
(2) > (b-114)

the denominators of the integrands in Eqs. (4-111)
and (4-112) are written as

-t =ik -1, (4-115)
and these equations become
-1/n
y-l/n °
o / t
remidl B CEEE TS (4-126)
1

and

ra




LY

-1/n
Yo
y

o T
A t-1
1

dt, (b-117)

respectively. Upon setting t = 12 in Eqs. (4-116)
and (4-117) and integrating out, we obtain

% = yi/2n Y;l R yi/n arccosh(y;l/2n),
(4-118)
and
~1/2
yo /2n
+ arccosh (;—) . (4-119)

The right-hand side of Eq. (4-118) is plotted as a
function of y;l 2n in Fig. 1. The occurrence of

the maximum on this curve shows that

(%) =1.20 (4-120)
max .
defines a maximpum value of a, denoted by umax and
found from Egqs. (4-109) and (4-120) to be
_ .1.08
umax = m_—, (4-121)

for which there will be a root of Eq. (4-118). If

a>a , then Eq. (4-1) has no solution when
max

A < -1 and
v = 3 . (4-122)

On the other hand, if a < & ax? and if

R.H.S. OF Eq (4-1i8)
8
T
1

y‘;llzn

Fig. 1. Graph for determining the roots of Eq.
(4-118).

1< % < 1.20, (4-123)

then Eq. (4-118) has two roots, of which the small-
est is of physical interest, and, if

1

then Eq. (4-118) has a single root as is the case
for a s a . When a root of Eq. (4-118) exists,
Eq. (4-119) is the solution of Eq. (L4-1) for A < -1
subject to the condition of Eq. (4-122) and with
the value of n given by Eq. (4-108) and that of A
in Eq. (b-109).
4.5.2 Results for m
Let

1/, 9 = 1.5, 2, 2.5, 3, 3.5

=1 _
m = q’ (l‘ 125)

then Eqs. (4-102) through (4-104) become

291 + 1) (4-126)

1l +2q °

1
n

]

2
bag®(1 + A) (4-127

1
£
a2 1 + 2q

and

v = Sl + xggl - 292 (4-128)

1l + 2q ’
respectively., From Eq. (4-128) we see that, if
A < -1 and q > 0.50, then v > O, and this is the
case that will be considered. If A < -1, Eq.
(b-127) indicates that a is a pure imaginary number,
so let a = iA with

2
1 _ bag®(fa] - 1)
2 T+ 2g , for A < -1, (4-129)

Also, Eq. (4-126) shows that n < 0, if X < -1. Be-
cause n < 0, Eq. (4-101) now takes the form

-1
v /n
e 17q
iA hnd 1 - tl[q dt, (h—l30)
1
or, because y;l/n > 1,
’y;l/n
-1l/n
o tl 4
ot T/ dt. (4-131)
I |
n

Let t = T2q in Eq. (4-131), then we have



x 2q | ——=de——0qr. (4-132)

1
By e procedure similar to that leading to Eq.
(4-132), it is found that Eq. (4-100) reduces to

-1/2qn
(52)
Yy
2q
X yon L e | —E—ar. (h-133)
2
t -1
1

From Eq. (4-133) the following five solutions of
Eq. (4-1) may be obtained by integration:
(1) if q = 3/2, then

~-2/3n -2/3n
<= A yl/n{ (z:_) -1 l:(i:_°) + 2] E,(h-l3h)

in which Yo is a root of

1. 1 2 _
I L - —57r5m 1Y rm) (4-135)
Yo Yo
and
l_ -3
TN (faf - 1), (4-136)
and
1
s £ (Al - . (4-137)
This solution is also subject to the relation
valioL (4-138)

(2) If q = 2, then

-1/4 -1/2n -1/2n
x = Ayl/n (;‘) ' (ZQ) -1 [;ZQ) + %g

v -1/4
+ %-arccosh(;g) > (k-139)

in which Yo is a root of

“1/bn = -
yi/n{;ol/ n /y E ) [y e 3

+ % arccosh yol/ha} (4-1%0)}
and
1 _ =4
== (Ja} - 1), (b-1h1)
1 1l6a
A—2-=?-(IAI —l), (h—ll&2)
and
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v (] -1

(3) If q = 5/2, then

= aul/n
x Ayo
10
+3k
in which Yo

-2/5n
Y,
=)
- 1 +
y 5
is a root of.

)-2/5 ] %]2

e {[c—°

l/n }/Win_ ’( -2/sn -

10 , -2/5n
+3 (v, - 1)+ 5],
and
1
T (-,
1, 2%
-y le"l)’
A2 6
and

v=2 (] - 1).

(4) If q = 3, then

x = Ayo

Y

1/n

36 #6

.

in which Yo

1 - -
K‘Vunﬂﬁlh“:l %W&+

v -1/6n
arccosh(y—o-> },

is a root of

oo™ - ™

-1/2n v -l/6n]

5 y-1/2n

+ —2 -l/6n] + E_ arccosh y 1/65}

and

and

= (]a] - 1),
36a
T

o™ s

(IXI - l)’

Vo % (Il -1).

(5) If q = 7/2, then

X = Ayl/n

2

R

~2/Tn 2
v, ] 1]

I LS

-2/Tn

N

(4-143)

(4-1hY)

(4-1k45)

(b-146)

(4-1kT7)

(4-158)

(4-149)

(4-150)

(4-151)

(4-152)

(b-153)

(b-154)




in which Yo is a solution of

1 - -
L. yi/n ﬁ%2/7“ _ [(y°2/7“ - 13

SRR FOCILNEE IR
(4-155)
and
1_-1 - -
s=g (A -1, (4-156)
iE =48 (]a] - 1), (4-157)
and
v=% (Al - 1. (4-158)

The five transcendentel equations for deter-
mining the value, y_, of the solution of Eq. (4-1)
at x = 0 for the five solutions of this equation
given above will have zero, one, or two roots. For
example, the right-hand side of Eq. (4-135) is

~1/n_

plotted in Fig. 2 as a function of Yo The maxi-~

mum on the curve of this figure corresponds to

)
) =12,
(¥...

Hence, from Egqs. (4-137) and (4-159), it follows

that
= 0.896
%nax ]A] -1

is the maximum allowed value of a for which a solu-
tion of Eq. (4-1) will exist when Eq. (4-138) holds.
If @ = Gpays

Eq. (4-135). If

(4-159)

(4-1598)

there will be just one root found from

1< %~< 1.42, (4-160)
then Eq. (4-135) has two roots, and if
% <1, (h-161)

one root. When two roots exist, the smaller is of

R.H.S. OF Eq (4-135)
B

-i/n
Y%

Fig. 2. Graph for determining the roots of Eq.
(4-135).

physical interest, and when a 5‘°max’ the corre-
sponding solutions of Eq. (4-1) are those contained
in Eq. (4-134).

Similar relations may be determined for the
other four solutions embodied in Eqs. (4-139)
through (4-158).

4.5.3 Results form = 0
It is logical in the systematic development of

solutions of Eq. (4-1) to discuss at this point the
m = 0 case, even though the corresponding solutions
do not come out of Eq. (4-100). If m = O, then Eq.
(4-104) indicates that

v == (1+1), (4-162)
and Eq. (4-1) assumes the form
yl+2)‘y" + )‘y2)‘(y')2 +a=0. (4-163)

We shall prove that the solution of Eq. (4-163) for
the two-point boundary conditions, y'(0) = 0 and
y(1) =1, is ’

y
x = e ey o e 0 w(32), (i)

in which ¥, is a root of

1+

l= yo

T et A 0 Iy, (h-165)

provided that A > -1. On the other hand, if A < -1,
then the solution of Eq. (4-163) for these same

boundary conditions is

- ( )J[ (2 (y—")]J
x=;§__ll/§ln(§_o) S B e
J=0

in which 2 = ]A], and
(1;2;5 +1) =2 1-3-5-7---(1 + 2j). (4-16T7)
Also, in Eq. (4-166) the value, ¥o» of the solution

at x = 0 is a root of the transcendental equation

5 = (-1)3[2(9-1) 1n y )Y

1= Yalny, Z (1;2;5 + 1) :
J=0

Neither the solution given in Eq. (4-164) nor that
given in Eq. (4-166) is valid if A = -1,

(4-168)

To prove these assertions it may be observed,
first of all, that Eq. (4-163) is invaeriant under
the two-parameter Lie group of point transformations
generated by the infinitesimal transformations

whose symbols are

(4-169)
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y_ af
Upt = x 5 ax M

This invariance property is & direct consequence of
the fact that the commutators evaluated from the
differential operators appearing in the once-extended

(4-170)

group symbols

' ot
uif = 2 (4-171)
and
of ' oaf
UM = x ot T " T Y e (k-172)
and the corresponding partial differential equation
= 3f 3L ~1, 442 -1-2x] 3¢
S TRRAT; AY (y')° + ay Tl
= 0, (4-173)
are found to be
(uja)f = o, (h-174)
and
(UéA)f = - Af, (4-175)

Second, the two-parameter group generated by the
symbols of Eqs. (4-169) and (4-170) is of the third
type with the canonical variables

X = yl+x, (4-176)
and
Y = x. (4-17T)
To transform Eq. (4-163) to its cenonical
form, it may be noted that, in terms of the canon-
ical variables,

= ifIi’ (4-178)
2 -1
per L am
and
—(1+21)
I o (gg)'2 xlﬂ dY)"3 &
3 ax &
(1+2)

(4-180)

Upon introducing Eqs. (4-178) through (4-180) into
Eq. (4-163), this latter equation assumes its

canonical form, viz.,

2 3
a7y ay ~
e ald + A)(dx) : (4-181)
A first integral of Eq. (U4-18l) is
2
aY 1
(ﬁ) = Cl - 2(!(1 + A) 1n X° (h—182)

where C; is an arbitrary constant.
Now assume that A > -1. Because y' < 0, Eq.

(4-179) shows that the negative square root is to

2k

be taken in Eq. (L4-182) if A > -1, that is,
day 1
- £
ax” K= (1 + ) in X

(4-183)

in this case. Upon reverting back to the original
variables, Eq. (4-183) becomes

y' o= {b - 2a(1 + 2)° 1n y. (4-184)

Imposing the boundary condition, y'(0) = 0, yields

Cc, = 2a(l + A)2 Iny,, (4-185)

1
in which Yo is the value of the solution at x = O,

" 8o that Eq. (4-184) reduces to

A
—Y 4y = - /Za dx.

(4-186)
Vln (y°7y5

Integrating Eq. (4-186) gives

A
-—t—'dt--v‘&x X

fim (70

Yo

To simplify Eq. (4-187), let

(4-187)

u? = 1n (y_/t), (4-188)

then it becomes

/in zy°7y5

1+ 2 2
Yo VE exp ’- (1 + A)u€|du,

which reduces to the solution given in Eq. (4-164)
for A > -1. The transcendental equation for ¥q
given in Eq. (4-165) is obtained from Eq. (4-189)
by invoking the second boundary condition, y(1) = 1.

(4-189)

In the case when A < -1, the positive square
root is to be taken in Eq. (4-182), that is
4ay - 1

ax .
/bl -~ 2a(1 + 1) 1In X

(4-190)

With ¢ = ||, reverting Eq. (4-190) back to the

original variables produces
g 2
dx = (l"!' ly

/bl - 2u(£—l)2 ln y

dy, (h-191)

and imposing the boundary condition, y'(0) = O,

gives
c, = 2a(t-1)% 1ny_. (4-192)
Consequently, Eq. (4-191) reduces to
-1
Y2a dx = —_—y dy. (4-193)

fin (yo/y5
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With the boundary condition, y(1) = 1, Eq. (4-193)

integrates out to

y
et
v2a (1 - x) = | ————dt. (4-194)
Yln zyolts
1

Because the value, Yoo of the solution at x = O mey

be calculated as a root of the transcendental equa-

tion
yO
S
Voq = | ————at, (k-195)
Y1ln Zyolti
1

the solution of Eq. (4-163) for A < -1 may be writ-

ten in the forn

yO
t—l
V2q x = | ————dt. (4-196)
Yln (yo/t)
y
If we now set
T = (2-1) 1n (y,/t) (b-197)
in Eqs. (4-196) and (4-195), we obtein
(2-1) 1n (yO/y)
yl-t
x = ° exp (r) dt, (4-198)
voa(2-1) /T
(o]
and
(2-1) 1n Yo
2a(2-1) = yi-!' exp (1) 4. (4-199)
t
(o]

Eveluating the integral in Eq. (4-198) gives the
series solution of Eq. (4-163) contained in Eq.
(4-166) for A < -1, and evaluating Eq. (4-199) pro-
duces Eq. (4-168), which completes the proofs for
the solutions of Eq. (4-163).

4.5.4 Results for m = -1/q, g = 1.5, 2, 2.5, 3,
3.5, &4
We return now to the deduction of further

solutions of Eq. (4-1) from the integral representa-
tion contained in Eq. (4-100).
If m = 1/q, then Eqs. (4-102) through (4-104)

become

(4-200)

(4-201)
b
a 2q - 1
and
— §2g+lul+)‘2 .
v g 1 , (h-202)
respectively. For the case A < -1, which will be

considered below, Eqs. (4-200) through (4-202) show
that n < 0, a is a real number, and v > 0 if q > 0.50.
As n < 0, Eqs. (4-100) and (4-101) become

dt, (4-203)

and

(h-204)

1
Consequently, when y_ is a root of Eq. (4-204), the
solution of Eq. (4-1) from Eq. (4-203) is

1
(L) /n
yo
x=a y(l)/“ 1 at. (4-205)
gy

1
Changing the variable of integration in Egs. (L4-204)
and (4-205) to t = e produces

-1/2qn
o
2q-1
l1=a yi/“ 2q | ——ar, (4-206)
2
T -1
1
and
-1/2qn
(Lo
y
2q-1
1
X =8 yo/n 2q dx. (k-2071)
2
T -1

1
The results obtained by carrying out the integrals

in Eqs. (4-206) and (4-207) for six values of q are
as follows.

(1) 1f q = 3/2, then
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-1/3n

gl

-1/3
+ arccosh (;g) n]

in which Yo is a root of

-2/3n
I

t

-2/3n
o Yo

l/3n]

2 1 -1
2 anP /3n .

+ arccosh y ,

and
1 3
La-3(p -,
1 a
?-%4p|-n,

and
v=2(faj -1).
(2) If q = 2, then

\ Y y -1 v -1/2n
x=§-ay° n (y_o.) -l[(y—o-> + 2],

in which Yo is a root of

L L3 l/n -1/2n -
3 Y Yo -1 (yo

1/2n +2),
1 4
1.3 (-1,
1 16a
2= =2 (faf - 1),
chi
ana
v=2 (] -2

(3) If q = 5/2, then

x-ayu{(?f”ﬁﬁ;fng:“§XW%+4

+ %2 arccosh (Zg>-l/5f},
y

in which y is a root of

1. yi/n[g y;l/in sz/sn ) (2y;2/5n . 3)

+ %2 arccosh y l/5n]

and
1
Le-2 (-0,
1 2
L=2 (-1,
a

and

v=% (Al -1).
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(4-208)

(4-209)

(4-210)

(h-211)

(4-212)

(4-213)

(4-21k)

(k-215)

(4-216)

(4-217)

(4-218)

(4-219)

(4-220)

(4-221)

(4-222)

(4) If q = 3, then

v ~1/3n v -1/3n 2
P RN S

v -1/3n
gy

(4-223)
in which Yo is a root of
1 1/ -1/3n 1/ -1/3n 2
a =6y, n'y -1’5@0 "l)
2 -l/ 3n | 1 _
+ 24 3], (4-224)
and
L-._S (-0, (4-225)
n 5
1 _ 36a
== —g— (]A] - 1), (4-226)
a
and
v=1 (]} - 1). (4-227)

(5) If q = 7/2, then

-1/Tn -2/7n -h/7n
x =a yl/n{j - l ——

-2/Tn -1/Tn

5] %] ( o,

(4-228)
in which Yo is a root of

1. yi/n[7 y-l/?n /y;2/7n -1 (% y-h/'{n

+ gi ;2/7“ 23) + %g arccosh y 1/7“] (4-229)
and
L7 (-, (4-230)
L-¥s (-0, (4-231)
and )
v= %-(]x] - 1). (4-232)

(6) If q = 4, then

-1/kn ~1/kn 3
x = 8a yl/n (z:—-) - l{%‘[(&) - l]

y

~1/hn 2 ~1/bn
e ™,

(4-233)
in which Yo is a root of
1,451/ {”:T7UF"_—" 1, -1/bn 3
a 8 yO yO -1 [T(yo - l)
-1/4 2 -1/4
A R e “], (4-234)



and

%=-$—(le - 1), (4-235)
l_2= @*Tu (]a] - 1), (4-236)
a

and
v = ?{_ (Ia] - 1). (4-237)

To illustrate the determination of the value,
¥ 1 of the solution of Eq. (4-1) at x = O for the
six solutions of this equation written in Egs.
(4-208) through (4-237), we shall consider the q =
3/2 case, and, accordingly, Eq. (4-209). The right-
hand side of Eq. (4-209) is plotted in Fig. 3 as a
function of y;l/n, where n is given in Eq. (4-210).
The occurrence of the maximum on this curve shows
that Eq. (4-209) has zero, one, or two roots, and
that

(3—) = 0.839, (4-238)

8
3max

together with Eq. (4-211), defines the maximum
value of @, viz.,

a = .0.352

mex = Al = 17
for which a solution of Eq. (4-1) will exist in the
» Eq. (4-209)
will have multiple roots, the smallest of which is
of physical interest.

(4-239)

case under consideration. If a < Q ax
Similar curves may be drawn
for the remeining five solutions in Egs. (4-213)
through (4-237).
4.5.5 Result for m = -1

If m = -1, then Eqs. (4-102) through (L4-104)

become

%= 2(1 + 1), (4-240)

Q.6

R.H.S. OF Eq (4-209)
2

(2]
N
T

[¢]

1 1
4 5 6 7 8

~i/n
!o

o]
[
o

Fig. 3. Graph for determining the roots of Eq.

(4-209).

L=kl +), (h-281)
a
and
v = =3(1 + 1), (L-242)
respectively. Consequently, if A < -1, then a is &

reel number, and n < O and v > O.

(4-100) and (4-101) reduce to

As n < 0, Egs.

v 1/n
Y
(¥
l-x 1
- dt, (4-243)
ayi/n t -1
1/n
1
Y
()
and
-1
yo /n
1= ayl/n L at. (4-244)
° 7t -1
1
Integrating Eq. (4-24k) gives the quadratic equa-
tion
2/n 1l/n
(1—) - ha2(l—-> +uZ =0, (4-245)
) Yo
with the solution
1/n
(1_) = 202 + {4a2(a? - 1) (4-246)
yo -
in which n is given by Eq. (4-240), and 8 is given

by Eq. (k-2L1).

The proper choice of the plus or minus sign in
Eq. (4-246), which provides the value of the solu-
tion of Eq. (4-1) at x = O in the case under con-
sideration, mey be determined by the following
argument. Because n < O if A < -1, Eq. (L4-246) may

be written as

y2 -y, 232[1 1{1 - 1—2]
a

In view of the boundary condition y(1) = 1, the

(4-247)

solution of Eq. (4-1) in the limit as a approaches
zero is y(x) = 1. Accordingly, in the limit as
a + 0, we must obtain the solution Yo © 1l from Eq.

(4-247). From Eq. (4-241), we see that

1
2w O

so that we may expand the square root in Eq. (4-24T)

(4-248)

to obtain
2(|a]-1) 2[ ( 1 1 1 ]
y =221+ (1 -—=- - -")'
° 2a2  8a' 1680

(42u9)
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If we should choose the plus sign in Eq. (4-249),
we would get

2 (4-250)

which is clearly unacceptable. On the other hand,

using the minus sign in Eq. (4-249) gives

2(fa]-1)
v =3 1
Therefore, the value, y_» of the
solution of Eq. (4-1) at x = 0 is given by the

(4-251)

a8 required.

relation

2D 2&2[1 T i_2]

for the current case.
Moreover, Eq. (4-252) indicates that the in-
equality

(4-252)

<1 (4-253)

N

must be satisfied if the solution for Yo is going
Combining Eqs. (4-253) and
(4-2k1) with A < -1 yields

a i-umax = ETTK%_:7TY

as the condition that must be satisfied by a for a
solution of Eq. (4-1) to exist when v = 3([A[-1).

From Eqs. (4-243) and (4-2h4) it is found that

to be a real number.

(4-254)

(L)l/n

yO
1/n 1

x = —=—dt, (4-255)
° et -1

1
which, upon integration, becomes

2
yl/n - yl/n ¢ X y—l/n. (4-256)

° 42 °

Substituting Eqs. (4-240) and (4-252) into Egq.
(4-256) and simplifying the result produces

232(1 -f1 - l—2>
a
1+ a2x2[- l—+ 2(1 - 41 - l—)]
2 y 2
a a

in which a2 is given by Eq. (4-241). The result
found in Eq. (4-25T) is the solution of Eq. (4-1)
subject to the conditions of Egs. (L4-242) and

(4-254) and the boundary conditions y'(0) = O and
y(1) =1 4 A < -1,
Eq. (4-25T) reduces to

2(faf-1) _ , (4-25T)

When a = O ax® then a = 1, and
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1
2(|a|-1

y.(_e__
1l + x2

(4-258)

" 4,5.6 Result for m = -2

If m = -2, it follows from Eq. (L4-104) that
A = =1 for all values of v. If we assume that

v > 0, then n < 0, because Eq. (4-102) becomes

L,._2 -

Y > (4-259)
Also, in this case Eq. (4-103) gives

2l =2, (4-260)

av
Now, because n < O, Eqs. (4-101) and (4-259)

combine into

v/2
Yo
Lz, 1 at, (4-261)
a‘o >
tc -1
1
which integrates out to produce
v/2 /uv v/2)
Yo = cosh( 5 ¥, (4-262)

as the transcendental equation for the value, Yoo
of the solution of Eq. (4-1) at x = 0 for this case.
With the definition

A= )/;—“ yz/z’ (4-263)
Eq. (4-262) may be written as
o) cosh Ao
]/R- = (L-264)

o

The right-hand side of Eq. (4-264) is plotted in

Fig. 4 as a function of Ao. The occurrence of the

minimum point on the curve in this figure defines

the maximum allowed value of a such that a solution

of Eq. (4-1) exists in the current case, that is,

= —-?-—2 = %2. (4-265)
v(1.50)

ax® then Eq. (4-264) has two roots, of

vhich the smaller is of physical interest because

a
max
If a < a
m
Yo leas a > O.

The explicit solution of Eq. (L-1) is found
from Eq. (4-100), which now reduces to

1 1
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Fig. 4. Graph for determining the roots of Eq.
(4-264).

or, in view of Eq. (4-261),

v/2
)
y
x y:/2 =a —L _at. (4-267)
t2 -1
1
Integrating in Eq. (4-267) results in
Y
y= - {4-268)

2/v {5 w2\
cosh ( 2 X yo )

in vwhich y_ is & root of Eq. (4-264). When X = -1,
Eq. (4-268) is the solution of Eq. (4-1) provided

that v > 0 and a :'umax’ where & ax is given in Eq.
(4-265). The result of Eq. (4-268) is not valid if
v = 0,

We now turn to the A = -1 and v = 0 case.
4.5.7 Result for v.= 0 and A = ~1

If v =0 and A = -1, then Eq. (4-1) assumes
the form

w' - 2+ =0 (4-269)

This nonlinear differential equation is invariant

under the two-parameter Lie group generated by the

two infinitesimal transformation symbols
of

Ut =30 (4-270)
and
af
Ut =y 3y (s-271)

Moreover, this two-parameter group is of the first

type with the canonical variables

X = x, (4-272)

and
Y =1lny. (4-273)

Hence

y = exp (Y), (b-274)
y' = exp (V) §F, (4-275)

and

2 2

v = exp (Y)[ZT;{ + (%) ], (4-276)

and the canonicael form of Eq. (4-269) is found to
be

2
a7y
= =-a (4-27T)
ax
from which two quadratures produce
t=-3x+cx+c,, (4-278)

where Cl and 02 are arbitrary constants. Upon re-
verting back to the original variables, Eq. (4-278)

becomes

a 2
Y = exp (- X +Cix+ 02), (4-279)
which is the general solution of Eq. (L-269). If
we now impose the boundary conditions, y'(0) =0

and y(1) = 1, Eq. (4-279) reduces to

y = exp [%‘(l - x2)l, (4-280)
and this is the solution of Eq. (4-1) when v = 0
and A = -1 for the stated boundary conditions.
There is no restriction on the allowed values of a

in this result.
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4.5.8 Result for m = -3

In this and future subsections, golutions of
Eq. (4-1), which may be expressed in terms of
elliptic functions, will be derived.

If m = -3, then Eqs. (4-102) through (4-104)
become

% =~ 2(1 + 1), (h-281)
i—z-‘;—"(l”), (4-282)
and
v =5(1+2), (4-283)
respectively. Accordingly, if A > -1, then n < O

and a is & real number, and in this case Egqs. (4-101)
and (4-100) reduce to the forms

1=ea y(l)/“ —L _at, (L-28k)
t3 -1
1
and
;_)l/n
(3
1-x=a8 yi/“ —L 4. (4-285)
t3 -1
1/n

Because of Eq. (4-284), we may write Eq. (L4-285) as
1
(I_) /n
Yo

1/n 1
x=ay,

dt. (4-286)
t3 -1
1

Now from Eq. (4-286), the solution of Eq. (L-1)
may be expressed in terms of the Jacobian elliptic
With the value of n given in
Eq. (4-281), the integration of Eq. (4-286) provides

x 2(141) I

function, cn{ulk).

-1
>y, a7 en”" (cos k), (4-287)
in which the modulus, k, has the value,
k = sin (w/12), (4-288)
and
2(142)
Yy
3+1 - (—9)
cos ¢ = 2 CIETTVR (4-289)
Yy
/3 -1+ (-13)

>
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Accordingly, if A > -1 and Eq. (4-283) holds, then
the solution of Eq. (4-1) found from Eq. (L-287) is

(y )2(1+A)

Jo

/S+1- z S cn(31/hy§(1+x) §|k), (4-290) .
3-1+ (y—°)

in which a is given by Eq. (4-282).
The value, Yoo of the solution at x = 0, which

appears in Eq. (4-290), is a root of Eq. (L-28k4) -
that may be written in terms of F(¢ |k}, the in-
. complete elliptic integral of the first kind. That
ig, if we set
= .2(1+2)
Xo = yO > (h—291)
then Eq. (4-284) may be expressed as
1/%  F(¢ _|k)
R cam (4-292)
o
wherein
B+l -x,
cos ¢ = . (4-293)
° SB-o1+x

The right-hand side of Eq. (4-292) is plotted in
Fig. S as a function of Xo. The existence of a
maximum on this curve together with Eq. (4-282)
shows that the maximum allowed value of a for a

given A > -1 is found from

1/4 & <
3 3 (1) o 0.675, (h-29%)
which simplifies to
0.198
%max "1 + A" (4-295)

If a > Goax? then Eq. (4-292) has no roots, and,
correspondingly, Eq. (4-1) has no solution for the
case at hand. When a = %rax? there is one root,
and when a < %nax? the smaller of the two roots is

the one of physical interest.

S
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A
04
w
S
%2 ) -
I -
o O 1 1 Il 1 Il [l 1 1
1o 12 L4 16 1.8 20 22 24 26 .
X° -~
Fig. 5. Graph for determining the roots of Eq.

(4-292}.
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4.5.9 Result for m = -4

In the m = -4 case, if ) > -1, then n < 0 and
v > 0, as Egs. (4-102) through (4-104) reduce to
2= (1), (4-296)
i—2= S+, (4-297)
and
v=3(1+1), (4-298)
respectively, while Eqs. (4-101) and (4-100) become
i
e | —2—at, (4-299)
t -1
1
and
(Z2.1+A
Yy
xy = | —t—at. (4-300)
t -1
1
From Eq. (4-300) we obtain
x yi+x = %5 en? (cos ¢ix) = 3% F(¢|k), (b-301)
where
k = sin (a/b), (4-302)
and
142
cos ¢ = (%—) . (4-303)
)

These last three relations are the solution of Eq.
(4-1) when A > -1, and Eq. (4-298) holds. Using
Eq. (4-297) allows this solution to be written in
the explicit form

A

1+

Y= yo{cn lv‘u(lﬂ‘; x y(l:)‘l} s (L-304)

in which the modulus of the Jacobian elliptic func-
tion is that of Eq. (4-302).

The value of the solution at x = 0 is a root
of Eq. (4-299) that reduces to the following rela-
tion involving en incomplete elliptic integral of
the first kind;

e dl L), (4-305)
[] /2_ [] /5
or, with Eq. (4-297), to
At l5)
Ja(iea) = —mi— (4-306)
yO

R.H.S. OF Eq (4-306)

10 1.2 1.4 1.6 1.8 20 2.2
i+
Yo
Fig. 6. Graph for determining the roots of Eq.
(4-306).
wherein
cos ¢ _ = - (4-307)
o 1+)°
- yo

The right-hand side of the transcendental equation
for y_ contained in Eq. (4-306) is plotted in Fig. 6

as a function of yi+x

The maximum point on the
curve in this figure leads to a maximum allowed

value of a given by
a = 0.354 (4-308)

If a = a ., then Eq. (4-306) hes one root, and
when a < %naxs there are two roots of which the
smaller is of physical interest, because the corre-
sponding value found for y, is less than the value
of y, for a =a . If a>a, ., then Eq. (4-1)
has no solution under the conditions of the current
case.
4.5.10 Result for m = -6

If we let m = -6, then Eq. (4-104) becomes

v =2(1+ 1), (4-309)

so that v > 0 if A > -1. Since n < 0 in this case,

as Eq. (4-102) reduces to

1. S%). (4-310)

n b

the value of the solution of Eq. (4-1) at x = 0

will be a root of the corresponding form of Eq.
(4-101), viz.,
pE2

Yo == —dt, (4-311)

1
in which, from Eq. (4-103),

3|



=%+, (4-312)
a
so & is & real number if A > -1. Now let
it A
— 2
Ly 2 ¥, » (h-313?
in Eq. (4-311), so that
o o0
Lo 1 1
75| ==t - | ——=at. (4-314)
t -1 t -1
1 Lo

These hyperelliptic integrals may be evaluated in
terms of the incomplete elliptic integral of the
first kind. We find that
©
1

t6 -1

1
e~ o 1) - Fgy 0], (e-ms)

1
in which the modulus is given by

2 _2+7/3, . 257
k® = Z5—= = gin (12), (4-316)
and
cos ¥, = 2 - /3, (4-317)
together with
cos ¢l = (_/_3_-_Lu_l =1. (h-318)

(B +1)-1
This last relation implies that ¢, = 0, so Eq.
(4-315) simplifies to

—1 4t = ._lrﬂ;. F(Wllk)-
£8 -1 2-3

(4-319)

1
Since the second integral in Eq. (4-314) is

1

at = - ll/h lF(wllk) - F(¢°|k)l, (4-320)
to -1 -3

Ly

with the same modulus as Eq. (4-316), and

(/3 -1) Lg +1

cos wo =

(F+1)12 -1

it is found that Eq. (4-314) may be written in the
final form

/4 F(y_|k)
2.3%/ = :°I . (4-322)
[]

The right-hand side of Eq. (4-322) is plotted

a
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R.H.S. OF Eq (4 -322)

s (h-321)_

0.8
as
o4
L ¥)
[o] 1 1 1 1 1 1 1
0 12 |4 16 18 20 22 24 26
LO

Fig. 7. Graph for determining the roots of Eq.
(4-322),

in Fig. 7 &8 a function of Lo' From the maximum
point on this curve and Eq. (4-312), the maximum

allowed value of o for the current case comes out of

’ T+ A)
2'3l/h 5‘137——‘ = 0.833

with the value

(4-323)

(4-324)

If @ > qp,., then Eq. (4-322) has no roots; if

= R <
o * a o.s One root; and if a o

smaller of which is of interest.

ax? two roots, the

When Eq. (4-322) has a root, then the solution
of Eq. (4-1) deduced from Eq. (4-100) assumes the

form

1
(I_) /n
1 yo
1l - x 1 1
7 - dat - dt, (4-325)
o t -1 t -1
(;_)1/n 1
yo
so that, in view of Eq. (4-311) for Yo»
1
(x_> /n
yo
X = l -—
v = dt. (4-326)
yo t7 -1
1
Therefore,
1 1
f/n = | ——gt - | ———at, (4-327a)
2o £ -1 £8 -1
1 1
(I_) /n
yO



= ;;—17F’F(wl|k) - Flp[K) = Flyq[K)

+ Flun)], (4-327b)

where

/3 - 1)@—)2/" o1
[o]

cos § = Y (4-328)
Y _
(/§+1)(y> -1

o]

Consequently, it has been found that the solution of
Eq. (b-1) is
gt/
x = —2— F(y|x), (4-329)
R 3l/h

with the modulus of Eq. (4-316), the value of a from
Eq. (4-312), and the value of ¥, from Eq. (4-322),
when Eq. (4-309) holds, and A > -1. In terms of the
Jacobian elliptic function, the solution in Eq.
(4-329) becomes

¥ 1+A
(/3 - 1)(;9) +1 VN
T = cn 75 k]. (4-330)
v, ay,
3+ nz2)  -a
4.5.11 Result for m = 6
If m = 6, Eq. (4-101) is
1
l1_ 1/n t3 ( )
s~ Yo —_—dt, -331
l-~-t
(l_)l/n
Yo
and Eq. (4-100) is
1
(I_> /n
Yo
l - x 1/n t3
=Y —— dt. (4-332)
6
l -t
1l/n

(i_

v.)

Because Eqs. (4-102) through (4-104) are, if m = 6,
L1+

H = N > (h-333)
1 _afll +2)
=855 (4-334)
a
and
vaith (4-335)

respectively, the plus sign has been used to write

out Eqs. (4-331) and (4-332) es n > 0 and v > O if

A > =1 in the case. The integrals appearing in
Eqs. (4-331) and (4-332) may be put into easily
computable forms with the formula

t3 o718 _(A-1)

dt =
t2-1-/3 a3/t

+ 3% By 1K), (4-336)
in which E is an incomplete elliptic integral of
the second kind with the indicated argument and
modulus; the modulus is

F(y|k)
1-t

K2 = 2-§-13 = sin? (f%), (4-337)
and
t2_-1+/3
cos § = 2—-, for O i ¥ i . (h"'338)
tc-1-73

Through the utilization of Eq. (4-336), it is
found that Eq. (4-331) provides

L= OB - Dk, k) - Ry, 10
/o -;75175—’ Yol vl l

o]

+ 34 [ECoy 100 - By )]

+ s (4-339)

wherein,
cos ¥; = -1 (4-340)
and
1 2
(yi—m) -1+ 43
cos y = s (4-341)

(yz%;) -1-7

as the transcendental equation for the value, Yo
of the solution of Eq. (4-1) at x = 0. Because
the range of the arguments of elliptic integrals
mey be extended by the formulae,

E(mn + ¢ |k) = 2nE + E(¢ |k), (4-342)
where E is the complete elliptic integral of the
second kind, and

Flmr + ¢[k) = 2mK + F(¢[k), (4-343)
where K is the complete elliptical integral of the
first kind, we have for use in simplifying Eq.
(4-339),

F(v k) = F(x - ¢, [k)

K - F(¢l|k) 2K, (4-34k)

2E, (4-345)

E(y, [x) = E(x - ¢, |k) = 2E - E(¢, [k)
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F(¢°|k) = Flx - ¢°|k) = 2K - F(¢°|k), (4-346)

and
E(y,|k) = E(z - ¢ k) = 2E - E(g_|x). (L-347)

In Eqs. (4-344) and (4-345), ¢; = 0, and in Egs.
(4-346) and (L4-347)

1 2
1-43- (yI7E)
cos ¢ = > > (4-348)
1
1 ~-/3+ (yi/n)
Upon introducing Egs. (4-344) through (4-347) into
Eq. (4-339), we obtein the relation

1
1 | 1t- (yi/n) o 3L/

_i_)
(yi/n -1-73

V3 -1
- S——-——j;l F(e |x)]|. (4-349)
27t ]

The right-hand side of Eq. (4-349) is plotted in

Fig. 8 as a function of yi/n.

be a monotonically increasing function, so that Eq.

E(¢°|k)

a [o]

The curve is seen to

(4-349) has only & single root for y,, the value of
the solution of Eq. (4-1) at x = O for each value
of a. This may be contrasted with previous cases
in which a was restricted by the inequality,
@ 2 Opaye

When y_ is the root of Eq. (k-349), it is
found that Eq. (4-332) reduces to

T T T T T T T T T T T T
1.0} .
)
< Q81 -
i
A -
o .
o 06+
04l =
z
[+ 4 o .
024 .
(o (NS VY NS WAOR N NN MRS N SN SN NS SN U N N |
1.0 1.2 |4 1.6 1.8 20 2.2 24 25
i/n
Yo

Fig. 8. Graph for determining the root of Eq.
(4-349).
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3
x=a yi/n t dt. (4-350)

"

o]

With Eq. (4-336), this first becomes

X (/3 -1) [F(ylk) - F(
= - v k)]
ayi/n 2-3l/h WI ll

+ 3% By 1) - ECp]K0]

L= (52)
Y- 2[n ’
(y°> -1-73

+ (4-351)

in which *l = n, k is the modulus given in Eq.
(4-337), and

2/n

§—> -1+73
cos § = —> 57n . (4-352)

(I—) -1-73

Yo
Now let ¢ = - ¢ and note that

F(y, [k) = 2, (4-353)
E(y, [k) = 2E, (4-354)

F(ypik) = P(x - ¢|k) = 2k - F(¢]k), (4-355)
and

E(p|k) = E(x ~ ¢]k) = 2E - E(¢]k). (4-356)
Then, it may be observed that Eq. (4-351) simplifies
to

(3]
x Yo 1/4
a 1/n - 2/n +3 E¢ k)
Yo (§—> -1-v3
o
-3 I/l) Flo k), (4-357)
2.3
wherein
2/n
M
(/3 - l)(;9> +1
cos ¢ = n . (4-358)

(V3 + 1)(;9) -1

To sum up, Eq. (4-357) is the solution of Eq. (4-1)
when v = (141)/2, A > -1, 0 < x <1, 1 2y 2 ¥,
y'(0) = 0, y(1) = 1, the value of n is from Eq.
(4-333), the value of a is from Eq. (4-334) and Yo
is the root of Eq. (4-349).
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4.5.12 Result for m = 4

When m = 4, the following relations are valid:

2-13h (4-359)
1_2.= % (1 + 1), (4-360)
a
and
1+ A
v === (4-361)

Under the assumption that A > -1, so that v > 0,
n >0, and a is a real number, Eq. (4-10l1) now pro-

vides

1/n t2

(i_)l/n

o]

dt. (4-362)

® |

The transcendental equation for the value, Yoo of

the solution of Eq. (4-1) at x = O which comes out

of Eq. (4-362) is found to be
- 1/n

1
—= "% [E(¢°|k) -3 F(¢°|k)l,

in which

(4-363)

cos ¢ = y-l/n’ (L-36L)

o]

and the modulus of the elliptic integrals is given

by
k = sin (w/h), (4-365)

The right-hand side of Eq. (4-363) is plotted in
1/n

Fig. 9 as a function of Yo

, and the curve is seen

R.H.S. OF Eq (4-363)

[o] [ { 1 1
10 1.2 14 1.6 1.8 20 22 24 26

1 1 |

d/n

Fig. 9. Graph for determining the root of Eq.
(L-363).

to be monotonically increasing. This fact indi-~

cates that Eq. (4-363) has only a single root for

each value of a, so that all values of a are per-

mitted.

When y  is the root of Eq. (4-363), the solu~
tion of Eq. (4-1) that arises from Eq. (4-100) is

1

o
Vl -t
1/n
(%)
Yo
vwhich reduces directly into the form,

X =8 yi/n

dat,

/2 [Es[K) - 3 Flgfi)],

(4-366)

(4-36T7)

with the modulus given in Eq. (4-365) and

cos ¢ =(§;)l/n.

(4-368)

The result contained in Eq. (4-367) is the solu-
tion of Eq. (4-1) subject to the above stated

conditions of the present case.
4.5.13 Result for m = 3
If m = 3, then

1 2
===(1+2
- ( Y
1 ha X
S=c(1+2)
32 15 ’
and
=1+
v 5

(4-369)

(4-370)

(4-371)

When A > -1, thenn > 0 and v > 0, and Eqs. (4-101)

and (4-100) yield

1

as the desired solution of Eq. (L4-1).

(4-372)

(4-373)

Let t = 12

in both of these last two relations, so that they

become
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N
1 1/n T
22V, —_—dr, (4-374)
VI - TE
(;;)l/2n
)
and
1
N
x = 2a yi/n -~ dr. (4-375)
Vl - TE
1/2n

The reduction of Egqs. (4-374) and (L4-375) to easily
computable forms may be done through the utiliza-

tion of the formula

[ Th dr = 1~/ -1 . (1 + /3)

— Fly|k)
J](l 6 2((/3 - )2 +1]  ue3t/
-1
3l/h
-5 E(y|k), (4-376)
in which the elliptic integrals have the modulus,
k = sin (a/12), (4-377)
and
2
cos y = il:;LiﬁiLEEJLJE, for 0 < ¥ < =, (4-378)
(/3 - l)r +1

With Eqs. (4-376) and (4-378), the result that
comes out of Eq. (4-3Th) is found to be

-1 -3/
VA (LR R Pl L AUV k)
a2 o (/3 - 1) y;l/n 1 l,"o
(/3+1)
- _2-;1-/T F(U‘olk)] s (4-379)
wherein
1+ /3- yi/“
cos y, = (4-380)

3 -1+ yl/n

o
The right-hand side of Eq. (4-379) is plotted in
Fig. 10 as & function of yi/“, and the fact that
the curve is monotonically increasing indicates
that Eq. (4-379) has only a single root for each
value of a.
allowed.
The solution of Eq. (4-1) provided by Egs.

(4-375) and (4-376) is

Consequently, all values of a are
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R.H.S. OF Eq (4-379)
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1

1/
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Fig. 10. Greph for determining the root of Eq.
(4-379)
e Ll/2n v
-1 -
i} '(3 )(Vo> 1 (yo)
/n
&y (/3 - 1)(I—>l/" +1
Yo
+ 37 BGe o) - %”E—lr(wlk), (-381)
2.3
in which
1/n
@A) -
cos ¢ = e /n (4-382)
(/3 - l)(§—> +1
o

The solution given in Eq. (4-381) is valid for
A > -1 and subject to the relations of Eqs. (4-369)
through (4-371).
4.5.14 Results for m = 2

In the m = 2 case, Eq. (4-104) implies that
v = 0 for all values of A. The solution of Eq.
(4-1) for the v = 0 and A = -1 case has been dis-
cussed in Sec. 4.5.7.
consider two further solutions of Eq. (4-1), namely,
(1) that when v = 0 and A > -1, and (2) that when
v=0and A < -1. Also, when m = 2, Eqs. (4-102)
and (4-103) become

Accordingly, we shall now

1,1+ -~
= 5 (4-383)
and
1 a
_2.5(1+x), (4-384)
a
respectively.

Now, if A > -1, then n > O and Eq. (4-100)

gives




l - x _ t
1/n
8Yo l1-t

(4-385)

so that

1-x l_g_u/l_gﬁ " (4-386)
ayi/n yﬁ/“ Yo

Also, we obtain from Eq. (L4-10l1) the relation

D S 1
1/n 1l - 2/n’ (4-387)
ey, / ¥y
from which
2 n/2
l +a
Yo = <T—;§—j> (4-388)

is the value of the solution of Eq. (4-1) at x = 0
Substituting Eq. (4-388) into Egq.
(4-386) and simplifying produces

n/2
= 1+1_"_"E
y 2 >

which, in view of Eqs. (4-383) and (4-38l4), reduces
to

for this case.

(4-389)

1
|, (4-390)

y= ’l + %-(l + a1 - x2)
This last relation is the solution of Eq. (4-1) when
v =0 and A > -1 such that y'(0) = 0 and y(1) = 1,
and there is no restriction of a maximum allowed
value of o in it.

If we now assume that A < -1, thenn < 0, and
the solution of Eq. (4-1) that comes out of Eq.
(4-100) is

2/n
l - x pa 1
=41 - - 41 - s (4-391)
ayi/n / (yo) y<2)/n
and Eq. (4-101) reduces to
2/n _ 1l
¥, =1+ (4-392)
a
Because A < -1, we write this as
yre1-g (-0, (4-393)

in view of Eq. (4-384), and, therefore, with Eq.

(4-383), it is found that

v = = (4-394)

o 1
[1 - - 1)]-57:I

is the value of the solution of Eq. (4-1) at x = 0

in this case. To ensure & finite, real solution at
x = 0, Eq. (4-394) indicates that @ must satisfy

the inequality,

¢ < HT ST (4-395)

Introducing Eq. (4-394) into Eq. (4-386) leads
to the result

vy = 1 . (4-396)

= I
[1 -2 (- va - x2)]lx -1

which provides the solution of Eq. (%4-1) when v = O,
A< -1, y'(0) = 0, y(1) =1, and the inequality of
Eq. (4-395) is satisfied.

4.6 Summary of Solutions of Yy + Ay
+ uxv =0

The 26 solutions that have been obtained for

A-1 12

the nonlinear, two-point boundary value problem
defined by Eq. (4-1) and the two boundary condi-
tions, y'(0) = 0 and y(1) = 1, are summarized in
Table IV in accordance with the value of m as de-
fined in Eq. (4-104). In the second column of this
table, the relation between X and v is given for
The third column

ax such that a solution of

When A < -1, then, for a

the corresponding value of m.
gives the value of o
Eq. (4-1) will exist.
given value of A, the value of Qax decreases &as
the value of v increases, which is a trend that is
intuitively apparent. For a given value of X such
that A > -1, the value of %nax increases as the
value of v decreases, which is also to be expected
on the basis of physical insight. For each combina-
tion of values of XA and v that satisfy the relation
given in the second column of Table IV, the solu-
tion of Eq. (4-1), when it exists, is given by the
relation whose equation number is shown in the
fourth column of Table IV. Illustrative combina-
tions of the values of X and v are displayed in
Table V, which mey be extended to the right
through higher values of v indefinitely by inspec-

tion.
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Table IV. SUMMARY OF SOLUTIONS OBTAINED FOR y)‘y" + Ay

)‘-l(

CONDITIONS, y'(0) = 0 and y(1) = 1

v

+ ay’ = 0 WITH THE BOUNDARY

Solution
Value Relation between . Solution at x = 0
of m A and v Value of ®max in Eq. in Eq.
-1 .
1 v =l 8 %o =T A <L | (u-19) (4-118)
2 -
3 vtz @ cag T A <A | (b (4-135)
3 v=2 (] -1 Spax & T A < -1 (4-139) (4-140)
£ v=Z (] -1) Spax ¥ TorLos A < -1 (4-1kk) (4-145)
% v=2(] -1 Gpax = 1%1%, A< -l (4-149) (4-150)
% v = % (ja] -1) Upax = T;’—'[:%L, A< -1 (4-154) (4-155)
0 T FY I TP R PN - (4-166) (4-168)
0 ve~(1+2a),r>-1 None (L-164) (4-165)
-1 = - £ _0.505 - - -
: v=g(rf-1) nax © TAP2T> A < 7L (4-233) (4-235)
2 _ 2 _0.492
-2 vez (-1 Spax ¥ TR o> X < -1 (4-228) (4-229)
;. = 1 - = O-h
-3 vel (-1 max -m—'_LLl, A< -l (4-223) (b-22h)
-2 = - = 0,450
: v=3(r}-1) pax = TX_I_-LI’ A<=l (4-218) (4-219)
1 _ s _0.l1 _ _ _
-3 \)-%(I)\I-l) umax -IT’—_LI,)\< 1 (h-213) (4-214)
- v=2(]a] -1) uiumax--r;‘.—ié%, A<l (4-208) (4-209)
-1 v=3(fa] -1) a<a = 2'2_01, A<=l (4-25T7) (h-252)
-2 A=<l for all v @<, = 0.89 for v > 0 (4-268) (h-262)
except v =0 v
- Ax=x-1land v=o0 None (4-280) (4-280)
-3 vES (1+2) @ <o, = 2—'?—?, A > -1 (4-290) (4-292)
~ b v=3(1+1) @<, = (l’—'%%‘, A -l (4-304) (4-306)
-6 ve2(1+2) 8 < oy = P2, 2> (4-329) (4-322)
- v=1+ A, A# -1 None (4-85) (4-85)
6 v = 1;2)‘-, A > =1 None (4-357) (4-349)
4 vl s None (4-367) (4-363)
14+ A
3 v = = A > =1 None (4-381) (4-379)
2 v=0and A > -1 None (4-390) (4-388)
2 v=0agand A <-l o < 3= - (4-396) (4-394)

oo




Table V. ILLUSTRATIVE VALUES OF A AND v FOR THE SOLUTIONS OF EQ. (k-1)

e

t

Value
of m v=1 v= 2 v=3 v==,l
” 1 A= b A= -7 A = =10 A= =13
. 2/3 A= =3 A =-5 A= =T A= -9
’ 1/2 A = =8/3 A = <13/3 A= -6 A = 23/3
2/5 A = -5/2 A= -b A= -11/2 A= -7
= 1/3 A = -12/5 A = -19/5 A = -26/5 A = -33/5
2/7 A= -7/3 A= -11/3 A= -5 A = -19/3
0 A= =2 A= =3 A= =) A= =5
~1/h A = -15/8 A = ~22/8 A = -29/8 A = -36/8
=2/7 A= =T/4 A = =10/4 A= =13/4 A==l
-1/3 A= =12/7 A= -17/7 A= -22/7 A= =27/7
-2/5 A =-5/3 A =-7/3 A= -3 A= -11/3
=-1/2 A = -8/5 A= -11/5 A = =1U4/5 A = =17/5
-2/3 A = =3/2 A= =2 A = =5/2 A= =3
-1 A= -b/3 A =-5/3 A= =2 A= -T/3
-2 A= =1 A= -1 A==l A==l
-3 A= -b/5 A = =3/5 A= -2/5 A= =1/5
b A= -2/3 A= <=1/3 A=0 A =1/3
-6 A= =1/2 A =0 A =1/2 A =1
vV = 1+A A =0 A =1 A= X =
6 A =1 A =3 A=5 A=
b A=2 A=5 A= 8 A=
3 A= A=9 A =14 A =19
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