LA-4488 \qquad
c. 3 CIC-14 REPOPTTOLLECTION REPRODECTION COPY
\qquad
t.
\qquad LOS ALAMOS SCIENTIFIC LABORATORY
of the
University of California
\qquad

\qquad
\qquad MCNA. A Computer Program to Solve Eithe Adioint Neutron Transport Equation W. Why Coupled Sampling with

This report was prepared as an account of work sponsored by the United States Government. Neither the United States nor the United States Åtomic Energy Commission, nor any of their employees, nor any of their contractors, subcontractors, or their employees. makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness or usefulness of any information, apparatus, product or process disclosed. or represents that its use would not infringe privately owned rights.

This report expresses the opinions of the author or authors and does not necessarily reflect the opinions of views of the Los Alamos Scientific Laboratory.

LOS ALAMOS SCIENTIFIC LABORATORY of the University of California

MCNA: A Computer Program to Solve the Adjoint Neutron Transport Equation by Coupled Sampling with
Leland L. Carer

CONTENTS

Page
ABSTRACT 1
I. INTRODUCTION 1
II. SAMPLING FROM THE ADJOINT TRANSPORT EQUATION AND COUPLED SAMPLING 2
A. General Discussion 2
B. Sampling from the Adjoint Equation 3
C. Coupled Sampling 6
III. DESCRIPTION OF MCNA 7
IV. EXAMPLE PROBLEM 13
ACKNONLEDGMENTS 21
APPENDIXES
A. Density Functions and Weight Factors for Sampling from the Adjoint Equation 21
B. Input Data for MCNA 28
C. Distance-to-Collision Discussion 37
D. Miscellaneous Probability Concepts 39
E. Scoring in the Adjoint Calculation for a Point Neutron Source 41
F. Neutron Sources Containing a Delta Function in Time 48
REFERENCES 50
FIGURES

1. Brief flow diagram of a computation with the MCNA code. 8
2. Subroutine SCORE for a fictitious problem with a source uniformly distributed in Cell No. 9. 11
3. Subroutine SCORE for a fictitious problem with a source uniformly distributed on Surface No. 6. 12
4. Subroutine SOURCE to select the initial neutron paremeters. 15
5. Subroutine ASOURC to alter the initial pseudoneutron position for large fission cross sections. 15
6. Subroutine SCORE to compute the contribution of the pseudoneutron history to the first-generation source of fission neutrons. 16
7. Control cards and input data for the example problem. 17
8. Control cards required to utilize the UPDATE program to alter Subroutines SOURCE, ASOURC, or SCORE. 19
9. Printed output of the adjoint portion of the calculation for the example problem. 20
E.1. Subroutine SCORE for a fictitious problem with two point neutron sources. 48
tables
I. Summary of Integral Checks on the MCNA Program 13
II. Description of the Exarmple Problem 14

MCNA: A COMPUTER PROGRAM TO SOLVE THE ADJOINT NEUTIRON

TRANSPORT EQUATION BY COUPLED SAMPLTNG WITH THE MONTE CARLO METHOD

by
Leland L. Carter

ABSIRACT

Abstract

A coupled sampling technique that utilizes the Monte Carlo method of solution has been reported in the literature. This report extends this coupled sampling technique to include nuclear fission and time dependence. In the coupled sampling, specific use is made of sampling from the neutron transport equation to construct a scheme for a nearoptimal subsequent sampling from the adjoint neutron transport equation. This procedure may be expected to be advantageous when the phase-space volume contributing to the functional is smaller than the phase-space volume of the neutron source.

The computer program MCNA was written to utilize the coupled sampling technique. MCNA uses the same neutron interaction models and cross-section library as does the LOs Alamos code MCN; MCN solves the transport equation with Monte Carlo.

I. INTRODUCTION

The central limit theorem asserts that the average of n independent random variables (the sum of the random variables divided by n) has an approximately normal distribution when n is large; ${ }^{l}$ this holds true under suitable mild conditions specified in the standard textbooks. Under the assumption of normality, a known probability may be assigned to the statement that "the theoretical expectation value lies within the band defined by the average value of the n independent observations $\pm \varepsilon$." Here ε is proportional to the square root of the variance of the distribution. The variance of the distribution is proportional to the variance of an individual random variable and inversely proportional to n, and, hence, any given precision ($\varepsilon /$ true value) may be obtained simply by taking enough random samples.

The fact that the precision decreases only inversely proportional to the square root of the number of samples may lead to an exorbitant amount of computation time for the required accuracy. If so,
an alternative method of reducing ε is to change the probability distributions used to obtain the random variables so that the theoretical variance of an individual sample is reduced.

Many problems of neutron transport cannot be solved efficiently with analog* Monte Carlo owing to the large theoretical variance of the individual samples. It is well known that certain advantages are realized in some of these problems through the solution of the corresponding adjoint equations. A commonly occurring example is the determination of a reaction rate in a small volume of phase space due to a given neutron source distribution. The variance in the estimate of the reaction rate for an individual neutron history is large because only a small fraction of the neutrons pass through the small phase-space volume of interest. Solution of the corresponding adjoint equation allows the sample histories to begin in the small phase-space volume.

[^0]These histories are traced "backward" to the phasespace volume of the neutron source and contribute to the estimate of the reaction rate while in the phase-space volume of the source. The computation time required to obtain a given confidence limit in this adjoint solution depends upon the scheme ultilized to sample from the adjoint equation.

The computer code MCNA is based upon a coupled sampling approach. Near-optimum density functions for sampling from the adjoint equation are obtained in this coupled sampling by approximating a theoretically feasible "zero-variance" scheme. The coupled sampling consists of sampling from the transport equation to construct the scheme for sampling from the adjoint equation, and then estimating the functional(s) by sampling from the adjoint equation**

The coupled sampling approach discussed in Sec. II is an extension of Refs. 2 and 3 to include fission and time dependence. A brief description of the computer code MCNA is given in Sec. III. The physical models utilized and the geometry routine of the MCNA code are identical to those of the MCNA code; ${ }^{4-6}$ MCN solves the neutron transport equation with Monte Carlo. The MCNA code is written in FORTRAN IV and is presently utilized on the CDC 6600 and CDC 7600 computers. An example problem is discussed in Sec. IV.
II. SAMPLING FROM THE ADJOINT TRANSPORT EQUATION AND COUPLED SAMPLING

A. General Discussion

The relevant equations may be derived by beginning with the Boltamann integro-differential neutron transport equation, ${ }^{?}$

$$
\begin{align*}
& L G\left(\underline{R} ; \underline{R}^{\prime}\right)=\frac{1}{v} \frac{\partial G\left(\underline{R}: \underline{R}^{\prime}\right)}{\partial t}+\underline{\Omega} \cdot \underline{V}\left(\underline{R} ; \underline{R}^{\prime}\right)+\Sigma_{t}(\underline{R}) G\left(\underline{R} ; \underline{R}^{\prime}\right) \\
& -\int_{\underline{\Omega}^{\prime \prime}} \int_{E^{\prime \prime}} G\left(\underline{r}, E^{\prime \prime}, \underline{\Omega}^{\prime \prime}, t ; \underline{R}^{\prime}\right) \Sigma_{t}\left(\underline{r}, E^{\prime \prime}\right) C\left(E, \underline{\Omega} ; \underline{r}, E^{\prime \prime}, \underline{\Omega}^{\prime \prime}\right) d E^{\prime \prime} d \underline{\Omega^{\prime \prime}} \\
& =\delta\left(\underline{r}-\underline{\underline{r}}^{\prime}\right) \delta\left(E-E^{\prime}\right) \delta\left(\underline{\Omega}-\underline{\Omega}^{\prime}\right) \delta\left(t-t^{\prime}\right), \quad(1) \tag{1}
\end{align*}
$$

where L is an operator as defined by Eq. (1). \underline{R} is a shorthand notation denoting the neutron space position r, its kinetic energy E, and direction of

[^1]motion $\underline{\Omega}$ at time t. $C\left(E, \underline{\Omega} ; \underline{r}, E^{\prime \prime}, \underline{\Omega}^{\prime \prime}\right) d E d \underline{\Omega}$ is the number of neutrons emerging in the phase-space volume $d E$ about E and in $d \underline{\Omega}$ about $\underline{\Omega}$ following a collision of a neutron with energy $E^{\prime \prime}$ and direction of motion $\underline{\Omega}^{\mu}$. Processes such as fission and elastic and inelastic scattering are included so that the collision kernel C usually will not be a normalized density function. The total cross section Σ_{t} is as sumed independent of time and of the direction of motion of the neutron so that the notations $\Sigma_{t}(\underline{R})$ and $\Sigma_{t}(\underline{r}, E)$ are used interchangeably. The coordinates to the left of the semicolon in the Green's function G of Eq. (1) represent field (i.e., final-state) points, and those to the right of the semicolon represent source points so that $G\left(\underline{R} ; \underline{R}^{\prime}\right)$ is the neutron flux at \underline{R} due to a unit point source at \underline{R}^{\prime}.

The neutron flux $\varphi(\underline{R})$ may be expressed in terms of the solution of Eq. (1) for the Green's function as

$$
\begin{equation*}
\varphi(\underline{R})=\int G\left(\underline{R} ; \underline{R}^{\prime}\right) S\left(\underline{R}^{\prime}\right) d \underline{R}^{\prime}, \tag{2}
\end{equation*}
$$

where $S\left(\underline{R}^{\prime}\right)$ is the extraneous source density. However, rather than using the Monte Carlo method to compute a point value of the neutron flux, we more often use it to estimate a functional J (or a number of such functionals) defined as

$$
\begin{align*}
J & =\int \varphi(\underline{R}) \Sigma(\underline{R}) d \underline{R} \\
& =\iint G\left(\underline{R} ; \underline{R}^{\prime}\right) S\left(\underline{R}^{\prime}\right) \Sigma(\underline{R}) d \underline{R^{\prime}} d \underline{R} \tag{3}
\end{align*}
$$

Here, $\Sigma(\underline{R})$ is an arbitrary "cross section" of interest and the last relation of Eq. (3) was obtained by utilizing the expression for the neutron flux as given by Eq. (2). An estimate of the functional J with Monte Carlo may be obtained by selecting the i^{\prime} th source neutron coordinates \underline{R}_{i} with the density function $S\left(\underline{R}^{\prime}\right)$ and following the subsequent history of the neutron (and progeny) to compute the estimate

$$
\begin{equation*}
J_{i}=\int G\left(\underline{R} ; \underline{R}_{i}\right) \Sigma(\underline{R}) d \underline{R} W\left(\underline{R}_{i}\right) \tag{4}
\end{equation*}
$$

where $W\left(\underline{R}_{i}\right)$ is the initial weight assigned to the neutron as given by $\int S\left(\underline{R}^{\prime}\right) d R^{\prime}$. The estimate of J, as given by Eq. (4), is obtained by sampling from the transport equation, but a corresponding estimate
of J may be obtained by sampling from the adjoint equation.

The adjoint equation for the adjoint Green's function G^{+}is obtained by finding an operator L^{+} that satisfles the equation

$$
\begin{equation*}
\int\left[L^{+} G^{+}\left(\underline{R} ; \underline{R}^{\prime}\right)\right] G\left(\underline{R} ; \underline{R}^{\prime}\right) d \underline{R}=\int G^{+}\left(\underline{R} ; \underline{\underline{R}}^{\prime}\right)\left[L O\left(\underline{R} ; R^{\prime}\right)\right] d \underline{R} . \tag{5}
\end{equation*}
$$

The boundary conditions on $G^{+}\left(\underline{R} ; \underline{R}^{\prime}\right)$ are chosen to be consistent with those on $G\left(\underline{R} ; \underline{R}^{\prime}\right)$ and are such that the bilinear concomitant ${ }^{8}$ is zero. The definition of the operator L^{+}in Eq. (5) with the associated boundary conditions is used to obtain the adjoint equation as
and then following the subsequent history of the pseudoneutron (and progeny) to compute the estimate

$$
\begin{equation*}
J_{\underline{1}}=\int G^{+}\left(\underline{R}^{\prime} ; \underline{R}_{i}\right) S\left(\underline{R}^{\prime}\right) d \underline{R}^{\prime} W\left(\underline{R}_{1}\right) \tag{10}
\end{equation*}
$$

where $W\left(\underline{R}_{i}\right)$ is the initial weight assigned to the pseudoneutron as given by $\int \Sigma\left(\underline{R}^{\prime}\right) d \underline{R}^{\prime}$. The roles of the neutron source S and the scoring cross section Σ have been interchanged in this estimation of J by sampling from the adjoint equation. Σ now assumes the role of a "source" and S the role of a scoring "cross section." This fact has two well-known implications about the computational effort required for a problem. (1) If a response of some part of the system as a function of the neutron source dis-

$$
\begin{align*}
& L^{+} G^{+}\left(\underline{R} ; \underline{R}^{\prime}\right)=-\frac{1}{V} \frac{\partial G^{+}\left(\underline{R} ; \mathbb{R}^{\prime}\right)}{\partial t}-\underline{\Omega} \cdot \underline{\nabla} G^{+}\left(\underline{R} ; \underline{R}^{\prime}\right)+\Sigma_{t}(\underline{R}) G^{+}\left(\underline{R} ; \underline{R}^{\prime}\right) \\
& \quad-\int_{\Omega^{\prime \prime}} \int_{E^{\prime \prime}} G^{+}\left(\underline{r}, E^{\prime \prime}, \underline{\Omega}^{\prime \prime}, t ; \underline{R}^{\prime}\right) \Sigma_{t}\left(\underline{r}, E^{\prime \prime}\right)\left[\frac{C\left(E^{\prime \prime}, \underline{\Omega}^{\prime \prime} ; \underline{r}, E, \underline{\Omega}\right) \Sigma_{t}(\underline{r}, E)}{\Sigma_{t}\left(\underline{r}, E^{\prime}\right)}\right] d E^{\prime \prime} d \underline{\Omega}^{\prime \prime}=\delta\left(\underline{r}-\underline{r}^{\prime}\right) \delta\left(E-E^{\prime}\right) \delta\left(\underline{\Omega}-\underline{\Omega}^{\prime}\right) \delta\left(t-t^{\prime}\right) . \tag{6}
\end{align*}
$$

A reciprocity relation between G^{+}and G may be derived by multiplying Eq. (6) (with the source at an arbitrary point $\underline{R}^{\prime \prime \prime}$ rather than $\left.\underline{R}^{\prime}\right)$ by $G\left(\underline{R} ; \underline{R}^{\prime}\right) d \underline{R}$, multiplying Eq. (1) by $G^{+}\left(\underline{R} ; \mathbb{R}^{* \prime \prime}\right) d \underline{R}$, extracting the difference of the resulting two equations, and integrating this difference over all of phase space. Then the subsequent interchange of variables, replacing \underline{R}^{\prime} by \underline{R} and $\underline{\underline{R}}^{m}$ by \underline{R}^{\prime}, yields the familiar form of the reciprocity theorem,

$$
\begin{equation*}
\mathrm{G}^{+}\left(\underline{R}^{\prime} ; \underline{\mathbb{R}}\right)=\mathrm{G}\left(\underline{\mathrm{R}} ; \underline{R}^{\prime}\right) . \tag{7}
\end{equation*}
$$

The reciprocity relation of Eq. (7) may be inserted into Eq. (3) to obtain an alternative expression for the functional J as

$$
\begin{equation*}
J=\iint G^{+}\left(\underline{R}^{\prime} ; \underline{R}\right) S\left(\underline{R}^{\prime}\right) \Sigma(\underline{R}) d \underline{R}^{\prime} d \underline{R} \tag{8}
\end{equation*}
$$

The functional J of Eq. (8) may be estimated with Monte Carlo by selecting the 1 'th source pseudoneutron* coordinates \underline{R}_{i} with the density function

$$
\begin{equation*}
\Sigma(\underline{R}) / \int \Sigma\left(\underline{R}^{\prime}\right) d \underline{R^{\prime}} \tag{9}
\end{equation*}
$$

[^2]tribution is required, it may be more efficient to estimate the functionals by sampling from the adjoint equation. This is because only one adjoint calculation is required rather than a number of separate transport calculations. (2) If the phasespace volume containing nonzero Σ is small, it may be more efficient to estimate. J by sampling from the adjoint equation because all pseudoneutron histories begin in the small phase-space volume.

These advantages obtained by sampling from the adjoint equation are expected to accrue when the phase-space volume, where the neutron source is nonzero, is not too small* and if a reasonably efficient scheme is available for sampling from the adjoint equation.

B. Sampling from the Adjoint Equation

The approach used here to develop a scheme for sampling from the adjoint equation is to begin by finding a simple transformation that will transform the adjoint equation, Eq. (6), into an equation identical in form to the transport equation, Eq. (1). Techniques for sampling from this transformed
*Point neutron sources may be treated with a special point source estimator discussed in Appendix E.
equation are well known from the wealth of experience obtained by sarmpling from the transport equation.

The simple transformation is obtained with the definitions

$$
\begin{align*}
& t_{a}=t_{m}-t \\
& \underline{\Omega}_{a}=-\underline{\Omega} \\
& G_{a}^{+}\left(\underline{r}, E, \underline{\Omega}_{a}, t_{a} ; \underline{r}^{\prime}, E^{\prime}, \underline{\Omega}_{a}^{\prime}, t_{a}^{\prime}\right) \\
&=G^{+}\left(\underline{r}, E,-\underline{\Omega}_{a}, t_{m}-t_{a} ; \underline{r}^{\prime}, E^{\prime},-\underline{\Omega}_{a}^{\prime}, t_{m}-t_{a}^{\prime}\right), \tag{11}
\end{align*}
$$

where t_{m} is a maximum time of interest in the problem, t_{a} will be the adjoint time, and Ω_{a} will be the direction of motion of the pseudoneutron. Substitution of these definitions into Eq. (6) ylelds the transformed equation
condition on G is that $G\left(\underline{R} ; \underline{R}^{\prime}\right)=0$ for $t^{\prime}>t$. This boundary condition coupled with the reciprocity theorem of Eq. (7) and the definitions in Eq. (11) requires that $G_{a}^{+}\left(\underline{R}_{a} ; \underline{R}_{a}^{\prime}\right)=0$ for $t_{a}^{\prime}>t_{a}$.

Because Eq. (12) has the same form as the neutron transport equation and satisfies the same type of boundary conditions, a possible scheme for estimating the functional J of Eq. (8) is as follows.

1. Select the initial coordinates \underline{R}_{1} of the pseudoneutron from the density function (see expression (9)),

$$
\begin{equation*}
g\left(\underline{R}_{a}\right)=\frac{\Sigma\left(\underline{r}, E,-\underline{\Omega}_{a}, t_{m}-t_{a}\right)}{\int \Sigma\left(\underline{r}^{\prime}, E^{\prime},-\underline{\Omega}_{a}^{\prime}, t_{m}-t_{a}^{\prime}\right) d \underline{R}_{a}^{\prime}}, \tag{14}
\end{equation*}
$$

with the initial weight of the pseudoneutron given by W as

$$
\begin{equation*}
W=\int \Sigma\left(\underline{\underline{r}}^{\prime}, E^{\prime},-\underline{\Omega}_{a}^{\prime}, t_{m}-t_{a}^{\prime}\right) \frac{\underline{R}_{a}^{\prime}}{a^{\prime}} \tag{15}
\end{equation*}
$$

$$
\begin{align*}
& \frac{I}{v} \frac{\partial G_{a}^{+}\left(\underline{R}_{a} ; R_{a}^{\prime}\right)}{\partial t_{a}}+\underline{\Omega}_{a} \cdot \underline{\nabla}_{a}^{+}\left(\underline{R}_{a} ; R_{a}^{\prime}\right)+\Sigma_{t}\left(\underline{R}_{a}\right) G_{a}^{+}\left(\underline{R}_{a} ; R_{a}^{\prime}\right) \\
& \quad-\int_{\Omega_{a}^{\prime \prime}} \int_{E^{\prime \prime}} G_{a}^{+}\left(\underline{r}, E^{\prime \prime}, \underline{\Omega}_{a}^{\prime \prime}, t_{a} ; \underline{R}_{a}^{\prime}\right) \Sigma_{t}\left(\underline{r}, E^{\prime \prime}\right)\left[\frac{C\left(E^{\prime \prime},-\underline{\Omega}_{a}^{\prime \prime} ; \underline{r}, E,-\underline{\Omega}_{a}\right) \Sigma_{t}(r, E)}{\Sigma_{t}\left(\underline{r}, E^{\prime \prime}\right)}\right] d E^{\prime \prime} \frac{d \Omega_{a}^{\prime \prime}=8\left(\underline{r}-\underline{r}^{\prime}\right) \delta\left(E-E^{\prime}\right) \delta\left(-\underline{\Omega}_{a}+\underline{\Omega}_{a}^{\prime}\right) \delta\left(-t_{a}+t_{a}^{\prime}\right),}{} \tag{12}
\end{align*}
$$

where \underline{R}_{a} is defined to be the phase-space point r, E, Ω_{a}, t_{a}. Equation (12) is identical in form to the neutron transport equation, where the term in brackets in the integrand represents the transfer kernel.

It may also be nroved that G_{a}^{+}satisfies the same boundary conditions as G. The boundary condition for G is that $G\left(\underline{r}_{s}, E, \underline{\Omega}^{-}, t ; \underline{R}^{\prime}\right)=0$ at every point \underline{r}_{s} on the outer surface of the system, where Ω^{\prime} denotes any direction into the system. This boundary condition on G combined with the requirement that the bilinear concomitant be zero on the outer surface leads to the boundary condition for G^{+} of 8

$$
\begin{equation*}
G^{+}\left(\underline{r}_{s}, E, \underline{\Omega}^{+}, t ; \underline{R}^{\prime}\right)=0 \tag{13}
\end{equation*}
$$

where $\underline{\Omega}^{+}$denotes any direction out of the system. Owing to the definition of G_{a}^{+}in Eq. (11) and the boundary condition on G^{+}in Eq. (13), the boundary condition on G_{a}^{+}is that no pseudoneutrons enter the system from the outer surface. The time boundary
2. Sample for the distance to collision X with the exponential density function,

$$
\begin{equation*}
T(x)=\Sigma_{t}(x) e^{-\int_{0}^{x} \Sigma_{t}\left(x^{\prime}\right) d x^{\prime}} \tag{16}
\end{equation*}
$$

where this density function is determined along the direction of flight of the pseudoneutron and $X=0$ is the previous collision point.
3. Each collision of the i'th pseudoneutron history (or its progeny) contributes to the estimate of the function J_{i} as

$$
\begin{equation*}
J_{1}=J_{i}^{\prime}+W S\left(\underline{r}, E,-\Omega_{a}, t_{m}-t_{a}\right) / \Sigma_{t}(\underline{r}, E), \tag{17}
\end{equation*}
$$

where J_{i}^{\prime} is the sum of the tabulations from previous collisions. Here a volumetric source S is assumed. The scoring is different for a surface source as is discussed in Sec. III.
4. At each collision of the pseudoneutron with a precollision energy E^{\prime}, direction of motion Ω_{a}^{\prime}, and weight W^{\prime}, sample for the new energy E and
direction of motion Ω_{a} with the density function

$$
\begin{align*}
& f\left(E, \underline{\Omega}_{a} ; r, E^{\prime}, \underline{\Omega}_{a}^{\prime}\right) \\
&=\frac{C\left(E^{\prime},-\underline{\Omega}_{a}^{\prime} ; \underline{r}, E,-\underline{\Omega}_{a}\right) \Sigma_{q}(\underline{r}, E)}{\int_{\underline{\Omega}^{\prime \prime}} \int_{E^{\prime \prime}} C\left(E^{\prime},-\underline{\Omega}_{a}^{\prime} ; \underline{r}, E^{\prime \prime},-\underline{\Omega}_{a}^{\prime \prime}\right) \Sigma_{t}\left(\underline{r}, E^{\prime \prime}\right) d E^{\prime \prime} d \Omega_{a}^{\prime \prime}} \tag{18}
\end{align*}
$$

The new weight of the pseudoneutron is then obtained as
$W=\frac{W^{\prime} \int_{\underline{\Omega}^{\prime \prime}} \int_{E^{\prime \prime}} C\left(E^{\prime},-\underline{\Omega}_{\mathrm{a}}^{\prime} ; \underline{r}, E^{\prime \prime},-\underline{\Omega}_{\mathrm{Q}}^{\prime \prime}\right) \Sigma_{t}\left(\underline{r}, E^{\prime \prime}\right) d E^{\prime \prime} \frac{d \Omega_{a}^{\prime \prime}}{a}}{\Sigma_{t}\left(\underline{r}, E^{\prime}\right)}$.
5. Return to step 2 if the pseudoneutron energy is less than the maximum energy of interest and if the time t_{a} is less than t_{m}. otherwise, terminate the history with the estimate of the functional J for this history given by J_{i}.

We will call the scheme outlined above an analog scheme for sampling from the adjoint equation because it is similar to an analog scheme for sampling from the transport equation. The distance-tocollision density function $T(X)$ of Eq. (16) is identical to the corresponding density function utilized for sampling from the transport equation. The roles of the scoring cross section Σ and the source S are interchanged in Eqs. (14) and (17) from their corresponding roles when sampling from the transport equation. The most important difference between the two analog sampling schemes involves the density functions for selecting the energy and direction of motion after a collision, $f\left(E, \underline{\Omega}_{a} ; \underline{\underline{r}}, E^{\prime}, \underline{\Omega}_{a}^{\prime}\right)$ of Eq. (I8) for sampling from the adjoint equation, and the normalized form of the collision kernel $C\left(E, \underline{\Omega} ; \underline{r}, E^{\prime}, \Omega^{\prime}\right)$ for sampling from the transport equation. Not only does the density function f of Eq. (18) have the additional multiplier Σ_{t}, but also the primed and unprimed variables of the energy and direction of motion in the arguments of C (the negative signs in the direction coordinates are not considered important in this treatment because we will consider isotropic media) are interchanged from their corresponding role when sampling from the transport equation.

If the analog scheme is to be utilized to sample from the adjoint equation, these differences between the density function $f\left(E, \Omega_{a} ; \underline{r}, E^{\prime}, \Omega_{a}^{\prime}\right)$ and the normalized form of the collision kernel $C\left(E, \Omega ; \underline{r}, E^{\prime}, \Omega^{\prime}\right)$ dictate the need for data that are not available in a cross-section library that is constructed for sam-
pling from the transport equation. To see what additional data are needed and to eventually introduce the sampling scheme used in the MCNLA code, we will now consider the practical aspects of sampling with the density function f.

It is convenient to express the collision kernel C as a sum of the respective contributions of possible events α as
$C\left(E^{\prime},-\Omega_{a}^{\prime} ; \underline{r}, E,-\Omega_{a}\right)=\sum_{\alpha} \frac{\Sigma_{\alpha}(\underline{r}, E)}{\Sigma_{t}(\underline{r}, E)} C_{\alpha}\left(E^{\prime},-\Omega_{a}^{\prime} ; \underline{r}, E,-\Omega_{a}\right)$,
where Σ_{α} is the macroscopic cross section for an event α and C_{α} is the corresponding collision kernel for the event α. The events α may be chosen to correspond to the physical processes; for example, elastic scattering with a given isotope. Alternatively, the events may be defined less conventionally, for example, the event defined as an inelastic scattering with any of the isotopes present, subject to the restriction that the (pseudo) neutron is scattered to an energy between two given limits.

The expansion of C, as given by Eq. (20), may be substituted into the density function f of Eq. (18) to obtain
$f\left(E, \underline{\Omega}_{a} ; \underline{r}, E^{\prime} \cdot \underline{\Omega}_{a}^{\prime}\right)=\sum_{\alpha} Q_{\alpha}\left(\underline{r}, E^{\prime}, \underline{\Omega}_{a}^{\prime}\right) f_{\alpha}\left(E, \underline{\Omega}_{a} ; \underline{r}, E^{\prime}, \underline{\Omega}_{a}^{\prime}\right)$,
where Q_{α} and f_{α} are defined as
$Q_{\alpha}\left(\underline{r}, E^{\prime}, \underline{\Omega}_{Q}^{\prime}\right)$

$$
\begin{equation*}
=\frac{\int_{\Omega_{a}} \int_{E} C_{\alpha}\left(E^{\prime},-\underline{\Omega}_{a}^{\prime} ; \underline{r}, E,-\underline{\Omega}_{a}\right) \Sigma_{\alpha}(\underline{r}, E) d E d \Omega_{a}}{\sum_{\alpha^{\prime}} \int_{\underline{\Omega}_{a}^{\prime \prime}} \int_{E^{\prime \prime}} C_{\alpha^{\prime}}\left(E^{\prime},-\underline{\Omega}_{a}^{\prime} ; \underline{r}, E^{\prime \prime},-\underline{\Omega}_{a}^{\prime \prime}\right) \Sigma_{\alpha^{\prime}}\left(\underline{r}, E^{\prime \prime}\right) d E^{\prime \prime} \frac{d \Omega_{a}^{\prime \prime}}{a_{a}}} \tag{22}
\end{equation*}
$$

and

$$
\begin{align*}
& f_{\alpha}\left(E, \underline{\Omega}_{a} ; \underline{r}, E^{\prime} \cdot \underline{\Omega}_{a}^{\prime}\right) \\
& =\frac{C_{\alpha}\left(E^{\prime},-\Omega^{\prime} ; \underline{r}, E,-\underline{\Omega}_{a}\right) \Sigma_{\alpha}(\underline{r}, E)}{\int_{\Omega_{a}^{\prime \prime}} \int_{E^{\prime \prime}} C_{\alpha}\left(E^{\prime},-\underline{\Omega}_{a}^{\prime} ; \underline{r}, E^{\prime \prime},-\underline{\Omega}_{a}^{\prime \prime}\right) \Sigma_{\alpha}\left(\underline{r}, E^{\prime \prime}\right) d E^{\prime \prime} d \underline{\Omega}_{a}^{\prime \prime}} . \tag{23}
\end{align*}
$$

The energy E and direction of motion Ω_{a} may be sampled with the density function f of Eq . (21) by
selecting event α with probability Q_{α} and subsequently selecting the energy E and direction of motion Ω_{a} from the density function $f_{\alpha^{-}}$Thus, the data required in a cross-section library would be the probabilities of events as given by the Q_{α} of Eq. (22) and the corresponding conditional density functions as given by the f_{α} of Eq. (23).

Two difficulties are evident in this analog scheme for sampling from the adjoint equation.
(1) A considerable amount of effort would be required to create a new library containing the f_{α} and Q_{α} functions in an acceptable format for sampling, and (2) the analog scheme for sampling from the adjoint equation may be inefficient owing to statistical errors due to an unacceptably large theoretical variance of the individual samples. One can reduce this variance by properly altering the sampling scheme and adjusting the pseudoneutron weight to obtain an unbiased estimate. The unbiased estimate is obtained by multiplication of the analog pseudoneutron weight by the ratio of the analog density function to the alternate density function at each sampling. For example, if some functions \bar{f}_{α} and \bar{Q}_{α} are used for sampling rather than the analog density functions f_{α} and Q_{α}, the pseudoneutron weight is obtained from the analog weight of Eq. (19) and the ratio of the density functions as
functional. There is usually a trade-off between the theoretical variance per individual random sample and the computation time required to sample from the density functions. The MCNA code utilizes a coupled sampling approach to try to compromise on these requirements.

C. Coupled Sampling

It is well known that a theoretical "zerovariance" scheme exists for estimating the functional J by sampling from the adjoint equation. The zero-variance scheme depends upon the neutron flux and thus is impractical to utilize exactiy, but this does suggest the possibility of a coupled sampling approach to obtain an approximation to the zerovariance scheme.

The coupled sampling as developed here consists of sampling from the transport equation to construct an approximation to the theoretical zero-variance scheme and then using this approximate scheme to estimate the functional J by sampling from the adjoint equation. We will now give expressions for the zero-variance density functions and briefly discuss how sampling from the transport equation may be used to obtain approximations to them. The actual techniques used in the MCNA code are given in Sec. III.

The functions g_{0}, Q_{∞} and $f_{\infty \infty}$ are defined to

$$
\begin{equation*}
=\overline{w^{\prime}} \frac{C_{\alpha}\left(E^{\prime},-\underline{\Omega}_{a}^{\prime} ; \underline{r}, E,-\underline{\Omega}_{a}\right) E_{\alpha}(\underline{r}, E)}{\Sigma_{t}\left(\underline{\underline{r}}, E^{\prime}\right) \bar{Q}_{\alpha}\left(\underline{r}, E^{\prime}, \underline{\Omega}_{a}^{\prime}\right) \bar{T}_{\alpha}\left(E, \underline{\Omega}_{a} ; \underline{\underline{r}}, E^{\prime},, \Omega_{a}^{\prime}\right)}, \tag{24}
\end{equation*}
$$

where α, E, and $\underline{\Omega}_{\mathrm{a}}$ were selected in the sampling.
A density function for the alternate sampling scheme may be chosen arbitrarily from the set of density functions that are nonzero at each point where the corresponding analog density function is nonzero. Use of the correct weight multiplier ensures an unbiased estimate for any such density functions. However, the variance in the estimate of the functional J depends upon the density functions chosen for the sampling scheme, so the density functions should be chosen to minimize the computation effort for a given precision in the estimate of the
be the density functions of the zero-variance scheme which are utilized to sample for the same random variables as the density functions g, I_{α}, and Q_{α} ' respectively, of the analog scheme. The derivation of this zero-variance scheme will not be given here because it is available in the iiterature. ${ }^{9,10}$ The zero-variance density functions of interest here are

$$
\begin{equation*}
g_{0}\left(\underline{R}_{a}\right)=\frac{\Sigma\left(\underline{r}, E,-\underline{\Omega}_{a}\right) \varphi\left(\underline{r}, E,-\underline{\Omega}_{a}\right)}{\iiint \Sigma\left(r^{\prime}, E^{\prime},-\underline{\Omega}_{a}^{\prime}\right) \varphi\left(\underline{r}^{\prime}, E^{\prime},-\underline{\Omega}_{a}^{\prime}\right) d^{3} r^{\prime} d E^{\prime} d \Omega_{a}^{\prime}}, \tag{25}
\end{equation*}
$$

$$
\begin{align*}
Q_{\alpha 0}\left(\underline{r}, E^{\prime}, \Omega_{a}^{\prime}\right) & =\frac{\int_{\Omega_{a}} \int_{E^{\prime}} C_{\alpha}\left(E^{\prime},-\Omega_{a}^{\prime} ; \underline{r}, E,-\underline{\Omega}_{a}\right) \Sigma_{\alpha}(\underline{r}, E) \varphi\left(\underline{r}, E,-\underline{\Omega}_{a}\right) d E d \Omega_{a}}{\sum_{\alpha^{\prime}} \int_{\Omega_{a}^{\prime \prime}} \int_{E^{\prime \prime}} C_{\alpha^{\prime}}\left(E^{\prime},-\underline{\Omega}_{a}^{\prime} ; \underline{r}, E^{\prime \prime},-\underline{\Omega}_{a}^{\prime \prime}\right) \Sigma_{\alpha}\left(\underline{r}, E^{\prime \prime}\right) \varphi\left(\underline{r}, E^{\prime \prime},-\Omega_{a}^{\prime \prime}\right) d E^{\prime \prime} \underline{\Omega}_{a}^{\prime \prime}}, \tag{26}\\
f_{\alpha \infty}\left(E, \underline{\Omega}_{a} ; \underline{r}, E^{\prime}, \underline{\Omega}_{a}^{\prime}\right)= & \int_{\underline{\Omega}_{a}}^{\int_{E^{\prime \prime}} C_{\alpha}\left(E^{\prime},-\underline{\Omega}_{a}^{\prime} ; \underline{r}, E^{\prime \prime},-\underline{\Omega}_{a}^{\prime \prime}\right) \Sigma_{\alpha}\left(\underline{r}, E^{\prime \prime}\right) \varphi\left(\underline{r}, E^{\prime \prime},-\Omega_{a}^{\prime \prime}\right) d E^{\prime \prime} d \underline{\Omega}_{a}^{\prime \prime}},
\end{align*}
$$

where the density functions have been assumed to depend only weakly on time so the time variable has been suppressed. The density function of the zerovariance scheme for selecting the distance to collision is not given here because we assume that the use of the analog exponential density function of Eq. (16) with the added option of splitting or "Russian roulette" is sufficient for most purposes.

The density functions of Eqs. (25) to (27) have an interesting physical significance. The optimal sampling requires that, in the adjoint solution, regions of phase space be sampled proportional to the rate at which the reverse (neutron) processes are occurring. This provides a helpful picture for obtaining useful approximations to the zero-variance density functions when sampling fram the transport equation. Such a physical aid is useful because it is clear that, in addition to the problem of statistical fluctuations in the evaluation of f_{∞} and Q_{∞} by sampling from the transport equation, some phasespace averaging must be incorporated to reduce the computer memory requirements for tabulating these functions. The averaging techniques used in MCNA are formilated to optimize the selection of the pseudoneutron energy. These averaging techniques and a general discussion of the MCNA code are given in the next section.
III. DESCRTPIION OF MCNA

The computer code MCNA for solving the adjoint equation with the Monte Carlo method was constructed by modifying the computer code MCN; ${ }^{4-6}$ MCN solves the transport equation with Monte Carlo. The geometry routines and cross-section models are identical in the two codes. The cross-section libraries have the seme format. However, the actual cross sections for reactions are always tabulated in the MCNA library, while probabilities of reactions are sometimes tabulated in the MCN cross-section library.

Figure 1 illustrates the steps in the solution of a problem with the MCNA code. The initiation of the problem in Step 1 is identical to the initiation in the MCN code. ${ }^{4-6}$ The sampling from the transport equation in Step 3 is also identical to the MCN program with two exceptions: (1) the program has been altered to allow cross-section data rather than probabilities of reactions to be used in the sampling, and (2) density functions are computed for a subsequent sampling from the adjoint equation. The rest of the discussion in this section will concentrate on this latter difference and on steps 2,4 , and 5 of Fig. 1 .

The zero-variance functions, Q_{∞} of Eq. (26) and f_{∞} of Eq. (27), are approximated in the sampling from the transport equation by first separating three-dimensional Euclidean space and the energy coordinate into contiguous segments. The Euclidean space segments are assumed to correspond to the physical cells (regions) of the system. An energy, directional, and spatial averaging of the Q_{∞} in Eq. (26) is performed over each phase-space segment in the Monte Carlo sampling from the transport equation. These average quantities are denoted by $\bar{Q}_{\alpha}(j, k, \cdots)$, where j is an integer denoting the energy segment, k is an integer denoting the cell, and the ... indicates that (depending upon the type of event) other integers may also be used. Thus, the $\bar{Q}_{\alpha}(j, k, \cdots)$ represents a Monte Carlo phase-space average of $Q_{\alpha \infty}\left(\underline{r}, E^{\prime}, \underline{\Omega}_{a}^{\prime}\right)$.

Four general types of events, designated by α, are utilized in MCNA. Note that these events were selected for convenience in the sampling and often represent a sum of some possible reactions. The four events with their corresponding physical interpretations in the sampling from the transport equation are as follows.

Step 1
Start
PROGRAM ATMMC
Initiates the problem.
Identical to the MCN
initiation. initiation.

Step 2

PROGRAM ANUI

Initiates additional data and prepares for the coupled sampling.

Step 3
$\left.\longrightarrow \left\lvert\, \begin{array}{l}\text { PROGRAM ATMC } \\ \text { Samples from the trans- } \\ \text { port equation to con- } \\ \text { struct the scheme for } \\ \text { subsequent sampling } \\ \text { from the adjoint equa- } \\ \text { tion }\end{array}\right.\right]$.

Step 4

PROGRAM ANUI

Normalizes sampling functions and prepares to sample from the adjoint equation. Additional data may also be initiated.

Step 5

Fig. 1. Brief flow diagram of a computation with the MCNA code.

1. Elastic scattering with an isotope 1. This type of event is designated by $\alpha=1$, and $\bar{Q}_{1}(j, k, i)$ is proportional to the number of neutrons that suffer an elastic collision in cell k with isotope i and are scattered into energy group j.
2. Inelastic scattering with a continuum density function (i.e., not a discrete level in the laboratory or center-of-mass system) to describe the energy transfer. This type of event is designated by $\alpha=2$, and $\bar{Q}_{2}(j, k, \beta)$ is proportional to the number of neutrons that scatter into energy group f, given that tale originating neutrons suffered inelastic collisions (fission not included) in cell k with a continuum density function utilized to describe the energy transfer, where the neutron loss of energy in the Iaboratory system is within an energy band designated by the integer β.
3. Inelastic scattering with a discrete model (in the laboratory or center-of-mass system) to describe the energy transfer. This type of event is designated by $\alpha=3$, and $\vec{Q}_{3}(j, k, i, b)$ is proportional to the number of neutrons that scatter into energy group f, given that the originating neutrons suffered an inelastic scattering collision in cell k with discrete level ℓ of isotope 1.
4. Fission. This type of event is designated by $\alpha=4$, and $\bar{a}_{4}(j, k, \gamma)$ is proportional to the num-
ber of neutrons born from fission into energy group j and cell k, where the parent neutrons were in energy group γ when fission occurred.

The indices in these definitions assume all integer values that are within the bounds:
$1 \leq i \leq$ (number of isotopes in cell k),
$1 \leq j \leq J$, where J is the number of energy groups used in the subsequent sampling from the adjoint equation,
$1 \leq k \leq$ (number of cells),
$1 \leq \beta \leq$ (number of energy bands for energy group j),
$1 \leq \ell \leq$ (number of discrete levels for isotope i and energy group j),
$1 \leq \gamma \leq J$.
These physical definitions of the $\bar{Q}_{\alpha}{ }^{\prime}$ s are used to evaluate them by sampling from the transport equation. The word "proportional" is used because the \bar{Q}_{α} 's must be normalized before the subsequent sampling from the adjoint equation. Hence, for a given f and k, the $\bar{Q}_{\alpha}{ }^{\prime}$ s are normalized with the condition

$$
\begin{align*}
\sum_{1} \bar{Q}_{1}(j, k, 1)+\sum_{\beta} & \bar{Q}_{2}(j, k, \beta)+\sum_{i, l} \bar{Q}_{3}(j, k, i, \ell) \\
& +\sum_{Y} \bar{Q}_{4}(j, k, \gamma)=1 \tag{28}
\end{align*}
$$

In the subsequent sampling from the adjoint equation, J is the energy group of the pseudoneutron before a collision and each $Q_{\alpha}(j, k, \cdots)$ is the probability that it will suffer that event. Although a form of multigroup treatment is used to determine the type of event that occurs, this is not a multigroup treat ment in the usual sense because the final pseudoneutron energy after the event is selected from a continuous distribution (except, of course, for a discrete inelastic scattering in the laboratory system).

The conditional \vec{f}_{α} density functions for sampling the energy and direction of flight of the pseudoneutron, given that the event α occurs, (in some cases these $\overline{\mathrm{P}}_{\alpha}$'s are also computed by sampling from the transport equation) are discussed in Appendix A. The weights of the pseudoneutron after each event α are also derived in Appendix A.

The format of the input data in the MCNA code is identical to that of the imput data in the MCN code. The input data are discussed in Appendix B.

Most of the effort required to set up a problem with the MCNA code is usually involved with the construction of the sources for sampling from the transport and adjoint equations and the scoring routine for tabulating the functional(s). The neutron source routine for the sampling from the transport equation is constructed as in the MCN code; i.e., simple routines are available in the code, or more complicated routines may be written by the user. However, for problems in which a number of functionals are being computed in the sampling from the adjoint equation, some care should be taken in choosing the source for the transport portion of the calculation. Generally, the density function for selecting the energy of the source neutron should emphasize the upper portion of the energy spectra of the functionals.

A pseudoneutron source routine is also available in the MCNA code for simple sources, but a separate routine, ASOURC, must be written for complicated sources. To illustrate the procedure for setting up the adjoint source, we begin with the density function $g\left(\underline{R}_{a}\right)$ of Eq. (14). The MCNA code uses real time t in the adjoint calculation rather than the adjoint time t_{a}, so g is expressed as
$g\left(\underline{r}, E, \underline{\Omega}_{a}, t\right)=\frac{\sum\left(\underline{x}, E,-\underline{\Omega}_{a}, t\right)}{\iiint \int \sum\left(\underline{r}^{\prime}, E^{\prime},-\underline{\Omega}_{a}^{\prime}, t^{\prime}\right) d^{3} r^{\prime} d E^{\prime} d \underline{\Omega}_{a}^{\prime} d^{\prime}}$.

The corresponding zero-variance density function g_{0} of Eq. (25) depends upon the neutron flux $\varphi\left(\underline{r}, E,-\underline{\Omega}_{Q}, t\right)$. When information on the general behavior of the neutron flux is available, it should be used to construct a near-optimal density function. For illustration, we will assume that such information is not available and that our primary interest is to find a simple method to select the initial pseudoneutron coordinates. The following method is quite general, although it is not optimal from a minimum-variance viewpoint.

The density function g may be difficult to sample owing to the behavior of the cross section Σ. An alternative is to sample from a density function \bar{g} that is easy to sample from and is zero only in regions of phase space where Σ is zero. An unbiased estimate is obtained by assigning the pseudoneutron an initial weight of

$$
\begin{equation*}
\bar{W}=\frac{\Sigma\left(\underline{r}, E,-\underline{\Omega}_{a}, t\right)}{\bar{g}\left(\underline{r}, E, \underline{\Omega}_{a}, t\right)}, \tag{30}
\end{equation*}
$$

where r, E, Ω_{a} and t were selected with the density function \bar{g}.

For example, assume that

$$
\begin{array}{ll}
\Sigma\left(\underline{r}, E,-\underline{\Omega}_{a}, t\right)=\Sigma(E) & \text { for } \underline{r} \text { in a volume } \\
& V, E_{1}<E<E_{2}, \text { and } \\
& t_{1}<t<t_{2},
\end{array}
$$

$=0$ otherwise,
and that we choose the density function $\overline{\mathrm{g}}$ as

$$
\begin{equation*}
\overline{\mathbf{g}}\left(\underline{\underline{r}}, E, \underline{\Omega}_{a}, t\right)=\frac{1}{4 \pi} \frac{1}{\left(E_{2}-E_{1}\right)} \frac{1}{\bar{V}} \frac{1}{\left(t_{2}-t_{1}\right)} \tag{31}
\end{equation*}
$$

for $\underset{\sim}{x}$ in a volume $V, E_{1}<E<E_{2}$, and $t_{1}<t<t_{2}$,
$=0$ otherwise.
The pseudoneutron source routine would

1. select the initial position z, y, z from a uniform distribution in the volume V,
2. select the direction cosines u, v, w from an isotropic distribution in the laboratory system,
3. select the energy E from a uniform distribution between E_{1} and E_{2},
4. select the time t from a uniform distribution between t_{1} and t_{2}, and
5. assign the pseudoneutron an initial weight, obtained from Eq. (30), of

$$
\begin{equation*}
\bar{W}=\Sigma(E) 4 \pi\left(E_{2}-E_{1}\right) v\left(t_{2}-t_{1}\right) \tag{32}
\end{equation*}
$$

A subroutine called SCORE(KASR) must be supplied by the user to tabulate the contribution of each pseudoneutron history to the functional(s). The parameter KASR is used to convey what is happening to the pseudoneutron each time the subroutine is called by the main program. Subroutine SCORE is called with $K A S R=1$ each time a pseudoneutron suffers a collision. The variables X, Y, Z, U, V, W, ERG, $V L, I A, J A, T M E, P L$, and $W T$ are the parameters describing the pseudoneutron at the collision. Here, X, Y, Z are the spatial Euclidean coordinates, u, v, w are the direction-of-motion cosines, ERG is the kinetic energy, VL is the velocity, IA is the program cell number, JA is the program surface number (if needed), TME is the time, PL is the macroscopic cross section, and WT is the weight of the pseudoneutron. Subroutine SCORE is called with KASR $=2$ each time a pseudoneutron crosses a surface boundary. The previously named variables are the parameters of the pseudoneutron at the surface crossing. Subroutine SCORE is called with $K A S R=3$ for the pointsource estimator discussed in Appendix E. A special "last-flight" scoring surface option, denoted by the first data entry of card ALE* greater than zero, is also available in MCNi. If this is used, subroutine SCORE is called each time the pseudoneutron energy is within a designated energy bin and the projected line of flight crosses a designated surface. The previously named variables are the paremeters at the crossing of the designated surface, and KASR is equal to 4.

The actual scoring proceeds as in a Monte Carlo transport calculation except that the source S assumes the role of a scoring cross section. The i'th pseudoneutron history is used to estimate J_{i} of Eq. (10), which may be expressed as

The definitions in Eq. (11) have been used to express J_{i} in this form.

The source is usually distributed either in a volume of Euclidean space or on a surface. We now consider these two types of sources.

The transformed adjoint Green's function G_{a}^{+} satisfies an equation of the same form as the neutron transport equation. Thus, the number of collisions occuring in the phase-space volume $\mathrm{d}^{3} r$ about $\underline{r}, d E$ about $E, d \underline{\Omega}_{a}$ about $\underline{\Omega}_{a}$, and $d t_{a}$ about t_{a} is given by
$G_{a}^{+}\left(\underline{r}, E, \underline{\Omega}_{a}, t_{a} ; \underline{r}_{i}, E_{i}, \underline{\Omega}_{a i}, t_{a i}\right) \Sigma_{t}(\underline{r}, E) d^{3} r d E d \Omega_{a} d t_{a}$.

The contribution of this volume of phase space (in the limit as the phase-space volume approaches zero) to J_{i} is given by
$\left(\begin{array}{l}\text { Number of collisions } \\ \text { occurring in the small } \\ \text { phase-space volume due } \\ \text { to a unit source at } \underline{R}_{1}\end{array}\right) \quad \mathrm{S}\left(\underline{r}, E,-\underline{\Omega}_{a}, t\right) / \Sigma_{t}(r, E)$.

The number of collisions occuring in the small phase-space volume due to a source at R_{i} of strength $W\left(R_{i}\right)$ is just the sum of the weights of the pseudoneutron each time it suffers a collision in the small phase-space volume. Thus, the contribution of each pseudoneutron collision to the functional is

$$
\bar{W} * S\left(\underline{r}, E,-\Omega_{a}, t\right) / \Sigma_{t}(\underline{r}, E),
$$

where \bar{W} is the pseudoneutron weight at the collision point r, E, Ω_{a}, t. Here, Ω_{a} is the direction of motion of the pseudoneutron before collision, so when S is not isotropic, the Ω_{a} direction is reflected to determine S. The real time t, rather than the adjoint time t_{a}, is used in Eqs. (35) and (36) because the real time t is the time variable used in MCNA.

Subroutine SCORE is shown in Fig. 2 for a fictitious problem in which two unnormalized source spectra are of interest. These sources are denoted by S_{1} and S_{2} and are defined as

$$
\begin{equation*}
J_{i}=\int G_{a}^{+}\left(\underline{r}, E, \underline{\Omega}_{a}, t_{a} ; \underline{r}_{i}, E_{i}, \underline{\Omega}_{a i}, t_{a i}\right) s\left(\underline{r}, E,-\underline{\Omega}_{a}, t_{m}-t_{a}\right) d^{3} r d E d \underline{\Omega}_{a} d t_{a} W\left(\underline{R}_{i}\right) \tag{33}
\end{equation*}
$$

[^3]
SUHROLTINE SCORE (KASR)

C
INTEGER, OINENSION, CCMMCN, ANO FQUIVALENCE STATEMENTS ARE NOT SHOWN: BUT CCRRESPCNO TO THOSE OF THE MAIN PROGRAM ATMC

SCORI.NG FOR FICTITIOUS PROBLEF WITH VOLUNE SOURCE
KASR $=1$ OENCTES A CCLLISION
IA $=$ PROGRAN CELL NUMBER WHERE CILLISION OCCURS
TME = TIME AT COLLISICN
ERG $=$ PSEUOC-NEUTRCN ENERGY AT COLLISION
hT = PSELDC-AELTRUN WEIGHT AT COLLISIUN
$4 \mathrm{PI}=12.5664$
PL = MACROSCCPIC TCTAL CROSS SECIION IN CELL 9 FOR ENERGY ERG
IF(KASR.NE.1) GO TC 25
IFIIA.NE.9) GO TO 25
IF (TME.LT.C.) GO TO 25 IF(ERG.LT.L.) UU TL 25
$K=1$
IF(ERG.LT. 3.) GO TC 15
$K=2$
IF(ERG.GT.6.) GU TC 25
15 CCNTINUE
$\operatorname{TSCOR}(K)=T S C C R(K)+W T /(12.5664 * E R G * P L)$
25 RETURT:
END

Fig. 2. Subroutine SCORE for a fictitious problem with a source uniformly distributed in cell number 9.

$$
S_{1}(\underline{r}, E, \underline{\Omega}, t)=\frac{1}{4 \pi} \frac{1}{E} \text { for }\left\{\begin{array}{l}
0<t<t_{i}, \\
1 .<E<3 ., \text { and } \\
\underline{r} \text { in cell IA }=9
\end{array}\right\},
$$

$=0$ otherwise
$S_{2}(\underline{r}, E, \Omega, t)=\frac{1}{4 \pi} \frac{1}{E}$ for $\left(\begin{array}{l}0<t<t_{i}, \\ 3 .<E<6 ., \\ \underline{r} \text { in cell } I A=9\end{array}\right)$,

$=0$ otherwise.

Here, all pseudoneutrons are assumed to begin their life histories at the time t_{i}. Consequently, the maximum time is not checked in subroutine SCORE because the time t runs backward in the adjoint calculation.

When the neutron source S is on a surface, the space coordinate normal to the surface in Eq. (33) may be integrated readily because a delta function in the source is involved. The expression for J_{i} becomes
the source density per unit of area on the surface. Because the transformed adjoint Green's function G_{a}^{+} satisfies an equation whose form is identical to the neutron transport equation, the number of "particles" crossing a phase-space element $d^{2} r_{s}$ on the surface about \underline{r}_{s} with energies in $d E$ about E, direction of motion in $d \underline{\Omega}_{a}$ about $\underline{\Omega}_{a}$, and during a time $d t_{a}$ about t_{a} is given by
$\mu_{n} G_{a}^{+}\left(\underline{r}_{s}, E, \underline{\Omega}_{a}, t_{a} ; \underline{r}_{i}, E E_{i}, \underline{\Omega}_{a i}, t_{a i}\right) d^{2} r_{s} d E d \underline{\Omega}_{a} d t_{a}$,
where μ_{n} is the absolute value of the cosine of the angle between Ω_{a} and a vector that passes through $d^{2} r_{s}$ normal to the surface. Here we assume an infinitesimally small volume in phase space. Thus, the contribution of a pseudoneutron to the functional J_{i} each time it crosses the surface is given by

$$
\begin{equation*}
\bar{W} *_{s}\left(\underline{r}_{s}, E,-\underline{\Omega}_{a}, t\right) / \mu_{n} \tag{39a}
\end{equation*}
$$

Subroutine SCORE is shown in Fig. 3 for a fictitious problem with a surface source $\mathbf{S}_{\mathbf{s}}$. We define

$$
\begin{equation*}
J_{i}=\int G_{a}^{+}\left(\underline{r}_{s}, E, \underline{\Omega}_{a}, t_{a} ; \underline{r}_{i}, E_{i}, \underline{\Omega}_{a i}, t_{a i}\right) s_{s}\left(\underline{r}_{s}, E,-\underline{\Omega}_{a}, t_{m}-t_{a}\right) d^{2} r_{s} d E d \underline{\Omega}_{a} d t_{a}, \tag{38}
\end{equation*}
$$

where \underline{r}_{s} denotes a point on the surface, $d^{2} r_{s}$ denotes an element of area on the surface, and S_{s} is
the surface of the source to be a spherical surface of 12 -om radius and centered at $x=0, y=0$, and

SLRROUTINE SCOREIKASRI

INTEGFR, UIMENSION, CCMMCN, ANO EOUIVALENCE STATEMENTS ARE NOT SHOWN, BLT CCRRESPCNO TO THUSE OF THE MAIN PROGRAM ATMC

SCORING FOR FICTITIOUS PROBLEN WITH SURFACE SOURCE
KASR $=2$ OENCTES A SURFACE CRCSSING
JA $=$ PROBLEN SURFACE NUNGER CROSSEO
TMF $=$ TIME AT SURFACE CRCSSIAG
ERG = PSEUDC-NEUTRCN ENERGY AT SURFACE CROSSING
WT = PSEUUC-NELTRON WEIGHT AT SURFACE CRCSSING
$2 \mathrm{PI}=6.2 \varepsilon 32$
X, Y, Z, ARE ELCLIOEAN COORUINATES OF THE pSEUCO-IIEUTRON AT SURFACE CROSSING
U,V,h ARE THE OIRECTICN CF FLIGHI COSINES UF THE PSEUDU-NEUTRIN
AT SURFACE CROSSING
IF(KASR.NE 2) GOTC 25
IF(JA.NE.6) CO TO 25
IF(TME.LT.C.) GO TC 25
IF(ERU.LT.2.) GO TO 25
IF(ERI:.GT.4.) r, IC 25
UNOR $=(L * X+V * Y+W * Z) / 12$.
IF (UNUR.LT.C.) GO TC 15
TSCOK(1) $=$ TSCOR(1) + 1 T* UNCK (6.282*ERG)
GU TU 25
15 CCNTIPUE
$\operatorname{ISCUR}(2)=T \leq C L R(2)+W T /(6.2632 * E R G)$
25 R:ETURiv
ENO

Fig. 3. Subroutine SCORE for a fictitious problem with a source uniformily distributed on surface number 6 .
$z=0$. The source density for this fictitious problem is defined as

$$
\begin{aligned}
& S_{s}\left(\underline{r}_{s}, E, \underline{\Omega}, t\right)=\frac{1}{2 \pi}(\underline{\Omega} \cdot \underline{n}) \frac{1}{E}\left\{\begin{array}{l}
0<t<t_{i}, \\
2 .<E<4 ., \\
\text { for } \\
\underline{r} \text { on surface } J A=6, \text { and } \\
\underline{\Omega} \cdot \underline{n}>0
\end{array}\right\} \text {, } \\
& =\frac{1}{2 \pi}(\underline{\Omega} \cdot \underline{n})^{2} \frac{\alpha}{E}\left\{\begin{array}{l}
0<t<t_{1}, \\
2 \cdot<E<4 ., \\
\frac{r}{s} \text { on surface } J A=6, \text { and } \\
\underline{\Omega} \cdot \underline{n}<0
\end{array}\right\} \text {, }
\end{aligned}
$$

$=0$ otherwise.
Here, $\underline{\Omega}$ is defined to be a unit vector, \underline{n} is a unit vector normal to the surface in an outward direction, and all pseudoneutrons begin their life histories at t_{i}. For a pseudoneutron crossing the surface at x, y, z and with direction-of-motion coordinates, u, $\mathrm{v}, \mathrm{w}, \underline{\Omega} \cdot \underline{n}$ is given by

$$
\begin{align*}
\underline{\Omega} \cdot \underline{n} & =(\underline{i} u+\underline{j} v+\underline{k} v) \cdot(\underline{i} x+j y+\underline{k} z) / \sqrt{x^{2}+y^{2}+z^{2}} \\
& =(u x+v y+w z) / 12 \ldots \tag{41}
\end{align*}
$$

If the neutron source S_{s} is isotropic, an infinite variance may occur in the estimate of the functional because the scoring is then inversly proportional to $|\underline{\Omega} \cdot \underline{n}|$. To avoid possible infinite variance, it is suggested that for $|\underline{\Omega} \cdot \underline{n}|$ values less than some small number ε (a value for c is problem dependent, but $\varepsilon=0.1$ should be satisfactory in most applications) the scoring should be inversely proportional to $\varepsilon / 2$.

This concludes the discussion of the MCNA program except for some additional considerations in the appendixes. A special distance-to-collision sampling option is discussed in Appendix C, and some miscellaneous probability concepts used in MCNA are discussed in Appendix D. Scoring in the adjoint calculation with a point neutron source is discussed in Appendix E. In Appendix F, the treatment of a neutron source containing a delta function in time is considered.

This discussion of MCNA has assumed a coupled sampling solution. There are problems of interest where some information about the energy dependence of the neutron flux is available. An option exists in MCNA to utilize this information to numerically construct the $\bar{Q}_{\alpha}{ }^{\prime}$ s and thus, omit the sampling from
the transport equation. The numeric integration is then done in Step 2 of Fig. 1 and Steps 3 and 4 are bypassed.

The execution of an example problem with the coupled sampling method is discussed in the next section.

IV. EXAMPLE PROBLLEM

We will corment on some tests of the programming reliability of the MCNA code before discussing the example problem.

It was impossible to completely check all aspects of MCNA for errors, and so a number of integral checks have been utilized. The integral checks were made between the MCNA and MCN programs. We assume here that $M C N$ is a reliable program and so the
agreement of a number of computations with MCN and MCNA indicates the reliability of the MCNA program. Comparison of the results of two Monte Carlo programs has the disedvantage that statistical errors are involved in both answers; in the test calculations, the relative errors (standard deviation divided by the functional) are a few percent and in some cases less than 1%. We felt that the disadvantage of having statistical errors in the comparison code was more than offset by the advantage of using the same cross-section sets and interaction models.

Some of the comparisons made between the two computer program are summarized in Table I. A number of additional comparisons made on classified ${ }^{13}$ problems have revealed a few minor errors in MCNA, which have been corrected.
table I
SUMMARY OF INIEGRAL CHECKS ON THE MCNA PROGRAM

Geometrical Description
Point source of 12.2- to $15-\mathrm{MeV}$ neutrons in infinite air; a shielding benchmark problem (Ref.Il).

Near-critical sphere of 10% enriched uranium metal (Ref.12). Delta function source at $t=0$, of fission neutrons.

Epithermal neutron source in an infinite medium of hydrogen at a temperature of 1.0 eV .

Functionals Computed
Neutron fluence as a function of energy and distance from the point source.

Total number of neutron collisions in the time interval from 80 to 96 shakes (~10 to 12 neutron generations) that occur in the energy interval from 0.5 to 1.5 MeV .

Neutron flux spectrum after the pulse has thermalized; also the total integral of the flux after thermalization.

Epithermal neutron source in an infinite medium of deuterium at a temperature of 1.0 eV .

Neutron flux spectrum after the pulse has thermalized; also the total integral of the flux after thermalization
*Comparisons were made for 95% confidence limits.

Corments
Agreement was obtained within statistical errors* for neutron energies of from 0.11 to 15.0 MeV and distances from the point source out to 1275 m . Standard deviations for high neutron energies ranged from $\sim 1 \%$ near the source to 10% far from the source.

The result of the adjoint computation was 11.1 with a relative error of 9.6%, and the transport calculation yielded 12.8 with a relative error of 8.5% (Ref.12). This is a better integral check than the relative errors indicate, owing to the large number of collisions between source particle and scoring. Any small errors in the adjoint sampling or computation of weight factors would be amplified.

The adjoint calculation was performed at $0.05-, 1.0-, 3.0-$, and $10.0-\mathrm{eV}$ energy points and agreed* with a Maxwellian flux to within relative errors of about 2.9\%. The total integrals of the flux as computed with adjoint and transport Monte Carlo also agreed.* Here the relative errors in the adjoint and transport calculations were 1.4 and 0.52%, respectively.

Agreement with a Maxwellian flux to within relative errors of about 3%.

The example problem is one of a set prompted by the need of the nuclear safeguards group to develop computational simulation of some experiments. These experiments involve a small amount of ${ }^{235} \mathrm{U}$ metal surrrounded by a moderator. The delayed neutron response is measured after a pulse of neutrons is injected into the system.

This is a difficult problem to solve by a direct Monte Carlo calculation because the extraneous source is outside the system and oniy a smail fraction of the source neutrons reach the small region of ${ }^{235} \mathrm{U}$ and cause fission. However, the computation of the number of first-generation fission neutrons produced in the smail ${ }^{235} \mathrm{U}$ region is an excellent application of the adjoint approach because the histories of the pseudoneutrons begin in the small region of ${ }^{235} \mathrm{U}$. It is straightforward to subsequently compute the number of delayed neutrons reaching a detector with a direct Monte Carlo calculation by using this firstgeneration fission source of neutrons.

The example problem is described in Table II.

table II

DESCRIPIION OF THE EXAMPLE PROBLEM

Cell Descriptions (concentric spheres):

	Inner	Outer		
Cell Number	Radius (cm)	Radius (cm)	Element	Density (Atoms/barn-cm)
1	0.0	0.635	${ }^{235} \mathrm{U}$	0.0478
2	0.635	8.255	H	0.0790
			C	0.0395
3	8.255	50.5	Void	----

Extraneous Neutron Sources:

$$
\begin{aligned}
S\left(\underline{r}_{s}, E, \underline{\Omega}\right) & =\frac{1}{4 \pi} \frac{1}{(3 \mathrm{MeV})} \frac{1}{4 \pi\left|\underline{r}_{s}\right|^{2}} \text { for } 12 \mathrm{MeV}<\mathrm{E}<15 \mathrm{MeV}, \\
& =0 \text { otherwise, }
\end{aligned}
$$

where \underline{r}_{s} is any point on the outer surface of cell number 3 . The response due to a second neutron source was also computed in the adjoint calculation for illustration. This second source was
$S\left(\underline{r}_{s}, E, \underline{\Omega}\right)=\frac{1}{4 \pi} \frac{1}{6 \mathrm{MeV}} \frac{1}{4 \pi\left|\underline{r}_{s}\right|^{2}}$ for $6 \mathrm{MeV}<\mathrm{E}<12 \mathrm{MeV}$,
$=0$ otherwise.
Functional:
Number of first-generation fission neutrons produced in the ${ }^{235} U$.

The geometry is simple; i.e., there is spherical symmetry of both the extraneous source and the three cells. We may therefore concentrate on the input required for the coupled sampling without becoming involved with geometric details. Those who may be unfamiliar with the geometric capabilities of the MCN and MCNA codes are referred to Refs. 4, 5, and 6.

The sampling from the transport equation for this example problem was set up so that an estimate of the functional due to the $12-$ to $15-\mathrm{MeV}$ neutron source was obtained while the functions for sampling from the adjoint equation were computed. This then provides one check between the adjoint and transport calculations. Thus, additional adjoint calculations can be made, with smaller ${ }^{235} U$ cell radii for example, with confidence that the adjoint sampling has been set up correctly. This type of procedure has also been found advantageous for problems involving a given system response as a function of the neutron source distribution in space and energy. Adjoint problems of this type have been solved using hundreds of neutron source distributions, but a check on one of these distributions in the transport portion of the calculation is time well spent.

The neutron source in the Monte Carlo calculations was biased so that the source neutrons would always reach cell two. The neutron source is constructed in the same manner as in the MCN code. ${ }^{4-6}$ Subroutine SOURCE for selecting the initial neutron paremeters is shown in Fig. 4.

The pseudoneutron source was constructed from the built-in routines in MCNA. The initial position of the pseudoneutron was selected from a uniform distribution within the cell containing ${ }^{235}$. A uniform selection is adequate at energies such that the number of mean free paths across the cell is small. However, at energies such that the number of mean free paths is large, most of the fission neutrons are born near the outer surface. This means that one may expect to gain efficiency in the adjoint calculation by biasing the selection of the pseudoneutrons at these energies toward the outer boundary. (This type of problem often occurs near thermal energies, where the fission cross section is large.) The biasing is accomplished in the example problem by calling the subroutine ASOURC after the built-in routines have been used to select the

```
SUBROUTINE SCURCE
INTEGER, DINENSION, CCMMCN, ANO EQUIVALENCE STATEMENTS ARE NOT
SHOWN, HUT CCRRESPCNO TO THOSE OF THE MAIN PROGRAM ATMC
BIASEO NEUTRCN SOURCE TO STRIKE INNER SPHERE OF 16.51 CM OIAMETER
SRC(1)=R3, SRC(2)=SQRT(1 - R2**2/R3**2)
SRC(3)=JA, SRC(4)=IA,SRC(5),SRC(6) ARE LOWER ENERGY ANO EPNERGY
SOURCT. WIOIH
X=-SRC(1)+.001 s Y=0. $ Z=0. s TME=0. $ OEL=0.
RN=FRid(R)
U=SRC(2) + (1.-SRC(2))*RN & V=0. s W=SQRT(1.-U**2)
ERG=SRC(5) + FRN(R)*SRC(6)
JA=SRC(3) I A=SRC(4)
hT=(1.-SRC(2))/2.
RETURN
ENO
```

C
C
C
C
C
C
C
C
C

Fig. 4. Subroutine SOURCE to select the initial neutron paremeters.
initial parameters (the $6^{\text {th }}$ data entry of cards $A S C=1$). In ASOURC, the product of the macroscopic fission cross section and the radius of the uranium region is computed. If this number is less than four, a return is made to the main program and the paremeters selected by the built-in routines are accepted. If the number is greater than four, the initial distance r of the pseudoneutron from the center of the ${ }^{235} U$ is selected from the density function

$$
\begin{equation*}
g(r)=e^{+\Sigma_{f} r} / \int_{0}^{r} e^{+\Sigma_{f^{\prime}} r^{\prime}} d r^{\prime} \tag{42}
\end{equation*}
$$

where Σ_{f} is the macroscopic fission cross section
and r_{u} is the radius of the uranium region. The radius, r, is obtained with a random number $\%$ as

$$
\begin{equation*}
r=r_{u}+\ln \left[1-s\left(1-e^{-\Sigma_{f} r_{u}}\right)\right] / \Sigma_{f} \tag{43}
\end{equation*}
$$

and the weight of pseudonuetron, as obtained by a uniform sampling, is multiplied by the ratio

$$
\begin{equation*}
\frac{4 \pi r^{2}}{\frac{4}{3} \pi r_{u}^{3} g(r)}=\frac{3 r^{2}}{r_{u}^{3}} \frac{\left(1-e^{-\Sigma_{f} r_{u}}\right)}{\Sigma_{f} e^{-\Sigma_{f}\left(r_{u}-r\right)}} \tag{44}
\end{equation*}
$$

The subroutine ASOURC for this example problem is given in Fig. 5. This subroutine is written for the more general case when the inner radius may not be zero. Here $T 1$ is the inner radius, $T I$ is the

```
SLBROUTINE ASOURC(APSC,T1,T11,XO,YO,LO)
C INTÉGLR, OINENSION, CCNNC.I, AND EGUIVALENCE STATEMENTS ARE NUT
    SHOWN, BLT CCRRESPCNO TO THOSE OF THE MAIN PROT,PAM ATMC
    AOJUST THE SFATIAL POSITIINN CF THE SOURCE PSEUOO-NEUTRON WHEN
    THE FISSION CROSS SECTICN APSC IS IARGE
    T1 = INNER RADIUS
    TLI = OUTER RAUIUS
    APSC=APSC*RHC(IA)/2.43
    IF(APSC*(TIL-T1):LT. 4.) RETURN
    PSC. =APSC/(1.-EXP(-APSC*(T11-T1)))
    RAR=T11+ALCG(1.-APSC*FPN(R)/PSC)/APSC
    hT=WT*3.*RAC**2/((111**3-T1**3)*PSC*EXP(-APSC*(T11-RAO)))
    X=RAO*U+XO & Y=RAO*V+YL & Z=RAO*W+ZO
C SELECT NEW CIRECTICN ISOTROPICALIY
    U=1.-2.*FRN(R)
20931 TP(1)=1.-2.*FRN(R) & TP(2)=1.-2.*FRN(R)&TP(3)=TP(1)**2+TP(2)**2
    IF(TP(3).GT.1.) GU TO 20931 * TP(4)=SQRT((1.-U**2)/TP(3))
    V=TP(1)*TP(4) & W=TP(2)*TP(4)
    RETURN
    END
```

Fig. 5. Subroutine ASOARC to. alter the initial pseudoneutron position for large fission cross sections.
outer radius, APSC is v times the microscopic fission cross section, and RHO is the density in atcms/ barn-cm of ${ }^{235} \mathrm{U}$; XD, YD, and 2 D are zero. in this problem. The last few cards select the direction of flight from an isotropic distribution.

The last routine required is subroutine SCORE for tabulating the functionals, the number of firstgeneration fission neutrpns produced: Subroutine SCORE is shown in Fig. 6. In this case, two functionals are computed for illustration. The functional denoted by $J C=2$ is the main functional of interest, i.e., the number of first-generation neutrons produced by a $12-$ to $15-\mathrm{MeV}$ extraneous neutron source of unit strength. The functional denoted by $J C=1$ is the number of first-generation fission neutrons produced by a 6- to $12-\mathrm{MeV}$ extraneous neutron source of unit strength.

The appropriate score for these two functionals, each time a pseudoneutron crosses the outer surface, is obtained from Eq. (39a) as
$\frac{\bar{W}}{4 \pi} \frac{1}{(6 \mathrm{MeV})} \frac{1}{4 \pi(30.5 \mathrm{~cm})^{2}} \frac{1}{\mu_{n}}$, for $6 \mathrm{MeV}<\mathrm{E}<12 \mathrm{MeV}$,
$\frac{\bar{W}}{4 \pi} \frac{1}{3 \mathrm{MeV}} \frac{1}{4 \pi(30.5 \mathrm{~cm})^{2}} \frac{1}{\mu_{n}}$, for $12 \mathrm{MeV}<\mathrm{E}<15 \mathrm{MeV}$.

In subroutine SCORE of Fig. 6, the variable $\operatorname{AJCON}(1,1)$
is $1 / 6$ and the variable $\operatorname{AJCON}(2,1)$ is $1 / 3$; these variables are a portion of the input data and will be mentioned later. The $i /(4 \pi, 30.5 \mathrm{~cm})^{2}$ is lumped into the initial pseudoneutron weight because it is simply a constant. The variable UPRTM in Fig. 6 is the cosine of the angle, μ_{n}, between the direction of motion of the pseudoneutron and a vector normal to the surface. μ_{n} will never be close to zero, owing to the geometry of this problem, so the possibility of an infinite variance, as discussed in Sec. III for an isotropic source, will not occur. The control cards and card input data for the CDC 6600 run are as shown in Fig. 7. The first few cards are control cards. Before discussing the input data for the coupled sampling, we will consider the magnetic tapes required to run MCNA.

Two magnetic tapes, CODETP and RUNIP, are used. CODEIP contains the following five files.

File 1 -- The symbolic form of the MCNA program in UPDATE format.

File 2 -- Binary deck of ATMC (see Fig. 1, steps 3 and 5) and related subroutines.

File 3 -- Binary deck of ANUI (see Fig. 1, steps 2 and 4) and related subroutines.
File 4 -- Binary deck of AITMC (see Fig. 1, step 1).
File 5 -- The MCNA cross-section library.
The general procedure for the use of CODETP is:

1. Using an old CODETP, make any necessary changes in Subroutines SOURCE, ASOURC, and SCORE and generate a new CODEIP to include these changes.

SLRRUUTINE SCORE (KASR)

טטטטטצ

```
INTEGLR, OINENSION, CCNNCH, ANO FQUIVALENCE STATEMENTS ARE NUT
```

 SHOWN, BUT CCRIESPCND TO THOSE DF. THE MAIPI PRUGRAM ATMC
 COMPUTE CUNTRIEUTICA CF FSEUCG-NEUTRON TC FIRST GENERATION
 NEUTRUNS
    ```
IF(KASR.NE.2) GO TC 29
IF(ERG.LT.E.) GD TC 29
IF(ERG.GT.15.) 60 TC 29
IF(JA.NE.3) GO rO 29
LPRIM = (L*X + V*Y + n*Z.)/30.48
JC=1
IF(ERG.GT.12.) JC=2
hCON=WT*AJCCN(JC,1)/UPRIN
TSC(JR (JC) = TSCOR(JC ) + WCON
29 KETURil
END
```

Fig. 6. Subroutine SCORE to compute the contribution of the pseudoneutron history to the first-generation source of fission neutrons.

```
ASSIGN MT,CUOEIP(NLB,LG918LOO,SHH)
ASSIGN MT,RUNTP(NLU,LI 939LOO,SHK)
COPYBF (CODETP,OI SCARO)
CUPYBF(COOETP,03)
REWINO(O3)
COPYBF(03,RUNTP)
COPYBF(COOETP,ANLI)
COPYBF(CNOEIP,AITMC)
AITMC.
COPYBF(RUNTP,OI SCARO)
RFL,277000.
ANUI.
COPYBF(RUNTP,ATMC)
RFL,320000.
ATMC.
COPYBF(RUNTP,DI SCARO)
RFL,2770\O.
ANUI .
7
TEST CASE FOR GENERATING FIRST GENERATION FISSION SOURCE
        1 41 .0478 -1,2
        2 42 .1185 -2,3 1,1
        0 -3,4 2,2
        O 3,3
        1 Sil . 635
        SO 8.255
        SO 30.48
        Y6 0 2R C
        IO 1. 1. 1. 0.
        00 .5E-%. 0. 15.
        RO 1.EB
        P.1 O. 2.5E-8 0. 0.
        M41 923 1.
    M42 11 .666667 3006 . 333333
7
TYP -1,1,1
ASC 3,0,2,1,1,1
ASP U.,0.,0.,O.,C.,O.,C.,U.,C.,O.,U.,O.
ASI -1,2,17,.91E7-4,0.,1.,1.
ST 1 0. 2.5-5 1.25-4 2. .--8 3.75-8 6.25-8 1.-7 1.5-7
        2.-7 3.-7 5.-7 5.0.06-0 2.26-5 .000167.00123 .0091ic
        .0248 .0674 .1と3 .498 .821 1.35 2.23 2.47
        3.h8 4.72 6.C7 7.79 1C. 12. 13.5 15.
```



```
        .715 .727 .736 . . 52 .777 .8 .852 1.
Af }
MN 1 0,0,0,0,0,1,1,1,1,1
AE 0 31,15.
AE 1 2. .- . .041 .959 9. 5.
AE 2 1...5-3 .041 . 959 9. 5.
AE 3 2.5-8 .041.959 9. 5.
AE 4, 3.75-r 
AF llllll
AE 8 2.-7 .C41 .959 9. 5.
AE 9 3.-7 .041 . 959 9. 5. 
AE 10 5.-7 
AE 12 2.26-5 .041.959 9. 5.
```

Fig. 7. Control cards and input data for the example problem.
(cont.)

| AL 13 | - $\mathrm{COCl}, 7$ | . 041 | . 959 | 9. | 5. | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| AE 14 | - DC123 | .041. | . 959 | 9. | 5. | | | | | |
| AE 15 | .0n912 | .041. | . 959 | 9. | 5. | | | | | |
| AE 16 | . 0248 | .041 | . 959 | 9. | 5. | | | | | |
| AE 17 | . 06774 | .476. | . 5 | 1.5 | 3.5 | 6. 3 . | | | | |
| AE 16 | .183 | .433 . | - | 1.5 | 3.5 | 6. 3 . | | | | |
| AE 19 | . 498 | . 317 | - | 1.5 | 3.5 | 3. 3. | | | | |
| AE 20 | . 821 | . $5 C 21$ | 1.5 | 2.5 | 4. | 3.3 . | | | | |
| AE 21 | 1.35 | . 68 | 1. | 2.5 | 4. | 3. 3. | | | | |
| AE 22 | 2.23 | 1.152 | 2.5 | 4. | 3. | 3. | | | | |
| AE 23 | 2.37 | 1.272 | 2.5 | 3.5 | 2.5 | 3. | | | | |
| At 24 | 3.48 | 1.132 | 2. | 3.5 | 2.5 | 3. | | | | |
| Aこ 25 | 4.72 | 1.32 | 3. | 3.5 | 2. | 1.5 | | | | |
| AF. 26 | C.07 | 2.2E | 2. 5 | 2.5 | 1.5 | 1.5 | | | | |
| AL 27 | 7.79 | 1.93 | 2. | 2. | 2 . | 1. | | | | |
| AE 2H | 10. | 2. 21 | 2. | 2. | 1. | | | | | |
| $A E: 9$ | 12. | 1.5 | 1.5 | 1. | 1. | | | | | |
| AL 30 | 13.5 | 1. | 1. | . 5 | . 5 | | | | | |
| AE 31 | 15. | 1. | . 5 | | | | | | | |
| SCC | $0,0,-1$, | | | | | | | | | ENO OATA |
| 7 | | : | | | | | | | | |
| 1. | + +21. | -C8 | 810 | | | 10000 | 500000. | 2 | 500000 | |
| 7 | | | | | | | | | | |
| IYP | 2,1,3 | | | | | | | | | |
| 7 | | | | | | | | | | +++++ |

```
ASSIG:N MT,C INFTP(NLB,LGY1&LOO,SHB)
ASSIGN MT,RUNITP(NLH,LI939LOO,SHF:)
r.JPYBF(CIDDETP,DISCAPC,2)
CJPYBF(CIOETP,ANLI)
COPYBF(PI,VTP,DISCARII)
AMLII.
COPVHF(RUNTP,ATNC)
KFL,32CCOG.
ATMC.
7
TYP 4,1,4
AF 1.166666666t\inE67
AF 2 . 3333.3333333333
ALE 1 1.0-6 6. S
```


Fig. 7 (continued)

The necessary control cards for doing this with the UPDATE program are shown in Fig. 8
2. Write the second file of the new CODETP onto the first file of RUNTP and use the other files as needed. This is illustrated in the control cards of Fig. 7.
3. Skip to the cross-section library before running AIMMC.
The first file of RUNIP contains the program ATMC. This has been found convenient, and generally saves some tape handling. However, it does require that one skip past this record before execution of each program. The subsequent records of RUNTP, on the
second file, are generated during the problem.
These records are:

Record Number

1

2
3-n
$n+1$
 Occasionally there will be another tape dump here (usually signified by a 3 or 4 in the first entry of card TYP, as described in Appendix B).
$n+2$ to $m \quad$ Tape dumps during Step 5 of Fig. 1.

ASSIGN MT,OLDPL(NLE,LH247LOC,SHB)
ASSIGN MT, CIODETP (NLB,LG,918LOO, SHB)
LPDATE (N=COUETP)

RiwsNo(LGO)
3E゙WINO(OLOPL)
REWINO (CTUETP)
CUPYBF(OLDPL, UISCARO)
CUPYBF (IILDPL, NEWI)
CIPYMFF (OLDPL,NEW2)
CUPYBF (OLDPL,NFW3)
CUPYBF(OLIPL,NEW4)
RewInN(Nenl)
REWIND (NFW2)
REWINO (N:n3)
REh1ND(NFM4)
CIIPYOF (CTODETP,OISCARD)
CIJPYBR (NFW1, DISCARC, 7)
CIPYBF (LGO,NEh1)
REW5:NO (NEW1)
CUPYOF (NEW1, CDCETF)
COPYOF (MFh2,CODETP)
CIDPYGF(Ifins, CODETA)
C.JPYBF (NF Y.4,CODETP)

7
C. LUPGATE SCRRECTIDNS GC HERT

Fig. 8. Control cards required to utilize the UPDATE program to alter subroutine SOURCE, ASOURC, or SCORE.

After some file manipulation, the program AITMC is called by the ninth control card of Fig. 7. The input data, between the first and second 7-8-9 cards, for AIIMC are identical to that for the initiation of the MCN program and so are not discussed here. The AIIMC program initiates the data, selects the pertinent cross sections from the fifth file of CODETP, and writes the blank cormon block onto the first record of the second file of RUNTP.

The program ANUI is called by the 12th control card of Fig. 7 (the MCNA program now uses ECS so that the RFL memory allocation is normally less than 156 K) and initiates the input data for the coupled sampling between the second and third 7-8-9 cards; see Appendix B for a description of the input data. The following comments on the input data for this example problem may be useful:

1. The second data entry on card TYP is 1 , indicating that only the first generation is considered. For most neutron multiplication problems, this entry would be 0 .
2. The sixth data entry of card ASC is 1 , so the main program, ATMC, calls subroutine ASOURC after generating the initial pseudoneutron source parameters from the built-in routines.
3. The pseudoneutron energy selection table,

ST1, was obtained from previous calculations on this type of problem. In many problems, it is worthwhile to change this table after the transport portion of the calculation because useful information is often obtained there.
4. The initial pseudoneutron weight is computed from Eq. (38). Here $\overline{\mathrm{B}}$ in the cell containing ${ }^{235} \mathrm{U}$ is given by

$$
\begin{equation*}
\overline{\mathrm{g}}(\underline{r}, E, \underline{\Omega})=\frac{1}{\frac{4}{3} \pi r_{u}^{3} 4 \pi} g_{E}(E), \tag{47}
\end{equation*}
$$

where $g_{E}(E)$ is the energy spectrum as input on card STl. The code automatically multiplies the initial weight constant, input as the fourth data entry on card ASI, by $v \Sigma_{f} / g_{E}(E)$. The initial weight constant for the fourth data entry is given by
$\frac{\frac{4}{3} \pi r^{3} 4 \pi}{(4 \pi 30.5 \mathrm{~cm})^{2}}=\frac{0.635^{3} \mathrm{~cm}}{3 \times 30.5^{2}}=0.9187 \times 10^{-4} \mathrm{~cm}$,
$(4 \pi 30.5 \mathrm{~cm}) \quad 3 \times 30.5$
where the factor $1 /(4 \pi 30.5 \mathrm{~cm})^{2}$ has been included. 5. The floating-point number at which the pseudoneutron weight is split, as given by the sixth data entry on card ASI, provides an opportunity for splitting when large weights occur. It should ordinarily be set large enough so that splitting occurs infrequently, one split per hundred source pseudoneutrons, for example.
6. A hydrogen transfer matrix is used in this problem because of the large amount of leakage, but this is usually unnecessary.
7. Six functionals are designated on the $A F$ card because the transport portion of the calculation was altered slightiy to compute the number of first-generation fission neutrons produced. Thus, a check can be made between the adjoint and transport calculations for one geometric configuration.
8. The adjoint calculations usually tend to be insensitive to the energy mesh utilized on the AE card. The infinite number of possibilities makes this very difficult to optimize.

The program ATMC is called by the $15^{\text {th }}$ control card of Fig. 7 to begin the sampling from the transport equation. The program ANUI is called again by the $18^{\text {th }}$ control card to normalize the sampling functions. Additional input data are not required at this stage, so only a TYP card is needed. However, after the normalization, the program ANUI is called again (note that the last tane dump from the
previous calculation is used) and the number of functionals is also changed from six to two with the proper functional constants inserted. The special leakage option is also introduced here with the ALE card. Note that we could have made these changes in the previous step, but this illustrates the use of
tape dumps at any point in the calculation.
The program ATMC is now called again for the final sampling from the adjoint equation. The printed output of the adjoint calculation is given in Fig. 9. The number of first-generation fission neutrons of $0.742 \times 10^{-4}(\pm 0.078)$, as computed by

TEST CASE FOR GENERATING FIRST-GFNERAIION FISSION SOURCE

| | | | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| SOURCE NO. | TTME CUTOFF | WEIGHP CUTOFF | RUN TTME | D.P. CYCLE | DUMP CYCLE | DUMP NO. | CUIOFF CYCLE |
| 7 | $-1.0000 E+08$ | $1.0000 E-15$ | $5.2000 \mathrm{E}+\infty$ | 10000 | 500000 | 5 | 500000 |

TIEST CASE FOR GENERATING FIRST-GENERATION FISSION SOURCE
TIME $=5.003$ MINUTES

| NUMBER OF | TOTAL | RANDOM | TOTAL | TOTAL | COLTISIONS | TRACKS | NEUTRONS |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| NEUTRONS | NURBER OF | NUMBERS | WEIGFT | ENERGY | PER NEUTRON | PER NEUTRON | PROCESSED |
| STARTED | COLUISIONS | GENERATED | STARTED | STARIED | STARIED | STARTED | PER MINUTE |
| 21450 | 97290 | 917428 | 8.1714E+00 | 7.8982E+04 | 4.5357E+00 | $1.0001 \mathrm{E}+0$ | $4.2878 \mathrm{E}+03$ |
| TOTAL | LOSS TO | LOSS T0 | LOSS TO | LOSS | LOSS | TOTAL | |
| TRACKS | ENERGY | TIME | WEIGHT | T0 | T0 | TRACKS | |
| STARIED | CUTOFF | CUTOFF | CUIOFF | ESCAPE | SPLITITNG | LOST | |
| 21452 | 2105 | 0 | 312 | 10984 | 8051 | 21452 | |
| WEIGHT | LOSS TO | LOSS TO | LOSS TO | LOSS | LOSS | WEIGHIT | |
| STARTIED | ENERGY | TTME | WEIGHT | T0 | T0 | LOST | |
| PER NEUTRON | CUTOFF | CUTOFF | CUTOFF | ESCAPE | CAPTURE | PER NEUITRON | |
| $3.8095 \mathrm{E}-04$ | 2.8489E-05 | 0. | 0. | 1.7732E-03 | -1.4766E-03 | 3.2506E-04 | |
| ENERGY | LOSS TO | LOSS TO | LOSS TO | LOSS | LOSS | | |
| STARIED | ENERGY | TIME | WEIGHT | T0 | T0 | | |
| PER NEUTIRON | CUTOFF | CUTOFF | CUTOFF | ESCAPE | CAPTURE | | |
| $3.6821 E+00$ | 4.7522E-04 | 0. | 0. | 1.0364E-02 | 6.6719-03 | | |

TOTAL NUMBER OF EVENTS

| ELASTIC | FISSION | INEL. C.M. | INEL. D.M.L. | INEL. D. M. C. | | |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: |
| 85585 | 0 | 2170 | 1484 | 0 | | 30886 |

FUNCIIONAL ESTIMMATES OBTAINED BY SAMPLING FROM THE ADJOINT EQUATION

| FUNCIIONAL | FUNCIIONAL | RELATIVE | VARIANCE |
| :--- | :--- | :--- | :--- |
| FIMBERR | ESTIMATE | ERROR | REITABIIITY |
| | | | |
| 1 | $.87540 \mathrm{E}-04$ | $.11933 \mathrm{E}+00$ | $.39626 \mathrm{E}+00$ |
| 2 | $.74244 \mathrm{E}-04$ | $.77714 \mathrm{E}-01$ | $.52021 \mathrm{E}+00$ |

TAPE DUMP NO. 6
$N P S=21450$

Fig. 9. Printed output of the adjoint portion of the calculation for the example problem.
the adjoint calculation, compares favorably to the transport result of $0.854 \times 10^{-4}(\pm 0.12)$. Here the errors quoted are relative errors (standard deviation divided by the functionals). These relative errors are large owing to the importance of leakage in this problem. The relative error of the functional due to the 12 - to $15-\mathrm{MeV}$ source could be reduced by a factor of ~ 0.8 in the adjoint calculation by extending the energy range to 12 MeV for samoling so that leakage would not occur; i.e., the third data entry of card ALE would be set to 12 . instead of 6 . This was not done here to illustrate the computation of the two functionals. An alternate approach for this example problem is to alter subroutine SCORE to tabulate the functionals oniy
when KASR is equal to 4, and to multiply the scoring by the leakage probability ANL. Then, with the third data entry of card ALE set to 15., both functionals could be tabulated and the leakage treated adequately.

For the nuclear safeguard problems, the program AMMC was altered so that different radii could be input for the ${ }^{235} \mathrm{U}$ cell and the moderator cell. A parameter study was then made for different radii by sampling from the adjoint equation and using the sampling scheme constructed in the one transport calculation. Of course, the adjoint solution is not limited to this simple geometry, which was an incentive for using the Monte Carlo method.

ACKNOWLEDGMENTS

I extend my appreciation to N. J. McCormick, professor in the Department of Nuclear Engineering at the University of Washington, for his assistance in the initial development of the coupled sampling
method and to E. D. Cashwel工, LASL Group T-8, for many interesting and helpful discussions. I also thank Clarice Cox, LASL Group T-12, for her assistance in some of the computer programming.

APPENDIX A
DENSITY FUNCTIONS AND WEIGHI FACTORS FOR SAMPLING FROM THE ADJOINT EQUATION

The computation of the $\bar{Q}_{\alpha}{ }^{\prime}$'s and their subsequent use in the sampling from the adjoint equation were discussed in Sec. III. The corresponding \vec{f}_{α} density functions are discussed here, and the pseudoneutron weight following each type of event α is derived. The four α events are considered in the same sequence as in sec. III.

1. Elastic Scattering with an Isotope

a. Epithermal Elastic Scattering. A superscript i denotes that the elastic scattering event is with isotope i. Σ_{1}^{i} is the macroscopic elastic scattering cross section of isotope $1, C_{1}^{1}$ is the collision ker nel, and \bar{f}_{l}^{i} is the corresponding density function to sample the energy and direction of motion. It is convenient (assuming isotropic media) to expand each density function into the product of a marginal density function for the laboratory scattering angle μ_{L} and a conditional density function (a Dirac delta function for the energy). The relevant expansions are
$C_{1}^{i}\left(E^{\prime},-\Omega_{a}^{\prime} ; \underline{r}, E,-\underline{\Omega}_{a}\right)$

$$
\begin{aligned}
& =\frac{1}{2 \pi} D_{1}^{i}\left(\mu_{L} ; \underline{r}, E\right)_{L} \delta\left\{E^{\prime}-\frac{E\left[(1-\bar{\alpha}) \mu_{c m}+1+\bar{\alpha}\right]}{2}\right\}_{E^{\prime}}, \text { (A.1) } \\
& \bar{f}_{1}^{i}\left(E, \underline{\Omega}_{a} ; \underline{r}, E^{\prime}, \underline{\Omega}_{a}^{\prime}\right) \\
& \left.=\frac{1}{2 \pi} h_{l}^{i}\left(\mu_{L} ; \underline{r}, E^{\prime}\right)_{L} \delta\left\{E-\frac{2 E^{\prime}}{\left[(1-\bar{\alpha}) \mu_{c m}+1+\bar{\alpha}\right]}\right\}_{E}, \text { (A. } 2\right)
\end{aligned}
$$

where

$$
\begin{equation*}
\bar{\alpha}=\left(\frac{A-1}{A+1}\right)^{2} \tag{A.3}
\end{equation*}
$$

μ_{cm} is the scattering angle in the center-of-mass system, and the subscripts E^{\prime} and E on the delta functions serve as a reminder that they are normal-
ized as

$$
\begin{align*}
& \int \delta\left\{E^{\prime}-\frac{E\left[(1-\bar{\alpha}) \mu_{\mathrm{cm}}+1+\bar{\alpha}\right]}{2}\right\}_{E^{\prime}} \mathrm{d} E^{\prime}=1 \tag{A.4}\\
& \int \delta\left\{E-\frac{2 E^{\prime}}{\left[(1-\bar{\alpha}) \mu_{\mathrm{cm}}+1+\bar{\alpha}\right]}\right\}_{E} \mathrm{dE}=1 \tag{A.5}
\end{align*}
$$

A transformation to the center-of-mass system is useful as
$D_{1}^{i}\left(\mu_{c m} ; \underline{r}, E\right)_{c m}=D_{l}^{i}\left(\mu_{L} ; \underline{r}, E\right)_{L} \frac{\partial \mu_{L}}{\partial \mu_{c m}}$,
$h_{l}^{i}\left(\mu_{c m} ; \underline{r}, E\right)_{c m}=h_{l}^{i}\left(\mu_{L} ; \underline{r}, E^{\prime}\right)_{L} \frac{\partial \mu_{L}}{\partial \mu_{c m}}$,
where the subscripts $c m$ and L on D_{l}^{i} and h_{1}^{i} denote density functions in the center-of-mass and laboratory systems, respectively. The density function h_{l}^{1} of Eq. (A.7) may now be specified, and in MCNA it is chosen to be
$h_{l}^{i}\left(\mu_{c m} ; \underline{r}, E^{\prime}\right)_{c m}=D_{1}^{i}\left[\mu_{c m} ; \underline{r}, \frac{E^{\prime}}{2}\left(1+\frac{1}{\alpha}\right)\right]_{c m}$.
This density function is easy to sample and has some other useful properties. It is the exact zero-variance density function in regions of phase space where the neutron flux is isatropic, $\varphi(\underline{r}, E) \Sigma_{q}^{i}(\underline{r}, E)$ is inversely proportional to E, and $D_{1}^{i}\left(\mu_{\mathrm{cm}} ; \underline{r}, E\right)_{\mathrm{cm}}$ does not change for $E^{\prime} \leq E \leq E^{\prime} / \bar{\alpha}$. Although these conditions are seldom met exactly, this approximation is expected to be adequate for most problems.

After the center-of-mass scattering angle μ_{cm} is selected and the energy E is computed, the pseudoneutron weight is obtained from Eqs. (24), (A.1), (A.2), (A.6), (A.7), and (A.8) as

$$
\begin{aligned}
\bar{W} & =\frac{\bar{W}^{\prime} C_{1}^{i}\left(E^{\prime},-\underline{\Omega}_{a}^{\prime} ; \underline{r}, E,-\underline{\Omega}_{a}\right) \Sigma_{1}^{i}(\underline{r}, E)}{\Sigma_{t}\left(\underline{r}, E^{\prime}\right) \bar{Q}_{1}(j, k, i) \Psi_{1}^{i}\left(E, \underline{\Omega}_{a} ; \underline{r}, E^{\prime}, \underline{\Omega}_{a}^{\prime}\right)} \\
& =\frac{\bar{W}^{\prime} \Sigma_{1}^{i}(\underline{r}, E) D\left(\mu_{c m} ; \underline{r}, E\right)}{c m} \\
\Sigma_{t}\left(\underline{r}, E^{\prime}\right) \bar{Q}_{1}(j, k, i) D\left[\mu_{c m} ; \underline{r}, \frac{E^{\prime}}{2}\left(1+\frac{1}{\alpha}\right)\right] & \frac{E}{E^{\prime}},
\end{aligned}
$$

where the factor E / E^{\prime} arises owing to the ratio of the delta functions,
$\frac{\delta\left\{E^{\prime}-\frac{E\left[(1-\bar{\alpha}) \mu_{c m}+1+\bar{\alpha}\right]}{2}\right\}_{E^{\prime}}}{\delta\left\{E-\frac{\partial E}{\left[(1-\bar{\alpha}) \mu_{c m}+1+\bar{\alpha}\right]}\right\}_{E}}=\frac{E}{E^{\prime}}$.
A special option for hydrogen is available for choosing a density function other than $h_{1}^{i}\left(\mu_{c m} ; \underline{r}, E\right) c m$ of Eq. (A.8). With this option, the sampling from the transport equation is used to compute the number
of neutrons in energy group γ that suffer a scattering collision with hydrogen in cell k and are transferred to energy group j. In the subsequent sampling from the adjoint equation, each time a pseudoneutron suffers a collision with hydrogen in energy group f and cell k, the postcollision energy group Y is selected with a probability proportional to the number of neutrons that scattered with hydrogen and were transferred from γ to j. The pseudoneutron energy E within group γ is selected from a density function proportional to $1 / E^{2}$ and the pseudoneutron weight computed as
$\bar{W}=\frac{\bar{W}^{\prime} \Sigma_{1}^{i}(\underline{r}, E) D_{1}^{i}\left(\mu_{c m} ; \underline{r}, E\right)_{c m}}{\Sigma_{t}\left(r, E^{\prime}\right) \bar{Q}_{1}(j, k, i) B(j, k, Y)}\left[\frac{1}{\left(E_{L}\right)_{Y}} \cdot \frac{1}{\left(E_{U}\right)_{Y}}\right] 2 E$,
where $\beta(j, k, \gamma)$ is the probability of selecting energy group $\gamma,\left(E_{L}\right)_{\gamma}$ is the lower boundary of group γ, and ($\left.E_{u}\right)_{\gamma}$ is the upper boundary of group γ. b. Thermal Elastic Scattering. The MCNA code uses the same simple scattering models as the MCN code for energies below a thermal upper bound designated by the quantity (EBR) in the code; i.e., the laboratory angle is selected isotropically and the energy remains unchanged for neutron collisions with nuclei of mass A > 2, and the free-gas model is used for hydrogen and deuterium.

The free-gas model is used in the MCNA code by sampling from the neutron transport equation to construct a thermal transfer matrix for each cell containing hydrogen or deuterium (two transfer matrices for a cell containing both). Let isotope i be either hydrogen or deuterium and assumed to be in region k and let the transfer matrix be $T\left(j, j^{\prime}\right)_{i k}$. Then the matrix $T\left(j, j^{\prime}\right)_{i k}$ is computed in the sempling from the transport equation as

Number of neutrons suffering a collision with isotope i in energy group j^{\prime} and cell k that emerge from the collision in $T\left(j, j^{\prime}\right)_{i k}=\frac{\text { thermal energy group } j \text {. }}{\text { Sum of the numerator over all } j^{\prime}}$.

Ten thermal groups* must be used in MCNA, so j assumes values from 1 to 10 and f^{\prime} from 1 to 11 (in FSee input card AE Q of Appendix B for the thermal group boundaries.
this discussion of thermal scattering, all epithermal energies are denoted by energy group 11). In the subsequent sampling from the adjoint equation, the new energy group j^{\prime} of the pseudoneutron, after suffering a collision with isotope i in thermal energy group j, is randomly selected from the probabilities

$$
\begin{equation*}
T\left(j, j^{\prime}\right)_{i k} \quad, \quad 1 \leq j^{\prime} \leq 11 \tag{A.13}
\end{equation*}
$$

The final energy E of the pseudoneutron within group $j^{\prime}\left(j^{\prime} \neq 11\right)$ is then selected with density function
from a density function inversely proportional to E^{2}.

Eqs. (A.12) to (A.15) are derived for the freegas model with $\mathrm{A} \leq 2$. We will now consider $\mathrm{A}>2$. Given that $A>2$ and that the precollision energy of the pseudoneutron is less than ($E B R$) $* \bar{\alpha}$, the pseudoneutron energy remains unchanged at the elastic collision, the new direction of flight is selected from an isotropic distribution, and the pseudoneutron weight is obtained as

where the user may specify $\Phi(E)_{j}$, within group j^{\prime} to be either proportional to a Maxwellian flux $E e^{-E / T}$ or inversely proportional to E. In Eq. (A.14), $\Sigma_{1}^{i}(\underline{r}, E) C_{1}^{i}\left(E^{\prime},-\underline{\Omega}_{a}^{\prime} ; \underline{r}, E,-\underline{\Omega}_{a}\right)$ is the free-gas scattering kernel; see Eq. (2.19) of Williams. ${ }^{14}$ This scattering kernel is a function of the temperature T in the medium, but that dependence has been suppressed here for compact notation. An option is also available in MCNA to allow the temperature T to change with time, as in the MCN code.

The pseudoneutron weight after the collision with isotope i (hydrogen or deuterium) is obtained from Eqs. (24) and (A.14) as

$$
\begin{equation*}
\bar{W}=\frac{\bar{W} \Sigma_{l}^{i}\left(\underline{r}, E^{\prime}\right)}{\Sigma_{t}\left(\underline{r}, E^{\prime}\right) \bar{Q}_{1}(j, k, i)} \tag{A.16}
\end{equation*}
$$

If the precollision energy of the pseudoneutron is less than (EBR) but greater than (EBP) $\bar{\alpha}$, with probability

$$
\begin{equation*}
\gamma=\frac{\frac{1}{E^{\prime}}-\frac{1}{(E B R)}}{\frac{1}{E^{\prime}}-\frac{\bar{\alpha}}{E^{\prime}}} \tag{A.17}
\end{equation*}
$$

the energy does not change at the elastic collision, the new direction is sampled isotropically in the

$$
\begin{align*}
& \bar{W}=\frac{\bar{W}^{\prime} \Sigma_{1}^{i}(\underline{r}, E) C_{1}^{i}\left(E^{\prime},-\underline{\Omega}_{a}^{\prime} ; \underline{r}, E,-\underline{\Omega}_{a}\right)}{\Sigma_{t}\left(\underline{r}, E^{\prime}\right) \bar{Q}_{1}(j, k, i) T\left(j, j^{\prime}\right)_{i k} b_{l}^{i}\left(E, \underline{\Omega}_{a} ; \underline{r}, E, \underline{\Omega}_{a}^{\prime}\right)} \tag{A.15}
\end{align*}
$$

If the pseudoneutron scatters to an epithermal en$\operatorname{ergy}\left(j^{\prime}=11\right)$, the density function C_{i} is taken from the tabulated values in the cross-section library and the energy of the pseudoneutron is selected
laboratory system, and the weight is given by the right-hand side of Eq. (A.16) except that the probability γ is inserted in the denominator. With probability ($1-\gamma$), the center-of-mass scattering
angle is selected from a uniform distribution between the limits

$$
-1 \text { and } \frac{2 E^{\prime}}{(1-\bar{\alpha})(E B R)}-\frac{(1+\bar{\alpha})}{(1-\bar{\alpha})},
$$

the energy E of the pseudoneutron after the collision is

$$
\begin{equation*}
E=\frac{2 E^{\prime}}{(1-\bar{\alpha}) \mu_{c m}+1+\bar{\alpha}}, \tag{A.18}
\end{equation*}
$$

'and the weight is obtained as

$$
\begin{equation*}
\bar{W}=\frac{\overline{W^{\prime}} \Sigma_{1}^{i}(\underline{r}, E) D\left(\mu_{c m} ; \underline{r}, E\right)}{\Sigma_{t}\left(\underline{r}, E^{\prime}\right) \vec{Q}_{1}(j, k, i)} \frac{2 E}{E^{\prime}} \tag{A.19}
\end{equation*}
$$

2. Inclastic Scattering with a Continuum Density

 FunctionThe random selection of a $\bar{Q}_{2}(j, k, \beta)$ probability restricts the final pseudoneutron energy to the segment from

$$
E^{\prime}+\sum_{\beta^{\prime}=1}^{\beta-1} \Delta E_{Q^{\prime}} \quad \text { to } E^{\prime}+\sum_{\beta^{\prime}=1}^{\beta} \Delta E_{B^{\prime}} \text {, (A.20) }
$$

Where ΔE_{9}, is the width of the inelastic energy band 8^{\prime}. The density function within this band may be chosen to be constant, and the energy E may be Felected as

$$
\begin{equation*}
E=E^{\prime}+\sum_{\beta^{\prime}=1}^{\beta-1} \Delta E_{\beta^{\prime}}+\Delta E_{\beta^{\prime}} \xi \tag{A.21}
\end{equation*}
$$

where ξ is a random number on the unit interval. 'The new direction of motion is selected from an isotiropic distribution in the laboratory system, and the pseudoneutron weight is obtained from Eq. (24) as
$\stackrel{\hbar}{W} \doteq \frac{\overline{W^{\prime}} \sum_{\underline{I}} \Sigma_{2}^{i}(\underline{r}, E) C_{2}^{i}\left(E, \mu_{L} ; \underline{r}, E,-\underline{\Omega}_{a}\right)_{L}^{4 \pi \Delta E_{B}}}{\Sigma_{t}\left(\underline{r}, E^{\prime}\right) \bar{Q}_{2}(j, k, \beta)},(A, Z)$
Where the subscript 2 denotes inelastic scattering with a continuous-type energy transfer density function and the superscript i is again used to desig"nate isotope i. The L subscript on C_{2}^{i} is a reminder That this density function is in the laboratory system and the μ_{L} is used in C_{2}^{i} rather than $-\Omega_{a}^{\prime}$ for convéhience (the physical model assumes that
the density function depends only on $-\Omega_{a} \cdot-\underline{\Omega}_{a}^{\prime \prime}=$ μ_{L}). However, this density function is sometimes tabulated in the center-of-mass system. If the cen-ter-of-mass density function is denoted by $C_{2}^{i}\left(E^{\prime}, \mu_{c m}\right.$; $\left.\underline{r}, E,-\underline{\Omega}_{\mathrm{a}}\right)_{\mathrm{cm}}$, the corresponding density function in the laboratory system may be obtained by the transformation
$C_{2}^{i}\left(E^{\prime}, \mu_{L} ; \underline{r}, E,-\underline{\Omega}_{a}\right)_{L}=C_{2}^{i}\left(E_{c m}^{\prime}, \mu_{c m} ; \underline{r}, E,-\underline{\Omega}_{a}\right)_{c m}|j| ;$
where J is the Jacobian, 15

$$
|J|=\left|\begin{array}{cc}
\frac{\partial E_{c m}^{\prime}}{\partial E^{\prime}} & \frac{\partial \mu_{\mathrm{cm}}}{\partial E^{\prime}} \tag{A.24}\\
\frac{\partial E_{c m}^{\prime}}{\partial \mu_{L}} & \frac{\partial \mu_{c m}}{\partial \mu_{L}}
\end{array}\right|,
$$

and the variables in the transformation are related 0.8

$$
\begin{equation*}
E^{\prime}=E_{c m}^{\prime}+\left[E+2 \mu_{\cdot \mathrm{cm}}(A+1) \sqrt{E E_{c m}^{\prime}}\right] /(A+1)^{2} \tag{A.25}
\end{equation*}
$$

$$
\begin{equation*}
\mu_{L}=\mu_{c m} \sqrt{\frac{E_{c m}^{\prime}}{E^{\prime}}}+\sqrt{\frac{E}{E^{\prime}}} \frac{1}{A+1} \tag{A.26}
\end{equation*}
$$

Equations (A.25) and (A.26) may be used to obtain the relationships

$$
\begin{align*}
& E_{c m}^{\prime}=E^{\prime}+\frac{E}{(A+1)^{2}}-\frac{2 \mu_{L} \sqrt{E E^{\prime}}}{(A+1)}, \tag{A.27}\\
& \mu_{c m}=\frac{\mu_{L}-\sqrt{\frac{E}{E^{\prime}}} \frac{1}{(A+1)}}{\left[1+\frac{E}{E^{\prime}(A+1)^{2}}-\frac{A \mu_{L}}{(A+1)} \sqrt{\frac{E}{E^{\prime}}}\right]^{1 / 2}}, \tag{B}
\end{align*}
$$

$$
\frac{\partial E_{c m}^{\prime}}{\partial E^{\prime}}=1-\frac{\mu_{L}}{A+1} \sqrt{\frac{E}{E^{\prime}}}
$$

$$
=\frac{1}{2}+\frac{E^{\prime}}{2 E^{\prime}}-\frac{1}{2} \frac{E}{E^{\prime}} \frac{1}{(A+1)^{2}},
$$

$$
\begin{equation*}
\frac{\partial E_{c m}^{\prime}}{\partial \mu_{L}}=-\frac{2 \sqrt{E E^{\prime}}}{A+1} \tag{A.30}
\end{equation*}
$$

$$
\begin{align*}
\frac{\partial \mu_{\mathrm{cm}}}{\partial \mu_{\mathrm{L}}} & =\sqrt{\frac{E^{\prime}}{E_{c m}^{\prime}}}+\left(\frac{E^{\prime}}{E_{\mathrm{cm}}^{\prime}}\right)^{3 / 2}\left(\mu_{\mathrm{L}}-\sqrt{\frac{E}{E^{\prime}}} \frac{1}{\mathrm{~A}+1}\right) \frac{1}{\mathrm{~A}+1} \sqrt{\frac{E}{E^{\prime}}} \\
& =\frac{E^{\prime}}{E_{\mathrm{cm}}^{\prime}}+\frac{\sqrt{\mathrm{EE}^{\prime}}}{E_{\mathrm{cm}}^{\prime}} \frac{\mu_{\mathrm{cm}}}{A+1}, \tag{A.31}
\end{align*}
$$

energy $d E^{\prime}$ about E^{\prime} by an event of type 2 is nearly independent of E. This is not usually true if the function

$$
\begin{equation*}
\sum_{i} \Sigma_{2}^{i}(\underline{r}, E) C_{2}^{i}\left(E^{\prime}, \mu_{L} ; \underline{r}, E,-\underline{\Omega}_{a}\right)_{L} \tag{A.34}
\end{equation*}
$$

$$
\begin{align*}
\frac{\partial \mu_{\mathrm{cm}}}{\partial E^{\prime}} & =\frac{1}{2} \sqrt{\frac{E}{E_{c m}^{\prime}}} \frac{1}{E^{\prime}(A+1)}-\frac{1}{2}\left(\frac{E^{\prime}}{E_{\mathrm{cm}}^{\prime}}\right)^{3 / 2}\left(\mu_{\mathrm{L}}-\sqrt{\frac{E}{E^{\prime}}} \frac{1}{A+1}\right)\left[-\frac{E}{\left(E^{\prime}\right)^{2}(A+1)^{2}}+\frac{\mu_{\mathrm{L}} \sqrt{E}}{(A+1)\left(E^{\prime}\right)^{3 / 2}}\right] \\
& =\frac{1}{2} \sqrt{\frac{E}{E_{c m}^{\prime}}} \frac{1}{E^{\prime}(A+1)}+\frac{1}{4} \frac{\mu_{\mathrm{cm}}^{\prime}}{E_{\mathrm{cm}}^{E^{\prime}}}\left[E_{\mathrm{cm}}^{\prime}-E^{\prime}+\frac{E}{(\Lambda+1)^{2}}\right], \tag{A.32}
\end{align*}
$$

and

$$
\begin{align*}
& |J|=\left|\begin{array}{lll}
\partial E_{\mathrm{cm}}^{\prime} & \frac{\partial \mu_{\mathrm{cm}}}{\partial E^{\prime}} & \frac{\partial E_{\mathrm{cm}}^{\prime}}{\partial \mu_{L}}-\frac{\partial \mu_{\mathrm{cm}}}{\partial \mu_{L}} \\
\partial E^{\prime}
\end{array}\right| \\
& =\left\lvert\, \frac{1}{2} \sqrt{\frac{E^{\prime}}{E_{c m}^{\prime}}}+\frac{1}{2} \sqrt{\frac{E_{\mathrm{cm}}^{\prime}}{E^{\prime}}}-\frac{1}{2} \frac{E}{\sqrt{E_{c m}^{\prime} E^{\prime}}} \frac{1}{(A+1)^{2}}+\mu_{\mathrm{cm}}\left[\frac{\sqrt{E E^{\prime}}}{2 E_{\mathrm{Cm}}^{\prime}} \frac{1}{A+1}+\frac{1}{2} \sqrt{\frac{E}{E^{\prime}}} \frac{1}{A+1}\right.\right. \\
& \left.-\frac{1}{2} \frac{E^{3 / 2}}{E_{c m}^{\prime} \sqrt{E^{\prime}}} \frac{1}{(A+1)^{3}}\right]+\frac{E}{\sqrt{E_{c m^{\prime}}^{\prime}}} \frac{1}{(A+1)^{2}}+\mu_{\mathrm{cm}}\left[\frac{1}{2} \sqrt{\frac{E}{E^{\prime}}} \frac{1}{A+1}-\frac{1}{2} \frac{\sqrt{E E^{\prime}}}{E_{c m}^{\prime}} \frac{1}{A+1}\right. \\
& \left.+\frac{1}{2} \frac{(E)^{3 / 2}}{E_{c m}^{\prime} \sqrt{E^{\prime}}} \frac{1}{(A+1)^{3}}\right] \mid \\
& =\left|\frac{1}{2} \sqrt{\frac{E^{\prime}}{E_{c m}^{\prime}}}+\frac{1}{2} \sqrt{\frac{E_{c m}^{\prime}}{E^{\prime}}}+\frac{1}{2} \frac{E}{\sqrt{E_{c m}^{\prime} E^{\prime}}} \frac{1}{(A+1)^{2}}+\mu_{\mathrm{cm}} \sqrt{\frac{E}{E^{\prime}}} \frac{1}{A+1}\right| \\
& =\sqrt{\frac{\mathrm{E}^{\prime}}{\mathrm{E}_{\mathrm{cm}}^{\prime}}}, \tag{A.33}
\end{align*}
$$

which is the Jacobian required in Eq. (A.23).
A constant-density function was used in Eq. (A.21) to sample for the pseudoneutron energy E within an inelastic band ΔE_{β}. This is a reasonable approximation to the zero-variance density function, provided that the $\underset{\beta-1}{\text { rate of transfer of neutrons from }}$ an energy $E, E^{\prime}+\sum_{\beta^{\prime}=1}^{\beta-1} \Delta E_{\beta}, \leq E \leq E^{\prime}+\sum_{\beta^{\prime}=1}^{\beta} \Delta E_{B^{\prime}}$, to an
changes rapidly over the permissible limits of E. A more optimal sampling may then be expected through sampling proportional to the function of Eq. (A.34). An option is available in MCNA to randonly select eight energies E_{γ} as

$$
E_{\gamma}=E^{\prime}+\sum_{\beta^{\prime}=1}^{\beta=1} \Delta E_{\beta^{\prime}}+\frac{\Delta E_{\beta}}{8}(5+\gamma-1),(A \cdot 35)
$$

Where 5 is a random number on the unit interval (the same random number is used in computing the eight energies).

The energy $E=E_{\gamma}$ of the pseudoneutron is randomly selected with probability
$\frac{\sum_{i} \Sigma_{2}^{i}\left(\underline{r}, E_{\gamma}\right) C_{2}^{i}\left(E^{\prime}, \mu_{L} ; \underline{r}, E_{\gamma},-\Omega_{a}\right)_{L}}{\sum_{\gamma^{\prime}=1}^{8} \sum_{i} \Sigma_{2}^{i}\left(\underline{r}, E_{\gamma^{\prime}}\right) C_{2}^{i}\left(E^{\prime}, \mu_{L} ; \underline{r}, E_{\gamma^{\prime}},-\Omega_{a}\right)_{L}}$ (A.36)
The pseudoneutron weight is computed as
$\bar{W}=\frac{\vec{W}^{\prime} \sum_{\gamma^{\prime}=1}^{8} \sum_{i} \sum_{2}^{i}\left(\underline{r}, E_{\gamma^{\prime}}\right) c_{2}^{i}\left(E^{\prime}, \mu_{L} ; E_{\gamma^{\prime}},-\underline{\Omega}_{a}\right){ }_{L} 4 \pi \Delta E_{\beta}}{\Sigma_{t}\left(\underline{r}, E^{\prime}\right) \bar{Q}_{2}(\jmath, k, B) 8}$.

This method of selection tends to produce a smoother weight than that obtained from Eq. (A.22). The computational effort required to select the energy E is nearly a factor of 8 greater, but if some of the $\cdot C_{2}^{1 / s}$ are rapidly varying functions, this additional computation time may be worthwhile. This method of selection should be necessary only for isotopes of large Λ and for energies E less than about 2 MeV . Hence, these events may be rare, and the additional time required may be negligible compared to the total computation time.
2. Inelastic Scattering with a Discrete Model
a. Laboratory System. A model used in the MCN and MCNA computer codes is that of an inelastic scattering reaction in which the neutron is assumed to Jose a discrete amount of energy in the laboratory -system. The postcollision neutron energy E^{\prime} is related to the precollision neutron energy E in this model as

$$
\begin{equation*}
E^{\prime}=(E-\varepsilon) / \eta, \tag{A.38}
\end{equation*}
$$

Where ε and η are constants at an energy E.
In sampling from the adjoint equation, E^{\prime} is the precollision energy, and the postcollision energy E of the pseudoneutron is determined as

$$
\begin{equation*}
E=\eta E^{\prime}+\varepsilon \tag{A.39}
\end{equation*}
$$

The new direction of flight is selected from an iso-
tropic distribution, and the pseudoneutron weight after the collision may be obtained from Eq. (24) as

$$
\begin{align*}
& \bar{W}=\frac{\overline{W^{\prime}} \Sigma_{3}^{1}(\underline{r}, E)_{\ell} C_{3}^{i}\left(E^{\prime},-\underline{\Omega}_{a}^{\prime} ; \underline{r}, E,-\underline{\Omega}_{a}\right)_{\ell}}{\Sigma_{t}\left(\underline{r}, E^{\prime}\right) \bar{Q}_{3}(j, k, i, \ell) \delta\left(E-\eta E^{\prime}-\varepsilon\right)_{E} \frac{1}{4 \pi}} \\
& =\frac{\bar{W} \Sigma_{3}^{i}(\underline{r}, E)_{\ell} \frac{1}{3 r} D_{3}^{i}\left(\mu_{L} ; \underline{r}, E\right)_{\ell} \delta\left(E^{\prime}-(E-\varepsilon) / \eta\right)_{E^{\prime}} \nu_{3}^{i}(\underline{r}, E)_{\ell}}{\Sigma_{t}\left(\underline{r}, E^{\prime}\right) \bar{Q}_{3}(j, k, i, \ell) \delta\left(E-\tau E^{\prime}-\varepsilon\right)_{E} \frac{1}{4 \pi}} \\
& =\frac{\overline{W^{\prime}} \Sigma_{3}^{i}(\underline{r}, E)_{\ell} D_{3}^{i}\left(\mu_{L} ; \underline{r}, E\right)_{\ell} 2 \eta v_{3}^{i}(\underline{r}, E)_{\ell}}{\Sigma_{t}(\underline{r}, E)_{Q_{3}}(j, k, i, k)}, \tag{A.40}
\end{align*}
$$

where the subscript ℓ denotes the inelastic level, $D_{3}^{1}\left(\mu_{L} ; \underline{r}, E\right)_{\ell}$ is the density function for the cosine of the scattering angle μ_{L}, and $v_{3}^{1}(\underline{x}, E)$, is the total number of neutrons that emerge from the reaction.
b. Center-of-Mass System. A model used in the MCiN and MCNA computer codes is that of an inelastic scattering reaction with the neutron assumed to lose a discrete amount of energy in the center-oifmass system. The relevant equations for the neutron are

$$
\begin{align*}
& E=\eta E_{c m}^{\prime}+\varepsilon, \tag{A.41}\\
& E^{\prime}=E_{c m}^{\prime}+\left[E+\mu_{c m}(A+1) \sqrt{E E_{c m}^{\prime}}\right] /(A+1)^{2}, \quad \text { (A.42) } \\
& \mu_{L}=\mu_{c m} \sqrt{\frac{E_{c m}^{\prime}}{E^{\prime}}}+\sqrt{\frac{E}{E^{\prime}}}\left(\frac{1}{A+1}\right), \tag{A.43}
\end{align*}
$$

where E is the precollision neutron energy in the laboratory system, E^{\prime} is the postcollision neutron energy in the laboratory system, and $E_{c m}^{\prime}$ is the postcollision neutron energy in the center-of-mass system. ε is the minimum neutron energy required to excite the level, and η is the constant

$$
\begin{equation*}
\eta=\left(\frac{A+1}{A}\right)^{2} \tag{A.44}
\end{equation*}
$$

The inelastic threshold ϵ depends upon the isotope and level, but for notational convenience these subscripts are suppressed.

The relevant collision kernel C_{3}^{i} may be expressed as the number of neutrons that emerge from the reaction $v_{3}^{i}(\underline{r}, E)_{\ell}$ multiplied by a marginal
density function $P_{3}^{i}\left(E^{\prime} ; \underline{r}, E\right)$ for the energy E^{\prime} and a conditional density function, a Dirac delta function, for the cosine of the scattering angle μ_{L}. If the scattering is assumed isotropic* in the cen-ter-of-mass system, the density function P_{3}^{i} is given by

$$
P_{j}^{1}\left(E^{\prime} ; r, E\right)=\frac{(A+1)^{2}}{4 A} \frac{1}{E \sqrt{1-\frac{\epsilon}{E}}}, \frac{E\left(A \sqrt{1-\frac{\varepsilon}{E}-1}\right)^{2}}{(A+1)^{2}} \leq E^{\prime} \leq \frac{E\left(A \sqrt{1-\frac{E}{E}}+1\right)^{2}}{(A+1)^{2}}
$$

$$
\begin{equation*}
=0 \text { for all other } E^{\prime} \tag{A.45}
\end{equation*}
$$

In the adjoint solution, E^{\prime} is the precollision energy, and the problem is to choose a density function to select the postcollision energy E of the pseudoneutron. The first step is to determine the bounds of E for a given E^{\prime}. The following results, Eas. (A.46) to (A.51), are from a derivation by Kalos et al. ${ }^{16}$ The energy E must fall between a lower bound $E^{I}\left(E^{\prime}\right)$ and an upper bound $E^{u}\left(E^{\prime}\right)$ given by

$$
\begin{align*}
& E^{L}\left(E^{\prime}\right)=\frac{\varepsilon}{1-y(1)^{2}} \tag{A.46}\\
& E^{u}\left(E^{\prime}\right)=\frac{\varepsilon}{1-y(-1)^{2}}
\end{align*}
$$

where

$$
\begin{align*}
& y(1)=\frac{2 a}{(1+\sqrt{1+4 a b})}, \tag{A.48}\\
& y(-1)=(1+\sqrt{1+4 a b) / 2 b}, \\
& = \tag{A.49}\\
& a=\left[\frac{a}{b y(1)},\right. \tag{A.50}\\
& b=\left[\frac{(A+1)^{2} E^{\prime}}{\epsilon}-1\right] / 2 A \tag{A.51}\\
& b
\end{align*},
$$

[^4]to the zero-variance density function is
\[

$$
\begin{align*}
h_{3}^{i}\left(E ; \underline{r}, E^{\prime}\right) & =\frac{P_{3}^{i}\left(E^{\prime} \underline{\underline{r}}, E\right)}{\int_{\left(E^{L}\left(E^{\prime}\right)\right.}^{E^{u}\left(E^{\prime}\right)} P_{3}^{i}\left(E^{\prime} ; \underline{r}, E^{\prime \prime}\right) d E^{\prime \prime}} \tag{4.52}\\
& =\frac{1}{E \sqrt{1-\frac{\varepsilon}{E}}} / U, \text { for } E^{L}\left(E^{\prime}\right) \leq E \leq E^{u}\left(E^{\prime}\right),
\end{align*}
$$
\]

where

$$
\begin{equation*}
\mathrm{U}=\int_{E^{\mathrm{L}}\left(\mathrm{E}^{\prime}\right)}^{\mathrm{E}^{\mathrm{u}}\left(\mathrm{E}^{\prime}\right)} \frac{1}{\mathrm{E}^{\prime \prime} \sqrt{1-\varepsilon / \mathrm{E}^{\prime \prime}}} d E^{*} \tag{}
\end{equation*}
$$

$$
=\ln \left\{\frac{[1+y(-1)]^{2}\left[1-y(1)^{2}\right]}{\left[1-y(-1)^{2}\right][1+|y(1)|]^{2}}\right\}
$$

The density function h_{3}^{i} of Eq. (A.52) may be sampled analytically for E. The analytic expression is obtained by setting the cumulative distribution function to a random number f and solving for E :

$$
\begin{aligned}
\xi & =\int_{E^{L^{\prime}\left(E^{\prime}\right)}}^{E} \frac{1}{E^{\prime \prime} \sqrt{1-\varepsilon / E^{\prime \prime}}} d E^{\prime \prime} / U \\
& =\sin \left\{\frac{\sqrt{E^{2}-\epsilon E}+E-\varepsilon / 2}{\frac{\varepsilon}{2}[1+|y(1)|]^{2} /\left[1-y(1)^{2}\right]}\right) / U \quad \cdot(A \cdot 54)
\end{aligned}
$$

Hence, solving for E, we obtain

$$
\begin{equation*}
E=\beta^{2} /(2 \beta-\varepsilon), \tag{A.55}
\end{equation*}
$$

where

$$
\begin{equation*}
\beta=\frac{\varepsilon}{2} \frac{[1+|y(1)|]^{2}}{1-y(1)^{2}} e^{5 U}+\frac{\varepsilon}{2} \tag{A.56}
\end{equation*}
$$

The pseudoneutron weight is obtained from Eqs. (24), (A.45), and (A.52) as

$$
\begin{align*}
\bar{W} & =\frac{\bar{W}^{\prime} \Sigma_{3}^{i}(\underline{r}, E)_{\ell} C_{3}^{i}\left(E^{\prime},-\underline{\Omega}_{a}^{\prime} ; \underline{r}, E,-\underline{\Omega}_{a}\right)_{\ell}}{\Sigma_{t}\left(\underline{r}, E^{\prime}\right) \bar{Q}_{3}(j, k, i, \ell) \bar{f}_{3}\left(E, \underline{\Omega}_{a} ; \underline{r}, E^{\prime}, \underline{\Omega}_{a}^{\prime}\right)} \tag{A.57}\\
& =\frac{\overline{W^{\prime}} \Sigma_{3}^{i}(\underline{r}, E)_{\ell} v_{3}^{i}(\underline{r}, E)_{\ell} D_{3}^{i}\left(\mu_{c m} ; \underline{r}, E\right)_{c m}(A+1)^{2} U}{\Sigma_{t}\left(\underline{r}, E^{\prime}\right) \bar{Q}_{3}(j, k, i, d) 2 A}
\end{align*}
$$

where the density function $D_{3}^{i}\left(\mu_{\mathrm{cm}} ; \underline{r}, E\right) \mathrm{cm}$ for the center-of-mass scattering angle has been inserted in Eq. (A.57) to include the more general case of anisotropic scattering. The pseudoneutron energy E is selected from the density function obtained with the isotropic scattering assumptions. However, this should not introduce large statistical errors unless the scattering is highly anisotropic. The expression for U in Eq. (A.53) may be simplified as

$$
U=\ln \left(\frac{A+1}{A-1}\right)^{2} \quad, \quad(A+1)^{2} E^{\prime} / c>1, \quad(A .58)
$$

4. Fission

The treatment of fission is simplified by the assumption that the energy spectrum of fission neutrons is independent of the energy of the parent neutron. The selection of a fission event with the probability $\overline{Q_{4}}\left(j, k, j^{\prime}\right)$ requires that the final pseudoneutron energy E be within the boundaries of energy group f^{\prime}, designated here as $\left(E^{L^{\prime}}\right)_{j}$, and ($\left.E^{u}\right)_{j}$.. The energy E within this group is selected from a uniform distribution as

$$
\begin{equation*}
E=\left(E^{L}\right)_{j},+\left[\left(E^{U}\right)_{j},-\left(E^{L}\right)_{j} \prime\right] \xi \tag{A.60}
\end{equation*}
$$

where 5 is a random number on the unit interval. The final pseudoneutron direction of motion is selected from an isotropic distribution in the laboratory system, and the weight is obtained from Eq.
(24) as

where the subscript 4 denotes fission, $\gamma\left(E^{\prime}\right)$ is the spectrum of fission neutrons, and the fission neutrons are assumed to have an isotropic distribution in the laboratory system.
and
$U=\ln \left\{\frac{1+y(-1)}{1-y(-1)} \frac{1+y(1)}{1-y(1)}\right\}, \quad(A+1)^{2} E^{\prime} / \varepsilon<1 \quad$.
description of the input data for the initiation is given in Refs. 4, 5, and 6. The following additional comments pertinent to MCNA may be useful.

1. An RO card should not be supplied if a thermal treatment isn't being used; i.e., EBR \leq ECF.
2. The F, E, T, and C cards are not usually required in MCNA. An exception occurs during scoring in the adjoint sampling for a point neutron source; for this option see the description of the DFS input card in this appendix.

The input data pertinent to the coupled sampling in MCNA (Steps 2 and 4 of Fig. 1) will now be
described. The usual procedure is to input all the required data for the coupled sampling in Step 2 so that additional input data are not required in Step 4 unless it seems advisable to change some data after the initial sampling from the transport equation. The ANUI program is called in Steps 2 and 4, and, in turn, reads the input data. The sequence of input card types is not important except that the first card must have the identifier TYP and the code expects to read this card each time the program ANUI is called. A blank card designates the end of input. The input data are as follows.

Card
$\frac{\text { Identifier }}{\text { Columns (I-5) }}$

Data Entiry
\ldots Description of Data

Type of Calculation Card.
lst $=-1$, Initiation is completed, and preparation is now made to begin coupled sempling. After this input data, the coupled sampling will proceed to Step 3 of Fig. 1. Cards $A S I, A E$, and SCC must be input, and the rest of the data may be input as needed.
$=0$, Initiation is completed, but only sampling from the transport equation will be done. Stens 4 and 5 of Fig. 1 will be omitted. No more innut allowed.
$=1$, Initiation is completed. Construct the adjoint samming functions numerically and proceed directly to Step 5 of Fig. 1 (i.e., skin steps 3 and 4), sampling from the adjoint equation. Cards ASC, ASI, $A F, A E, S C C$, and F,NE must be input, with other cards as required.
= 2, Step 3, sarmpling from the transport equation, has been completed. Normalize* sampling functions and proceed to Step 5, sampling from the adjoint equation. No more input allowed.
$=3$, Same as $=2$ excent that changes in any of the cards ASC, ASP, $S T, A S I, ~ A F, ~ N L E, ~ a n d ~ M N ~ m a y ~ b e ~ m a d e . ~$
= 4, Sampling functions have already been normalized, but changes in any of the cards ASC, ASP, $S T, A S I, ~ A F, A I E$, and $M N$ may be made.
and $=0$, Multigenerations are assumed.
$=1$, The calculation will be made for only one (pseudo) neutron generation. This effectively sets the number of neutrons per fission to zero.

3rd $\quad=$ Tape dump number. Usually this entry $=1$ if the first entry on this card is $-1,0$, or 1 . This entry usually equals the last tape dump if the first entry is 2,3 , or 4. Exceptions sometimes occur when one tries sammling from the adjoint equation with slightly different imput data from those used in a previous sampling.

[^5]| Card Identifier | Data Entry | Description of Data |
| :---: | :---: | :---: |
| ASC | 1st | Adjoint Source Control Card |
| | | Energy Control |
| | | $=0$, Select the initial pseudoneutron energy with a density function proportional to $1 / E$ between the first and second data entries on card ASP. |
| | | $=1$, Initial pseudoneutron energy set to lst data entry on card ASP. |
| | 2nd | $=2$, Linear selection of initial energy between the first and second data entries on card ASP. |
| | | = 3, Input an energy density table on card STl. |
| | | 24 , Supply source routine ASOURC. The remainder of this card is not used in ANUI, except to specify tables STl to ST7. |
| | | Spatial Position Control |
| | | $=1, \quad \mathrm{X}=3 \mathrm{rd}$ data entry on card ASP
 $Y=5$ th data entry on card ASP
 $\mathrm{z}=7$ th data entry on card ASP. |
| | | $=2$, Linear selection from 3rd to 4th, 5 th to 6 th, 7 th to 8 th data entries on card ASP for $\mathrm{X}, \mathrm{Y}, \mathrm{Z}$, respectively. |
| | | $=3$, Input $\mathrm{X}, \mathrm{Y}, \mathrm{Z}$ density tables on cards $\mathrm{ST2}, \mathrm{ST}, \mathrm{ST} 4$, respectively. |
| | 3rd | $=0$, Constant-volume source in the cell specified by the 5th data entry of this card. Only the volume between concentric spheres presently available. |
| | | Direction-of-Motion Control |
| | | $\begin{aligned} =1, & v \end{aligned}=\cos \text { (9th data entry on card ASP) } \quad \text { w } \begin{aligned} & =\sqrt{1-v^{2}} \cos \text { (10th data entry on card ASP) } \\ u & =\sqrt{1-v^{2}} \sin \text { (10th data entry on card ASP). } \end{aligned}$ |
| | 4th | $=2$, Isotropic distribution. |
| | | $=3$, Input density tables on cards ST5 and ST6. |
| | | Time Control |
| | | $=1, \quad \mathrm{TME}=11 \mathrm{th}$ data entry on card ASP. |
| | | $=2$, LINEAR selection of TME from llth to 12th data entries on card ASP. |
| | | $=3$, Input time density table on card ST7. |
| | 5 th | = Cell number of pseudoneutron source, IA. |
| | 6 th | $=0$, Ignore. |
| | | = 1, Call subroutine ASOURC after "built-in" routines are used to select initial pseudoneutron parameters (see example problem of Sec. IV for an application of this option). |
| ASP | | Adjoint Source Parameter Card |
| | 1st to 12th | Entries as specified on card ASC. Those not specified on card ASC will not be used in sampling, but must be input as zeros. |

Adjoint Source Energy Table (Required if the first data entry of card ASC = 3) .
lst to Nth $N / 2$ energy values from low to high and the corresponding $N / 2$ cumulative probabilities (the first probability is zero and the last is one).
NOTE: If this table is used with the first data entry on card ASC set to 3 , then the initial pseudoneutron weight is divided by this density function. This is not true for tables ST2 to ST7.

Adjoint Source X Table (Required if the second data entry of card ASC = 3).
lst to Nth Not necessarily the same N as for card STl. N/2 X values from low to high and the corresponding $N / 2$ cumulative probabilities.

ST3
Adjoint Source Y Table
lst to Nth
ST4
lst to Nth
STS
lst to Nth
lst to Nth
lst to Nth $N / 2$ time values from low to high and corresponding $N / 2$ cumulative probabilities.

NOTE on cards STl to ST7. Any or all of these tables may be used and the tables may have different lengths, but the total storage required (sum of the $N^{\prime} s$) must be less than 401.

Adjoint Sampling Information Card
lst $\quad=-1$, Select the pseudoneutron energy after inelastic scattering from a density function, Eq. (A.36), proportional to the transfer cross section each time the energy, E, is less than 2 MeV . For energies greater than 2 MeV , use constant-density functions, Eq. (A.21).
$=0$, Same as -1 except that for energies greater than 2 MeV , select the energy E from within the energy band using a density function proportional to the fission spectrum for both fission and inelastic scattering. This is a useful option if the neutron source is a fission spectrum.
$\begin{array}{ll}\text { ASI } & =1, \text { Assume constant-density functions in intervals. } \\ \text { Comment: -1 suggested for most applications. } \\ \text { and } & =0 \text {, Initial pseudoneutron weight set to the fourth data entry }\end{array}$ on this card.*
$=1,2,3,4$, The initial pseudoneutron weight is set to the fourth data field on this card multiplied by $\Sigma_{f}(\underline{r}, E), \nu \Sigma_{f}(\underline{r}, E)$, $\Sigma_{c}(\underline{r}, E)$, or $\Sigma_{t}(\underline{r}, E)$, respectively.*
3rd $\quad=0$, Hydrogen transfer tables will not be constructed; $\beta(j, k, y)$ of Eq. (A.11).
$=$ Energy groun number (see card AE) to start hydrogen transfer tables. For groups less than this number, the center-ofmass scattering angle is selected isotropically. This number must always be less than the total number of groups and must be greater than 10 when a thermal-energy treatment is used.

Initial pseudoneutron weight as defined by the 2nd data entry on this card.

Terminate the pseudoneutron with this probability at each collision when the energy is greater than 6 MeV . The surviving pseudoneutrons have their weight divided by one minus this probability. Zero suggested for most applications.

| Gth | A positive floating-point number will force the pseudoneutron
 weight to be split each time the weight exceeds this entry. A |
| :--- | :--- |
| negative floating point number will force splitting or "Russian | |
| roulette" to keep the weight at exactly the negative of this | |
| entry. For most applications it is recommended that this number | |
| be positive, and of such a magnitude that only occasionally will | |
| a pseudoneutron weight exceed it. | |

[^6]Card

| ALE | | * 1, For ESURL $<E<E S U R H$, sample the distance to collision from the exponential density function normalized so that leakage does not occur. |
| :---: | :---: | :---: |
| | | $=2$, Sample the distance to collision from the usual exponential density function, Eq. (16), using the special leakage routine when ESURL $<\mathrm{E}<\mathrm{ESURH}$. This is faster than returning to the geometry routine, when ANL must be computed anyway. |
| | | ```=3, Special optimal distance-to-collision sampling, Eq. (c.j)*. =4, Return to geometry routine for distance-to collision sam- pling after computing ANL``` |
| | 2nd | As defined on the first data entry of this card. |
| | 3 rd | As defined on the first data entry of this card. |
| | 4th to s 23rd | Scoring surface numbers, JA. N NL is computed, and subroutine SCORE is called each time the projected pseudoneutron flight path, with ESURL $<E<E S U R H$, crosses one of these surfaces. The pseudoneutron is expected to cross one, and only one, scoring surface if the first entry on this card is 1,2 , or 3 . |
| MN _ ${ }^{\text {N }}$ | | Thermal Flux Weight Card (required only if the thermal free-gas model is used). |
| | 1st | $=0$, Maxwellian weight factor for thermal group 1 and time increment N; i.e., $\Phi(E)$ of Eq. (A.14) equals $E e^{-E / T}$. If $N=1$, this weight factor is used for times less than the first data entry on the RO card of the initiation input data. If $\mathrm{N}=2$, this weight factor is used for times between the first and second data fields of the RO card, and so forth. |
| | | $=1$, Weight factor of $1 / E$ for thermal group 1 and time increment N. |
| | 2nd to loth | Same as the first data entry description for subsequent thermal energy groups, low to high energies. |
| | | NOTE: A weight factor of $1 / E$ is not presently allowed for the first group if hydrogen is present, or for the first three groups if deuterium is present. |
| AEO | | Energy Group Boundaries Card |
| | 1st | >0, Equal to the total number, ≤ 50, of energy groups (for constructing the functions for sampling from the adjoint equation) that are read on card AE N. If a thermal treatment is used, the first ten grouos must be thermal. |
| | | ≤ 0, A routine in the code will construct the energy group boundaries. |
| | | $=-2$, For energies greater then 20 keV , construct one-quarter lethargy energy groun widths and one-quarter lethargy energy increments for the inelastic scattering with a continuous model. |
| | | $=-1$, Same as -2 control except that the inelastic increments are one-half lethargy. |

[^7]and Maximum energy for constructing the energy-group structure (generally the maximum energy of interest in the problem).

3rd to l2th These data entries are required only when a thermal treatment is utilized and the first data field on this card is ≤ 0. These entries are the top boundaries of the 10 thermal groups, from low to high (group number 10 must be EBR). These energy groups are used in cells where hydrogen or deuterium are not present. In regions where hydrogen or deuterium are present, the upper boundaries are set by the code as: $0.1 \mathrm{~T}, 0.5 \mathrm{~T}, \mathrm{~T}, 1.5 \mathrm{~T}, 2.5 \mathrm{~T}$, $4 \mathrm{~T}, 6 \mathrm{~T}, 6 \mathrm{~T}+(\mathrm{EBR}-6 \mathrm{~T}) / 7,6 \mathrm{~T}+3(\mathrm{EBR}-6 \mathrm{~T}) / 7$, and EBR, where T is the temperature of the medium at the time of interest and EBR is the upper boundary of the thermal treatment. $\mathrm{N} \leq 10$, these are thermal boundaries, and for $N=10$ this data entry must be set to EBR.

2nd to the number of cells

DFS

 struction and use of the density function for sampling from the adjoint equation.$=-1$, Cell is a vacuum.
$=0$, Construct sampling functions for this cell.
$=I$, Iump this cell with cell I for the construction and use of sampling functions, $I<I A$. This option is available only if the same isotopes are in both cells and is useful if one cell is very small because the statistical fluctuations in the density functions are reduced with this option.

Same as the first data entry for subsequent cells.

Delta Function Scoring Card
$=0$, Special neutron point source option for scoring in the adjoint calculation is not utilized (in which case this card is not required).

Card
Identifier
Data Entry

DFS

2nd

3rd

IO
$=1$, Special neutron point source option for scoring in the ad-
joint calculation is utilized (see Appendix E for a discus-
sion of the scoring). The FS card in the initiation (with
program AITMC) is utilized to specify the X, Y, Z, and
neighborhood of the point sources. Only one energy entry
and one time entry, respectively, are required on the ES
and 15 cards. These entries are ignored in the adjoint
sampling but are required for memory allocation.
and Minimum energy of the point sources, i.e., energy below
which no neutrons are emitted. This energy must be greater
than the thermal cutoff energy, EBR.
Maximum energy of the point sources.

NOTE: The ALE card, with the first entry equal to 1 , may be used with this point source scoring option.

Cell Importance Card (may be used to change cell importances from those specified in the initiation).
lst to the number of cells

Importance of the respective cells.

The following two cards are used only if the first data entry on card TYP is 1.

FNE
1

Flux Weight Card

Control parameter for cell No. 1, IA $=1$. This narameter controls the numerical computation of the density functions for sampling from the adjoint equation. The analog density function is multiplied by an estimate of the average energy dependence of the neutron flux in this cell.
$=0$, Constant flux as a function of enerey.
$=-1$, The neutron flux φ is given by
$\varphi=E^{1 / 2} e^{-0.776 E}$ for $E>1$,
$\varphi=\left(0.7315+0.1174\right.$ in $\left.\frac{E}{10}\right) / E$ for $0.04<E<1$,
$\varphi=0.08328 / \mathrm{E}$ for $\mathrm{E}<0.04$.
$=-2, \varphi=\sqrt{E} e^{-0.776 E}$
$=-3, \varphi=\sqrt{E} e^{-0.776 E}$ for $E>0.1$
$\varphi=0.029262 / E$ for $E<0.1$
$=-4, \varphi=\sqrt{E} e^{-0.776 E}$ for $E>0.1$,
$\varphi=0.29262$ for $\mathrm{E}<0.1$
$=-5, \varphi=1 / E$
$=-6, \varphi=\sqrt{E} e^{-0.776 E}$ for $E>0.6443$
$\varphi=0.3136 / E$ for $E<0.6443$
$=-7, \varphi=\sqrt{E} e^{-0.776 E}$ for $E>0.6443$
$\varphi=0.4868$ for $E<0.6443$
$=-8, \varphi=1 / v$
$=N$, A table of length $N, N>0$, is input on card FTB_1 for a tabulation of the neutron flux.

| Card Identifier | Data Entry | Description of Data |
| :---: | :---: | :---: |
| FNE | and to the number of cells | Same as the first data entry for subsequent cells. |
| FITB_I | | Flux Value Card |
| | 1 to N | $N / 2$ energy points followed by $N / 2$ flux values for cell I. The energy points are from low to high, and the code linearly interpolates between energy points. |
| Blank Card | | END OF INPUT DATA |

A few additional comments may prove worthwhile.

1. The maximum dimensions of input quantities are given for the present code. These are usually simple to change, and the code checks the dimension quantities to see that storage is not exceeded. The memory required by the sampling functions is checked after loading, and the problem is terminated with an error message if any dimensions are exceeded. This is checked prior to sampling from the transport equation.
2. Blank columns are ignored when reading the card identifier in columns 1 to 5 . Thus, the card AF_N with $N=3$ could appear as

The units used in the MCNA code and in the input data are consistent with those of the MCN code; i.e., energies are in MeV , time is in shakes, macroscopic cross sections are in cm^{-1}, medium temperatures are in MeV , and spatial dimensions are in cm . The units of the functionals may be controlled by the functional constants of card $A F$ and the initial pseudoneutron weight of card ASI.

The use of the pseudoneutron source subroutine, ASOURC, with the first data entry of card ASC ≥ 4, automatically bypasses all the built-in adjoint source options on cards ASC and ASP. The following information must be supplied (an exception occurs when the sixth data entry of card ASC $=1$ and the first data entry of card ASC < 4) when ASOURC is used.

```
x,y,z - the space coordinates
u,v,w - the direction coordinates, these are
            isotropic if not supplied
INIS - the time
```


ERG - the energy

WT - the initial weight. The initial weight as input on the fourth data entry of card ASI is the parameter ASKIVT, and WT = ASRWT at entrance to ASORRC. Options 1, 2, 3, 4 of the second data entry of card ASI are not available when using ASOURC unless the sixth data entry of card ASC $=1$.
IA - the cell number
JA - surface control (usualiy 1)
DEL - surface control (usually 0.0).
Special care should be used in writing subroutine SCORE, to tabulate the functionals. The functional K is tabulated in the dimension variable TSCOR(K). The general procedure each time SCORE is called is as follows.

1. Check to see if the collision or surface crossing is of interest; determined by KASR as despribed in Sec. III. If not of interest, return to the main program.
2. Check to see if the collision or surface crossing is of interest for functional K. If so, score as
$\operatorname{TSCOR}(K)=\operatorname{TSCOR}(K)$
$+\left[\begin{array}{l}\text { contribution of this collision or surface } \\ \text { crossing to the functional } \mathrm{K} \text {. }\end{array}\right]$
3. Repeat step 2 for all functionals and return to the main program. See Sec. III for two examples.

The scoring in Eq. (B.I) may require some constants for the particular functional K. These constants may be imput on the AF card in the dimensioned variable $\operatorname{AJCON}(K, J)$, where J assumes values from 1 to the number of required constants for the
functional K.
At the end of each source (and progeny) pseudoneutron history, $\operatorname{TSCOR}(K)$ and the 2nd, 3 rd , and 4 th moments of TSCOR(K) are added to a running sum of the respective first four moments for each functional K. $\operatorname{TSCOR}(K)$ is then set to zero before selecting the next source pseudoneutron. Periodically during the sampling from the adjoint equation, these moments are divided by the total number of source pseudoneutrons to obtain the estimate of the functional $\overline{T_{K}}$ and the estimate of the moments $\overline{T_{K}^{2}}, \overline{T_{K}^{3}}$ and $\frac{T_{K}^{4}}{T^{4}}$. The estimated relative error is computed es

Relative error $=\sqrt{\overline{T_{K}^{2}}-\bar{T}_{K}^{2}} /\left[\overline{\mathrm{T}}_{K} \sqrt{n}\right]$
where n is the total number of source pseudoneutrons. Unfortunately, there is also a statistical
error involved in the estimate of the relative error. An attempt is made in MCNA to estimate this as ${ }^{17}$

Experience will tell whether Eq. (B.3) is of any help in determining the reliability of the relative error estimate of Eq. (B.2).

Two magnetic tapes are usually required to run a problem with MCNA. A description of the use of these tapes is given in the example problem in Sec. IV.

The program ATMC that samples from the transport or adjoint equations requires one input card, as in the MCN code. The imput on this card is as follows.

| Columns | Transport Sampling (Step 3) |
| :--- | :--- |
| $1-10$ | Neutrons are terminated at this
 entry of maximum time. |
| $21-30$ | Neutrons are terminated when their
 weights fall below this entry. |
| $31-40$ | Running time in minutes.
 Number of neutron histories per
 print cycle. |
| $51-50$ | Number of neutron histories per
 tape dump cycle. |
| $61-70$ | Tape dump number (usually 2 for the
 first time in Step 3 of Fig. 1). |
| | Total number of neutron histories. |

| \quad Adjoint Sampling (Step 5) |
| :--- |
| Pseudoneutrons are terminated at |
| this entry of minimum time. |
| "Russian roulette" is played each |
| time a pseudoneutron weight falls |
| below this entry. The weights of |
| survivors are increased. |
| Running time in minutes. |
| Number of pseudoneutron histories |
| per print cycle. |
| Number of pseudoneutron histories |
| per tape dump cycle. |
| Tape durup number. |
| Total number of pseudoneutron his- |
| tories. |

APPENDIX C

DISTANCE-TO-COLLISION DISCUSSION

Use of the exponential density function $T(x)$ of Eq. (16) has the practical advantage that the distance to collision X may be sampled from a simple analytic expression. The fact that it also simulates the physical process, when sampling from the transport equation, adds to its versatility
in numerous applications.
The use of $T(X)$ for sampling the distance to collision of pseudoneutrons has also been found adequate in many adjoint problems. However, the use of $T(X)$ is not so satisfactory in some cases. This is apparently because $T(X)$ is a poor approxi-
mation to the corresponding zero-variance density function in these problems.

The zero-variance density function $T_{0}(X)$ is given by

$$
\begin{equation*}
T_{0}(x)=\frac{T(x) \beta(x) / \Sigma_{t}(x)}{\int_{0}^{\infty} T\left(x^{\prime}\right) \beta\left(x^{\prime}\right) / \Sigma_{t}\left(x^{\prime}\right) d x^{\prime}} \tag{c.1}
\end{equation*}
$$

where $\beta(X)$ is an appropriate limit of the rate at which neutrons (in the transport problem) suffer collisions and emerge from the collisions with the energy of the pseudoneutron and with their direction of flight opposite to that of the pseudoneutrons. The function $\beta(X)$ generally depends upon the direction of motion of the pseudoneutron, its energy, and the spatial position X. Here the energy and direction of motion are suppressed in the arguments of $\beta(X)$ owing to notation difficulties. It is understood that β is evaluated along the projected flight path of the pseudoneutron and at the pseudoneutron energy.

The directional dependence of $\beta(X)$ is often nearly isotropic within most of the phase space, and, for the applications in MCNA, it is assumed to be isotropic. It is also assumed that, within a cell and an energy group, $\beta(X)$ is approximately constant. Hith these assumptions, $\beta(X)$ may be approximated by its average value within $a \operatorname{cell} k$ and energy group f as

$$
\begin{equation*}
\beta_{j k}=\frac{\iint_{\operatorname{cell}} \iint_{\left(E_{L}\right)}^{\left(E_{u}\right)} \varphi(\underline{r}, E, \underline{\Omega}) \Sigma_{\mu}(\underline{R}, E) c\left(E^{\prime}, \Omega^{\prime} ; \underline{r}, E, \underline{\Omega}\right) d E^{\prime} d^{\prime} d^{3} r d E d \underline{\Omega}}{\int_{\operatorname{cell}} \int_{k}^{\left(E_{u}\right)}\left(E_{L}\right)} \tag{c.2}
\end{equation*}
$$

An option is available in MCNA to compute the quantities $\beta_{j k}$ by sampling from the transport equation. These average values for $\beta(X)$ are subsequently used in Eq. (C.1) to obtain an approximation to the zerovariance density function as
$\bar{T}(X)_{X}$ in cell k
$=e^{-\sum_{k^{\prime}=1}^{k-1} \Sigma_{t j k} \Delta x_{k^{\prime}}} e^{-\Sigma_{t j k}}\left(x-\sum_{k^{\prime}=1}^{k-1} \Delta x_{k^{\prime}}\right)_{\beta_{j k} / H}$,
where

$$
\begin{align*}
& \\
& y_{m^{\prime}}-e^{\sum_{m}^{\prime \prime}=1} \Sigma_{t j m^{\prime \prime}} \Delta x_{m^{\prime \prime}} \tag{c.6}\\
& y_{0}=1, m^{\prime}>0
\end{align*}
$$

and the cell k is determined by finding the cell that satisfies the requirement

$$
\begin{equation*}
\frac{1}{H} \sum_{m=1}^{k-1}\left(y_{m-1}-y_{m}\right) \frac{B_{j m}}{\Sigma_{t j m}}<\xi \leq \frac{1}{H} \sum_{m=1}^{k}\left(y_{m^{\prime}-1}-y_{m}\right)^{m_{m}} \frac{B_{j m^{\prime}}}{\Sigma_{t j m^{\prime}}} \tag{c.3}
\end{equation*}
$$

The pseudoneutron weight is then obtained as

$$
\begin{align*}
\bar{W} & =\overline{W^{\prime}} T(x) / \bar{T}(x), \\
& =\overline{W^{\prime}} \Sigma_{t j k} H / \beta_{j k} \tag{c.8}
\end{align*}
$$

The indications (from the problems that have been solved usins this procedure to sample for the distance to collision) are that the variance per source pseudoneutron is reduced from the variance obtained by sampling from the adjoint equation with
the analog density function $T(X)$. However, the sampling time per source pseudoneutron may increase by as much as a factor of two or even more. It is fortunate that the analog density function $T(X)$ is satisfactory for most applications. For problems for which it is not satisfactory, the density function $\bar{T}(X)$ of Eq. (C.3) may help, but the added sampling time required to sample from \bar{T} reduces its effectiveness. However, the option is available in the MCNA code.

APPEIDIX D

MISCELIANEOUS PROBABILITY CONCEPTS

1. Linear Interpolation of Density Functions

A density function $g\left(X^{\prime} ; X\right)$ is sometimes tabulated in MCN and MCNA at the points X_{1} and X_{2} with $x_{1}<x<x_{2}$. The sampling of the neutron history requires that the random variable X ' be selected from $g\left(X^{\prime} ; X\right)$. This is accomplished with a random variable ξ on the unit interval and linear interpolation as

$$
x^{\prime}=x_{1}^{\prime}+\left(x-x_{1}\right)\left(x_{2}^{\prime}-x_{1}^{\prime}\right) /\left(x_{2}-x_{1}\right),(D .1)
$$

where X_{1}^{\prime} and X_{2}^{\prime} satisfy the inverse relations

$$
\begin{align*}
& \xi=\int_{-\infty}^{x_{1}^{\prime}} g\left(x^{\prime \prime} ; x_{1}\right) d x^{\prime \prime}, \tag{D.2}\\
& \xi=\int_{-\infty}^{x_{2}^{\prime}} g\left(x^{\prime \prime} ; x_{2}\right) d x^{\prime \prime} . \tag{D.3}
\end{align*}
$$

The sampling of the pseudoneutron history requires computation of the actual density function $g\left(X^{\prime} ; X\right)$ to compute the weight of the pseudoneutron. If $G\left(X^{\prime} ; X\right)$ is defined to be the cumulative distribution function, then, from Eqs. (D.2) and (D.3), it must satisfy

$$
\begin{equation*}
G\left(x^{\prime} ; x\right)=G\left(x_{1}^{\prime} ; X_{1}\right)=G\left(X_{2}^{\prime} ; X_{2}\right), \tag{D.4}
\end{equation*}
$$

where $x^{\prime}, x_{1}^{\prime}$ and x_{2}^{\prime} are related by Eq. (D.1). The
distribution function $g\left(X^{\prime} ; x\right)$ may be expressed as

$$
\begin{equation*}
g\left(x^{\prime} ; x\right)=\frac{d G\left(x^{\prime} ; x\right)}{d x^{\prime}}=\frac{d G\left(x_{1}^{\prime} ; x_{1}\right)}{d x_{1}^{\prime}} \frac{d x_{1}^{\prime}}{d x^{\prime}} \tag{D.5}
\end{equation*}
$$

The derivatives may be obtained from Eq. (D.1), (D.2), and (D.3) as
$\frac{d G\left(x_{1}^{\prime} ; x_{1}\right)}{d x_{1}}=\frac{d}{d x_{1}^{\prime}} \int_{-\infty}^{x_{1}^{\prime}} g\left(x^{\prime \prime} ; x_{1}\right) d x^{\prime \prime}=g\left(x_{1}^{\prime} ; x_{1}\right)$
$\frac{d x^{\prime}}{d x_{1}^{\prime}}=\frac{\partial x^{\prime}}{\partial x_{1}^{\prime}}+\frac{\partial x^{\prime}}{\partial x_{2}^{\prime}} \frac{d x_{2}^{\prime}}{d x_{1}}$

$$
\begin{equation*}
=1-\frac{\left(x-x_{1}\right)}{\left(x_{2}-x_{1}\right)}+\frac{\left(x-x_{1}\right) g\left(x_{1}^{\prime} ; x_{1}\right)}{\left(x_{2}-x_{1}\right)} \frac{g\left(x_{2}^{\prime} ; x_{2}\right)}{}, \tag{D.7}
\end{equation*}
$$

where $d x_{2}^{\prime} / d x_{1}^{\prime}$ was obtained by combining Eqs. (D.2) and (D.3). With Eqs. (D.6) and (D.7), the density function of Eq. (D.5) may be expressed as

$$
\begin{align*}
g\left(x^{\prime} ; x\right) & =\frac{G\left(x_{1}^{\prime} ; x_{1}\right)}{1-\frac{\left(x-x_{1}\right)}{\left(x_{2}-x_{1}\right)}+\frac{\left(x-x_{1}\right)}{\left(x_{2}-x_{1}\right)} \frac{g\left(x_{1}^{\prime} ; x_{1}\right)}{g\left(x_{2}^{\prime} ; x_{2}\right)}} \\
& =\frac{g\left(x_{1}^{\prime} ; x_{1}\right) g\left(x_{2}^{\prime} ; x_{2}\right)}{\left[1-\left(\frac{x-x_{1}}{x_{2}-x_{1}}\right)\right] g\left(x_{2}^{\prime} ; x_{2}\right)+\frac{\left(x-x_{1}\right)}{\left(x_{2}-x_{1}\right)} g\left(x_{1}^{\prime} ; x_{1}\right)} . \tag{D.8}
\end{align*}
$$

2. Sangling the Weighted Free-Gas Density Function

The density function b_{1}^{i} of Eq. (A.14) may be expressed as the product of a marginal density function g_{1}^{i} for selecting the energy E and a conditional: density function h_{1}^{i} for selecting the laboratory scattering angle $\mu_{L^{*}}$. These density functions are determined in the usual manner as

$$
\begin{align*}
& g_{l}^{i}\left(E ; \underline{r}, E^{\prime}\right)=\int b_{l}^{i}\left(E, \underline{\Omega}_{a} ; \underline{r}, E^{\prime}, \underline{\Omega}_{a}^{\prime}\right) \underline{\Omega}_{a} \\
& =\frac{\Sigma_{1}^{i}(\underline{r}, E) C_{1}^{1}\left(E^{\prime} ; \underline{r}, E\right) \Phi(E)_{j^{\prime}}}{\int_{\left(E_{L}\right)_{J^{\prime}}}^{\left(E_{U_{j}}^{\prime}\right.} \Gamma_{1}^{i}\left(\underline{r}_{2} E^{\prime \prime}\right) C_{1}^{i}\left(E^{\prime} ; \underline{r}, E^{\prime \prime}\right) \Phi\left(E^{\prime}\right)_{j^{\prime}} d E^{\prime \prime}}, \tag{D.g}
\end{align*}
$$

$$
\begin{align*}
h_{l}^{i}\left(\mu_{L} ; \underline{r}, E^{\prime}, E\right) & =\frac{2 r b_{1}^{i}\left(E, \Omega_{a} ; \underline{r}, E^{\prime}, \Omega_{a}^{\prime}\right)}{g_{1}^{i}\left(E ; \underline{r}, E^{\prime}\right)} \\
& =\frac{2 r c_{1}^{i}\left(E^{\prime},-\Omega_{a}^{\prime} ; \underline{r}, E,-\Omega_{a}\right)}{C_{l}^{i}\left(E^{\prime} ; \underline{r}, E\right)} \tag{D.10}
\end{align*}
$$

Where $C_{1}^{i}\left(E^{\prime} ; \underline{r}, E\right)$ is defined as

$$
C_{l}^{i}\left(E^{\prime} ; \underline{r}, E\right)=\int C_{l}^{i}\left(E^{\prime},-\Omega_{a}^{\prime} ; \underline{r}, E,-\Omega_{a}\right) \underline{\Omega}_{a} \text {. (D.Il.) }
$$

The density function g_{1}^{i} of Eq. (D.9) may be obtained by replacing $\Sigma_{1}^{i}(\underline{r}, E) C_{1}^{1}\left(E^{\prime} ; \underline{r}, E\right)$ with the free: gas kernel as given, for example, by Eq. (2.19a) of Williams: ${ }^{14}$

$$
\begin{align*}
g_{1}^{i}\left(E ; \underline{r}, E^{\prime}\right) & =\frac{I}{E} \Phi(E) g^{\prime}\left\{e ^ { - (\varepsilon ^ { \prime } - \epsilon) } \left[\operatorname{Erf}\left(\theta \sqrt{\epsilon}-\zeta \sqrt{\varepsilon^{\prime}}\right)\right.\right. \\
& \pm \operatorname{Erf}\left(\theta \sqrt{\epsilon}+\zeta \sqrt{\varepsilon^{\prime}}\right)+\operatorname{Erf}\left(\theta \sqrt{\varepsilon^{\prime}}-\zeta \sqrt{\epsilon}\right) \\
& \left.\mp \operatorname{Erf}\left(\theta \sqrt{\varepsilon^{\prime}}+\zeta \sqrt{\epsilon}\right)\right\} / \mathrm{U}, \tag{D.12}
\end{align*}
$$

where U is the integral of the numerator of the right-hand side of Eq. (D.12) from $\left(E_{L}\right)_{j}$, to $\left(E_{u}\right)_{j}$,, the \mp signs are used for $E<E^{\prime}$ or $E>E^{\prime}$, respec tively, and

$$
\begin{align*}
& \varepsilon^{\prime}=E^{\prime} / T \tag{D.L3}\\
& \epsilon=E / T \tag{D.14}
\end{align*}
$$

$$
\begin{align*}
& \theta=(A+1) / 2 \sqrt{A} \tag{D.15}\\
& \zeta=(A-1) / 2 \sqrt{A} . \tag{D.16}
\end{align*}
$$

An analytic expression for the corresponding cumulative distribution function G_{1}^{1} may be obtained when $\Phi(E)_{j}=E e^{-E / T}$, but G_{1}^{1} must be tabulated for $\Phi(E)_{j^{\prime}}=1 / \mathrm{E}$. In either case, it is impossible to obtain an expression for the inverse E in terms of G_{1}. The technique used in the MCNA code is to divide the range from $\left(E_{L}\right)_{j}$, to $\left(E_{u}\right)_{j}$, of E into equal segments, evaluate G_{1}^{1} at the segment boundaries, and linearly interpolate for E.

The analytic expression for G_{l}^{i} with $\Phi(E)_{j},=$
is given by $\mathrm{Ee}^{-\mathrm{E} / \mathrm{T}}$ is given by
$G_{1}^{i}\left(E ; \underline{r}, E^{\prime}\right)$

where the expression in Eq. (D.17) must be evaluated at the limits $\left(E_{u_{j}}\right)$ and ($\left.E_{L_{j}}\right)_{j}$, For in-group scattering (i.e., E and E^{\prime} both in group j^{\prime}), the expression must also be evaluated at the inner limit E^{\prime}, owing to the sign changes.

The density function h_{1}^{i} of Eq. (D.10) is the ratio of the free-gas scattering kernel for the energy and scattering angle, as given by Eq. (2.19) of Williams, ${ }^{14}$ to the free-gas scattering kernel for the energy alone as given by Williams' Eq. (2.19a). The algebra involved in substituting these definitions into h_{1}^{1} and evaluating the cumulative distribution function H_{1}^{1} is tedious and will not be given
here. The result is that

$$
\begin{align*}
H_{1}^{1}\left(\mu_{L} ;\right. & \left.\underline{x}, E^{\prime}, E\right)=\left\{\operatorname{Erf}\left(\beta-\frac{Y}{\beta}\right)-\operatorname{Erf}\left(\eta-\frac{Y}{\eta}\right)\right. \\
& \left.+e^{4 \gamma} \operatorname{Erf}\left[\left(\beta+\frac{Y}{\beta}\right)-\operatorname{Erf}\left(\eta-\frac{Y}{\eta}\right)\right]\right\} / \\
& \left\{\operatorname{Erf}\left(\beta-\frac{Y}{\beta}\right)-\operatorname{Erf}\left(\eta_{1}-\frac{Y}{\eta_{1}}\right)\right. \\
& \left.+e^{4 Y} \operatorname{Erf}\left[\left(\beta+\frac{Y}{\beta}\right)-\operatorname{Erf}\left(\eta_{1}-\frac{Y}{\eta_{1}}\right)\right]\right\} \tag{D.18}
\end{align*}
$$

where

$$
\beta=\frac{1}{2 \sqrt{A T}}\left(\sqrt{E}+\sqrt{E^{T}}\right),
$$

$\eta=\frac{1}{2 \sqrt{A T}}\left(E+E^{\prime}-2 \mu_{L} \sqrt{B E}\right)^{1 / 2}$,
$\eta_{1}=\frac{1}{2 \sqrt{A T}}\left(E+E^{\prime}-2 \sqrt{E E^{\prime}}\right)^{1 / 2}=\frac{1}{2 \sqrt{A T}}\left|\sqrt{E}-\sqrt{E^{\prime}}\right|$, $Y=\left(E-E^{\prime}\right) / 4 T \quad$,
$\operatorname{Erf}(y)=\frac{2}{\sqrt{\pi}} \int_{0}^{y} e^{-u^{2}} d u \quad$.
It is impossible to obtain an inverse solution of Eq. (D.18) for μ_{L}. The technique utilized in the MCNA code is to divide the range from -1 to +1 of μ_{L} into equal segments, evaluate H_{l}^{i} at the segment boundaries, and linearly interpolate for μ_{L}.

APPENDTX E
SCORING IN THE ADJOINT CALCULATION
FOR A POINT NEUTRON SOUCE

1. Derivation of Scoring Equations at a Pseudoneutron Collision

The neutron souce is assumed to be of the form $S(\underline{r}, E, \underline{\Omega}, t)=S_{\theta}(E, \underline{\Omega}, t) \delta\left(x-x_{\theta}\right) \delta\left(y-y_{\theta}\right) \delta\left(z-z_{\theta}\right)$,
where $S_{\theta}(E, \underline{\Omega}, t)$ does not contain a delta function. A possible scoring technique in the adjoint calculation is to compute the density of neutrons emerging from their first collision and use this as the neutron source. At each pseudoneutron collision, the score is
$\bar{W} *\left(\right.$ first-collision neutron source at $\left.r^{\prime}, E^{\prime},-\Omega^{\prime}, t^{\prime}\right)$

$$
\begin{equation*}
\Sigma_{t}\left(\underline{r}^{\prime}, E^{\prime}\right) \tag{E.2}
\end{equation*}
$$

where the pseudoneutron collision occurs at $\underline{r}^{\prime}, E^{\prime}$, $\underline{\Omega}^{\prime}, t^{\prime}$.

A more practical procedure is to select the event α prior to the scoring with probability
$\bar{Q}_{\alpha}(j, k, \cdots)$. Then the score is given by
$\bar{W}^{*}\left(\right.$ first-collision neutron source at $\underline{\underline{r}}^{\prime}, \mathrm{E}^{\prime}, \underline{\Omega} \underline{\Omega}^{\prime}, t^{\prime}$ \ldots due to event of type α)

$$
\begin{equation*}
\Sigma_{t}\left(r^{\prime} E^{\prime}\right) \bar{Q}_{\alpha}(j, k, \cdots) \tag{E.3}
\end{equation*}
$$

This gives the correct expectation; the expectation value of the score at the collision is given by
$\frac{\sum_{\alpha} \bar{W}^{*}\binom{\text { first-collision neutron source at }}{\underline{r}^{\prime}, E^{\prime}, \underline{\Omega}^{\prime}, t^{\prime} \text { due to event of type } \alpha} \overline{Q_{\alpha}}(j, k, \ldots)}{\Sigma_{t}\left(\underline{r}^{\prime}, E^{\prime}\right) \bar{Q}_{\alpha}(j, k, \cdots)}$

$$
=\frac{\begin{array}{c}
\bar{W}(\text { first-collision neutron source } \tag{E.4}\\
\text { at } \left.\underline{r}, E^{\prime}, \underline{\Omega}^{\prime}, t^{\prime}\right)
\end{array}}{\Sigma_{t}\left(\underline{r}^{\prime}, E^{\prime}\right)}
$$

The scoring in the adjoint calculation for the four types of α events will now be considered (the notation is the same as in Appendix A):

a. Epithermal Elastic Scattering with an Isotope.

The first-collision elastic scattering source may be derived by beginning with an expression for the first-flight neutron flux at $\underline{r}^{\prime \prime}, \mathrm{E}^{\prime \prime}, \underline{\Omega}^{\prime \prime}, \mathrm{t}^{\prime \prime}$, due to a unit neutron source at $\underline{\underline{r}}, \mathrm{E}, \underline{\Omega}, \mathrm{t}$, as given by ${ }^{18}$
$g\left(\underline{r}^{\prime \prime}, E^{\prime \prime}, \underline{\Omega}^{\prime \prime}, t^{\prime \prime} ; \underline{r}, E, \underline{\Omega}, t\right)=\left\{\begin{array}{l}-\int_{\underline{r^{\prime \prime}}}^{\underline{r}_{t}}(s, E) d s \\ \frac{\underline{\underline{r}}}{\left|\underline{r}^{\prime \prime}-\underline{r}\right|^{2}} \delta\left(\underline{\Omega}-\underline{\Omega}^{\prime \prime}\right)\end{array}\right.$

$$
\begin{equation*}
\left.\delta\left[\underline{\Omega}^{\prime \prime}-\frac{\left(\underline{r}^{\prime \prime}-\underline{r}\right)}{\left|\underline{\underline{\prime}}^{\prime \prime}-\underline{r}\right|}\right] \delta\left(t^{\prime \prime}-t-\frac{\left|\underline{r}^{\prime \prime}-\underline{r}\right|}{V}\right) \delta\left(E-E^{\prime \prime}\right)\right\} \tag{E.5}
\end{equation*}
$$

where

$$
\begin{equation*}
E=\frac{2 E^{\prime}}{(1-\bar{\alpha}) \mu_{c m}+1+\bar{\alpha}} \tag{E.8}
\end{equation*}
$$

$\mu_{c m}=\left[-1+\mu_{L}^{2}+\mu_{L} \sqrt{\mu_{L}^{2}-\left(1-A^{2}\right)}\right] / A$,
$\mu_{L}=-\underline{\Omega} \cdot \underline{\Omega}^{\prime}$,
$\underline{\Omega}=\frac{\underline{\underline{r}}^{\prime}-\underline{\underline{r}}_{\theta}}{\left|\underline{\underline{r}}^{\prime}-\underline{\underline{r}}_{\theta}\right|}$.

Therefore, the contribution that an elastic collision of the pseudoneutron makes to the estimate J is given by
where s denotes an integration along a straight-line path. If δ_{θ} is defined to be the first-flight neutron flux due to the source s, g_{θ} may be expressed as
$\mathrm{E}_{\theta}\left(\underline{r}^{\prime \prime}, \mathbb{E}^{\prime \prime}, \underline{\Omega}^{\prime \prime}, \mathrm{t}^{\prime \prime} ; \mathrm{s}\right)=\iiint \int \mathrm{g}\left(\underline{\underline{r}}^{\prime \prime}, \mathrm{E}^{\prime \prime}, \underline{\Omega}^{\prime \prime}, \mathrm{t}^{\prime \prime} ; \underline{\underline{r}}, \mathrm{E}, \underline{\Omega}, \mathrm{t}\right) \mathrm{s}(\underline{\mathrm{r}}, \mathrm{E}, \underline{\Omega}, \mathrm{t}) \mathrm{d}^{3} \mathrm{rdEd} \underline{\Omega} \mathrm{d} t$

$$
\begin{equation*}
=\left\{\frac{e^{-\int_{r_{\theta}}^{\underline{r}^{\prime \prime}}} \Sigma_{t}\left(s, E^{\prime \prime}\right) d s}{\left|\underline{\underline{r}}^{\prime \prime}-\underline{r}_{\theta}\right|^{2}} s_{\theta}\left(E^{\prime \prime}, \underline{\Omega}^{\prime \prime}, t^{\prime \prime}-\frac{\left|\underline{\underline{r}}^{\prime \prime}-\underline{r}_{\theta}\right|}{V}\right) \delta\left[\underline{\Omega}^{\prime \prime}-\frac{\left(\underline{r}^{\prime \prime}-\underline{r}_{\theta}\right)}{\left|\underline{\underline{r}}^{\prime \prime}-\underline{r}_{\theta}\right|}\right]\right\} \tag{E.6}
\end{equation*}
$$

The first-collision elastic scattering source at $\underline{r}^{\prime}, E^{\prime},-\underline{\Omega}^{\prime}, t^{\prime}$ is then given by

$$
\begin{align*}
& \iint\left(\varepsilon_{\theta}\left(\underline{r}^{\prime}, E^{\prime \prime}, \underline{\Omega^{\prime \prime}}, t^{\prime} ; s\right) \Sigma_{s l}^{i}\left(\underline{r}^{\prime}, E^{\prime \prime}\right) \frac{D_{1}^{i}\left(-\underline{\Omega}^{\prime \prime} \cdot \underline{\Omega}^{\prime} ; \underline{r}, E^{\prime \prime}\right)_{L}}{\pi r} \delta\left\{E^{\prime}-\frac{E^{\prime \prime}\left[(1-\bar{\alpha}) \mu_{c m}+1+\bar{\alpha}\right]}{2}\right\}_{E^{\prime}} d E^{\prime \prime} d \Omega^{\prime \prime}\right) \\
& =\frac{-\int_{\underline{r}_{\theta}}^{\underline{r}^{\prime}} \Sigma_{t}(s, E) d s}{\left|\underline{r}^{\prime}-\underline{r}_{\theta}\right|^{2}} \frac{S_{\theta}\left(E, \underline{\Omega}, t^{\prime}-\frac{\left|\underline{\underline{r}}^{\prime}-\underline{r}_{\theta}\right|}{V}\right) \Sigma_{s 1}^{1}\left(\underline{r}^{\prime}, E\right) D_{1}^{1}\left(\mu_{L} ; \underline{r}, E^{\prime}\right) L E}{3 \pi E^{\prime}}, \tag{E.7}
\end{align*}
$$

$$
\begin{equation*}
J=J^{\prime}+\frac{\bar{W}_{\bar{W} e_{e}}^{-\int_{\underline{r}_{\theta}}^{\underline{r}^{\prime}} \Sigma_{t}(s, E) d s} s_{\theta}\left(E, \underline{\Omega}, t^{\prime}-\frac{\underline{\underline{r}}^{\prime}-\underline{r}_{\theta} \mid}{V}\right) \Sigma_{s 1}^{1}\left(\underline{r}^{\prime}, E\right) D_{1}^{1}\left(\mu_{L} ; \underline{r}, E^{\prime}\right)_{L} E}{\Sigma_{t}\left(\underline{r}^{\prime}, E^{\prime}\right) z r\left|\underline{r}^{\prime}-\underline{r}_{\theta}\right|^{2} \bar{Q}_{I}(\jmath, k, 1) E^{\prime}}, \tag{E.12}
\end{equation*}
$$

where

$$
\begin{align*}
D_{1}^{i}\left(\mu_{L} ; \underline{r}, E\right)_{L} & =D_{1}^{i}\left(\mu_{c m} ; \underline{r}, E\right)_{c m} \frac{\alpha_{c m}}{\alpha \mu_{L}} \\
& =D_{1}^{i}\left(\mu_{c m} ; \underline{r}, E\right)_{c m}\left(\mu_{L}+\sqrt{\mu_{L}^{2}-\left(1-A^{2}\right)}+\frac{\mu_{L}^{2}}{\sqrt{\mu_{L}^{2}-\left(1-A^{2}\right)}}\right) / \mathrm{A} \tag{E.13}
\end{align*}
$$

b. Inelastic Scattering with a Continuum Density Function. The first-collision source for an event of type 2 is given by

$$
\iint_{E_{L}}^{E_{u}} g_{\theta}\left(\underline{r}^{\prime}, \mathbb{E}^{\prime \prime}, \underline{\Omega^{\prime \prime}}, t^{\prime} ; s\right) \sum_{i} \Sigma_{2}^{i}\left(\underline{r}^{\prime}, E^{\prime \prime}\right) c_{2}^{i}\left(E^{\prime},-\underline{\Omega^{\prime}} ; \underline{\underline{r}}^{\prime}, E^{\prime \prime}, \underline{\Omega}^{\prime \prime}\right) d E^{\prime \prime} d \underline{\Omega^{\prime \prime}}
$$

$$
\begin{equation*}
=\int_{E_{L}}^{E_{u}}\left[\frac{-\int_{\underline{r}_{\theta}}^{\underline{\underline{r}}^{\prime}} \Sigma_{t}\left(s, E^{\prime \prime}\right) d s}{\left|\underline{\underline{r}}^{\prime}-r_{\theta}\right|^{2}} s_{\theta}\left(E^{\prime \prime}, \underline{\Omega}, t^{\prime}-\frac{\left|\underline{\underline{r}}^{\prime}-\underline{r}_{\theta}\right|}{\mathrm{V}^{\prime \prime}}\right) \sum_{i} \sum_{2}^{i}\left(\underline{r}^{\prime}, E^{\prime \prime}\right) c_{2}^{i}\left(E^{\prime},-\underline{\Omega^{\prime}} ; \underline{\underline{r}}^{\prime}, E^{\prime \prime}, \underline{\Omega}\right) d E^{\prime \prime}\right], \tag{E.14}
\end{equation*}
$$

where

$$
\begin{align*}
& \underline{\Omega}=\frac{\underline{r^{\prime}}-\underline{r}_{\theta}}{\left|\underline{\underline{r}}^{\prime}-\underline{r}_{\beta}^{\prime}\right|}, \tag{E.15}\\
& E_{L}=E^{\prime}+\sum_{\beta^{\prime}=1}^{\beta-1} \Delta E_{\beta^{\prime}}, \tag{E.16}\\
& E_{u}=E^{\prime}+\sum_{\beta^{\prime}=1}^{\beta} \Delta E_{\beta^{\prime}}, \tag{E.17}
\end{align*}
$$

The numerical evaluation of the integrad in $E q$; (E.14) may be avoided by selecting an energy E from the density function

$$
\begin{equation*}
f\left(E ; E^{\prime}\right)=\frac{1}{E_{u}-E_{L}} \quad, \quad \text { for } E_{L} \leq E \leq E_{u} \tag{E.18}
\end{equation*}
$$

The score is then given by

This yields the correct expectation value for a collision at $\underline{r}^{\prime}, E^{\prime}, \underline{\Omega}^{\prime}, t^{\prime}$.
c. Inelastic Scattering with a Discrete Model.
(1) Laboratory system. The first-collision neutron source for this event is given by
$\iint\left\{g_{\theta}\left(\underline{r}^{\prime}, E^{\prime \prime}, \underline{\Omega}^{\prime \prime}, t^{\prime} ; S\right) \Sigma_{3}^{i}\left(\underline{r}^{\prime}, E^{\prime \prime}\right)_{\ell} \frac{1}{2 \pi} D_{3}^{i}\left(-\underline{\Omega}^{\prime} \cdot \underline{\Omega}^{\prime \prime} ; \underline{r}^{\prime}, E^{\prime \prime}\right)_{\ell} \delta\left[E^{\prime}-\frac{\left(E^{\prime \prime}-\underline{\varepsilon}\right)}{\eta}\right]_{E^{\prime}} v_{3}^{i}\left(\underline{r}^{\prime} ; E^{\prime \prime}\right){ }_{\ell} d E^{\prime \prime} d \underline{\Omega}^{\prime \prime}\right\}$

$$
\begin{equation*}
\left.=\frac{e^{-\int_{r_{\theta}}^{\underline{r}^{\prime}} \Sigma_{t}(s, E) d s}}{\Sigma_{3}^{i}\left(\underline{r}^{\prime}, E\right)_{\ell} S_{\theta}\left(E, \underline{\Omega}, t^{\prime}-\frac{\left|\underline{r}^{\prime}-\underline{r}_{\theta}\right|}{V}\right) \frac{1}{2 \pi} D_{3}^{i}\left(\mu_{L} ; \underline{r}^{\prime}, E\right)_{\ell} \underline{m}_{3}^{i}\left(\underline{r}^{\prime}, E\right)_{\ell}}\right) \tag{E.20}
\end{equation*}
$$

where

$$
\begin{align*}
& \mu_{L}=-\underline{\Omega}^{\prime} \cdot \underline{\Omega}, \tag{E.21}\\
& \underline{\Omega}=\frac{\underline{r}^{\prime}-\underline{r}_{\theta}}{\left|\underline{r}^{\prime}-\underline{r}_{\theta}\right|}, \tag{E.22}\\
& E=\eta E^{\prime}+\varepsilon \tag{E.23}
\end{align*}
$$

The contribution of the collision to the estimate is given by
(2) Center-of-Mass System.

The first-collision neutron source for this event is given by
$\iint G_{0}\left(\underline{r}^{\prime}, E^{\prime \prime}, \underline{\Omega}^{\prime \prime}, t^{\prime} ; s\right) \Sigma_{3}^{i}\left(\underline{r}^{\prime}, E^{\prime \prime}\right)_{\ell} C_{3}^{i}\left(E^{\prime},-\underline{\Omega}^{\prime} ; \underline{r}^{\prime}, E^{\prime \prime}, \Omega^{\prime \prime}\right)_{\ell} d E^{\prime \prime} d \underline{\Omega^{\prime \prime}}$

$$
\begin{align*}
& -\int_{\underline{r}_{\theta}}^{\underline{r}^{\prime}} \Sigma_{t}\left(s, E^{\prime \prime}\right) d s \tag{E.25}\\
= & \int \frac{e^{\underline{r_{\theta}}}-\left.\underline{r}_{\theta}\right|^{2}}{\mid \underline{r}^{\prime}} S_{\theta}\left(E^{\prime \prime}, \underline{\Omega}, t^{\prime}-\frac{\underline{\underline{r}^{\prime}-\underline{r}_{\theta} \mid}}{V^{\prime \prime}}\right) \Sigma_{3}^{i}\left(\underline{r}^{\prime}, E^{\prime \prime}\right)_{\ell} C_{3}^{i}\left(E^{\prime},-\underline{\Omega}^{\prime} ; \underline{r}^{\prime}, E^{\prime \prime}, \underline{\Omega}\right)_{\ell} d E^{\prime \prime} .
\end{align*}
$$

The integration over $E^{\prime \prime}$ may be performed by expanding C_{3}^{i} as C_{2}^{i} was previously expanded in Eq. (A.23) for
the continuous case. Thus, C_{3}^{i} may be expanded as

$$
\begin{align*}
C_{3}^{i}\left(E^{\prime},-\underline{\Omega}^{\prime} ; \underline{\underline{r}}^{\prime}, E^{\prime \prime}, \underline{\Omega}\right)_{\ell} & =C_{3}^{i}\left(E_{c m}^{\prime}, \mu_{c m} ; \underline{r}^{\prime}, E^{\mu}, \underline{\Omega}\right)|J| \\
& =\frac{1}{2 \pi} C_{3}^{i}\left(\mu_{c m} ; \underline{x}^{\prime}, E^{\prime \prime}, \underline{\Omega}\right)_{c m} \delta\left(E^{\prime \prime}-\eta E_{c m}^{\prime}-\left.\varepsilon\right|_{E_{c m}^{\prime}} v_{3}^{i}\left(\underline{r}^{\prime}, E^{\prime \prime}\right)_{2}|J|,\right. \tag{E.26}
\end{align*}
$$

where

$$
\begin{equation*}
|J|=\sqrt{\frac{E^{\prime}}{E_{c \mathrm{~m}}^{\prime}}} \tag{E.27}
\end{equation*}
$$

The integration over $E^{\prime \prime}$ may now be performed to obtain the contribution of the collision to the estimate as
where

$$
\begin{align*}
& \mu_{L}=-\underline{\Omega} \cdot \underline{\Omega}^{\prime} \\
& E=\frac{\left\{\operatorname{ar}_{L}^{2} E^{\prime}+\left[\frac{\left.(A+1)^{2}-\eta\right]\left[\frac{\epsilon}{\eta}+E^{\prime}\right] \pm \mu_{L} \sqrt{4 \mu_{L}^{2}\left(E^{\prime}\right)^{2}+\frac{4 E^{\prime}}{\eta}\left[(A+1)^{2}-\eta\right]\left[\frac{\epsilon}{\eta}+E^{\prime}\right]}}{\left[\frac{\left.(A+1)^{2}-\eta\right]^{2}}{\eta(A+1)}\right]^{2}},\right. \text { (E.29) }\right.}{E_{c m}^{\prime}=\frac{(E-\varepsilon)}{\eta}} \\
& \mu_{c m}=\mu_{L} \sqrt{\frac{E^{\prime}}{E_{c m}^{\prime}}}-\left[\sqrt{\frac{E}{E_{c m}^{\prime}}} /(A+1)\right], \tag{E.30}
\end{align*}
$$

for energies such that $E>\varepsilon$ and $\left|\mu_{c m}\right|<1$. There is no contribution if E is less than ε or $\left|\mu_{c m}\right|>1$.
The solution for E in Eq. (E.29) was obtained by inserting $E_{c m}^{\prime}$, as given by Eq. (E.30), into Eq. (A.27), and solving for E. Note that two solutions for E may be obtained, where each solution has $E>\varepsilon$ and $\left.\right|_{\mu_{\mathrm{cm}}} \mid<1$. If this is the case, the right-hand side of Eq. (E.28) should be written as a sum of the contribution from each E.
d. Fission. The first-collision neutron source for this event is given by

$$
\iint g_{\theta}\left(\underline{r}^{\prime}, E^{\prime \prime}, \underline{\Omega}^{\prime \prime}, t^{\prime} ; s\right) \sum_{1} v_{4}^{1}\left(\underline{(}^{\prime}, E^{\prime \prime}\right) \Sigma_{4}^{1}\left(\underline{\underline{r}}^{\prime}, \mathbb{E}^{\prime \prime}\right) \gamma\left(E^{\prime}\right) \frac{1}{4 \pi} d E^{\prime \prime} d \underline{d}^{\prime \prime}
$$

$$
\begin{equation*}
=\frac{\int_{\left(E^{L}\right)_{j^{\prime}}}^{\left(E^{u}\right)_{j}^{\prime}} e^{-\int_{\underline{r}_{\theta}}^{\underline{r}^{\prime}} \Sigma_{t}\left(s, E^{\prime \prime}\right) d s} s_{\theta}\left(E^{\prime \prime}, \underline{\Omega}, t^{\prime}-\frac{\left|\underline{\underline{r}}^{\prime}-r_{\theta}\right|}{V^{\prime}}\right) \sum_{i} r_{4}^{i}\left(\underline{r}^{\prime}, E^{\prime \prime}\right) \Sigma_{4}^{i}\left(\underline{r}^{\prime}, E^{\prime \prime}\right) \gamma\left(E^{\prime}\right) d E^{\prime \prime}}{\left|\underline{\underline{r}}^{\prime}-\underline{r}_{\theta}\right|^{2} 4 \pi} . \tag{E.32}
\end{equation*}
$$

The evaluation of the integral in Eq. (E.32) may be avoided by selecting the energy E from the density function,

$$
\begin{equation*}
F\left(E ; E^{\prime}\right)=\frac{1}{\left(E^{u}\right)_{J^{\prime}}-\left(E^{L}\right)_{j}} \Rightarrow \text { for }\left(E^{L}\right)_{j^{\prime}} \leq E \leq\left(E^{\mathrm{u}}\right)_{j^{\prime}} \tag{e.3y}
\end{equation*}
$$

The score is then given by

This gives the correct expectation value for a collilision at $\underline{r}^{\prime}, \mathrm{E}^{\prime}, \underline{\Omega}^{\prime}, t^{\prime}$.

2. Derivation of the Scoring Equation for the First Flight of the Pseudoneutron

The results in part 1 do not include the first flight's contribution to the functional. The firstflight contribution to the functional J may be obtained from Eq. (8) as

$$
\begin{equation*}
J_{f}=\iint G^{+}\left(\underline{R}^{\prime} ; \underline{R}\right) s\left(\underline{R}^{\prime}\right) \Sigma(\underline{R}) d \underline{R}^{\prime} d \underline{R}, \tag{E.35}
\end{equation*}
$$

where G^{+}in Eq. (E.35) is obtained as the solution of Eq. (6) with the collision source term omitted; this yields the first-flight contribution. The transformed adjoint Green's function satisfies the seme equation as the corresponding Green's function for the transport equation. Therefore, by using the relationship between the transformed adjoint Green's function and the adjoint Green's function of Eq. (11), one may use Eq. (E.5) to express the adjoint Green's function as
$G^{+}\left(\underline{r}^{\prime}, E^{\prime}, \underline{\Omega}^{\prime}, t^{\prime} ; \underline{r}, E, \underline{\Omega}, t\right)=\frac{-\int^{\underline{\underline{r}}} \underline{\underline{r}}^{\prime} \Sigma_{t}(s, E) d s}{\left|\underline{r}^{\prime}-\underline{r}\right|^{2}} \delta\left(-\underline{\Omega}+\underline{\Omega}^{\prime}\right) \delta\left(-\underline{\Omega}^{\prime}-\frac{\left(\underline{r}^{\prime}-\underline{r}\right)}{\left|\underline{r}^{\prime}-\underline{r}\right|}\right) \delta\left(-t^{\prime}+t-\frac{\left|\underline{r}^{\prime}-\underline{r}\right|}{V}\right) \delta\left(E-E^{\prime}\right)$.

This expression for G^{+}may be inserted into Eq. (E.35), with S given by Eq. (E.1), and the integration may be performed over the \underline{R}^{\prime} and $\underline{\Omega}$ variables to obtain.

$$
\begin{equation*}
J_{f}=\iiint \frac{e^{-\int_{\underline{r_{\theta}}}^{\underline{r}^{\prime}} \Sigma_{t}(s, E) d s}}{\left|\underline{\underline{r}}^{\prime}-\underline{r}_{\theta}\right|^{2}} s_{\theta}\left(E, \underline{\Omega}, t-\frac{\left|\underline{r}-\underline{r}_{\theta}\right|}{V}\right) \Sigma\left(\underline{r}^{\prime}, E, \underline{\Omega}, t\right) d^{3} r^{\prime} d E d t \tag{E.37}
\end{equation*}
$$

where some variable changes ($\underline{r} \boldsymbol{\|} \underline{r}^{\prime}$) and

$$
\begin{equation*}
\underline{\Omega}=\frac{\underline{r}^{\prime}-\underline{r}_{\theta}}{\left|\underline{\underline{r}}^{\prime}-\underline{r}_{\theta}\right|}, \tag{F.38}
\end{equation*}
$$

have been made.
This first-flight contribution may be estimated in the sampling from the adjoint equation by selecting the initial pseudoneutron paremeters from a density function $\overline{\mathrm{g}}\left(\underline{r}^{\prime}, \mathrm{E}, \Omega_{a}^{\prime \prime}, t\right)$, assigning an initial weight of

$$
\begin{equation*}
\bar{W}=\frac{\Sigma\left(\underline{\underline{r}}^{\prime}, E,-\underline{\Omega}_{a}^{\prime \prime}, t\right)}{\overline{\mathrm{G}}\left(\underline{\underline{r}}^{\prime}, E, \underline{\Omega}_{\mathrm{a}}^{\prime \prime}, t\right)}, \tag{E.39}
\end{equation*}
$$

and computing the contribution to J as

$$
\begin{equation*}
J_{f}=\left[\bar{N} s_{\theta}\left(E, \underline{\Omega}, t-\frac{\left|\underline{r}^{\prime}-\underline{r}_{\theta}\right|}{V}\right) \frac{\bar{g}\left(\underline{r}^{\prime}, E, \underline{\Omega}_{a}^{\prime \prime}, t\right)}{\int \bar{g}\left(\underline{r}^{\prime}, E, \underline{\Omega}_{a}^{\prime}, t\right) \underline{\Omega}_{a}^{\prime}} \frac{\Sigma\left(\underline{r}^{\prime}, E, \underline{\Omega}, t\right)}{\Sigma\left(\underline{r}^{\prime}, E,-\underline{\Omega}_{a}^{\prime \prime}, t\right)} \frac{e^{\int_{\theta}^{\underline{r}^{\prime}} \Sigma_{t}(s, E) d s}}{\left|\underline{r}^{\prime}-\underline{r}_{\theta}\right|^{2}}\right] . \tag{E.40}
\end{equation*}
$$

The expectation value of J_{f} in Eq. (E.40) is simply J_{f} of Eq. (E.37).

3. The Point-Source Estimator Utilized in MCNA

Equations (E.12), (E.19), (E.24), (E.28), (E.34), and (E.40) express the point-source score for the event, or first flight, as a given factor, denoted by ANL in the program, multiplied by the source density $S_{\theta}\left(E, \underline{\Omega}, t^{\prime}-\left|\underline{r}^{\prime}-\underline{r}_{\theta}\right| / v\right)$. The MCNA program computes the factor $A N L^{*}$, describes the vector Ω by the cosines $-u,-v$, and $-w(\underline{\Omega}=-u \underline{i}-v \underline{j}-w \underline{k})$, sets the variable $T \mathbb{N E}$ to $t^{\prime}-\left|\underline{r}^{\prime}-\underline{r}_{A}\right| v$, sets KASR to 3 , and calls subroutine SCORE. This procedure is performed for the source pseudoneutron and at each subsequent pseudoneutron collision for each neutron point source.

The point neutron source number for a given call into subroutine SCORE is denoted by the variable IDETX. The general procedure in SCORE is to set

$$
\begin{equation*}
\operatorname{TSCOR}(D E T X)=T S C O R(D E T X)+\operatorname{ANL}^{*} \text { (neutron-source density of source DETX) } \tag{E.41}
\end{equation*}
$$

each time subroutine SCORE is called.
As an example, the following fictitious problem is considered with the two point neutron sources:
*For source pseudoneutrons, the factor ANL is computed as

$$
A N L=\frac{\bar{W} e^{-\int_{\underline{r_{\theta}}}^{\underline{r}^{\prime}} \Sigma_{t}(s, E) d s}}{4 \pi\left|\underline{r}^{\prime}-\underline{r}_{\theta}\right|^{2}}
$$

The assumption here is that Σ and $\overline{\mathrm{g}}$ in Eq. (E.40) are independent of Ω. If this is not true, the quantity

$$
\frac{\overline{\mathrm{g}}\left(\underline{\underline{r}}^{\prime}, E, \underline{\Omega}_{a}^{\prime \prime}, t\right)}{\int \overline{\mathrm{g}}\left(\underline{r}^{\prime}, E, \underline{\Omega}_{a}^{\prime}, t\right) \underline{\Omega}_{a}^{\prime}} \frac{\Sigma\left(\underline{\underline{r}}^{\prime}, E, \underline{\Omega}, t\right)}{\sum\left(\underline{r}^{\prime}, E,-\underline{\Omega}_{a}^{\prime \prime}, t\right)} 4 \pi
$$

of Eq. (E.40) must be computed in subroutine SCORE and multiplied by ANL.

$$
\begin{aligned}
& \theta=1 \\
& S_{1}(E, \Omega, t)=\frac{1}{4 \pi} \frac{1}{3 \mathrm{MeV}} \frac{1}{100} \text { shakes, for } 1 \mathrm{MeV}<E \\
& <4 \mathrm{MeV} \\
& 0<t< \\
& 100 \text { shakes } \\
& =0 \quad \text { otherwise; } \\
& \theta=2
\end{aligned}
$$

Then subroutine SCORE may be written as shown in Fig. E.l.

SUBROUTINE SCORE (KASR)
INIEGER, DIMENSION, COMMON, AND EQUIVALENCE statements corresponding to those of the main program ATMC.

C SCORING FOR FICHITIOUS PROBLEM C WITH POINT NEUTRON SOURCE

C ANL $=$ FACTOR TO MULITPLY BY
C SOURCE DENSITY
C $-u,-v$, -w ARE THE DIRECTION
C COSINES FROM THE POINT DETECTOR
C TO THE COLLISION POINT
IF (KASR.NE.3) GO TO 25
IF(ERG.LT.1.) GO TO 25
IF(TME.LT.O.) GO TO 25
IF(DETX.GT.1) TO TO 19
IF(ERG.GT.4.) GO TO 25
IF(TME.GT.100.) GO TO 25
$\operatorname{TSCOR}(1)=\operatorname{TSCOR}(1)+\operatorname{ANL} /(12.566 * 300$.
GO TO 25
19 IF(ERG.GT.6.) GO TO 25
IF(TME.GT.1000.) GO TO 25 $\operatorname{TSCOR}(2)=\operatorname{TSCOR}(2)+\operatorname{ANL} /(12.566 * 5000$.

25 REIURN
END
Fig. E. 1 Subroutine SCORE for a fictitious problem with two point neutron sources.

APPENDIX F

NEUTRON SOURCES CONTAINING A DELTA FUNCTION IN TIME

An extraneous neutron source, consisting of a pulse in time, presents a problem for scoring in the adjoint calculation because all scoring must be made at a fixed time in the life history of the pseudoneutron. Provided that the functional of interest is not also discrete in the time domain and assuming that the medium is stationary, it is possible to find an equivalent problem that does not involve a discrete neutron source in time.

The nuetron source is assumed to be of the form

$$
S(\underline{r}, E, \underline{\Omega}, t)=S_{0}(\underline{r}, E, \underline{\Omega}) \delta(t) \quad, \quad \text { F.1) }
$$

where $S_{0}(\underline{r}, E, \underline{\Omega})$ is independent of time. The functional of interest is assumed to be given by

$$
\begin{equation*}
J=\int_{t_{1}}^{t_{\underline{2}}} \iiint \varphi(\underline{r}, E, \underline{\Omega}, t) \Sigma(\underline{r}, E, \underline{\Omega}) d^{3} r d E d \underline{\Omega} d t \tag{F.2}
\end{equation*}
$$

where $t_{2}>t_{1}$.
An equivalent problem is now proposed. The geometrical and material characteristics of the original problem remain unchanged in the equivalent problem. The equivalent source is given by

$$
\begin{align*}
S_{e}(\underline{r}, E, \underline{\Omega}, t) & =\frac{S_{0}(\underline{r}, E, \underline{\Omega})}{\Delta t} \quad \text { for } 0<t<\Delta t \tag{F.3}\\
& =0 \quad \text { otherwise },
\end{align*}
$$

where $\Delta t=t_{2}-t_{1}$. Then the equivalent functional is
$J_{e}=\iiint \varphi_{e}\left(\underline{r}, E, \underline{\Omega}, t_{2}\right) \Sigma(\underline{r}, E, \underline{\Omega}) d^{3} r d E d \underline{\Omega} \Delta t$,
where φ_{e} is the neutron flux in the equivalent problem.

The proof that $J_{e}=J$ is obtained by expressing φ_{e} in terms of Green's functions and noting that the Green's functions G and G are equal for identical arguments; this follows because the geometrical and material characteristics are identical in the two problems. The neutron flux in the two problems may be expressed as

$$
\begin{align*}
& G\left(\underline{r}, E, \underline{\Omega}, t_{2} ; r^{\prime}, E^{\prime}, \underline{\Omega}^{\prime}, t_{2}-t\right) \\
&=G\left(\underline{r}, E, \underline{\Omega}, t ; \underline{r}^{\prime}, E^{\prime}, \underline{\Omega}^{\prime}, 0\right) \tag{F.11}
\end{align*}
$$

The right-hand sides of Eqs. (F.7) and (F.10) are identical, which proves that $J=J_{e}$ as postulated. Therefore, the reciprocity relationship may be substituted into Eq. (F.8) to evaluate the functional, by sampling from the adjoint equation, as

$$
\begin{align*}
\varphi(\underline{r}, E, \underline{\Omega}, t) & =\iiint \int G\left(\underline{r}, E, \underline{\Omega}, t ; \underline{r}^{\prime}, E^{\prime}, \underline{\Omega}^{\prime}, t^{\prime}\right) S\left(\underline{r}^{\prime}, E^{\prime}, \underline{\Omega}^{\prime}, t^{\prime}\right) d^{3} r^{\prime} d E^{\prime} d \underline{\Omega} \underline{m}^{\prime} d t^{\prime} \\
& =\iiint G\left(\underline{r}, E, \underline{\Omega}, t ; \underline{r}^{\prime}, E^{\prime}, \Omega^{\prime}, 0\right) S_{0}\left(\underline{r}^{\prime}, E^{\prime}, \underline{\Omega}^{\prime}\right) d^{3} r^{\prime} d E^{\prime} d \underline{\Omega}^{\prime}, \tag{F.5}\\
\varphi_{e}\left(\underline{r}, E, \underline{\Omega}, t_{2}\right) & =\int_{0}^{\Delta t} \iiint G\left(\underline{r}, E, \underline{\Omega}, t_{2} ; \underline{r}^{\prime}, E^{\prime}, \underline{\Omega}^{\prime}, t^{\prime}\right) \frac{S_{0}\left(\underline{r}^{\prime}, E^{\prime}, \underline{\Omega}^{\prime}\right)}{\Delta t} d^{3} r^{\prime} d E^{\prime} d \underline{\Omega}^{\prime} d t^{\prime}, \tag{F.6}
\end{align*}
$$

Where the expressions for S and S_{e} in Eqs. (F.1) and (F.3) were used. The equivalence of G and $G e$ was utilized to obtain the latter expression in Eq. (F.6).
$J=\int_{0}^{\Delta t} \iiint \iiint\left[G^{+}\left(\underline{\underline{r}}^{\prime}, E^{\prime}, \underline{\Omega}^{\prime}, t^{\prime} ; \underline{r}, E, \underline{\Omega}, t_{2}\right)\right.$
The expressions for the neutron flux in Eqs. (F.5) and (F.6) may be used in Eqs. (F.2) and (F.4), $\left.\frac{S_{0}\left(r^{\prime}, E^{\prime}, \underline{\Omega}^{\prime}\right)}{\Delta t} \Sigma(\underline{r}, E, \underline{\Omega}) \Delta t d^{3} r^{\prime} d E^{\prime} d \underline{\Omega}^{\prime} d^{3} r d E d \underline{\Omega} t^{\prime}\right] \quad$. respectively, to obtain

$$
\begin{align*}
& J=\int_{t_{1}}^{t_{2}} \iiint \iiint\left[G\left(\underline{r}, E, \underline{\Omega}, t ; \underline{r}^{\prime}, E^{\prime}, \underline{\Omega}^{\prime}, 0\right) S_{0}\left(\underline{r}^{\prime}, E^{\prime}, \underline{\Omega}^{\prime}\right) \Sigma(\underline{r}, E, \underline{\Omega}) d^{3} r^{\prime} d E^{\prime} d \underline{\Omega^{\prime}} d^{3} r d E d \underline{\Omega} d t\right], \\
& J_{e}=\int_{0}^{\Delta t} \iiint \iiint\left[G\left(\underline{r}, E, \underline{\Omega}, t \tilde{r}^{\prime}, \underline{r}^{\prime}, E^{\prime}, \underline{\Omega}^{\prime}, t^{\prime}\right) \frac{S_{0}\left(\underline{r}^{\prime}, E^{\prime}, \underline{\Omega}^{\prime}\right)}{\Delta t} \Sigma(\underline{r}, E, \underline{\Omega}) \Delta t d^{3} r^{\prime} d E^{\prime} d \underline{\Omega}^{\prime} d^{3} r d E d \underline{\Omega} d t^{\prime}\right] . \tag{F.8}
\end{align*}
$$

In Eq. (F.8) the change of variables,

$$
\begin{equation*}
t=\left(t_{2}-t^{\prime}\right) \tag{F.9}
\end{equation*}
$$

is now made to obtain

$$
\begin{equation*}
J_{e}=\int_{t_{1}}^{t_{2}} \iiint \iiint\left[G\left(\underline{r}, E, \underline{\Omega}, t ; \underline{r}^{\prime}, E^{\prime}, \underline{\Omega}^{\prime}, 0\right) S_{0}\left(\underline{r}^{\prime}, E^{\prime}, \underline{\Omega}^{\prime}\right) \Sigma(r, E, \underline{\Omega}) d^{3} r^{\prime} d E^{\prime} d \underline{\Omega}{ }^{\prime} d^{3} r d E d \underline{\Omega} d t\right] \tag{F.10}
\end{equation*}
$$

where a stationary system has been assumed so that
with the density function

$$
\begin{equation*}
\bar{g}\left(\underline{r}, E, \underline{\Omega}_{a}\right)=\frac{1}{4 \pi} g(E) \frac{1}{V}, \tag{F.13}
\end{equation*}
$$

for \underline{r} in the volume V containing nonzero Σ, and the initial weight may be set to

$$
\begin{equation*}
\bar{W}=\frac{\Sigma\left(\underline{r}, E,-\underline{\Omega}_{a}\right)}{\bar{g}\left(r, E, \underline{\Omega}_{a}\right)} \tag{F.14}
\end{equation*}
$$

Here an isotropic selection of the direction of flight and a uniform selection of the position have been specified for illustration.

If a volumetric source is assumed (i.e., not a surface source), the score at each collision is obtained from Eq. (36) as

$$
\begin{equation*}
\frac{\bar{W} * S_{0}\left(\underline{r}, E,-\Omega_{a}\right)}{\Sigma_{t}(\underline{r}, E)}, \tag{F.15}
\end{equation*}
$$

whenever $0<t<\Delta t$.
This derivation is valid under the assumptions that: (1) the system is not changing with time, and (2) the scoring cross section Σ is independent of time.

REFERENCES

1. J. M. Hammersley and D. C. Handscomb, Monte Carlo Methods, John Wiley \& Sons, New York, 1964.
2. L. L. Carter, unpublished University of Washington Ph.D. dissertation (1969).
3. L. L. Carter and N. J. MeCormick, Nucl. 8ci. Eng., 39, 296 (1970).
4. Description of the MCN Computer Code; to be published.
5. R. R. Johnston, "A General Konte Carlo Neutronics Code," Los Alamos Scientific Laboratory report IAMS-2856 (1963).
6. W. M. Taylor, "MCH User's Guide," Los Alamos Scientific Laboratory internal document, 1968. (SECRET)
7. A. M. Weinberg and E. P. Wicner, The Physical Theory of Neutron Chain Reactors, University of Chicago Press, Chicago, 1958.
8. J. Lewins, Importance: The Adjoint Function, Pergamon Press, London 1965.
9. G. Goertzel and M. H. Kalos, "Monte Carlo Methods in Transport Problems," Progress in Nuclear Energy, Series 1, Vol. 2, Pergamon Press, New York, 1958.
10. J. Spanier and E. M. Gelbard, Monte Carlo Principles and Neutron Transport Problems, AddisonWesley Publishing Company, Readine, Massachusetts, 1969.
11. A. E. Profio, Editor, "Shielding Benchmark Problems," Oak Ridge National Laboratory report ORNL-RSIC-25 (1969), pages 3.0-1 to 3.0-31.
12. I. L. Carter, Trans. Am. Nucl. Soc. 12, 2, 730 (1969).
13. Private Communication.
14. M. M. R. Williams, The Slowing Down and Thermal. ization of Neutrons, John Wiley and Sons, Hew York, 1966.
15. F. B. Hildebrand, Advanced Calculus for Engineers, Prentice-Hall, Englewood Cliffs, New Jersey, 1948.
16. M. H. Kalos, Bo Eriksson, Claes Johansson, and Martin Leimdorfer, Nucl. Sci. Eng. 37, 410 (1969).
17. Z. W. Birnbaum, Introduction to Probability and Mathematical Statistics, Harper and Brothers, New York, 1962.
18. A. A. Aswad and G. R. Dalton, Nucl. Sci. Eng. 24, 49 (1966).

[^0]: *Analog refers to a direct simulation of neutron transport.

[^1]: FThe shorthand notations "transport equation" and
 "adjoint equation" will be used rather than "neutron transport equation" and "adjoint neutron transport equation," respectively.

[^2]: *Pseudoneutrons are defined here as those "particles" whose transport is described by the adjoint equation.

[^3]: *See Appendix B .

[^4]: *This requirement will be removed later.

[^5]: * A sampling probability may be estimated as exactly zero after sampling from the transport equation. The code will check the corresponding transfer cross section, and if it is nonzero, the sampling probability will be normalized to a certain fraction of the total (usually about l\%).

[^6]: *If subroutine $\Lambda S O U R C$ is supplied, the weight must be set in ASOURC. If Table $M 1$ is used, the weight given by the second data entry on card ASI is also divided by the energy-density function as computed for each source pseudoneutron. If the first data entry on card ASC is zero, the weight given by the second data entry on card ASI is also divided by the energy-density function as computed for each source pseudoneutron; i.c., weight multiplier is $E \ln \left(E_{\max } / E_{\min }\right)$.

[^7]: *The volume of each cell $\operatorname{VOL}(I A)$ must be supplied in Program ANUI in order to use this ontion.

