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ABSTRACT

This report summarizes various features of a code (originally
brought to the Los Alamos Scientific Laboratory (LASL) by F. Tappert
‘of the Courant Institute in New York) designed to solve the three-
dimensional parabolic wave equation with an added nonlinear (self-
Some exact conservation laws of the full nonlinear
The precise numerical method used to solve
the equation is explicitly displayed.
computed results with exact results for a sample pure diffraction
A discussion of various input data for the code,
which now exists in two different versions, is given.

Comparisons of numerically

The intent of this report is to summarize vari-
ous features of the code brought to the Los Alamos
Scientific Laboratory (LASL) by F. Tappert several
years ago. There are two versions of the code read-
ily available: (a) Tappert's original version with
additional contour and three-dimensional plots which
were added by S. J. Gitomer, to be referred to as
TAP1 below; (b) a version in which the Fourier manip-
ulation is redone, partially coded in COMPASS, with
different graphics output; these modifications were
done by D. B. Henderson and we shall refer to this
version as TAP2 below.

The code was written by F. Tappert originally
to study self-focusing in a nonlinear medium. Since
the small-scale instability theory of self-focusing
(as given by Suydam in Ref. 1, for example) predicts
that an initially axisymmetric light beam will break
up into a nonaxisymmetric pattern of filaments as
the beam propagates through a nonlinear medium, the
code is capable of treating the propagation of a
The model of

the medium nonlinearity in the code reduces to the

general two-dimensional wave front.

usual cubic term at low light intensities but satu-
rates at high intensities. Although the code was

not intended to treat propagation through laser

media, a constant gain (or loss) may be included in
the calculation. Only a single wave front is propa-
gated; hence, the nonlinear medium is assumed to re-
spond instantaneously. Only a single polarization

Although

general two (transverse)-dimensional wave fronts can

component of the electric field is treated.

be considered, one must recall that the code does
solve the paraxial or quasioptical equation rather
than the full second-order wave equation so that the
general limits of applicability of the paraxial ap-
proximation (e.g., limited range of Fresnel numbers
in pure diffraction problems) apply.

We proceed to present the quasioptical equation,
various general properties, the numerical method of
solution, and some @xamples from diffraction theory
alone (no nonlinear medium). Most of these topics
are expanded versions of statements made in various
notes left here by F. Tappert.

We use the slowly varying envelope representa-
tion of the full electric field E.

-iwT

E(x,Y,2;T) = % E(x,y,z)e + C.C. (1a)



T=1t - z/v (1b)
v = c/n (1lc)

where n is the linear index of refraction of the me-
dium (only a single medium is treated by the code).
The usual treatment (using Eq. (1) in the wave equa~-
tion, Ref. 1; a somewhat different derivation is
given in Ref. 2) then gives the following quasiopti-
cal equation for the envelope E(x,y,z).

JF 2 2 2
21k 57 = VJE + K"8|E]E (2a)
k=%=un (2b)
v ¢
n
2
§ == (2¢)
2 2
VJZ_ -3—2""3—2' . (2d)
Ix dy
Here n2 is the nonlinear index of refraction of the
medium {using the relation €2 = % nn2 in Eq. (2) re-

covers the form of this equation derived in Ref. 1,
aside from a definition which interchanges E and E*
in Eq. (1)].

We consider Eq. (2) on a square region of the

transverse plane:

0<x< % (3a)

0<y< 2 . (3b)
Changing to dimensionless variables X,y

x* = % x = &7 (4a)
<=
y -%, y = % (4b)
9 .1 3
ax & 3x”
S N G
3x2 22 3x‘2
Eq. (2a) becomes
—21k 2B - Love%e o %sle)%E )
dz £2
We next rescale z to
z
2z’ = 5 (6)
klz

so that Eq. (5) becomes

9z”

We now define a scaled electric field envelope E”

2.2
13 1l .2 k™% 2
-1 = =§'VJ_E+[—2—6]]E] E . 7)

and a new constant B by

BlE”|? =[52—£2- G]IEIZ ®)

so that finally the scaled quasioptical equation

becomes

S 1.2, o 12e.
135 = 2v7% 4 et )% (9a)
12
. %V,zE, , BlE’] e b)
1+ Y[E]
2
=%vl‘25‘+ —31—5——1-—2+ w|E . ()
1+ y]E7]

Here a saturable form of the nonlinearity, parame-
terized by Y, has been added in Eq. (9b) and a con-
stant gain (or loss), specified by &, has been in-
cluded in Eq. (9c¢).

relative signs of Eq. (9¢c), a>0 corresponds to a

Notice that according to the

loss while a<0 corresponds to a gain - in contrast
to the conventional usage. The three parameters

o, B, and Y are referred to by their Greek names

in the code.

Henceforth we shall drop the primes and assume
that all quantities are scaled. Equation (9) has
the form of a Schrodinger equation: in discussing
some of the general properties of this equation, we
will symbolize the nonlinear term by f(]E]z) and

consider the equations

9E 1 .2 2

-1 = EVLE + £(|E|DE (10a)
oE" 1 2.% 2..*

13- = FVIE + £(JE|DHE . (10b)

Here we have obviously set 0=0 and thus do not con-
sider the case of constant gain or loss. By analogy
with quantum mechanics, we expect that probability
or wave function normalization will be a conserved

quantity. From Eq. (10) we see that

X,
* JF 13 W JpC SR B T e
i(E _'az +E az )— IE(E E) = -7 EVlE"'E'EVlE




) * ) *
/d.xdy i az(E E) =1 3% dxdy E E

[] [
Nj= N
‘-:7\ o
= i
=24 <
. v
“ .
Sy
m* ,_g ¢
| m
*
i
I—< ¥ m
m *
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m
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Assuming that E(;l,z) + 0 as -;l + © rapidly enough
makes the last integral negligibly small in the
limit, so that the total power in the beam is con-
served.

1 g—zfd"dY]Elz =0 */dxdylElz = const. (11)

Notice that this holds even in the presence of the
nonlinear term although it has been assumed that £

is a real function, that is,

f*(]Elz) - f(]E]Z) . a2)

That 18, B and Y of Eq. (9b) are real constants if
that explicit form of f is used.

Again by analogy with quantum mechanics, one
expects that, in the absence of constant gain or
loss, total energy 1s conserved. We use the analogy
to define a total energy <E>, but in view of the
"nonlinear potential” term f we allow for a more

general energy functional.

<E> =fdxdy E*[% v+ G(]E]Z)]E .ay

Therefore,

*
. d dE 12
1d—z~<E> =fdxdy{(id—z' )[E-Vl +G(u)]E

1.2 . dE
+ E [Evl +G(u)](ia)

*1 dG du
+E[Hid—z']E}’ (14)
where
u = E*E (15)
d dE'. | % dE
u
ia=i(d—z'E+E a‘) . (16)

Using Eq. (10) to compute the field derivatives,we
obtain

d - 1 2% *\(1 2
14 <> fdxdy{(ZVlE + £E )(2v15+c5)
1 2* * l_
+(§le + GE )(—ZVfE—fE)

* dG |1 2% * A 1 o2
re (1t ) e (3 % - )] -

* *
wherefdxdy E (VfE) = | dxdy (VfE )E has been used in

the underlined term.

d 1 g2 % dG
i E; <E> =fdmdy{(§- VlE )(GE—fE"’ ud—u- E)

1 * * dg _*
-(Evfe)(ce - £E +uEE)} . an

Assembling the terms we find

Assuming further that

¢* (g% = c(lElD) > a8)
we see that in order to have conservation of energy
we need to choose G such that it satisfies the
following equation.

uE+G—f=0 . (19)

Suppose that f may be represented by
(-]
n
£ (u) =Z £u (20)
=0

Although this is

not the most general form imaginable for the non-

where the fn are real constants.

linear term, it does include the explicit form used
in the code as in Eq. (9b). Then we may try the

following representation of G.

6w =) g ", @1)
n=0

where gn are real constants. Equation (19) then

glves

Lo D 0
u E ngnun—l + Z gnun = Z fnur1 .
n=0 n=0

n=0



This i8 satisfied i1if

(n+1)gn = fn;gn sy fn :

Obviously this is true if

Glu) = lﬁuf(u) . (22)

u
Explicitly, for the nonlinear terms of Eq. (9a) and
(9b), we find the following "potential energy' func-
tionals.

2 2
¢, (€] = % 1€ (23a)
-1 fBudu B _
6w =3 ) Trm Yu d“(l 1~Pyu)
G (u) = B lo-1 a(l + ‘Yu)] . (23b)
b Yu Y

By analogy with quantum mechanics, Eqs. (23a) and
(23b) in Eq. (13) give the following explicit forms
for the "kinetic energy" TE and the "potential ener-
gy" PE.

*
e -faxay € Lv0E « - L faxay @€ d,0)
TE = - %fdxdy]?lElz (24)

PE -ﬁxdy E*G(]Elz) - Es-ﬁxdy(]l:'lz)z (25a)

- %ﬁxdy[]zslz - % 1 + y]E]Z)] . (25b)

From Eqs. (17) and (19) we have that

<E> = TE + PE = constant . (26)
This affords another check, in addition to Eq. (11),
Again, Eq.
(26) is a general result which does not depend on

on the numerical accuracy of the code.

the exact form of the nonlinearity f, provided f sat-
isfies the reality condition of Eq. (12). Recall
that we are taking 0=0 in these considerations, so
that there is no constant gain or loss. Apparently,
in the code the algebraic sign of the quantities TE
and PE are opposite to that indicated in Eq. (24)
and Eq. (25). <E> is called EN in the code.

Both properties of Eq. (11) and Eq. (26) were
stated in Tappert's notes but not explicitly proved.

Another relation stated but not proved in those
notes is the following: let us define

) ﬁxdy(xz + yz) |EG,y32)]2

r 3 . Q@2n
ﬁxdylf(x,y;z)]
The claim is then stated that
2
Sy (rg’) =6 e (28)
dz

From Eq. (26), the right-hand side of Eq. (28) is
implied to be constant in z.

To investigate the validity of Eq. (28), it is
convenient to return to the formalism of quantum

mechanics. To this end we define a Hamiltonian H

2
= B
H om +V 29)
and a momentum operator
->
=tV . (30)
The Schrodinger equation for the wave function ¢ is
thus
VIR O i S
it b = 2m
(8 +9
= [ PP
5 + V]y (3la)
* 2 > >
M Loyt - [-Bv? * (R *
~1h 3t Hy <2mV +v)w om + V)¥
(31b)
assuming
*
vV =v . (32)

Since the denominator of Eq. (27) is z independent
by Eq. (11), it is sufficient to consider the nu-
Since Eq. (31) 1is identical to Eq.
(10) with the replacements t =z, $ = E, h =m = 1,

merator only.

we will continue to use the quantum mechanics nota-
tion and make these replacements at the end of the

calculation. Thus, we define

;02 = fd't\p*rzw (33)

and consider its t dependence.




st o) )

In what follows we use the notation A for the com-
ponents of a vector A and assume summations over all

repeated indices. Thus

“hf{ “p. P,V rw+wr(pkpkw)}

- 2em dT{'(PkPk"’) EiR s ("kpk"’)}

Now, since

Jax(oe)'s = fari*(s,9) 5 (34)

we get

9 =2 1 * 2 *
3t T0 = Zaih, dT{' (Pk"’) PVt rszpkw}

(35)

Recalling the commutation relations

[ri,pj] = ﬁlGij = -

we calculate

Pwrr] Pwr]r +r erq =—2mrk

so that Eq. (35) is rewritten as

P, ’ (36)
[F74]

+ w*(pkrz + Zihrk)pkwf
= 55 24h d’rg (pkw)*rkw + w*rk(pkw)f

(37a)

g_c ;02 = %ﬁ"k,("k"')*"’ + “’*(Pk‘p)s

3 = .
R -t - 2[d'rr I, (37b)
where J 18 the current density
(38)

3o nedt By = 1 (v - i)

Continuing, we have from Eq. (37) and Eq. (31):

ap\* * 9
k<Pk 5%)"’*("13’) 3

+ (PKW)*(Pij‘P) - (Pjpjw*)(pkw) + w*(pkpjpjw)f
+ ﬁﬁrrkg(—bkvw)*w + (pkw)*vw - vw*(pkw)
* "'*<ka“')§

We define these two parts to be T1 and Tz,respec—

(39a)

tively:



2
" 2 :
a? rS =T+, (39b)
First consider Tl’ being careful of the order of

the terms we get,

T, = 2m;1h-/;l {— (Pkpjpjw)*rkw
* (Pk“’)*‘k(Pij‘P) - (Pj"j"’)*rk("k"’)

+ "’*‘k("k"j"j"’)}

By reordering the terms, keeping Eq. (34) in mind,

we get

1 f;* *
T, = dt{y p, T, PP,V ~ ¥ P,pP,P, TV
1 2m2m k ki%5 3537k k
% *
+wrkpkpjpjw-\bpjpjrkpkw§

= ;;—ih-ﬁTiw*[pkrk,pjpj]w + w*[rkpk,pjpjlwf
m

Now TP = Pkrk + {rk,pk]; since the comuutator

[pk,pk]is a c-number via Eq. (36), it coumutes with

P43

in the second term. Thus we may write

n g rer ) - @
Now
- Priers]Ps * 7y Piiers]
"~ [parmnides - wsfeemend
H(bsndne # wlern)es
oyl )

- Pk(‘”“sjk)"j - pjpk("ihajk)

+

Therefore we get

lpkrk,pjpjl = 2ihp,p,

and Tl becomes, using Eq. (40),

-2 ¢pp (41)
T, 7 PiPe?>

m

We next consider the term T2: again taking care to
preserve the correct ordering of terms from Eq.(39a)

we have

=
]

2 ﬁﬁT"("kV“’)*‘k“’ + (Pk“’)*‘k"“’
"kv“’* (Pk"’)+ ‘kw*("kv“’)
1 * *

?h_m,/;T i -¥ VPk‘:k‘P + P Pkka‘P

R *
-V VP Yty rkka\Pf

- o driw*(rkpkv - Ve )Y
¥ (oY - vpkrk)wf
- = <k + for{(ve0 )" - ()]}
- e {<[rkpk,V]> + /:ir[(Vrkpkq;)w* ; (fkpkvw)w* ]*}
=§%{<Fgwq>_<hngpv
1, = o repev)> - @)

Now, since

[rkpk,Vlr - [V,rk]pk - rk[V,pl;]

and since ‘V,rk] = 0 and [pk,F] = (ka) where F 1is

any c-number function of coordinates, we have that

[rkpk,vl = rk(ka) . (43)
Returning to explicit differential operator repre-
sentation of -1;, we get from Eqs. (43) and (42):

T, = EZ In d—rq,*rk(pkv)w = 3; In drurk<PkV)

2 h 2
=5y ﬁrurk<3kv) === ﬁturk(akv) , (44)
where
J
. =
k ark

and, as in Eq. (15),

*
u=yP



Suppose we find a function h which satisfies

= . 45
ur, ( d kV) L (3 kh) . (45)
We assume that the potential V can be expanded into

a series in powers of u, as done above in Eq. (20)
2
for the "potential” f(]E] )

v ='Z 'Vnun (46)
o0
akv = Z Vnnun—l(aku)

n=0

uBkV = ivnnun@ku) .

n=0
It is obvious then that if h also can be expanded
into a power series in u, Eq. (45) 1s satisfied
provided that expansion is

h = - vy B un+1
—Z n n+l *
n=0

47)

Therefore, assuming representations of Eqs. (46) and

(47), we can write

1, = - % ﬁrurk(akv) - - % ﬁjrk<akh). (48)

Now, since Bk(rkh) = (Bkrk)h + rk(akh), and for the

case of two transverse dimensions only (k=1,2), we get

= |
=-% -2 .
T, = -2 f dt la k(rkh) h
Assuming that ¢ + 0 as -; + o in a strong enough

way, the first term will vanish in the limit and we
are left with

T, = — fdth . 49
2 mn

Again, for the "potential” V represented in Eq. (46),

this becomes

4 - n+l

n
T2 - mﬁ T vn nl Y :
n=0

From Eqs. (39b), (41), and (50), using the tran-

2
scriptions t = z, h = m = 1, we recover (Pro ) from

(50)

Eoz (w=€) and we have derived the result

2
3 2

2 ()7, 0
9z

©
= 4TE + ’f/:”Z £ o o (51)
n=0
where P is defined below in Eq. (56) and is a con-
stant by Eq. (11) (dnd is the total power in the
beam divided by cn/8m), and where TE is given in Eq.
(24) and we have returned to the notation and expan-
sion of Eqs. (10) and (20). Recall that, from Eqs.
(22) and (25), the "potential energy" term is given
by

* — 1 n
PE =ﬁr£ G(u)E =deuZl £ og e - (52)
n+

It is apparent on comparing Eq. (51) and Eq. (52)
that the second term of Eq. (51) is not equal in

general to PE. However, in the special circumstance
that the expansion of Eq. (20) has only one term,
corresponding to n=1l, as is the case in Eq. (9a)
which is the most frequently studied form of the
quasioptical equation with a self-focusing nonline-

arity, we have

(53)

2
2—2 (Ptoz) = 4TE + 4,/:“ EB u2 (54)
dz

PE='/:im§B'u=§BﬁTu2

so that in fact, using the definition in Eq. (26), we
obtain

il
—Z-(Pr = 4<E> = constant , (55)
9z 0

which is essentially the expression in Eq. (28) that
we set out to investigate.

Therefore, it appears that Eq. (55) is not in
general true. That is, in contrast to the proper-
ties of Eqs. (11) and (26) [for circumstances in
which the nonlinear term f satisfies Eq. (12) and
can be represented by Eq.(20)] which are true in
the presence of a general class of nonlinearities,
the property of Eq. (55) appears to be valid only
in the circumstance that Eq. (53) is the only non-

vanishing term of the expansion of Eq. (20).



Equation (55), together with Eq. (37) as
written in terms of the variables of the electromag-
netic wave problem rather than the quantum mechani-
cal analogs, apparently form the "moment theory" of
This is utilized by Suydam in Ref. 1

where the origin of this theory is cited as an un-

self-focusing.

translated Russion article by Vlasov, Petrishchev,
and Talanov.3 The present author does not read
Russian and therefore thought it useful to prgsent
his own derivation of these (possibly well-known)
results.

Two other quantities are kept track of in the

code. Defining
p = faxay [E)? (56)
they are
1 TE
1
i 2 _ P
2 E0,0,2)]2

where again the code uses the negative of Eq. (24)
as the definition of TE.
We next turn to the method of solution of Eq.

(10): we rewrite that equation as

J3F _
X ifa+ B(2))E (58a)
1 2
A= E-Vl (58b)
B(z) = f(]E(?,z)lz) . (58¢)
The approximate solution of Eq. (58) is
iAz(A + B(z ))
> N\ 0 >
E(r,zo + Az) ~ e E(r,zo) (59)
since as
Az > O
E(fzg + 02) - E(fiz,)
1im 2z, + Az) - E .2z,
Az + 0 Az

= i(A + B(zo))E(-;,zo) + O(Az)[A,B(zo)]E(?, zo) . (60)

Notice that since [A,B] # 0, the full Baker-Hausdorff
expansion must be used. As in Eq. (60), the commu-

tator terms are higher order in Az in that expan-

sion so that as Az + 0 we drop them and approximate
Eq. (59) by

E(z.z, + b2) = E(f.z,) - 6D

In order to evaluate the action of the first exponen-

i.AzB i.AzA

tial, in view of Eq. (58b), we make use of a Fourler

transform in the transverse coordinate ;: we define
ey 2 >

the transform E(gl,zo) of E(r,zo) by

> >

E(”l,zo) =ﬁ12r ST E(;,zo) (62a)
. Py 1T,

E(r,zo) -f(z-;})z e E(kl,zo) . (62b)

Thus

o /o a%i, T N
VJ. E(r,zo) =f—(—2n—)2- (—kl )e E(kl,zo)

so that expanding the exponential operator in Eq.
(61) gives

d2k -9 E k
1
=f—5e e E(kl,z ) .
(2m)

(61), we find that
E(;,zo + Az) = eiAZf(lE(;’zo)lz)

d2k -1 Azk, 2 ii °; -
. L 2 L 1 E > (63)
7 e e ki,zo .

2m)

Therefore, from Eq.

1f we define Q(;) by

2 . Az, 2 2
N d k -i 5= kl ikl T .f,
Q( ) —ﬂl- e e E kl ’ZO (64)
(2m)

and then recognize that, from Eq. (63),

1€(%,2 + 82)1% = Jo(F )17 (65)

for nonlinear potentials f satisfying the reality
condition in Eq. (12), we therefore can write that,

using the representation of Eq. (20),



(66)

f(]E(?,zo)lz) =n§5‘ fn(]Q(?)lz)n .

In particular, for the particular f used in Eq. (9b),

we have

+),2
(il - L2

so that the solution of Eq. (63) may be written in

(67)

this case as

(68a)

eiAzF(;,zo)Q(;)

E(;,zo + Az) =

_aAzeiAzF(;,zp)Q<;) . (68b)

E(:,zo + Az) =e
Equation (68b) includes the constant gain or loss
term of Eq. (9¢).

The Fourier integrals of Eq. (62) of course
cannot be evaluated exactly. To do them numerically
requires use of the finite Fourier transform. This
expansion 18 on a finite mesh: for a function H(x)
of one variable x which is periodic with period P
the transform pair may be defined by (H(x + px) =

H(x))

P
Ax = ﬁi sN_ = positive integer (69a)
X
Nx i(%ﬂ;;>nAx
H(ndx) =) e ‘% ﬁ(z—" m> (69b)
px
o=
Nx —i(f)—“~ u>nAx
i(Ea =th E e \*¥ H(nAx) . (69c)
Py x “§n=

By using the relationZ sr1
m=1

explicitly verify that Eqs. (69b) and (69c) are the

s N
i< (1 -8 ) one can

correctly normalized transforms by substituting Eq.
(69c) into Eq. (69b).

Thus, for a two-dimensional function E(;) =
E(x,y), we may define the finite Fourier transform
pair similarly [we assume that E is periodic in x
and y with periods P and py, E(x + P>Y + py) =

Elx,y)]:

Ax = Nx; N_ = positive integer (70a)
x
P
Ay = ﬁ11 N = positive integer (70b)
y
Nx Ny i<%£-%>nAx
E(adx,mdy) =) D" e \ ¥
k=1 2=1
s e y E(Z_'ﬂ" k’ H ) (70C)
Px Py
N, N -1—k>nAx
2w, 2w = 1 x
E(p ks P o EZ e
x y XY n=1 m=1

2
Since-l:l=2—1r-ki+2—"£j,k12= 2n +[2
P, Py P, Py

and analogous to Eq. (64) we get

Nx N 1 2 klnAx 1 s
Yy Py Py

Q(nAx,mAy) =Z Z e e

z>2

k=1 2=1
2
it (gm)z : (§_z>
‘e x Y/ JE(2k, 2T 9) )
Py Py
and similarly to Eq. (67)
2
8] Q(nAx,mAy) |
F(nAx,mAy;zo) = 3 (72)
1 + y|Q(nax,mAy) |
so that the solutions in Eq. (68) become
E(nAx,mAy;zo + Az) = eiAZF(nAx'mAy:ZO)Q(nAxamAY)
(73a)
E(nAx,mAy;zo + Az)
_ iAzF (nAx,mAy; z )
= aAze 0 Q(nAx,mAy) . (73b)

This is explicitly the solution evaluated by the
That is, given an initial field E(x,y;0),
E(x,y;O) is computed via Eq. (70d).
(71), F from Eq.

code.
Q is then com-
(72), and E(x,y;Az)
(73b).
then iterated until the number of longitudinal

puted from Eq.

is then evaluated from Eq. The procedure is



steps specified in the input data (parameter NZ in
Appendix A gives a full list

of Input parameters and their meaning.

the code) 1is reached.

We have made some checks of the numerical accu-
racy of this code. Since exact analytic solutions
to the complete (diffraction plus self-focusing) Eq.
(9) are not known, we have limited ourselves to
examining diffraction problems only with no nonli-
(63)
(58) (with B=0) for

near index effects. Notice that when £20, Eq.
is the exact solution of Eq.
arbitrary Az..

The Kirchhoff-Fresnel diffraction integral for
the field envelope E(x,y;z) resulting from an initial
field E(x%y”;0) present in a plane slit aperture

located at z=0 is

E(x,y3z) = (— :r—&) e—i(xz + yz)ﬁx’idy’

- 00 -

“i(a - b)(x‘2 + y‘z)ezia(xx‘ +yy)

*E(x”,y";0)e (74a)
a= ;"—z (74b)
b= ;"—F . (74¢)

Here F is the initial focal length of the wave (F +
© or b > 0 corresponds to a plane wave at the aper-
ture). Since the code can consider only a finite

plane region, we choose the initial field envelope
to have a Gaussian profile in x‘(e(x) =1 for x >0

and 6(x) = - 1 for x < o) and a width L in y~.

E(x",y";0) = Eoe

]
N[
S~
Slx
o \
N
P—
@
<
Ay
+
|

- - _L

2) e@ 2”'
(75)

In subsequent comparisons with numerical results,

w_will be chosen to be much smaller than the finite

x

width of the region from which the numerical solu-

tion is obtained.

x”,y” by half the slit width L/2; notice that this

is not quite the scaling defined in Eq. (4) which

Next, we scale the coordinates

18 used in the code.

10

§=$, i‘-;‘/z (76a)
Y277 = im (76b)

EG,y730) = Ege

(2,
"x [e(;r +1) -0 - 1)]

an
Substituting Eqs. (76) and (77) into Eq. (74),we

obtain

E(,732) = ( i_a)(a)zg . ia(’i)z("‘2 * ?Z)I .

-
L
it
\ 8
a
i
v
1
[}
Nl'—‘
€|
%= |5
x\l
SN—
N

(78b)

2 2
+1 - —
- i(a - b) L) 772 + 21;;(L v’
=. 2 2
I = dy” e
y

-1 (78¢c)
We are interested only in the intensity at the cen-
ter (§=0,;=0) of the diffraction pattern. Thus, we

need only

£ 2 2
Ix(?c = Q) = ﬁ;‘ exp{~- %(I;%) + i(a - b)(%) ;—2
- 1/2
™

%(’;ﬁy + 1(a - b)(%)z
X

Writing this result in amplitude and phase form

gives

I (x=0) = e
X 1fir2 4 2L 4q1/4
I:Z(? + (a - b) (E)

tan € = - 2wx2(a -b) .

(79a)

(79b)



Turning next to the ;’ integral, we need only

1

= 2‘/:1)7’ COS[(a - b)(%)z)—r’z]— 1 sin[(a - b)(%)z?zl .
0

We next define the variable u by

2
% u2 = (a - b)(%) ;‘2
and get
1/2
Iy(y = Q) 2 ) 3
@-wf})
w
Jolole ()
/ ufcos|y - isin{yu f
where
1/2
2
(a—b)!%!
w = .

n/2

(80)

The Fresnel sine and cosine integrals S(w) and C(w)

are defined by

S(w)

]}
o
e
;]
[
=]
—
N
‘:N
L

C(w)

]
=~
e
[2]
(=]
;]
—
S
e
N
S

so that finally

(8la)

(81b)

v _\/2_ -
Iy(y = Q) = N zc(m) 1S ) (82c)

w = 2NF . (824d)

The on-axis Intensity will be

Ik =y = 052) = & |EG = § = 032

Calling 1 = %; ]Eb]z, we find from Eqs. (78), (79),
and (82)
. 3
2 2wx2
o N
1Gi= 5= 052) ., ) ] Flurzy? [
I
0 N \/ 2wx2 2
1+ |7N
2
F (L/2)
~ J

. CZ<\/2?F> + 32<Jm_F> . (83)

To compare some numerical results with Eq. (83), the
following specific calculations were done: as in
Eq. (3), a square region of side % in the transverse

plane was considered. 1In particular,

L/2 _
L2022 (84)

€

2—" = 0.1473591669 (85)

were chosen. Equation (85) means that the electric
field amplitude at the edge of the computational
region in the x direction is down to 3.162277 x 10—3
of the central amplitude. A plane wave F > » was
chosen (NF hd NFO) and the patterns at distances z
corresponding to several different Fresnel numbers
were computed. As we have already noted above, Eq.
(63) 1is the exact solution of Eq. (58) with no non-
linear term present (BEO in Eq. (58)) for arbitrary
Az, so these calculations were all done in a single
step. The patterns were evaluated at the scaled
distances z“ given by z‘=z/k£2=n°9.947183943 x 107
where n = 1,2,3,4,5,6,7,8. These distances corre-

spond to Fresnel numbers:

11



TABLE I
COMPARISON OF RATIO OF CENTRAL INTENSITY
TO INITIAL CENTRAL INTENSITY
FOR VARIOUS FRESNEL NUMBERS

NF Exact TAP1 TAP2

© 1.000000 1.000000 1.000000
64 0. 9451652 1.004437 1.004238
32 0.92315958 1.027129 1.026721
21 1/3 0.96998127 0.8243172 0.8238254
16 0.8925561 0.9684277 0.9676574
12.8 0. 9590980 1.172372 1.171207
10 2/3 1,1973 1.218176 1.216723
9.1428 1.073 1.013224 1.011814

8 0.84995 0. 8971402 0.8957135

(0. a? e

F Az n

= 64, 32, 21 1/3, 16, 12.8, 10 2/3, 9.1428, 8 .

These calculations were done with the maximum reso-
tion available, namely, using a grid of 256 x 256
points in the transverse plane. Both versions of
the code were used, Tappert's "original" version
(with additional graphics capability added by S. J.
Gitomer), which we refer to as TAPl,and D. B. Hender-
son's considerably recoded and speeded up version,
which we refer to as TAP2. The results are shown
in Table I in which the numerical results are com-
pared to each other and the exact results using Eq.
(83). Values of the Fresnel integrals were taken
from Ref. 4. No elaborate interpolations were done
in computing the "exact" results, so that they are
surely not accurate to six figures. However, it
may be seen that six figures of accuracy are not
needed to reveal the differences between those
values and the numerically computed values. It is
heartening that at least the values provided by the
two versions of the code are in close agreement with
each other.

Although the calculated diffraction patterns
do appear qualitatively correct (N intensity peaks
in the y direction in the x=0 plane for a Fresnel
number of N), it may be seen that indeed great
quantitative accuracy has not always been achieved.

1t does not seem possible to ascribe these discrep-

12

TABLE II

COMPARISON OF TAP2 WITH "EXACT" RESULT FOR

Y = - 0.8007815 and &% = 1.085736203

FOR VARIOUS FRESNEL NUMBERS

NF Exact TAP2

64 1.1388 1.234241
32 1.0059 0.9695197
211/3 1.3628 1.332852
16 1.3047 1.359248
12.8 1.2141 1.212875
10 2/3 1.2317 1.276262
9.1428 1.0337 1.067020
8 0.98616 1.068518
7.1111 0.98629 0.9425886
6.4 0.97958 1.013044

ancies to the small value of the initial field at
the edge of the numerical grid, although that is a
source of error. At lower Fresnel numbers, the fact
that the numerical problem being solved is actually
diffraction from an infinitely repeated array of
apertures in the transverse plane ("aliasing") be-
comes visibly apparent. Calculations done at Fres-
nel numbers between 3.6 and 0.36 (to check the guess
that since the Fresnel integral term in Eq. (83)
seems to reach a maximum value around NFO = 0.72,
the entire pattern should have a global maximum in
the central intensity ratio near that point) rapidly
degenerate into patent nonsense. Some attempts at
filtering high transverse Fourier components by
smoothing the initial field in the y direction
("soft aperturing") instead of suddenly truncating
it to zero did not improve the numerical results.
Notice that since the code operates on the electric
field, a small error of xX in Table I corresponds to
x/2% approximately in the actual numerical calcula-
tion.

Differences between TAPl and TAP2 appear signi-
ficant with respect to running time. Although these
calculations do not provide a complete comparison,
we note that TAPl required 124 seconds of 7600 CPU
time to calculate eight diffraction patterms, while
TAP2 required 91 seconds to calculate ten patterns

(including Fresnel numbers 7.111 and 6.4 in addition




to those listed in Table I). TAPl calculated only
five patterns in the same time unless its detailed
contour plots were eliminated.

In Appendix B the complete diffraction pattern
resulting from the initial field of Eq. (75) 1s de-
rived. In Table II a comparison of the "exact" and
TAP2 values for the intensity ratio in the x=0 plane
for a specific value of y is made. We have picked
the value y~ = - 0.1601563 (Eq. (14) scaling) or y =
- 0.8007815 (Eq. (76) scaling). The parameter &2

Eq. ( B—Za)) is equal to 1.085736203 for this
problem.

The numerical results demonstrated conservation
of the quantities of Eqs. (11) and (26) to six sig-
nificant figures in these calculations.

In conclusion, we have derived a number of
exact conservation laws for the nonlinear parabolic
wave equation. These relations appear to be known
under the name "moment theory" and were first de-
rived in Ref. 3. The precise finite Fourier trans-
form method used by the code to solve the equation
is made explicit. Some input parameters are cited
in Appendix A. Comparison of numerically computed
results for a pure diffraction problem reveals very
good agreement between the two different versions
of this code and fair (usually better than 10% in
the intensity) agreement with the exact solution
(derived in Appendix B) over a considerable range

of Fresnel numbers.
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+
I N " 2) E(x)
s1n(2 X

A ()
CcOoSs E‘ X
) <,10132 3 -_13i>;
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APPENDIX A
INPUT DATA

The following parameters are entered via FOR-
TRAN Namelist input: & is the length to which the

transverse coordinates are scaled and k = 9r—é-is the

light wave vector in the medium of linear refractive
index n.

2
1. ALFA = o = k& % ; g = intensity gain (o < 0)

or loss (o > 0) in cm—l.

2
- paf®Y 2 4m ). _cn 2
2. BETA = B'(c) 2 nz(c— I)s Iy = gp 1617 1s
some reference intensity and n2 18 the nonlinear

refractive index. The code computes the scaled

electric field E"(x,y;z) = E(x,y,z)/]ER] so that

if £7(0,0,0) = 1, the scaling intensity is just

the initial central intensity.

_ _81[ * *
GAMA = v = E;'IOY » Y = unscaled nonlinear sa-

turation parameter .

_ Az
DZ = —

L dimensionless step size for physical

step size Az.

NZ = integer number of steps in longitudinal di-

rection.

13



6. MX(MY): number of grid points in X(Y) direction
is ZMX(ZMY);l < MX(MY) < 8 for both versions of
the code.

7. NPLOT: film plot every NPLOT longitudinal steps.

8. NP: printer plot every NP longitudinal steps.

9. IDRUN: optional identification number.

10, IFILM: movie 1if IFILM = 2; otherwise no movie.
The two versions of the code have somewhat different
initial field options. Either one or several Gaus-
sian beams (with or without initial curvature; pro-
pagating either along or at an angle to the z axis;
with different initial amplitudes) can be chosen.

The Gaussian structure is of the form:

2 2
_L (x_> +<L>
2 a a
E(x,y;0) = EO e x y

with the code parameters GWX and GWY then given by

a_ fa
GWX(GHY) = 5% (Tz,l) .
The code parameters X01(YOl), X02(Y02), ... center
the initial Gaussians at (X01,Y0l), (X02,Y02), ...
instead of (0,0). These Gaussians may be given
different amplitudes AMP1l, AMP2, ..,,different ini-
tial focal lengths RO1,R02, ..., and different pro-
pagation directions (NX01,NYOl), (NX02,NY02), ...
Various other input quantities are available

depending on which version of the code is used.

APPENDIX B

EVALUATION OF COMPLETE DIFFRACTION
PATTERN OF TEST PROBLEM

The scaled form of the diffraction integral of
Eq. (74), using the transverse coordinate scaling in
Eq. (76) and the initial field in the aperture of
Eq. (77), is given by Eq. (78),

here.

which we repeat

e - (7 22) (3) 5,

uls) @ +5)

LT (B-1a)
2
+o _1fu2 g
_2<w )
I (x) = ./zx e
2 2
- 1(a - b)( ) x’2 + Zia(z) xx”
L - (B-1b)

2 2
+1 - -
- i(a - b)(L) y—zma(g) 55
- - 2 2
Iy(y) = fdy e

-1 (B-1c)
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Ix(i) has already been evaluated. Defining:
s
a=0(0) = ?E7§T (B-2a)
4
2{L
a(z) = tre@e-y (E) - & ( '£)2+ L
2(£)4&2 F (ﬂNFO&Z)Z
a™\3 .
(B-2b)
2
o (L/2)
Np =55, (B-2c)
we find that
— ; &
I (;)' '_Tr‘—a e zgxp -
* (z)a(L/z) a(z)

+ 1(" @ (“/a = b) (B-2d)

a(z)

L 2 2

tan 8 = - (a - b)(i) o . (B-2e)




Turning to the other integral, let us define A and-

B as

A= (a-~ b)(%")2

2
B = 28(%‘) ;

Then we can transform Iy into

(8-3a)

(B~3b)

2

B w2
IGr-e MAfau fn 7t2"
y Va V2

GEax)

Assume that a~b > 0 (z < F) so%\—is real. This be~

comes

(B-4)
Thus, Eqs. (B-2), (B-3), and (B-4) give the complete
diffracted field.

Recognizing that

2
A=TI’ML(1“£)='"N
Az F

and that

L\2- -
B = 28(5‘) y = 21TNF°y s

we can write the resulting intensity pattern as

o 2 A%
- - F a A5
I(xayaz) = I \o5 - J]e a(Z)

0 2NF a(z)

2 2
. { [C(e:+) + c(e:_)] + [su»:+) + S(e:_)] }

(B-5)

0 - w2’

z
2
. /2 ( _z._) .
N Az 1 F

F
W
&=V gy
. 2
a(z) =&\/(1 —%—) +—]-——2
{'nNFO&Z)

For an initially plane wave, F > + o NF hd NFo and

E+ +\/2NF° (1 +y), and the intensity pattern goes

to
- - 1{ x
I ¥,2) = Iy 5{ <
: 03 (55)
N2
_of X
<&(z)) o o) 2 o o) 2
‘e CELI+C(E_T)[ +{S(E +S(E_T)

(B-6a)
&, =vVan? (1+53) (B-6b)
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One can verify that this reduces to Eq. (83) (with
NF > NFO) as i,; + 0. PFinally, the intensity in the
X = 0 plane is, for an initial plane wave,

_ - I ﬂNFO&Z
Ioe(X = 0,y32) = 5=

Foo 02 2
1+ ('nNF o )

2 2
o o
: I[c<£+ y+ 0] + s + 5] ] :
(B-7)
The following figures represent plane sectioms
of the two-dimensional intensity distributions of
Eq. (B-6) calculated using TAP2., Since the inten~
sity in'the y=0 plane is always Gaussian, it is

shown only for the initial (z=0) distribution. The

Fresnel number NFO (used in Tables I and II) corres-
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0.00
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0.2984E-03
0.3979E~03
0.49748-03
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0.8952E-03
0.9947E-03

ponding to the indicated scaled longitudinal dis-

tance z from the aperture plane is8 given below.

32

21 1/3

16

12.8

10 2/3
9.1438 .

7.111
64
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