

UNITED STATES ENERGY RESEARCH AND DEVELOPMENT ADMINISTRATION CONTRACT W-7405-ENG. 36 This work was supported by the US Energy Research and Development Administration, Division of Reactor Development and Demonstration, and Office of Naval Research Contract N00014-75-C-0832.

> Printed in the United States of America. Available from National Technical Information Service U.S. Department of Commerce 5285 Port Royal Road Springfield, VA 22161 Price: Printed Copy \$5.00 Microfiche \$3.00

> > This report was propared as an account of work sponsored by the United States Government. Neither the United States nor the United States Government. Neither the United States nor the United States Government is an of their contructors, subwinitevitors, or their employed: makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completences, or usefulness of any information, apparetus, product, or process disclosed, or represents that its use would not infringe pelvately owned rights.

TABLE OF CONTENTS

NOT	ATION	iv
ABS	TRACT	vii
I.	INTRODUCTION	1
II.	BAYESIAN RELIABILITY DEMONSTRATION TESTING	5
III.	SELECTING A GAMMA PRIOR DISTRIBUTION	8
IV.	BAYESIAN ZERO-FAILURE (BAZE) RELIABILITY	
	DEMONSTRATION TESTING	13
v.	EXAMPLE	23
VI.	PRIOR DISTRIBUTIONS AND ANALYSIS FOR SELECTED	
	COMPONENTS OF NUCLEAR REACTOR SAFETY SYSTEMS	31
VII.	SUGGESTED BAZE TEST PLANS FOR SELECTED COMPONENTS	
	OF NUCLEAR REACTOR SAFETY SYSTEMS	33
ACK	NOWLEDGMENTS.	43
REF	ERENCES	52
APP	ENDIX A. Some Useful Figures and Tables for	
	the BAZE Procedure	54
APP	ENDIX B. A Procedure for Selecting a Gamma	
	Prior Distribution	70

iii

NOTATION

а	- prior shape parameter
b	- prior scale parameter
b ₀	- reference prior scale parameter
BAZE	- <u>Bayesian Ze</u> ro-Failure
BWR	- Boiling Water Reactor
CRBR	- Clinch River Breeder Reactor
ERDA	- Energy Research and Development
	Administration
f/h	- failures per hour
f(λ)	- prior probability density function of
	the failure-rate λ
$f(\lambda 0 \text{ failures})$	- posterior probability density function of
	the failure-rate λ conditional on 0 observed
	failures in a test of nt unit-hours
Υ	- posterior assurance
(1.07)	- posterior risk
I(a,x)	- incomplete gamma function
	$-\int_{0}^{x_{y}a-1}e^{-y_{dy}}$
k	- discrimination ratio (λ_1/λ_0)
λ	- failure-rate
^λ 0	- specified failure-rate
λl	- criterion failure-rate $(k\lambda_0)$
λ*, λ _*	- generic failure-rate

LL	- 50(l-p ₀)th percentile of a gamma prior
	distribution; lower prior limit
LMFBR	- Liquid Metal Fast Breeder Reactor
MFR	- Median Failure Rate
MTTF	- Mean Time to Failure
n	- number of test units
ⁿ 0	- required number of test units
nt	- unit-hours of testing
(nt) ₀	- required unit-hours of testing
P ₀	- prior assurance
P(•)	- probability
$P(x failures \lambda)$	- conditional probability of x failures in
	a test of nt unit-hours with an under-
	lying failure-rate of λ for each item
P(O failures)	- unconditional probability of passing the
	BAZE test; unconditional probability of
	0 failures in a test of nt unit-hours
P(0 failures $ \lambda_{\star} \leq \lambda \leq \lambda^{\star})$	 conditional probability of passing the
	BAZE test; conditional probability of 0
	failures in a test of nt unit-hours
P(x failures)	 unconditional probability of x failures
	in a test of nt unit-hours
$P(\lambda_{*} \leq \lambda \leq \lambda^{*} x \text{ failures})$	- conditional probability that the failure-
	rate is contained in the interval $[\lambda_*, \lambda^*]$
	given x failures in a test of nt unit-
	hours

v

POC	- Posterior Operating Characteristic
PWR	- Pressurized Water Reactor
θ _γ	- 100(γ)th percentile of the standard gamma
	distribution
^t o	- required test duration
t	- test duration
UL	- 50(l+p ₀)th percentile of a gamma prior
	distribution; upper prior limit
х	- failure-time random variable

A BAYESIAN ZERO-FAILURE (BAZE) RELIABILITY DEMONSTRATION TESTING PROCEDURE FOR COMPONENTS OF NUCLEAR REACTOR SAFETY SYSTEMS

Abstract

A <u>Bayesian-Zero-Failure (BAZE)</u> reliability demonstration testing procedure is presented. The method is developed for an exponential failure-time model and a gamma prior distribution on the failure-rate. A simple graphical approach using percentiles is used to fit the prior distribution. The procedure is given in an easily applied step-by-step form which does not require the use of a computer for its implementation. The BAZE approach is used to obtain sample test plans for selected components of nuclear reactor safety systems.

I. INTRODUCTION

Most government and military contracts for hardware development include a numerical reliability requirement in the specifications. For example, a certain recent contract required an overall system failure-rate no larger than 11.64×10^{-6} f/h. In addition, most contracts require quantitative demonstrated assurance that such a requirement has been met. MIL-STD-781C[†] provides a standard which can be used to demonstrate such a requirement for times-to-failure that are exponentially distributed. The standard may be used for preproduction (qualification) tests, as well as production reliability acceptance (demonstration) tests. A typical reliability demonstration statement is that a failure-rate requirement of X failures/h be demonstrated with Y% confidence.

The purpose of this report is to develop a Bayesian reliability demonstration testing procedure for exponentially distributed failure times which can be easily and effectively used to demonstrate component/subsystem/system reliability conformance to stated requirements. The procedure will also be used to develop suggested test plans for various components used in nuclear power reactor safety systems. This procedure may be used to verify specified and projected component failure-rates in LMFBR safety systems. However, the procedure is a general one and its use is not restricted to nuclear power

[†]MIL-STD-781C "Reliability Qualification and Production Acceptance Tests: Exponential Distribution," Washington, D.C.: U.S. Government Printing Office, (Draft), August, 1976.

safety systems. It may also be used to demonstrate reliability for such equipment categories as ground equipment, shipboard equipment, avionic equipment, weapons systems, and surveillance equipment.

Over the past two decades numerous classical reliability demonstration testing methods have been devised for various failuretime distributions. Classical demonstration test plans for components having an exponential failure-time distribution (constant failure-rate) may be fixed time (Type I Censoring), fixed number of failures (Type II Censoring), or sequential tests. In addition, such tests may be conducted either with or without the replacement of failed items when failures occur during the test. One example of a classical procedure is MIL-STD-781C which gives various test procedures derived under the assumption of a constant failurerate. These tests are based on various levels of producer's and consumer's risk, design ratios, and the confidence level of the test. In these tests, a simple statistical hypothesis of the form

H: $\lambda = \lambda_0$ (specified failure-rate)

A: $\lambda = \lambda_1$ (maximum acceptable failure-rate)

is tested, where λ is the (unknown) failure-rate of the device and $\lambda_1 > \lambda_0$. The producer's risk is the probability that, if H is true, A will be accepted, while the consumer's risk is the probability that, if A is true, H will be accepted. The design

ratio is defined as the ratio of λ_1 to λ_0 . The text by Mann, Schafer, and Singpurwalla (1974) gives an excellent discussion of the basis upon which these and other classical test plans have been developed.

In practice, it is often the case that the reliability parameters of interest, such as MTTF, reliable life, failurerate, etc., most realistically should be treated as random variables and not as constant values. The statistical distribution which expresses the true underlying variation in the parameter is called the <u>prior distribution</u> of the parameter (when treated as a random variable). This approach has been taken in previous reactor safety analyses, such as the Rasmussen study.* In that study, the prior distribution for the reactor component failure-rates was taken to be the log-normal distribution.** Such an approach permits the reliability quantity of interest to vary randomly due to such factors as environmental effects, plant-to-plant differences, maintenance effects, and different operational demands.

By treating the parameter as a random variable, a Bayesian approach may be considered. The main advantage of the Bayesian approach is that the resulting estimates are computed from all available information, and not just narrowly defined test data

*WASH 1400 Appendix III

**Ibid., p. II-40

of precise content. Rather, there exist two sources of information regarding the Bayesian procedure. One source of information, the so-called "prior information," expresses the sum total of engineering judgment and belief concerning the underlying prior distribution of the parameter of interest. It is precisely this distribution which expresses the inherent variability of the parameter itself. The other source of information is the statistical model used to describe either the time-to-failure data or the test results themselves. Both sources of information are combined via Bayes Theorem [see Waller and Martz (1975)] to produce a statement such that the probability that the failure-rate does not exceed the specified value is Y%.

Such an approach is particularly applicable for deriving test plans for demonstrating the component failure rates of proposed nuclear reactors. The reason for this is that failure data are becoming available for similar components in use in existing power reactor systems throughout the world. These data, which are continuously being compiled and reported in numerous data base systems, represent the "prior information" for similar components to be used in advanced reactor systems, such as LMFBR systems.

The resulting Bayesian test plans are generally resourceeffective, due to the use of all available information and judgment concerning the parameter of interest. If the prior information supports an adequately reliable component, then less testing will usually be required compared to the classical case.

If the opposite is true, then more testing may be required. A general introduction to the use of Bayesian methods in reliability is given by Waller and Martz (1975), (1976a), (1976b).

A brief review of Bayesian reliability demonstration procedures is given in Section II. A procedure for choosing the prior distribution is presented in Section III. The BAZE procedure is developed in Section IV. Section V contains an example illustration of the method, as well as an examination of the sensitivity of the results to the chosen prior distribution. Appropriate prior distributions are fitted to various components used in nuclear power systems in Section VI. Section VII presents a selection of sample BAZE test plans for these reactor components.

II. BAYESIAN RELIABILITY DEMONSTRATION TESTING

The state of the art of Bayesian reliability demonstration test procedures will now be reviewed. One of the earliest references to Bayesian reliability demonstration plans is that of Bonis (1966). Since that time numerous Bayesian schemes have been developed. Easterling (1970) presented a somewhat modified Bayesian demonstration procedure. Schafer and Singpurwalla (1970) developed a sequential Bayes procedure for obtaining required test plans. Schafer (1969), (1971), and (1973) has considered three types of Bayesian plans: (1) Bayesian fixed time tests, (2) mixed Bayesian/classical, and (3) Bayesian sequential tests. Following along these same lines, Goel et al., (dates

unknown) developed Bayesian plans for slightly different criteria. Blumenthal (1973) has also developed Bayesian test plan procedures. Guild (1968), (1973) has developed what he refers to as "median failure rate" (MFR) reliability demonstration plans. Other Bayesian plans have also been considered by Balaban (1969), (1975) and Ramos (1970). Joglekar (1975) discusses several of these Bayesian testing schemes. Recently, Goel and Joglekar [1976] have prepared a comprehensive account of the state of the art of Bayesian reliability acceptance sampling. This five-part series provides an excellent introduction to the subject.

One of the major problems with most Bayesian test plans is the relative difficulty in obtaining a desired plan in practice. This is due to the presence of additional prior parameters, as well as the relative complexity of the method. For example, most of the above Bayesian plans are derived for a constant failurerate model and a gamma prior distribution on the failure-rate [see Waller and Martz (1975)].

The gamma prior distribution is the natural conjugate prior distribution for the constant failure-rate model. Schafer (1969) investigated data from 32 different equipments and found that in 29 cases a gamma prior distribution adequately fit the data. Others have likewise observed the suitability and versatility of the gamma prior distribution. For these reasons it is also considered here. However, it is frequently not an easy task to

identify an appropriate gamma prior distribution and, once this has been done, to obtain the required test plan. The choice of test plan criteria, e.g., the consumer and producer risks that are to be controlled, can also complicate the determination of the required plan. Certain criteria yield plans that are simple One of the easiest of the above Bayesian proceto determine. dures to use in practice is that given by Guild (1973). A more general version of this procedure is developed in Section IV for use here. An earlier version of this BAZE procedure was presented by Martz and Waller (1976c). The current BAZE procedure contains a more useful and practical procedure for selecting the prior distribution, which has been incorporated into the BAZE procedure itself. The new procedure also contains a simple method for examining the sensitivity of the resultant BAZE test plan to the chosen prior distribution. This serves to make the method more useful in practice.

Three somewhat distinctive aspects of the procedure should be mentioned before we begin the development. First, the criterion upon which the procedure is based is simple, pertinent, and easy to grasp. Second, the fitting of the prior distribution is an integral part of the procedure and is based on the use of information regarding two percentiles of this distribution. Third, the procedure is straightforward and easy to apply in practice, with only a few simple graphs and tables and pocket calculator required. Together these provide a useful Bayesian procedure for a large variety of applications.

III. SELECTING A GAMMA PRIOR DISTRIBUTION

We assume that the time-to-failure of interest is an exponentially distributed random variable with failure-rate parameter λ . For Bayesian analyses in this model, the family of gamma distributions with probability density functions given by

$$f(\lambda) = \frac{b^{a}}{\Gamma(a)} \quad \lambda^{a-1} e^{-b\lambda}, \ \lambda, \ a, \ b > 0 \tag{1}$$

provides conjugate prior models for λ . In practice, an engineer must select a member of this family as the prior distribution to be used in determining the BAZE test plan to be discussed in the next section. The selection of a particular prior distribution is accomplished by identifying values for the prior shape parameter a and prior scale parameter b. The parameter a can be further interpreted as the number of pseudo failures in a prior life test of duration b pseudo hours. The mean and variance of λ are given by (a/b) and (a/b²), respectively.

Some additional benefits in using a gamma prior distribution are as follows:

a. The two parameters give sufficient flexibility to model a variety of shapes of prior distributions likely to be encountered in practice. The following indicate the possible shape characteristics of a conjugate gamma prior distribution.

b>0	L-shaped or decreasing 0 <a<1< th=""><th>Exponential</th><th>Unimodal with mode at b(a-l)</th></a<1<>	Exponential	Unimodal with mode at b(a-l)
	0 <a<1< td=""><td>a=1</td><td>a>1</td></a<1<>	a=1	a>1

b. The positive skewness can account for general behaviors of assessed data in which less likely but large deviations may occur (such as abnormally high failure-rates due to batch defects, environmental degradation, and other outlier causing effects).

c. In practice, the gamma family often satisfactorily fits observed data [see Schafer (1969)].

d. The positively skewed nature of the gamma family provides a protective, positive-type bias which is retained when the distribution is propagated by means of a Bayesian analysis.

A simple method for determining values for a and b will now be described. The method requires an engineer to provide upper and lower percentile values. Once these are given, a simple graphical or table look up, in addition to a few simple calculations, yields the corresponding values of a and b.

The engineer must provide two values of the failure-rate λ , referred to as the <u>lower prior limit</u> (LL) and <u>upper prior limit</u> (UL), such that

$$P(\lambda < LL) = P(\lambda > UL) = (1.0-p_0)/2,$$
 (2)

where p_0 is required to be equal to one of the values 0.95, 0.90, or 0.80, and where LL < UL. That is, LL and UL are specified such that there is an equal $50(1.0-p_0)$ % chance that the true (unknown) failure-rate is either less than LL or greater than UL, respectively. Thus LL and UL are the respective 50(1.0-p0)th and $50(1.0+p_{n})$ th percentiles of the prior gamma distribution. For example, suppose that an engineer's best prior judgement or belief is that $P(\lambda < 1.0 \times 10^{-7} f/h) = 5\%$ and that $P(\lambda > 1.0 \times 10^{-5} f/h) = 5\%$. Thus $(1.0-p_0)/2 = 0.05$, $p_0 = 0.90$, LL = 1.0×10^{-7} f/h, and UL = 1.0x10⁻⁵ f/h. The quantity $100p_0$ % is the prior assurance that the interval (LL, UL) contains the failure-rate of interest. Since engineers are increasingly becoming accustomed to working with 5% error probabilities, it is likely that $p_0 = 0.90$ will However, 80% and 95% prior assurances can normally be used. also be used. For example, in the Rasmussan study (WASH-1400), 90% prior assurance was considered. If the prior assurance is free to be selected, it is recommended that $p_0 = 0.90$ be used. In this case, LL and UL become the lower and upper prior 5% bounds, respectively, on the failure-rate.

A mathematical justification of the procedure to be described is given in Appendix B. A step-by-step outline of the procedure is as follows:

- Step 1: Specify the values of LL, UL, and $p_0 = 0.80$, 0.90, or 0.95 that represent the totality of your best judgement and belief about the failure-rate λ of interest. These values are selected in accordance with (2).
- Step 2: Compute the value of log₁₀ (UL/LL).
- Step 3: For the value of p₀ chosen in Step 1 and the value of log₁₀ (UL/LL) calculated in Step 2, read the required value of shape parameter a from Figure Al (see Appendix A).
- Step 4: For the value of p₀ from Step 1 and for the value of a found in Step 3, read the value of b₀ from Figure A2 (see Appendix A). Note: Table A2 (see Appendix A) may be used in lieu of Figure A2 to obtain b₀, depending upon which is more convenient to use. If necessary, interpolate in Table A2.
- Step 5: For the value of LL from Step 1 and the value of b₀ from Step 4, calculate the required value of the scale parameter b according to

$$b = b_0 (1.0 \times 10^{-6} f/h) / LL.$$

Let us illustrate this procedure by means of an example.

Example: For a certain component of interest, suppose it is

is believed that the failure-rate λ is such that $P(\lambda < 1.0 \times 10^{-7} f/h) = 5\%$ and $P(\lambda > 1.0 \times 10^{-5} f/h) = 5\%$. It is required to identify the particular gamma distribution which is consistent with this belief.

Step 1: LL =
$$1.0 \times 10^{-7} f/h$$
, UL = $1.0 \times 10^{-5} f/h$, and $p_0 = 0.90$.
Step 2: $\log_{10}(UL/LL) = \log_{10}(10^2) = 2.0$.

Step 3: From Figure Al, for $p_0 = 0.90$ and $log_{10}(UL/LL) = 2.0$, we find a = 0.84.

Step 4: For a = 0.84 and $p_0 = 0.90$, Table A2 yields $b_0 = 2.6723 \times 10^4 h.$

Step 5: The required scale parameter b becomes

$$b = \frac{(2.6723 \times 10^{4} h) (1.0 \times 10^{-6} f/h)}{(1.0 \times 10^{-7} f/h)}$$
$$= 2.6723 \times 10^{5} h.$$

By means of the incomplete gamma function code INCGAM (written by D.E. Amos and S.L. Daniel of Sandia Laboratories, Albuquerque, NM, November 1974), the actual tail-area probabilities for a gamma distribution with parameters a = 0.84, $b = 2.6723 \times 10^5$ h are 0.05, as desired. However, this is not always the case. Due to numerical and round-off errors, the upper tail area may not be exactly equal to $(1 - p_0)/2$. In Step 5, the denominator of the expression for b was LL. This

was done to insure that the lower tail area will always be $(1-p_0)/2$, while the upper tail area may depart somewhat from the desired value $(1-p_0)/2$. We chose to hold the lower tail area fixed because of the positively skewed nature of the gamma distribution.

One final note concerns the usefulness of Figures Al and A2 in practice. The effective range of values of a considered in Figures Al and A2 is between 0.25 and 10.0. Experience with fitting gamma prior distributions to failure-rate data indicates that this range should contain nearly all situations likely to be encountered in practice. This range is consonant with ratios of UL to LL roughly between 0.3 and 4.0 orders of magnitude (powers of 10).

IV. BAYESIAN ZERO-FAILURE (BAZE) RELIABILITY DEMONSTRATION TESTING

The BAZE reliability demonstration procedure was developed by Martz and Waller (1976c). This procedure is given here in an expanded form which includes the procedure for fitting a gamma prior distribution, described in the preceding section, and other features as well.

This section describes how to construct and apply Bayesian fixed time demonstration test plans of the replacement type, called BAZE plans, for systems/subsystems/components having a constant failure-rate. The BAZE procedure is appropriate for testing time-dependent chance failure mechanisms.

To begin, consider a device, henceforth referred to as a "component," having an exponential failure time distribution with failure-rate λ . Thus, the failure-time random variable X of this component is assumed to follow the well-known exponential probability density function given by

$$f(\mathbf{x}|\lambda) = \lambda e^{-\lambda \mathbf{x}}, \ \mathbf{x} \ge 0, \ \lambda > 0.$$
(3)

As mentioned earlier, it is assumed here that the prior distribution of λ is the natural conjugate gamma distribution with probability density function given by

$$f(\lambda) = \frac{b^{a}}{\Gamma(a)} \lambda^{a-1} e^{-b\lambda}, \lambda, a, b > 0, \qquad (4)$$

where a is the prior shape parameter and b is the prior scale parameter.

The test plans considered here assume that n identical components are tested each for a prespecified length of time t, the test duration. The quantities n and t are to be determined consistent with the following statistical test criterion. The test criterion is as follows: if no failures occur, the test is passed, while if one or more failures occur, the test is failed. Thus the test is terminated either at the prespecified test time t or at the time of the first component failure, whichever occurs first. Such "zero-failure" test plans usually require the smallest unit-hour test combination nt for a stated confidence, and are thus test resource-effective. In addition,

by restricting consideration to zero-failures, such test plans are easy to obtain. Now the probability of obtaining exactly zero failures during the test is given by

$$P(0 \text{ failures}|\lambda) = e^{-nt\lambda}.$$
 (5)

The posterior distribution of λ is also a gamma distribution with scale parameter (b + nt) and shape parameter a. Thus, conditional on zero failures in nt unit-hours of testing, the posterior probability density function of λ becomes

$$f(\lambda \mid 0 \text{ failures}) = \frac{(b+nt)^{a}}{\Gamma(a)} \lambda^{a-1} e^{-(b+nt)\lambda}.$$
 (6)

In order to find the required unit-hour test combination nt, some criterion regarding the desired confidence level of the demonstration test must be given. The plans presented here satisfy the <u>posterior risk criterion</u> given by

$$P(\lambda \leq k\lambda_0 | 0 \text{ failures}) = \gamma, \tag{7}$$

where $P(\cdot)$ is a probability function. Here λ_0 is the <u>specified</u> <u>failure-rate</u>. If we define $\lambda_1 \equiv k\lambda_0$, then λ_1 is referred to as the test <u>criterion failure-rate</u> and k is known as the <u>discrimination</u> <u>ratio</u>. The test criterion in (7) is interpreted as follows. In a test that is passed, i.e., zero failures occur, the probability is 100γ % that the component failure-rate does not exceed $(k\lambda_0)$. Here(1.0- γ) will be referred to as the <u>posterior risk</u> and γ will

be referred to as the <u>posterior assurance</u>. The word "posterior" denotes that the assurance pertains to tests which have been passed. Of course, values of γ and k are required in order to determine the required test plan. More will be said about the selection of these values later.

Recall that the test procedure requires that n items be placed on life test for t hours. If no failures occur, the test is passed. Now, if the test is passed, it may be claimed that a failure-rate not exceeding $(k\lambda_0)$ has been demonstrated with 100γ % posterior assurance. If a single failure occurs, the test is failed, and the forgoing claim cannot be made.

The BAZE procedure described requires specification of values for the following five quantities:

- LL(lower prior limit)
- UL(upper prior limit)
- p_0 (the prior assurance)
- $-\lambda_1$ (the criterion failure-rate)
- $-\gamma$ (the posterior assurance).

It is noted that the criterion failure-rate λ_1 may be equal to the specified failure-rate λ_0 . In this case k=1; otherwise, k≠1. The procedure is developed by writing

$$p(\lambda \leq \lambda * | 0 \text{ failures}) = \int_{0}^{\lambda *} \frac{(b+nt)^{a}}{\Gamma(a)} \lambda^{a-1} e^{-(b+nt)\lambda} d\lambda$$
$$= \frac{I(a, [b+nt]\lambda *)}{\Gamma(a)}, \qquad (8)$$

where I(a,x) is the widely studied incomplete gamma function defined by

$$I(a, x) = \int_{0}^{x} y^{a-1} e^{-y} dy.$$
 (9)

Tables and computer routines for evaluating this function are widely available for use in our development. Hence, when LL, UL, P_0 , γ , and λ_1 are specified, the step-by-step procedure for obtaining the required BAZE test plan is as follows:

Step 1: For the specified values of LL and UL, compute the value of log₁₀(UL/LL).

- Step 3: For p₀ and the value of a from Step 2, obtain the value of b₀ from either Figure A2 or Table A2.
- Step 4: For the value of LL and b₀ from Step 3, calculate the value of the prior scale parameter b, in appropriate time units, according to

$$b = b_0 (1.0 \times 10^{-6} f/h)/LL.$$

Step 5: Obtain the value of θ from Table Al (Appendix A) for the value of a found in Step 2 and γ . <u>Note:</u> Table Al may be used directly for a = 0.0001 (0.0001) 0.01 (0.001) 0.10 (0.01) 1.0 (0.1) 5.0 (0.5) 10.0 (1.0) 50.0 and $\gamma = 0.99$, .975, .95, .90, .85, .80, .75, .70, .60, .50. For other values of a and/or γ , either interpolate in Table Al or solve the equation given by

$$\int_{0}^{\theta_{\gamma}} \lambda^{a-1} e^{-\lambda} d\lambda - \gamma \Gamma(a) = 0$$

for θ_{γ} . It is mentioned here that in constructing Table Al the incomplete gamma function in the above equation was numerically calculated by use of the code INCGAM, written by D.E. Amos and S.L. Daniel of Sandia Laboratories, Albuquerque, NM, November 1974. The above equation was solved on a CDC 6600 computer by use of the root-solving code ZEROIN, written by L.F. Shampine and H.A. Watts, also of Sandia Laboratories, September 1970.

Step 6: With λ_1 and the θ_{γ} value from Step 5, and the value of b from Step 4, solve for the required BAZE unithours of test (nt)₀ given by

$$(nt)_0 = (\theta_\gamma - b\lambda_1)/\lambda_1.$$

Note: Negative values of $(nt)_0$ can occur. A negative value of $(nt)_0$ can be interpreted as a demonstration of the failure-rate λ_1 , at the stated posterior assurance level, without the need for further testing. This situation occurs whenever

the prior distribution satisfactorily meets the assurance requirement.

- Step 7: Calculate the sensitivity of the final plan and the posterior assurance to errors in the prior assurance, as well as the sensitivity of the final plan to errors in the posterior assurance and criterion failure-rate (cf Section V. Example).
- Step 8: Identify the final plan to be used based on the results of the sensitivity analysis conducted in Step 7 and the unconditional probability of passing the test [from (10) or (11) below].
- Step 9: The required test duration t_0 and number of test units n_0 is given by any pair of values satisfying $n_0 t_0 = (nt)_0$, where $(nt)_0$ is the required unit-hours of test from Step 8 and n_0 is a positive integer. The values n_0 and t_0 are selected by outside considerations, such as test time constraints and the number of test units available.

It is noted here that if a = 1, b = 0, and $\gamma = 0.50$, then the BAZE test plan is exactly the same as the classical test plan. If a = 1 and $\gamma = 0.50$, then the BAZE test plan will always require less unit-hours of testing, depending upon the magnitude of b.

For a specified fixed value of a, the required BAZE unit-hours of test decreases as γ decreases, b increases, or k increases. Consequently, for given values of a and b, an opportunity is

present for the test designer to trade between decreasing testing costs [decreasing (nt)₀] and decreasing test assurance [decreasing γ and/or increasing λ_1]. Such tradeoffs are illustrated in Section V.

Suppose that high-reliability components with failure-rate on the order of magnitude of 10^{-6} f/h are being considered. If the prior mean is in this range, then it is true that as the spread between LL and UL increases both a and b will generally decrease. This is seen in Figures Al and A2. In fact, in situations such as this, a will frequently be less than one. This situation occurs whenever the prior variance is quite large, i.e., whenever the prior distribution is diffuse [see Waller and Martz (1975)]. Such situations frequently occur in reliability and this fact has motivated the fine grid of a values less than one considered in Table Al.

A quantity of particular interest to the producer is the unconditional probability of passing the test when using a test plan with (nt) unit-hours of test. The unconditional probability of <u>not</u> passing the test is, in some sense, the "producer's risk" of the BAZE procedure. The probability of passing the test must be sufficiently large in order that the producer be willing to conduct the test. This probability also conveys to the consumer the likelihood that the required posterior assurance will be realized. This probability is given by

$$P(Passing the Test) \equiv P(0 failures) = [b/(b+nt)]^{a}$$
. (10)

Related to this quantity is the conditional probability of passing the test when it is known that the true (unknown) failurerate λ lies within a given interval $[\lambda_*, \lambda^*]$, where $0 \leq \lambda_* < \lambda^* \leq \infty$. In this case we have

$$P(\text{Passing the Test}|\lambda_{\star} \leq \lambda \leq \lambda^{\star}) = \left(\frac{b}{b+nt}\right)^{a} \left[\frac{I(a,[nt+b]\lambda^{\star}) - I(a,[nt+b]\lambda_{\star})}{I(a,b\lambda^{\star}) - I(a,b\lambda_{\star})}\right], \qquad (11)$$

where I(a,x) is defined in (9). It is also noted that, if $\lambda_* = 0$ and $\lambda^* = \infty$, then the conditional probability of passing the test given in (11) reduces to the unconditional probability given in (10). In practice, an interval $[\lambda_*, \lambda^*]$ which is certain to contain the failure-rate can frequently be identified. If this can be done, then (11) should be used in place of (10).

What posterior assurance do we have about the failure-rate if one or more failures occur during the test, i.e., if the test is failed? Suppose that failed items are replaced as they occur during the test. Then

$$P(x \text{ failures}|\lambda) = \frac{e^{-nt\lambda}(nt\lambda)^{X}}{x!}, x = 0, 1, \dots, \quad (12)$$

and the posterior probability density function of λ becomes

$$f(\lambda | x \text{ failures}) = \frac{(b+nt)^{a+x}}{\Gamma(a+x)} \lambda^{a+x-1} e^{-(b+nt)\lambda}.$$
(13)

Now, for any specified interval $[\lambda_*, \lambda^*]$, where $0 \leq \lambda_* < \lambda^* \leq \infty$, we have

$$P(\lambda_{\star} \leq \lambda \leq \lambda^{\star} | x \text{ failures}) =$$

$$\frac{1}{\Gamma(a+x)} \left[I(a + x, [b + nt]\lambda^{\star}) - I(a + x, [b + nt]\lambda^{\star}) \right].$$
(14)

In particular, we have

$$P(\lambda \leq k\lambda_0 | x \text{ failures}) = I(a + x, [b + nt]k\lambda_0) / \Gamma(a + x). \quad (15)$$

It is observed that, if x = 0, then (15) is equal to the specified posterior assurance γ . For the criterion failure-rate $(k\lambda_0)$, as x increases (15) becomes smaller than γ . Thus, as more failures occur, we have less posterior assurance about the failure-rate not exceeding the criterion value.

Also, the unconditional probability of obtaining exactly x failures in a test of nt unit-hours duration is

$$P(x \text{ failures}) = \frac{b^{a}(nt)^{x}\Gamma(a + x)}{\Gamma(a)\Gamma(x + 1)(nt + b)^{a + x}}.$$
 (16)

The statistical performance characteristics of the chosen plan are completely summarized by means of the <u>posterior operating</u> <u>characteristic</u> (POC) curve. This curve is obtained by plotting $P(\lambda \leq \lambda^* | 0 \text{ failures})$ as a function of λ^* . Unlike classical OC curves, the POC curve is a cumulative distribution function. This probability may be computed from (8).

We cannot emphasize enough that both the consumer and producer must be willing to pay the price for increasing assurance of small failure-rates by increasing the unit-hours of testing. This will be illustrated in the example in the next section.

V. EXAMPLE

In order to fully illustrate the BAZE procedure, consider the following example. Consider a certain component whose random failure-rate is required to be demonstrated. How many unit-hours of testing with no countable failures are required in order to be able to claim that $P(\lambda \le 2.0 \times 10^{-6} \text{ f/h}) \ge 0.70$, after the test has been passed? From past experience and engineering judgement, suppose it is believed that

 $P\{\lambda \le 8.5 \times 10^{-8} f/h\} = P\{\lambda \ge 4.8 \times 10^{-6} f/h\} = 5$ %.

Thus $\lambda_1 = \lambda_0 = 2.0 \times 10^{-6} \text{ f/h}$, $\gamma = 0.70$, LL = $8.5 \times 10^{-8} \text{ f/h}$, UL = $4.8 \times 10^{-6} \text{ f/h}$, and $p_0 = 0.90$. Following the step-by-step procedure in the preceding section yields the following results:

- Step 1: $\log_{10}(UL/LL) = 1.75$. Step 2: For $\log_{10}(UL/LL) = 1.75$ and $p_0 = 0.90$, we read a = 1.0 from Figure A1.
- Step 3: For $p_0 = 0.90$ and a = 1.0, we obtain $b_0 = 5.1293 \times 10^4 h$ from Table A2.
- Step 4: For LL = 8.5×10^{-8} f/h and b₀ = 5.1293×10^{4} h, we calculate

$$b = (5.1293 \times 10^{4} h) (1.0 \times 10^{-6} f/h)/(8.5 \times 10^{-8} f/h)$$

 $= 603.44 \times 10^3 h.$

Step 5: For a = 1.0 and γ = 0.70, we obtain $\theta_{0.70}$ = 1.203973 from Table Al.

Step 6: For $\lambda_1 = 2.0 \times 10^{-6} \text{ f/h}$, $\theta_{0.70} = 1.203973$, and b = 0.60×10⁶h, the required BAZE unit-hours of test (nt)₀ are calculated to be

 $(nt)_0 = [1.203973 - (0.60 \times 10^6 h) (2.0 \times 10^{-6} f/h)]/(2.0 \times 10^{-6} f/h)$

= 1987 unit-hours.

The POC curve for this plan is plotted in Figure 1. Step 7: Let us first examine the sensitivity of the BAZE plan to changes in the posterior assurance γ and criterion failure-rate λ_1 . We express the varying criterion failure-rate λ_1 as a function of k according to $\lambda_1 = k\lambda_0 = k(2.0 \times 10^{-6} \text{ f/h})$. Table I gives the resultant test plan as a function of a selected grid of values of k and γ . The plan (nt) $_0$ = 1987 unit-hours is indicated in table for k = 1.0and $\gamma = 0.70$. It is clearly observed that the required unit-hours of test increase as y increases and k decreases. It is observed that the optimal test plan is quite sensitive to increasing γ and also somewhat sensitive to decreasing k, for the range of k indicated. The "zeros" indicate those situations in which the prior distribution is sufficient to guarantee that the risk is at or below the specified level, without the need for additional testing.

Fig. 1. The POC curve for Test Plan (nt) = 1987 Unit-Hours of Test.

TABLE I

REQUIRED UNIT-HOURS OF TESTING FOR SELECTED VALUES OF K AND Y $(a = 1.0, b = 0.60 \times 10^6)$

Y						k					
	• 5	.6	.7	•8	.9	1.0	1.1	1.2	1.3	1.4	1.5
•990 •975 •550 •900 •850 •800 •750	•003175 334279 2345737 1762565 1297125 1079-39 786294 563973	3237642 2474056 1895443 1318321 980933 7%1198 555245 403311	2699407 2034414 1534009 1044704 755086 549549 390210 259981	2278231 1745549 1272333 39116 545700 445899 266434 152483	1953428 1449377 1064246 679214 453456 294132 170165 68874	1702595 124440 897866 551293 346560 204719 93147 (1987)	1493259 1076763 761646 46630 262327 131563 30134	1319221 937033 648222 359410 196467 70599 0	0171219 015515 0155255 010585 230751 230751 015	1044704 717457 459904 222352 77543 0	72025 72025 524526 712075 855701 855761 0 0
.600 .500	316291 93147	163576 Q	54494 Õ	0	0	0	0	0	0 0	Q D	0

Let us now determine the sensitivity of the BAZE plan to changes in the prior assurance. Suppose that, regarding the prior distribution, each tail area is actually 2.5%, rather than 5%, as we have assumed. Applying Steps 1-4 for $p_0 = 0.95$ yields a = 1.36 and $b = 929.70 \times 10^3$ h. Table II gives the resultant BAZE test plan for the same set of values of γ and k used in Table I. Table III gives the percentage change in the BAZE plans of Table II relative to the "nominal" plans given in Table I. It is observed from Table III that the BAZE plans are somewhat sensitive to a 100% error (assumed 5% when, in fact, 2.5%) in the tail areas of the prior distribution. Now, if a = 1.36 and $b = 929.70 \times 10^3 h$, the "actual" posterior assurance of the plan (nt) $_0$ = 1987 unit-hours is easily computed from (8) to be 75%, rather than 70% as required. Thus, we unknowingly would have more posterior assurance than required. Similarly, for any other BAZE test plan in Table I, we could compute the "true" posterior assurance relative to this "error" in fitting the prior distribution. Similarly, Tables IV and V consider the case where the actual tail areas of the gamma prior are 10%, instead of 5%, as assumed. From Table V, it is observed that the BAZE plans are fairly insensitive to this 100% error in the prior tail-area

TABLE II. Required Unit-Hours of Testing for Selected Valued of k and γ

y k	0 . 5'	0.6	0.7	٥. ۴	0.¢	1.0	1.1	1.2	1.3	1.4	1.5
C. \$90 0.975 0.550 0.800	3464755. 2618141. 1986835.	2833963. 2126785. 1600696.	23 £1 96 5. 1775815. 1324832. 883665.	2042971. 1512548. 11:8021. 731957.	1779308. 1207856. 957131. 613962.	1568377. 114407C. 828418. 519565.	1395798. 1010064. 723107. 442332.	1251982. 808393. 635348. 377972.	1130290. 803901. 561091. 323512.	1025984. 722908. 497441. 276832.	935586. 652714. 442279. 236377.
0.950	1016011.	792426.	632380 .	511819.	418284.	343456.	292232.	231213.	189043.	151040.	118971.
0.900	772714.	588929.	457653 .	359194.	282619.	221357.	171234.	129455.	94121.	63825.	37572.
0.750	587545.	434621.	325390 .	243466.	179747.	128773.	87066.	52311.	22902.	0.	0.
C. 700	439704.	311422.	219790.	151066.	97615.	54853.	19867.	0.	0.	0.	0.
0.500	214683.	123903.	59059.	10427.	0.	0.	0;	0.	0.	0.	0.
0.500	49631.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.

$(a = 1.36, b = 929.70 \times 10^{3}h)$

TABLE III. Percentage Change in the BAZE Plans of Table II

Rela	tive	to	Table	Ι
TOTO			10010	_

YK	.5	.6	.7	.8	.9	1.0	1.1	1.2	1.3	1.4	1.5
. 990	13.443%	12.468%	11.4318	10.326%	9.1461	7.883%	6.527%	5.068%	3.495%	1.792%	0.056%
.975	15.240	14.037	12.733	11.314	9.764	8.065	6.194	4.124	1.820	0.760	3.667
.950	17.068	15.595	13,958	12.128	10.069	7.735	5.066	1.986	1.609	5.860	10.964
.900	19,585	17.658	15.415	12.770	9.607	5.775	0.962	5.164	13.271	24.502	41.096
.850	21.602	19.217	16.290	12.614	7.858	1.465	7.587	21.392	45.026	94.782	267.49
. 800	23.451	20.544	16.730	11.506	3.915	8.127	30.154	83.378	394.98		
.750	25.277	21.724	16.612	8.621	5.632	38.247	188.93				
.700	27.198	22.784	15.459	0.929	41.730	2660.6					
. 600	32.155	24.254	8.377								
.500	46.718										

$$(a = 0.67, b = 330.68 \times 10^{3} h)$$

rk	0.5	0.5	0.7	0.8	C. 9	1.0	1.1	1.2	. 1.3	1.4	1.5
0.700	2816755.	2232963.	1791969.	1442972.	1179308.	968378.	795798.	651983.	530291.	425985.	335536.
0.07*	2019140.	1526789.	1175816.	912589.	767657.	544071.	41 0065 .	298394.	203901.	122908.	52714.
0.950	1386834.	1000497.	724883.	5180 22 .	357131.	228418.	123107.	35350.	0.	0.	0.
0.900	769191.	485943.	283655.	131957.	13952.	0.	Ο.	0.	0.	Ο.	0.
0.850	416911.	192425.	32080.	0.	0.	. 0.	. 0.	0.	0.	0.	0.
0.800	172714.	C.	0.	0.	٥.	0.	Ο.	Ο.	Ο.	0.	0.
0.750	0.	υ.	0.	0.	0.	0.	0.	0.	0.	0.	0.
0.740	0.	0.	0.	0.	с.	0.	0.	0.	0.	0.	0.
0.500	ο.	0.	С.	0.	0.	0.	0_	0.	0.	0.	0.
0.510	0.	ο.	υ.	0.	э.	0.	0.	٥.	0.	0.	0.

TABLE V. Percentage Change in the BAZE Plans of Table IV

Relative to Table I

YK	.5	.6	.7	.8	.9	1.0	1.1	1.2	1.3	1.4	1.5
.990	28.424%	31.000%	33.741%	36.663%	39.783	43.123%	46.707%	50,563%	54.7238	59.224%	64.1118
.975	34.664	38.288	42.218	46.493	51.161	56,280	61.917	68.156	75.098	82.869	91.628
.950	42.112	47.233	52.924	59.286	66.444	74.560	83.838	94.547			
.900	54.826	63.153	72.847	84.274	97.944						
.850	67.854	80.383	95.751								
.800	82.890										
. 750											
.700											
.600										<u></u>	
. 500								-			

probabilities. If a = 0.67 and $b = 330.68 \times 10^{3}$ h, the actual posterior assurance of the plan $(nt)_{0} = 1987$ unit-hours is 66%, as compared to the desired value of 70%. In this case, we have less posterior assurance than required.

Step 8: The unconditional probability of passing the test $(nt)_0 = 1987$ unit-hours is calculated from (10) as P(Passing the Test) = $[(0.60 \times 10^6)/(0.60 \times 10^6 + 1987)]$ = 0.9967.

> Table VI gives the unconditional probability of passing the corresponding test given in Table I. In practice, tables such as Table VI are useful to the producer in selecting the final test plan. From the results of Step 7 and this step, the final plan to be used is $(nt)_0 = 1987$ unit-hours of test.

Step 9: A single component may be tested for 1987 hours; five components for 397.4 hours; ten components for 198.7 hours; etc. If no failures occur, it may be claimed that a failure-rate of 2.0x10⁻⁶f/h or less has been demonstrated with 70% assurance.

At this point the question can be raised; namely, how many unit-hours of testing are required when using an alternate classical (standard non-Bayesian) procedure? By judicious choice of producer and/or consumer risks, it is possible to "show" that classical test plans result in either larger or smaller total unit-hours of testing. Thus, a person advocating a purely classical approach could "show" that his procedure results in
TABLE VI

THE	UNCO	ONDITIONAL	PROI	BABILIT	FIES	OF	PA	SSING
	THE	CORRESPON	'DTNG	TESTS	TN	TARI	F	т

	k													
y	•5	.6	•7	.8	•9	1.0	1.1	1.2	1.3	1.4	1.5			
.990	.130	.156	.182	,208	.235	.261	.237	.313	.339	.365	.391			
975	.163	.195	•558	.260	•293	,325	.358	•390	•423	•455	.488			
950	.200	.240	.280	320	•361	.401	.441	•491	•251	•561	,6ul			
900	.261	.313	.365	.417	•469	,521	.573	.625	.677	.730	. 782			
.850	•316	.380	•443	.506	•569	.633	.596	•759	•855	.896	• 549			
.800	,373	.447	,522	.595	.67-1	,746	,820	.895	,959	1.000	1.000			
.750	.433	.519	.606	692	• 779	,866	.952	1.000	1.000	1.000	1.000			
700	.498	.598	• 698	,797	.997	. 777	1.000	1.000	1.000	1.000	1.000			
.600	.655	,786	•917	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000			
.500	.866	ī.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000			

less testing. On the other hand, a "Bayesian" can "show" the opposite to be the case. The correct answer lies in recognizing that the two procedures <u>cannot</u> be directly compared, due to the basic underlying philosophical difference regarding the interpretation of the failure-rate λ . In the classical approach, the failure-rate is a non-random (unknown) constant, while in the Bayesian approach it is an (unknown) value of a random variable. The proper procedure to be used should be based on this fact alone, and <u>not</u> on the basis of which procedure yields the smallest amount of testing. In some cases, the classical procedure will require less testing; in others, the BAZE procedure will require less. Since nuclear reactor components exhibit failure-rates which appear to be random, a Bayesian procedure, such as described here, should be used.

VI. PRIOR DISTRIBUTIONS AND ANALYSIS FOR SELECTED COMPONENTS OF NUCLEAR REACTOR SAFETY SYSTEMS

Table III 2-1 in Appendix III of the WASH 1400 Reactor Safety Study (1975) contains assessed estimates of the failure-rates of selected components of PWR and BWR safety systems. Upper and lower bounds, as well as the median, were computed from best available data for these failure-rates. The approach used there was also a Bayesian one and the random component failure-rates were assumed to follow a log-normal prior distribution. It is remarked here that the log-normal distribution is also a twoparameter positively skewed distribution similar to the gamma distribution used here. Although failure-rates were given on a

per demand and per hour basis, depending upon the failure mode, only the time-dependent failure modes whose failure-rates are given on a per hour basis will be considered here. The upper and lower bounds were computed to be 5% bounds, respectively. That is, the probability that the given interval contains the failure-rate for any particular system is 90%. Thus $p_0 = 0.90$. These bounds are reproduced in Table VII for these same components and corresponding failure modes. If available, failure-rates corresponding to US nuclear operational experience are also given.

Gamma prior distributions have been fitted to these data by means of the procedure outlined in Section III. These prior distributions may be used in future test programs, such as those required in demonstrating the safety and reliability of planned LMFBR systems. The corresponding gamma parameters a and b, as well as the prior mean and variance, are given in Table VII. It is observed that there are only three different "shapes" of gamma priors present; namely, a = 0.50, 0.84, and 2.45. This is due to the fact that the ratio of UL to LL takes on only three different order of magnitude values; namely, 3, 2, or 1. The priors corresponding to a = 0.50 and 0.84 are quite diffuse; that is, the prior-variance is quite large for these priors.

Table VII also presents certain probabilities of interest associated with the corresponding fitted gamma prior distributions. The quantities P_1 , P_2 , P_3 , P_4 , and P_5 in Table VII represent the probabilities defined by

These probabilities were calculated by means of the incomplete gamma function code, INCGAM, mentioned in Section III. Since the values of P_2 in Table VII are all less than 0.5, the gamma prior distributions tend to favor somewhat larger failure-rates than a log-normal distribution with the same 5% tail-area probabilities. The gamma approach is slightly conservative. Further, the values of P_4 and P_5 are included as a check on the accuracy of the procedure used to fit the gamma priors. The P_4 values are all 5%, to three decimal places, while the values of P_4 deviate somewhat from the desired value of 5% for a = 0.50 and 2.45. This departure is due to errors in reading and interpolating earlier, and slightly less accurate, versions of Figure Al and Table A2, respectively.

VII. SUGGESTED BAZE TEST PLANS FOR SELECTED COMPONENTS OF NUCLEAR REACTOR SAFETY SYSTEMS

The purpose of this section is to propose several possible BAZE test plans for a few typical components selected from Table VII. It is emphasized that the plans given here are not

		Assessed	Prior 1 Rates ¹	Failure	US Nuclear			Prior	Prior					
Component	Failure Mode	Lower 5% Limit(LL)	Median	Upper 5% Limit(UL)	Operating Experience	l a	b ²	Mean ¹	Variance ³	P1	P2	^Р з	P4	P ₅
Electric Clutch	Premature Open	1×10 ⁻⁷	1x10 ⁻⁶	1×10 ⁻⁵	NA	0.84	26.72x10 ⁴	3.14x10 ⁻⁶	1.18x10 ⁻¹¹	0.64	0.31	NA	0.050	0.050
Instrumentation (Amplification, Annuciators, Transducers, Combination)	Failure to Operate	1×10 ⁻⁷	1x10 ⁻⁶	1x10 ⁻⁵	1×10 ⁻⁶	.84	26.72x10 ⁴	3.14x10 ⁻⁶	1.18x10 ⁻¹¹	.64	.31	.31	•050	•050
Mechanical Clutch	Failure to Open	3×10 ⁻⁸	3x10 ⁻⁷	3x10 ⁻⁶	NA	.84	89.08x10 ⁴	9.43x10 ⁻⁷	1.06x10 ⁻¹²	.64	.31	NA	.050	.050
Electric Motor	Fåilure to Run	3x10 ⁻⁶	1x10 ⁻⁵	3×10 ⁻⁵	1x10 ⁻⁶	2.45	18.32x10 ⁴	1.34x10 ⁻⁵	7.30×10 ⁻¹¹	. 59	.42	.004	.050	. 049
Electric Motor; Pumps	Failure to Run (Extreme Envir.)	1×10 ⁻⁴	1x10 ⁻³	1x10 ⁻²	NA	.84	26.72x10 ¹	3.15x10 ⁻³	1.18x10 ⁻⁵	.64	.31	NA	、 050	.050
Relays	Failure NO Contact to Close	1x10 ⁻⁷	3×10 ⁻⁷	1×10 ⁻⁶	1x10 ⁻⁶	2.45	549.63x10 ⁴	4.46x10 ⁻⁷	8.11x10 ⁻¹⁴	•59	.36	•95	.050	.049
	Short Acro NO/NC Cont	ss lx10 ⁻⁹ act	lx10 ⁻⁸	1x10 ⁻⁷	1x10 ⁻⁶	.84	26.72x10 ⁶	3.14×10 ⁻⁸	1.18x10 ⁻¹⁵	.64	.31	1.00	.050	.050
	Open NC Contact	3x10 ⁻⁸	1x10 ⁻⁷	3x10 ⁻⁷	1x10 ⁻⁶	2.45	18.32x10 ⁶	1.34x10 ⁻⁷	7.30x10 ⁻¹⁵	.59	.42	1.00	.050	•049

TABLE VII. Gamma Prior Distributions for Selected Components of Nuclear Power Reactor Safety Systems

		Assessed	Prior Pates ¹	Failure	US Nuclear									
Component	Failure Mode	Lower 5% Limit(LL)	Median	Upper 5% Limit(UL)	Operating Experience	l a	b ²	Prior Mean ^l	Prior Variance ³	P ₁	P2	^Р з	P4	P ₅
Switches;	Contacts Short	1×10 ⁻⁹	1x10 ⁻⁸	1x10 ⁻⁷	3×10 ⁻⁸	.84	26.72x10 ⁶	3.14x10 ⁻⁸	1.18x10 ⁻¹⁵	0.64	0.31	0.63	0.050	0.050
Valves (MOV);	External Leak or Rupture													
Valves (AOV)	External Leak or Rupture													
Circuit Breakers;	Premature Transfer	3×10 ⁻⁷	1x10 ⁻⁶	3x10 ⁻⁶	1x10 ⁻⁶	2.45	18.32x10 ⁵	1.34x10 ⁻⁶	7.30x10 ⁻¹³	.59	.42	.42	•050	.049
Transformers;	Open Circuit													
Transformers	Short													
l'uses	Premature Open	3×10 ⁻⁷	1x10 ⁻⁶	3x10 ⁻⁶	NA	2.45	18.32x10 ⁵	1.34×10 ⁻⁶	7.30x10 ⁻¹³	.59	.42	NA	.050	.049
Wires	Open	1×10 ⁻⁶	3x10 ⁻⁶	1×10 ⁻⁵	1x10 ⁻⁶	2.45	54.96×10 ⁴	4.46×10 ⁻⁶	8.11x10 ⁻¹²	. 59	•36	.05	.050	.049
	Short to GND	3x10 ⁻⁸	3x10 ⁻⁷	3×10 ⁻⁶	1x10 ⁻⁷	.84	89.08x10 ⁴	9.43x10 ⁻⁷	1.06x10 ⁻¹²	.64	.31	•13	.050	•050
Wires; Valves (VACUUM); Valves (TEST)	Short to PWR Rupture Rupture	1×10 ⁻⁹	1×10 ⁻⁸	1×10 ⁻⁷	NA	.84	26.72x10 ⁶	3.14x10 ⁻⁸	1.18×10 ⁻¹⁵	.64	.31	NA	•050	•050

TABLE VII. Gamma Prior Distributions for Selected Components of Nuclear Power Reactor Safety Systems (Continued)

		Assessed	d Prior Failure Rates ¹		US Nuclear			Prior	Prior					
Component	Failure Mode	Lower 5% Limit(LL)	Median	Upper 5% Limit(UL)	Operating Experience ¹	L a	b ²	Mean ¹	Variance ³	P1	P2	^Р з	P4	P ₅
Solid State Devices	Fails to Function (Ni PWR Apps.)	3×10 ⁻⁷	3x10 ⁻⁶	3x10 ⁻⁵	1×10 ⁻⁶	.84	89.08x10 ³	9.43x10 ⁻⁶	1.06x10 ⁻¹⁰	0.64	0 31	0.13	0.050	0.050
	Shorts (Hi PWR Apps.); Fails to Function (Low PWR Apps.)	1x10 ⁻⁷	1x10 ⁻⁶	1×10 ⁻⁵	1×10 ⁻⁷	.84	26.72x10 ⁴	3.14x10 ⁻⁶	1.18x10 ⁻¹¹	.64	.31	.05	.050	.050
	Shorts (Low PWR Apps.)	1×10 ⁻⁸	1x10 ⁻⁷	1×10 ⁻⁶	NA	.84	26.72x10 ⁵	3.14x10 ⁻⁷	1.18x10 ⁻¹³	.64	.31	NA	.050	•050
Pumps	Failure to Run (Normal Envir)	3×10 ⁻⁶	3×10 ⁻⁵	3x10 ⁻⁴	3x10 ⁻⁶	.84	89.08x10 ²	9.43x10 ⁻⁵	1.06x10 ⁻⁸	.64	.31	.05	.050	.050
Valves (Check)	Reverse Leak	1x10 ⁻⁷	3x10 ⁻⁷	1×10 ⁻⁶	NA	2.45	549.63x10 ⁴	4.46x10 ⁻⁷	8.11×10 ⁻¹⁴	. 59	•36	NA	•050	.049
	External Leaks- Ruptures	1x10 ⁻⁹	1x10 ⁻⁸	1x10 ⁻⁷	3×10 ⁻⁸	.84	26.72×10 ⁶	3.14x10 ⁻⁸	1.18x10 ⁻¹⁵	.64	.31	•63	•050	.050

TABLE VII. Gamma Prior Distributions for Selected Components of Nuclear Power Reactor Safety Systems. (Continued)

		Assessed	Prior	Failure										
Components	Failure Mode	Lower 5% Limit(LL)	Rates ¹ Median	Upper 5% Limit(UL)	US Nuclear Operating Experience	1 a	b ²	Prior Mean ¹	Prior Variance ³	P ₁	^P 2	^Р 3	P 4	P ₅
Values (Relief)	Premature Open/llr.	3x10 ⁻⁶	lx10 ⁻⁵	3x10 ⁻⁵	1x10 ⁻⁵	2.45	18.32x10 ⁴	1.34×10 ⁻⁵	7.30x10 ⁻¹¹	0.59	0.42	0.42	0.050	0.049
Pipes>3" (Hi Quality)	Rupture (Section)	3x10 ⁻¹²	1x10 ⁻¹⁰	3x10 ⁻⁹	1×10 ⁻¹⁰	.50	655.36x10 ⁶	7.63x10 ⁻¹⁰	1,16x10 ⁻¹⁸	•68	.28	.28	.050	.047
Pipes<3"	Rupture	3x10 ⁻¹¹	1x10 ⁻⁹	3x10 ⁻⁸	1x10 ⁻⁹	.50	655.36x10 ⁵	7.63x10 ⁻⁹	1.16×10 ⁻¹⁶	.68	.28	.28	.050	.047
Gaskets	Loak	1x10 ⁻⁷	3x10 ⁻⁶	1x10 ⁻⁴	1x10 ⁻⁶	.50	19.66x10 ³	2.54x10 ⁻⁹	1.29×10 ⁻⁹	•68	.27	.16	•050	.047
Flanges, Closures, Elliows	Leak/ Rupture	1×10 ⁻⁸	3×10 ⁻⁷	1×10 ⁻⁵	NA	•50	19.66x10 ⁴	2.54x10 ⁻⁶	1.29×10 ⁻¹¹	.68	.27	NA	.050	.047
Welds	Leak	1x10 ⁻¹⁰	3x10 ⁻⁹	1x10 ⁻⁷	NA	•50	19.66x10 ⁶	2.54×10 ⁻⁸	1.29×10 ⁻¹⁵	.68	.27	NA	.050	.047
Diesal (Complete Plant)	Failure to Run	3x10 ⁻⁴	3x10 ⁻³	3x10 ⁻²	1×10 ⁻³	.84	89.08x10 ⁰	9.43×10 ⁻³	1.06x10 ⁻⁴	.64	.31	.13	•050	. 050
Diesal (Engine Only)	Failure to Run	.3x10 ⁻⁵	3×10 ⁻⁴	3×10 ⁻³	NA	.84	89.08x10 ¹	9.43x10 ⁻⁴	1.06x10 ⁻⁶	.64	.31	NA	.050	•050
Batteries, Power Supplies	NO/Output	1×10 ⁻⁶	3x10 ⁻⁶	1×10 ⁻⁵	3x10 ⁻⁷	2.45	54.96x10 ⁴	4.46×10 ⁻⁶	8.11x10 ⁻¹²	.59	.36	.003	.050	.049
Instrumentation (Amplification, Annuciators, Transducers, Combination)	Shift Calibration	3x10 ⁻⁶	3×10 ⁻⁵	3x10 ⁴	1x10 ⁻⁴	.84	89-08x10 ²	9.43x10 ⁻⁵	1.06×10 ⁻⁸	.64	.31	.66	.050	.050

TABLE VII. Gamma Prior Distributions for Selected Components of Nuclear Power Reactor Safety Systems (Continued)

to be considered an exhaustive set or the sole source for the final selection. The final selection rests with the producer in conjunction with the consenting agreement of the consumer. It may be necessary or desirable to alter the prior distributions given in Table VII for numerous possible reasons. Such alterations will result in different test plans from those proposed here.

Before such BAZE test plans can be used in practice, several things must be considered. First, the life cycle of each component must be identified. This includes establishing the environments and operating conditions to which each component is exposed during the various phases of its existence. This also includes defining the duty cycle for the operational phases. Such practical details surrounding the implementation of these BAZE plans will not be addressed here. This would ordinarily be considered in the contractor's reliability program plan.

We shall restrict our consideration to three "typical" components given in Table VII; namely, electric clutchs (a = 0.84), electric motors (a = 2.45), and the category of flanges, closures, and elbows (a = 0.50). The specified failure-rate λ_0 will be taken to be the corresponding value of λ according to the US nuclear operating experience given in Table VII. If such values are not available, as indicated in Table VII, then λ_0 will be taken to be the assessed median prior failure-rate. Once a reliability, risk, or safety analysis program is under way, the

value of λ_0 is a contract specification which may differ from the values considered here.

First, consider the electric clutch in Table VII. The BAZE procedure described in Section IV was applied to this component in conjunction with its fitted prior given in Table VII. Table VIII presents the resulting required unit-hours of testing for selected values of the discrimination ratio (k) and the posterior assurance (γ). For example, for k = 5 and γ = 0.90, it would require (nt)₀ = [2.018547 - (26.72x10⁴) (5) (1.0x10⁻⁶)]/[(5) (1.0x10⁻⁶)] = 136,510 unit-hours of electric clutch testing without a failure in order to demonstrate a failure-rate of 5.0x10⁻⁶f/h with 90% assurance. Table IX gives the unconditional probabilities of passing the corresponding tests given in Table VIII. The unconditional probability of passing the above test is 70.7%.

Similarly, Tables X and XI give the required BAZE unit-hours of testing and unconditional probabilities of passing the test for the case of an electric motor in a normal (nonextreme) environment. Likewise, Tables XII and XIII consider the category of flanges, closures, and elbows, with respect to leak or rupture failure modes.

Now let us consider the sensitivity of the BAZE procedure for each of these three component categories to errors in the tail-area probabilities. The procedure follows the example in Section V. Table XIV gives the fitted gamma prior distributions for these three components for actual prior probabilities of being

TABLE VIII. Required BAZE Unit-Hours of Testing for the Electric

7.0 8.0 9.0 10.0 11+2 5.J 6.0 2.0 3.0 4.0 1.0 U. 9903.96090E 061.84685E 061.14217E 047.89826E C55.78421: 054.37484E 053.36815E 052.61313E 052.02589E 051.55610F 051.17173E 05 0.9753.07549F 061.40414E 068.47029E 055.68472E 054.01337E 052.89914E 052.10327E 051.50636E 051.04210E 054.70686F 043.66806E 74 0.0 0.0 0.0 0.0 0.8001.10169F 064.17247E 051.89098F 047.502375 C46.57502F 030.0 0.0 . 0.0 0.0 0.0 0.0 0.0 0.75 d8.95584F. 053.14192E US1.20395E 052.34962E 040.0 0.0 0.7007.28724E 052.30762 054.47745E 04C.0 0.6004.69155E 051.00978E 051.0 0.0004.69155E 051.00978E 051.0 0.0 0.0 0.0 0.0 10.0 0.0 ____ 0.0 - -.... ---0.0 0.0 0.0 13.0 0.0 0.0 0.0 0.0 0.5002.72.62E 052.48113E 030.0 0.0 0.0 0.0 0.0 0,0

Clutch (a = 0.84, b = 26.72×10^4 h)

TABLE IX. The Unconditional Probabilities of Passing the

	1.0		3.•0	4=0			70	<u>8+0</u> .	2.0.	00	_11.0
0.990	0.098	0.176	0.247	0.315	0.380.	0.443	0.504	0.564	0.623	0.680	0.737
0.950	0.144	0.258	0.363	0.462	0.558	0.650	0.740	0.828	0.914	0.99B	1.000
0.850	C.183	0.327	C. 460	0.586	0.707	0.824	1.000	1.000	1.000	1.000	1.000
0.800	0.254	G.454	0.638	0.812	C.980	1.000	1,000	1.000	1.000	1.000	1.000
0.750	0.291	0.520	0.732	0.532	1.000	1.000	1.000	1.000	1.000	1 000	1.000
0.600	C. 427	C. 764	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000

TABLE X. Required BAZE Unit-Hours of Testing for the

Electric Motor (a = 2.45, b = 18.32×10^4 h)

K		1.0	3.0	5.0	7.0	. 9.0.	11.0	13.0	15.0	17.0	19.0	11.0
10	1.7201	.04: 90E 06	1.22617E DE	6.62421E 05	4.20815E C	52. 9658 9E 05	2.01173E 0	51.42039E 05	9.86736E 04	6.551205 04	3.933195 04	1.41383 04
i	1.975	3.15949E C6	19.31029E 05	A53378.05	2.943275 0	51.88210E_05	1.206815.0	57.3929 <u>(</u> £_04	3.96457E_04	1. 342 865 04	·····	0.0
1 2	550	2.49441E 04	7.09337F 05	33. 52 32 2F 05	1.99316E 0	951-143125 05	6.02192F 0	42.27701E 04	0.0	0.0	0.0	0.0
1	1.9.10	1.83535F 06	+ 89649F 05	2.205092 05	1.05164E C	54.10830E 04	3.043095 0	20.0	v ₊ 0	0.0	0.0	0.0
		1 253655 04	13 626475 05	1 44209F 05	5-06633E 0	140.0	0.0	0.0	0.0	0.0	0.0	0.0
		1 105-06 04	12 730085 05	0.05789E 04	1.23564F 0	40.0	0.0	0.0	0.0	J.0	þ.o	0.0
1	1.100		2.730-9.05	17.07.07.07.04		0.0	0.0	0.0	0.0	0.0	0.0	0.0
ļ	1.150	5.75584E 0"	2.043452 03	4. 937045 04	0.0		0.0	0.0	0 0	0.0	0.0	0.0
10).730₿	8.12724E 05	1.487.755.05	1.59847E-04	4.0		0.0			0.0	0.0	0.0
10). (00	5,53155E C5	6.22518E 04	0.0	0.0	0.0	0.0	0.0	0.0			0 1
1 1	1. 600	56162E 05	0.0	10-0	IC.0	10.0	0.0	0.0	U.U.	<u>U•U</u>	10.0	L <u>Y•</u>

TABLE XI. The Unconditional Probabilities of Passing the

Corresponding Tests in Table X.

				the second s					1		
	1.0	3.0	5.0	_7.0_	9.0	11.0	13.0	15.0.	_17.0	19.0	21.0
C. 990 0.975 0.950 0.900 0.850 C.800 0.750 0.700 0.700	C.00C O.C01 C.C01 C.C03 O.005 C.0C7 O.011 C.016 O.033	0.007 0.012 0.021 0.041 0.069 C.107 0.159 C.233 0.458	0. C24 0.042 0.072 0.144 0.241 0.374 0.557 0.815 1.000	0. C54 0.096 0.165 0.329 0.550 0.852 1.000 1.000	0.100 0.177 0.305 0.609 1.000 1.000 1.000 1.000	0.163 0.289 0.498 0.596 1.000 1.000 1.000 1.000 1.000	0.245 0.436 0.750 1.000 1.000 1.000 1.000 1.000 1.000	0.348 0.619 1.000 1.000 1.000 1.000 1.000 1.000 1.000	0.473 0.841 1.000 1.000 1.000 1.000 1.000 1.000 1.000	0.621 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000	0.794 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
1 0.500	10.011	IT=000	11.000	11.000	11.000						

Т

TABLE XII. Required BAZE Unit-Hours of Testing for Flanges,

Closures, and Elbows (a = 0.50, b = 19.66×10^4 h)

	1.0	4.0	7.0	. 10.0	13.0	16.0	19.0	22.0	25.0	28.0	21.0
0.44	01.0Ef16E (072.56794E 0	61.38314E (069.09216E	056.54028E	054.94535E	053.85408E	053.06044E 0	5 2.4572 E 0	51.98334E 0	1.÷011 🖅 👯
0.97	59.17454E (261.896595.0	49. 94563E C	56.40714E_	054 •474 985.	.053.26722E	_052.44092E_	_051.83997E_0	5 1. 383265. 0	1.024415.0	¶7•3501÷° U4 [
0.95	0/A.20593E 0	61.40401E 0	67.18033E C	54.436435	C52. 95P9 5F	052.03552F	05: 403708	059.441955 0	45.94972E 04	3.20582E 04	49.93000 031
0.90	04.31264F (069.30711E 0	54.47577E C	52.54324E	051.502655	058.52275E	044.07284E	048-36546E C	130.0	0.0	0.0
0.85	03.25715E C	0 275863.66	52.96793E C	51.48775E	056.90729F	041.92593E	.0+0.0	0.0	0.0	U.O	0.C
0.83	02.54069E C	64.87723F 0	51.94441E C	57.71290E	041.39608E	040.0	0.0	U.O	0.0	₽ _0	0.0
C.75	dz.ccasie (C43.54777E 0	91.18472E C	52.39507E	040.0	0.0	0.0	0.0	0.0	0.0	0.0
0.73	Q1.59372E.0	62.50991E. 0	5 9160 5E C)4¦C•0	0.0		0.0		. 0.0.	b.o.	p.0 ;
10.60	JS.839435 (059.85359E 0	40.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	p.o
0.50	05.61527E (0.01	0.0	.c.o	10.0	10.0	0.0	0.0	0.0	b.0	b.c

TABLE XIII. The Unconditional Probabilities of Passing the

Corresponding Tests in Table XII

A									·		,
	1.0.	4•0	7.0	_10.0	.13.0	_16.0	. 19.0.		25,0	<u>_28</u> .0	31.0
0.990	C.133 0.153	C.267	0.353	0.422	0.481	0.533	0.581	0.625 C.719	0.667	0.706	0.7420.853
0.950	C.175	C.350	0.464	0.554	0.632	0.701	0.764	0.822	0.876	0.927	0.976
0.850.	0.239	0.418	0.552	0,754	0.860	0.954	1.000	1.000	1.000	1.000	1.000
0.800	C.268 0.299	C.536 0.597	C.709 0.790	0.847	0.966	1.000 1.000	1.000	1.000 1.00C	1.000 1.000	1.000 1.000	1.000
0.700	0.331	0.663	0.877	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
C.5CO	C.5C9	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000

42

.

.

below and above LL and UL, respectively, the tail-area probabilities, of 2.5%, 5%, and 10%. Table XV gives the BAZE test plans for the electric clutch when the tail area probabilities are 2.5% instead of 5%. Table XVI gives the percentage change in the plans of Table XV relative to the "nominal" plans of Table VIII. Similarly, Tables XVII and XVIII correspond to Tables XV and XVI except that the tail-area probabilities are It is observed from Tables XVI and XVIII that the BAZE 10%. plans for the electric clutch are fairly sensitive to the tailarea probabilities in the gamma prior distribution. Similarly, Tables XIX-XXII and Tables XXIII-XXVI correspond to Tables XV-XVIII for the case of the electric motor and flanges, closures, and elbows, respectively. Again, the BAZE plans for these components are observed to be fairly sensitive to the tail-area probabilities.

Finally, similar BAZE test plans could be developed for the remaining components in Table VII. The BAZE procedure appears to be a practical means of conducting Bayesian reliability demonstration testing. The main advantage over other Bayesian procedures is its ease of application. A few simple tables and figures, which are included, and a pocket calculator are all that is required. The practical utility of the procedure appears to be evident.

ACKNOWLEDGMENTS

The authors wish to thank Ms. Myrle Johnson for her help in computing and constructing Figures Al and A2, as well as Tables

Al and A2. Ms. Carla McInteer also assisted in the computation of Table Al. We also wish to thank Mrs. Terry Wilson for her excellent and painstaking typing of this report.

Component	Tail-Area Probability(%)	P ₀	a	b	Prior Mean	Prior Variance	P 1	^P 2	P ₃	Р ₄	^Р 5
Electric	2.5	0.95	1.13	4.10x10 ⁵ h	2.76x10 ⁻⁶	6.72x10 ⁻¹²	0.63	0.28	_	0.025	0.022
Clutch	5	.90	.84	26.72x10 ⁴ h	3.14x10 ⁻⁶	1.18x10 ⁻¹¹	.64	.31	-	.050	.050
	10	.85	.60	18.87x10 ⁴ h	3.18x10 ⁻⁶	1.69x10 ⁻¹⁰	.67	.38	-	.103	.068
Electric	2.5	.95	3.38	2.62x10 ⁵ h	1.29x10 ⁻⁵	4.92x10 ⁻¹¹	.57	.40	0.001	.025	.024
Motor	5	.90	2.45	18.32x10 ⁴ h	1.34x10 ⁻⁵	7.30x10 ⁻¹¹	.59	.41	.004	.050	.049
	10	•85	1.59	1.11x10 ⁵ h	1.43x10 ⁻⁵	1.29x10 ⁻¹⁰	.61	.44	.020	.100	.095
Flanges,	2.5	.95	.67	34.93x10 ⁴ h	1.92x10 ⁻⁶	5.49x10 ⁻¹²	.66	.23	-	.025	.014
Closures, Elbows	5	.90	.50	19.66x10 ⁴ h	2.54x10 ⁻⁶	1.29x10 ⁻¹¹	.68	.27	-	.050	.047
2220110	10	.85	.35	100.34x10 ³ h	3.49x10 ⁻⁶	3.48x10 ⁻¹¹	.71	.33	-	.100	.101

TABLE XIV. Gamma Prior Distributions for Selected Tail-Area Probabilities for the

Electric Clutch, Electric Motor, and Flanges, Closures, and Elbows

TABLE XV. Required BAZE Unit-Hours of Testing for the Electric Clutch (a = 1.13, b = 4.10×10^5 h)

Y	1:	2.1*	3.)	4.0	5.0	6.Ú	7.0	8.1)	9.0	10.0	11.0
0.990	4.487731 06	2.0385?= 35	1.22235	8.142592 35	5.694)7E 05	4.06173E 0	52.89576E	052.02129E D	51.34115E 05	7.97034E 34	3.51852E 34
0.975	3.546428 6	1.56821E	9.088065 -5	5.79105E 05	3.81284E Q5	2.49403E 0	51.55203E (058.45523E 0	42.96021E.O4	0.0	0.0
0.950	2.83247E (6	1.211235 05	6.709225 15	4.00617E 05	2.384932 05	1.30411E C	55.32095E (040.0	5.0	p.p	0.0
0.900	2.11421E C6	8.521036 35	4.314325 05	2.21052E 29	9.48412E 04	1.07010E 0	140.0	0.0	0.0	0.0	u•0
0.850	1.691171 .6	6.40585E US	2.90340E 05	1.15293E Q5	1.523418 04	··• 0	10.n	9.9	0.0	ú.0	L.U
0.800	1.389216 66	4.89604E 15	1.89736= 1.5	3.990236 04	5.)	r.0	0.0	0.0	12.3	υ.ο	i.0 .
0.750	1.15363E 66	3.71816E 05	1.112116 05	1.0	u.0	C.U	0.0	0.0	0.0	0.0	0.5
0.750	9.610357 35	2.750185 35	4.66786 .4		3.5	1.0	2.n	0.0	3.0	υ.υ	U.C
0.600	6.51846E (5	1.2.923E)5	0.0).) ⁽¹	3.0	k.0	0.0	0.0	12.5	J.0	i.u
0.500	4.09573E 1:5	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0

Delet.			
Relative	τo	Table	VIII

y k	1.0	2.0	3.0	4.0	5.0	6-0	7.0	8.0	9_0	10.0	11.0
.990	3.605%	7.732%	12.503	18.080%	24.688%	32.6418	42.397	54.6478	70.487%	91.768	
.975	4.643	10.170	16.859	25.120	35.581	49.256	67.894	94.798			
•950	5.924	13.326	22.836	35.504	53.220	79.746					
.900	8.154	19.243	35.203	60.142							
.850	10.424	25.901	51.278							•	
.800	12.962	34.224	75.516				~				
.750	15.945	45.450									<u> </u>
.700	19.596	61.882			- <u></u>		•	·		<u></u>	
600	30.438									···	
500	52.469				**************************************						

TABLE XVII. Required BAZE Unit-Hours of Testing for the Electric Clutch (a = 0.60, b = 18.87 $\times 10^{4}$ h)

γ k 1	2.:	3.''	4	5.0	6.)	7.0	8.0	9.0	10.0	11.0
C.9404.7.1833E C.9753.76772E 0.9503.15377 0.9503.15377 0.9602.3355: 1.91247E 0.85.1.91247E 0.7511.01151 0.7511.3749JE 0.7511.3749JE 0.7511.18133F 0.6008.73105E 0.5006.30871E	2.239822 C5 1.79951E C6 1.43254E C6 1.67344E C6 2.618852 55 2.618852 55 3.93116 55 4.96318E 5 3.422232 55 2.21297E 55	1.443548 00 1.130115 7.6 3.921225 05 6.527026 05 5.116905 55 4.110365 05 3.325116 05 2.679705 05 1.652496 05 8.449116 54	1.03556E 06 R.00405E 65 6.21916E 05 4.42351E 05 3.36592E 05 2.01102E 05 2.02208E 05 1.538;9E 05 7.67616E 04 1.61934E 04	7.957572 05 6.52584E 05 4.59793E 05 3.16141E 0: 2.31534E 0: 1.71142E 05 1.24926E 05 8.53373E 04 2.36693E 04	6.274722 13 4.70703E 05 3.51711E 25 2.32001E 05 1.61495E 05 1.1116BE 05 7.19053E 04 3.96392E 04 6.6	5.1.876E 05 53.76533E 35 52.74509E 35 51.72931E 35 51.11467E 35 56.83293E 34 3.46760E 04 7.01932E 33 3.0	4.234292 ()5 3.95652E ()5 2.16608E 05 1.26826E ()5 7.39463E 04 3.62011E 04 6.75404E ()3 0.0	3.55415E (35 2.50902E 05 1.71574E 05 9.17673E 04 4.47634E 04 1.12121E 04 9.0 0.0 0.0 0.0 0.0	3.01034E 55 2.06942E 55 1.35547E 55 6.37226E 54 2.14171E 24 0.0 0.0 0.0 0.0 0.0	2.56485E _5 1.70974E US 1.06576E 35 4.57733E 54 2.31552E 03 3.0 5.0 5.0 5.0 5.0

.

Y	1.0	2.0	3.0	4.0	5.0	6.0	7.0	8.0	9.0	10.0	11.0
.990	1.9828	4.250%	6.8738	9.938	13.5718	17.944%	23.307%	30.041	38.748	50.447%	66.995%
.975	2.552	5.591	9.268	13.809	19.560	27.077	37.323	52,112	75.329	117.045	214.011
.950	3.257	7.325	12.553	19.518	29.256	43.838	68.074	116,293	258.907 1	3989.32	
.900	4.482	10.578	19,352	33.061	57.504	113.400	370.915				
.850	5.731	14.238	28.189	55,258	130.376	1391.562		<u> </u>			
.800	7.125	18.814	41.513	104.634	1193.18					<u> </u>	
.750	8.765	24.985	65.202	334.096							
.700	10.772	34.018	121.190			····· <u>·</u> ·					
• 600	16.732	77.740									
.500	28.843	3163.88									*************

TABLE XVIII. Percentage Change in the BAZE Plans of Table XVII Relative to Table VIII

TABLE XIX.	Required	BAZE	Unit-Hours	of	Testing	for	the	Electric	Motor	(a =	3.38,	b	=	2.62	х
	10 ⁵ h)														

	1	3.(1	5.)	7.0	9.13	11.0	13.0	15.0	17.0	19.3	21.0
	1 4 . 635' 3E / E	1.370345 0	7.17407	4.37576E 19	2.82115E 05	1.83185E C5	1.14695E CS	6.44690E 04	2.60609E C4	0.0	U.J
11.9	193 .694 42 E 115	1.05591E \$6	5.292945	3.032U3E 05	1.77672E L5	9.76744E 24	4.23399E 04	1.76125E 03	0.0	0.)	J.U
0.9	5-2.98-472.16	9.18823E 55	3 • 86 49 3E 0 5	2.01209E 05	9.32741E 94	3.21697E 04	0.5	C.U	C. 3	0.0	
1.9	2.26221E ((5.794-2E \5	2.428415 05	9.860036 54	1.84674E /)4	0.0	0.0	0.0	0.0	0.0	6.0
3.8	5: 1.8 3917E 7€	4.3839 E 5	1.592345 0.9	3.816725 04	0.0	c.e	c.c	0.0	5.5	0.0	3.0
1. 1. 8.	(1.53721E 06	3.37736r)5	9.784196 84	2.0	0.0	0.0	ú.0	0.0	0.0	W. C	
0.7	5: 1 - 3: 1 - 3;	2.5921155	5. 0726 5E	. · · ·	9.)	0.r	ū•0	ú .Ú	0.1	u. u	
0.7	1.108 36 00	1.94678E 05	1.200715 04	by . 10	.1.0	0.0	0.0	0.0	h .h	14.0	
1 3.6	.7.99845E 1.5	2.14488E 14	*• 0	0.0	0.0	0.0	0.0	6.3	0.5	0 0	
0.5	1 575735 5	1.119121 04	1		1.5	a . o'	4.4	0 0	6 • 6	0.0	C 3

Y K	1.0	3.0	5.0	7.0	9.0	11.0	13.0	15.0	17.0	19.0	21.0
.990	1.958%	6.4278	11,896%	18.726	27.496	39.170%	55.478%	79.859%			
.975	2.494	8.464	16.236	26.773	41.868	65.297					
.950	3.159	11.109	22.366	39.536	68.934						
.900	4.293	16.093	35.735	74.931							
.850	5.420	21.739	54.643								
.800	6.646	28.854	86.996								
.750	8.044	38.553									
.700	9.696	52.966					<u> </u>				
.600	14.246										
.500	22.125										

TABLE XX. Percentage Change in the BA2E Plans of Table XIX Relative to Table X

TABLE XXI. Required BAZE Unit-Hours of Testing for the Electric Motor (a = 1.59, b = 1.11×10^{5} h)

y K	1.0	3.6	5.0	7.0	9.0	11.3	13.0	15.0	17.3	19.0	21.0
0.97: 0.95: 0.95: 0.85:	4.785(32 (6 3.845628 56 3.131478 56 2.413218 66 1.995178 66	1.52134E 16 1.20781E 16 9.69822E .5 7.3.412E .5 5.99311E .5	R.684075 ↔5 6.80284E →5 5.37493E <5 3.93841E →5 3.09234E ↓5 2.488425 ↓5	5.88576E 105 4.54203E D5 3.522(09E D5 2.49601E D5 1.89167E 05 1.4910F 05	4.33115E 0 3.28602E 0 2.44274E 0 1.69467E 0 1.22463E 0 8.89121E 3	53.34195E 0 52.48674E 0 51.83770E 0 51.18473E 0 58.00154E 0 45.256452 0	52.65695E U5 51.9334DE 05 51.38420E 05 58.31597E 04 45.06285E 04 42.74007E 04	2.15469E 05 1.52761E 05 1.55164E 55 5.72864E 54 2.90780E 04 8.94725E 53	1.77961E 05 1.21731E 05 7.97333E 04 3.74827E 04 1.25983E 04 3.J	1.46739E 05 9.72326E 04 5.96561E C4 2.18530E 04 0.0	1.22192E U5 7.74009E 04 4.34032E 04 9.20L28E 03 0.0 :.3
0.87 (1.75) 0.7(1 0.641 0.641	1.45263E 64 1.254 5E 66 9.5546E 65 7.78574E 65	4.10211E 05 3.45674E 05 2.42949E 05 1.62191F 05	2.01726: 15 1.63037F 05 1.01369: 15 5.29147: 64	1.12376E (+5 8.47193E 04 4.06923E +14 6.08192E J3	6.27369E 0 4.12261E 0 6.98293E 0 7.9	43.11484E 0 41.35487E 0 30.0 0.0	49.27949E 03 40.0 0.1 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 2.2	0.0 0.0 0.0 0.0	5.0 U.U G.J C.Q

.

TABLE XXII. Percentage Change in the BA2E Plans of Table XXI Relative

to Table X

y k	1.0	3.0	5.0	7.0	9.0	11.0	13.0	15.0	17.0	19.0	21.0
.990	1.785%	5.888	10.899%	17.157%	25.193%	35.8909	50.831	73.171%	110.209%	183.567	398.0531
.975	2.285	7.755	14.876	24,530	38.361	59.821	97.661	182.114	537,658		
.950	2.894	10.179	20.493	36.224	63.160	119.895	317.082				
•900	3.934	14.745	32,742	68.655	175.742 2	3725.8					
.850	4.966	19.918	50.066	142.508							
.800	6,089	26.437	79.710	584.312							
.750	7.370	35,324	146.282			<u> </u>					
.700	8.884	48.530	451.682				<u> </u>				
.600	13.052	115.981								· · ·	
.500	20.272		· · · · · · · · · · · · · · · · · · ·				·		· · · · · · · · · · · · · · · · · · ·		*****

TABLE XXII. Required BAZE Unit-Hours of Testing for the Flanges, Closures and Elbows $(a = 0.67, b = 34.93 \times 10^{4} h)$

×	1	4 . l.	7.5	10.0	13.G	16.0	19.0	22.0	25.0	28.0	31.0
C.99(1.59741E 1.7	3.731562 45	1.48352E G6	1.28304E 96	9.06350E US	6-70915E 0	5.09829E 0	53.92675E US	3.13638E 05	2.33680E 35	1.77263E 35
6.95.	1.14589E 07	2.352761 66	1 - 1947 35 06	7.31522E 05	4.82101E 69	3.26213E 05	52.19554E U	51.41983E 05	3.33287E 64	3.67377E 34).0
C.900	9.06471E 66	1.754208 8\$ 1.401678 40	3,52732E U5	+.92102E 09	2.97932E 05	1.765765 09	9.35431E 04	43.31554E C4	2.0	3.0	
0.80(5.648.66 10	1.150.4 <u>F</u> 46	5.174665 69	2.504368 05	1.12035E 05	2.55350E U4	0.0	0.0	3•3	0.0	0.0
0.751	4.8628 E (6	9.53727E 05	3.95236E 05	1.71911E 05	5.16312E 04	0.0	0.0	0.0	0.0	0.0	Ů.O
n.600	3.19019E	5.355726	1.56341E C4	4.64884E 13	1.9909NE 03	0.0	c.o	0.0	0.0	U.O	J.U
0.501	2.382616 60	3.33678E 25	4.19729E 14	0.0	ν.υ	c. 0	0.0	0.0	9.0	0.0	0.0

TABLE XXIV. Percentage Change in the BAZE Plans of Table XXIII Relative

to Table XII

Y	1.0	4.0	7.0	10.0	13.0	16.0	19.0	22.0	25.0	28.0	31.0
.990	1.406%	5.946	11.040%	16.795	23.348	30.877	39.620%	49.895	62.1428	76.991	95.369%
.975	1.868	8.051	15.277	23.833	34.124	46.737	62.558	82,990			
.950	2.461	10.876	21.266	34.420	51.606	75.018					
.900	3.541	16.407	34.117	60.042	100.000	100.000					
.850	4.688	22.899	51.450	100.000							
.800	6,010	31.309	78,533								
.750	7.601	43.041	100,000								
.700	9.581	60.841									- <u></u>
.600	15,519	100.000									
.500	27.189										

TABLE XXV. Required BAZE Unit-Hours of Testing for the Flanges, Closures and Elbows $(a = 0.35, b = 100.34 \times 10^{3} h)$

. *	1.:*	4.1	7.3	10.0	13.0	1.6 • Ú	19.0	22.0	25.0	28.0	31.0
0.991	1.62231E 07	3.98052E US	C.231585 06	1.5320CE 76	1.15531E 00	9.19875E 0	57.58788E 0	56.41635E US	5.52598E US	4.82646E 35	4.25223E 25
2.975	1.308776 07	3.1966AE 16	1.783675 16	1.21847E 76	P.14125E 0	7.23913E 0	55.93768E 0	54.99117E US	4.27182E US	3.711662E US	3.25081E L5
0.950	1.072796 07	ર . ⊎(1728 ઇઠ	1 • 44 35 9E 116	9.80481E 05	7.31061E N	5.751738 0	54.69513E 0	53.90943E 05	3.31989E 05	2.85668E C:	2.48312E L5
0.90	n.31367E 06	2.06316E 15	1.10166E 06	7.41061E 95	5.46892E J:	4.25536E 0	53.425338 0	52.82115E 05	2.36221E 05	2.00160E 05	1.71082E 35
2.85.	6.903555 04	1.65774E 16	9.172165 15	6.100049E J5	4.38421E NS	33.374)35 🔅	52.68286E D	52.18019E DS	1.79816E 05	1.49799E 05	1.25592E 35
0.81.	5.897 2E 00	1.379 E 24	7.564265 05	4.99196E 115	3.60995E D	2.74495E U	52.15310E 09	51.72257E 35	1.39554E US	1.13851E 35	9.31232E U4
0.75c	5.11176E 04	1.2J264E 16	6.44246E 115	4.208702 05	3.00591E US	2.25416E 0	51.73981E 0:	51.36574E 05	1.08144E 05	8.58366E 34	6.77924E 04
0.700	4 . 466 44 . 06	1.(+4136E 36	5.52.157E 05	1.56338E 35	2.50951E 05	1.85284E G	51.40017E 0	\$1.07241E CS	8.23313E 14	6.27593E 04	4.69755E 64
0.60.	3.439148 04	7.84532E .5	4.053718 09	2.53609E 05	1.71928E 05	1.20878E 0	58.59488E 04	6.05459E 34	4.12395E 04	2.60732E 34	1.3837LE (4
C.5.3	2.631576 06	5.8263RE 05	2.89933E 39	1.72851E)5	1.39807E 0:	7.04044E 0	44.34448E D	42.38378E 04	8.93642E U3	k.0	5.6

TABLE XXVI. Percentage Change in the BAZE Plans of Table XXV Relative

to Table XII

y k	1.0	4.0	7.0	10.0	13.0	16.0	19.0	22.0	25.0	28.0	31.0
.990	.886%	3.7498	6.960%	10.588%	14.718%	19.465%	24.976%	31.453%	39.174%	48.534%	60.119%
.975	1.177	5,075	9.630	15.024	21.511	29.462	39.436	52.316	69,589	93.966	130.963
.950	1.551	6,856	13.406	21.698	32,532	47.290	65.576	101.950	161.789	300.266	969,386
.900	2.232	10.343	21.507	37,849	64.060	112.945	236.345	1150,678			
.850	2,955	14.435	32.433	64,702	139.360	499.809	<u></u>			» <u>-</u> »	
.800	3.789	19.737	49,506	124.804	689.503				····		
.750	4.792	27.133	81.251	401.910							
.700	6.040	38.354	162.711		*****						*******
.600	9,783	97.690							- <u> </u>		
.500	17.139							******			

REFERENCES

- 1. Balaban, H., "A Bayesian Approach to Reliability Demonstration," Annals of Assurance Sciences, Vol. 8, 1969, pp, 497-506.
- Balaban, H., "Reliability Demonstration: Purposes, Practices, and Value," <u>Proceedings of the 1975 Annual Reliability and</u> Maintainability Symposium, Washington, D.C., 1975, pp. 246-248.
- Blumenthal, S., "Reliability Demonstration," <u>Technical Report</u> <u>No. 183</u>, Department of Operations Research, Cornell University, <u>Ithaca</u>, NY, May 1973.
- Bonis, A.J., "Bayesian Reliability Demonstration Plans," <u>Reliability and Maintainability Conference</u>, Vol. 5, 1966, pp. 861-870.
- 5. Easterling, R.G., "On the Use of Prior Distributions in Acceptance Sampling," <u>Annals of Reliability and Maintain-</u> ability, Vol. 9, 1970, pp. 31-35.
- 6. Goel, A.L. and Joglekar, A.M., "Reliability Acceptance Sampling Plans Based Upon Prior Distribution, <u>Technical Reports 76-1</u> to 76-5, Department of Industrial Engineering and Operations Research, Syracuse University, Syracuse, NY, March 1976.
- 7. Goel, A.L. et al., "Reliability Demonstration Plans Using Prior Distribution," <u>Technical Report</u>, Department of Industrial Engineering and Operations Research, Syracuse University, Syracuse, NY.
- 8. Goel, A.L. et al., "Graphical Design of Reliability Demonstration Plans Based upon Prior Distribution," <u>Technical Report</u>, Department of Industrial Engineering and Operations Research, Syracuse University, Syracuse, NY.
- 9. Guild, R.D., "Bayesian MFR Life Test Sampling Plans," Journal of Quality Technology, Vol. 5, 1973, pp. 11-15.
- 10. Guild, R.D., "Reliability Testing and Equipment Design Using Bayesian Models," Unpublished Ph.D. Dissertation, Northwestern University, Evanston, IL, 1968.
- 11. Joglekar, A.M., "Reliability Demonstration Based on Prior Distribution - Sensitivity Analysis and Multi Sample Plans," Proceedings of the 1975 Annual Reliability and Maintainability Symposium, Washington, D.C., 1975, pp. 251, 252.

- 12. Mann, N.R., Schafer, R.E., and Singpurwalla, N.D., <u>Methods</u> for Statistical Analysis of Reliability and Life Data, Wiley, Inc., 1974.
- Martz, H.F. and Waller, R.A., "The Basics of Bayesian Reliability Estimation from Attribute Test Data," Report No. LA-6126, Los Alamos Scientific Laboratory, 1976a.
- Martz, H.F. and Waller, R.A., "Handbook of Bayesian Reliability Estimation Methods," Report No. LA-6572-MS, Los Alamos Scientific Laboratory, 1976b.
- 15. Martz, H.F. and Waller, R.A., "A Bayesian Zero-Failure (BAZE) Reliability Demonstration Testing Procedure and Its Application to a Rankine Dynamic Radioisotope Power Conversion System," Report No. LA-6421-MS, Los Alamos Scientific Laboratory, 1976c.
- 16. MIL-STD-781C, Reliability Tests: Exponential Distribution, U.S. Government Printing Office, Washington, D.C.
- 17. Ramos, J.R., "Development of Bayesian Life Test Sampling Plans Assuming a Failure Rate with a Gamma Prior Distribution," Unpublished M.S. Thesis, The Pennsylvania State University, University Park, PA, 1970.
- 18. Schafer, R.E., "Bayesian Reliability Demonstration: Phase I--Data for the A Priori Distribution," RADC-TR-69-389, 1969.
- 19. Schafer, R.E., "Bayesian Reliability Demonstration: Phase III--Development of Test Plans," RADC-TR-73-139, 1973.
- 20. Schafer, R.E. and Sheffield, T.S., "Bayesian Reliability Demonstration: Phase II--Development of a Prior Distribution," RADC-TR-71-209, DDC AD-732283, 1971.
- 21. Schafer, R.E. and Singpurwalla, N.D., "A Sequential Bayes Procedure for Reliability Demonstration," <u>Naval Research</u> Logistics Quarterly, Vol. 17, 1970, pp. 55-67.
- 22. Waller, R.A. and Martz, H.F., "Bayesian Reliability Estimation: State of the Art for the Time-Dependent Case," Report No. LA-6003, Los Alamos Scientific Laboratory, 1975.
- 23. WASH 1400 (NUREG 75/014) REACTOR SAFETY STUDY. An Assessment of Accident Risks in U.S. Commercial Nuclear Power Plants (Appendix III. Failure Data), U.S. Nuclear Regulatory Commission, October, 1975.

APPENDIX A. Some Useful Figures and Tables for the BAZE Procedure

- Figure Al. Gamma Shape Parameter a as a Function of log₁₀ (UL/LL)
- Figure A2. Gamma Reference Scale Parameter b₀ As a Function of the Shape Parameter a
- Table Al. Values of θ_{γ} for Selected Values of Prior Shape Parameter (a) and Posterior Assurance (γ)
- Table A2. Gamma Reference Scale Values b_0 for Selected Values of Shape Parameter (a) and Prior Assurance (p_0)

Fig. Al. Gamma Shape Parameter a as a Function of \log_{10} (UL/LL).

Fig. A2. Gamma Reference Scale Parameter b_0 as a Function of the Shape Parameter a.

Table A1. Values of θ_{γ} for Selected Values of Prior Shape Parameter (α)

·AND POSTERIOR ASSURANCE (Y)

a	0,99	.975	0,95	0,90	0,85	у 0.80	0,75	0.70	0,60	0.50
.0001	1.7677F-44	6.2447-111	8-1261-149	7.6984-149	7-2707-149	6+8431-149	6-4154-149	E 0077-140	E 1-27-140	4-2760-1-0
0002	1.471-F=23	5.92201-56	2.3303-112	7.0404-144	7.2707-144	0.8431-149	6.4154-149	5 9877-149	5 1323-149	4.2769-149
.6013	1.59525-15	1.2530E-37	3.1245E 75	7.6984 149	7.2707-149	0.8431 149	6-4154-149	5.9877-149	5,1323-149	4.2769-149
0.00%	h.H776F-12	1.8239E-28	1.14418-56	2,2685-115	7.2707-149	6.8431-149	6.4154-149	5.9877-149	5,1323-149	4.2769-149
0005	1.04695-09	5.7376E-23	1.5729E-45	1.71605-92	3,8668-142	6.8431-149	6.4154-149	5 9877-149	5,1323-149	4.2769-149
.0006	2.9844F-0B	2.6539[-19	4.1899E-38	3.0694E-77	1.3014-118	6.6431-149	6.4154-149	5,9877-149	5,1323-149	4,2769-149
10017	5-26645-07	1,1012E-16	8.4362E-33	2.40541-66	8,3073-102	2.0262-139	6.4154_149	5,9877-149	5,1323-149	4.2769-149
000 II	1 466 F-06	1.0125E-14	B.01845-29	3.57VOL-58	3.3363F-89	4.0934-122	6.4154-149	5.9A77-149	5,1323-149	4.2769-149
0000	1.94175-06	3.40842-13	9.9561E-46	A.0907E-52	2.1195E-79	1.1799-108	8.4863-140	5,9877-149	5,1323-149	4.2769-149
	2.4754E-05	5+67935=12	2.9736E-23	9.8217E-47	1.4744E-71	6.9129E-98	6.4705-126	5.9877-149	5,1323-149	4.2759-149
0012	1. 205 C 04	3 0/305 10	3.15198-21	1.41901-42	3.84686-65	4.45375-89	1.4758-114	8,5154-142	5,1323-149	4.2769-149
0012	12 (6H C - 04	1 05 766 -00	A 1104E-10	4-10446-39	8,5543F=50	9.80402-82	4,3066=105	4,6715-130	5,1323-149	4.2769-149
001	24875-04	7 87005-00	4.1170C-10 6 H0076-17	3.0000E-36	5 1 1 1 E C	1.59825-75	4.39×0F=97	3,9303-120	5,1323-149	4.2769-:49
00.5	6 92295-04	2.6278E_00	7 93345-14	1 75745-11	6 0 0 7 7 L = 6 0	3.37586-70	3.22016-90	1,2751-111	5 1323-149	4.2769.149
0016	1 05245-03	7 5.708-00	6 7165E-15	1 41795-20	4 3333r 45	1.51756 41	2.80002-04	3,0331-104	5,1323-149	4.2769-149
0017	1 52625-03	1.01456-07	4 42765-14	6 81456-20	1 70675-42	5 5.47t-50	4.60452-74	8,01315-98	1,7429-139	4.2769-149
001a	2.118 F-03	4.3/948-07	2.36695-13	2 13376-24	3 45346-40	9 1493 - 58	2 100555-70	4 2704E-42	1,7810-131	4.7769-149
0019	5 16425-03	9.1-23F-07	1.04076+12	4 666.18-25	4 00005-38	5 55557-53	2.10002-10	4 9 10 10 -07	3,16/1-124	4.2769-149
0020	3 748 4 - 13	1.7679E-06	4.0919E-12	7.43011 - 44	2.88071-36	1.97456=40	1 00045-07	1 90005-78	4,7102-112	4.2769-149
0021	4.715FF=03	3.2672E-04	1.38768-11	9.1366F-23	1.38051-34	4.0035L-47	1 0075-60	9 71025-75	1 2010-106	2 5261 144
0:022	5 7908 -03	5.6420E-05	4.¢118E-11	8.9361F-55	4.65371-33	5.01304-45	9.11536-58	2 10845-71	0 1230-102	0 2840 130
.0023	7.1497F-03	9.3227E-06	1.1608E-10	7.17108-21	1.15548-31	4.1243L-43	2.68505-55	2 52036-68	1 94845-97	7.3711-133
.0024	H. 6144F-03	1 . 4749605	2.9400E-10	4.8367E=20	2+1948E=30	2+3496E-41	4.9240E-53	1.61325-65	2.0568F=93	2+0942=126
0025	1.0202F-02	2.2494E 05	6.9128E-10	2.8004E-19	3.2944F=29	9.68745-40	5.9527E-51	6.1578E-63	1.02506-89	2.1788-121
00.56	5"103UE-11S	3.3210E-05	1.5220E-09	1.4105E-18	4.0149E-28	3.00V3L-3H	4.9761E-49	1 4879E-60	2.6534E-86	9.3213-117
0027	1.3792F-02	4.7636E-05	3.1606E-04	o.3542L-18	4.96588-27	7.2058L-37	2.9964E-47	2 3947E-58	3.8378E-83	1.9101-112
.0028	1.57845-02	6.65928-05	6.2296E-09	2.560/E-17	3.4897E-25	1.3791E-35	1.34692-45	2 6803E-56	3 300AE-80	1.7362-108
0029	• 7905E-02	4.0966E-05	1,1718E+08	9.3730E-17	2,58268-25	2.15.336-34	4.65622-44	2 1671E-54	1 7A15E-77	8.8492-105
.0030	2.01478-02	1.2171E-04	2.1131E-08	3.:47UE-16	1.0725E-24	2.79934-33	1.2710E-42	1.3074E-52	6.3213E-75	2,5530-101
0031	24947-02	1,5981E-04	3,6685E-08	9,7711E-16	9.5014E-24	3,0841Ľ-32	2.8029E-41	6.0541E-51	1_5357E-72	4.4 ⁰ 53E-98
.0032	2.49575-02	2.0030E-04	6,1539E-08	2.8265E-15	4.94170-23	2.92471-31	5.0945E-40	2,2060E-49	2.6468E-70	4.7707F-95
.0033	5.7521F-02	2.6723E-04	1.0002E-07	7.6664E=15	2.3030E-22	2,4201L-30	7.7673E-39	6.4641E-48	3,3389E-68	3.39292-92
.0034	13.0181E-02	3.2165E-04	1.5800E-07	1,9699E-14	9.8037E-22	1.76844-29	1.00898-37	1.55296-46	3,168AE-66	1.6304E-89
. 0035	3 47-25-02	4 000 <u>01</u> = 04	6 4 3 5 5 - 07	4,75336=14	3,8419F=21	1.15342-28	1,1318E-36	3,1107E-45	2.3185E-64	5.5207E-87
10037	1 9495F 02	6 01615 05	5 37035-07	1.09706-1	1.39566-29	6.7788C-28	1.1102E-35	5.27578-44	1.3364E-62	1.3526E-84
0030	4 1474F-03	7 35335 44	7 / 7515-07	E 1105-13	4.12198-69	3.62032-27	9.62546-35	7.67/98-43	6,1875E-61	2.4614F_82
10 0 0 0 U		· · · · · · · · · · · · · · · · · · ·	1.1351C=01	5.11706-13	1,50216=19	1.77034-26	7.4483E=34	9,7051E-42	2,3411E-59	3.4061F-80
0040	4-4/3/5 02	1.0054575 04	1+0-9350 00	1.04246 12	4.4978E-19 1 27405-18	7 3 3 3 6 1 - 26	5.1896E 33	1.07718-40	7.35211-58	3.6604E-78
0141	5 10545-02	1 17356 -03	2 07745-06	3 90021-12	3 4347, 10	1 30076 30	3,20175-32	1.05995-39	1 9434E-56	3.1135F-76
0042	5 42935-02	1.35976-03	2 79848-06	7 18081-12	8 8267F-18	A 75341-24	1.00015-30	7 4020E 30	4 J7852 54	1 1040c 72
0043	5 7589F 02	1.5648E-03	3.7179E-06	1 28706-11	2 17096-17	1 63555-23	4 05935-30	6 33515-37	1 40028-52	5 5447c 71
0044	6.09311-02	1.7894F-03	4.8761F-06	2 2402F -11	5 12556-17	5 3197E-23	2 26045-20	3 51405-36	2 14165-51	2 16265 60
0045	4.4319F=02	2.0341E-03	6.3185E-06	3 8246F -11	1.1648F-16	1.6440L-22	9 69975-29	2 12945-35	2 82625-50	7.16755-68
0046	5 7747F-02	2.2996E-03	8 0954E-06	6.3034t-11	2.5541F-16	4.82576-22	3 8937F-28	1 1020F - 34	3 33405-49	2.04015-66
0047	7 12176-02	2 5862E-03	1_0265E-05	1 036VE-10	5.4168E-16	1 35476-21	1.4733E-27	6 2105F-34	3 5410F-48	5.0357F_65
0048	7 471 16-02	2 19451-03	1.2886E-05	1.65241-10	1,1134F = 15	3 6429E-21	5 2738E-27	3 0185E-33	3 4083E-47	1.0875F_63
0049	7. 82456-02	3.2248E-03	1.6029E-05	2.587VE-10	2.2221E-15	9.4083E-21	1 7921E-26	1.3754E-32	2.9910E-46	2.0719F-62
.0050	0.1804E-02	3.3774E-03	1.9762E-05	3.977+E-10	4.3140E-15	2.3394L-20	5.7990E-26	5 8980E-32	2 4063E-45	3.5083F-61

TABLE A1 (CONTINUED)

					·······	Y				
a	0.99	.975	0.95	0.90	0.85	0.80	0.75	0.71	0,60	0.50
		003053	2.41674-05	6.0126E-10	8,16048-15	5.61275-20	1.7920E-25	2,3A89E-31	1.7830E-44	5.31675-60
•0051	+002373	004351	2.9327E-05	8.94055-10	1.5062E-14	1+3021 ^{L-} 19	5.3026E 25	9.1692E-31	1.2245E-43	7.25/5E-59
•0052	+007(103	004331	3.53298-05	1.3113600	2.71665-14	2.9262L-19	1,50(1E-24	3,34525-30	7 8154E-43	8.9/62F-59
.0055	+072hJJ	005016	4.2257E-05	1.8951E-09	4.7937E-14	6.3818L-19	4.1157E-24	1,1633E-79	4 6574F-42	1,0115F-56
•0054	.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	.005683	5.02+0E-05	2 7023E-09	B 28625-14	1.3524L-1A	1.0843E-23	3 8662E-29	2 6010E-41	1,0436F-55
•0055	107/30	006173	5.93496-05	3 80485-09	1 4046F-13	2.7922L-18	2,7595E-23	1 23108-58	1,3660E-40	9,90738-55
•0056	•1036.38	006687	6.97016-05	5 24341-09	2.3372E-13	5.6181E-18	6.79(,3E-23	3.7633E-28	6.7689E-40	8.691°F-54
•005/	•107335	.000007	8 1407E-05	7 28455-04	3.8215E-13	1.1035E-17	1.6226E-22	1,1070E-27	3 17395-39	7.07398-53
• 0058	•111043	******	9.4580F-05	9.906JE-09	6.1451E-13	2,1183L-17	3.7615E-22	3,13945-27	1,4123E-38	5.3627E-52
•005 ⁹	•114761	.007703	1 00345-04	1 33461-08	9.72621-13	3.9791-17	8.4788E-22	8 5993E-27	5,9795E-38	3.8000E-51
•0060	.118489	.000300	1 25805-04	1 77941-08	1.5164F-12	7.3216L-17	1.86 ⁰ 9E-21	2 2789E-26	2 4144E-37	2,5253E-50
•0061	•122723	.0089/1	1 44095-04	2.35121-08	2.33076-12	1.3209É-16	3,9821E-21	5 8525E-26	9,3212E=37	1.5797E-49
• 0062	.125463	•007777	1 64325-04	3 0794F-0a	3.53364-12	2.3389L-16	8.3180E-21	1.4586E-25	3 44738-36	9.3116E-49
• 0063	.129705	.010647	1 44628-04	1 9994F=0e	5 2882F-14	4.0683L-16	1.6979E-20	3 5332E-25	1.2230E-35	5,1959F-48
•0064	.133456	.010921	2 1115F-04	5 15458-18	7.8164F-12	6.9500L-16	3.3907E-20	8 3284E-25	4 1788E-35	2.7500E-47
• 0065	.13/207	.011615	2 34002-04	5 5976F=00	1.14176-11	1.1704L-15	6-63078-20	1.9128E-24	1.3747E-34	1.39386-46
•0065	.140959	.012331	2.37992-04	0 14046-00	1 n40CF=11	1.9388E-15	1.2710E-19	4.2856E-24	4 3647E-34	6.6357E-46
•0067	•144711	.013068	2.0/292-04	1 051/5-07	2 35604-11	3-16476-15	2.3900F-19	9.3765E-24	1 33945-33	3.0392F-45
• 0068	.148463	.013827	2.99185-04	1 31005-07	2,33165-11	5.0015L-15	4.4128F-19	2,0055E-23	3,9791E-33	1,3312F-44
• 0069	•152214	.014605	3.33/85-04	1.51900-07	4 44445-11	8.0821E-15	8.0061F-19	4 19722-23	1 14592-32	5,59155-44
•0070	•155963	.015405	3.11220-04	1.04015-01	4.0044C-11	1 26634-14	1 42845-18	8 6034F-23	3 2020E-32	2,2556F-43
•0071	•159708	.016224	4,11031-04	2.02735-77	a a a a a a a a a a a a a a a a a a a	1 9590E=14	2 5077F-18	1 7287F-22	8 7007E-32	8.75312-43
• 0 0 7 2	.153450	.017064	4,55132-04	2.49678-97	8.0711E-11	2 00021-14	4 335 JE - 10	3 4078F-22	2 2097F-31	3.2729F-42
•0073	•167189	.017922	5.4185E-14	3.04632-07	· · · · · · · · · · · · · · · · · · ·	4 5260F-14	7 78485-18	6 5056F-22	5 9210F-31	1.1809F-41
.0074	.170922	.018800	5,5191E-04	3.70261-07	1.03675-10	4 32 30 - 14 - 7 - 10 F - 14	1 24025-17	1 25435-21	1 49655-30	4.1177F-41
• 0075	.174650	.019696	5.0543E-04	4 47/0E=07	2,1937E=10	0.//:UL=14	1.240EE-17	2 34525-21	3 64265 30	1.3894F-40
• 0076	.178272	.020611	6.6253E-04	5.386+F=07	2.91776-10	1,00100-13	2 2503(-17	4 3144E-21	0 72035-30	4.5421F-40
• 0 0 7 7	.195088	•021544	7.23328-04	6.4495F-07	3 4520F=10	1,46676-13	5 42045-17	7 01305-21	2 04165-29	1.44055-39
• 0078	•185797	• 022494	7.87932-04	7.68692-07	5,14946-0	2.12084-13	5.42.302-17	1 30415-20	A 6775F-29	4.4368F-39
.0077	.189498	.023462	8.5645E-04	9 1210E-07	6.5/38E-19	4 3402F 13	1 26405-16	2 45145-20	1 04975-28	1.32A7F-38
.0080	•193192	.024446	9.2900E-04	1.0777E-06	8, 7022E-10	4.34766=13	2 12655-16	4 2511F_20	2 36925-28	3.8726F-38
•0081	.196878	.025447	1 00575-03	1.2630E=06	1,09%7E=09	0,13/00=13	2 27065-14	7 27375-20	85-32F -28	1.0997F-37
.0082	.200556	.026464	1,0865E=03	1 4401E-06	1.3957E=09	8.58900-13	5 00515-16	1 22855-10	1 05545-27	3.0451F-37
.0093	.704225	. 027 . 97	1,1719E-03	1,73312-06	1.7723E-09	1,19-20-12	5.00512-16	2 04035-10	2 10665-27	8.2300F-37
+00R4	.207985	.028546	1.2615E-03	2.0183E-06	2.2377E-09	1.0421-17	1 1315-15	3 37745-10	4 40255-27	2.1729F-36
•0080	•211536	.029609	1,3557E=03	2,3376E-06	S 8093E-19	2,24476-12	1,7735-15	5 5 6 205 - 19	0 0567F=27	5.60915-36
• 00 A 5	•215178	.030687	1.4545E-03	2.70234-06	3,50972-09	3.04634412	1.6//05-15	0 04 325-10	1 70805-26	1.4167F-35
•008f	.218409	.031780	1,5580E-03	3.11126-06	4.36165-09	4,10020-12	2,404*2-15	1 41245-19	3 4063E-26	3.50345-35
• c o 8 8	•222431	•032886	1,6663E-03	3.5705E-06	5.3735E-09	5.49476-12	- 10115-15	2 22735-,0	6 4034F-26	8.4896F-35
• 0089	+226042	.034007	1.77748-03	4,0850E-06	6.6378F-09	7.30665-12	5.101+615	7 47405-19	1 24675-25	2.01725-34
• 0090	.229643	•035140	1.8975E-03	4.659/F-06	A.1316E-09	9.65475-12	7.4200 <u>7</u> -15	5 3740F-18	2 34 342 - 25	4.7026F-34
:0091	.233234	.036287	2.62058-03	5.29761-06	9.9173E-07	1.26805-11	1.05475-14	0 2004F=10	A 3611F-25	1.0763F-33
.092	• 2368;4	• 037446	2.1497E-03	6,01:1E-05	1.2043E=08	1.05040-11	2.400/0-14	1 24865-17	7 9054F-25	2.4200F-33
د 9 0 0 •	.240383	.038618	2.2A19E-03	6.7994E-06	1.4563E-08	2.14885-11	2.00275-14	1 07015-17	1 4182F-24	5.3490F-33
.0094	.243941	.039801	2.+503E-03	7.6709E-06	1,7540E-03	2.77592-11	2.87272-14	2 00042=17	2 5130E-24	1.1623F-32
.0095	.247488	040997	2.5640L-03	8.6322E-36	2,10435-08	3.56100-1	5.49256-14	A 1411F-17	4 40037-24	2.4857F-32
.096	.251023	.042203	2,7129E-03	9.69011-05	2,5150E-08	+ 34725=11 5 7015F.11	3 4 5 5 6 F - 1 A	6 07425-17	7 6166E-24	5.2330E-32
.0097	.254548	043421	2.nn722-03	1.06571-05	2.99485-06	5./8:511 7 3110F 11	1 00015-13	8 8404E-17	1 3037F-23	1.0851F_31
0094	,258061	.044650	3,0269E-03	1.2145E-05	3.55358-08	1°2118c-11	1 25765-13	1 27705-14	2 20745-23	2.2170F_31
0099	.261563	045889	3,1920E-03	1.35178-05	4 CO18E-08	9,203411	1 01656-13	1 83105-16	3 6983F-23	4.4655F-31
.0100	.265053	047138	3,3626E-03	1.5030E-35	4.4218E-08	1.12216-10	4.0.002-40	1,0110[-10		

TABLE A1 (CONTINUED)

	1)	/	······································			
a	0.99	.975	0.95	0.90	0.85	0.80	0.75	0.70	0.60	0.50
•0110	.299307	.060131	5.3753E-03	3.92178-05	2.1715F-07	8.7746L-10	2.4840E-12	4.6906E-15	3.8473E-21	2.4370F-28
•0120	• 332376	.073864	7.4546E-03	8.71758-05	7.44435-07	4+76154-09	2-1980E-11	6.9998E-14	1.8458E-19	4+6531F-26
•0130	• 364275	.088128	1.1094E-02	1.714/ET04	2+1116ET06	1.9921E-08	1.3908E-10	6,8928E-13	4.8825E-18	3.9608E-24
+0140	•395042	.103761	1.4771E-02	3.0621E-04	5.1616F-06	6.7942L-0A	6.7622E-10	4.8962E-12	8.0900E-17	1.7871F-22
•0150	•424727	•117634	1.8950E-02	5.0624E-04	1,12006-05	1.9678E-07	2,6631E-09	2.6782E-11	9 219aE-16	4.8526E-21
•0160	•453386	•132646	2.3591E-02	7.8611E-04	2,2064E-05	4.99 ^{92E} -07	8.8373E-09	1,1847E-10	7 7525E-15	8.7220E-20
•0170	•4H1076	.147718	2,8:498-02	1,1594E=03	4_0136E-05	1.1344E-06	2,5469E-08	4 4001E-10	5 0747E-14	1,1151E-18
+0180	.507854	.162790	3,4083E=02	1.634VE-03	6.83205-05	2.3540L-06	6.5261E-08	1,4126E-09	2,6963E-13	1.0760E-17
•0190	•533774	.177815	3.98496-02	2.23412-03	1.0998E-04	4.5240L-06	1.51478-07	4_0115E-09	1,2017E-12	8.1726E-17
•0200	.558886	.192756	4.5910E-02	2,9497E-03	1.68822-04	8.1451L-06	3,23198-07	1 0264E-08	4 6127E-12	5.0687E-16
•0210	.583237	.207587	5,2228E-02	3,79098-03	2.4880F-04	1,3867L-05	6.4162F=07	2,4014E-08	1 5578E-11	2.6423g=15
• 0250	.606A73	.222286	5.8770E-02	4.7779E-03	3,5401E-04	2.2496L-05	1.1969E-06	5,2011E-08	4.7104E-11	1,1855E-14
• 0230	·629835	.236837	6,5506E-02	5.8950E-03	4.8855E-04	3.4993E-05	2,1151E-06	1.05348-07	1,2937E-10	4.6686E=14
• 0240	• 552160	.251230	7.2409E-02	7.14726-03	6.5644E-04	5.24685-05	3.5640E-06	2.0116E-07	3.2666E-10	1.6401E-13
• 0250	·673P84	•265454	7.9454E-02	8,5399E-03	8.6152E-04	7.61685-05	5.7623E-06	3,6481E-07	7,6597E-10	5,2117E-13
•0260	.695041	.279506	8.6620E-02	1.00666-02	1,1074E-03	1.0746L-04	8.9775E-06	6 3201E-07	1.6a21E-09	1.5150g-12
•0270	•715660	.293382	9.3888E-02	1,1724E-02	1.3974E-03	1.4779E-04	1,3536E-05	1.0513E-06	3 4851E-09	4.0699E-12
.0590	•735770	.307079	•101240	1,3511E-02	1.7345E-03	1.98702-04	1.9820E-05	1,6865E-06	6.8551E-09	1.0189E-11
•0290	.755396	.320597	.108662	1.54232-02	2.1213E-03	2.61775-04	2.8269E-05	2,6187E-06	1.2870E-08	2.3944E-11
•0300	•774564	.333936	•116138	1,7457E=92	2.5601E=03	3.38602-04	3.93805-05	3,9490E-06	2.3170E-08	5.3155F=11
•0310	• 793296	.347097	•123659	1,9600E-02	3,0528E=03	- 3080C-04	5.36996-05	5,79958-06	4 01676-08	1,12098-10
•0320	• • • • 11612	.360083	.131212	2.18532-02	3.60118-03	5.399604	7.18241-05	8.31561-06	6.7207E-08	<pre>2.6262E=10</pre>
• 0 3 3 0	7 . 74	.372895	.138788	2,42301-02	4,20505-03	0 15201-04	9.4.373E=05	1,10005-05	1 73315 07	+.3531F=10
• 0 3 4 0	•H41010	• 385536	+140381	2 02745-02	4.06852-03	0.152VL-04	1.22002-04	2 1/70-05	2 6/005-07	1 4400 - 00
• 0 3 5 0	+104259	• 348004	+153981	3 10305-02	2.340EE=03	1 17631-07	1,05675=04	2 07035-05	2 047 12-01	2 51200 00
• 0 3 7 0	.401078	• 410317	•101582	3.19305-02	n.Johot=03	1. 17030-03	2 43045-04	2 7/515-05	3,97040-07	A 2302c 00
•03/0	012001	• 422463	• 1 0 9 1 / 9	3 750/6-02	/ LUG4E=03	1.59-20-03	5.43045-04	A 05405-05	5.839/C=0/	4.2302E=09
•0300	.020,92	• 4 3 4 4 5 1	.110100	4 04075-02	0 0573- 03	1 00071-03	2,70402-04	4 102/5-05	1 10775-04	1 10736 00
• 0399	0/5095	+40204	+10+342	4 33846 03	4.05/JE=03	2 10636-03	J. 34-65-04	7 77715-05	1,19732-06	1 72020 00
• 0 • 0 9	- 960619	.43/903	-1094 -5	4.55542-02	1 11305-02	2.5181F-03	5 20735-04	0 67445-05	2 25205-06	2.63035-00
• 0 • 1 0	.975475	• 407470	- 2060/7	4.0450L=02	1 22445-02	2 84471-03	4 15055-04	1 10105-04	3 03335-06	3 95045 09
• 0 4 2 0	.990474	.400800	-214433	5 27136-02	1 34445-02	3 25VAL-03	7 22965-04	1 45235-04	A 0280F=06	5.80325-08
• 0 4 3 0	1.005026	-507060	.221804	5 59021-02	1.64705-02	3 66218-03	0.42.45-04	1 76505-04	5 2007E-06	8.37755-08
- 0450	1-019340	-514216	.229316	5 92234-02	1 50665-02	4 1039L-03	0 7508F-04	2 10325-04	6 8404F-06	1.18995_07
- 6460	1.013425	.525.58	-236710	6 25008+02	1.73056-02	4.5767L-03	1.12156-03	2 50075-04	8 7610F-06	1.6644F-07
• 0 • 7 0	1.047288	535772	.244069	6 59336-02	1 84955-02	5 08 ⁰ 7L_03	1 28235-03	2 95175-04	1 11045-05	2 2953F_07
0480	1.060938	-546361	.251394	6 93556-02	2 01355-02	5.6162L=03	1 4581F-03	3 46015-04	1 3030F-05	3,12336_07
.0490	1.074382	-556827	.258682	7.28171-02	2 16225-02	6.1833E-03	1.6494F-03	4.0301F-04	1 7334F-05	4.1971F-07
	1.087627	-567174	.265932	7.631/6-02	2 31566-02	6.7820E-03	1 8567E-03	4 6656F-04	2 1369F-05	5.5739F-07
- 0510	1.100680	.577404	.273145	7 98564-02	2 47354-02	7 4124E-03	2 08051-03	5 3706F-04	2 6130F-05	7.3206F_07
+ 6520	1.113547	-587520	.280319	A 3420E-02	2.6359F=02	8.07446-03	2.3213F-03	6 1490F-04	3 1705F-05	9.5148F-07
• • • • • • •	1.126235	. 597525	. 287454	8 70186-02	2 80256-02	H 76791-03	2 57936-03	7 00475-04	3 8192F-05	1.2245F_06
• • • • • • • • • • • • • • • • • • • •	1.1.18747	.607422	.294549	9 06445-02	2 97325-02	9 4047L-03	2 A550F-03	7 9413F-04	4 5690F-05	1.5613F_06
55 .	1.151.92	.617213	.301605	9 42755-02	3 1440F_02	1 02496-02	3 1488E-03	8 9624F-04	5 430AE-05	1.9733E_06
• 0560	1.163273	.626900	.308620	9 79715-02	3 32665-02	1.10356-02	3 4607F-03	1 00725-03	6 4156F-05	2.4732F-06
.0570	1.175294	.636486	.315595	• 101669	3 50395-02	1.18536-02	3 7913F-03	1 12725-03	7 5350F-05	3.0754F_0A
• 0580	1.187167	.645973	.322530	+105384	3 6948F_02	1.2700L-02	A 1405F-03	1 2568F-03	A 8010E-05	3.7958F-06
• 0590	1.198882	.655364	.329425	+109125	3 88436-02	1.3577E-02	4 50878-03	1 3961F=03	1 027AF-04	4.6517F_06
• • 6 • 0	1.210456	•664660	· 336278	+11287	A 07705-02	1.4484L-02	4 8960F-03	1 54558-03	1 18235-04	5.6622F-06
	1. EI0420	1004000		. TEO.P	4 • • • • • • • • • • • • • •		4000 C 40		•••······	

TABLE A1 (CONTINUED)

а	0.99	.975	0.95	0.90	0.85	0.80	0.75	0.70	0.60	0.50
	1 221 000	673065	343092	.116644	4.27315-02	1.5420L-02	5,3025E-03	1.7053E-03	1.3604E-04	6.8481F-06
• 0010	1.233187	.682979	.349866	•120427	4.47225-02	1.63845-02	5.7282E-03	1.8757E-03	1.5584E-04	8+2320E-06
• 0620	1.244351	.692005	.356599	+124222	4.6743E-02	1.7377L-02	6+1734E-03	2.0570E-03	1.7776E-04	9.8381E-06
• 0630	1.255386	.700944	.363293	128028	4.8794E-02	1.83974-02	6.6379E-03	2,2494E-03	2,0193E-04	1,1692E-05
• 0040	1.266295	.709800	.369947	•131845	5.0872E-02	1.94456-02	7.1219E-03	2,4532E-03	2,2849E-04	1,3823E-05
-0660	1.277081	.718573	.376562	•135671	5.2976E-02	2.05194-02	7.6253E-03	2.6684E-03	2 57598-04	1.6260E-05
• 0670	1.287749	.727265	.383137	•139504	5,5107E-02	2.16195-02	8,1481E-03	2.8954E-03	2 8934E-04	1.9034E-05
• 1680	1.248300	.735878	.389674	•143345	5.7262E-02	2,27456-02	A 6902E-03	3 1343E-03	3.23465-04	2.21/91-05
• 1690	1 • 308739	.744414	•396172	•147192	5,9441E-02	2.38971-02	9,2516E=03	3 3853E-03	3.61516-04	2 0723 - 05
• 0700	1.319067	.752874	• • 0 2632	•151044	6,1643E-02	2.50/3E=02	9.8322E-03	3,04841-03	4 UPINE-04	3 41080 05
.0710	1.329288	.761260	•409054	•154900	6.3866F-02	2.62736-02	1.04.12E-02	A 21105-03	A 03345-04	3 91945-05
.0720	1.339404	.769574	.415438	•158760	PUD 00	2,74965-02	1,10905-02	4 21195-03	6 4 4 1 3 E = 0 4	A 4754r_05
.0730	1.349417	.777816	.421785	•162623	6.03752-02	2.07734-02	1,100000-02	A 02536-03	5 90505-04	5.09205-05
• 0740	1.359332	.785988	•428095	•166488	7.06596-02	3 12045 02	1,20105-02	= 1=10F=03	4 54845-0A	5.77396-05
• 0750	1.369148	.794093	•434369	•170354	7.69621-02	3.13040-02	1,30170-02	5 40045-03	9 1001E-04	6.52555-05
• 0760	1.379870	.802130	•440607	•174221	7.52821-02	3 30611 02	1,07100-02	5 440oF-03	7 95255-04	7.35176-05
• 0770	1.368499	.810102	.446809	•17808A	7.75191-02	3.39310=02	1 = 152F+02	6 2051E=03	8 5564F=04	8.2575F-05
• 07B0	1.398037	.818009	.452975	•181955	0 23/1c-02	3.55411-02	1 59945-02	6 5021E-03	9 3040F-04	9.2477F-05
.0790	1.407486	.825854	.459106	•1A5821	8.23411-02	3 0075F-02	1 46445-02	6 9721F-03	1 00945-03	1.0378F_04
• 0800	1+416849	.833636	•465203	•189686	8 4 7 C DE - 0 E	3 04091-02	1 7446F-02	7 3740F=03	1 00335-03	1.1503F=04
• 0810	1.426127	.841358	.471266	+193549	0.05345-02	4 0061E-02	1 82455-02	7 70065-03	1 1n17E+03	1.2778E-04
•0820	1.435323	.849020	• • 7 7294	+19/410	H. 10505 02	4 2371F-02	1 00616-02	8 2192F-03	1 2740F-03	1.4159F_04
•0830	1.444437	.856624	.483289	•201268	9,19395=02	4 39391-02	1 98945-02	8 6607F-03	1 3720E-03	1.5651F_04
• 084 0	1.453472	.864171	•489251	•205123	9.43762-02	4 5325L-02	2 07445.02	9 1150F-03	1 4760F-03	1.7260F_04
•0850	1+462429	.871661	•495181	+200914	0 93045 02	4 6827E-02	2 1610F-02	9 5820F-03	1 5847E-03	1.8991E-04
.0850	1+471311	.879096	.501077	• 212822	9.9.19.4E	4.8345L-02	2 2491F-02	1.0062E-02	1.6976E-03	2.0851F-04
•0870	1.480118	•886477	.506942	• 210606	+101//5	4 90001-02	2 3384F-02	1 0554F-02	1 A163E-03	2.2844E-04
• 08A 0	1.488852	.893805	•512//5	• 220506	-104250	5.1449E-02	2 4302E-02	1 1060E-02	1 9404E-03	2.4977E-04
• 0890	1.49/515	.901080	• 5105//	+22+3+1	-109246	5.2094L-02	2.5230E-02	1 1577E-02	2 0700E-03	2.7256E-04
• 0 9 0 0	1.506107	.908304	• 524340 5300BB	.220171	.1.1755	5.4574E-02	2.6174E-02	1 2107E-02	2 2052E=03	2,9637F-04
• 0 9 1 0	1.514632	•7154// 922601	-535799	235915	+114272	5.6168E-02	2 7133E-02	1 2650E-02	2 3460E=03	3.2274E-04
• 0.720	1.523007	929476	.541479	+239629	.116797	5.7776E-02	2 8106E-02	1 3205E-02	2 4925E-03	3,5025F-04
• 0730	1 534807	936703	.547130	+243437	•119330	5.939/E-02	2,9093E-05	1 3772F-02	2.6449E-03	3.7945E-04
• 0 7 4 1	1.548.70	943684	.552752	.247239	.121870	6.1032E-n2	3,0095E-02	1.4357E-02	2 8031E-03	4,1039F_04
+ 0753	1.556271	.950617	558345	·251035	.124416	6 2674E-02	3,1110E-02	1,4943 <u>F</u> -02	2,9672E-03	4,4315F_04
. 97.	1.564412	957506	.563909	•254825	.126969	6.4339L-02	3,2139E-02	1.5547E-02	3,1374E-03	4.7777E-04
- 980	1.572492	.964349	.569445	•25860A	•129528	6.6011 - 02	3+3182E-02	1.6162E-02	3.3134E-03	5•1431E-04
	1.580514	971149	.574954	•262385	+132093	6.76954 02	3•423 ⁸ E ⁻ 02	1.6789E 02	3.4959E 03	5.5283E 04
• 1 0 0 0	1.588478	977905	•580435	•266155	•134663	6.9390E-02	3.5306E-02	1.742AE-02	3.6845E-03	5.9339F-04
.1100	1.665165	1.043231	.633806	• 303456	•160598	8.69021-02	4.6657E-02	2,4432E-02	5,9177E-03	1.12378-03
•1200	1.737082	1.104905	.684762	• 339989	•186791	·105245	5.9065E-02	3.2473E-02	A 4000E-03	1,9143E=03
• 1300	1.804937	1.163423	•733565	•375720	•213060	+124197	7.2338E-02	4.1427E-02	1.233AF-02	3,0102E=03
+1400	1.869291	1.219187	.780442	•410651	239282	•143589	8.631/E-02	5.11/5E-02	1.6514E-02	4 93/0E A3
1500	1.930593	1.272528	.825587	• 444799	•2653/1	• 163287	•100865	6.1AURE-02	2.1249E-02	0 2074F 03
1600	1.989215	1,323719	.809170	•478191	.291271	183190	.115670	7 . CAC91-02	2 25405-02	1 00355 02
.1700	2.045460	1,372991	.911335	.510863	.316944	.203222	•131241	9 4101E-02	3 00325-02	1 30445 02
• 1800	2+099584	1.420538	+952211	•54284A	+342304	• 223320	• 1 • 0 7 0 3	- 10HA1-	A 5764F-02	1.71105_02
•190Ŭ	2.151805	1,466528	.991908	• 57 4 18 3	•36/518	• = = 3439	.178050	• 100 • 15	5 3011F-02	2.07465-02
•2000	2.202305	1.511103	1.030526	• 604902	• 345348	+ - 0 3 5 4 4	•1.00.74	•151038		

TABLE A1 (CONTINUED)

						v				
a	0.99	•975	0.95	0.90	0,85	0.80	0.75	0.70	0.60	0.50
•2100	2+251244	1.554388	1+068149	•635041	•417000	•283606	•195062	•133922	.060630	•024714
•2200	2.298758	1.596493	1.104856	•664630	•441326	•303605	•211366	·147027	.068589	•029007
•230 ⁹	2.344969	1.637511	1 • 1 4 0 7 1 2	• 6 9 3 6 9 9	• 465379	• 323526	•227743	•160319	.076857	+033609
.2400	2.389980	1.677528	1.175781	•72227R	•489164	•343355	•244169	•173768	.085405	•038503
•2500	2+433885	1.716618	1.210115	•750393	•512687	• 363085	260626	•187348	.094206	•043674
•2600	2+476767	1.754847	1+243767	•77806A	•535954	• 382709	•27709R	•201039	.103236	•049105
•2700	2.518697	1.792275	1.276777	·H05327	•558975	• • 022222	•293571	•214821	.112475	•054780
.2800	2.557743	1.828956	1.309187	•832190	•581755	• 4 21 6 2 2	• 310034	• 22857A	.121902	• 060685
•2900	2.599963	1.864938	1.341034	.858679	•604304	•440906	• 326480	•242597	•131500	• 066807
• 30 0 ^U	2.639409	1.900264	1.372350	•884811	•626628	• 460074	• 342899	• 250565	•141253	•073131
•3100	2+678131	1.934974	1.40316/	• 910604	•648735	• • / 91 20	• 32ASHH	•2/05/2	+1511+0	•079645
•3200	2+716171	1.969104	1.433511	•936074	•670532	.498002	• 37 5640	.284009	.161108	+086336
•3300	2.753570	2.002688	1.463409	• 961237	•692328	• 516884 536593	• 37 1 751	• 290009	.1/1300	•043174
•3403	2.740303	2.035755	1+492884	• 440100	• / 1 3027	• J J 5 7 J	• 4 0 0 % 2 0 4 3 4 4 4 9	• 312/ •5	+101044	•100200
.3500	2.426584	2.068333	1.521958	1+010695	+/37141	•	• • 2 • 4 4 2	• 360031	*141000	• 1 () 7.307
.3000	2.862204	2.100447	1.550651	1+032016	.777328	- 591 - 57	- 456740	• 3 • 0 • 2 2	212022	-122096
• 3700	2.897430	2.142.70	1. 576981	1.093000	-708014	-000731	.472814	- 369103	. 223401	129645
• 3B 0 0	2.932109	2.1033/9	1.63460	1.105/8/	. 0. 8677	• • • • • • • • • • • • • • • • • • • •	. 488036	- 383102	224047	127208
• 3900	2.900323	2.174237	1.034021	1.1399494	010037	-645571	- 504806	- 367367	244752	-145078
•4000	3.000097	2.25/022	1.689002	1.152395	+03710C	. 66-541	-520724	- 411310	. 255513	162049
•4100	3+033449	2.294833	1.715755	1.175010	.079579	.68.415	-536589		. 266324	-140915
• 4200	3.000400	2 2 2 0 4 0 0 4	1.742222	1.198650	.809501	.699194	.552402	.439400	. 277181	168970
• 4 3 0 U	3-141165	2.343168	1.768445	1.221192	.919485	.716881	+568163	+453416	288079	•177113
4400	3,153012	2.371988	1.794404	1.243549	939235	734478	-583871	.467414	299016	185328
++500	3.194522	2.400517	1.820120	1+205726	.958856	.751987	.599529	.481393	.309987	•193622
.4700	3.225708	2.428767	1.845602	1+287731	.978352	•769411	•615135	495351	.320990	.201987
. 4800	3.256584	2.456747	1.870858	1.309570	.997726	.786751	•630690	.509288	.332022	.210419
.4900	3.237160	2.484470	1.895898	1+331248	1+016983	.804009	•646196	.523204	.343081	.219913
.5000	3+317448	2.511943	1.920729	1+352772	1.036125	· ⁸ 21187	•661652	•537097	.354163	+227468
.5100	3.347460	2,539177	1.945359	1+374145	1.055157	838288	•677059	.550968	.365267	·236080
.5200	3.377204	2,566180	1.969794	1+395374	1.074082	• ⁸ 55313	•692419	•564815	.376391	•244745
.5300	3.406691	2,592959	1.994042	1•416462	1.092902	• ⁸⁷ 2264	•707731	.578640	.387534	.253461
.5400	3.435930	2.019524	2.018108	1++37415	1+111621	.889143	•722997	•5924 • j	.398692	• 565556
5500	3.464928	2,645880	2.041999	1.458236	1+130241	.905951	•738216	+60621A	.409866	• 271036
.5600	3.493695	2.672036	2.065720	1+478930	1.148766	• 922690	•753391	•619971	.421052	•279891
.5700	3,522238	2,697997	2.089276	1.499500	1+167198	• 939363	.768521	+633701	.432251	.288786
.5800	3.550563	2.723769	2+112674	1.519950	1+185539	•955969	•783608	.647407	.443461	•297721
•5900	3.578678	2.749360	2.135918	1+540283	1 • 20 3793	.972512	•798652	.661099	.454681	• 306694
+6000	3.606589	2.774773	2.159012	1+560503	1+221960	•988695	•813654	•6747 4 8	.465909	•315702
.6100	3.634303	2.800016	2+181961	1+580614	1 • 240044	1.005411	•828614	•688383	.477146	+324744
•6200	3.661826	2.825091	2.204769	1+000617	1 • 253047	1•0217 <u>7</u> 0	•843533	•701995	. 488 389	•333819
.6300	3.639162	2.850006	2.227441	1.620517	1+275970	1.038070	.858413	•715583	.499638	.342925
+640U	3.716318	2.874764	2.249980	1.640316	1 • 29 3817	1.054314	•873253	•729148	•510893	.352060
•650Ò	3.743299	2.899370	2.272389	1.660016	1•311588	1.070502	·888055	•742690	-522152	• 361224
.6600	3.770109	2.923827	2.294673	1.679620	1.329285	1.086635	•902818	•756210	.533416	• 37 0 4 1 5
•6700	3.796754	2.948141	2.316835	1+099131	1•346911	1+102714	•917545	.769706	.544683	• 379631
•6800	3+823238	2.972314	2.338878	1.718552	1 • 364467	1.118742	• 932235	•7831A1	• 55 3 53	• 388872
• 6900	3+8+9565	2.996352	2.360806	1.737883	1•381955	1+134718	•946889	• 796633	.56/226	• 3981 37
•7000	3.875739	3.020256	2.382620	1•757129	1.399376	1+150644	•961507	•810064	.578500	+407424

TABLE A1 (CONTINUED)

						у				
٥	0,99	.975	0,95	0.90	0.85	0.80	0.75	0.70	0,60	0,50
	3-901764	3-044032	2.404325	1 • 7 76 28 9	1+416732	1+166522	976091	·823473	.589776	• 416733
•7100	3.027444	3.067681	2.425922	1.795368	1.434024	1 • 18 2 3 5 1	+990641	·836860	.601053	+26062
.7200	3.053283	3.091207	2.447415	1.814366	1+451254	1 • 198133	1+005157	• 850226	.612331	+435412
-7400	3.978985	3.114614	2.468806	1.833286	1.468424	1.213869	1+019640	. 863571	.623609	•444780
.7500	4.004452	3.137904	2.490098	1+852130	1.485533	1+229501	1+034091	•R76895	•634888	•454167
.7600	4.029787	3.161080	2+511292	1+870899	1.502585	1•445208	1+048511	• 890199	.646165	• 463571
.7700	4.054995	3.184144	2 . 532392	1+889594	1+519580	1.460811	1.062899	•903483	.657444	• 472993
. 7800	A. 080078	3.207100	2.553399	1+908218	1 - 536519	1.4763/3	1.077256	•916747	.668721	+4R2430
. 7900	4.105038	3.229949	2.574315	1.926773	1+553403	1.291892	1.091583	•92999ī	•679996	•491893
.8000	4-129879	3.252695	2.595144	1.945250	1 • 570234	1.307371	1•105881	+943215	.691271	•501351
- 8103	4.154603	3.275339	2.615885	1.963677	1.587013	1.322810	1•120149	•95642n	.702545	•5 <u>1</u> 0834
.8200	4.179214	3.297884	2.636542	1.992031	1+603741	1.338209	1•1343AA	• 969607	.713816	•520330
-8300	4.203712	3.320331	2.657117	2.000321	1.670418	1.353570	1•148600	•98277	.725086	.529840
-8400	4.228102	3.342684	2.677610	2.018547	1.637045	1.368894	1•162784	•995923	.736355	+539362
.8500	4.252384	3.364944	2.698024	2.036713	1.653626	1.384180	1+176940	1+009054	.747621	•548897
.8600	4.276562	3.387113	2.718360	2.05481A	1.670159	1.399429	1•191070	1.022166	.758884	• 558444
.8700	4.300638	3.409192	2.738621	2.072864	1.686646	1+414643	1.205173	1.035261	.770146	.569003
.8300	4.324613	3,431185	2.758807	2.090852	1.703086	1.429822	1+219250	1.04833a	.781405	•577572
.8900	4.348490	3,453092	2.778920	2+108784	1.719483	1.444966	1.533305	1.061398	.792661	.5A7152
.9000	4.372270	3,474915	2.798961	2.126660	1.735835	1.460076	1.24/328	1.074441	803915	.596743
.9100	4.345956	3,496656	2.818932	2.144482	1.752145	1.475153	1.261330	1.087467	815105	.606344
.9200	4.419550	3,518317	2.838835	2.162250	1.768412	1+490198	1.275308	1.100476	820415	•615954
.9300	4.443052	3,539898	2.858670	2 • 179966	1.784638	1.505210	1 • 289261	1+113468	.83/660	•625574
.9400	4.466466	3,561402	2.878439	2.197630	1.800823	1.520190	1.303191	1.126445	.848902	.635202
.9500	4.489793	3,582830	2.898144	2+215243	1.816969	1+535140	1.317098	1.139405	.860142	• 044H39
• 9600	4.513034	3.604184	2.917784	2+23280A	1.833075	1.550058	1.330981	1+152350	.8/13/8	• 654403
.9700	4.536191	3.625464	2.937362	2+250323	1+849142	1.564947	1.344843	1.165278	•882611	• 664139
•9800	4.559264	3.646673	2.956879	2•26779 ₀	1+865172	1.579806	1.354682	1+178192	.893841	+673401
.9900	4.582257	3.667811	2.976335	2+285211	1+881154	1.594636	1.3/2499	1+191090	.90500/	• 6R34/0
1.0000	4+605170	3.688879	2.995732	2+302585	1+897120	1.009438	1.386294	1.203973	• 410241	• 693147
1.1000	4,830207	3,896009	3,186665	2.473953	2,054791	1.755974	1,523133	1.332016	1.028337	.796275
1.2000	5,048610	4.097368	3.372663	2,641460	2,209386	1.900089	1,658130	1.458/46	1.140034	.887936
1.3000	5,261312	4,293777	3,554429	2.805648	2,361325	2.042103	1,791513	1.584312	1.251383	.985999
1.4000	5.469054	4,485882	3,732515	2.966944	2,510947	2,102274	1,923976	1.708839	1.302394	1 102007
1.5000	5,672434	4,674202	3,907365	3,125694	2,658524	2.340814	2,054173	1.832435	1.4/3085	1 201704
1.6000	5.A71938	4,859161	4.079340	3.282184	2.804280	2.437898	2,183735	1.955190	1.583464	1.200762
1.7000	6.067967	5,041111	4,248742	3.436646	2,948404	2.573675	2,312273	2.077183	1.07300	1.380762
1.8000	6.260862	5,220348	4.415828	3.589282	3,091050	2.748265	2.437884	2.198480	1.012023	1 570050
1.9000	6.450908	5.397120	4.580807	3.740258	3.232358	2.801780	2,30004/	2.319141	2 022313	1.579050
2.0000	6.638354	5,571643	4.743866	3.889720	3.3/2440	2.97.300	2,072035	2 . 4 3 7 2 10	2 131432	1 777712
2.1000	6.823411	5.744103	4,905160	4.03//92	3.511401	3+1-3434	2 042510	2.550151	2 240341	1.877141
2.2000	7.006262	5,914661	5.004831	4.104084	3.049324	3 2 2 0 7 1 7	3 066517	2 706353	2.249054	1.974625
2.3000	7.187075	6.083457	5.223002	###JJ0193	J. 100201	3.516020	3 189945	2.014489	2.457581	2.074157
2.4000	7.365991	6.250616	5+3/9//6		J.722337	3.644637	3 312840	3,032214	2.565934	2.175730
2.5000	7.543136	0.410252	5,535249		A 102063	3.772420	3 435234	3.149562	2.474120	2.275339
2.6000	7.18626	6.200461	5.007307	4.902324	A 325799	3.000030	3.557164	3.266552	2.782151	2.374980
2.7000	1.842308	004047	5,074025			A.046877	3.678652	3.383203	2.890033	2.474650
2.8000	8.06504/	D.90494/	2.774074	5 103000	A 501255	4.153109	3.799724	3.499536	2.997774	2.574344
2.9000	8.23314/	7 224607	4 295704	5.322320	A 723050	4.2/9030	3.920403	3.615558	3.105379	2,674061
3.0000	1 8 4 9 3 7 3 1	1 * 5 5 4 0 0 1	0 0 0 1 7 9	204662564	~					

TABLE A1 (CONTINUED)

	[Ŷ				
a	0 . 9 9	.975	0.95	0.90	0.85	0.80	0.75	0.70	0.60	0,50
3.1000	R.574519	7,382939	6.444977	5.460843	4,854271	4.404393	4.040710	3.731314	3.212857	2,773797
3.2000	6.741913	7.540188	6.593303	5+598691	4.984944	4+529312	4.160664	3.846789	3.320213	2.873551
3+3000	8.908206	7.696479	6•740820	5•735901	5+115098	4+653811	4.280279	3.962007	3.427453	2.973322
3+4000	9.073433	7.851864	6.887563	5+872497	5+244759	4+7/7909	4.399579	4.07697B	3+534582	3.073107
3.5000	9.237654	8.006381	7.033568	6+008518	5.373948	4.901625	4.518574	4+191715	3+641604	3.172907
3.6000	9+400913	8.160075	7.178876	6+143985	5.502689	5:024977	4.637277	4.306229	3.748524	3.272717
3.7000	9.563252	8.312978	7.323508	6+278921	5.631001	5+1 7980	4.755703	4+420530	3+855346	3.372538
3.9000	9.724709	8.465125	7.467498	6+413355	5.758900	5+2/0650	4.873863	4+534621	3.962074	3.472370
3.9000	9.885325	8.616545	7.610876	6.547301	5.886407	5+373001	4.991/67	4+648519	4+068/12	3.572211
4+0000	10.045118	8.767274	7.753657	6.080783	6.01353/	5:515040	5.109430	4.762229	4-1/5263	3.072061
4+1000	10+204140	8.917333	7.895574	0+013814	6.140303	5.030798	5.220051	4+8/5/5/	4+281/20	3+771918
4.2000	10+362412	9.066751	8.03/546	0.940420	6.266/24	5.758260	5.344051	4+989110	4.388110	3.071/83
4.3000	10-519905	9.215550	8+1,8041	7.078018	6+392011	5+0,9450	5++01033	5+102275	4.474420	3+7/1050
4•4000	10+676814	9.303/54	8+319335	7 24 909	6.514507	6.000392	5.577005	2.512314	4+600057	4.071533
4.5000	10.832998	9.511386	8+437487	7.472074	6.044020	6121073	5.074375 5.810751	20320100	4.700020	4+1/141/
4.6000	10.988535	9.058461	0 779404	7.602550	6+/691/0	6+271507	5.010/51	5+440705	4+812711	4 271305
4.7000	11.143445	9.805005	0.077104	7 7 7 3 9 6 3	0.044031	6+3-1/11	5.720730	5+5534/4	6 471073'	4.471100
4.8000	11.297752	9.951026	8.8//196	7-8620-5	7.018012	61421087	6.158773	5+603704	5-024076	4.471100
4.9000	11+4514/4	10.070550	9+010004	7.003705	7 244964	6.720079	6 274431	5.000363	5-136618	4.571002
5.0000	11.504020	10+241591	9.103019	0.0375.5	7 093548	7.215710	6.850347	5+070303	5-764916	5.170499
5.5000	12.362488	10.90025	9.03/309	0.074676	7.003340	7.5.5710	7 433743	7.005551	4,691919	5.670162
6.0000	13-198487	11.000333	10+513032	9.9450/4	8+474037	9-192207	7.991953	7.559361	6.017786	5.140678
6.5000	13+44121	12.30/804	11+101017	74703765	9.100700	0.075.04	A 558467	7+557301	7.242646	5+107010
1.0000	14+5/0021	13.039480	11+042376	10-32072	7+703121	9-655009	9 1025407	0.460849	7.946611	7.160430
7.5000	15.288703	13+/4419/	12+47/076	11+1-3566	10+301204	10.232544	9.684431	9-208947	8-389768	7.669251
8.0000	15.797700	14.422010	13+140115	12.384520	10.078527	10+2-2544	10 244338	9.755507	A.912195	8.169092
8.5000	10.10.332	15.075500	13+173557	12,994520	12.07778	11.379774	10.802445	10.200677	0.433952	8.668950
9.000	17.402000	15.703192	15.071766	13.601792	12.664427	11.950209	11.358903	10.844563	9.955096	9.168827
9.5000	10.703133	17.084810	15.705212	14.205991	13.248793	12+518752	11.913846	11.387274	10+475684	9.668716
10.0000	20.144684	18.390357	16.962222	15+906642	14.411228	13.650727	13.019633	12.469508	11-515331	10.668524
12.0000	21.489914	19.682034	18.207521	16+598123	15.566237	14+776661	14.120579	13.547985	12-553176	11.668363
1200000	22.820845	20.961583	19.442570	17.781586	16.714734	15.897311	15 217283	14+623163	13.589441	12.668229
14-0000	24.139129	22.230398	20.668571	18.957964	17.857494	17+013283	16.310247	15.695437	14-624309	13.668115
14.0000	25.446105	23.489624	21.886488	20+128012	18.995128	18 1 25 96	17.399879	16.765117	15+657928	14.668016
16-0000	26.742891	24.740213	23.097125	21+292374	20.128149	19+233157	18.486495	17+832455	16+690432	15.667930
17-0000	28.030459	25,982992	24.301184	22+451580	21.257004	20.337825	19.570390	18.897693	17:721915	16.667854
18.0000	29.309600	27.218645	25.499231	23+606091	22.382035	21.439396	20.651808	19+960991	18+752470	17.667791
19.0000	30+581062	28.447777	26.691771	24 • 756292	3.503585	22+538139	21.730954	21+022525	19.782180	18.667726
20.0000	31.845381	29.670858	27.879242	25+9025+0	24.621929	23-634281	22.808003	22.082438	20+811097	19.667673
21.0000	33.103128	30.888383	29.062021	27.045102	25.737296	24 . 727986	23.883126	23+140838	21•R39302	20.667624
22.0000	34.354764	32.100744	30.240440	28+184271	26.849910	25-819462	24.956450	24+197847	22. A66819	21+667583
23.0000	35.500707	33.308266	31.414812	29.320269	27.959956	26.908856	26.028098	25 • 25 3553	23.893720	22.667548
24.0000	36.841330	34.511301	32.585374	30.453345	29.067603	27.996296	27.098184	26.308045	24.920029	23.667503
25.0000	38.076956	35.710101	33.752414	31.583561	30.172998	29•0 ⁸ 1890	28.166803	27.361398	25.945792	24.667469
26.0000	39.307887	36.904948	34.916089	32.711215	31,276287	30 1 65788	29,234045	28.413679	26.971026	25.667437
27.0000	40.534390	38.096045	36.076610	33.836394	32.377578	31.248064	30.299991	29.464952	27 . 995799	26.667405
28.0000	41.756738	39.293586	37.234173	34.959258	33.476977	32+328819	31.364711	30.515272	29.020101	27.667379
29.0000	42.975095	40.467809	38.388918	36.079917	34.574607	33+408109	32.428274	31.564690	30+043968	28.667350
30.0000	44+189717	41.648842	39.540987	37•198505	35.670551	34+486044	33.490732	32.613239	31+067421	29.667329

TABLE A1 (CONTINUED)

	· · · · · · · · · · · · · · · · · · ·)	/				
а	0.99	.975	0.95	0.90	0.85	0.80	0.75	0.70	0.60	0 . 50
31.0000	45.400776	42.826876	40,690505	38,315117	35,764887	35.562657	34,552154	33.661009	32.090473	30,667311
32.0000	46.608444	44.002030	41-837637	39+429823	37.857697	36:638052	35+612575	34 • 707970	33+113172	31+667291
33.0000	47.812869	45+174458	42.982466	40+542744	38.949060	37+712247	36.672057	35+75+229	34+:35515	32.667272
34+0000	49.014226	46.344288	44.125085	41+653939	40.039020	38 7 5329	37.730619	36.799770	35+157496	33.667258
35+0000	50+212588	47.511599	45.265616	42.763521	41.127677	39.857326	38,788329	37.844639	36+179174	34.667230
36+0000	51.408187	48.676511	46.404120	43+871508	42.215054	40.928296	39.845226	38.888883	37.200535	35.567222
37.0000	52.601029	49.839183	47.540735	44+978029	43.301215	41+998286	40.901293	39.932480	38.221599	36.667205
38.0000	53.791297	50.999632	48.675488	46+083084	44.386209	43.067307	41,956629	40+975497	39.242375	37.667198
39.0000	54.979045	52.157977	49.808471	47+186744	45.470082	44-135427	43.011231	42-017968	40.262888	38.667178
40.0000	56.164393	53.314291	50.939746	48.289090	46.552879	45.202675	44.065116	43.059856	41.283126	39.667166
41.0000	57.347484	54.468656	52.069372	49.390155	47.634639	46.269059	45,118356	44.101228	42.303114	40.667153
\$2.0000	58.528289	55.621137	53-197424	50+490013	48.715385	47 . 334670	46.170926	45-142096	43.322840	41.667142
43.0000	59.706962	56.771796	54.323951	51.588637	49.795186	48 . 399 482	47.222881	46.182505	44.342367	42.667131
44.0000	60.883584	57.920722	55.449005	52.686107	50.874063	49.493514	48.274212	47.222420	45.361649	43,667121
45.0000	62.058173	59.067953	56.572638	53.782505	51.952057	50-546864	49.324967	48.251888	46.380712	44-667110
46.0000	63.230868	60.213551	57.694899	54.877815	53.029132	51.589485	50.375165	49.300905	47.399561	45.667100
47.0000	64.401640	61.357533	58.815828	55.972092	54.105397	52.671420	51.424800	50.339508	48.418206	46.667091
48.0000	65-570640	62.500050	59.935454	57.065355	55.180848	53+712694	52.473897	51+377691	49.436650	47.667082
49.0000	66.737841	63.641014	61.053858	58 . 1576 . 0	56,255501	54.7/3339	53.522507	52.415459	50.454918	48.667073
50.0000	67.903375	64.780609	62.171059	59.249005	57.329410	55.833358	54.570622	53.452881	51.472973	49.667065

TABLE A2.	Gamma Re	eference Sca	le Values bo	for Selected Values
	of Shape	e Parameter	(a) and Prior	Assurance (p ₀)
	a/p ₀	0.95	0.90	0.80
	0.01	3.5227-155	4.4655-125	5.6607E-95

0.000000000000000000000000000000000000	3.5227-155 4.5019E-755 2.2797E-48 5.1503E-355 5.3157E-27 1.1726E-211 7.7079E-18 5.6375E-155 9.5383E-1335 5.7917E-111 1.66902E-098 2.9538E-056 1.3150E-0572E-007 2.9538E-005 2.9479E-004 2.9538E-005 2.9479E-004 2.9538E-005 2.40955E-003 1.598E-004 2.31508E-005 2.40955E-003 1.54451E-001 2.6366E-001 4.6366E-001 1.30715E+000 3.1857E+000 3.1857E+000 3.1857E+000 3.99288E+001 1.3067E+000 3.1857E+000 3.99288E+001 1.9941E+001 2.5677E+000 3.9288E+001 1.9941E+011 2.5675E+011 3.40566E+011 3.40566E+011 3.40566E+011 3.40566E+011 3.40566E+011 3.40566E+011 3.5703E+022 2.5272E+022 3.5703E+022 3.5	$\begin{array}{c} 4.4655-125\\ 5.06875-38\\ 1.7282E-38\\ 1.7282E-27\\ 1.57399E-16\\ 1.53994E-13\\ 3.26598E-09\\ 9.3078E-08\\ 9.3078E-08\\ 9.3078E-08\\ 9.3078E-09\\ 9.3078E-008\\ 9.30888E+001\\ 1.5558E+001\\ 1.5558E+001\\ 1.5588E+002\\ 2.76108E+002\\ 2.27888E+003\\ 1.31882E+03\\ 1.31$	5.6607E-95 2.6708E-48 5.7068E-48 5.7068E-48 5.7068E-28 5.7988E-20 5.8449E-11 3.0746E-09 1.8916E-005 4.66690E-005 4.89699E-005 4.866199E-005 4.866199E-005 4.86619E-005 4.86619E-007 1.35782E-01 1.35782E-01 1.35782E-01 1.35782E-01 1.35782E-01 1.35782E+001 1.35782E+001 1.35782E+001 1.35782E+001 1.38807E+001 1.38807E+001 1.38807E+001 1.38807E+001 1.884082E+002 2.37903E+003 1.7786E+003 1.2976E+003 1.77885E+003 1
0.51 0.52 0.53 0.54 0.55	5.7065E+02 6.5947E+02 7.5810E+02 8.6715E+02 9.8723E+02	2.2238E+03 2.5039E+03 2.8073E+03 3.1347E+03 3.4869E+03	8.6938E+03 9.5397E+03 1.0434E+04 1.1376E+04 1.2367E+04
0.58 0.59 0.60	1.2628E+03 1.4196E+03 1.5897E+03 1.7737E+03	4.2688E+03 4.6997E+03 5.1582E+03 5.6448E+03	1.4496E+04 1.5635E+04 1.6823E+04 1.8060E+04
a/p ₀	0.95	0.90	0.80
---	--	--	---
akp 0.61 0.62 0.63 0.64 0.65 0.66 0.67 0.68 0.69 0.70 0.71 0.72 0.73 0.74 0.75 0.76 0.77	0.95 1.9723E+03 2.1859E+03 2.4152E+03 2.6605E+03 2.9225E+03 3.201662E+03 3.4982E+03 3.8130E+03 4.1462E+03 4.4983E+03 4.8698E+03 5.2610E+03 5.2610E+03 5.6722E+03 6.1040E+03 6.5565E+03 7.0302E+03 7.5253E+03	0.90 6.1602E+03 6.7047E+03 7.2789E+03 7.8833E+03 8.5182E+03 9.1840E+03 9.8811E+03 1.0610E+04 1.2163E+04 1.2163E+04 1.2988E+04 1.2988E+04 1.3846E+04 1.3846E+04 1.5660E+04 1.6616E+04 1.7606E+04 1.8629E+04	0.80 1.9348E+04 2.0685E+04 2.2071E+04 2.3506E+04 2.4991E+04 2.6525E+04 2.6525E+04 2.9739E+04 3.145E+04 3.3145E+04 3.4921E+04 3.6743E+04 3.6743E+04 4.0528E+04 4.2491E+04 4.2491E+04 4.6552E+04 4.6552E+04
0.79 0.80 0.81 0.82 0.834 0.85 0.885 0.885 0.886 0.888 0.888 0.991 0.92	8.0421E+03 8.5809E+03 9.1420E+03 9.7256E+03 1.0332E+04 1.0361E+04 1.1614E+04 1.2989E+04 1.2989E+04 1.3712E+04 1.4459E+04 1.5229E+04 1.6024E+04 1.6024E+04 1.6024E+04	1.9685E+04 2.0775E+04 2.3054E+04 2.3054E+04 2.4244E+04 2.5467E+04 2.6723E+04 2.6723E+04 2.9336E+04 3.0692E+04 3.2082E+04 3.3504E+04 3.4959E+04 3.4959E+04 3.6448E+04	4.8651E+04 5.2982E+04 5.2982E+04 5.5213E+04 5.7488E+04 6.2166E+04 6.4566E+04 6.4566E+04 6.7013E+04 6.9498E+04 7.2024E+04 7.4590E+04 7.9842E+04 7.9842E+04 7.9842E+04
0.92 0.93 0.94 0.95 0.98 0.99 1.05 1.10 1.15 1.25 1.30	1.8555E+04 1.9447E+04 2.0364E+04 2.1305E+04 2.2271E+04 2.3262E+04 2.4278E+04 2.5318E+04 3.0891E+04 3.0891E+04 3.7082E+04 4.3888E+04 5.1301E+04 5.9311E+04 6.7908E+04	3.9522E+04 4.1107E+04 4.2725E+04 4.4375E+04 4.6057E+04 4.9516E+04 5.1293E+04 6.0643E+04 5.1293E+04 6.0643E+04 7.0752E+04 8.1594E+04 9.3145E+04 1.0538E+05 1.1827E+05	8.5251E+04 8.5251E+04 9.0812E+04 9.3649E+04 9.6522E+04 9.9432E+04 1.0238E+05 1.0536E+05 1.2079E+05 1.3705E+05 1.5410E+05 1.5410E+05 1.9039E+05 2.0956E+05
1.35 1.40 1.45 1.55 1.60 1.65 1.70 1.75 1.80 1.85 1.90 1.95 2.00	7.7079E+04 8.6810E+04 9.7087E+04 1.0790E+05 1.1923E+05 1.3106E+05 1.4338E+05 1.5618E+05 1.6944E+05 1.8314E+05 1.9729E+05 2.1186E+05 2.2683E+05 2.4221E+05	1.3179E+05 1.4593E+05 1.6064E+05 1.7592E+05 2.0808E+05 2.2492E+05 2.4225E+05 2.6003E+05 2.7827E+05 2.9693E+05 3.1601E+05 3.3549E+05 3.5536E+05	2.2935E+05 2.4974E+05 2.7069E+05 2.9219E+05 3.1419E+05 3.3669E+05 3.5965E+05 3.8306E+05 4.0689E+05 4.0689E+05 4.3113E+05 4.5575E+05 5.0611E+05 5.3181E+05

i

÷

1

.

0	0.95	0.90	0.80
a/p0 5555555555555555555555555556666666666	0.95 1.6515E+06 1.6795E+06 1.7360E+06 1.7360E+06 1.7644E+06 1.7929E+06 1.8215E+06 1.8502E+06 1.9079E+06 1.9059E+06 1.9951E+06 2.0244E+06 2.0538E+06 2.0538E+06 2.1128E+06 2.2018E+06 2.2018E+06 2.2218E+06 2.3219E+06 2.3219E+06 2.3219E+06 2.3219E+06 2.3521E+06 2.3824E+06 2.3824E+06 2.3551E+06 2.3824E+06 2.5658E+06 2.5966E+06 2.5966E+06 2.5956E+06 2.6585E+0	0.90 2.0015E+06 2.0329E+06 2.0960E+06 2.1594E+06 2.1594E+06 2.1594E+06 2.2332E+06 2.2553E+06 2.2874E+06 2.3196E+06 2.3519E+06 2.3843E+06 2.4492E+06 2.4492E+06 2.4492E+06 2.5473E+06 2.5473E+06 2.5473E+06 2.6130E+06 2.6130E+06 2.6130E+06 2.6790E+06 2.7454E+06 2.7454E+06 2.7454E+06 2.8153E+06 2.8153E+06 2.8153E+06 2.9459E+06 3.0471E+06 3.0471E+06 3.0471E+06 3.0471E+06 3.0471E+06 3.1488E+06 3.1488E+06 3.1488E+06 3.1149E+06 3.1149E+06 3.2170E+06 3.2511E+06 3.2511E+06	0.80 2.4679E+06 2.5033E+06 2.57342E+06 2.5742E+06 2.6098E+06 2.6455E+06 2.6813E+06 2.6813E+06 2.7171E+06 2.7889E+06 2.8249E+06 2.8971E+06 2.8971E+06 2.9333E+06 2.960E+06 3.00423E+06 3.00423E+06 3.00423E+06 3.00423E+06 3.00423E+06 3.00423E+06 3.1519E+06 3.1519E+06 3.2252E+06 3.2252E+06 3.26288E+06 3.3726E+06 3.3726E+06 3.3726E+06 3.4065E+06 3.4465E+06 3.5579E+06 3.5579E+06 3.5579E+06 3.5579E+06 3.5952E+06 3.6698E+06 3.5952E+06 3.6698E+06 3.6898E+06 3.6898E+06 3.6898E+06 3.8988E+06 3.8988E+06
6.85 6.90 7.00 7.10 7.15 7.20 7.25 7.30	2.7206E+06 2.7518E+06 2.7831E+06 2.8144E+06 2.8457E+06 2.9087E+06 2.9403E+06 2.9719E+06 3.0036E+06	3.1829E+06 3.2170E+06 3.2511E+06 3.2853E+06 3.3196E+06 3.3539E+06 3.3883E+06 3.4227E+06 3.4572E+06 3.4572E+06	3.7821E+06 3.8196E+06 3.8572E+06 3.9324E+06 3.9701E+06 4.0079E+06 4.0457E+06 4.0835E+06
7.35 7.40 7.55 7.55 7.60 7.65 7.75 7.80 7.80 7.90	3.0354E+06 3.0672E+06 3.0991E+06 3.1311E+06 3.1631E+06 3.1952E+06 3.2273E+06 3.2595E+06 3.2917E+06 3.3240E+06 3.3564E+06 3.3888E+06	3.5264E+06 3.5610E+06 3.5957E+06 3.6653E+06 3.7001E+06 3.7351E+06 3.7700E+06 3.8050E+06 3.8401E+06 3.8752E+06 3.9104E+06	4.1593E+06 4.2353E+06 4.2734E+06 4.3115E+06 4.3496E+06 4.3878E+06 4.4260E+06 4.4643E+06 4.5026E+06 4.5026E+06 4.5793E+06
7.95	3.4213E+06 3.4538E+06	3.9456E+06 3.9808E+06	4.6177E+06 4.6561E+06

APPENDIX B. A Procedure for Selecting a Gamma Prior Distribution

It is required to find a and b which satisfies

$$\int_{LL}^{UL} \frac{b^{a}}{\Gamma(a)} x^{a-1} e^{-bx} dx = p_{0}, \qquad (B1)$$

where

$$\int_{0}^{LL} \frac{b^{a}}{\Gamma(a)} x^{a-1} e^{-bx} dx = \int_{UL}^{\infty} \frac{b^{a}}{\Gamma(a)} x^{a-1} e^{-bx} dx = (1-p_{0})/2.$$

Letting y = x/LL in (B1), we have

$$\int_{1}^{UL/LL} \frac{(bLL)^{a}}{\Gamma(a)} y^{a-1} e^{-(bLL)y} dy = p_{0}.$$
 (B2)

Since b is a scale parameter, set bLL=1, and solve (B2) for the shape parameter a. Thus a depends only upon the value of UL/LL, or equivalently, log(UL/LL). Once a has been numerically determined, we can solve (B2) for a temporary value of b, say b_0 , corresponding to a temporary lower limit of, say, $l.0x10^{-6}$ f/h. Since b is a scale parameter, we know that

$$bLL = b_0(1.0 \times 10^{-6})$$

from which

$$b = b_0 (1.0 \times 10^{-6} f/h) / LL.$$

Unclassified					
REPORT DOCUMENTATION PAGE	READ INSTRUCTIONS				
1. REPORT NUMBER 2. GOVT ACCESSION NO.	BEFORE COMPLETING FORM				
LA- 6813-MS					
4. TITLE (and Subillie)	S. TYPE OF REPORT & PERIOD COVERED				
A Bayesian Zero-Failure (BAZE) Reliability	Technical Report				
ponents of Nuclear Reactor Safety Systems	5. PERFORMING ORG. REPORT NUMBER				
	A CONTRACT OR GRANT NUMBERGA				
H.F. Martz, Jr. and R.A. Waller	N00014-75-C-0832				
A DEP CORMING OPEANIZATION NAME AND ADORESS					
Department of Industrial Engineering	AREA & WORK UNIT NUMBERS				
Texas Tech University Lubbock, TX 79409	(NR 042-320)				
11. CONTROLLING OFFICE NAME AND ADDRESS	12. REPORT DATE				
Statistics and Probability Program: Code 436	March 31, 1977				
Arlington, VA 22217	3. NUMBER OF PAGES				
14. MONITORING AGENCY NAME & ADORESS(II dillerent from Controlling Office)	IS. SECURITY CLASS. (of this report)				
	Unclassified				
	IS. DECLASSIFICATION DOWN GRADING SCHEDULE				
Approved for public release; distribution unlimited ^{97.} DISTRIBUTION STATEMENT (of the observed in Block 20, 11 dillerent from Report)					
18. SUPPLEMENTARY NOTES					
19. KEY WOROS (Continue on reverse elde il neceseary and identify by block number)					
Bayesian analysisNuclear ReactorDemonstration TestingSafety AnalysisReliabilityComponent TestingPrior Distribution					
20. ABSTRACT (Continue on reverse olds II necessary and identify by block number) A Bayesian-Zero-Failure (BAZE) reliability demonstration testing procedure is presented. The method is developed for an exponential failure-time model and a gamma prior distribu- tion on the failure-rate. A simple graphical approach using percentiles is used to fit the prior distribution. The pro- cedure is given in an easily applied step-by-step form which does not require the use of a computer for its implementation.					

DD I JAN 73 1473 EDITION OF I NOV 65 IS OBSOLETE

Unclassified SECURITY CLASSIFICATION OF THIS PAGE (When Deve Entered) Unclassified SECURITY CLASSIFICATION OF THIS PAGE(When Dele Enlered) The BAZE approach is used to obtain sample test plans for selected components of nuclear reactor safety systems.

> Unclassified SECURITY CLASSIFICATION OF THIS PAGE (When Dois Entered)