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CURVES FOR PREDICTING STRESSES IN CONTROLLED FUSION PULSED MAGNETIC FIELD SYSTZMS

.

by

D. A. Baker and L. W. Mann

ASS’TRACT

A set of curves is given to aid in the prediction of en elastic system

response to the impulsive megnetic forces commonly encountered in controlled
fusion research. Results for two magnetic field waveforme are given, (1) an
exponentially damped sinusoid , and (2) a sinusoidal rise-to-peak field fol-
lowed by an exponential decay corresponding to the application of a “crowbar”
to sustain the field,

I. INTRODUCTION

The design of the current rings for the Los

Alamos Scientific Laboratory (1.ASL) Quadruple

Injection Experiment motivated this work. These

rings must withstand the large impulsive forces

resulting from the associated pulsed high magnetic

field. Becauae the design of structures to with-

stand these forces is a frequent problem in con-

trolled thermonuclear research (CTR), especially at

LASL, we believed it worthwhile to record the re-

sults of our studies as a set of curves. These

curves aid in the prediction of maximum stresses

arising in pulsed magnetic field systems that are

energized from capacitive energy storage banks.

11. THEORY

A precise calculation of the stresses in sys-

tems encountered in CTR work would involve solving

systems of three-dimensional, elastic wave equa-

tions with appropriate driving terms and boundary

conditions. Although such an ambitious calcula-

tional program may be possible with present elec-

tronic computers, we have restricted ourselves

here to a vastly simplified model.

A. Model

The mechanical system is treated as a mass

(e.g., a coil or transmission line plate) con-

strained by an elastic member (e.g., bolts or

clamps) and driven by a time-dependent force pro-

portional to the square of the magnetic field.

The motion is treated as one-dimensional and the

mass is lumped, i.e., the total mass is assumed to

move as a unit, and motions associated with other

degrees of freedom (buckling, elastic waves, etc.)

are suppressed. We neglect all effects that re-

sult in mechanical damping, because those effects

are usually unknown. This approximation gives a

consenative design since mechanical damping lowers

the stresses actually obtained.* Our model corres-

ponds to a driven, simple harmonic oscillator shown

schematically in Fig. 1.

B. Equation of Motion

From Newton’s laws, the equation of motion for

the system shown in Fig. 1 is

nri2x/dt2 +kx = f(t), (1)

or

d2x/dt2 + U2X = f(t)fm, (la)

where m la the mass being accelerated,

u==, (2)

is the natural frequency of oscillation of the .

*
The experimental work of Sawyer and Zimmerman,l
in which measurements were made of the deflection
of the collector plates of the Los Alsmos Scylla

IA theta pinch, shows that such systems have a
high Q. Consequently, a design based upon the
zero mechanical damping is not greatly overconserv-
ative.
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Fig. 1. Driven simple harmonic oscillator model of

Transforming to the Laplace variable a for the sys-

tem initially at rest [x(O) = ;(0) = O], we obtain

S2 ~(a) + (22X(a) = Y(s),

#

where the bars denote the transformed function.

Solving for ~(a), we have

z(s) =;(s) /(s2 + $22).

the elastic system.
We now inverse transform using

mechanical system, and k

constant defined so that

force is given by

f - -kx
elastic

Tha forcing function

plied to the mass by

is the effective spring

the elastic restoring

(3)

f(t) is the total force ap-

the magnetic field, and the

variable x is the displacement from the equilibrium

position. It is convenient to introduce dimension-

less variablea so that the resulting solutions will

be in dimensionless form, which reduces the num-

ber of graphs required to display the results. We

introduce two normalizing constants whose valuea

will characterize the forcing function for each

case treated later. These constants are a force

fm and a time interval T. We then define the nor-

malized displacement and time as

x = kxlfm, T=tlT. (4)

Substituting into Eq. (l), we obtain

2
fi+$12X = F(T), (5)
dT

where the normalized frequency and forcing function

are given by

Q = (Jr, (6)

and

F(T) = Q2f(TT)/fm . (7)

c. The General Solution

We obtain a general quadrature solution for

Eq. (5) by using the Laplace transform method.2

{}
titlF(s) = F(T),

H sin flT
X-l --J-- =—

a2 + f12
n’

7 }f

T
%- 71(s) Z2(a) = fl(A) f2(T - A)dA

o
(convolution formula),

and obtain the solution for X as

1

T
X(T) = ~ F(x) sin[f_l(T- A)]dA .

0
(8)

This is the expression for ratio of the displace-

ment from equilibrium at any time to that cauaed by

a constant force fm. Wa next evaluate this expres-

sion for two prescribed functions F(T).

D. Damped Sinusoid Magnetic Field

The first magnetic field waveform we shall

treat ia sketched in Fig. 2 and is given by

-TITd
B=Boe sin(2nt/T), (9)

which is a damped oscillatory waveform commonly

(BO
%

B %. ENVELOPE-Q-t’r~
~-+.7 _.._-

------- t

#0~
/

Fig. 2. Field waveform for a damped oscillatory

circuit.

.
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encountered in pulsed

ated total force will

of the field

-2t/Td

f(t) =fme

CTR experiment. The associ-

be proportional to the square

sin2(2nt/T) . (lo)

This expression defines the characteristic quanti-

ties, fm and T, used for normalization in Section

11.B. Here fm is the peak force corresponding to

tileundamped field, and T is the field period.

Substituting Eqs. (7) and (10) into Eq. (8) we have

T -2LT/Td

!
X(T) = fl e sin2(211A) sin[i2(T - ,k)]dl .

0

The

the

integral is readily evaluated by making uee of

identity

ix -ix
sin x = %(e - e )

to replace the trigonometric functions in the inte-

grand. With these substitutions, the integrand is

of the form

6

Integrand = (i./g)~ c, e
‘j+BJ ,

j=l

which can be readily integrated to give our de-

sired result.

x(T) = (iQ/8)~~(eBjT -1) , (11)

j=l

where

Al = A2 = A3 = IQ’r, A4 = A5 = A6 = -iQT,

B1=a+i(4n-i2), B2=a-iQ,

‘3
=a- i(411 + 0), B4=a+i(4m+Q),

a = –271T
d’

and

c1
=C3=1, C2 =-2, C4=C6=-1, C5= 2.

E, Magnetic Field with a Sinusoidal Rise and
Exponential Decay

The second field waveform we shall. treat is one

that is encountered when an oscillatory circuit ia

crowbarred at the time of peak field. The ideal-

ized* magnetic-field waveform is shown in Fig. 3

and i.edescribed by

B(t) = B. sin 2nt/T t c T14 , (12) ..—
w

CROWBAR TIME

B

rfl t

Fig. 3. Idealized waveform for a passive crowbar.

and

The

The

the

‘(t-T/4)/Td

B(t) = B. e t > ~/4 (13)—

corresponding forcing function is

f(t) = fm Sin2(2Tt/T) t < T/4, (14)—

‘z(t-T/h)/Td

=fme t > T/4. (15)—

normalizing constants fm,and T correspond to

peak force on the system and to the total

period associated with the sinusoidal rise of the

field. Substituting Eqs. (7), (14), and (15) into

Eq. (8) yields

X(T) =

.

‘5
=a+ifl, B6=a–i(4n-Q),

with

oJ ‘2
sin (ZmA) sin[O(T - A)]dA

o
T<l/4,

r

—

Q sin2(21rA) sin[i2(T - A)ldA
Jo

[

T -2(k%)T/Td
+fl e sin[Q(T - A)]dA

-2
T>l/4.—

Expanding sin[Q(T - X)] using the trigonometric

identity for sum of angles yields integrals that

are readily evaluated. analytically. When this is

done, the desired formula results.

*
We neglect the damping for the first rise and
the oscillatory modulation of the decaying part
of the waveform that occurs in actual circuits.
These effects can be compensated for to some extent
by a proper choice of the constants B. and Td if
the true waveform is known.

3



{

2
Xl (T) = (%) * ‘=Os A? - =;s *T) + (1 - Cos m)

(41T) - n 1
(16)

for T~l/4 and Sl+ 4v,

X1(T) = %{1 - 2~ sin 4nT - cos 4n’T
}

(17)

for T ~ JLand fl= 4x, and

.

ment), X(T). The latter curves are given to
ahow the rather complex waveforms of the result-
ing mechanical vibrations.

B. Description and Use of the Curvea

In the paat, LASL designed systems to withstand

the atressea corresponding to the peak value of the

magnetic field when treated as constant in time.

Xp(-2TT/Td + T/2Td) + (2/Q)(T/Td) ain ~(T - %) - cos Q(T - k)
X2(T) = (18)

for T ~%. We use the subscripts 1 and 2 to denote

the solution before and after crowbar time.

III . RSSULTS

A. General

For a given mechanical system, the stress in

any supporting members (the spring in our model)

will be proportional to the displacement. Thus,

X(T), which ia the ratio of the displacement X(t)

due to magnetic forces to the displacement x =
m

fro/k that would be caused by a constant force fm,

ia alao the ratio of the corresponding stresses

resulting from these forces. Therefore, once the

function X(T) is known, we need only to calculate

the static stress corresponding to the maximum

force fm and to multiply the result by X(T). If

the system is prestressed (is in a stressed state

while in the equilibrium position), this stress

must be added algebraically to the result to deter-

mine if the total stresses are acceptable (under

the yield stress).

The resulta, as obtained by computer evaluation,

of Eqs. (11), (16), (17), and (18) are displayed

in two forms.

1. A aet of curves to be used in design applica-
tions that show the maximum stress* in units
corresponding to the static force associated
with the maximum value of the undamped field.

.

2. A selected set of curves that show the time
history of the normalized stress (or displace-

.

*
This maximum stress was obtained by a direct search
on the canputer because it hss no simple analytic
formu la. The usual technique of setting the time
derivative to zero would involve solving trans-
cendental equations. In addition, the system is
oscillatory and there are many relative maxima and
minima. The largest relative maximum has to be
sorted out.

For short pulses, this is a conservative procedure

because the ignored inertial effects will reduce

the resulting effectiveness of the force. Aa the

systems at LASL became more demanding, this over-

consenative estimate became too restrictive and a

procedure was adopted to reduce the design stress

from the above static stress estimate by a factor,

which we call the impulse factor, to take advantage

of the inertial forces. The impulse factor normal-

ly used was 0.25 and was based on a single experi-
3

ment conducted by Dike. However, the allowable

impulse factor depends both upon the mechanical

properties of the system and upon the field pulse

duration and shape. Figures 4 and 5 allow predic-

tion of the impulse factor for the two common field

waveforms. Figure 4 gives the impulse factor (the

maximum value of the displacement or stress ratio,

X(T), defined earlier) for a damped sinusoidal mag-

netic field, and Fig. 5 gives the corresponding

factor for the crowbarred case. The impulse factor

is plotted as a function of Tin/T, (the ratio* of the

mechanical period 21T/u to the full period asaocl-

ated with the sinusoidal part of the waveform) with

T/Td as a parameter. The quantity Td is the time

constant (e-folding time) associated with the expo-

nential component of the waveform. l%us, to obtain

an impulse factor for a given situation, one must

first determine the effective mechanical period of

the system

-tm= 27=, (19)

where m is the mass to be set in motion, and k ia

the effective spring constant. The determination

*
This ratio is related to n which appears in Eqs.
(11), (16), and (18), i.e., Tin/T =21dfl.

?

.

.

,
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of [ normally is where most of the labor is in-
ln

volved. The quantities T and Td are determined

once the field waveform to be used is known. Then

the appropriate aet of curves with the dimension-

less ratios Tin/T and T/Td la entered and the im-

pulse factor from the ordinate is read. To calcu-

late absolute stresses, the usual static stress

(calculated to correspond to the peak field force)

is then multiplied by the impulse factor and the

prestress, if any, is added,

The curves of Figs. 4 and 5 show that the im-

pulse factor can range from zero to infinity for

the damped sinusoid case, and from zero to a factor

of two for the crowbarred case. The most stringent

case for the former occurs when the mechanical

frequency is in resonance with the fundamental fre-

quency of the forcing function, i.e., when -c is
m

half the magnetic field period. The lesser peaks

in Figs. 4 and 5 correspond to resonances at other

frequencies in the Fourier spectrum of the forcing

function. The crowbarred waveform can yield stresses

higher than those predicted by the usual static

stress calculation when the total magnetic field

rise time is short and its decay time is long, as

compared with the mechanical period of the system.

The regions below the dotted lines on the curves

show where a formula obtained with the impulse

approximation [where f(t) is approximate~ by a

Dirac delta function F06(t) with FO =
J
~ f(t)dt ]

gives agreement to within 5%. The derivations of

the impulse approximation formulas given in the

captions of Figs, 4 and 5 are given in the appen-

dix. These formulas can be used when the impulse

factors are too small to appear on the graphs.

Figures 6 and 7 show the effect of varying Tin/T

with T/Td fixed at unity. The parameter are

arranged in order of increasing Tin/T. Only enough

stress vs time curves are shown to give a general

idea of the complexity of the mechanical response.

The time history of the stress or displacement for

any given set of parameters can be obtained by

running the computer program.

There is one characteristic of strength of

materials that may aid in reducing the criticality

of a design for pulsed systems: Under pulsed load

conditions, the yield strengtl-,sof most materials

increases appreciably over that measured under

static loading conditions. This bonus is offset to

some extent by the phenomenon of fatigue which can

make a system fail after many pulsed loads have

been applied.

5
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Fig. 5. Impulse factor for a crowbarred magnetic field waveform. Below the dashed line. the imuulse
approximation formula

smaisstatic =+[%+ Td/Tl
m

is within 5.%. Symbols: T = full period associated with the rise of the field, Td = e-folding time of the
waveform after crowbar time and Tm = mechanical period of the system.
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Iv. SAMPLE PROBLEMS

A. Parallel-Plate Transmission Line

The design of a high-current transmisalon line

to withstand large impulsive magnetic field forces

is a problem commonly encountered in controlled

thermonuclear research. As en example of how the

curves may be used, we shall treat the following

problem.

Problem:

An aluminum parallel-plate transmission line

(plate thickness = 4 in,) is uniformly held with

insulated through bolts, one for every 100 sq in.

of plate. The plates are separated by 0.060 in. of

Mylar insulation and the bolts are prestreased and

supported on thick nylon insulating cylinders as

shown in Fig. 8. For the dimensions given in Fig.

8, what is the minimum preload force that must be

NYLON -f”
l#lNSUATION

f

,

K

0.060

!! ~
4“ MYUR

1! ‘
%

!: ~ tiuMIwM PLATE SYW:RY

1.5 INOIA. 13CXT~
Fig. 8. Transmission line section for the first

sample problem.

applied to each bolt so that the plates never leave

the Mylar Insulation when the mgnetic field be-

tween the plates risea sinusoidally to 20 kG in

2 psec, and decays exponentially in 1 msec (crow-

barred waveform)? By what amount is the force of

tension in each bolt increased by the field pulse

under the above conditions?

Solution:

1. Preliminary Assumptions. We assume that the

magnetic field is uniform and we neglect the field

fringing effects, We further treat the motion of

the plates as a whole and ignore any plate flexing

between the bolts. We consider the system on a

section-per-bolt baais because mass, force, and

spring constants are additive quantities for a

parallel system. The mechanical pgriod and the

deflection ia the same whether it is treated on a

section-per-bolt or on a total-plate basis.

2. Model. The first step is to set up an equiva-

lent spring mass system (Fig. 9). The symmetry

axis in the Mylar is motionless, therefore we can

treat each half of the I.lne as a separate identical

system. We treat the plate as the total lumped

mass and ignore its compressibility. The bolt,

nylon, and Mylar are treated as a compound spring

system with spring constants k
B’ %’ and %“

f ‘2

r+‘N
-COMPRESSION

‘B M
f(t) txl

TENSIOhF ,COMPRESSION

kM
1 I

////////////

Fig. 9. Equivalent spring system. x, and X2 are

the displacements of the plate and bolt head from
the equilibrium positions.

3. Reduction to an Equivalent System. We first

reduce the compound system to the simple system of

Fig. 1 for which the theory applies. Systems of

springa In parallel, or in series, are equivalent

to a single spring system with an effective spring

constant, k
eff”

In such casea, the effective

spring constant of the system can be obtained by

treating the individual spring constanta like con-

ductance, i.e., for springs in series

J_
k

.++~+...++,
eff 12 n

(20)

and for springs in parallel

k =k1+k2+... +k
eff n“

(21)

In a given compound spring system, if how to

proceed is doubtful, the equations of motion for

the model system can be written and then, by sub-

stitution, all of the displacement variables can

be eliminated except for the lumped maas. From

the resulting equation, the effective spring con-

stant will be evident. We now apply this procedure

to the system of Fig. 9. From Newton’s laws,

.

.

,

12



*

2
mdxtdt

1
2=-~1-kN(xl -x2) +f(t) , (22)

and

kBx2 = kN(xl - X2) .

Solving Eq. (23) for x2 gives

kN
.—

‘2 kN+kBxl”

(23)

(24)

We substitute Eq. (24) into Eq. (22) and obtain I

[ -lx~f(’) ’25)
md2x,/dt2 + ~ +

Comparing Eq. (25) with Eq. (l), we see that the

effective spring constant for the system is

k
eff=%+-’ (26)

showing that the elastic system consists of a

series connection of the bolt and nylon acting in

parallel with the Mylar.

4. Computation of the Effective Spring Constant.

The spring constant for a cylinder of material (not

necessarily circular) with Young’s modulus E, cross-

sectional area A, and length ~ is given by

We shall use values of E of 29 x 106, 35 x 104, and

5 x 105 psi for the steel bolt, nylon, and Mylar,

respectively, Taking dimensions from Fig. 8, we

obtain

2.9 X 107)
2

%=( ll(o.75) =
8

<= (3”5 X105 2
lr(3 - 12)

4

6.41 x 106 lb/in.

. 2.20 x 106 lb/in.

%“( 5 x 105) (loo)
(0.030)

= 1.67 x 109 lb/in.

k = 1.67 X 109 +
(6.41 X 106)( 2.20 x 106)

eff
6.41 X 106 + 2.20 X 106

= 1.67 X 109 + 1.65 X 106 lb/in.

= 1.67 x 109 lb/in.

Here we see the dominance of the Mylar spring con-

stant due to its large area and small thickness.

5. Calculation of the Mass Set in Motion. We

shall neglect the masa of the bolt and the nylon as

compared to the plate. For a density p of aluminum
3

of 0.0975 lb/in. we obtain

m = (p/g) x Volume

= (0.0975 lb/in.3)( 4 in. x 100 in.2)

(386 in./sec2)

= 0.101 lb-se c2/in.

6. Calculation of the Mechanical Period.

Tm = 211J~

.
/2710.101 lb-sec2/in. 1.67 x 109 lb/in.

= 48.9 Usec .

7. Calculation of the Impulse Factor. A rise time

of 2 Usec corresponds to T = 8 psec. From the prob-

lem Statement, Td = lMSec. We compute the requir-

ed dimensionless quantities

Tin/T = 48.9/8 = 6.11

T/Td = 8/1000 = 8 X 10-3 .

Entering Fig. 5 with these parameters, we obtain an

impulse factor of Xmx = 1.95.

8. Calculation of Static Force in the Bolt Corres-

ponding to the Peak Magnetic Field. To convert the

magnetic field to pressure, we use the fact that

pressure = B2 and that 5 kG corresponds to one

atmosphere of pressure on a conductor carrying a

surface current. The force on 100 cm2 of the plate

corresponding to 20 kG is

fm = (20/5)2 x 14.7 psi x 100 in.
2

= 23,520 lb.

9. Calculation of Required Preloading. If the

plate is not to leave the Mylar,* the resulting

*
If the plate leaves the Mylar, the spring constant
would change abruptly to the value corresponding
to the bolt and the nylon in series. Since the

curves were generated assuming spring constants
that do not vary with time, they would no longer
apply. An attempt is made to design such systemss
so that the insulation between the plates is never
totally decompressed. This has two desirable fea-

tures, (1) the plates do not slap and damage the
insulation, and (2) the bolts do not cycle through
a large stress range thus reducing fatigue.

13



displacement of the plate under the pulsed load

must not be more than that caused by the initial

preloading of the bolt. Letting f(t) = fm and set-

ting d2xl/dt2 = O in Eq. (25), we firet solve for

Xlm the deflection of the plate due to a static

force f
m“

‘lm
= fm/keff = 23,520/(1.67 X 109)

= 1.41 x 10-5 in.

The maximum displacement of the plate for the

pulsed field ia therefore

‘1 msx - ‘max ‘lm
= (1.95)(1.41 x 10-5)

-5
= 2.75 X 10 in.

Equating this to the deflection of the plate, due

to preloading the bolt x =f
preload preloa $%

, we

can solve for the minimum preload required.

f
preload

= (1.67 X 109)(2.75 X 10-5)

= 45,900 lb/bolt .

We see that, since the impulse factor was obtained

near the maximum of the curves of Fig. 5, its

value can be reduced if the mass of the plate is

either reduced or increased by an appropriate

amount.

10. Calculation of Peak Bolt Loading. We can cal-

culate the maximum increase in the bolt loading

due to the magnetic forces by using Eq. (24)

()kNkBf =kBx2mx=—
peak kN + kB ‘1 lUIX

l%us the

over its

- (1.64 X 106)(2.75 X 10-5)

= 45.1 lb/bolt .

bolt experiences a negligible increase

static preload as asserted in item 9.

B. Quadruple Current Rings

An application of the curves arose in the de- 1

sign of the LASL pulsed quadruple injection experi- ~

men t. We further demonstrate the use of the curves I

by predicting the peak atrseses due to a symmetric

mode deformation in the current-carrying ring con-

14

ductors under crowbarred and noncrowbarred

conditions.

1. Derivation of the Natural Period of Radial

Oscillations of a Thin Ring. We consider a differ-

ential element of a

radial dimension is

radius) as shown in

thin ring (the

small compared

Fig. 10.

cross-section

to the major

Fig. 10. Schematic and free body diagram for the

thin ring of the second sample problem.

A radial displacement.of the ring with cross-

sectional area, A, by an amount Ar gives rise to

tangential stresses, S, as follows

S = E Strain = E(~/~) = E(Ar/r), (28)

where E is Young’s modulus. From the free-body

diagram of Fig 8, the resulting radial restoring

force, F, is given by

F = 2F1 sin(f3/2) =

s SA13 (for small

2SA sin(8/2)

e) .

Inserting the expression for S,

F = (EA13/r)Ar ; kAr,

so that the spring constant is seen to be

k = EAO/r .

The mass of the element is

m = kie127,

(29)

where M is the total mass of the ring. The natural

period for radial oscillations of the ring is

therefore

Tm=_”~-~2rWr/gEA , (30)

.

,,

,



,

?

where

~.
~=
~=

A=
E=

total weight of the ring,
mean major radius,
acceleration of gravity,
ring cross-sectional area, and
Young’s medulus,

Equation (20) may also be written in

lent form

T =2nr~= circumference
m sound speed “

where p is the mass density, so that

transit time of a compressional wave

the ring.

a more conven-

(31)

Tm is the

once around

2. Numerical Results for the LASL Quadruple

Design.

a. Calculation of the Mechanical Period. The

parameters for the two concentric aluminum coils

used in the LASL Quadruple design are as follows

Inner Coil Outer Coil
Radius r 18.6 in. 32.1 in.
Thickness t 2.875 in. 2.875 in.

Using 2.0 x 105 “m./sec as the speed of sound in

aluminum, we deduce from Eq. (31) that

T = 2TT(18.6)/(2.O x 105)= 584 Usec for the inner
m
coil and Tm = 1.01 msec for the outer coil.

b. Calculation of the Electrical Period. From

previous computer field calculations, the total

current (parallel feed) is 1.0 MA when the field

energy $ILIL is 0.81 MJ. Solving for the total in-

put inductance, we obtain L = 1.6vH. Using C =

0.02F (1-MJ, 10-kV capacitor bank), the electrical

period is T = 2n~ = 1.1 msec. Hence, Tin/T 2 0.53

and 0.91 for the inner and outer coils,

respectively.

c. Calculation of Impulse Factors. The TmlT

values show that for the oscillatory case the coils

are operating in the resonance region of th- r.urves

of Fig. 4. Even if the damping allows the current

to oscillate about 2 cycles (T/’Td = 0.5), the

impulse factor for the rings obtained from Fig. 4

are 2.56 and 1.1. The fortuitous and unfortunate

nearness of the inner coil to mechanical resonance

is dangerous because small shifts in the parameters

I

can give even larger peak stresses. If the current

is crowbarred at peak field with the estimated

damping time of’”5 msec, the curves of Fig. 5 apply.

Using Td/T = 5 in Fig. 5, impulse factors of 1.54

and 1.2 are obtained. These results show the dan-

ger in designing pulsed systems based on static

stresses corresponding to peak field.

d. Static Stress Calculation. The static

stresses, S
m
, corresponding to field pressures, p,

of 40 kG and 25 kG for the inner and outer coils,

respectively, can be obtained from the formula

Sm = prlt,

Inner coil

Sm= (40/5)2(14.7)(18.6)/(2.875) = 6100 pSi

Outer coil

Sm= (25/5)2(14.7)(32.1)/2.875 = 4100 pSi.

e. Pulsed Stresses. When the static stresses

are multiplied by the impulse factors just computed

we find that the most critical element is the inner

coil at a peak stress under noncrowbarred condi-

tions of 6100 x 2.56 = 15,600 psi, which is under

the 35,000 psi yield strength of the aluminum to be

used. For the two-turn coil actually used, the

minimum cross section becomes smaller and the

design is more marginal.
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APPENDIX: IMPULSE APPROXIMATION

A. Force Due to a Damped Sinusoidal Field

We first compute the total impulse

J
.

I= f(t)dt, (Al)

where f(tf la given by Eq. (10). The total impulse

is then given by

J
. -2tlTd

I=fm e
sin2 2n

~tdt,
n
u

Hfm Td 21Td

‘2T- 167T2 “
-$+—

‘d
T2

Simplifying, we have

(A2)

(A’)

The velocity just after the impulse is now computed

by setting the change of momentum Ap equal to the

impulse

Ap-mv -1, (A4)

where

m = mass of spring,
v = velocity of the spring just after the

impulse;

hence,

IV=—.
m (As)

We use conservation of energy to set the potential

energy of the spring at the time of maximum dis-

placement equal to the initial kinetic energy,

or

where k is the spring constant. Thus, using Eq.

(A5) ,

x
max

=vA7iz=:=I/lmd, (A6)

where w z ~. The static displacement, due to a

force fm, ia

x = fmlk .static (A7)

x [1
4T2 ~2

x
max ‘d d

‘—=—T2+4=2T2 ‘“Max x 4 (A8)
static

d

Since Tm E ~, the impulse factor may be written in

the following dimensionless form.

x [1r’
ma% = (T/Td~(Tm/T) ~T,T f+4T2 (A9)

d

B. Force Due to a Crowbarred Field Waveform

Using Eq. (Al.)and Eqs. (12) and (13) for this

caae, we have

[JT14I=fm
Sinz 211

~tdt+
f 1e‘Z(t- 7/4) ~t

o
#

-r14 ‘d

or
f

()
‘z+Td ,

‘=T4

Proceeding in a similar fashion as before, we get

the impulse factor

x
x Max [1=—~:+T .—Max x

static ‘m d [1~TjT)++> .

.

f
Combining Eqs. (A6), (A7), and (A3) we obtain the

impulse factor
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