A 4172

CIC-14 REPORT COLLECTION REPRODUCTION COPY

LOS ALAMOS SCIENTIFIC LABORATORY

University of California

Flow and Thermal Characteristics of Hydrogen Near Its Critical Point in a Heated Cylindrical Tube

UNITED STATES ATOMIC ENERGY COMMISSION CONTRACT W-7405-ENG 36

EGALNOTIC

This report was prepared as an account of Government spoalorad, work. Netthe States, nor the Commission, nor thy person acting on behalf of the Commission: . A Makes any warranty of topresentation, expressed of implied, with respect racy, completeness, or usefulness of the information confained in this report, of of any information, apparatus, method, or process disclosed in this report may private the set of the s privately owned rights; of privately owned rights; of B. Assumes any liabilities with respect to the use of, of for hase of any information, apparatus, method, or process disclosed 4s used in the above, "person acting on behalf of the Com ployee or contractor of the Commission, or employee of such o such employee of contractor of the Commission, or employee of asumes any liabilities with re disseminates, or provides access to, any information pursuant to with the Commission, or his employment with such contractor.

a.....

This report expresses the opinions of the author or authors and does not necessarily reflect the opinions or views of the Los Alamos Scientific Laboratory.

Printed in the United States of America. Available from Clearinghouse for Federal Scientific and Technical Information National Bureau of Standards, U.S. Department of Commerce Springfield, Virginia 22151 Price: Printed Copy \$3.00; Microfiche \$0.65

Written: May 1969 Distributed: June 13, 1969 LA-4172 UC-34, PHYSICS TID-4500

LOS ALAMOS SCIENTIFIC LABORATORY of the University of California

Flow and Thermal Characteristics of Hydrogen Near Its Critical Point in a Heated Cylindrical Tube*

by

Mahlon T. Wilson

*This report is derived from a dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Engineering from the Graduate School of the University of New Mexico.

ACKNOWLEDGEMENTS

The author wishes to acknowledge the assistance of his dissertation committee: Professors Victor J. Skoglund, Chairman, M. W. Wildin, and G. A. Whan of the University of New Mexico; and Dr. J. D. Rogers of the Los Alamos Scientific Laboratory. Professor Skoglund guided the investigation and critically reviewed the dissertation, and his insight was helpful in the development of the correlations. The test facility was designed by Dr. Rogers and he provided direction throughout the experimental investigation. Personnel and facilities were made available by Groups CMF-9, CMB-14, and MP-6 of the Los Alamos Scientific Laboratory. The author is grateful to Dr. R. D. Baker and Mr. J. W. Schulte whose support resulted in a doctorial fellowship from the Los Alamos Scientific Laboratory.

ii

ABSTRACT

FLOW AND THERMAL CHARACTERISTICS OF HYDROGEN NEAR ITS CRITICAL POINT IN A HEATED CYLINDRICAL TUBE

> Mahlon Tayloe Wilson, Ph.D. Department of Mechanical Engineering The University of New Mexico, 1969

The purpose of this investigation was to determine the flow conditions and mechanism of hydrogen near its critical point in a heated cylindrical tube. The experimental apparatus consisted of a 1.376 inch inside diameter, 180 inch long, electrically heated vertical tube. Thermocouples and potential taps were located along the tube. An instrumented probe traversed the tube near the exit end. The probe carried a pitot tube, a thermopile, and a hot wire anemometer sensor. Dynamic pressure, temperature, and hot wire anemometer bridge average and RMS voltages were measured as a function of test section radius. The data was represented by empirical equations. A special boiling number was found to be effective in correlating temperature differences for pressures greater than the critical pressure. Correlations were also obtained as a

iii

function of reduced pseudocritical temperatures. With pseudocritical temperatures slightly less than one, dynamic pressure, temperature, and average hot wire current were more nearly constant with respect to radius than at other temperatures. "M" shaped velocity profiles were observed at pseudocritical temperatures above one. The experimental tests produced conditions at the probe in which the reduced temperature ranged from 0.66 to 1.22, the reduced pressure varied from 1.003 to 1.351, and the Reynolds number was from 4.0×10^5 to 3.2×10^6 .

TABLE OF CONTENTS

1.	Introduction			
	1.1	Motivation	1	
	1.2	Purpose	1	
	1.3	Scope of Investigation	2	
2.	Revi	Review		
	2.1	Introduction	3	
	2.2	Hydrogen Properties	3	
	2.3	Flow and Heat Transfer	3	
	2.4	Instrumentation	5	
3.	Theo	ory		
	3.1	Introduction	6	
	3.2	Principal Equations	6	
	3.3	Hydrogen Properties	9	
	3.4	Similitude		
		3.4.1 The System	17	
		3.4.2 Problem	18	
		3.4.3 Principles	19	
		3.4.4 Analysis	19	
	3.5	Precision of Empirical Equations	23	
4.	Appa	aratus		
	4.1	Introduction	25	

	4.2	Hydrogen Supply System	25
	4.3	Power Supply	31
	4.4	Test Section and Instrumentation	32
	4.5	Movable Probe	38
	4.6	Recorders	44
5.	Proc	edure	
	5.1	Introduction	45
	5.2	Test Preparations	45
	5.3	Testing	46
6.	Data	Interpretation	
	6.1	Introduction	49
	6.2	Recorder	49
	6.3	Electrical Current and Voltage	50
	6.4	Probe Position	51
	6.5	Pressures	52
	6.6	Temperatures	54
	6.7	Flow Rate	58
	6.8	Hot Wire Anemometer	59
7.	Data	Reduction	
	7.1	Introduction	61
	7.2	Data Acceptance	61
	7.3	Probe Data Collation	62

.

.

.

	7.4	Power Input and Wall Temperatures	63
	7.5	Bulk Fluid Conditions	65
8.	Data	Summary	
	8.1	Introduction	6 6
	8.2	System Conditions	6 6
	8.3	Empirical Equations	6 6
9.	Resu	lts	
	9.1	Introduction	83
	9.2	Calculation of Results	83
	9.3	Summary of Results	85
	9.4	Discussion of Results	88
10.	Con	clusions	109
App	endix	A. Symbols	110
Арр	endix	B. Instrumentation Calibration Factors	115
Арр	endix	C. Data Summaries	120
Ref	erenc	es	142

.

LIST OF FIGURES

<u>Fiqure</u>	Title	Page
1	Thermal Conductivity of Parahydrogen	11
2	Specific Heat of Parahydrogen	1 2
3	Density of Parahydrogen	13
4	Viscosity of Parahydrogen	14
5	Extrapolation Procedure for Quasi- Saturation Values	16
6	Specification of the System	7.7
7	Flow System	26
8	Apparatus	27
9	Inlet Plenum	30
10	Test Section Instrumentation Location	34
11	Test Section Instrumentation Detail	3 5
12	Upper Housing	37
13	Probe Drive and Pressure Control Valve	39
14	Probe Assembly	40
15	Probe Tip	42
16	Temperatures Along the Test Section	64
17	Temperature Profile	6 9
18	Dynamic Pressure Profile	7 0
19	Velocity Profile	7].

Figure	Title	Page
20	ρ v Profile	72
21	Hot Wire Bridge Voltage Profile	73
22	Hot Wire RMS Profile	74
23	Temperature Number NTl versu s Boiling Number N Sk	98
24	Temperature Number NT2B versus Boiling Number N Sk	99
25	Temperature Number NT2W versus Boiling Number N Sk	100
26	Temperature Number NT3B versus Boiling Number N Sk	101
27	Temperature Number NT3W versus Boiling Number N Sk	102
28	Dynamic Pressure Parameter PP2 versus Boiling Number N _{Sk}	103
29	Dynamic Pressure Parameter PP2 versus Reduced Pseudocritical Temperature	104
30	Velocity Parameter VV3 versus Reduced Pseudocritical Temperature	105
31	Hot Wire Bridge Voltage Parameter WW2 versus Reduced Pseudocritical Temperature	106
32	Hot Wire RMS Parameter RR2 versus Reduced Pseudocritical Temperature	107
33	Test Section Inside Wall Temperature versus Reduced Pseudocritical Temperature	108

¥

Т

ix

LIST OF TABLES

<u>Table</u>	Title	Page
1	System Conditions, Part 1	75
2	System Conditions, Part 2	79
3	Range of Test Conditions	88
4	Results	95
5	Calculated Inside Wall Temperatures	121
6	Parameters of Empirical Equation of Temperature	124
7	Parameters of Empirical Equation of Dynamic Pressure	127
8	Parameters of Empirical Equation of Velocity	130
9	Parameters of Empirical Equation of ρv	133
10	Parameters of Empirical Equation of Hot Wire Bridge Voltage	136
11	Parameters of Empirical Equation of Hot Wire RMS	139

x

.

1. INTRODUCTION

1.1 Motivation

Cryogenic fluids are widely used in manufacturing, environmental conditioning, and as propellants for chemical and nuclear propulsion systems. Customary uses of cryogens often bring them near their critical states. The properties of any fluid in the vicinity of the critical state vary appreciably and for this reason it has been difficult to correlate forced convection heat transfer data. There was a need for experimental investigation of the details of the flow to improve correlations. Hydrogen was chosen as the test fluid since it was important as a propellant and cryogenic experimental facilities were available. The near critical properties of hydrogen were better known than those for any other fluid and computer codes were available to represent them. Hydrogen also has an experimentally convenient critical point.

<u>1.2 Purpose</u>

The purpose of this investigation was to determine temperature and flow characteristics of parahydrogen near its critical point during forced convection heating in a vertical cylindrical tube.

1.3 Scope of Investigation

The test section was a vertical 1.376 inch inside diameter tube that was 180 inches long with a movable instrumented probe for measuring temperature, dynamic pressure, and hot wire voltages as a function of radius near the exit of the tube. This data was represented by empirical equations. Parameters of the empirical equations were correlated as a function of a reduced pseudocritical temperature and a special boiling number. The data of one hundred forty two runs was analyzed. The runs represent conditions at the probe in which the reduced temperatures ranged from 0.66 to 1.22, reduced pressures varied from 1.003 to 1.351, and the Reynolds numbers varied from 4.0 x 10^5 to 3.2 x 10^6 .

2. REVIEW

2.1 Introduction

The references that were useful in this investigation are reviewed in the following sections. Details of the references are reproduced in later sections when needed.

2.2 Hydrogen Properties

Hydrogen properties were obtained from references [3, 1969], [4, 1965], [6,1966], [12, 1961], [14, 1959], and [20, 1962].* The quasi-two phase properties of hydrogen were obtained from reference [19, 1966].

2.3 Flow and Heat Transfer

The theory and use of similitude was guided by references [16, 1969] and [17, 1967]. The theory of fluid mechanics utilized reference [15, 1963]. No references were found with successful correlations of flow or heat transfer data near the critical point. A large amount of data on hydrogen heat transfer was compiled to support the development of rocket engines [6, 1966].

^{*} Numbers in brackets [] are reference numbers and dates.

Axial wall temperature maximums were reported and were attributed to an effect of the bulk fluid temperature reaching a pseudocritical value [6, 1966] [21, 1963].

Velocity and temperature distributions for air flowing within heated tubes were available. One of the most accurate investigations employed a constant current hot wire anemometer for both velocity and temperature measurements [18, 1958]. The temperature of the tube wall was uniform at 15 to 20°R above the entering air temperature. The physical properties of air were assumed constant. Thermocouple and pitot tube traverses of mercury flowing through a heated tube were made by Brown [1, 1957]. The only near critical heat transfer investigation, that included radial velocity and temperature profiles, utilized carbon dioxide [21, 1963]. A pitot-static probe was used to measure dynamic pressure. The apparatus was then disassembled, and the pitot-static probe was replaced by a thermocouple probe. Flat temperature profiles and "M" shaped velocity profiles were observed. No attempt was made to represent the profiles by empirical equations or to correlate their shapes with test conditions.

2.4 Instrumentation

The interpretation of temperature sensors was aided by the following references [2, 1960], [9, 1960], [10, 1961], and [11, 1962]. In the design of the tubing to the pressure sensors, information from reference [7, 1950] was used in calculating response times. The use of water in calibrating the turbine flowmeter was justified in reference [5, 1959]. Information from reference [8, 1942] was used in the analysis of the heat leaks into the test section. The contraction coefficient of an abrupt change in flow cross section was obtained from reference [13, 1950].

3. THEORY

3.1 Introduction

The purpose of this chapter is to present the principal equations, the near critical properties of hydrogen, and to derive reference similarity numbers for correlating data.

3.2 Principal Equations

The principal equations are those of continuity, motion, energy, and state [15, 1963]. They are:

$$\rho_{,t} + (\rho v_{i})_{,i} = 0$$
 (1)

$$\rho \frac{D\mathbf{v}_{j}}{D\mathbf{t}} = \mathbf{b}_{j} - \mathbf{p}_{,j} + \left[\left(\eta - \frac{2}{3} \mu \right) \mathbf{v}_{j,j} \right] \mathbf{i} + \left[\mu \left(\mathbf{v}_{j,i} + \mathbf{v}_{i,j} \right) \right] \mathbf{j}$$
(2)

$$\rho \left(\frac{Dh}{Dt} + v\frac{Dv}{Dt}\right) = p_{,t} - q_{i,i} + b_{i}v_{i}$$

$$+ \left(\eta - \frac{2}{3}\mu\right)v_{i,i}v_{j,j}$$

$$+ \mu \left(v_{j,i} + v_{i,j}\right)v_{j,i}$$

$$+ v_{i}\left[\left(\eta - \frac{2}{3}\mu\right)v_{j,j}\right], i$$

$$+ v_{j}\left[\mu \left(v_{j,i} + v_{i,j}\right)\right], i \qquad (3)$$

$$u_{i} = f_{i}(p,T)$$
(4)

where:

b = specific body force per unit volume h = specific enthalpy per unit mass p = pressure q_i = heat flux per unit time and area a_i t = time T = temperature u_i = h, c_p, k, µ, ρ v_i = velocity component in the x_i direction x_i = cartesian coordinate η = bulk viscosity µ = shearing viscosity ρ = density (), j = derivative with respect to x_j

(), $_{t}$ = derivative with respect to time

In converting equations (1) through (4) to a nondimensional form, the symbols of the new dimensionless variables without a subscript "o" are the same as those of the corresponding variable. Neglecting body forces and bulk viscosity, the nondimensional equations of continuity, motion, energy, and state are:

$$\rho_{t} + (\rho v_{i})_{i} = 0$$

$$\rho_{t} \frac{D}{Dt} = -N_{po} p_{i} + \frac{1}{N_{Ro}} \left\{ \frac{2}{3} (\mu v_{j,j})_{i} \right\}$$
(5)

+
$$\mu (v_{j,i} + v_{i,j}), j$$
 (6)

.

$$N_{ho}^{\rho} \frac{D_{h}}{Dt} + \rho v \frac{D_{v}}{Dt} = N_{po}^{\rho} p, t - N_{qo}^{q} q_{i,i}$$

$$+ \frac{1}{N_{Ro}} \left\{ -\frac{2}{3} \left[\mu v_{i,i} v_{j,j} + v_{i}^{\rho} (\mu v_{j,j}), i \right] \right\}$$

$$+ \mu (v_{j,i} + v_{i,j}) v_{j,i}$$

$$+ v_{j} \left[\mu (v_{j,i} + v_{i,j}) \right] , i \right\}$$
(7)

$$u_{i} = f_{i} (p,T)$$
(8)

where:

$$N_{po} = \frac{P_o}{\rho_o v_o^2}$$
(9)

$$N_{RO} = \frac{0000}{\mu_{O}}$$
(10)

 $N_{ho} = \frac{h_o}{v_o^2}$ (11)

$$N_{qp} = \frac{q_0}{\rho_0 V_0}$$
(12)

No's are reference similarity numbers in terms of dimensional reference variables. An analytical solution of these equations was not attempted, however, they were useful as a guide in planning the investigation and interpreting the data.

3.3 Hydrogen Properties

The diatomic hydrogen molecule H_2 has allotropic ortho and para forms. The ortho form has nuclear spins in the same direction. The para form has nuclear spins in the opposite direction. In certain temperature ranges there is a large difference between the specific heats and thermal conductivities of the ortho and para forms. At room temperature, equilibrium hydrogen consists of 75 percent ortho and 25 percent para. At 36° R, equilibrium hydrogen consists of 0.21 percent ortho and 99.79 percent para [14,1959].

The hydrogen used in the tests was parahydrogen. The room temperature cover gas did not mix with the parahydrogen in the dewar as evidenced by a constant hydrogen temperature entering the test section.

Two similar Fortran IV codes exist for the numerical determination of eight properties of parahydrogen [4, 1965]. Properties from these codes are presented in

Figures 1 through 4. The TABTP code has temperature and pressure as inputs and covers the temperature range from 36 to 5000 degrees Rankine. The TABHP code has enthalpy and pressure as inputs and covers the enthalpy range from -115 to 20,000 Btu/pound. The maximum deviation of properties of the code from the source data is usually less than one percent. However, in the critical region, the deviations are as high as 2.5 percent in temperature, 2.1 percent in enthalpy, 3.0 percent in density, 1.2 percent in viscosity, and 3.7 percent in thermal conductivity. The deviations in specific heat are less than 6.5 percent except that values in the vicinity of the peak are only approximate representations of the source data. Recently reported thermal conductivities have a sharp peak within one degree of the critical point that is not represented by the codes [3, 1969].

Reduced pressure is defined as the system pressure divided by the pressure of the critical point which is 187.7 psia. Two bases were used for nondimensionalizing temperatures. Reduced temperature is the bulk temperature divided by the temperature of the critical point which is 59.37° R. Reduced pseudocritical temperature is the bulk temperature divided by the pseudocritical temperature.

.

Figure 2. Specific Heat of Parahydrogen

Temperature, °R

Figure 3. Density of Parahydrogen

Figure 4. Viscosity of Parahydrogen

The pseudocritical temperature is defined as that temperature at which the specific heat is a maximum with respect to temperature at a constant pressure. The pseudocritical temperature as a function of pressure is a continuation of the saturated vapor line.

Thurston defined quasi-two phase properties of hydrogen to extend the concept of boiling into the supercritical pressure region [19, 1966]. He observed the shape of enthalpy versus temperature at constant pressures and approximated them with a quasi-vaporization process. The quasi-vaporization temperature equaled the pseudocritical temperature. The quasi-saturated liquid and vapor values were obtained by extrapolating parts of the enthalpytemperature curves that were outside of the influence of the critical point. The quasi-saturated liquid phase was called the dense phase. The guasi-saturated vapor phase was called the light phase. The difference in enthalpies of the dense and light phases was equivalent to the enthalpy of vaporization. The extrapolation procedure and the phases are indicated in Figure 5. The following equations were derived from the curves presented by Thurston. The pseudocritical temperatures for pressures below 250 psia were

Figure 5. Extrapolation Technique for Quasi-Saturation Values

$$T_{pc} = 52.1 - 0.000273(p-100)^{1.9} + 0.0998(p-100)$$
(13)

where p = pressure in psia.

The dense phase enthalpy was

$$h_{\rm D} = -22.5 + 0.275(p-200)$$
 (14)

The equivalent enthalpy of vaporization was

$$h_{\rm L} - h_{\rm D} = 102.0 - 0.425 (p-200)$$
 (15)

where h = enthalpy in Btu/pound.

3.4 Similitude

3.4.1 System Specifications. The system is illustrated in Figure 6.

Figure 6. Specification of the System

The specified variables of the system and their dimensions are:

$$p_{1} = inlet pressure, ML^{-1}T^{-2}$$

$$T_{1} = inlet bulk temperature, 0$$

$$v_{1}(r) = inlet velocity as a function of radius, LT^{-1}$$

$$\rho_{1} = inlet density, ML^{-3}$$

$$k_{1} = inlet thermal conductivity, MLT^{-3}0^{-1}$$

$$c_{p1} = inlet specific heat, L^{2}T^{-2}0^{-1}$$

$$\mu_{1} = inlet viscosity, ML^{-1}T^{-1}$$

$$R = inside radius of the test section, L$$

$$q = heat rate per unit area, MT^{-3}$$

$$m = mass flow rate, MT^{-1}$$

$$u_{i} = f(p,T) equation of state of hydrogen$$

$$T_{c} = critical temperature, 0$$

$$a_{c} = \pi R^{2} cross section area of test section, L^{2}$$

$$h_{L},h_{D} = light and dense phase enthalpies per unit mass, L^{2}T^{-2}$$

3.4.2 Problem. The problem was to determine functions for the following dependent variables:

 $T_2 = exit bulb fluid temperature, \theta$ $\Delta p(r) = dynamic pressure as a function of radius at the test section exit, ML⁻¹T⁻²$ $<math>h_2$ - $h_1 = enthalpy increase from inlet to outlet, L²T⁻²$

 $\theta(\mathbf{r}) = \text{temperature difference as a function of radius}$ at the test section exit, θ

3.4.3 Principles. From [17, 1967], the principles of similarity are

$$N_{om} = N_{op}$$
(16)

$$n_{u}(x_{i},\tau)_{m} = n_{u}(x_{i},\tau)_{p}$$
 (17)

where:

- N_0 = reference similarity number u = dimensional variable n = nondimensional variable χ_i = nondimensional coordinate τ = nondimensional time
- $n_{u}(x_{i},\tau)_{m} = n_{u}(x_{i},\tau)_{p} \text{ includes geometrical requirements}$ $()_{m} = \text{model}$ $()_{p} = \text{prototype}$

3.4.4 Analysis. Reference dimensional variables are identified by a subscript "o". From sections 3.4.1 and 3.4.2, they are:

$$x_{o} = R, \quad \rho_{o} = \rho_{1}, \quad p_{o} = p_{1}, \quad T_{o} = T_{c}, \quad k_{o} = k_{1}$$
$$c_{po} = c_{p1}, \quad \mu_{o} = \mu_{1}, \quad q_{o} = q, \quad m_{o} = m$$
$$v_{o} = m_{o}/\rho_{o}a_{c}, \quad h_{o} = h_{L} - h_{D}$$

 $\theta_{o} = a$ temperature difference

From sections 3.4.1 and 3.4.2, by dimensional analysis,

reference similarity numbers of the system are:

1<u>.</u> m

$$N_{po} = \frac{P_o}{\rho_o v_o}^2 = \text{pressure number}$$
(18)

$$N_{RO} = \frac{\rho_{O} V_{O} X_{O}}{\mu_{O}} = Reynolds number$$
(19)

$$N_{B_0} = \frac{q_0^a g}{m_0^h} = \text{boiling number}$$
(20)

$$N_{Pro} = \frac{{}^{\mu} {}_{O} {}^{C} po}{k_{O}} = Prandtl number$$
(21)

$$N_{TO} = \frac{\Lambda_0 I_0}{q_0 X_0} = temperature number$$
(22)

$$N_{\theta O} = \frac{\frac{k_0}{O_1}}{q_0 x_0} = \text{temperature difference number (23)}$$

where $a_s = 2\pi RL$. Similarity numbers (18), (19), and (20) were involved in equations (6) and (7) of Section 3.2. Similarity numbers (20), (21), (22), and (23) resulted from boundary conditions.

From Section 3.4.3 the requirements of similarity are: $N_{om} = N_{op}$ (24)

 $(n_{T1})_{m} = (n_{T1})_{p}$ (25)

$$n_{vl}(n_r)_m = n_{vl}(n_r)_p$$
 (27)

$$n_{ui}(n_{p}, n_{T})_{m} = n_{ui}(n_{p}, n_{T})_{p}$$
 (28)

and geometrical similarity.

Where:

$$n_{Tl} = T_{l}/T_{o}$$

$$n_{pl} = p_{l}/p_{o}$$

$$n_{vl} = v_{l}/v_{o}$$

$$n_{r} = r/R$$

$$n_{ui} = u_{i}/u_{o}$$

$$u_{i} = c_{p}, k, \mu,$$

From equation (28),

$$\begin{pmatrix} \frac{h_{D}}{h_{O}} \end{pmatrix}_{m} = \begin{pmatrix} \frac{h_{D}}{h_{O}} \end{pmatrix}_{p}$$

$$\begin{pmatrix} \frac{h_{I}}{h_{O}} \end{pmatrix}_{m} = \begin{pmatrix} \frac{h_{I}}{h_{O}} \end{pmatrix}_{p}$$

$$(30)$$

Combining (29) and (30) and multiplying by the mass flow rate yields

$$\left[\frac{m (h_{D} - h_{1})}{m h_{O}}\right]_{m} = \left[\frac{m (h_{D} - h_{1})}{m h_{O}}\right]_{p}$$
(31)

Since $Q = q_{os}^{a}$, equation (20) becomes

 \mathbf{h}

$$N_{B} = \left(\frac{Q}{m h_{O}}\right)_{m} = \left(\frac{Q}{m h_{O}}\right)_{p}$$
(32)

Subtraction of (31) from (32) results in a boiling number that was first suggested by Skoglund [16, 1969].

$$N_{Sk} = \frac{Q - m (h_{D} - h_{I})}{m (h_{L} - h_{D})}$$
(33)

The numerator of this equation is the heat rate available for quasi-vaporization. The denominator is the heat required for complete quasi-vaporization. When N_{Sk} is greater than zero quasi-vaporization occurs. From (31) and (32), a requirement of similarity is that

$$(N_{Sk})_{m} = (N_{Sk})_{p}$$
(34)

From Section 3.4.3 the results of similarity are:

$$\left(\frac{\mathbf{T}_{2} - \mathbf{T}_{1}}{\theta_{0}}\right)_{m} = \left(\frac{\mathbf{T}_{2} - \mathbf{T}_{1}}{\theta_{0}}\right)$$
(35)

$$\left(\frac{\Delta p}{P_{o}}\right)_{m} = \left(\frac{\Delta p}{P_{o}}\right)_{p}$$
(36)

$$\left(\frac{h_2 - h_1}{h_0}\right)_{m} = \left(\frac{h_2 - h_1}{h_0}\right)_{p}$$
(37)

$$\left(\frac{\theta}{\theta_{o}}\right)_{m} = \left(\frac{\theta}{\theta_{o}}\right)_{p}$$
(38)

where θ is any temperature difference at $x = L_{\bullet}$

3.5 Precision of Empirical Equations

Data acquired from the probe instrumentation was represented by empirical equations as a function f_i (r). The square of the standard deviation of f_{in} from a set of data points y_{in} (r_n) is

$$s_{i}^{2} = \frac{1}{N} \sum_{n=1}^{N} (f_{in} - y_{in})^{2}$$
 (39)

where:

N = number of data points of the set
y = measured value of the variable i at the radius
r n

The data was divided into ten zones each of which contained equal numbers of data. The data within a zone was numerically averaged, and the square of the standard deviation of the empirical equation from the means of the zones was defined as

$$SM_{i}^{2} = \frac{1}{10} \sum_{j=1}^{10} (f_{ij} - \overline{y_{ij}})^{2}$$
(40)

where:

$$y_{ij}$$
 = average value of the data in the j-th zone

The square of the adjusted standard deviation of the empirical equation from the means of the zones was

$$D^{2} = \frac{1}{10} \frac{10}{j=1} \left(\frac{f_{ij} - \overline{y_{ij}}}{\overline{y_{ij}}} \right)^{2}$$
(41)

This standard deviation is approximately equivalent to a percent error. The zones were numbered from one to ten. The zone having the largest adjusted deviation

$$DL = \frac{f_{iL} - y_{iL}}{y_{iL}}$$
(42)

was identified by zone number L.
4. APPARTUS

4.1 Introduction

This chapter describes the experimental apparatus. The flow system is illustrated in Figure 7. The high pressure dewar was filled from a liquid hydrogen storage dewar. Hydrogen gas was used to pressurize the dewar to force its contents through a metering and valving section to the inlet plenum. The inlet plenum directed the hydrogen into the electrically heated test section. A movable probe was located within and near the exit end of the test section. The system pressure was adjusted by throttling the flow with a valve on the exit of the test section. A vacuum jacket incased the test section and the piping that connected it to the dewar. Figure 8 is a photograph of the apparatus. The test section was mounted within the vertical portion of the vacuum jacket. Instrumentation and control leads were routed from the apparatus to a control room within the adjoining building.

4.2 Hydrogen Supply System

The system which supplied hydrogen to the test section consisted of a 132-gallon high pressure dewar, meters, and valves. Dewar pressure was measured by a Statham

Figure 7. Flow System

Figure 8. Apparatus

Model PA-707-TC temperature compensated pressure transducer. A one inch diameter Cox Model S-20-MB turbine flow transducer measured volume flow rate. The turbine transducer pulses were counted on a Hewlett-Packard Model 5212A electronic counter. A Hewlett-Packard Model HO-3571B clock and Model 562A printer provided a printed tape record. A Hewlett-Packard Model 580A digital-to-analog converter integrated the digital counter output to provide an analog signal for the data recorder. An Annin Model 24760 hydraulic, servo-controlled valve regulated the fluid flow. This valve could be controlled by the turbine flow transducer or set to a fixed opening.

The tubing for the flow system was one inch nominal outside diameter stainless steel with a wall thickness of 0.035 inches. Electrical insulation was provided by a conical faced SSP Fittings Corporation union that was coated on the mating surfaces with a fired-on glass enamel. Preliminary experiments with this type of union indicated that it would leak during rapid cooling. For this reason, a form-fitting copper container was installed around the union. Liquid nitrogen injected into the container prior to experimental runs precooled the union sufficiently to prevent leakage. The union was monitored with a sensitive

voltage measuring meter which would shut off the heating power supply in case of electrical insulation failure.

The inlet plenum is shown in Figure 9. It was fabricated from one-eight inch thick 347 stainless steel tubing with an inside diameter of 2.75 inches and length of 22.5 inches. The fluid entered from the bottom through a one inch diameter sharp edged orifice. A thirty mesh stainless steel screen was mounted across the plenum at a distance of six inches from the inlet and a second identical screen was mounted at ten inches. A Rosemount Model 179-A10F platinum resistance thermometer was mounted midway between the screens. The plenum configuration resulted from velocity measurements in a full scale model of the plenum using gaseous nitrogen. Measured velocities versus plenum radius at the axial position of the test section inlet were symmetrical within 1.5 percent of the centerline velocity. The experimentally determined ratios of average velocity to maximum velocity varied from 0.63 to 0.67 for plenumdiameter based Reynolds numbers between 37600 and 90700. The axial-velocity variation that appeared as a ripple on the profile curves was less than one percent of the centerline velocity. Measurements in a plenum without screens at

Figure 9. Inlet Plenum

٠

.

a Reynold's number of 69600 yielded a velocity ratio of 0.76 and an axial-velocity variation of eight percent. A copper plate formed the top end of the plenum and served as the transition between the plenum and the test section. Electrical current for heating the test section was introduced into this plate. The inlet to the test section was sharp edged and had the same inside diameter as the test section. The absolute pressure of the fluid in the plenum was measured with a Statham Model PA-822 absolute pressure transducer connected to a 0.030 inch diameter hole in the plenum wall by an eight inch length of 0.055 inch inside diameter tubing. A 0.055 inch hole in the plenum wall, diametrically opposite the 0.030 inch hole, was connected by an 18 foot length of 0.044 inch inside diameter tubing to provide an upstream pressure indication for the test section pressure differential.

4.3 Power Supply

The test section was heated with a Dresser Electric Company Model 50-2000-4-FO direct current power supply. The output of the power supply was adjustable from 0 to 50 volts with a maximum current capacity of 2000 amperes. The power supply rectified three phase current and had a five percent voltage ripple. To reduce the ripple and its

effects on instrumentation, an air gap iron choke was connected in series with the test section. The one millihenry, one-eighth microfarad filter was fabricated by Del Electronics Corporation and reduced the voltage ripple to 0.2 percent. Also in series with the test section was a 25.18 microhm current shunt constructed by the Empro Manufacturing Company. The electrical current was transmitted through two parallel 500,000 circular mil copper welding cables. The total resistance of the leads, test section, and connectors was 0.026 ohms. At high power levels, the power supply circuit breaker would frequently trip. An air cylinder was attached to the breaker handle to quickly reset it from within the control room.

4.4 Test Section and Instrumentation

The test section was fabricated from commercially available Inconel 600 tubing with a 1.500 inch nominal outside diameter and a 1.370 inch nominal inside diameter. The inside diameter actually measured between 1.3760 and 1.3770 inches. The length of the heated section was 179.25 inches or 130.8 nominal inside diameters. Vertical mounting of the test section was necessary for proper support. Upward flow eliminated unsymmetrical distortion of velocity profiles by the force of gravity.

Figure 10 shows the location of test section instrumentation. Potential taps and outside wall temperature thermocouples were soft soldered to the test section at distances that were 2, 6, 31, 56, 81, 106, 127.5, and 129.5 nominal inside diameters from the inlet of the test section. Figure 11 shows details of the attachment of instrumentation. The thermocouples were copper-constantan and were electrically insulated from their eight mil diameter sheaths. Six chromel P-constantan thermocouples were mounted in a 0.032 inch diameter sheath to form a thermocouple rake. The exposed junctions were one-eighth inch apart. Thermocouple rakes were mounted across the diameter of the test section at 6 and 31 nominal inside diameters from the inlet in an unsuccessful attempt to indicate fluid temperature profiles. The wall thermocouples and the rakes were obtained from the High Temperature Instruments Corporation. Thermocouple leads were run in flexible metallic tubing to reduce electrical noise. Additional potential taps were connected to the electrical power terminals on the test section. Three Endevco Model 2242C accelerometers were mounted at right angles to each other on the test section at a distance of 32.8 nominal inside diameters from

Figure 10. Test Section Instrumentation Location

Figure 11. Test Section Instrumentation Location

the inlet.

Figure 12 shows the upper housing that supported the test section. This nickel housing contained the movable probe, formed the upper end of the vacuum jacket, and was the electrical ground for the test section. All test section instrumentation leads emerged from the vacuum jacket through this housing. The probe tip traversed the test section at an axial distance of 176 inches. or 128.5 nominal inside diameters. from the test section inlet. At this position and at right angles to the motion of the probe, there were two diametrically opposed wall static pressure ports which were 0.029 inches in diameter. One port was connected to a Statham Model PM-80-TC differential pressure transducer in conjunction with the inlet plenum to indicate pressure drop in the test section. The second port was connected to a Statham Model PA-822 absolute pressure transducer. It also provided the reference static pressure for the pitot tube of the movable probe. The inside of the test section was polished near the exit end with an automotive brake cylinder hone after the wall static ports were installed. All pressure transmission tubes leading from the test section and inlet plenum were electrically isolated.

.

.

Figure 12. Upper Housing

Test section pressure was adjusted with an Annin Model 1510 valve that was downstream of the test section, as shown in Figure 13. This valve was manually operated from within the control room through a forty foot long shaft and a twelve foot long chain drive. A pressure relief valve and a rupture disk were connected in parallel with the valve to prevent excessive test section pressure. A 300 psi Heise pressure gauge and a Foxboro pressure transmitter were mounted near the Annin pressure valve to measure test section pressure. The Foxboro transmitter actuated a mercury manometer in the control room to give a visual indication of test section pressure during the experiments.

4.5 Movable Probe

Figure 14 shows the probe in its mount. The mount was secured to the upper housing with a "V" band clamp and sealed with a deformable aluminum gasket. The 4.7 inch long 0.20 inch outside diameter Inconel probe stem was mounted at right angles to and near one end of a 0.31 inch diameter 347 stainless steel supporting drive tube. The drive tube was electrically actuated so that the probe moved continuously back and forth across the diameter of the test section. The pressure seal between the sliding

. .

Figure 13. Probe Drive and Pressure Control Valve

39

• •

.

drive tube and the fluid pressure within the housing was provided by chevron-shaped Teflon rings. The time of traverse of the probe across the tube in one direction was adjustable from approximately 7 to 14 seconds. Electrical contact with the tube wall of a point on the probe stem provided a signal for reversing the probe drive motor. Auxiliary switches activated the reversing circuit if the probe contacts failed to function. Limit switches mounted on the probe drive provided additional protection. The position of the probe was indicated from a Bourns Corporation Model 108 linear potentiometer attached to the probe drive and powered by a mercury battery. Figure 13 shows the details of probe mounting.

The end of the probe is shown in Figure 15. It included a pitot tube, a thermopile, and a hot wire sensor for measuring intensity of turbulence. The chisel shaped mount was machined from lavite and fired to 2600° R. The distance from the centerline of the drive tube to the ends of the pitot tube and hot wire sensor was 5.306 inches. The thermopile was located between them and was 0.080 inches shorter. The distance between the centerlines of the hot wire sensor and the thermopile was 0.0650 inches, and the distance between the centerlines of the thermopile and the pitot tube

was 0.0692 inches. Leads from the probe tip were routed through the stem and drive tubes and out through a Conax crushed lavite seal. The inside of the probe tubes were at test section pressure. The difference between pitot and test section static pressure was measured with a MKS Instruments Corporation Model 77H-30 Baratron, capacitance type differential pressure transducer. The connecting tube of the pitot was an 18 inch length of 0.028 inch inside diameter, 0.007 inch wall 321 stainless steel hypodermic tubing. The probe thermopile had five exposed chromel P-constantan junctions mounted in a 0.025 inch outside diameter sheath. It was obtained from High Temperature Instruments Corporation. A socket was fabricated into the probe tip to accept a Disa Model 55-A53 miniature hot wire sensor. The sensing wire was a platinum plated tungsten wire 2.0x10⁻⁴ inch diameter and 0.018 inch long. The wire was oriented at right angles to the fluid velocity and the probe movement. A sixty foot long Disa Model 06-A107 cable connected the hot wire probe to a Disa Model 55-A01 constant temperature anemometer. A Disa Model 55-D-20/21 power booster increased the maximum hot wire current to one ampere. A John Fluke Manufacturing Company Model 910-AR RMS voltmeter converted the anemometer signal to a root mean square value

that was suitable for recording.

4.6 Recorders

Data was recorded on a 60 channel Systems Engineering Laboratories Mobidac multiplex data recording system. The voltage of each channel was sampled, digitized, converted into 12-bit binary words, and recorded on magnetic tape at intervals of 0.003 seconds. All signals from the apparatus, except those from the three accelerometers, were recorded by the Mobidac multiplexer. The outputs from the accelerometer charge amplifiers were indicated on a three sweep cathode ray oscilloscope. The outputs of a few select transducers were also recorded on strip charts for a visual indication during a run. These recorders were a 36 channel Honeywell Model 1612 Visicorder, a single channel and a two channel Brown ink-pen recorder, and a 12 channel Brown multipoint recorder.

5. PROCEDURE

5.1 Introduction

This chapter describes the activities involved with preparing for and conducting a test. The next chapter describes the instrumentation calibrations that occurred during test preparation.

5.2 Test Preparations

Prior to a test series, the high pressure dewar, the test section, and the transfer lines were dilution purged of air with helium. The dilution purge method consists of a number of cycles of pressurizing to the maximum safe limit with helium and then venting to just above atmospheric pressure. This method was required to remove most of the trapped air in small pockets such as pressure transducers. The initial fill of the high pressure dewar with hydrogen required about an hour. Approximately 100 gallons of hydrogen was vaporized in cooling down the transfer line and high pressure dewar. During this initial filling, the recording equipment was adjusted as outlined in Chapter 6.

A manual value in the transfer line adjacent to the high pressure dewar was closed when the dewar was full. The manual dewar vent value was also closed, allowing the dewar to be pressurized by hydrogen gas from tube trailers.

The dewar pressure was maintained greater than twice the test section pressure to prevent dewar pressure oscillations. At high flow rates trailer gas pressure had to be greater than 1000 psi to maintain dewar pressure. Refilling was possible within ten minutes, if the transfer line was kept full of liquid by allowing a small amount of flow through a line vent.

5.3 Testing

The desired operating conditions were translated into meter values which were monitored as equipment was adjusted to achieve them. During the adjustment the manual test section exit valve was partially opened, the servo flow control valve between the test section and the high pressure dewar was opened to the desired flow rate, and the power supply was turned on. During a test minor adjustments to the flow control valve, the power supply, and the exit pressure valve were required. The power was monitored on a strip recorder, and the pressure was indicated by the wall static pressure at the pitot position transducer channel on the Mobidac visual display. The mercury-filled "U" tube manometer connected to the Foxboro pressure transmitter at the test section exit indicated gross pressure behavior and was valuable as an aid to the prompt suppression

of frequently observed violent pressure oscillations during starting of the flow. It was usually possible to stop oscillations by closing the exit flow valve, thereby increasing pressure and then slowly reopening it. The Visicorder was carefully monitored to indicate normal functioning of the probe position, hot wire outputs, and pressures. When it was evident that conditions had stabilized, the Mobidac recorder was turned on. Recording continued until run conditions began to drift, indicating the dewar was nearly empty. The Mobidac record numbers were handwritten on the Visicorder chart the instant that recording began and ended. The Visicorder was on at all times during hydrogen flow. A strip recorder indicated the temperature of a wall thermocouple near the exit of the test section and a limit on this recorder sounded a klaxon when the wall temperature rose to 70° F to warn against having the power on after hydrogen flow termination. At the end of a run, the system was vented to the atmosphere and the dewar was refilled. A test would result in from one-half minute to six minutes of recorded data, depending on flow rate. It was possible to conduct several tests per day and to test two days per week.

Some test conditions resulted in an inability to con-

trol pressure. In these cases it was felt that conditions at the exit value seat were near critical so that large changes in density occurred for small changes in temperature. In many cases the pressure rises were so rapid that it was impossible to open the exit value before the test section would relieve through the pressure limit value or the rupture disk.

6. DATA INTERPRETATION

<u>6.1 Introduction</u>

The accuracy of the data was influenced by the details of installation, method of calibration and testing, stability of electronic equipment, and method of data conversion. These are described in the following sections for the various types of instrumentation. The calibration factors discussed in this chapter are presented in Appendix B.

6.2 Recorder

The Mobidac multiplex recorder was the main data recorder. Analog input voltage signals were sampled one at a time, digitized, and the voltage recorded on magnetic tape. The tape format consisted of twelve bit binary words. Therefore, the output voltage was indicated by 4096 integers. Zero represented minus full scale, 2048 represented zero input voltage, and 4096 indicated positive full scale. Channel gain could be selected to give full scale output for input signals of 5, 10, 20, 50, 100, 200, and 500 millivolts. Each channel was calibrated at the gain used prior to a test series. Calibration was effected by disconnecting the input cables from the recorder, shorting each input for zero setting, and then applying a known voltage for gain setting. A modified Medistor Model C-1A micro-

volt calibrator provided a stable voltage which was set using a Hewlett-Packard Model 3420A digital voltmeter. The digital voltmeter was calibrated with standards traceable to the National Bureau of Standards.

The Mobidac was turned on at least twelve hours prior to a test. It was found that day-to-day drift was usually less than five integers, and the drift during a day was less than the voltage noise on the calibration voltage line. The noise and drift were functions of channel gain, being worst for the five millivolt channels and unobservable for 20 millivolt and higher ranges. The accuracy of the representation of the input signal was believed to be between 0.04 and 0.12 percent of the channel full scale range when the resolving power of the analog-to-digital conversion and the method of calibration were considered. This is an uncertainty of from two to six microvolts on a five millivolt channel. Non-linearity was less than the uncertainty. <u>6.3 Electrical Current and Voltage</u>

Signals from potential taps were passed through voltage-dividing resistor networks to reduce their levels to a range acceptable to the Mobidac recorder. The divider networks were adjusted with the Medistor calibrator and . Hewlett-Packard voltmeter.

The shunt resistor manufacturer claimed two percent accuracy. A check at 25 amperes indicated the resistor was within one percent.

The signal from the shunt resistor and the potential taps carried the power supply ripple. The power supply was stable within observational limits. The recorded signals were numerically averaged for the time of a probe traverse to provide a mean value with an accuracy of approximately one percent.

6.4 Probe Position

The output of the linear potentiometer attached to the movable probe was used to determine probe turn around. The turn around times as provided by the data location on the magnetic tape coupled with the known recording rate of the Mobidac gave time of traverse. The probe position was measured by a dial indicator at turn around as a check against the probe wall contacts. During data reduction, the position data was scanned to determine the time of the traversing limits. The resolution of the wire-wound potentiometer was 0.0016 inches. Due to electrical noise, it was necessary to numerically average the data in groups. This procedure resulted in an uncertainty of 0.07 seconds in the time of traversing limits. At the usual probe

traverse speed of 0.16 inches per second, a position error of the probe was less than 0.011 inches. The knowledge of probe position as a function of time and the geometry of the probe provided the position of the probe sensors as a function of time.

6.5 Pressures

The Statham absolute pressure transducers were calibrated in place at ambient temperature by pressurizing the system and observing the static pressure on a Heise gauge that had been calibrated on an air dead weight tester. These transducers were used as gauge pressure indicators to simplify pre-test adjustments. The transducer outputs were zeroed with the test section open to the atmosphere at ambient temperature with no flow. During data reduction, the transducer outputs were averaged during a traverse, converted to pressures by means of the calibration factor, and added to the barometric pressure measured during the run. The transducer on the inlet plenum was of no value because its calbiration shifted during chilling. The calibration shift of less than 0.01 percent per degree Rankine resulted in inlet pressures indicated lower than exit pressure. Inlet plenum pressure was calculated from wall static pressure at the pitot position and the differential pressure

between the plenum and the wall static port. All other transducers were in warm environments. The Statham differential pressure transducers were calibrated with a mercury manometer. All Statham transducers were energized with individual power supplies that had a tendency to drift and required continuous monitoring and frequent adjustment. Maximum deviation from the smooth calibration curve was within one percent for all transducers.

The Baratron differential pressure transducer was factory-calibrated using an air dead weight tester and was checked later with a water manometer. Adjustments were made according to manufacturer's recommendations. The instrument was turned on at least an hour before tests began. The pressure head was heated internally on a programmed cycle prior to testing to assure the removal of possible moisture. The head was then allowed to cool to its thermostatically controlled operating temperature of 580°R. In calculating pitot differential pressure from Baratron signals the static head of fluid in the connecting lines was considered. It was assumed that the thin walled pitot tube was at the same temperature as the test fluid. Baratron output signal noise was of the order of the mean signal from some runs due to pressure oscillations

within the test section. Attempts were made to minimize the noise by sizing the static pressure line so that the reference pressure side of the transducer had geometrical similarity with the pitot pressure side [7, 1950]. Static tests gave results that were reproducible within three percent for pressures greater than one millimeter of mercury. <u>6.6</u> Temperatures

Temperatures were measured at the test section inlet along the test section wall, and at the movable probe.

The temperature of the hydrogen entering the test section was obtained from a Rosemount platinum resistance thermometer. A Rosemount triple bridge unit powered by mercury batteries provided an output voltage. The thermometer was factory-calibrated at three points. Thermometer resistances at small increments were obtained using the Corruccini three point method from liquid helium to room temperature [2, 1960]. In data reduction a tenth order polynomial was used to fit the resistance as a function of temperature for the range from 24 to 60°R. The maximum deviation of the equation from the data was 0.03°R. A seventh order polynomial was used from 60 to 160°R with a maximum deviation of 0.009°R. The triple bridge unit was calibrated using a decade resistance box

connected at the probe location. The decade box and its connector were calibrated with standards traceable to the National Bureau of Standards. The resulting output voltage as a function of input resistance was represented by a third order polynomial. Its maximum deviation was 0.039 ohms. To provide a system check of the resistance thermometer, it was immersed in liquid nitrogen and in liquid hydrogen. The output was read on the Mobidac. The error at liquid nitrogen temperature was less than 0.07°R. At liquid hydrogen temperature, the error was less than 0.1°R.

All thermocouple reference junctions were immersed in a common boiling liquid hydrogen bath at atmospheric pressure. The saturated liquid temperature for an average local barometric pressure of 582.06 millimeters of mercury is 34.92°R. The vapor pressure for hydrogen in the vicinity of the atmospheric pressure was represented by an equation [20,1962]. Actual bath temperature was calculated from the barometric pressure measured at intervals during a test. The thermocouple temperature indications were corrected to the actual cold junction temperatures.

The test section wall temperatures were measured with copper-constantan thermocouples. The output voltage as a function of temperature was calculated for a 34.92°R

reference temperature from tables with zero degree reference published by the National Bureau of Standards [9, 1960]. A seventh order polynomial represented the values of voltage as a function of temperature with a maximum deviation of 0.06°R. The thermocouples were calibrated at two temperatures by flowing liquid nitrogen and liquid hydrogen through the test section without heating. The liquid temperature was obtained from the platinum resistance thermometer in the inlet plenum. Thermally induced voltages at a vacuum tight electrical connector and stray voltage combined to produce errors. During calibration, there were variations of 3° at 142° and 9° at 42°R. The error expected from heat transferred into the cold test fluid from the warm vacuum jacket was less than one-tenth degree at 40°R. A method suggested by Powell [10, 1961; 11, 1962] was used for data reduction. Output voltages were obtained during the two-temperature calibration for each thermocouple. The difference between the measured voltage and that expected from the standard curve was defined as a shift voltage and was a linear function of temperature. An iterative procedure was required for temperature calculation. A temperature was calculated from the output voltage using the standard curve. This

temperature was used to calculate the shift voltage which was added to the original output voltage. The total voltage provided a new temperature which in turn gave an updated shift voltage. Iteration was continued until the changes were less than one degree. The wall temperature at the probe position was taken as the average of the values obtained at the 127.5 and 129.5 L/D positions.

The probe thermopile was calibrated with a secondary standard platinum resistance thermometer from liquid helium to room temperature. The calibration data from 16 to 142°R was represented by a seventh order polynomial. Two corrections were made to account for differing immersion conditions between calibration and testing. The first correction reduced fluctuations that were caused by the temperature variations of the leads which occurred when the probe traversed the test section [10, 1961; 11, 1962]. Voltage shifts as a function of probe position, temperature, and direction of travel were calculated from numerous unheated runs for which thermopile temperatures were known. The second correction was a temperature dependent correction of 1.75° at 47.2° and zero degrees above 132°R, due to the shorter lead immersion length in use. The corrected thermopile temperature was within 0.34° at 142° and

 0.49° at $47^{\circ}R$ of the temperature of the inlet platinum resistance thermometer without heating.

6.7 Flow Rate

A water calibration by the manufacturer was provided with the Cox turbine flowmeter. During this investigation, it was checked with water by timing and weighing an accumulation of the flow. The one inch diameter flowmeter was selected to match flow piping sizes. According to Gray, water calibrations are applicable to liquid hydrogen [5, 1959]. Theoretically, the low viscosity of hydrogen caused the turbine to rotate 0.6 percent slower than for water, but this was balanced by a 0.6 percent higher hydrogen velocity due to thermal contraction of the flowmeter. Suitable flow calibration facilities for liquid hydrogen were not available. Experience in the cryogenic industry indicated that water calibrations were reliable when corrected for **v**iscosity and thermal contraction effects. Due to the large amount of data and the necessity of assigning run times to the flow, the Mobidac recording was used to provide flow information. Spot checks with the printed tape of the electronic counter indicated a maximum deviation of 2.2 percent in the Mobidac record.

The turbine flowmeter was sensitive to volume flow rate. The density of the fluid flowing through the meter was necessary to obtain a mass flow rate. Attempts to measure fluid temperature at the flowmeter with thermocouples and helium bulb thermometers were unsuccessful. The temperature and pressure were measured accurately at the inlet plenum. The enthalpy was constant from the inlet plenum to the flowmeter, assuming adaibatic flow through the flow control valve. The flowmeter pressure was very near that of the high pressure dewar. The density was obtained from hydrogen properties tables at dewar pressure and inlet plenum enthalpy. The manufacturer reported a deviation of 0.37 percent from linearity during calibration.

6.8 Hot Wire Anemometer

The anemometer was adjusted according to the manufacturer's recommendations. The output was filtered to pass only frequencies below 10,000 Hertz. The hot wire temperature was approximately 260° R for all tests. Calibration experiments indicated that the anemometer bridge voltage was 25.7 volts per ampere of current through the wire at the wire resistance of 1.5 ohms. The wires were experimentally found to have a temperature coefficient of 0.0028 ohms per degree Rankine at 260° R. The bridge voltage and wire position were calculated for each data point

for the traverses used.

The fluctuating component of the bridge voltage was converted to a root mean square value or RMS. The RMS voltmeter was of the thermocouple type. Its experimentally determined time lag was from 0.25 to 0.30 seconds. The data was shifted two Mobidac records or 0.276 seconds to account for its lag. This produced symmetry in the RMS voltage with respect to the test section centerline.
7. DATA REDUCTION

7.1 Introduction

The tests were planned to map the range of possible operating conditions in a systematic fashion with additional tests near the critical point. Data was recorded for a maximum accumulated time of six minutes on a 2400 foot long reel of magnetic tape. Forty reels were used to record the data from 136 tests. The data was scanned to select acceptable tests. This chapter describes the method of selecting tests, the special manipulations of probe data, and the methods employed to calculate power input and fluid bulk conditions.

7.2 Data Acceptance

Mobidac data of selected variables was computer plotted for all tests. Tests were selected in which conditions had remained steady for at least four consecutive probe traverses. Stability was defined as a drift of less than 0.5 pounds per square inch in pressure, 0.25 degrees in inlet temperature, and 0.5 gallons per minute in flow. The second and third traverses of the steady portion of the selected tests were assigned run numbers. Both directions of probe travel were inherent in a pair of runs

which were at essentially identical test conditions. The resulting number of runs was one hundred forty two. Each run involved approximately 2000 data points per sensor.

7.3 Probe Data Collation

Figures 14 and 15 of the moving probe show the pitot tube and thermopile at different radii. The distance between them was 0.0692 inches. To compensate for the different sensor locations, the time index of the second sensor was shifted so that its data corresponded to the radius of the first sensor. Velocities were calculated from the expression

$$\mathbf{v} = \sqrt{\frac{2 \Delta p}{\rho}} \tag{43}$$

where:

Δp = dynamic pressure calculated from pitot tube
pressure minus the pitot position wall static
pressure

 $\rho = hydrogen density$

Mass flow rates per unit area were calculated from

$$\rho \mathbf{v} = \sqrt{2} \rho \Delta \mathbf{p} \tag{44}$$

The densities were obtained from the TABTP code with thermopile temperatures and wall static pressures. The velocity and the mass flow rate per unit area values were tabulated

as a function of distance across the test section. This table was the basis of empirical equations (47) and (48) in Section 8.3.

7.4 Power Input and Wall Temperatures

The measured thermal coefficient of electrical resistivity of the Inconel test section was less than 5×10^{-9} ohm-cm/°R. With a constant current and resistivity along the test section, the power input per unit length was constant. The deviation from a straight line, of measured potential tap voltages versus length, was negligible. Power input was calculated from the electrical current and the potential drop.

The inside wall temperatures of the test section were calculated from measured outside wall temperatures, the power input, and the Inconel thermal conductivity. In the calculation the thermal conductivity of Inconel as a function of temperature was represented by an empirical expression. The temperature drop across the tube wall was as large as 15 degrees for high power inputs. Typical temperatures as a function of length are illustrated in Figure 16. The calculated inside wall temperatures are tabulated in Table 5 in Appendix C.

Axial length from inlet, L/D

7.5 Bulk Fluid Conditions

The inlet hydrogen properties were obtained at the inlet plenum temperature and pressure from the TABTP code. The uniform power input, inlet enthalpy, and mass flow rate were sufficient to determine the bulk enthalpy of the fluid at any axial position along the test section. The test section cross sectional area was approximately 0.25 times that of the plenum. The contraction coefficient of the sharp entrance of the test section was 0.433 [13, 1950]. Since pressure drops were small, it was assumed that the pressure was a linear function of axial position within the test section. The TABHP code was used to compute the bulk temperatures as a function of length from pressures and bulk enthalpies.

8. DATA SUMMARY

8.1 Introduction

The purpose of this chapter is to summarize system conditions and to present empirical equations which represent probe data. The total number of runs was 142.

8.2 System Conditions

System conditions are summarized in Tables 1 and 2. Temperatures, enthalpies, velocities, Prandtl, and Reynolds numbers are bulk averages that were calculated from mass flow rate and power input.

8.3 Empirical Equations

The data was stored on magnetic tape. For each run and probe variable, there were about 2000 data points as a function of distance across the test section. The data was represented by a variety of empirical equations. From these, equations were selected which had a minimum number of parameters and acceptable standard deviations. These selected equations are:

Hydrogen temperature at the probe

$$T = TT1 - TT2 \left[1 - \left(\frac{|R-y|}{R} \right)^2 \right]^2$$
(45)

The dynamic pressure

$$\Delta p = PPI \left[1 - \left(\frac{|R-y|}{R} \right)^{PP2} \right]$$
(46)

The velocity

$$\mathbf{v} = \mathbf{V}\mathbf{v}\mathbf{l}\left[1 - \left(\frac{|\mathbf{R}-\mathbf{y}|}{\mathbf{R}}\right)^{\mathbf{V}\mathbf{v}\mathbf{2}}\right] + \mathbf{V}\mathbf{v}\mathbf{3} \sin \frac{3\pi\mathbf{y}}{2\mathbf{R}}$$
(47)

The mass flow rate per unit area

$$\rho v = MMl \left(\frac{y}{R}\right)^{1/9.5} + MM2 \sin \frac{\pi y}{2R} + MM3 \sin \frac{3\pi y}{2R}$$
(48)

The hot wire bridge voltage

$$\mathbf{e}_{1} = \mathbf{WW1} \left[1 - \left(\frac{|\mathbf{R} - \mathbf{y}|}{\mathbf{R}} \right)^{\mathbf{WW2}} \right] + \mathbf{WW3}$$
(49)

The RMS value of the hot wire bridge voltage

$$e_{2} = RR1 + RR2 \sin \frac{\pi y}{2R} + RR3 \sin \frac{3\pi y}{2R} + RR4 \sin \frac{5\pi y}{2R}$$
(50)

Where the units are:

The temperature and hot wire profiles were not specified at the wall. Samples of typical data and equations are illustrated in Figures 17 to 22. The boxes that are plotted among the data in the figures represent the numerical averages of data groups that contain ten percent of all the data points. The parameters and the deviations of Section 3.5 of the empirical equations are presented in Tables 6 to 11 in Appendix C.

Excluding RMS voltages, the adjusted deviation of empirical equations from the mean of a subset of data was less than 11 percent in all cases and was less than one percent in many cases. The deviation between mass flow rates obtained by integration of the ρv empirical equation and from the turbine flow meter ranged from -32 to 18 percent except near the critical point where some deviations were as large as 24 percent. A reason for the latter deviation is described in Section 9.4. Except for the critical point region, only 10 percent of the data had deviations larger than 10 percent.

Distance from tube reference wall, inches

Figure 17. Temperature Profile

Distance from tube reference wall, inches

Distance from tube reference wall, inches

Figure 19. Velocity Profile

Distance from tube reference wall, inches

Figure 20. pv Profile

Distance from tube reference wall, inches

.

Distance from tube reference wall, inches

Figure 22. Hot Wire RMS Profile

TABLE 1.

ŝ.

SYSTEM CONDITIONS, PART 1. †

RUN	Р +	M	Q/A	RP	RT	DIFF	PD	T 1	T2
1	195.1	.478	22945	1.039	•995	9	.437	44.4	59.1
2	195.2	.478	22951	1.040	.996	9	.439	44.5	59.1
3	191.5	.411	23266	1.020	1.002	3	.402	46.6	59.5
4	191.2	.410	23228	1.019	1.002	3	402	46.7	59.5
5	190.2	.425	23204	1.013	.997	- 4	-408	45.1	59.2
6	190.5	.425	23213	1.015	.998	- 4	.413	45.1	59.3
7	201.9	.513	29686	1.076	1.013	3	-469	46.3	60-2
8	202.2	.511	29669	1.077	1.014	3	.475	46.7	60.2
9	216.3	.369	0	1.152	.754	- 16-6	.454	44.8	44.8
10	217.0	.370	Ō	1.156	.754	-16.6	.455	44.8	44.8
11	193.0	-287	4277	1.028	-898	-6-5	.412	47.4	53.3
12	193.3	287	4278	1.030	.898	-6.6	.411	L7.L	53.3
13	189.7	-286	16522	1.011	1.000	2	- 362	16.1	59.4
11	190.1	286	16521	1.013	1.001	2	.371	46.5	59.4
15	248.6	287	1118	1.325	.872	-11.5	. 430	45.3	51.8
16	248.7	-289	1146	1.325	.872	+11.5	.430	45.L	51.8
17	250.3	.274	1145	1.333	-880	+11.1	.425	45.6	52.3
18	250.2	-271	L1L6	1.333	.882	-11.0	. 425	45.6	52.4
19	225.1	-281	4133	1,199	-876	-9-9	.429	45.7	52.0
20	225.4	-281	4129	1,201	-876	-9.9	.430	45.7	52.1
21	200.4	.274	4152	1.068	-889	-7.6	421	46.5	52.8
22	199.6	.271	1154	1.064	-891	-7.4	.420	46.6	52.9
23	251.4	-381	4132	1.339	-848	+13.1	.458	45.4	50.3
24	251.0	.381	4130	1.337	-848	-13-0	-456	45.5	50.4
25	250.6	.368	4135	1.335	.854	-12-6	.453	45.7	50.7
26	250.9	-369	4132	1.337	-856	+12.5	.452	45.8	50-9
27	251.2	468	4133	1.338	-817	+14.9	-500	4500	48.6
28	250.8	467	4137	1.336	-818	-14-8	-502	44.3	48-6
29	250.3	.711	4103	1.334	-766	-17.9	-617	42.4	45.5
30	249.9	.706	4103	1.331	.767	-17-8	-621	42.5	45.5
31	190.1	.381	4078	1.013	.834	- 10-2	.466	44.7	49.5
32	191.1	.381	4080	1.018	.835	-10-1	-468	44.8	49.6
33	189.8	.377	17346	1.011	•986	-1.1	422	44.1	58.6
34	190.5	.377	17364	1.015	.987	-1.1	.420	44.2	58.6
35	189.1	.467	17026	1.007	.967	-2.2	.471	45.1	57.4
36	189.1	-465	17034	1.008	.968	-2.1	.466	45.2	57.5
37	199.8	.682	17588	1.065	.910	-6.3	.608	43.2	54.1
38	199.9	.680	17584	1.065	.912	-6.2	.598	43.4	54.2
39	224.8	.660	17428	1.198	.922	-7.2	.591	43.9	54.8
40	224.8	.657	17436	1.197	.923	-7.1	.594	43.9	54.8
41	250.9	.653	17443	1.337	.934	-7.9	•587	44.5	55.5
42	250.7	.656	17444	1.336	.933	-7.9	•585	44.5	55.4
43	248.6	.475	17343	1.324	•982	-4.9	.480	45.0	58.4
44	248.1	.475	17341	1.322	.982	-4.9	•482	45.0	58.3
45	251.2	.379	17486	1.338	1.014	-3.2	•430	44.6	60.2
46	250.8	.379	17487	1.336	1.014	-3.2	-429	44.6	60-2
47	250.1	-281	17440	1.333	1.047	-1.2	-384	45.2	62.2
48	250.0	-281	17451	1.332	1.047	-1.2	.380	45.2	62.2

TABLE 1, CONTINUED.

SYSTEM CONDITIONS, PART 1.

KUN	Р	M	Q/A	RP	RT	DIFF	PD	T1	T2
49	225.0	•262	17489	1.199	1.034	5	.373	46-1	61.4
50	225.4	•262	17486	1.201	1.034	5	•370	46.2	61.4
51	200.5	•274	17565	1.068	1.014	2	•380	46-2	60.2
52	200.6	-274	17578	1.069	1.014	2	.377	46-2	60.2
53	200.0	•273	17601	1.065	1.013	2	•375	46.2	60-1
54	199.6	-273	17601	1.063	1.012	-•2	.373	46.3	60-1
55	190.4	•685	17412	1.014	•917	-5.3	•614	44.4	54.4
56	189.5	- 684	17423	1.009	•917	-5.2	• 608	44.4	54.5
57	249.4	• 696	0	1.329	•662	-24.0	• 593	39.3	39.3
58	250.4	•693	0	1.334	•665	-23.9	• 600	39.5	39.5
59	188.7	• 659	0	1.005	•771	-13.8	•574	45.8	45.8
60	189.1	•657	0	1.007	•772	-13-8	• 568	45•8	45.8
61	189.1	• 669	4132	1.007	•821	-10.8	• 57 0	45.9	48-8
62	188.3	•668	4130	1.003	.821	-10.8	•565	45.9	48.8
63	200.3	.674	4153	1.067	•829	-11.2	•569	46.5	49-2
64	199.8	•674	4154	1.064	•829	-11.1	•567	46.5	49.3
65	224.1	.675	4154	1.194	.831	-12.5	•572	46.6	49.4
66	224.0	•675	4155	1.193	•831	-12.5	•575	46.6	49.4
67	193.7	.678	16355	1.016	•923	-4.9	•563	45.6	54.8
68	191.5	.677	16374	1.020	•924	-4.9	•570	45.7	54.9
69	248.8	•665	39364	1.326	1.046	-1.2	•613	46.7	62.1
70	249.1	•665	39374	1.327	1.046	-1.2	.606	46.8	62.1
71	191.2	•466	4223	1.019	•860	-8.7	•481	47.4	51.1
72	190.6	•463	4221	1.016	.860	-8-6	•482	47.4	51.1
73	190.6	• 376	16534	1.015	•994	7	• 395	47.4	59.1
74	190.5	•376	16519	1.015	•994	6	• 395	47.5	59.1
75	224.4	•269	17267	1.196	1.034	 5	.360	47.5	61-4
76	224.7	• 269	17291	1.197	1.034	5	•359	47.6	61.4
77	228.2	•680	17191	1.216	•925	-7.2	•607	44.7	54.9
78	228.1	•679	17200	1.215	•926	-7.1	-610	44.7	55.0
79	190.2	•272	4089	1.014	•906	-5.9	•398	48.2	53.8
80	190.3	-272	4091	1.014	.906	-5.9	• 398	48.2	53.8
81	191.5	•671	38278	1.020	1.002	2	• 659	47.3	59.5
82	191.5	•667	38259	1.020	1.002	2	• 668	47.4	59.5
83	248.0	• 663	0	1.321	•801	-15.7	• 563	47.6	47.6
84	247.6	• 663	0	1.319	•803	-15.6	•567	47.7	47.7
85	191.2	• 565	16776	1.019	•964	-2.5	• 52 5	47.8	57.3
86	191.2	•565	16768	1.018	•965	-2.4	•524	47.9	57.3
87	190.2	• 269	14806	1.013	1.001	2	• 355	49.1	59.5
88	190.2	•269	14803	1.014	1.001	2	•352	49.2	59.5
89	191.2	•364	18115	1.019	1.001	3	• 388	49.0	59.4
90	191.6	• 364	18119	1.021	1.001	3	• 391	49.0	59 .5
91	190.6	•463	22352	1.015	•998	5	• 44 6	48.0	59.3
92	191.1	•465	22353	1.018	•998	- •5	• 44 6	48.0	59.3
93	190.9	•268	16831	1.017	1.003	2	• 347	49.2	59.6
94	190.9	-268	16835	1.017	1.003	2	• 34 5	49.2	59.6
95	190.6	•267	0	1.015	•836	-10.0	•417	49.7	49.7
96	190.4	•267	0	1.014	•838	-9.9	•416	49.8	49.8

TABLE 1, CONTINUED.

SYSTEM CONDITIONS, PART 1.

RUN	Р	M	Q/A	RP	RT	DIFF	PD	T1	T2
97	196.0	•274	0	1.044	.815	-11.7	•430	48.4	48.4
98	195 •8	•274	0	1.043	•816	-11.6	•430	48.5	48.5
99	253.1	-291	0	1.348	•707	-21.5	•467	42.0	42.0
100	253.6	•291	0	1.351	.707	-21.5	•467	42.0	42.0
101	189.2	•461	4244	1.008	•872	-7.8	•485	48-2	51.8
102	188.8	-462	4241	1.006	872	-7.8	•486	48.2	51.8
103	189.1	•466	4246	1.007	•874	-7.7	•484	48.4	51.9
104	188.9	•464	4243	1.007	•876	-7.5	•482	48.5	52.1
105	250.7	•664	4243	1.336	•848	-13.0	• 583	47.7	50.4
106	251.7	•666	4245	1.341	•849	-13.0	•584	47.8	50.5
107	250.6	•658	4234	1.335	-852	-12.7	• 58 0	48.0	50.6
108	250.2	•658	4234	1.333	•853	-12.7	•579	48.0	50.7
109	189.3	•272	17279	1.008	1.001	2	.3 57	48.9	59.4
110	189.0	•272	17281	1.007	1.000	2	• 346	48.9	59.4
111	189.6	•272	17277	1.010	1.001	2	• 354	49.0	5 9-5
112	189.7	•272	17279	1.011	1.001	2	•3 55	49.1	59.5
113	190.7	•277	17292	1.016	1.002	2	• 355	49.1	59.5
114	190.5	•277	17278	1.015	1.002	2	•355	49.1	59.5
115	248.1	•658	17282	1.322	•963	-6.1	•566	47.6	57.2
116	248.3	•662	17265	1.323	•963	-6.1	•559	47.7	57.2
117	192 • 1	•278	37842	1.024	1.205	11.7	•535	48.9	71.6
118	191.9	•279	37874	1.022	1.202	11.6	• 54 9	48.9	71-4
119	192.5	•291	37588	1.025	1.099	5.4	•545	42.9	65.3
120	192.7	•290	37577	1.027	1.101	5.5	•567	43.1	65.4
121	250.5	•280	37985	1.334	1.215	8.8	•481	44.3	72.2
122	251.5	•283	37973	1.340	1.211	8.5	•481	44.4	71.9
123	252.6	• 359	38885	1.346	1.147	4.7	•515	49-2	6 8. 1
124	252.3	• 359	38885	1.344	1.148	4.7	•504	49.3	68.2
125	193.1	• 366	38695	1.029	1.058	2.9	•619	49.1	62.8
126	193.2	• 366	38680	1.030	1.058	2.9	• 599	49.1	62.8
127	189.9	•700	38802	1.012	•995	6	•653	42.4	59.1
128	190.3	• 699	38819	1.014	•995	6	•659	42.5	59.1
129	192.6	•566	38658	1.026	1.006	+ •]	•647	49.3	59.7
130	192.2	• 562	38652	1.024	1.006	-•]	• 668	49.6	59-7
131	190.8	• 3 3 8	21471	1.01/	1.000	 4	•409	41.9	59.4
152	191.0	• 339	21464	1.01/	1.000	5	•411	42.0	59.4
133	189.9	• 5 1 1	18152	1.012	1.001	2	• 310	49.9	59-5
1.54	190+1	• 311	18133	1.010	1.002	- •2	• 3 (0	50.0	59.5
135	189.8	•412	19597		•998	- •4	•414	49.2	59.5
150	190.0	•411	19652	1.077	•999	4	•409	49.5	59.5
13/	202+1	• 3 1 4	20007	1.07	1.000	-•0	•4((41.5	57.9
120	201.0	• 5 1 2	20084	1.015	800+1	- •0	•4/9	4/.5	57.9
139	191+1	+ DZ I	20001	1.010	•998	≁ • 4	• 484	41.9	57.5
140	191+4	+ JZU	20005	1.007	• 444	4 E	+4(9	40.1	57.5
141	192.1	•013	29895	1.023	• 779	-•2	• 35 3	40.1	57.4
142	192	•015	29902	1.023	• 779	֥)	• 354	48.1	37.4

.

† Table 1. Continued, System Conditions, Part 1

.

.

.

•

•

Symbol	Meaning	Units
P	absolute pressure	pound/inch ²
м	mass fl ow rate	pound/sec
Q/A	heat rate per unit area	Btu/hr-ft ²
RP	reduced pressure	
RT	reduced temperature	
DIFF	$T_2 - T_{pc}$	°R
PD	test section pressure drop	pound/inch ²
Tl	inlet hydrogen temperature	°R
Т2	hydrogen temperature at axial	
	position of the probe tip	°R

TABLE 2.

5

SYSTEM CONDITIONS, PART 2. †

RUN	H1	H2	RE1	RE2	PR1	PR2	V1	V2
1	-85.2	-15.0	746500	1696900	1.12	9.48	11.03	18.79
2	-85.1	-14.9	747400	1698400	1.13	9.60	11.03	18.79
3	-78.7	3.9	697710	1898300	1.15	16.73	9.76	22.31
4	-78.5	4.3	697460	1906000	1.15	16.59	9.74	22.48
5	-83.3	-3.5	681770	180 1000	1.13	13.42	9.90	21.59
6	-83.1	-3.3	682900	1801000	1.13	13.66	9.91	21.52
7	-79.5	5.1	854520	2146900	1.11	8.36	12.10	23.58
8	-78.3	6.5	865490	2144700	1.11	8.25	12.12	23.64
9	-83.7	-83.7	576810	57 6960	1.12	1.12	8.52	8.52
10	-83.6	-83.6	579690	579850	1.12	1.12	8.55	8.56
11	-76.2	-54.3	502830	64 3720	1.15	1.36	6.88	7.68
12	-76.1	-54.3	503260	644080	1.15	1.36	6.88	7.68
13	-79.2	5.4	482550	1353400	1.15	15.63	6.78	16-21
14	-79.0	5.7	483470	1351300	1.15	15.93	6.78	16.11
15	-81.3	-60.2	450200	575240	1.12	1.29	6.63	7.25
16	-81.0	-60.1	454950	580280	1.12	1.29	6.69	7.31
17	-80.6	-58.5	432930	55 8890	1.12	1.26	6.34	6.97
18	-80.5	-58.2	428630	554760	1.12	1.25	6.28	6.91
19	-80.9	-59.4	450960	579060	1.12	1.37	6.54	7.19
20	-80.8	-59.3	451350	579330	1.12	1.37	6.54	7.19
21	-78.8	-56.7	460840	593560	1.11	1.20	6.48	7.18
22	-78.6	-56.2	458400	592490	1.11	1.30	6.43	7.15
23	-81.1	-65.2	598850	720730	1.12	1.23	8.82	9.42
24	-80.9	-65.1	599960	72 1880	1.12	1.23	8.82	9.42
25	-80.2	-63.9	584150	706750	1.12	1.25	8.54	9.15
26	-79.8	-63.5	5 88650	711340	1.12	1.25	8.57	9.19
27	-84.4	-71.5	705500	827360	1.12	1.14	10.67	11.24
28	-84.4	-71.4	704450	826360	1.12	1.14	10.64	11.22
29	-89-2	-80+8	997670	1119400	1.13	1.12	15.93	16.44
30	-89 • 1	-80.6	992790	1114500	1.13	1.12	15.83	16.35
31	-84.5	-68.9	602680	727170	1.13	1.19	8.83	9.46
32	-84 •2	-68.6	603890	728460	1.13	1.19	8.84	9.46
33	-86.3	-19.0	583830	1199300	1.12	2.98	8.67	12-64
34	-86.1	-18.7	584290	1201100	1.12	2.98	8.67	12.65
35	-83.2	-29.9	751630	1334200	1.13	1.98	10.90	14.43
- 56	-83-1	-29.5	748930	1331500	1.13	1.99	10.85	14.39
- 37	-88.4	-50.7	1013300	1572500	1.13	1.39	15.54	18.55
- 38	-8/.9	-50+1	101/300	1575500	1.15	1.40	15.51	18.54
39	-80.1	-41.5	993640	1520900	1.12	• [[15.04	17.62
40	-80 • 1	-41.5	989330	1516/00	1.12	• / 6	14.97	17.54
41	-03.0	-44.0	991710	1515800	1.12	• 89	14.92	17.01
42	-92 +1	-20 0	777040	1219000	1 1 2	· • 87	14.79	1/•01
43	-92 -4	-27.0	731-070	120 1900	1.12	•0 1 ∡ 1	10.91	14+10
44	-92 5	-14 9	[]42 [U	1202400	1 1 2		1U•71 0 40	14010
40	-97 5	-10-2	510130	1152200	1 1 2	1.70	0+00	14.31
40	-03+3	-10+1	J1007U	1010100	1 1 2	2 • UU 2 • F	4 1.7	12.33
41	-01+1	901 02	431300	1042100	1.12	200L	0+41	10.00
- 40	-0100	703	サゴノフフリ	1043200	1014	J • 00	U+ 4 (100 70

TABLE 2, CONTINUED.

SYSTEM CONDITIONS, PART 2.

RUN	H1	H2	RE1	RE2	PR1	PR2	٧١	V2
49	-79.5	17.9	429380	1063400	1.12	4.63	6.15	11.65
50	-79.2	18.3	430590	1064500	1.12	4.61	6.15	11.68
51	-79.9	13.9	454820	1176800	1.12	8.17	6.46	13.27
52	-79.8	14.1	454590	1175700	1.12	8.14	6.45	13.27
53	-79.7	14.4	455090	1 19 6 9 0 0	1.12	20.38	6.45	12.98
54	-79.6	14.6	456020	1201400	1.14	20.40	6.46	13.07
5 5	-85.5	-48.4	1070700	1629900	1.12	1.47	15.82	18.96
56	-85.5	-48.2	1069500	1629900	1.12	1.47	15.79	18.94
57	-97.0	-97.0	865420	865710	1.13	1.13	15.15	15.15
58	-96.6	-96.6	868080	868380	1.13	1.13	15.09	15.09
59	-81.2	-81.2	1086300	1086700	1.14	1.14	15.50	15.50
60	-81.1	-81.1	1085100	1085500	1.14	1.14	15.47	15.47
61	-80.7	-71.7	1109400	1240900	1.14	1.17	15.78	16.40
62	-80-8	-71.7	1107000	1238500	1.14	1.17	15.74	16.36
63	-78.9	-69.9	1132900	1261800	1.11	1.22	15.95	16.62
64	-78.8	-69.8	1135300	126 3300	1.11	1.18	15.96	16.60
65	-78.0	-69.0	1125100	1250600	1.12	1.21	15.90	10.54
66	-18-0	-69.0	1126200	125 1600	1.12	1.21	15.91	10.55
01	-81.0	-40.4	1109900	1642800	1.14	1.50	15.92	10.94
00	-01+4	-40.0	1110500	1044000	1.12	1.50	15.40	10.73
09	-77 0	9•Z	1096000	2474000	1.12	3.70	15.40	20.00
70	-76 7	9.0	915050	2479100	1.12	3.70	13.02	23.94
70	-76 9	-42 0	812920	94 32 30	1.15	1.21		11.70
12	-76 1	-02.9	612920	942200	1.15		0 07	16 06
73	-76 0	-11.9	661000	1442400	1 15	10.63	7.0J	17 02
75	-75.4	19 6) 6) 000	1091200	1.11	D+01	5.JQ	12.03
76	-75.2	18.9	404000	1094200	1.11	4.65	6.40	12.05
77	+83.7	-46.7	1053200	1574600	1,12	.76	15.65	18,19
78	-83.6	-46.5	1053100	1574800	1.12	.75	15.63	18,17
79	-73.9	-51.9	491550	625100	1.16	1.41	6.58	7.38
80	-73.8	-51.8	491950	625610	1.16	1.41	6.58	7.38
81	-76-4	6.9	1174200	3160500	1.15	17.17	16.10	37.05
82	-76.4	7.4	1168000	3145200	1.15	17.20	16.00	36.86
83	-74.8	-74.8	1131700	1132100	1.11	1.11	15.71	15.71
84	-74.5	-74.5	1136800	1137200	1.11	1.11	15.74	15.74
85	-75.1	-31.7	1007800	1589500	1.15	1.91	13.63	17.28
86	-74.8	-31.5	1010300	1591300	1.15	1.92	13.63	17.29
87	-70.4	10.0	505000	1284600	1.18	16.21	6.63	15.28
88	-70.2	10.3	505810	1284200	1.18	16.26	6.63	15.26
89	-70.9	2.0	679060	1639300	1.18	15.86	8.94	19.39
90	-70.8	2.1	679550	1637800	1.18	16.18	8.94	19.29
91	-74.4	-3.9	833960	1949800	1.15	13.50	11.20	23.28
92	-74.3	-4.1	837270	1944000	1.15	13.67	11.25	23.07
93	-70.3	21.4	504710	1311300	1.18	17.34	6.62	15.39
94	-70.2	21.5	505160	1311600	1.18	17.31	6.62	15+40
95	-68.4	-68.4	512030	512200	1.19	1.19	6.64	6.64
96	-68.1	-68.1	513380	513550	1.19	1.19	6.64	6.64

TABLE 2, CONTINUED.

SYSTEM CONDITIONS, PART 2.

RUN	H1	H2	RE 1	RE2	PR1	PR2	V1	¥2
97	-72.9	-72.9	499770	499920	1.16	1.16	6.67	6.67
98	-72.7	-72.7	500690	500840	1.16	1.16	6.68	6.68
99	-90.3	-90.3	401400	401490	1.13	1.13	6.50	6.50
100	-90.2	-90.2	401670	401760	1.13	1.13	6.50	6.50
101	-73.8	-60.4	835500	966730	1.16	1.22	11.18	11.87
102	-73.8	-60.4	838170	969360	1.16	1.22	11.21	11.91
103	-73.1	-59.8	850650	983450	1.16	1.22	11.34	12.03
104	-72.7	-59.3	851510	985440	1.16	1.23	11.32	12.02
105	-74.4	-65.1	1135700	1256700	1.11	1.23	15.74	16.41
106	-74.2	-64.9	1142700	126 32 00	1.11	1.23	15.80	16.47
107	-73.6	-64.2	1138500	1258100	1.11	1.24	15.65	16.33
108	-73.5	-64.1	1141300	1260800	1.11	1.24	15.66	16.35
109	-71.1	21.6	507900	1338700	1.17	15.91	6.69	16.01
110	-71.1	21.6	508110	1339600	1.17	15.64	6.69	16.08
111	-70.8	21.9	509350	1338300	1.18	16.21	6.70	15.94
112	-70.7	22.1	509800	1337800	1.18	16.28	6.70	15.93
113	-70.4	20.7	520300	1353600	1.18	17.09	6.83	15.94
114	-70.4	20.7	520780	1354900	1.18	16.91	6.83	15.99
115	-74.8	-36.5	1122700	1696200	1.11	2.15	15.60	19.23
116	-74.6	-36.4	1132200	1705500	1.11	2.16	15.69	19.33
117	-71.2	127.9	516400	1921600	1.17	•78	6.81	40-56
118	-71.1	127.3	518990	1930800	1.17	•79	6.84	40.57
119	-89.4	99.3	427860	2036800	1.12	1.02	6.61	33.55
120	-89.0	100.0	429950	2032100	1.12	1.02	6.61	33.61
121	-84.3	113.8	423170	1775500	1.12	•88	6.39	28.82
122	-83.9	112.3	428860	1787100	1.12	•90	6.46	28.61
123	-69.2	88.9	650060	2176600	1.17	1.26	8.71	30.04
124	-69.1	89.1	650740	2177900	1.18	1.26	8.72	30.11
125	-70.5	84.0	684290	2522100	1.18	1.25	9.00	36.65
126	-70.4	83.8	686370	2525100	1.18	1.25	9.02	36.65
127	-90.8	-9.8	1011800	2764500	1.13	11.21	15.85	32.92
128	-90.6	-9.5	1012800	2762000	1.13	11.41	15.83	32.80
129	-69.9	29.9	1066600	280 3200	1.18	18.47	13.97	32.35
130	-68.8	31.6	1072900	2817600	1.19	18.17	13.95	32.65
131	-92.1	•6	478880	150 1900	1.13	15.12	7.61	17.88
132	-91.8	•8	481380	1505800	1.13	15.29	7.63	17.89
133	-67.7	17.5	602660	1514000	1.19	16.27	7.77	18.02
134	-67.3	17.9	603600	1507600	1.20	17.00	7.77	17.76
135	-70.1	7	777020	1813600	1.18	14.08	10.18	21.83
136	-69.9	2	777110	1818800	1.18	14.38	10.16	21.84
137	-75.9	-2.9	899280	2007800	1.10	8.14	12.31	21.59
138	-75.7	-2.5	897590	2010800	1.10	8.26	12.27	21.62
139	-74 •7	-3.1	933360	2203800	1.15	14.03	12.58	26-16
140	-74.0	-2.4	939200	2215700	1.15	14.45	12.59	26.23
141	-74.2	-3.0	1104600	2577500	1.15	14.66	14.83	30.25
142	-74.0	-2.8	1106100	2583100	1.15	14.73	14.84	30.32

† Table 2, Continued, System Conditions, Part 2

.

.

.

Symbol	Meaning	<u>Units</u>
Hl	inlet hydrogen enthalpy	Btu/pound
H2	hydrogen enthalpy at axial	
	position of the probe tip	Btu/pound
REL	inlet Reynolds number	
RE2	Reynolds number at axial	
	position of the probe tip	
PRI	inlet Prandtl number	
PR2	Prandtl number at axial position	
	of the probe tip	
Vl	average inlet velocity	ft/sec
V 2	average velocity at axial	
	position of the probe tip	ft/sec

9. RESULTS

9.1 Introduction

This chapter describes the calculations and correlations of experimentally significant similarity numbers.

9.2 Calculation of Results

The special boiling number (33) and the temperature difference number (23) described in Section 3.4.4 and the reduced pseudocritical temperature were found to be significant. The special boiling number is

$$N_{Sk} = \frac{Q - m (h_{D} - h_{1})}{m (h_{L} - h_{D})}$$
(51)

where:

Q = heat input rate from Section 7.4

m = mass flow rate from Section 6.7

 $h_1 = inlet enthalpy from Section 7.5$

 h_{D} = dense phase enthalpy from Section 3.3

 $h_L - h_D$ = equivalent enthalpy of vaporization from Section 3.3 The temperature difference number was used in five forms. The first related wall and bulk temperatures

$$NTI = \frac{k_{w} (T_{w} - T_{2})}{2qR}$$
(52)

where:

 T_{tr} = measured wall temperature from Section 7.4

 T_2 = calculated bulk temperature at the axial position

of the probe from Section 7.5

k_w = parahydrogen thermal conductivity at the temperature of the tube inside wall from Section 3.3 q = heat rate per unit area from Section 7.4 R = test section radius

The remaining four temperature difference numbers were of two types. The first type was related to the shape of the measured temperature profile.

$$NT2B = \frac{k_B (TT2)}{2qR}$$
(53)

$$NT2W = \frac{k (TT2)}{2qR}$$
(54)

where:

TT2 = second parameter of the empirical equation expressing the temperature profile, equation (45) $k_B =$ parahydrogen thermal conductivity at temperature T_2 from Section 3.3

The second type of temperature difference number related the bulk and measured centerline temperatures

$$NT3B = \frac{\frac{k_B (T_2 - TT1 + TT2)}{2qR}}{2qR}$$
(55)

$$NT3W = \frac{k_{w} (T_{2} - TT1 + TT2)}{2qR}$$
(56)

where TT1 - TT2 = centerline temperature obtained from the empirical temperature equation (45).

The reduced pseudocritical temperature was

$$RTP = \frac{\frac{T_2}{T_pc}}{T_pc}$$
(57)

where T_{pc} was the pseudocritical temperature obtained from equation (13) using the wall static pressure adjacent to the probe.

9.3 Summary of Results

The results are expressed in terms of boiling numbers, temperature difference numbers, reduced temperatures, and parameters of the empirical equations. The range of conditions at the probe position in this investigation is given in Table 3. Table 4 lists the values obtained from the equations of the previous section. Figures 23 to 27 present correlations of results expressed by NT1, NT2B, NT2W, NT3B, and NT3W as functions of the boiling number of equation (51). The lines in Figure 23 are a least squares fit to the data. For boiling numbers less than -0.2, the data was represented by

 $NTI = 1.03344 \times 10^{-4} - 1.70809 \times 10^{-3} (N_{Sk})$ (58)

with a standard deviation of 1.13×10^{-4} . For boiling numbers larger than -0.2, the data was represented by

$$NT1 = 7.86780 \times 10^{-4} + 1.61302 \times 10^{-3} (N_{Sk})$$
(59)

with a standard deviation of 1.95×10^{-4} . Runs in which the wall to bulk temperature difference was less than 5 degrees Rankine are not included in Figure 23 because the uncertainties in the measured wall temperatures would be misleading. The plotting characters used in the figures are related to the wall to bulk temperature difference of that data point. The relation was

Plotting Character	Wall to Bulk Temperature <u>Difference</u> , °R
1	0 - 5
2	5 - 10
3	10 - 25
4	25 - 100
5	Greater than 100

The technique of using assigned plotting characters was used in many correlation attempts. The characters were assigned according to the values of run conditions, property ratios, Reynolds numbers, Prandtl numbers, and combinations of them; however, none of these revealed a

significant secondary correlation.

Figures 28 and 29 present the second parameter of the empirical equation of dynamic pressure versus boiling number and reduced pseudocritical temperature. The variations of that parameter indicate that the dynamic pressure profiles flatten with increasing boiling number and temperature. The strong peak in PP2 at $N_{Sk} = 0.3$ and RTP = 0.99 indicates very flat profiles. For N_{CL} between zero and one the hydrogen was in the quasi-two phase region. For this investigation the bulk temperature had a strong influence on profile shape. Figures 30, 31, and 32 present the parameter of velocity, and hot wire bridge and RMS voltages that is most influenced by profile shape, versus reduced pseudocritical temperature. Positive values of VV3 in Figure 30 indicate flat or "M" shaped velocity profiles. Runs for which RTP was greater than one produced "M" shaped velocity profiles in this investigation. Figure 31 shows that for temperatures slightly less than the pseudocritical, the average power required to maintain a fixed hot wire temperature was constant across the diameter of the test section. The hot wire RMS, however, is observed in Figure 32 to have the largest maximum to centerline values in this same temperature region. Figure 33

indicates that as the wall temperature increased, the bulk fluid temperature increased to the pseudocritical temperature. Further wall temperature increases did not produce a fluid temperature increase until the wall temperature had doubled.

Table 3. Range of Test Conditions

Variable	Range	<u>Units</u>
Reduced Bulk Temperature	0.662 - 1.215	
Reduced Pressure	1.003 - 1.351	
Mass Flow Rate	0.2624 - 0.7108	pounds/sec
Heating Rate	0 - 39374	Btu/hr-ft ²
Reynolds Number 4.0	$\times 10^{5} - 3_{2} \times 10^{6}$	
Prandtl Number	0.75 - 20.4	
Average Velocity	6.5 - 37.1	ft/sec

<u>9.4 Discussion of Results</u>

In Figures 29 to 32, there is a large variation in parameters of empirical equations for reduced pseudocritical temperature RTP slightly less than one. In effect, there is a thermal barrier at T_{pc} because of the very large specific heat at that point. These results would be improbable if the measured mass flow rates, power input, and inlet pressures and temperatures were not correct.

System pressure pulsations of the order of one-tenth percent produced variations in the dynamic pressure indications as large as 100 percent for some runs. This was

due to differing signal transit times through the pitot and static lines. The large viscosity variations near the critical point precluded the matching of transit times. Electrical noise was induced onto the thermopile signal by the test section voltage ripple and building electrical services. The scatter in temperature data was magnified in the determination of properties near the critical point where a small change in temperature caused a large change in properties. The data was approximated by statistical fitting of empirical equations. The acceptable precision of the empirical equations indicated the value of this method of overcoming data scatter.

The integral of the empirical ρv equation (48) with respect to area equals flow rate. This value was compared to the value obtained from the turbine flowmeter. Their deviations are presented in Table 9 in Appendix C along with the parameters of the empirical equation of ρv . The deviations are given as a fraction of the turbine flow rate. A line drawn through the data of a plot of deviations versus reduced pseudocritical temperature RTP shows an increase with temperature from approximately -9 percent at RTP = 0.75 to +15 percent at RTP = 1.15. The negative sign indicates that the flow rate by integration was lower

than that of the turbine flowmeter. For RTP between 0.98 and 1.0 the deviations vary from +6 percent to a maximum of +24 percent. Correction of the observed dynamic pressures for the effect of the axial component of turbulence was analyzed. Attempts were made to infer turbulence level from the probe data. The hot wire operated at a constant temperature and the power required to maintain the temperature was calculated from the fixed resistance of the wire and the current flowing through the wire as measured by the hot wire bridge voltage. Heat transfer from heated surfaces is often related to c (Prandtl number)^m (Reynolds number)ⁿ (fluid thermal conductivity). No information was available for heat transfer from very hot slender cylinders in rapidly moving fluids. Equations with m = 0.33 or 0.4, n = 0.5 or 0.8 and c = 0.34 or 0.57 were tried. Properties were obtained from the TABTP code, measured pressures, and the empirical equations for temperature. The Reynolds number profiles were calculated from the properties and the empirical equations for velocity. The RMS value of the bridge voltage was due to the fluctuation in the power required to maintain the wire at a constant temperature. The power variation was assumed to be exclusively due to velocity fluctuations of turbulence.

The velocity in the Reynolds number of the heat transfer equation was varied in proportion to the power fluctuation. The dynamic pressure of the fluctuating velocity was subtracted from the measured pitot pressure to obtain a corrected dynamic pressure. The corrected flow rates that were obtained by integrating a corrected ρv were less than the uncorrected values. This produced a substantial decrease in the deviation between the integral of ρv and the turbine flowmeter near the critical point.

The assumptions of this analysis cannot be justified, particularly the one in which velocity fluctuations were assumed the sole cause of power fluctuations. For example, fluctuations in the density are a strong contributor to the RMS. Near the critical point density may change by a factor of two per degree change in temperature. This should produce large turbulent fluctuations in density. A proper resolution of this question requires an experimental program to determine the form of the heat transfer equation. Attempts to arrive at an equation from the data of this investigation were unsuccessful.

The peaks in Figures 29 to 32 indicate that when the bulk fluid temperature was slightly below the pseudocritical temperature, the fluid properties and mixing

combined to produce uniform conditions in the central portion of the flow. At this temperature the large specific heat produced only small temperature changes. The fluid mixing was enhanced by a viscosity minimum. Figure 33 indicates that the pseudocritical temperature was a partial barrier to production of bulk temperatures greater than T_{pc} . For many runs large difference in power input resulted in similar temperatures due to the large specific heat. This produced a concentration of the data just below RTP = 1 which would not be expected from a map of the test conditions.

The empirical equation of temperature (45) was an elipse whose major axis was the tube diameter. The minor axis of the elipse was TT2 and represented the curvature of the temperature profile. Figures 24 and 25 show that at $N_{Sk} = 0.3$ the temperature profiles were flat. This value of the boiling number produced fluid temperatures close to the pseudocritical value. Figures 26 and 27 show the expected result that when the temperature profiles were flat the centerline measured temperature and the calculated bulk temperature were approximately equal. The data scatter in Figures 24 to 27 at N_{Sk} less than zero indicates that a boiling type correlation is not succesful

in predicting results within fluid that is subcooled below the dense phase saturated enthalpy. Both bulk and wall temperature thermal conductivities provided correlations which are included for the convenience of the designer.

The minimum in NT1 in Figure 23 indicated that a heat transfer maximum occured at $N_{Sk} = -0.2$. At this boiling number the bulk of the hydrogen was in the dense phase and the fluid in the vicinity of the wall was near the pseudocritical temperature. The large specific heat and low viscosity of the fluid near the wall provided a good mechanism for transporting heat away from the wall. Most of the tests with heating in this investigation produced wall temperatures above the pseudocritical. Therefore the hydrogen adjacent to the wall was within the quasi-two phase region and the boiling correlation was successful.

The results as presented should be useful to designers of systems involving fluids near the critical point. The NT1 correlation, Figure 23, provides wall temperatures. The NT2 and NT3 correlations provide temperature details within the flow. Theoretical explanation of the results was not attempted because of the complex nature of the problem. It is hoped the results may provide a basis for theoretical investigations in the future.

The results are inherently limited due to experimental conditions. One test fluid was used within one size test section having unique inlet conditions. The flow was vertically upward and the heated length was fixed.

TABLE 4.

RESULTS

RUN	NSK	RTP	NT 1 Y 10+7	NT2B	NT2W	NT3B	NT3W	TW-T2
	*****	****	+++++	*****	×1074	×10+4 ++-+	*****	DEG•K
1	•0879	•985	•996	•532	.385	•510	•369	72.3
2	•0890	•985	•981	•676	•488	.579	•418	71.4
3	.2762	•995	1.403	•146	•137	.189	.178	92 • C
4	•2804	•996	1.409	•040	•038	.162	• 154	92.2
5	•2083	•993	1.292	•184	-161	•323	•282	87.2
6	•2098	•993	1.289	•192	•167	•376	-328	87.1
7	•2710	•995	1.314	•252	•240	•215	•205	102-2
8	. 2852	•995	1.307	•164	•156	•170	.162	101-8
9	6906	•729	0.000	0.000	0.000	0.000	0.000	0.0
10	6937	•729	0.000	0.000	0.000	0.000	0.000	0.0
11	2844	•891	•570	5.908	5.255	•845	•751	5.2
12	2848	•891	•573	4.540	4.031	•455	•404	5.2
13	•2912	•996	1.230	051	042	•146	•120	66.4
14	•2929	•996	1.210	•096	•079	•191	•157	65.5
15	6271	-818	1.281	5.268	3.195	•005	•003	16.1
16	6254	.819	1-274	5.754	3.495	•339	•206	16.C
17	6160	•825	1.298	6.885	4.168	•590	•357	16.4
18	6114	•827	1.282	5.719	3.469	•436	•265	16-2
19	4778	•840	1.067	5.668	3.361	047	028	13.8
20	4787	•840	1.066	6.667	3.958	•384	•228	13.7
21	3350	•874	•706	6.550	4.901	•992	•742	7.4
22	3280	•877	•678	5.954	4.393	•832	•614	7-2
23	/084	• 794	1.119	3-476	3.063	477	421	9.5
24	/035	•795	1.125	4-489	3.945	•058	• 05 1	9.6
25	0858	-801	1.100	4-214	3.667	•064	•056	9.5
20	0828	•802	1.080	4.862	4.261	•473	•414	9.3
21	1855	• 100	149	4.330	4.359	036	037	-1-1
20		•/00	131	2.721	2.738	456	459	-1.0
29	- 9995	• (10	708	1.935	2.004	531	551	-5.0
20	-60000	•/19		3•208	5-289	•057	•038	-5.0
21	- 4101	•03U	• 1 30	2.000	3+170		182	0.1
72	4110	•03U	• 7 50	3-290	3.010	-1.028	958	
30	•0021 0621	+ 70Z	+011 971	• TUZ	+423 1,75	•207	• 101	50-1
34	0397	+ 70 I	●034 7)17	+ 1 1 J Z 7 5 0	+435	•211	• 120	
35	0362	• 70 J 06 h	- 1 + J 6 0 1	3 0 4 3	2 • 109	1+150	• 0 3 U	40 • 2
37	- 2740	. 904	- 128	2.061	1 270	201	+ 35 t 170	43.4
38	2684	. 909	- 120	2.115	1.305	4271	-1/7	
39	- 3469	.881	.179	2.097	1.310	- 350	-210	0.7
цÓ	- 3439	.885	- 180	1.903	1.186	. 197	- 123	7•J 0.5
<u>4</u> 0 1	- 7767 - 7767	.875	. 192	1.970	1.329	. 222	125	
42	- 4487	.875	. 193	2.104	1.416	.270	- 191	7.4
43	2419	-922	409	4.607	2.733	-969	-575	23.9
44	2401	.922	.423	3.810	2.255	.926	5 <u>1</u> 8	24.7
45	0930	•950	.611	1.482	.924	432	269	35-8
46	0906	•950	•625	1.612	1.007	.448	.280	36-6
47	-2252	•981	1.377	.597	•468	•205	.161	70.9
48	•2279	•981	1.399	.609	.479	.187	.147	71.8

TABLE 4, CONTINUED.

;

.

.

RESULTS

RUN	NSK	RTP	NT 1 X 10+3	NT2B X10+4	NT2W X10+4	NT3B X10+4	NT3W X10+4	TW-T2 DEG.R
	*****	****		*****	*****	*****	****	
49	•3717	•991	1.668	•326	•280	• 190	• 164	83.0
50	•3753	•992	1.679	•339	•293	•206	•178	83.3
51	•3602	•997	1.583	•020	•017	.111	•096	81.9
52	•3620	•997	1.617	.110	•096	•129	.112	83.1
53	•3655	•997	1.628	•139	•122	•125	•109	83.9
54	•3676	•997	1.646	.103	•091	•095	•084	84.5
55	2176	•912	•168	1.417	•789	•254	- 141	10.2
56	2132	•913	•169	1.537	•853	•267	.148	10.2
57	-1.0879	•621	0.000	0.000	0.000	0.000	0•000	0.0
58	-1.0915	•623	0.000	0.000	0.000	0.000	0.000	0.0
59	5204	•769	0.000	0.000	0.000	0.000	0.000	0.0
60	5208	•769	0.000	0.000	0.000	0.000	0.000	0.0
61	4332	.818	•923	2.131	1.199	•905	• 509	12.3
62	4297	.819	•916	1.964	1.103	•962	•541	12-2
63	4658	•815	1.020	2.372	1.578	1.076	. 716	11.6
64	4621	.816	•944	1.835	1.140	•915	•569	11.5
65	5789	•798	1.171	2-069	1.489	•978	•704	12.3
66	5780	•798	1.168	2.217	1.591	•940	•675	12.3
67	2001	•918	•299	2.064	1.072	•626	₊ 325	18.3
68	1992	•918	•296	2.077	1.083	•633	•330	18.1
69	•2289	•982	1.282	•656	•658	•255	•255	116.8
70	•2323	•982	1.283	•675	•677	•254	•255	116.8
71	3603	•85 5	•611	3.109	2.902	•814	•760	5.1
72	3564	•856	•615	2.667	2.486	•802	•748	5.2
73	•1273	•989	•725	•465	•305	•354	•233	43.8
74	•1280	•989	•739	•456	•300	•365	•240	44.5
75	•3795	•992	1.545	•328	•275	•233	•195	78.1
76	•3823	•992	1.547	•315	•264	•234	•196	78.2
77	3540	•884	•234	1.647	•980	•368	•219	12.9
78	3513	•885	•232	1.658	•988	-398	-237	12.7
79	-•2506	•901	•518	5.003	3.617	1.262	•912	5.6
80	2495	•901	•514	5.489	3.930	1.341	•960	5.6
81	•3035	•996	1.202	•154	•167	•130	•141	113.9
82	•3084	•996	1.238	•115	•126	•125	•136	115.9
83	8023	•752	0.000	0.000	0.000	0.000	0.000	0.0
84	7964	•754	0.000	0.00	0.000	0.000	0.000	0.0
85	0624	•959	• 166	1.415	•816	•409	•236	9.8
86	0601	•959	• 163	1.222	•706	• 394	•2 28	9.7
87	•3346	•996	1.129	•012	•010	• 182	-144	57•1
88	•3370	•996	1.134	•073	•058	•207	-164	57.3
89	•2569	•995	1.029	.119	•094	•151	.118	62.1
90	•2575	•995	1.032	.113	•089	•153	.120	62.2
91	. 20 30	•992	.877	•227	.174	•174	•133	64.6
92	•1996	•992	•872	.215	•164	•191	. 145	64.3
93	.4417	• 9 97	1.581	•065	•059	• 106	•096	80.5
94	•4433	•997	1.558	•072	•065	.109	• 098	79.8
95	-•4090	•832	0.000	0.000	0.000	0.000	0.000	0.0
96	4051	.834	0.000	0.000	0.000	0.000	0.000	0.0
TABLE 4, CONTINUED.

RESULTS

RUN	NSK	RTP	NT 1 X 10+3	NT2B X10+4	NT2W X10+4	NT3B X10+4	NT3W X10+4	TW-T2 DEG.R
 97			0.000	0.000	0.000	0,000	0.000	
98	4723	-807	0.000	0.000	0.000	0.000	0,000	0.0
99	-1.0373	.661	0,000	0.000	0.000	0.000	0,000	0.0
100	-1-0411	.661	0.000	0,000	0.000	0,000	0,000	0.0
101	3268	.869	424	2.846	2.921	.818	.840	-3.3
102	3258	.869	373	2.776	2.840	.928	.949	-2.9
103	3213	.871	370	2.393	2.448	1.065	1.090	-2.9
104	3159	.873	379	2.777	2.844	1.130	1.157	-2.9
105	7024	.795	189	1.687	1.704	.833	.842	-1.4
106	7061	•795	194	1.792	1.811	•820	.828	-1.5
107	6910	.799	•273	2.392	2.353	•826	•812	2.1
108	6859	•800	•286	2.054	2.018	•890	•875	2.2
109	•4453	•997	1.574	.100	•091	•094	•086	81.8
110	•4461	•997	1.587	.060	•05 5	• 106	•097	82.3
111	•4481	•997	1.600	•082	•075	• 10 1	•092	82.7
112	•4499	•997	1.606	•125	.115	•117	•108	82.9
113	•4357	•997	1.595	•111	•101	•126	•115	82.4
114	•4356	•997	1.594	•056	.051	•115	•105	82.4
115	3314	•904	•225	1.867	1.197	•530	•340	12.0
116		•904	•227	1.645	1.055	•501	• 321	12.1
117	1.45/0	1.190	3.150	2.709	6.132	•598	1.353	193.5
118	1.4511	1.194	3.125	2.138	0-109	•013	1.382	192.5
119	1.1077	1.007	3 • 1 32	1.04/	3.448	• 322	+0/5	194.4
120	1.5700	1 170	3 • 1 39	1.07	3.310	• 340	• / 14	194.5
121	1.5170	1 1 2 1	3.099	2.191	4.505	•490	• 759	109+1
122	1.2262		3.074	2.570	4.013	+400 211	+ 700 5 7 7	107+0
123	1.2283	1.074	2 · 4 10	1.073	2.010	-309	• 535 • 521	166.6
124	1.0402	1.049	2 • 4 12 2 . h 16	1.262	2.297	• JU9	•J24	170.5
125	1.0383	1.049	2.413	1.417	2.576	-236	•420 •430	170-3
127	.1488	.990	1.165	.462	.451	-203	198	113.0
128	.1513	.990	1,197	-780	.473	-216	.213	114.8
129	.5224	.998	1.491	.176	.215	.077	•093	129.8
130	.5385	.998	1.495	.244	.299	.080	•098	130.0
131	.2459	•994	1.420	.178	.160	•189	•170	88.1
132	•2478	•994	1.445	.202	.183	•202	•183	89.C
133	- 4059	.997	1.332	•139	.121	•142	• 124	75.5
134	•4088	•997	1.313	•131	•113	• 145	.126	74.6
135	•2347	•994	•857	•288	•218	.181	.137	57.4
136	•2393	•994	•868	•304	•232	•192	-146	58.0
137	-1914	•990	•865	•500	•384	.201	•154	69.7
138	•1960	•990	•881	•507	•391	•210	•162	70 . E
139	•2094	•992	•896	•328	•262	•140	.112	72.5
140	•2164	•993	•895	•345	•277	• 144	•116	72.4
141	•2093	•992	•843	•427	•350	•113	•092	77.7
- 142	•2110	• 992	•82	• 4 2 2	• 54 (• 1 1 9	-098	18.2

97

,

Figure 23. Temperature Number NT1 versus Boiling Number N_{Sk}

Figure 26. Temperature Number NT3B versus Boiling Number N_{Sk}

101

.

PP2

 $RTP = T_2/T_{pc}$

Figure 29. Dynamic Pressure Parameter PP2 versus Reduced Pseudocritical Temperature

 $RTP = T_2/T_{pc}$

105

Figure 31. Hot Wire Bridge Voltage Parameter WW2 versus Reduced Pseudocritical Temperature

 $RTP = T_2/T_{pc}$

.

10. CONCLUSIONS

1. Property variations near the critical point have an important effect on flow and heat transfer. With pseudocritical temperatures slightly less than one, dynamic pressure, temperature, and hot wire average current were more nearly constant with respect to radius than at other temperatures.

2. A special boiling number involving quasi-two phase enthalpies of dense and light phases was significant for reduced pressures from 1.003 to at least 1.351.

3. A correlation was obtained between a similarity number involving the difference in temperatures of the tube wall and fluid and the special boiling number.

4. The variation of measured RMS voltages of a hot wire as a function of radius was much larger for pseudocritical temperatures slightly less than one than at other temperature.

109

APPENDIX A

Symbols

Symbol		Meaning	<u>Units</u>
a [·]	=	πR^2 , cross section of test section	ft ²
as	=	$2\pi RL$, surface area of test section	ft ²
b	=	specific body force	<pre>slug/ft²-sec²</pre>
с _р	=	isobaric specific heat	ft ² /sec ² -°R
D	=	adjusted standard deviation	
DL	=	largest adjusted deviation	
h	=	specific enthalpy per unit mass	ft ² /sec ²
h _D	=	dense phase enthalpy	ft ² /sec ²
h _L - h _D	=	equivalent enthalpy of vaporization	ft ² /sec ²
k	=	thermal conductivity	slug-ft/sec ³ -°R
L	=	zone number of DL	
MM	=	parameter of mass flow rate per unit	
		area empirical equation	
No	=	reference similarity numbers	
n	=	nondimensional variable	
PP	=	parameter of dynamic pressure empiri	cal
		equation	
p	=	pressure	slug/ft-sec ²
Q	=	heat flux per unit time	slug-ft ² /sec ³

ı

<u>Symbol</u>	•	Meaning	Units
đ	=	heat flux per unit time and area	slug/sec ³
R	=	0.688 inches, inside radius of the	
		test section	ft
RR	=	parameter of hot wire bridge RMS	
		voltage empirical equation	
RTP	H	T ₂ /T, reduced pseudocritical	
		temperature	
r	#	ra di us	ft
S	=	standard deviation from data	
SM	=	standard deviation from means of	
	•	data	
т	=	temperature	°R
т _с	=	cri ti cal t empe rature, 59.37°R	°R
^т рс	=	pseudocritical temperature	°R
TT	=	parameter of tem perature empirical	
		equation	
t	Ħ	time	sec
u _i	=	hydrogen property i	
V(r)	Ŧ	velocity as a function of radius	ft/sec
vv	=	parameter of velocity empirical	
		equation	
v	-	velocity	ft/sec

Sym	<u>bol</u>		<u>Meaning</u>	<u>Units</u>
ww		=	parameter of hot wire bridge	
			voltage empirical equation	
x		×	length	ft
У		=	distance from the test section	
			reference wall	ft
Δp	(r)	=	dynamic pressure as a function of	
			radius	slug/ft-sec ²
η		=	bulk viscosity	slug/ft-sec
θ(1	c)	n	temperature difference as a func-	
			tion of radius	°R
μ		=	shearing viscosity	slug/ft-sec
ρ		=	density	slug/ft ³
ρν		=	mas s flow rate per un it area	slug/ft ² -sec
()。	=	reference dimensional variable	
()1	=	test section inlet	
()2	=	axial length of test section from	
			inlet to probe tip, 176 inches	
() _в	=	bulk average	
() _i	232	component in the x_i direction	
() _{,i}	=	derivative with respect to x	
() _m	=	model	
() _p	±	prototype	

.

•

.

.

•

Meaning Symbol () = derivative with respect to time () = test section inside wall $N_{BO} = \frac{q_{OS}}{m_{P}h}$, boiling number $N_{ho} = \frac{h_o}{v_o^2}$ $N_{po} = \frac{p_o}{\rho_o v_o^2}$ $N_{Pr_o} = \frac{\mu_o^c po}{k_o}$, Prandtl number $N_{qo} = \frac{q_o}{\rho_o v_c^3}$ $N_{RO} = \frac{\rho_{o} v_{o} x_{o}}{\mu_{o}}$, Reynolds number $N_{Sk} = \frac{Q - m(h_D - h_1)}{m(h_L - h_D)}, \text{ special boiling number}$ $N_{TO} = \frac{k_{O}T_{O}}{q_{O}X_{O}}$ $NT1 = \frac{k (T - T_{2})}{2 \alpha^{R}}$

Symbol

Meaning

.

.

.

•

$$NT2B = \frac{\frac{k_B(TT2)}{2qR}}{2qR}$$

$$NT2W = \frac{\frac{k_w(TT2)}{w}}{2q^R}$$

$$NT3B = \frac{k_{B}(T_{2}-TT1+TT2)}{2qR}$$

$$NT3W = \frac{\frac{k_w(T_2-TT1+TT2)}{2qR}}{2qR}$$

$$N_{\theta O} = \frac{k_{O}^{\theta}O}{q_{O}x_{O}}$$

APPENDIX B

Instrumentation Calibration Factors

- 1. Pressure Transducers 7.70 psi/mV Dewar pressure 17.78 psi/mV Inlet plenum Pitot position wall static 17.45 psi/mV pressure Test section pressure 0.100 psi/mV differential Pitot differential pressure, 0.100 mm-Hg/mV Baratron 10 mm full scale range 30 mm full scale range 0.317 mm-Hg/mV where:
 - psi = pressure, pound/inch²
 - mV = output voltage, millivolts
 - mm-Hg = pressure, millimeters mercury
- 2. Rosemount platinum resistance thermometer,

No. 179A10/2028

Range 24-60°R

$$T = 3.8126536 + 42.914962(R) - 31.067817(R2) + 15.254059(R3) - 4.8961214(R4) + 1.0447286(R5) - 0.14901324(R6) + 0.014018260(R7) - 8.3374922 x 10-4(R8)$$

+ 2,8379306 x
$$10^{-5}$$
 (R⁹)
- 4,2092957 x 10^{-7} (R¹⁰)
Standard deviation = 0.0142
Range 60-160°R
T = 36.824537 + 2.4181278(R) - 5.3827240 x 10^{-2} (R²)
+ 1.1510626 x 10^{-3} (R³)
- 1.5630588 x 10^{-5} (R⁴)
+ 1.2886923 x 10^{-7} (R⁵)
- 5.8447099 x 10^{-10} (R⁶)
+ 1.1146391 x 10^{-12} (R⁷)
Standard deviation = 0.0049
where:
T = Temperature, °R
R = Resistance, ohms
Rosemount triple bridge unit
R = - 0.35745216 + 4.6732166(E) + 0.016319025(E²)
+ 8.5945361 x 10^{-5} (E³)
where:
E = voltage, millivolts
Copper-constantan wall thermocouples, 34.92°R
reference junction

Range 36-170°R

3.

4.

.

 $T = 35.100337 + 302.88924(E) - 755.90174(E^2)$

+
$$2246.3585(E^3) - 4449.1310(E^4)$$

+ $5268.7891(E^5) - 3355.4663(E^6)$
+ $880.47247(E^7)$

Standard deviation = 0.031

$$T = 36.449728 + 251.93901(E) - 281.38495(E2) + 297.24141(E3) - 181.06708(E4) + 56.473775(E5) - 6.9907397(E6)$$

Standard deviation = 0.288

Thermo	ocouple	Shift Voltage,	millivolts		
L/D		42° R	142°R		
2	2	-0.06038	-0.0317		
e	5	-0.05811	-0.0223		
31	L	-0,09385	-0.0286		
56	5	-0.10690	-0.0566		
8]	L	-0.07275	-0.0344		
100	5	-0,22990	-0.0320		
12	7.5	-0.15151	-0.0425		
129	9.5	-0.07447	-0.0258		
5. 5	Thermopile,	34.92°R referenc	e junction		

Range 16-142°R

$$T = 27.098720 + 48.270650(E) - 21.259577(E2) + 10.510992(E3) - 3.4888403(E4) + 0.69108267(E5) - 0.072950230(E6) + 0.0031322624(E7)$$

Standard deviation = 0.0687

Correction for insertion length cycling due to probe motion.

where:

y = distance from reference tube wall, [y] = inches, 0 < y < 1.376</pre>

Approaching the reference wall

 $E = -0.0044 + 0.0408(y) - 0.022(y^2)$

Leaving the reference wall

E = -0.001 + 0.0095(y)

Correction for test insertion length shorter than

initial calibration insertion length.

 $\Delta T = - 3.915 \log (132/T)$

 $\Delta T = 0.0 \text{ for } T > 132$

- 6. Turbine flowmeter, Cox S-20-MB, No. 4316 1074.2 cycles/gallon, ± 0.371 percent deviation from linearity.
- 7. Shunt resistor 25.18 x 10⁻⁶ ohms.
- 8. Hot wire anemometer, 25.7 volts per ampere of current

118

through the wire at a wire resistance of 1.5 ohms. 9. Temperature of the liquid hydrogen reference junction $T = 1.8 [A + (A^2 + 2158.5779)^{\frac{1}{2}}]$ where: $A = (\log P/0.04110936) - 113.19232$ and: P = Barometric pressure, mm-Hg10. Thermal conductivity of Inconel 600. $k_T = 74.3 + 0.05375(T), \frac{Btu-inch}{hr-ft^2-^{\circ}R}$

APPENDIX C

Data Summaries

TABLE 5.

CALCULATED INSIDE WALL TEMPERATURES *

1

RUN	L/D=2	6	31	56	81	106	127.5	129.5
	79.1	79.9	86.2	123.5	143.3	119.7	129.5	133.2
2	79.2	79.9	85.8	122-2	145.6	118.9	128.8	132.4
3	82.2	82.6	94.8	146.7	137.0	147.4	152.3	150.7
4	82.3	82.9	96.8	143.9	138.8	148.9	152.7	150-6
5	75.4	77.9	87.4	150.6	130.6	139.1	147.4	145-5
6	75.3	77.5	87.0	151.2	131.2	139.8	147.2	145.5
7	74.5	74.7	88.9	187.4	151.9	155.5	164.9	159.9
Ŕ	74.8	75.1	89.1	188.5	152.3	155.8	164.4	159.7
11	50.2	18.8	49.3	58.0	51.9	54 9	50 3	57 7
12	50.4	40.U	49.0	58.0	54.8	55.2	50 h	57 9
17	69.4	74.0	91.0	106.9	112 1	115.5	125 0	125 7
15	68 1	72 9	07.1	100.9	11201	113+5	125.7	123+1
15	60 5	A1 2	7J+4 60 h	47 9	45 5	74 7	12301	47 0
15	60.2	A1 2	61 0	47 7	45 5	77 0		47 0
10	60.1	41 7	41 0	49 2		74 0	00 • 1 40 h	
10	60.4	01+1 41 E		49 1		77 9	07.4	477
10	54 0		01.0			71 4	09-4	01.1
19	50.9	50.4	70.0 50.5	04+0	03.0	71.0	00.0	05.1
20		J1 +7		04+1 50 0	02•9 54 5	//•∠	00+1 41 E	04.9
21	47.1	50 • 4 50 7	40.0	50.4	JQ•J	03 • 4	01+3	20.9
22	40•9 60 0	50	49.1	20+4			01.3	
23	40.0	47.0	40.4		55•1	04.3	01.1	50.1
4	40.0	49.0	40 • 1	57.0	J]•∠	04 • Z		59.0
25	48.8	50.2	48.3	57.4	55.2	04 • 3	01-4	59.2
20	48.5	50.0	48.5	57.2	54.8	04-3	01.1	59-2
21	37.0	38.0	30.0	45.8	43.3	49.1	49.4	45.5
28	37.5	38.2	50.4	46.1	43.8	50.3	49-4	45.8
29	30.5	50.9	54.5	42.5	39.1	46.4	42-3	38.1
30	30.4	30.8	33.9	42.8	39.1	4/+1	42-2	38.9
51	47.9	47.6	49.4	54.9	52.7	53.3	57.7	53-5
32	47.4	4/•1	48.8	54.7	52.8	53.4	57-8	53-4
55	60.7	61.8	68.1	113.3	94.2	85.3	107.8	109.6
54	60.5	61.2	68.6	113.7	94.4	86.2	108.9	110.7
- 35	55.9	56.3	59.8	76.1	79.7	70.2	102.9	104.3
50	56.3	56.5	59.8	76.7	81-2	74 • 7	100.4	101.3
37	51.9	51.7	52.6	62.5	62.3	45.3	60.3	61.8
- 58	51.9	52.5	52-4	62.9	62.5	45.3	60.5	62-0
- 39	54.8	54.5	56.3	65.5	64.9	46.9	63.2	65.3
40	54.5	54.8	56.2	65.5	65.3	47.4	63.5	65.4
41	55.7	55.8	57.3	67.0	65.9	46.6	63.6	66.2
42	55.7	56 • 1	57.1	66.9	65.9	46.8	63.5	66.4
43	59.7	59.9	62.5	76.7	77.5	57.5	79.9	84.7
44	59.6	59.9	61.9	77.1	78.1	56.4	80.8	85.3
45	62.8	64 • 1	70.7	93.5	115.7	83.8	94.2	97.9
46	62.8	64.0	70.4	93.0	115.7	86.0	94.9	98.7
47	72.1	78.4	97.3	110.4	118.8	124.6	132.8	133.4
48	71.9	78 • 1	97.3	109.9	119.6	125.2	133.7	134.3
49	75.9	81.1	97.3	118.2	129.1	136.9	144.7	144.0
50	75.9	80.8	97.0	117.8	130.0	137.4	145.1	144.4

TABLE 5, CONTINUED.

CALCULATED INSIDE WALL TEMPERATURES

RUN	L/ D=2	6	31	56	81	106	127.5	129.5
51	76.4	80.2	97.5	117.2	128.8	136.2	142.3	141.9
52	76.1	79.8	96.9	118.0	128.6	137.3	143.5	143.1
53	76.4	80.9	96.4	117.6	129.7	138.1	144.3	143.9
54	77.0	80.9	95.9	118.4	130-2	138.8	145.0	144.3
55	56.4	56.7	58.6	63.1	63.7	50.8	63.4	65.7
56	56.3	56.5	58.3	63.4	64.0	51.0	63.6	65-8
61	55.3	56.2	60.1	57.7	57.0	66.0	60.4	61.7
62	55.2	56.5	59.3	57.6	57.2	66.0	60.3	61.7
63	55.0	56.1	57.5	57.5	57.3	65.6	60.1	61.5
64	54.7	56.2	56.8	57.5	57.1	66.0	60.0	61.5
65	56.0	56.0	61.3	57.8	58.3	67.4	61.1	62.2
66	55.9	56.3	60.3	57.7	58.2	67.6	61.0	62.3
67	64.6	65.9	69.8	71.9	72.5	65.8	71.1	75.1
68	64.7	66.0	69.3	71.8	72.3	65.7	70.9	75.1
69	82.9	85.4	101.2	174.4	210.1	178.4	178.5	179.2
70	82.9	85 • 4	100.4	173.9	208.9	177.6	178.6	179.2
71	48.3	49.6	48.8	52.9	53.0	61.2	55.2	57.1
72	48.4	49.9	48.3	52.8	53.0	60.9	55.5	57.0
73	65.3	69 . 6	74.4	101.6	98.2	82.2	100.0	105.7
74	65.4	69.7	74.2	103.2	96.7	80.6	100.7	106.3
75	76.0	81.2	106.6	115.5	126.5	133.5	138.8	140.2
76	76.4	81.6	106.4	115.7	126.4	134.0	138.9	140.4
77	59.9	59.8	65.0	65.9	66.8	60.2	66.0	69.6
78	59.6	60.2	64.1	65.8	66.5	59.9	65.9	69.5
79	52.0	53.8	56.5	57.5	57.0	62.4	58.9	59.9
80	51.9	53.8	55.8	57.5	57.1	62.2	59.0	59.9
81	77.5	79.7	97.5	200.6	187.3	172.7	173.3	173.6
82	77.3	79.7	98.5	208.2	184.5	173.4	175.4	175.4
85	60.2	61.2	66.4	67.0	66.6	56.3	64.2	70.1
86	60.2	61.1	65.7	66.5	66.3	56.5	63.8	70.1
87	73.2	77.0	96.4	100.9	107.1	107.5	114.9	118.3
88	73.1	76.9	97.3	101.2	106.7	107.9	115.1	118.5
89	70.5	73.6	85.0	127.7	106.0	109.3	120.1	123.0
90	70.1	73.1	84.1	130.1	106.0	109.0	120-2	123.1
91	70.4	73.0	87.8	125.0	131.1	112.7	121.8	125.9
92	69.8	72.8	86.2	123+4	130.8	111.6	121.3	125-8
93	79.6	83.0	104.8	119.3	128.3	134.6	139.2	141.0
94	79.8	82.9	105.1	119.3	127.6	134.6	138.3	140.3
101	42.0	42.6	40.6	42.8	47.9	50.2	51.6	45.4
102	42.0	42.9	39.9	42.9	48.1	50•4	52.1	45.7
103	42.7	43.7	38.5	43.5	48+7	50.5	52.0	46.1
104	42.9	43.9	38.4	43.9	49+0	50.7	52.0	46-2
105	45.5	46.0	41.7	45.2	48.3	51.2	51.5	46-4
106	45.3	45.9	41.0	45.5	48.2	51.5	51.5	46.5
107	48.6	49.5	46.9	49.2	51.4	56.5	54.6	50.9
108	48.7	49.6	46.1	48.9	51.4	56.6	55.0	50.9
109	81.2	83.2	102.8	117.7	129.1	134.5	141.5	140.9
110	81.7	83.6	102.3	118.1	129.4	136.1	142.1	141.3

TABLE 5, CONTINUED.

CALCULATED INSIDE WALL TEMPERATURES

RUN	L/D=2	6	31	56	81	106	127.5	129.5
		** **				****	+ + + + +	*****
111	81.4	83.1	102.8	118 .8	130+1	135.7	142.3	141.9
112	81.2	83.5	103.0	119.2	130.4	136.2	142.7	142.0
113	81.2	83.2	104.1	118.1	129.3	135.7	142-4	141.5
114	81.3	83.0	104.5	118.0	128.8	135.7	142.3	141.6
115	59.7	60.3	61.2	65.4	69.9	55.2	68.4	70.0
116	59.4	60 • 2	60.8	65.5	69 .9	55.2	68.4	70.1
117	115.2	120.6	130.8	209.9	256.8	263.1	266.6	263.5
118	115.2	121.1	131.2	210.4	255.7	262.4	265.5	262.3
119	114.6	117.7	124.2	185.9	236.1	256.1	261.4	258.0
120	114.5	117.3	124.9	185.9	236.9	256.1	261.6	258.2
121	114.0	117.8	130.4	204.3	247.8	258.8	263.7	260.1
122	113.9	117.7	130.2	203.7	247.2	258.2	263.3	259.7
123	108.6	115.2	140.5	209.9	230.2	233.4	236.9	233.1
124	108.2	115.2	140.9	210.1	230.9	233.5	236.6	232.9
125	106.2	112.2	128.5	192.2	223.6	230.9	235.2	231.5
126	106.1	111.9	128.1	190.1	222.3	230.7	235.1	231.3
127	73.6	74 •9	89.5	152.8	205.7	172.6	173.1	171.2
128	73.4	74 • 8	89.2	155.3	204.0	172.3	175.1	172.8
129	84.7	87.2	115.1	191.2	185.1	186.2	191.0	188.2
130	85.3	88.3	116.2	190.5	185.4	187.2	191.1	188.4
131	71.7	77.5	99.1	122.6	133.4	143.8	148.6	146.4
132	71.9	77.8	99.7	123.0	133.1	143.6	149.7	147.1
133	74-1	76.7	102.5	115.3	122.7	130.8	135.6	134.4
134	73.5	76.0	101.7	115.3	122.6	129.6	134.7	133-6
135	67.7	69.9	77.1	116.5	115.2	100.2	116.0	117.4
136	67.6	69.9	77.2	118.5	115.3	101.1	116.6	118.1
137	71.2	73-2	84.3	121.0	168.3	129.5	129.1	130.0
138	70.9	73.1	83.7	120.7	168.4	129.0	130.1	130.9
139	70.6	72.5	81.3	121.5	161.9	128.2	131.6	132.1
140	70.6	72.3	81.1	122.2	163.0	127.6	131.4	132.0
141	72.6	73.0	88.9	119.9	186.4	147.5	137-2	137.0
142	72.6	73.3	88.0	121.1	186.2	147.9	137.7	137.4

† Temperatures are in degrees Rankine.

.

PARAMETERS OF EMPIRICAL EQUATION OF TEMPERATURE [†]

.

RUN	TTI	TT2	S	SM	D	DL	L
1	59.24	2.794	•992	.112	.0020	0041	3
2	59.64	3.553	.838	.088	.0015	0025	1
3	59.24	.899	.669	•054	.0009	•0017	9
4	58.74	•250	•758	• 041	.0007	0011	4
5	58.43	1.085	.616	• 084	.0015	0029	2
6	58.18	1.131	.733	.160	.0028	• 0048	10
7	60.47	1.864	.734	•078	•0013	0022	9
8	60.18	1.213	• 63 1	• 093	.0016	•0032	7
9	44.70	.150	•711	•092	.0021	•0032	3
10	44.42	300	•781	• 059	.0013	•0022	10
11	57.45	4.798	.838	• 110	.0021	0041	9
12	56.67	3.688	•629	.122	• 0023	•0042	1
13	58.54	226	•535	•043	• 0007	0016	10
14	59.02	•428	•490	• 048	• 0008	0014	1
15	55.79	4.019	•778	• 148	• 0028	0052	2
16	55.96	4.389	•929	.105	• 0020	0044	8
17	57.09	5.267	•969	• 105	•0020	•0032	10
18	56.41	4.380	•731	.163	•0031	0076	2
19	56.43	4.343	. 876	.171	•0033	•0060	8
20	56.87	5.104	•869	• 139	• 0026	• 0045	1
21	57.14	5.107	•962	• 157	•0030	0052	9
22	56.91	4.657	• 89 3	•166	•0031	0059	2
23	53.32	2.612	• 80 2	• 151	• 0030	• 004 1	7
24	53.72	3.373	• 94 8	• 153	•0030	• 005 1	1
25	53.87	3.179	•952	• 101	• 002 0	0036	- 3
26	54.17	3.668	• 88 2	.078	•0015	•0027	1
27	51.79	3.214	1.063	•092	•0019	0032	7
28	50.94	2.022	•742	.111	• 0023	0038	3
29	47.28	1.416	1.014	.182	• 0039	0070	3
30	47.83	2.324	1.220	• 132	• 0029	0046	10
31	53.81	4•139	1•192	• 147	• 0029	0067	9
32	52.83	2.463	1.148	• 125	• 0025	0042	2
33	60.18	2.618	1.018	• 119	• 0021	•0037	2
34	60.48	2.671	1.079	.081	•0014	•0021	9
35	66.51	13.113	1.421	-212	•0038	0070	2
36	64.68	10.702	1.397	• 399	.0071	0152	9
37	60.01	6.931	•874	•250	• 0046	0091	10
- 38	60.12	7.123	1.05.5	• 154	•0028	0061	2
39	60.88	6.939	1.183	• 102	• 0029	•0050	10
40	60.47	6.304	.887	• 132	• 0024	0044	9
41	61+24	0.522	•832	• 130 ·	• 0024	0049	9
42	01.52	0.901	•95/	• 185	• 0033	0001	2
45	10.90	13.959	1 182	•4/4 1/54	• 0081	0180	2
44	00.54	13+19/	1.210	• 400	• 0080	T.UI01	đ
45		3+413	1.070	+U/I 11.1	• 0012		7
40	04•49 47 75	2.040	1+039	070	+ UUZ4	• UU42	20
47	C]+C0 42 00	2.407	• 00 •	•017	- 0013	+0021	10
40	0300	20701	• 470	• • • • •	• • • • • • •		10

TABLE 6, CONTINUED.

PARAMETERS OF EMPIRICAL EQUATION OF TEMPERATURE

RUN	TTI	TT2	S	SM	D	DL	L
49	61.99	1.392	• 64 8	•052	• 0009	0016	
50	62.02	1.453	• 66 8	• 084	•0014	0026	1
51	59.83	•089	•818	•053	• 0009	0015	10
52	60.15	•491	1.120	• 1 1 4	•0019	0038	1
53	60.21	•626	•729	•052	• 0009	•0015	7
54	60.16	•466	• 53 1	. • 065	•0011	•0025	9
58	39.33	•002	•919	•074	•0019	.0031	2
5 5	58.35	4.764	1.231	•210	• 0039	.0075	6
56	58.74	5.172	•972	•175	.0032	0046	3
57	39.04	182	1.103	• 104	•0027	.0049	1
59	45.58	037	•747	• 045	.0010	.0022	2
60	45.40	270	1.256	.104	.0023	.0042	7
61	49.68	1.602	•745	•065	.0014	0027	2
62	49.52	1.475	• 82 6	.136	.0028	0064	10
63	50.20	1.795	• 90 4	.086	.0018	0034	10
64	49.95	1.388	.825	• 080	.0016	0035	2
65	50.19	1.560	•972	•048	.0010	0017	7
66	50.34	1.673	• 846	• 054	.0011	0022	2
67	59.39	6.552	1.171	.331	.0061	0112	2
68	59.48	6.603	1.348	.346	.0064	0088	9
69	65.79	5.991	1.071	.144	.0023	0053	10
70	66.00	6.168	•990	•081	.0013	0025	7
71	52.86	2.430	• 60 9	.045	• 0009	0014	8
72	52.56	2.085	•929	.107	.0021	0036	10
73	59.50	1.844	1.011	• 093	.0016	0032	8
74	59.42	1.808	• 72 4	•026	.0004	.0009	2
75	61.81	1.390	•616	•057	• 0009	0015	4
76	61.77	1.336	. 620	• 050	.0008	0014	8
77	59.12	5.379	1.180	• 185	• 0034	0049	10
78	59.10	5.422	• 98 9	• 113	.0021	0053	2
79	56.72	3.913	•902	• 109	• 0020	0040	3
80	57.06	4.297	.812	•063	.0012	•0021	5
81	59.78	1.579	•715	• 124	• 0021	0045	7
82	59.45	1.184	• 799	• 112	•0019	0033	5
83	47.39	259	•799	•037	• 000 8	0015	4
84	47.66	•021	•916	• 049	• 0010	•0020	8
85	60.73	4.837	•703	•235	• 0041	0078	2
86	60.14	4.177	• 59 3	•257	• 0045	0071	9
87	58.78	•048	• 66 6	• 050	• 0009	•0021	9
88	58.93	•291	• 566	• 048	• 0008	.0018	6
89	59.28	•564	•796	•043	• 0007	0012	- 3
90	59.27	•535	• 94 5	• 055	• 0009	0020	3
91	59.5 5	1.279	• 67 1	• 054	.0009	•0019	7
92	59.41	1.208	1.000	-061	.0010	•0016	7
93	59.37	•298	• 58 1	• 076	•0013	•0031	9
94	59.39	•333	•573	• 054	• 0009	•0017	1
95	50.55	•294	•744	• 066	.0013	•0021	8
96	50.62	•264	•769	• 043	• 0009	0016	3

TABLE 6, CONTINUED.

.

PARAMETERS OF EMPIRICAL EQUATION OF TEMPERATURE

RUN	TTI	TT2	S	SM	D	DL	L
97	48.53	• 152	•740	• 029	• 0006	0013	
98	48.53	.097	.665	•037	.0008	•0013	8
99	42.54	•485	1.048	.085	.0020	.0034	3
100	42.17	•041	.997	.078	.0018	.0028	8
101	53.38	2.250	•834	.058	•0011	• 0020	8
102	53.23	2.193	• 55 1	• 034	• 0007	0010	4
103	52.98	1.895	•670	•070	•0014	.0021	1
104	53.36	2.201	• 80 8	•074	• 0014	.0029	3
105	51.04	1.302	. 880	•048	•0010	0019	3
106	51.20	1.385	1.090	• 082	.0016	0041	8
107	51.84	1.847	.710	•039	• 0008	0017	3
108	51.58	1.586	• 64 4	•038	.0008	.0013	9
109	59.47	•473	.712	•063	.0011	.0019	9
110	59.20	•285	•919	• 060	.0010	.0025	2
111	59.38	• 387	•588	•022	• 0004	0008	4
112	59.51	• 595	1.104	.122	.0021	0047	1
113	59.47	•524	•851	.050	.0008	.0020	7
114	59.25	• 265	.711	.050	.0009	•0015	ģ
115	61.76	6.383	.697	.201	.0035	0079	1
116	61.11	5.620	.673	.264	.0047	0085	9
117	100.86	37.589	3.584	.832	.0122	•0195	2
118	100.89	38.007	3.595	.996	.0144	.0234	2
119	82.48	21.402	2.475	•791	.0118	0248	ī
120	82.73	21.755	2.480	. 506	.0079	.0123	9
121	92.67	26.348	2.854	• 657	.0095	.0199	2
122	94.64	28.280	3.128	.737	.0104	0172	ī
123	84.32	19.844	2.247	.543	.0081	.0187	2
124	81.54	16.998	1.987	•431	.0064	.0107	2
125	76.04	16.211	1.859	• 505	.0081	•0146	2
126	77.98	18.182	2.208	. 643	.0101	0190	ī
127	61.54	4.374	.899	. 168	.0029	0059	3
128	61.60	4.542	.871	. 134	.0023	0056	Ř
129	60.80	1.868	.842	.201	.0034	.0062	10
130	61.48	2.604	- 698	. 174	.0029	0061	
131	59.32	.995	-545	• 038	.0007	0013	Š
132	59.39	1.129	- 640	.075	.0013	0021	ĩ
133	59.45	• 689	•634	.057	.0010	-0017	8
134	59.46	.644	.795	.092	.0016	0033	ĭ
135	59.83	1.462	.931	-065	.0011	.0021	ġ
136	59.88	1.548	.719	.056	.0009	.0017	í
137	61.72	3.090	.956	.071	.0012	.0024	10
138	61.72	3.139	. 884	• 063	.0011	0020	2
139	60.51	2.118	.642	• 052	.0009	.0019	5
140	60.63	2.238	.752	.062	.0011	0015	A A
141	61.73	3.222	-845	.090	.0015	.0026	5 5
142	-61-65	-3.188	.770	.079	.0013	- 0020	o o
+	TT1, TT2,	S, and SM	are in	degrees	Ranki	ne, ,	,

126

.

TABLE 7.

PARAMETERS OF EMPIRICAL EQUATION OF DYNAMIC PRESSURE *

RUN	PP 1	P P 2	S	SM	D	DL	L
1	.118116	7.9466	•00792	• 002460	•02103	•03524	10
2	. 117889	8.8255	.00826	.002735	•02379	•05081	1
3	.112147	6.4280	.01056	.002365	.02129	•03763	5
4	. 110407	9.7406	•01142	.002717	•02490	•04061	9
5	. 106136	9.3785	•01314	•004818	•04568	07794	2
6	. 107806	7.9086	•01134	•003233	•03106	•06070	9
7	•168636	6.9020	•01425	.003622	•02188	•03302	7
8	. 171864	5.7049	.01312	• 004 189	•02706	•05411	10
9	•031720	1.9785	•01086	•001869	•08733	•20800	2
10	.031913	2.3277	•01111	.002624	•10480	•15680	6
11	•029749	4.5564	.00282	•001355	• 05 067	•11720	2
12	•030562	3.8611	•00295	•001300	•04566	•07353	9
13	•053274	8.4309	•00732	.002217	•04320	•09621	10
14	•054286	6.3952	•00700	-001164	•02276	•05688	1
15	•026499	4.1994	•00291	.001255	• 05 183	.08942	- 4
16	•026104	4.1754	•00299	•001239	•05408	•09777	2
17	•023787	3.4012	•00300	•001153	•05957	11390	10
18	•023801	3.8934	•00264	•000810	•04321	•09508	2
19	•025448	4.2585	•00282	•001190	• 05 5 4 1	•12660	2
20	•026294	4.3470	•00249	• 000 99 1	•0425 2	•08595	9
21	•026404	3.8645	•00285	•000915	•03903	•10040	8
22	•026434	3.6464	•00292	•000944	•04 5 51	10270	1
23	•042374	3.2717	•00547	•002854	• 08 4 5 5	16970	1
24	•041008	3.9777	•00625	•003006	•08149	•14090	8
25	•038879	3.8887	•00589	•002694	•08159	14930	1
26	•0 3 9595	3.6216	•00562	•002356	•07366	15890	10
27	•064960	4.0243	•00621	•002377	•04283	07783	10
28	•066057	4.3606	•00701	•003854	•06731	14210	1
29	•143381	4.0692	•01071	•005444	• 04 4 90	09161	1
30	•144125	4.0092	•01033	•005242	•04171	•09798	2
31	•048971	3.7108	•00446	•002637	•06741	14700	10
32	.049271	3.5462	•00467	•003303	-08575	19520	1
33	•067108	8.8319	•00618	•001233	•01896	•04553	1
34	•068896	7 •5 505	•00661	•001663	•02538	•06492	2
35	•102067	6.4486	•00769	-001212	•01204	•02732	8
36	•100082	7.5990	•00782	•001512	•01523	02510	9
37	•166382	4.6618	•01441	•007325	•05186	· 11020	10
38	•165021	4.4052	•01441	•006440	• 04 443	07756	10
39	•154459	4.7521	•01335	•005016	•03573	•05521	2
40	•155094	4.7503	•01326	•005315	•03781	06401	1
41	•154556	4.5640	•01186	•005962	•04377	. 08504	9
42	•156428	4.4435	•01165	•005849	•04197	•07259	2
43	•100476	4.2353	•00753	•002128	•02552	•05109	1
44	•099648	4.8985	•00787	• 002 389	•02700	•04396	10
45	•005094		•00589	.000778	•01257	•03300	3
46	•005086	8-4543	•00584	.001316	•02185	•04172	9
47	•045820	9.8626	•00640	•000791	•01753	•03944	2
48	•045595	8.5752	•00014	•000895	•01955	• 05556	8

TABLE 7, CONTINUED.

PARAMETERS OF EMPIRICAL EQUATION OF DYNAMIC PRESSURE

RUN	PP1	PP2	S	SM	D	DL	L
49	•049840	9.6760	.01026	.001983	•04051	•07355	2
50	•049047	11.6621	.01058	.002663	• 05 54 1	•10590	5
51	.052373	12.0665	•00992	.002562	.05269	.13780	2
52	•053020	7.5700	•01016	.002006	•03808	07843	9
53	.053698	9.2016	.01061	.002118	•03961	06843	2
54	•054537	7.0060	.01040	.002742	.05277	.12340	10
55	.172914	4.6232	•01605	•006369	• 04 160	07271	1
56	.172546	4.0873	•0 15 35	•005725	•03919	•07134	9
57	.113472	3.4536	.02121	.005667	• 05 664	•15280	4
58	•117086	2.6652	•02320	•005440	•06402	15490	10
59	.125375	3.8476	•01066	.005916	• 05 540	•09598	2
60	.122618	3.9537	•01150	.006752	•06697	.13250	10
61	135425	4.1765	.01030	.005026	.04112	07234	10
62	•131293	6.7035	•01288	.009786	.08546	-20400	10
63	•139403	3.9721	.01277	•007645	.06549	13210	1
64	.139456	3.6247	.01340	.007879	.06515	12040	10
65	•140989	4.0855	.01193	.006229	•05055	.08833	8
66	.138908	4.5104	•01204	.006221	•05280	.10980	10
67	•169935	4.1077	•01765	•006690	• 04 54 5	•09291	2
68	.170478	4.4333	•01964	.007588	•05442	.12610	10
69	.294990	6.4654	•02420	•008662	•03147	•06686	10
70	•296858	5.2978	.02632	•005458	•01815	04515	4
71	.076071	4.0970	•00539	•002965	• 04 44 1	07715	10
72	•076149	4.1319	.00581	•003987	•06233	13440	1
73	•074731	8.3279	•00630	•000953	.01299	.02777	10
74	.075117	8.9682	.00651	•001555	.02113	•04414	9
75	•052419	15.5860	.00982	.001019	•01952	•03879	8
76	.054440	8.1741	•00986	.002107	•03980	.07873	2
77	•176039	4.7585	•01470	•008502	•05530	•09394	10
78	•178956	3.7352	•01341	•007216	•04788	•09991	2
79	.029711	4.5712	•00474	.001257	• 04 760	08712	1
80	•030443	3.6250	.00316	•001005	•03870	06848	10
81	•335181	5.6894	•04014	.013100	•04057	•05810	8
82	•342103	5.0627	•04679	•011710	•03544	•07422	9
83	. 124273	3.4202	•01476	•006001	• 05 985	14050	10
84	•120924	3.8267	•01603	•008959	•08874	17140	1
85	•144220	3.6039	•01544	•007320	•06126	13080	10
86	. 142385	4.0304	•0148 0	•006964	•05832	10940	1
87	•053371	8.4579	•00851	•002006	•03996	•09345	10
88	. D54217	7.7750	.00862	•002337	• 04 455	06625	9
89	•086992	9.6511	•00978	•001926	• 02 22 3	03353	4
90	•088835	7.2165	•01022	•002098	• 02 4 4 4	•04628	10
91	•136875	5.8383	•01266	•002693	•02022	•03578	9
92	. 133615	6.5410	•01215	•002702	•02212	•05446	1
93	•062786	7.1333	•0 0 998	•002104	•03494	•06982	8
94	•064588	7.1273	•01001	•001477	• 02 365	03924	4
95	•026536	4.1086	•00238	•001584	•06607	•12310	9
96	•026852	4.1282	•00227	.001301	-05597	-08935	8

TABLE 7, CONTINUED.

PARAMETERS OF EMPIRICAL EQUATION OF DYNAMIC PRESSURE

RUN	PP 1	PP2	S	SM	D	DL	L
97	•026035	3.9494	•00251	.001340	• 05 907	12040	10
98	•025000	5.0892	•00345	.001294	.05582	.13370	4
99	•026940	3.5315	•00278	•001320	•05685	.10840	8
100	•025713	4.4821	•00257	•001285	•06048	12880	1
101	.075917	4.2484	•00524	.003767	• 05 749	10090	1
102	•076680	4.1625	.00465	•002769	•04172	07961	10
103	.076767	4.5828	•00464	•002830	• 04 190	•07494	10
104	.077130	3.9584	•00522	•002484	• 03800	07804	10
105	.138011	4.7134	•01106	.006102	• 05 062	.10120	9
106	.143051	3.6692	.00876	-003217	•02676	04650	10
107	•137696	4.3169	•01069	.006366	• 05 356	10040	1
108	•139276	4.3329	.00923	•005209	•04082	06306	10
109	•060621	11.7808	•00925	•002420	•03896	08126	6
110	•062792	6.2857	•00946	•001295	•02123	03199	9
111	•061589	7.7400	•00935	•001174	•01958	02858	9
112	•061501	8.2661	•00930	-001278	•02117	•04616	1
113	.061716	8.1734	•00864	•001388	• 02 385	•06237	10
114	•061146	7.2693	•01016	•001995	•03452	•07414	1
115	. 170547	4.1991	•01238	•007147	 05 054 	•10310	1
116	•1 69855	4.4932	•01165	.006112	• 04 152	•07430	9
117	198585	5.3041	•03713	•004870	•02723	.06237	10
118	•195144	7.8511	•04793	•010350	05 123	10140	6
119	•170673	5.2036	•05518	•010960	•07488	•19310	2
120	. 172000	7.8174	•04140	•011190	•07545	•18920	9
121	•145436	7.7482	•04246	•005456	•03732	•06198	4
122	•147061	5.6598	•03635	•008322	•06224	•12680	1
123	•187220	5.6394	•03333	•010110	•06159	•11510	1
124	•190254	5.5761	•02986	• 0060 5 2	•03290	05886	2
125	•235271	5.9007	•06813	•021250	•09850	•17560	8
126	•229226	4.8555	•05725	•006731	•03181	. 07058	10
127	•290252	5.7918	•03581	• 004 950	•01774	•03223	2
128	•288984	6.6084	•03998	.005121	•01864	•04592	1
129	-285041	6.6643	•06579	•016470	• 06 035	•10190	9
130	•291745	5.5215	•06171	•014040	• 04 903	07904	6
131	.078915	10.0182	•01606	•002781	•03598	•07404	6
152	•076093	15.0384	•01675	•003350	• 04 4 3 6	•09637	9
155	•075861	6.8051	•01043	•001667	•02253	•04551	8
1.54	•074203	8.7588	•01165	•002724	•03826	•07641	8
135	•100826	6.9742	•01032	•002310	•02506	•07028	1
150	•102296	7.0832	•00992	•001965	•02025	•04515	10
137	•153304	0.2281	•01308	•002956	•02051	•04673	1
138	•153976	1.3/62	•01340	•003313	•02238	•04923	10
139	•102093	5.1100	•01350	.002844	•01941	•04985	10
140	•100504	0.2882	•01567	•004915	•03339	•07362	1
141	040157	5.2011	•02062	•005006	• 02 426	•04407	9
142	•240103	0.0045	•01884	• 000249	•02778	•05837	10
1	LLT' D' J	nu om are	IN POUNC	us/incn~			

TABLE 8.

PARAMETERS OF EMPIRICAL EQUATION OF VELOCITY *

.

.

RUN	۲۷۷ ۱ 	VV2	VV3	S	SM	D	DL	L
1	18.341	12.090	•063	1.166	• 24	.0129	0270	3
2	18.158	16.850	113	.868	•19	•0105	•0134	1
3	19.058	11.461	•009	1.832	• 35	•0185	0322	8
4	19.183	19.605	200	1.785	• 32	•0167	0260	3
5	17.760	11.295	• 35 1	1.437	• 42	•0241	•0434	10
6	17.753	11.280	040	1.282	• 30	.0173	•0280	9
7	23.628	12.730	. 18 1	1.683	• 35	•0150	-0288	1
8	24 - 340	12.287	426	1.590	• 31	•0132	•0282	10
9	7.622	5.572	724	1.680	• 37	•0546	•1102	2
10	7.617	12.769	934	1.770	•48	.0642	•1020	6
11	B.565	9.785	288	• 486	•16	•0186	•0344	2
12	8.626	9.209	381	•471	•18	•0214	•0492	5
13	14.032	14.141	285	1.464	• 35	•0255	•0470	10
14	13.693	12.356	193	1.360	.20	•0150	.0332	10
15	7.850	10.294	377	. 445	.16	.0202	0435	3
16	7.779	10.144	361	• 481	.15	.0188	.0340	6
17	7.344	10.165	482	. 492	.12	.0173	0334	2
18	7.437	9.170	330	• 456	. 14	.0190	.0358	2
19	7.761	9.934	313	. 476	. 19	.0253	-0517	2
20	7.892	9.735	323	. 376	.09	.0122	.0287	9
21	7.970	7.663	260	.529	. 12	•0155	.0346	8
22	7.905	10.085	- 421	.535	.14	.0174	0393	3
23	9-683	9.203	- 660	• 686	.25	.0284	.0564	10
24	9.579	14.423	- 699	.726	.13	.0139	.0263	3
25	9.346	12.324	625	.735	.18	.0200	.0452	10
26	9.370	12.813	667	.700	.21	.0236	.0494	1
27	11.960	9,898	600	- 589	.14	-0116	-0193	i
28	12.077	14.245	700	- 650	.23	-0195	-0299	10
29	17.491	9.432	- 851	- 649	- 18	-0107	- 0223	10
30	17.490	9.484	- 855	- 641	.21	-0127	0245	8
31	10.517	11.087	- 627	- 580	-20	-0205	- 0502	ĩ
32	10.543	13,791	805	. 687	. 24	.0254	-0667	10
33	14.529	200-000+	. 24.8	1.506	. 27	.0180	.0292	1
34	14.937	17.326	- L2L	1.621	. 14	-0092	0167	י ד
35	16.453	29.028	. 313	1.169	. 19	.0112	-0199	Ř
36	16.409	200.000	- 38.2	1.090	- 16	.0099	+.0142	ğ
37	20.339	11.690	726	.877	. 30	.0156	.0395	10
38	20.207	11.665	782	1.089	. 19	.0099	-0196	1
30	19.548	12.074	738	1.103	- 16	.0085	-0181	10
72	19.596	11.475	- 711	845	. 17	.0088	0137	2
чо 1-1-1	19.606	11.268	716	• 0 - J 856	• 11	•0085	0131	0
н 2	19.654	11.412	- 751	. 703	18	•0003	- 0167	2
マム 山 ス	16.107	10.707	- 070	• 700	12	0079	0101	10
11	16.07	17 111	- 112	• 120 915	• 12	-0078	- 0207	10
74)j 5	13.479	18,210	-0112	• 0 1 J	• 10	0070	-+0207	7
4.J 11.K	12 420	100217 20 742	• 133 10.0	+ 144 720	• 1 2	0000	•UZIU	10
40 h7	12.420	200143	+ 100 142	+137 1 007	• 14	0140	•U1/3	10
	12 . 420	20+201	• 103	1073	+ I U 1 2	0107	+ 1240	2
40	12 0 10	∠v+0v1	• UU Y	• 701	• 1 3	+UIU3	●UZ3Z	đ

.

TABLE 8, CONTINUED.

PARAMETERS OF EMPIRICAL EQUATION OF VELOCITY

RUN	VV 1	VV 2	٧٧3	S	SM	D	DL	L
49	 \$							
50	13.203	200,000	. 32 3	1.616	. 33	-0246	0415	2
51	\$	2001000			• • •		• • • • • 5	~
52	14.535	9.735	.077	1.731	.27	-0185	-0273	10
53	14.261	15.818	- 09 4	1.789	.35	.0243	0381	2
54	14.582	13.721	173	1.778	. 44	.0309	.0728	10
55	20.945	10.249	711	1.251	•25	.0119	0271	3
56	20.811	10.115	840	1.463	.28	.0139	.0297	9
57	14.977	6.105	571	1.637	.38	.0263	.0640	4
58	14.683	9.484	-1.411	1.787	.29	•0194	0427	3
59	16.363	9.530	927	• 676	• 24	•0154	.0348	1
60	16.193	10.299	935	•875	• 37	•0242	•0571	10
61	17.353	10.495	896	• 631	•20	.0120	0203	2
62	17.324	23.667	816	•717	•45	•0270	•0591	10
63	17.552	11.868	-1.100	•757	•25	•0152	•0330	10
64	17.498	10.365	-1.162	• 795	• 22	•0126	0261	8
65	17.697	9.891	929	• 698	• 16	•0090	0205	3
66	17.645	10.596	796	• 822	• 34	•0201	•0451	10
67	20.470	10.026	811	1.425	•18	•0092	•0153	1
68	20.571	11.523	807	1.733	• 35	•0180	•0420	10
69	30399	19.300	• 110	1.931	• 36	•0121	•0241	5
70	30.345	200.000	224	2.102	•28	•0092	0162	4
(1	13.270	10.007	674	• 488	• 12	•0096	•0169	9
12	13+251	12.312	/80	•581	• 22	•0167	0309	3
75	15 • 130	14.209	•002	1.204	• 05	•0036	•0080	ļ
75	12 • 12/	19.400	0//	1.140	• 09	•0057	•0112	5
74	13.020	J [+20U	• 024	1+442	• 20	•0144	+•0284	10
77	13.049	12.121	- 094	1.400	• 2 1	•0122	+0240	7
79	20 - 1 10	10 171	-1 130	1.221	• 33	•0102	-0.0321	
70	20 0 0 74 Q 5 0 7	12 200	- 707	• 104	+ 2 3	•0124	0190	2
80	0.521	9 174	- 36 9	• / 0 / 5 1 5	• 07	•0114	0202	3
81	32.558	13.007	- 703	2.003	• • • •	•0150	•0200	2
82	32.915	10.469	681	3,503	. 30	-0118	+.0278	ւ Ծ
83	16,175	11.418	+1,213	.974	. 22	.0143	- 0210	1
84	16.046	15.567	-1.234	1.057	. 39	-0247	0509	3
85	19.494	11.429	-1.043	1.258	.25	.0127	-0188	1
86	19.500	10.653	- 862	1.013	.27	.0140	0325	3
87	13.890	13.829	223	1.594	.23	-0169	-0417	10
88	13.855	8.739	.410	1.488	.21	.0154	.0279	2
89	17.879	19.158	.083	1.773	.11	.0059	0116	2
90	18.063	12.394	059	1.822	.19	.0108	0201	3
91	21.276	10.099	•090	2.179	•24	•0112	0210	2
92	20.847	12.786	064	2.082	•25	.0121	0270	8
93	16.416	20.775	503	1.826	• 38	•0233	0419	2
94	16.672	10.344	142	1.839	• 12	•0073	0127	4
95	7.806	10.751	463	•319	- 12	•0159	0239	2
96	7.862	11.063	451	• 361	• 11	•0147	•0269	9

TABLE 8, CONTINUED.

ł

.

PARAMETERS OF EMPIRICAL EQUATION OF VELOCITY

RUN	VV 1	VV2	VV3	S	SM	Ð	DL	L
97	7.593	9.793	426	.360	.10	.0141	.0273	1
98	7.525	9.697	203	• 555	.21	.0277	.0614	4
99	7.344	9.880	489	• 389	• 11	.0151	0243	3
100	7.260	11.755	368	.368	.14	.0198	•0430	10
101	13.344	11.492	698	• 620	• 19	•0145	.0249	6
102	13.403	9.896	637	• 374	• 11	•0079	0122	7
103	13.461	10.807	605	• 364	.16	•0126	•0269	10
104	13.423	9.843	692	• 5 1 4	• 14	•0109	0195	8
105	17.697	11.049	820	• 6 6 0	• 24	•0143	•0249	10
106	17.933	7.651	705	• 847	•27	.0155	•0307	1
107	17.624	11.805	964	•615	•27	•0156	•0300	10
108	17.794	9.397	755	• 560	• 22	•0120	0283	3
109	16.533	200.000	179	1.889	• 24	•0142	0230	6
110	16.470	9.702	•033	1.936	• 27	.0166	•0282	1
111	16.368	12.875	• 09 3	1.906	•21	.0131	•0241	7
112	16.062	12.366	• •014	1.859	• 22	•0138	0211	2
113	16.042	13.911	• 02 3	1.752	•26	•0164	•0380	10
114	15.869	11.900	182	. 1 • 934	•20	-0127	-0249	1
115	20.653	12.203	843	•736	•29	•0148	•0343	1
116	20.740	10.793	613	•767	• 22	•0111	•0188	10
117	46.945	200.000	1.552	5.133	• 69	•0145	0247	1
118	46.729	200.000	2.225	6.681	1.61	•0338	0596	6
119	38.933	200.000	•954	7.357	1.48	•0388	•0839	2
120	39.167	200.000	1.862	6.013	1.89	•0478	•0849	9
121	33.977	21.448	1.314	5.589	•77	•0233	.0510	4
122	33.978	200.000	1.180	4.887	1.09	•0325	•0667	3
123	\$							
124	34.850	200.000	1.312	3.563	• 68	•0191	•0343	9
125	41.298	24.112	2.044	7.571	2.33	•0544	1008	10
126	40.903	17.589	2.390	6.712	•87	•0215	•0359	3
127	29.535	19.398	•437	3.107	• 33	•0113	+0271	10
128	29.552	18-485	• 54 9	2.783	•27	•0091	•0185	2
129	\$	000 000		r 070	1 50	0.0	0707	
130	34.304	200.000	• 3/ 1	5.078	1.59	•0460	0/9/	6
131	10.05/	18.004	- 318	2.080	• 22	•0130	•0259	0
132	15.728	200.000	-+000	2.114	• 39	•0245	0395	2
133	1/ 102	11.025	• 120	1.904	• 20	•0157	•0327	0
134	10.090	200.000	++212	2.000	• 24	•0147	•0335	7
133	10.000	18.100	+ 13 3	1.905	• 10	•0099	+0199	7
120		13.011	• 520	1.775	• 12	•0000	•0114	10
137		200.000	• 00 3	1 970	• 22	•0097	•0190	
120	22 +034	174U37 17 461	• 31 1	1+017	• 23	+UU44 0117	+0100	10
127	23●134	130001	• Q4 U	4.413	• 20	•0117	+UZ74	10
140	₹ 20 721	17 529	1 670	2 1.24	20	0104	0210	2
141	270124 2	11.332	1+3/0	J • 430	• 32	•0104	+UZ47	2
*	₽ Drogram	limita the	mauimu	m vəlum	of 177	2 +0 20	0	
						20		

TOTAL TINTES CITS MAXIMUM VALUE OF VV2 CO 2000

\$ Parameters would not converge for these runs.

t VV1, VV3, S, and SM are in feet/second.
TABLE 9.

PARAMETERS OF EMPIRICAL EQUATION OF ρv †

$ \begin{array}{c} 1 & + 197 & .015218 & .016691 & .021 & .0038 & .009 & .015 & 8 & .172 \\ 2 & + 511017152 & .007603 & .018 & .0039 & .010 & .015 & 1 & .196 \\ 3 & .3274 & .076386 & .026175 & .030 & .0027 & .007 & .012 & 5 & .196 \\ 4 & + 347 &053933 &000449 & .031 & .0026 & .007 &016 & 3 & .267 \\ 5 & .3988 & .003286 & .019459 & .028 & .0081 & .021 & .035 & 8 & .241 \\ 6 & .4178 &011826 & .009203 & .026 & .0048 & .013 & .020 & 8 & .256 \\ 7 & .4103 & .078064 & .023211 & .031 & .0048 & .011 & .018 & 7 & .163 \\ 8 & .3943 & .085522 & .021378 & .027 & .0059 & .013 &024 & 7 & .134 \\ 9 & .1358 & .109901 & .003811 & .0449 & .0100 & .052 & .121 & 2 &316 \\ 10 & .2174 & .018329 &012616 & .051 & .0126 & .058 & .095 &241 \\ 11 & .2068 & .022566 & .002177 & .011 & .0037 & .018 & .037 & 2 &017 \\ 12 & .1927 & .039403 & .003798 & .011 & .0040 & .018 & .043 & 5 &036 \\ 13 & .2694 &016336 & .007916 & .027 & .0050 & .020 &041 & 8 & .189 \\ 14 & .2424 & .025426 & .010973 & .026 & .0019 & .018 & .039 & 1 & .177 \\ 15 & .2010 & .019047 & .000318 & .012 & .0040 & .019 & .040 & 4 &056 \\ 16 & .1968 & .022257 & .001842 & .013 & .0037 & .018 & .030 & 6 &071 \\ 17 & .1877 & .017569 &003347 & .013 & .0026 & .014 & .025 & 9 &088 \\ 18 & .1729 & .037090 & .004256 & .012 & .0028 & .015 & .037 & 2 &077 \\ 19 & .1822 & .034167 & .005256 & .012 & .0024 & .015 & .037 & 2 &071 \\ 20 & .1980 & .020713 & .001714 & .010 & .0021 & .011 & .023 & 9 &042 \\ 21 & .1654 & .055508 & .008447 & .013 & .0023 & .017 & .044 & 8 &064 \\ 5 & .2695 &006484 &00739 & .020 & .0053 & .022 & .051 & 2 &071 \\ 20 & .1980 & .020713 & .00184 & .018 & .0061 & .018 & .027 & 10 &041 \\ 29 & .4766 & .055508 & .008447 & .013 & .0024 & .012 & .025 & 3 &053 \\ 23 & .2414 & .036540 &001875 & .017 & .0025 & .007 & .013 & 5 & .075 \\ 28 & .3528 &000754 &004093 & .018 & .0061 & .018 & .027 & 10 &041 \\ 29 & .4765 & .026964 &013824 & .022 & .0078 & .013 & .022 & .0073 \\ 31 & .2750 & .023928 &002356 & .014 & $	RUN	MM1	M M2	MM 3	S	SM	D	DL	L	DEV
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1	•4 197	.015218	•016691	•021	•0038	•009	•015	8	.172
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2	•4511	017152	•007603	.018	.0039	•010	.015	1	.196
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	3	•3274	•07 6386	.026175	•030	• 0027	.007	.012	5	•196
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	4	•4347	05 3933	000449	.031	.0026	.007	016	3	•267
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	5	•3988	•003286	•019459	•028	.0081	• 02 1	• 035	8	-241
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	6	•4178	01 1826	•009203	•026	• 0048	.013	• 020	8	-256
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	7	•4103	•078064	.023211	•031	•0048	•011	.018	7	• 163
9 .1358 .109901 .003811 .049 .0100 .052 .121 2316 10 .2174 .018329012616 .051 .0126 .058 .095 6241 11 .2068 .022566 .002177 .011 .0037 .018 .037 2017 12 .1927 .039403 .003798 .011 .0040 .018 .043 5036 13 .2694016336 .007916 .027 .0050 .020041 8 .189 14 .2424 .025426 .010973 .026 .0039 .016 .039 1 .177 15 .2010 .019047 .000918 .012 .0040 .019 .040 4056 16 .1968 .022257 .001842 .013 .0037 .018 .037 2077 17 .1877 .017599003347 .013 .0026 .014 .025 9088 18 .1729 .037090 .004256 .012 .0028 .015 .037 2077 19 .1822 .034167 .005256 .012 .0045 .023 .054 2071 20 .1980 .022713 .001714 .010 .0021 .011 .023 9042 21 .1654 .055508 .008447 .013 .0033 .017 .044 8063 22 .1775 .040883 .002880 .013 .0024 .012025 3053 23 .2414 .036540013824 .020 .0034 .014 .024 8084 25 .2695006484007939 .020 .0053 .022 .045 10092 26 .2618 .00453900438 .018 .0061 .018 .027 10041 29 .4766 .059737 .004083 .018 .0061 .018 .027 10041 29 .4766 .059737 .004083 .018 .0061 .018 .027 10041 29 .4766 .059737 .004033 .018 .0051 .010 .027 2 .077 31 .2750 .023928002356 .014 .0053 .020 .050 1038 32 .2933 .000867008333 .015 .0057 .023 .060 10030 33 .4664 .055531 .014523 .022 .0078 .016 .008012 4077 31 .2750 .023928002356 .014 .0053 .022 .048 2 .012 35 .2774 .158531 .030837 .022 .0073 .009 .020 8 .043 36 .3341 .086308 .021649 .023 .0050 .013 .022 8 .043 37 .4940 .044463 .002574 .022 .0078 .016 .016 .023 9 .023 4 .2517 .068676 .015614 .028 .0057 .023 .060 10032 39 .4725 .049833 .005827 .022 .0074 .009 .016 2 .034 37 .4940 .044463 .002574 .022 .0074 .009 .016 2 .034 37 .4940 .044463 .00555 .017 .0020 .007 .015 3 .024 4 .2966 .123315 .016445 .019 .0064 .012 .032 1006 4 .2976 .123315 .016445 .019 .0064 .012 .032 1006 4 .2976 .123315 .016445 .019 .0064 .012 .032 1	8	•3943	•085522	.021378	•027	• 0059	•013	024	7	•134
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	9	. 1358	. 10 990 1	.003811	•049	•0100	•052	.121	2	316
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	10	•2174	•018329	012616	•051	.0126	•058	• 095	6	241
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	11	•2068	•02 25 66	.002177	•011	•0037	•018	•037	2	017
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	12	•1927	•039403	•003798	•011	• 0040	•018	• 043	5	-•036
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	13	•2694	016336	•007916	•027	• 0050	• 02 0	041	8	•189
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	14	•2424	•025426	•010973	•026	• 0039	•016	•039	1	• 177
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	15	•2010	•019047	•000918	•012	• 0040	•019	• 040	4	056
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	16	•1968	•022257	•001842	-013	•0037	•018	• 030	6	071
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	17	.1877	•017569	003347	•013	• 0026	•014	• 025	9	088
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	18	•1729	•037090	•004256	•012	•0028	•015	•037	2	077
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	19	•1822	•034167	.005256	•012	.0045	• 02 3	• 054	2	071
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	20	•1980	.020713	•001714	•010	• 0021	•011	• 023	9	042
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	21	•1654	•055508	•008447	.013	•0033	.017	• 044	8	063
23 .2414 .036540001677 .018 .0062 .026 .057 8128 24 .2970028960013824 .020 .0034 .014 .024 8084 25 .2695006484007939 .020 .0053 .022 .045 10092 26 .2618 .004539006416 .019 .0049 .020 .041 1097 27 .3186 .034900 .001875 .017 .0025 .007 .013 5075 28 .3528000754004093 .018 .0061 .018 .027 10041 29 .4766 .059737 .006438 .018 .0061 .018 .027 10041 29 .4766 .059737 .006438 .018 .0051 .010 .027 2070 31 .2750 .023928002356 .014 .0053 .020 .050 1038 32 .2933 .00867008333 .015 .0057 .023 .060 10030 33 .2666 .053511 .014523 .026 .0022 .008 .018 9 .032 34 .2517 .068676 .015614 .028 .0057 .020 .048 2 .012 5 .2774 .158531 .030837 .022 .0037 .009 .020 8 .043 36 .3341 .086308 .021649 .023 .0050 .013 .022 3 .082 37 .4940 .044463 .002574 .022 .0078 .016 .040 10025 38 .4854 .050526 .000492 .024 .0047 .009 .016 2034 39 .4725 .049833 .005827 .024 .0040 .008 .013 8021 41 .4584 .063288 .005790 .020 .0044 .009 .023 9029 42 .4623 .062514 .004518 .018 .0055 .012 .017 1027 43 .2955 .125781 .009553 .017 .0040 .012 .032 1006 44 .2996 .123315 .016445 .019 .0061 .016 .033 9 .013 45 .3112000921 .008015 .017 .0020 .007 .015 3 .064 46 .2878 .026012 .011783 .017 .0040 .014 .025 9 .041 47 .2351 .010070 .008742 .019 .0019 .008 .024 2 .120 48 .2373 .005467 .00498 .019 .0018 .008 -013 2 .210	22	•1775	•040083	•002880	•013	• 0024	•012	025	3	053
24 $.2970028960013824 .020 .0034 .014 .024 8084$ 25 $.2695006484007939 .020 .0053 .022 .045 10092$ 26 $.2618 .004539006416 .019 .0049 .020 .041 1097$ 27 $.3186 .034900 .001875 .017 .0025 .007 .013 5075$ 28 $.3528000754004093 .018 .0061 .018 .027 10041$ 29 $.4766 .059737 .006438 .018 .0041 .008012 4077$ 30 $.4755 .063206 .006158 .018 .0051 .010 .027 2070$ 31 $.2750 .023928002356 .014 .0053 .020 .050 1038$ 32 $.2933 .000867008333 .015 .0057 .023 .060 10030$ 33 $.2666 .053511 .014523 .026 .0022 .008 .018 9 .032$ 34 $.2517 .068676 .015614 .028 .0057 .020 .048 2 .012$ 35 $.2774 .158531 .030837 .022 .0037 .009 .020 8 .043$ 36 $.3341 .086308 .021649 .023 .0050 .013 .022 3 .082$ 37 $.4940 .044463 .002574 .022 .0078 .016 .040 10025$ 38 $.4854 .050526 .000492 .024 .0047 .009 .016 2034$ 39 $.4725 .049833 .005827 .024 .0047 .009 .016 2034$ 4 $.4584 .055537 .006913 .022 .0040 .008 .013 8021$ 41 $.4584 .063288 .005790 .020 .0044 .009 .023 9029$ 42 $.4623 .062514 .004518 .018 .0055 .012 .017 1027$ 43 $.2955 .125781 .009553 .017 .0040 .012 .032 1006$ 44 $.2996 .123315 .016445 .019 .0061 .016 .033 9 .013$ 45 $.3112000921 .008015 .017 .0020 .007 .015 3 .064$ 46 $.2878 .026012 .011783 .017 .0040 .014 .025 9 .041$ 47 $.2351 .010070 .008742 .019 .0018 .008013 2 .024 .210$	23	•2414	•036540	001677	•018	•0062	•026	• 057	8	128
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	24	•2970	028960	013824	•020	• 0034	•014	• 024	8	084
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	25	•2695	006484	007939	•020	• 0053	•022	• 045	10	092
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	26	•2618	•004539	006416	•019	• 0049	•020	• 041	1	097
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	27	•3186	•034900	•001875	•017	•0025	•007	•013	5	075
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	28	•3528	000754	004093	•018	•0061	•018	• 027	10	041
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	29	•4766	•059737	•006438	.018	• 0041	.008	012	4	0/7
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	30	•4755	•063206	•006158	•018	• 0051	•010	• 027	2	+.070
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	51	•2/50	•023928	002356	•014	.0053	.020	• 050		038
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	32	•2933	.000867	008333	•015	• 0057	• 02 3	• 060	10	030
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	55	•2000	•053511	•014523	•026	• 0022	.008	•018	9	• 032
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	34	+251/	•0080/0	•015014	•028	• 0057	+ 02 0	• 048	2	• UIZ
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	35	•2//4	• 158551	•030837	•022	•0037	•009	• 020	8	+045
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	20	+3341	• U8 03 U8	-UZ1049	•023	• 0030	-015	• 022	10	• 002
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	31	•4940	•044403	•002574	•022	• UU / O	•010	• 040	10	+ 023
39 4725 0049835 005827 0024 0030 006 -012 $3-025$ 40 4684 0055537 006913 0022 0040 008 013 $8-021$ 41 4584 063288 005790 020 0044 009 023 $9-029$ 42 4623 062514 004518 018 0055 012 017 $1-027$ 43 2955 125781 009553 017 0040 012 032 $1-006$ 44 2996 123315 016445 019 0061 016 033 9 013 45 3112 -000921 008015 017 0020 007 015 3 064 46 2878 026012 011783 017 0040 014 025 9 041 47 2351 010070 008742 019 0018 008 024 2 120 48 2373 005467 004298 019 0018 008 -013 2 107	30	+4004	+U3U320	•000492	•024	• 0041	•009	- 012	2	- 025
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	39	+ 1 Z J	•04 7033	•005027	+UZ4	•0030	-000	012	2	- 021
41 $.4384$ $.003790$ $.020$ $.0044$ $.009$ $.023$ 9 029 42 $.4623$ $.062514$ $.004518$ $.018$ $.0055$ $.012$ $.017$ 1 027 43 $.2955$ $.125781$ $.009553$ $.017$ $.0040$ $.012$ $.032$ 1 006 44 $.2996$ $.123315$ $.016445$ $.019$ $.0061$ $.016$ $.033$ 9 $.013$ 45 $.3112$ 000921 $.008015$ $.017$ $.0020$ $.007$ $.015$ 3 $.064$ 46 $.2878$ $.026012$ $.011783$ $.017$ $.0040$ $.014$ $.025$ 9 $.041$ 47 $.2351$ $.010070$ $.008742$ $.019$ $.0019$ $.008$ $.024$ 2 $.120$ 48 $.2373$ $.005467$ $.004298$ $.019$ $.0018$ $.008$ 013 2 $.107$	40	•4004 1.501	•03 3331	•000913	+UZZ	• 0040	•000	013	0	- 020
42 $.4623$ $.062314$ $.004318$ $.018$ $.0033$ $.012$ $.011$ 1021 43 $.2955$ $.125781$ $.009553$ $.017$ $.0040$ $.012$ $.032$ 1006 44 $.2996$ $.123315$ $.016445$ $.019$ $.0061$ $.016$ $.033$ 9 $.013$ 45 $.3112$ 000921 $.008015$ $.017$ $.0020$ $.007$ $.015$ 3 $.064$ 46 $.2878$ $.026012$ $.011783$ $.017$ $.0040$ $.014$ $.025$ 9 $.041$ 47 $.2351$ $.010070$ $.008742$ $.019$ $.0019$ $.008$ $.024$ 2 $.120$ 48 $.2373$ $.005467$ $.004298$ $.019$ $.0018$ $.008$ 013 2 $.107$	41	+ 4 3 0 4 + 4 9 7	•00 3200	•005790	•020	• 0044	• 00 9	• 025	7	- 027
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	42	•4023 2055	+002514	•004510	•010	0000	•012	070	1	- 004
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	43	0004	+ 12 J [0] 19 22 1 E	•0077733 014111E	-010	• UU4U	•U12	• UJZ 022	0	-+UUD
46 -2878 -026012 -011783 -017 -0020 -007 -0150044 -025 -0041 -025 -0041 -025 -014 -025 -0041 -014 -025 -0041 -014 -025 -014 -025 -014 -025 -014 -025 -014 -025 -014 -025 -014 -025 -014 -025 -014 -025 -015 -025 -015 -025 -015 -025 -015 -025 -015 -025 -015 -025 -015 -025 -025 -025 -025 -025 -025 -025 -02	44	+2 770 2 1 1 9	- 00.0021	+U10443	-017	• UUQ I	+UI0 007	• U33 01¢	7	CIU.
$47 \cdot 2351 \cdot 010070 \cdot 008742 \cdot 019 \cdot 0019 \cdot 008 \cdot 024 2 \cdot 120$ $48 \cdot 2373 \cdot 005467 \cdot 004298 \cdot 019 \cdot 0018 \cdot 008 - 013 2 \cdot 107$	47	+J112 2070		• • • • • • • • • • • • • • • • • • • •	•017	- 0020 - 00k0	-007	+015	3	• 004 1
	+0	-2010	-020012	-011103	.010	- 0040	.009	- 025	2	. 120
	14 1	.2373	-00 5467	.001298	.019	.0018	-008	013	2	.107

TABLE 9, CONTINUED.

PARAMETERS OF EMPIRICAL EQUATION OF ρv

.

RUN	MM1	MM2	MM 3	S	SM	D	DL	L	DEV
49	•2552	007231	•002898	.028	• 0044	•019	034	3	.234
50	.2201	•032302	•018985	.029	•0059	•026	•055	1	-214
51	•2691	031141	•000850	•026	•0057	• 02 6	.062	2	.182
52	.2339	•01 1583	•010787	•028	• 0054	• 02 3	051	9	•154
53	.2462	.006033	•012148	•030	• 0046	•019	• 027	3	•201
54	•2286	•02 3094	•009724	•029	• 0058	•025	• 045	10	• 156
55	•4958	•048956	.005537	.027	• 0066	•013	• 024	8	019
56	•4706	•073720	•005277	.026	• 0039	•008	•014	9	040
57	.3317	. 17 1359	•024 15 1	•051	.0122	• 02 8	•072	4	194
58	•4310	•050220	015266	•055	•0072	•016	037	3	171
59	•4556	•039736	•000198	•020	.0062	•014	• 024	1	074
60	.4703	•016812	004353	•023	.0097	.022	• 047	10	072
61	•4805	•026056	000493	.017	.0032	.007	011	2	055
62	•5856	095235	017772	•020	.0132	.029	.066	10	• 004
63	.5062	.001604	009333	.020	.0065	.014	• 030	10	048
64	.4877	.019371	008708	.022	.0061	.013	• 022	2	064
65	.4861	.030731	000858	.020	• 0044	.009	•019	8	048
66	•4871	.027882	.003170	.021	.0074	.016	• 037	10	045
67	.4783	.065265	.001777	.030	.0072	.015	.031	2	029
68	.4883	.056408	.003450	.035	.0107	.023	• 056	10	016
69	.5267	.138777	.028136	.035	.0084	.014	• 029	10	• 189
70	.4447	.231327	.039693	.037	•0069	.011	021	4	.141
71	.3441	.029062	.001088	.012	.0020	.006	.013	9	010
72	.3693	000252	005703	.012	.0044	.013	• 028	10	.011
73	.3322	.000065	.008694	.021	.0023	.007	012	2	•148
74	.3441	011702	.006080	.021	.0034	•011	• 020	5	-162
75	.2905	037498	•000652	.026	•0023	.009	016	6	.289
76	.2677	006097	.002256	.026	•0033	.013	• 023	2	-266
77	.5508	.001374	004999	.024	.0083	.016	032	3	• 032
78	•4937	.065991	.000374	.019	•0056	•011	•023	2	003
79	.2194	.006520	001666	.019	.0016	.008	•013	10	• 045
80	.1802	.052770	.005258	.013	.0026	•013	• 023	1	003
81	•6310	.058317	.007015	.053	• 0094	.015	• 033	7	.270
82	.5866	.112607	.023452	•059	•0158	.025	•048	9	•267
83	•4699	.012347	010470	.027	• 0044	•010	•019	1	092
84	•5218	052176	022747	•028	•0100	•023	040	3	074
85	.4205	.054655	006174	.026	.0076	•018	• 030	1	•010
86	.4349	.038643	004026	.024	.0085	.020	•039	10	• 026
87	.2800	024974	.001308	.029	.0044	.018	.028	3	.271
88	.2333	.034766	.020143	•028	• 0041	•016	• 033	2	.257
89	.3534	028350	001318	.031	.0042	.013	024	7	.187
90	.3341	004217	.003183	.032	.0026	.008	016	8	.174
91	.3384	.106298	.023231	.036	.0051	.013	.021	9	.131
92	.3859	•050229	.014220	•035	.0046	+012	.022	1	•159
93	.2418	.015741	•011899	.029	•0050	• 02 0	037	9	.226
94	.2497	.011736	.011288	.029	• 0040	.016	027	4	•253
95	.2190	000591	003607	.009	.0031	.015	.027	9	• 038
96	.2200	000437	003112	.009	.0027	•014	028	1	.046

TABLE 9, CONTINUED.

PARAMETERS OF EMPIRICAL EQUATION OF PV

RUN	I MM1	MN2	MM3	S	SM	D	DL	L	DEV
97	.2077	.01 3855	000496	•010	.0028	•013	024		
98	•2000	•020322	.006818	.015	•0055	.027	.068	4	• 003
- 99	•2167	.017007	002228	.012	.0032	.015	.025	8	014
100	•2221	•008256	•000799	.011	• 0039	.019	• 041	10	003
101	•3525	•016988	001066	.012	•0053	.015	• 026	6	• 002
102	•3398	•034209	•003206	.009	.0021	•006	•011	2	003
103	•3561	•017386	•001808	•009	• 0031	•009	• 021	10	• 006
104	•3329	•041650	•003446	•012	.0017	•005	008	8	015
105	•4997	•009959	000066	•018	• 0063	•014	• 026	9	027
106	•4032	• 124979	•018191	•018	• 0050	•010	• 022	6	+.075
107	•4989	•006291	004410	•016	•0057	•012	• 025	10	029
108	•4632	•051779	•007410	•015	• 0049	•010	023	3	037
109	•2676	022025	•003141	•030	• 0047	• 02 0	027	9	•210
110	•2119	•050337	•017816	•031	•0019	•008	015	9	•173
	•2251	•032154	•015592	•030	• 0028	.012	• 026	3	•183
112	-2688	012752	•004225	•030	• 0049	• 02 0	• 04 1	1	•243
113	•2505	•009843	•009572	•029	•0021	•009	-•014	8	•207
114	•2382	•023098	•012617	•032	•0063	•027	• 057	- 1	• 191
115	•4664	•076330	•003502	•019	• 0085	•018	• 046	1	010
116	•4631	•080495	•007538	•019	• 0088	•018	• 030	10	012
11/	•1568	• 140595	•016450	•028	• 0035	•014	•024	10	•117
118	•1909	• 102711	•010545	•035	• 0069	• 02 6	047	2	•158
119	•1743	• 12 59 7 1	.011107	•051	•0091	•037	•086	2	• 094
120	•2259	•070436	•003/24	•040	•0070	• 02 7	• 050	9	•172
121	•2022	•094102	•011334	•045	• 0047	•017	•032	8	-186
122	•1819	• 118271	•011532	.038	•0080	•031	• 062	3	• 142
123	•2080	• 17 2125	.010396	•051	•0085	•028	051	10	•108
124	•2001	• 100121	•021021	•034	•00/1	•021	045	2	• 124
123	•2441	• 15 3800	•001940	•064	•0115	•034	• 066	8	• 147
120		• 24 92 50	•024075	•058	• 0001	•018	•038	10	• 052
121	•4330	•272093	•045520	•054	•00//	•015	• 027	- 5	•091
120) •314/	• 10 JUU0	• 0 3 2 8 8 9	•034	• 0055	• 00 9	•017	1	• 138
127	· · · · · · · · · · · · · · · · · · ·	• 13 14 /U 29 4 1 7 7	•U17150	•000	• 0270	• 052	• 080	9	• 101
121	2071	0270133	01079	•011	• 0141	•020	• 049	3	• 1 30
131	• 2 711	- 056600	- 005 ZOU	•030	• 0057	-019	• 033	0	• 243
177	2609			027	• 0040	•013	021	0	• 200
133 134	.2007	+.001789	0.0012100	•033	• 0000	• UI J	- 010	4	• 1 9 9 0 7 4
135	.3028	.07.05.69	-017582	.034	.0073	.023	-+040	9 1	• 2 30
136	3138	.064341	.013013	-032	· 001 J	•023	- 022	1	1090
137	-3915	-066551	.008982	-032	.0034	.008	+.015	2	.076
138	.3824	-081446	.014408	.031	-0036	-000		<u>ح</u>	- 010
139	.3201	. 159286	.023191	.011	.0038	-000	.016	- T	- 030
140	.3636	.106059	.009677	.039	-0058	.014	.028	1	- 070 - 070
141	.3246	-246010	.017692	.052	.0105	.021	.032		+ 025
142	.4076	158445	.004275	.050	.0064	.013	.023	10	_ 03L
+	MM1 MM	2. MM3. S	, and SM	are t	n nonin	da/ae	cond-i	nch	2
-	/	-,, •	/		Lom		T		•

DEV is in pounds/second.

.

TABLE 10.

·

PARAMETERS OF EMPIRICAL EQUATION OF HOTWIRE BRIDGE VOLTAGE [†]

RUN	WW 1	WW2	WW3	S	SM	D	DL	L
1	.8840	7.1933	7.5337	.0625	.0130	.0016	•0037	10
2	•7907	6.7207	7.6494	•0602	•0079	•0009	•0018	1
- 3	• 6594	6.5425	6.7704	•0636	•0076	•0010	•0018	3
4	•7195	6.5236	6.7094	•0656	•0116	•0016	.0027	10
5	• 6650	6.4428	7.4471	•0687	•0048	•0006	•0013	10
6	•7859	5.8165	7.3587	•0735	.0076	•0010	•0027	1
7	.6705	5.7502	7.9039	•0787	•0077	•0009	•0019	9
. 8	1.1072	6.7078	7.4466	.0810	•0111	.0013	•0023	2
9	-4308	2.6397	8.0390	•0582	.0056	•0007	.0012	8
10	• 4235	2.3751	8.0622	•0569	.0100	.0012	0021	10
11	•5131	3.0357	7.3609	•0502	•0151	.0019	.0033	3
12	• 4444	2.8231	7.4258	.0506	.0147	.0019	0038	ī
13	.7459	8.3559	7.1643	.0644	.0104	.0013	.0031	10
14	• 6459	8.1397	7.2766	•0582	.0064	.0008	.0015	2
15	.4954	2.7578	7.7344	.0577	.0105	.0013	.0031	5
16	.5177	3.0059	7.7172	.0593	.0117	-0014	.0031	8
17	• 48 18	2.4603	7.6953	-0568	.0093	.0012	0025	10
18	• 39 15	2.3218	7.7698	.0576	.0121	.0015	0031	9
19	• 4735	2.8011	7.6825	•0590	.0132	.0016	.0029	10
20	.4381	2.3645	7.7374	.0576	.0064	-0008	.0015	3
21	•4197	2.6333	7.6308	-0560	-0129	-0016	0027	2
22	• 4159	2.4441	7.6196	-0518	-0068	-0009	.0019	7
23	. 4899	2.7161	8,0952	-0613	.0093	.0011	.0024	à
24	-4258	2.4696	8.1642	-0600	-0069	.0008	.0015	a
25	4507	2.6583	8.0729	-0596	-0123	.0015	.0024	2
26	. 5060	2.8160	8.0259	-0653	.00.94	-0011	.0017	3
27	. 4205	2-0187	7.9393	-0665	.0186	.0023	0053	2
28	- 5923	3.0556	7.6930	.0747	.0382	·0023	0081	2
29	-5365	2.7448	7.9862	.0729	.0375	.0045	0078	1
30	. 3747	1.7960	8.0477	-0683	.0256	.0031	8100°-	10
31	-4336	2. 4348	7.8874	-0601	.0103	.0013	- 0031	2
32	- 5258	2.7973	7,7773	.0596	.0113	0013	- 0033	
33	- 64.84	9, 1270	7.4946	.0570	.0098	0012		10
34	91.89	9.3640	7,1789	.0581	.0092	.0012	•0020	10
35	.8209	5.7130	7.5830	-0511	-0136	-0016	.0031	10
36	.8425	7.0798	7.5247	.0516	.0067	- 0008	.0015	10
37	- 55 5 1	2.7673	8,2009	.0680	.0278	0032	0053	7
38	- 4565	2. 2863	8.2032	.05.89	0056	•0032	•0033	r h
30	. 4938	2.6203	8 5312	0620	•0030	-0000	•0011	4
20	- 5524	2 0205	6.0040	0620	•017	•0013	• 0021	7
40	• JJ24 5795	207437	0.4404	•0035	• 0174	•0020	-0038	ſ
41	• JIZJ	2 3000	0+3333	•0051	•01/5	.0019	0030	
42	• 4 7 0 3	2. 3070	0.0702	•0040	•0057	•0006	-0015	- 5
4-3-)())	• 0073 5702	Je 1303 2 0721	0+2217	+U3U1	• 00 / 3	•0008	•0014	9
	• JIUZ	207131 0 1545	0+241¥ 7 9177	•0333	•0189	•0022	• 004 0	8
サブ	• 77 [] KENE	701202	1+2013	+U381	•0115	•0014	•0028	.9
40 h7	• UDUD . 7942	1019	1+0121 7 5914	+U330	•0088	+0011	•0022	10
71	• 1 2 U J A 1 1 A	000770U	1 + 32 10 7 E 0 70	•U370	•00/5	•0009	•0020	10
+0	• 04 IV	1 • 4 / 00	「・コメコメ	•U030	• 00 9 1	•0011	• 0024	8

TABLE 10, CONTINUED.

PARAMETERS OF EMPIRICAL EQUATION OF HOTWIRE BRIDGE VOLTAGE

RUN	WW 1	WW2	WW3	S	SM	D	DL	L
49	• 9507	8.4841	7.1866	•0711	.0102	•0013	•0036	10
50	.9133	9.8235	7.2272	.0643	•0080	.0010	•0018	2
51	• 6744	8.9407	7.4569	•0624	.0073	•0009	•0020	1
52	• 8202	8.3514	7.3391	•0679	•0088	.0011	• 0024	1
53	• 6845	7.1409	7.4652	.0719	•0092	.0011	.0024	1
54	•7427	9.2175	7.3830	.0619	•0081	.0010	•0018	6
55	• 6082	3.2090	7 • 8502	•0627	•0136	•0016	•0032	8
56	• 4859	2.1851	7.9676	•0691	•0294	•0035	•0057	10
57	- 2959	1.7926	9.0276	•0666	•0210	•0023	•0049	1
58	• 5423	2.3247	8.7805	•0725	•0101	•0011	•0020	8
59	-4622	2.2462	8.5398	.0636	•0041	•0005	•0012	9
60	• 5332	2.5882	8.4423	.0635	•0099	•0011	.0022	8
61	•4983	2.3993	8.4923	.0614	.0094	.0011	0026	2
62	• 6768	3.8248	8.2778	.0763	•0439	•0050	0099	1
63	•5752	2.8056	8.4353	.0675	.0132	.0015	•0028	7
64	•4734	2.0865	8.5491	•0635	•0045	•0005	.0010	8
65	• 4980	2.3110	8.6332	•0684	•0093	•0010	•0021	8
66	•6178	2.8022	8.4996	.0681	•0160	.0018	0034	1
67	•5187	2.4202	8.3317	•0600	.0071	.0008	.0013	3
68	.5914	2.7614	8.2472	.0632	.0233	.0027	•0048	8
69	1.5643	5.6562	7.1180	-1101	.0370	.0044	0094	1
70	.8916	4.5598	7.7503	.1076	.0390	.0046	.0082	10
71	•4138	1.9992	7.9895	.0621	.0118	.0014	.0027	10
72	• 57 19	3.0903	7.7833	.0652	.0247	.0030	0057	1
73	• 7886	6.3689	7.4079	.0591	.0163	•0020	0034	4
74	• 6653	7.6254	7.5256	.0517	.0072	•0009	.0015	10
75	.8053	8.8021	7.2732	.0649	.0077	.0010	.0018	1
76	• 7502	8.9473	7.3161	.0619	.0068	.0008	.0018	10
77	•7522	3.3137	6.9065	•0901	•0549	.0073	0123	1
78	• 3653	1.8151	7.1244	.0824	•0412	•0056	-0108	10
79	•4590	3.2096	7.3913	.0483	.0112	.0014	0028	1
80	•4417	2.8922	7.4195	•0492	.0080	•0010	0022	2
81	•9571	6.5008	6.9098	.1037	•0354	•0045	.0090	10
82	1.1710	5.4315	6.5852	.1055	.0472	•0061	0107	1
83	• 3836	1.5093	7.9891	•0883	.0562	•0068	.0120	10
84	•7593	3.0495	7.4360	•0910	•0591	.0073	0135	1
85	•4831	2.0319	6.9215	.0669	•0154	•0021	•0047	10
86	•6116	2.4805	6.7176	.0724	•0363	•0050	0104	1
87	• 9747	9.3902	6.8618	•0592	•0117	•0015	•0030	10
88	• 2749	8.9876	7.5300	•0548	•0141	•0018	•0045	10
89	• 9582	9.1801	6.7100	-0662	•0155	.0020	•0046	10
90	•7426	6.8060	6.8892	.0694	•0171	•0022	0057	4
91	• 83 95	4.9979	7.2308	•0802	.0291	•0036	0070	4
92	1.0423	7.6820	6.9413	.0737	.0234	.0029	.0049	9
93	• 5641	6.2704	6.9400	.0701	•0237	.0032	.0064	10
94	.9970	7.1021	6.4304	.0775	•0331	.0045	0078	1
95	• 5080	2-6821	6.6830	•0625	•0196	•0028	0058	1
96	• 4299	2.7540	6.7510	•0592	•0110	.0015	.0029	9

.

TABLE 10, CONTINUED.

PARAMETERS OF EMPIRICAL EQUATION OF HOTWIRE BRIDGE VOLTAGE

RUN	WW 1	WW2	WW 3	S	SM	D	DL	L
97	• 5641	2.9521	7.3960	•0635	•0123	•0016	0027	10
- 98	• 4683	2.5038	7.4834	•0612	•0076	•0010	-0020	8
99	• 4052	2.0215	7.9143	•0654	•0073	•0009	•0016	10
100	• 5248	2.7011	7.7728	•0681	•0169	•0021	•0038	7
101	• 48 32	2.5163	7.9762	•0640	•0128	•0015	0030	4
102	•4277	1.8840	8.0664	•0648	•0108	•0013	•0025	9
103	• 4705	2.8131	7.9582	•059 5	•0161	•0019	0039	1
104	• 4508	2.3518	7.9952	•0613	•0146	.0018	0036	2
105	•5684	2.6486	8.4724	•0691	•0216	•0024	0042	1
106	• 5808	2.4917	8.4510	.0712	•0182	•0021	- 004 1	9
107	• 5252	2-5148	8.6519	•0716	•0152	•0017	•0035	7
108	• 47 37	2.1992	8.7043	•0669	•0168	•0018	•0030	9
109	• 7000	6.4869	7.3742	.0707	•0185	•0023	0057	4
110	• 7439	7.2682	7.3372	•0665	•0157	•0019	•0033	10
111	• 6705	7.3962	7.3937	•0676	•0141	•0017	0045	4
112	•7711	7.0252	7.3034	•0657	.0107	•0013	0021	6
113	• 8872	7.5458	7 • 17 50	•06 <i>9</i> 4	•0114	•0014	.0027	10
114	•7818	8.3863	7.2830	•0644	•0085	•0011	•0023	10
115	•5913	2.5778	8.0250	•0689	•0192	•0023	0052	2
116	• 6856	2.7977	7.8757	•0750	•0364	•0043	0075	1
117	1.6215	5.0382	6.7654	•1206	•0407	•0049	0087	4
118	1.2920	4.1315	7.0884	•1177	•0353	•0043	. 0077	9
119	•9494	3.1221	6.7395	•1199	•0373	•0049	-0105	7
120	•8572	3.2376	6.7535	.1211	•0391	•0052	•0102	8
121	1.1584	4.2890	7-2273	-1181	•0374	•0045	•0079	8
122	1.6714	6.0736	6.6358	.1158	•0168	•0021	•0042	1
125	1.2536	5.0097	7.4250	•1152	•0180	•0021	•0052	9
124	1.0405	3.9214	1.0461	•1178	•0372	•0043	•0064	7
125	•9070	3.9048	1.6821	•1167	•0337	•0039	•0074	9
120	1.1102	4.2548	7.4150	•1243	•0345	+0041	•0075	1
121	• 9209	5.0510	1.0241	• 1044	•0469	•0056	•0095	8
128	• / 584	3.2180	7.0401	•1097	•0435	•0053	•0103	9
129	1.4050	0.1382	7.4933	•1081	•0254	•0029	•0062	10
120	1.1959	0.4251	7 • 7082	• 10 / 6	• 02 6 6	•0030	•0070	10
121	•0202	7 • 1170	7.03.35	•0757	-015/	.0019	0054	4
122	•0107	0.2004	7 + 40 10	•0719	•0074	•0009	0014	8
133	• 9103	0.4321	1.44401	•0054	• 00 / 6	•0009	•0026	10
134	1.0210	1.0224	7 5 9 4 9	+0085	•0092	.0011	•0027	
133	+ 7041 0047	7 hh 07	7 4 7 000	•0002	•0090	.0011	•0021	10
120	• 0003	1 • 4421	7 1 7 5 1	+U03/	• 00 7 4	•0009	•0025	10
120	1.0002		7 5 5 5 4	+0758	•0135	•0010	0027	2
120	• 9303	Q+4440	7 2712	•0710	•0099	•0012	•0022	1
137	1.0402	U+0[3] 6 6117	1+3113 7 2411	0770	• UU OU 0127	•UUIU	• 0021	10
140	10073	U+U 4/)」ロウ17	1+3011 7 0207	•U[30 0970	10104	+UUI0	• 0040	10
141	.0010	70211 5 1202	1 40301 7 4949	•0010	0220	+UU3 (0017		10
+	● 7717 107071 107073	J. 4303	100442		• 02 30	• UUZ 1	0045	4
1	лпт, WW3,	o, and	om are :	in voite	5.			

TABLE 11.

PARAMETERS OF EMPIRICAL EQUATION OF HOTWIRE RMS *

RUN	RRI	RR 2	RR3	RR4	S	SM	D	DL	L
1	227.02	-257 .22	-49,15	+ 12.05	8.46	L.53	.1466	. 2680	
2	206.04	-232.54	-43-66	-9.13	6.17	1.98	.0881	1362	
3	211.43	-235 - 15	-44,10	-9.93	6.44	2.92	.1025	- 1432	Ă
4	219-48	-244 - 16	-45.95	-10.08	10.11	6.40	.1850	-4623	ĭ
5	273.51	-309-20	-62-38	-15-69	9.50	5.04	-1630	- 3503	ż
6	291.75	-327 -26	-59-36	-11-86	8-61	3.23	.0977	.1627	8
7	337.23	-368.98	-61.97	-13-68	8-21	3.17	-0640	- 1355	ž
8	423.21	-475-55	-89.89	-20-83	12.05	5.58	.1291	2335	Š
9	66.28	-68.03	-9.33	-3.29	6.79	1.57	.1272	1837	8
10	69.06	-71.58	-11.06	-4.19	6.55	1.49	.1107	.1798	10
11	47.79	-50.72	-6.48	-2.04	5.38	.59	.1007	1382	4
12	74.32	-83.53	-14.74	-5.01	7.09	1.84	.3800	.8914	3
13	256.89	-294.36	-62.20	-16.49	9.30	5.38	.2157	.3302	ī
14	220.17	-249.59	-51.11	-13.31	7.12	3.27	.1545	2401	6
15	104.84	-113-28	-17.82	-4.66	9.68	3.09	.1839	-4076	3
16	90.59	-96.85	-15.18	-5.42	8.48	1.81	.1349	.2804	4
17	99.36	-107.98	-16.49	-4.49	8.92	2.34	.1693	.2553	8
18	77.29	-80.31	-9.59	-1.84	8.30	1.59	.1333	2819	7
19	138.15	-155.65	-29.93	-10.12	9.03	1.85	.1775	4233	5
20	120.29	-133.31	-22.50	-5.98	8.62	2.52	.1682	3320	6
21	6437	-68.74	-9.90	-2.95	7.16	•89	•0950	1679	6
22	66.86	-71.80	-9.75	-2.35	7.22	1.63	.1223	2278	5
23	90.71	-93.20	-12.19	-3-19	8.68	1.96	.0936	1493	9
24	86.82	-89.29	-12.93	-3.71	7.09	•95	.0515	0937	2
25	80.23	-82.08	-10.65	-3.30	8.34	2.45	.1270	•2099	2
26	77.59	-78.21	-9.81	-2.55	7.66	•96	•0568	0955	8
27	100.51	-101.23	-12.99	-4.66	7.80	1.34	•0813	• 14 15	4
28	116.39	-119.98	-18.56	-6.63	9.11	3.78	•1637	•2191	1
29	88.49	-80.99	-4.99	43	7.82	1.66	•0518	•0873	3
- 30	77.95	69 - 13	-2.19	-1.21	7.57	1.37	•0523	1047	9
- 31	89.48	-94 -28	-11.93	-2.29	7.50	•91	•0572	0942	3
32	96.66	-102.39	-14.73	-4.48	8.40	2.17	•0973	•1815	1
55	198.84	-223.68	-44.99	-10.17	6.18	1.75	•0973	1896	3
34	199.08	-222.16	-39-74	-6.49	8.59	2.73	•0746	1721	2
33	204.10	-231.00	-40.69	-/.14	0.94	1.92	•0825	1/24	4
20	240.40	-214 •11	-52.80	-10.10	8.09	4.04	• 1240	2311	8
31	131.83	-130.49	-18.10	-5.15	9.00	5.40	•1892	• 30 30	5
20	113.09	-170 00	-12.92	-3.10	(+0(7 05	1.40	• 0091	• 1204	(
23	120 • 74	-124.04	-17 609	-7.04	(+0) 0 21	1.19	+0742	• 1433	2
40	121074	-123.02	-12.13	-3 96	0.21	2012	• 1 0 4 9 0 9 h 1	• 1903	
- 1 上ク	115.10	+110.89	-12-13	-1.02	7.27	2.02	• 0041		7
ч <u>г</u> 113	123.67	+131.66	-19.85	-7.53	7.19	1.17	. 0800	- 2140	
<u>т</u> т 43	102.19	-105-62	+11.10	-1-54	7.66	3,00	.1873	··· ▲ 1 40	2
45	213.39	-243.24	-49.57	-12.94	8,97	3.LA	.1607	• • • • • • • • • • • • • • • • • • •	ר ד
46	172-42	-192 -87	-37_14	-9_LL	7.16	1,94	117h	- 1820	7
47	236 - 32	-263-64	-51-81	-12-74	7.05	2.54	10996	. 1882	Ř
48	299.23	-341.80	-71.90	-18.57	9.78	3.29	.1263	2075	5

TABLE 11, CONTINUED.

.

٠

PARAMETERS OF EMPIRICAL EQUATION OF HOTWIRE RMS

$\begin{array}{c} 49 & 371.41 & -426.10 & -88.83 & -22.68 & 12.43 & 6.34 & .1833 &2972 & 8 \\ 50 & 305.68 & -346.48 & -71.98 & -19.12 & 7.94 & 2.88 & .0987 & -1529 & 6 \\ 51 & 282.68 & -317.70 & -64.92 & -17.20 & 10.92 & 3.29 & 1.432 & -2539 & 5 \\ 52 & 329.23 & -372.20 & -72.99 & -17.79 & 9.12 & 3.76 & .1023 &1846 & 6 \\ 53 & 338.26 & -382.25 & -75.35 & -15.94 & 11.71 & 7.39 & .1744 & .302 & 10 \\ 42 & 73.68 & -307.23 & -62.00 & -15.70 & 8.97 & 2.86 & .129 & -2328 & 7 \\ 55 & 86.21 & -80.56 & -4.60 &50 & 7.93 & 1.60 & .1044 & .2947 & 3 \\ 56 & 97.00 & -93.29 & -8.48 & -4.48 & 7.85 & 1.27 & .0813 & .1387 & 7 \\ 57 & 45.43 & -28.01 & 6.88 & 1.74 & 7.92 & 2.12 & .0903 & .1916 & 6 \\ 58 & 125.16 & -121.97 & -14.44 & -6.10 & 8.22 & 1.55 & .0494 &0867 & 6 \\ 91 & 16.23 & -118.95 & -17.46 & -5.89 & 7.00 & 1.48 & .0625 & .1088 & 8 \\ 60 & 115.76 & -117.98 & -15.77 & -4.28 & 7.99 & 1.94 & .0726 &1402 & 8 \\ 61 & 97.91 & -96.78 & -12.17 & -3.27 & 7.02 & .95 & .0287 &0435 & 1 \\ 62 & 106.22 & -107.38 & -15.96 & -4.61 & 10.29 & 6.99 & .3357 & .6318 & 1 \\ 63 & 123.45 & -126.95 & -18.55 & -6.25 & 8.58 & 1.81 & .0844 & -1446 & 7 \\ 64 & 97.44 & -94.24 & -9.51 & -3.15 & 7.74 & 1.57 & .0506 & .0908 & 10 \\ 65 & 137.11 & -142.27 & -22.12 & -6.81 & 8.28 & 2.40 & .0815 &1238 & 2 \\ 66 & 123.57 & -125.31 & -17.64 & -6.16 & 8.24 & 3.21 & .1450 & .2553 & 4 \\ 76 & 420.0 & -52.49 & 1.54 & .133 & 6.97 & .233 & .0840 &1319 & 9 \\ 68 & 95.60 & -95.44 & -10.97 & -3.26 & 6.90 & 1.83 & .1324 & .2764 & 3 \\ 67 & 425.82 & -420.71 & -23.44 & 15.80 & 21.24 & 14.38 & .1171 & -2174 & 7 \\ 77 & 412.58 & 4.03.47 & -15.84 & 10.92 & 14.70 & 6.78 & .0909 & .1740 & 6 \\ 71 & 57.82 & -51.95 & -1.11 &20 & 7.58 & 2.19 & .1151 & .2255 & 4 \\ 73 & 188.36 & -214.09 & -41.30 & -9.02 & 6.77 & 2.75 & .1083 & .1768 & 1 \\ 74 & 156.61 & -175.69 & -34.41 & -7.60 & 5.1 & 1.63 & .1180 &2066 & 9 \\ 75 & 249.78 & -281.63 & -56.48 & -5.88 & 8.60 & .3.22 & .00414 &0841 & 6 \\ 79 & 57.24 & -62.66 & -10.86 & -12.87 & 8.55 & .2.47 & .1126 & .2189 & 5 \\ 85 & 166.00 & -10.71 &$	RUN	RR1	RR 2	RR3	RR4	S	SM	D	DL	L ++
	49	371.41	-426-10	-88.83	-22.68	12.43	6.34	.1833	2972	8
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	50	305.68	-346.48	-71.98	-19.12	7.94	2.88	.0987	1529	6
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	51	282.68	-317.70	-64.92	-17.20	10.92	3.29	.1432	2539	5
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	52	329.23	-372.20	-72.99	-17.79	9.12	3.76	.1023	1846	6
$ \begin{array}{c} 54 & 273 \cdot 68 & -307 \cdot 23 & -62.00 & -15.70 & 8.97 & 2.86 \cdot 1299 & .2328 & 7 \\ 55 & 86.21 & -80.56 & -4.60 &50 & 7.93 & 1.60 \cdot 1044 & .2947 & 3 \\ 56 & 70.00 & -93.29 & -8.48 & -4.48 & 7.85 & 1.27 \cdot 0.813 & .1387 & 7 \\ 75 & 45.43 & -28.01 & 6.88 & 1.74 & 7.92 & 2.12 \cdot 0.903 & .1916 & 6 \\ 58 & 125.16 & -121.97 & -14.44 & -6.10 & 8.22 & 1.55 & .0494 & -0.867 & 6 \\ 59 & 116.23 & -118.95 & -17.46 & -5.89 & 7.00 & 1.48 & .0625 & .1808 & 8 \\ 60 & 115.76 & -117.98 & -15.77 & -4.28 & 7.99 & 1.94 & .0726 & -14.02 & 8 \\ 61 & 97.91 & -96.78 & -12.17 & -3.27 & 7.02 & .95 & .0287 &0435 & 1 \\ 62 & 106.22 & -107.38 & -15.96 & -4.61 & 10.29 & 6.99 & .3357 & .6318 & 1 \\ 63 & 123.45 & -126.95 & -18.55 & -6.25 & 8.58 & 1.81 & .0844 &1446 & 7 \\ 64 & 97.64 & -94.24 & -9.51 & -3.15 & 7.74 & 1.57 & .0506 & .0908 & 10 \\ 65 & 137.11 & -142.27 & -22.12 & -6.81 & 8.28 & 2.40 & .0815 &1238 & 2 \\ 66 & 123.57 & -125.31 & -17.64 & -6.16 & 8.24 & 3.21 & .1450 & .2553 & 4 \\ 67 & 62.00 & -52.89 & 1.54 & .33 & 6.97 & 2.33 & .0840 &1319 & 9 \\ 89 & 5.60 & -95.44 & -10.97 & -3.26 & 6.90 & 1.83 & .1324 & .2764 & 3 \\ 69 & 425.82 & -420.71 & -23.44 & 15.80 & 21.24 & 14.38 & .1171 & -2174 & 7 \\ 70 & 412.58 & -403.47 & -15.84 & 16.92 & 14.70 & 6.78 & .0909 & 1740 & 6 \\ 71 & 57.82 & -51.95 & -1.11 &20 & 7.58 & 2.19 & .1151 & .2225 & 4 \\ 72 & 83.90 & -84.75 & -10.72 & -4.04 & 7.53 & 2.48 & .1553 & .2508 & 4 \\ 73 & 188.36 & -214.99 & -34.16 & -7.60 & 5.15 & 1.63 & .1180 &2006 & 9 \\ 75 & 249 & .78 & -281.63 & -56.68 & -15.80 & 8.06 & 2.97 & .1246 & .2224 & 4 \\ 72 & 62.03 & -253.26 & -50.36 & -12.87 & 8.55 & 2.47 & .1126 & .1911 & 7 \\ 78 & 98.86 & -92.87 & -5.47 & -2.02 & 7.95 & .82 & .00414 &0841 & 6 \\ 79 & 57.24 & -26.56 & -10.00 & -2.54 & 6.51 & 5.6 & .1030 & -2189 & 5 \\ 80 & 50.50 & -53.62 & -6.30 &98 & 6.61 & .67 & .0705 &1397 & 8 \\ 81 & 448.93 & -463.77 & -52.00 & -2.09 & 13.10 & 6.41 & .0883 &1340 & 8 \\ 24 & 204.97 & -416.72 & -44.04 & .11 & 13.27 & .0076 &1347 & 8 \\ 89 & 233.23 & -257.94 & +33.80 & -8.45 & 7$	53	338.26	-382.25	-75.35	-15.94	11.71	7.39	.1744	•3302	10
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	54	273.68	-307.23	-62.00	-15.70	8.97	2.86	.1299	•2328	7
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	55	86.21	-80.56	-4.60	50	7.93	1.60	•1044	•2947	3
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	56	97.00	-93.29	-8.48	-4.48	7.85	1.27	•0813	.1387	7
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	57	45.43	-28.01	6.88	1.74	7.92	2.12	•0903	.1916	6
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	58	125.16	-121.97	-14.44	-6.10	8.22	1.55	• 04 94	0867	6
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	59	116.23	-118.95	-17.46	-5.89	7.00	1.48	•0625	•1088	8
	60	115.76	-117.98	-15.77	-4.28	7.99	1.94	.0726	1402	8
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	61	97.91	-96.78	-12.17	-3.27	7.02	•95	•0287	0435	1
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	62	106.22	-107.38	-15.96	-4.61	10.29	6.99	.3357	•6318	1
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	63	123.45	-126.95	-18.55	-6.25	8.58	1.81	•0844	1446	7
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	64	97.64	-94.24	-9.51	-3.15	7.74	1.57	•0506	• 0908	10
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	65	137.11	-142.27	-22.12	-6.81	8.28	2.40	•0815	1238	2
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	66	123.57	-125-31	-17.64	-6.16	8.24	3.21	•1450	•2553	4
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	67	62.00	-52.89	1.54	•33	6.97	2.33	-0840	1319	9
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	68	95.60	-95.44	-10.97	-3.26	6.90	1.83	.1324	•2764	3
70 $412.58 -403.47 -15.84$ 16.92 14.70 $6.78.0909$ $.1740$ 6 71 $57.82 -51.95 -1.11$ 20 7.58 $2.19.1151$ $.2225$ 4 72 $83.90 -84.75 -10.72 -4.04$ 7.53 $2.48.1553$ $.2508$ 4 73 $188.36 -214.09 -41.30 -9.02$ 6.77 $2.75.1083$ $.1768$ 1 74 $156.61 -175.69 -34.16 -7.60$ 5.15 $1.63.11802006$ 9 75 $249.78 -281.63 -56.68 -15.80$ 8.06 $2.97.1246$ $.2224$ 4 76 $226.03 -253.26 -50.36 -12.87$ 8.55 $2.47.1126$ $.1911$ 7 78 $9.03 -78.80 - 1.8076$ 8.44 $3.14 - 11642153$ 7 78 $98.86 -92.87 -5.47 - 2.02$ 7.95 $.82.04140841$ 6 79 $57.24 - 62.66 - 10.00 - 2.54$ 6.35 $.56.10302189$ 5 80 $50.50 - 53.62 - 6.3098$ 6.61 $.67.07051397$ 8 81 $448.93 - 463.77 - 52.00 - 2.09$ 13.10 $6.41.08831340$ 8 82 $404.97 - 416.72 - 44.04$ $.11$ 13.27 $8.07.0721$ $.1381$ 83 $96.83 - 88.38 - 7.79 - 4.86$ 7.99 $1.99.0817$ $.1642$ 7 84 $88.93 - 78.88 - 4.75 - 2.08$ 8.30 $3.22.1024.2055$ 1 85 $54.50 - 42.15$ 4.93 2.40 7.99 $1.45.09662163$ 5 86 $76.65 - 70.30 - 2.35 - 1.34$ 7.59 $1.32.0694$ 1208 4 87 <td>69</td> <td>425.82</td> <td>-420.71</td> <td>-23.44</td> <td>15.80</td> <td>21.24</td> <td>14.38</td> <td>•1171</td> <td>2174</td> <td>7</td>	69	425.82	-420.71	-23.44	15.80	21.24	14.38	•1171	2174	7
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	70	412.58	-403.47	-15.84	16.92	14.70	6.78	•0909	•1740	6
72 83.90 -84.75 -10.72 -4.04 7.53 2.48 $.1553$ $.2508$ 473 188.36 -214.09 -41.30 -9.02 6.77 2.75 $.1083$ $.1768$ 174 156.61 -175.69 -34.16 -7.60 5.15 1.63 $.1180$ -2006 975 249.78 -281.63 -56.68 -15.80 8.06 2.97 $.1246$ $.2224$ 4 76 226.03 -253.26 -50.36 -12.87 8.55 2.47 $.1126$ $.1911$ 777 89.03 -78.80 -1.80 76 8.44 3.14 $.1164$ 2153 778 98.86 -92.87 -5.47 -2.02 7.95 $.82$ $.0414$ 0841 679 57.24 -62.66 -10.00 -2.54 6.61 $.67$ $.0705$ -1397 880 50.50 -53.62 -6.30 98 6.61 $.67$ $.0705$ -1397 881 448.93 -463.77 -52.00 -2.09 13.10 6.41 $.0883$ 1340 882 404.97 -416.72 -44.04 111 13.27 8.07 $.0721$ 1381 183 96.83 -88.38 -7.79 -4.86 7.99 1.99 $.0817$ 1.642 784 88.93 -78.88 -4.75 -2.08 8.30 3.32 $.1024$ $.$	71	57.82	-51.95	-1.11	20	7.58	2.19	•1151	•2225	4
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	72	83.90	-84.75	-10.72	-4.04	7.53	2.48	• 1553	-2508	4
74 $156 \cdot 61 - 175 \cdot 69 - 34 \cdot 16 - 7 \cdot 60$ $5 \cdot 15$ $1 \cdot 63 \cdot 1180 - 2006$ 9 75 $249 \cdot 78 - 281 \cdot 63 - 56 \cdot 68 - 15 \cdot 80$ $8 \cdot 06$ $2 \cdot 97 \cdot 1246 \cdot 2224$ 4 76 $226 \cdot 03 - 253 \cdot 26 - 50 \cdot 36 - 12 \cdot 87$ $8 \cdot 55$ $2 \cdot 47 \cdot 1126 \cdot 1911$ 7 77 $89 \cdot 03 - 78 \cdot 80 - 1 \cdot 8076$ $8 \cdot 44$ $3 \cdot 14 \cdot 11642153$ 7 78 $98 \cdot 86 - 92 \cdot 87 - 5 \cdot 47 - 2 \cdot 02$ $7 \cdot 95 \cdot 82 \cdot 04140841$ 6 79 $57 \cdot 24 - 62 \cdot 66 - 10 \cdot 00 - 2 \cdot 54 \cdot 6 \cdot 35 \cdot 56 \cdot 10302189$ 5 80 $50 \cdot 50 - 53 \cdot 62 - 6 \cdot 3098$ $6 \cdot 61 \cdot 67 \cdot 07051397$ 81 $448 \cdot 93 - 463 \cdot 77 - 52 \cdot 00 - 2 \cdot 09$ $13 \cdot 10 \cdot 6 \cdot 41 \cdot 08831340$ 82 $404 \cdot 97 - 416 \cdot 72 - 44 \cdot 04 \cdot 111$ $13 \cdot 27 \cdot 8 \cdot 07 \cdot 0721 \cdot 1381$ 81 $488 \cdot 93 - 78 \cdot 88 - 4 \cdot 75 - 2 \cdot 08 \cdot 8 \cdot 30 \cdot 3 \cdot 32 \cdot 1024 \cdot 2055$ 1 85 $54 \cdot 50 - 42 \cdot 15 \cdot 4 \cdot 93 \cdot 2 \cdot 40 \cdot 7 \cdot 99 \cdot 1 \cdot 45 \cdot 09662163 \cdot 51$ 85 $54 \cdot 50 - 42 \cdot 15 \cdot 4 \cdot 93 \cdot 2 \cdot 40 \cdot 7 \cdot 99 \cdot 1 \cdot 45 \cdot 09662163 \cdot 51$ 86 $76 \cdot 65 - 70 \cdot 30 - 2 \cdot 35 - 1 \cdot 34 \cdot 7 \cdot 59 \cdot 1 \cdot 32 \cdot 0694 \cdot 1208 \cdot 44$ 87 $204 \cdot 45 - 231 \cdot 95 - 47 \cdot 68 - 11 \cdot 94 \cdot 7 \cdot 63 \cdot 1 \cdot 73 \cdot 10912103 \cdot 51$ 88 $146 \cdot 60 - 160 \cdot 71 - 29 \cdot 97 - 6 \cdot 00 \cdot 6 \cdot 09 \cdot 1 \cdot 47 \cdot 0860 \cdot 1962 \cdot 44$ 89 $233 \cdot 23 - 257 \cdot 94 - 43 \cdot 80 - 8 \cdot 45 \cdot 7 \cdot 41 \cdot 1 \cdot 67 \cdot 0630 \cdot 1000 \cdot 49$ 90 $237 \cdot 21 - 262 \cdot 37 - 46 \cdot 32 - 10 \cdot 18 \cdot 7 \cdot 56 \cdot 1 \cdot 45 \cdot 0814 - 1612 \cdot 5$ 91 $242 \cdot 24 - 260 \cdot 96 - 36 \cdot 85 - 5 \cdot 55 \cdot 9 \cdot 20 \cdot 1 \cdot 36 \cdot 0252 - 0522 \cdot 1$ 92 $247 \cdot 43 -$	73	188.36	-214.09	-41.30	-9.02	6.77	2.75	•1083	.1768	I
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	74	156.61	-175.69	-34.16	-7.60	5.15	1.63	•1180	2006	9
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	75	249.78	-281.05	-56.68	- 15.80	8.06	2.97	•1240	•2224	4
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	76	226.03	-253.26	-50+36	-12.8/	8.55	2.47	•1120	• 1911	(
78 98.86 -92.87 -5.47 -2.02 7.95 $.82$ $.0414$ 0841 6 79 57.24 -62.66 -10.00 -2.54 6.35 $.56$ $.1030$ 2189 5 80 50.50 -53.62 -6.30 98 6.61 $.67$ $.0705$ 1397 8 81 448.93 -463.77 -52.00 -2.09 13.10 6.41 $.0883$ 1340 8 82 404.97 -416.72 -44.04 $.11$ 13.27 8.07 $.0721$ $.1381$ 1 83 96.83 -88.38 -7.79 -4.86 7.99 1.99 $.0817$ $.1642$ 7 84 88.93 -78.88 -4.75 -2.08 8.30 3.32 $.1024$ $.2055$ 1 85 54.50 -42.15 4.93 2.40 7.99 1.45 $.0966$ 2163 5 86 76.65 -70.30 -2.35 -1.34 7.59 1.32 $.0694$ $.1208$ 4 87 204.45 -231.95 -47.68 -11.94 7.63 1.73 $.1091$ 2103 5 88 146.60 -160.71 -29.97 -6.00 6.09 1.47 $.0860$ $.1962$ 4 89 233.23 -257.94 -43.80 -8.45 7.41 1.67 $.0630$ $.1000$ 4 90 237.21 -262.37 -46.32 -10.18 <t< td=""><td>71</td><td>89.03</td><td>-78.80</td><td>-1.80</td><td>/6</td><td>8.44</td><td>3.14</td><td>•1104</td><td>2155</td><td>ſ</td></t<>	71	89.03	-78.80	-1.80	/6	8.44	3.14	•1104	2155	ſ
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	18	98.80	-92-87	-5.47	-2.02	(.95	•82	•0414	0841	o r
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	(9	57.24	-02.00	-10.00	-2.54	0 • 33	• 2 0	•1030	-+2189	2
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	80	50.50	-55.02	-0.50	98	0.01	•0/	• 0 / 05		0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	81	448.93	-403 • / /	-52.00	-2.09	13 • 10	0+41	• 0000	+• 1340	1
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	02	404 • 97	+410+72	-44.04	• - 1 94	13.21		+0721	+ 1301 1442	7
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	03	90 0J	-79 99	-1.75	-4.00	9 20	1077	+UOT7	- 1042	1
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	96	51 50		-4+13	-2.00	7 00	3.32	0066	- 2005	5
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	94	74 45	-42 • 15	-2 26	-1 21	7 60	1+40	060	2103	ר. א
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	97	201 15	-271 95	-17 69	-11.94	7 637	1 7 7	10074	- 2103	Γ, T
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	22	146 60	-140 71	-20.07	-6:00	6.00	1.47	0860	-1962	И
90 $237 \cdot 21 - 262 \cdot 37 - 46 \cdot 32 - 10 \cdot 18$ 7.56 1.45 $\cdot 0814 - \cdot 1612$ 5 91 $242 \cdot 24 - 260 \cdot 96 - 36 \cdot 85 - 5 \cdot 35$ 9.20 1.36 $\cdot 0252 - \cdot 0522$ 1 92 $247 \cdot 43 - 268 \cdot 26 - 40 \cdot 41 - 4 \cdot 99$ 8.25 1.71 $\cdot 0567 - \cdot 1019$ 3 93 $246 \cdot 30 - 270 \cdot 98 - 48 \cdot 33 - 9 \cdot 00$ 7.57 2.45 $\cdot 0982 \cdot 1993$ 8 94 $261 \cdot 26 - 288 \cdot 65 - 51 \cdot 74 - 11 \cdot 01$ 9.84 5.86 $\cdot 1161 \cdot 2734$ 1 95 $70 \cdot 41 - 72 \cdot 89 - 11 \cdot 01 - 3 \cdot 43$ 8.49 2.47 $\cdot 1812 \cdot 3642$ 3 96 $50 \cdot 92 - 48 \cdot 72 - 5 \cdot 27 - 1 \cdot 58$ 7.43 $\cdot 95 \cdot 0747 \cdot 1736$ 4	90	140.00	-257 0		-0.00	7 11	1 4 4 1	0600	1000	- -
91 242.24 -260.96 -36.85 -5.35 9.20 1.36 $.0252$ 0522 1 92 247.43 -268.26 -40.41 -4.99 8.25 1.71 $.0567$ 1019 3 93 246.30 -270.98 -48.33 -9.00 7.57 2.45 $.0982$ $.1993$ 8 94 261.26 -288.65 -51.74 -11.01 9.84 5.86 $.1161$ $.2734$ 1 95 70.41 -72.89 -11.01 -3.43 8.49 2.47 $.1812$ $.3642$ 3 96 50.92 -48.72 -5.27 -1.58 7.43 $.95$ $.0747$ $.1736$ 4	90	233+23	-251 +74	-45.00	-10.18	7.56	1.45	.0814	- 1612	Ę
92 247.43 -268.26 -40.41 -4.99 8.25 $1.71.0567$ 1019 3 93 246.30 -270.98 -48.33 -9.00 7.57 $2.45.0982$ $.1993$ 8 94 261.26 -288.65 -51.74 -11.01 9.84 5.86 $.1161$ $.2734$ 1 95 70.41 -72.89 -11.01 -3.43 8.49 2.47 $.1812$ $.3642$ 3 96 50.92 -48.72 -5.27 -1.58 7.43 $.95.0747$ $.1736$ 4	90	231 • 21	-202+31	-36.85	- 10 - 10	9.20	1.36	-0252	0522	1
93 246.30 $-270.98 -48.33 -9.00$ 7.57 2.45 .0982 .1993 8 94 261.26 $-288.65 -51.74 -11.01$ 9.84 5.86 .1161 .2734 1 95 70.41 $-72.89 -11.01 -3.43$ 8.49 2.47 .1812 .3642 3 96 50.92 $-48.72 -5.27 -1.58$ 7.43 .95 .0747 .1736 4	- 71 Q2	247-43	-268.24	-10-11	-7-00	8,25	1.71	.0567	-, 1010	'
94 261.26 $-288.65 -51.74 -11.01$ 9.84 5.86 .1161 .2734 1 95 70.41 $-72.89 -11.01 -3.43$ 8.49 2.47 .1812 .3642 3 96 50.92 $-48.72 -5.27 -1.58$ 7.43 .95 .0747 .1736 4	74	241 443	-270-09	-18.33	-9.00	7.57	2.15	.0982	1997	С Я
95 70.41 -72.89 -11.01 -3.43 8.49 2.47 .1812 .3642 3 96 50.92 -48.72 -5.27 -1.58 7.43 .95 .0747 .1736 4	ол Э	261_26	-288-65	-51.74	-11-01	9,84	5-86	1161	2734	ĭ
96 50.92 -48.72 -5.27 -1.58 7.43 .95 .0747 .1736 4	Q5	70_11	-72-80	-11-01	-3.43	8,10	2_17	.1812	3642	ż
	96	50.92	-48.72	-5.27	-1.58	7.43	•95	.0747	.1736	4

TABLE 11, CONTINUED.

PARAMETERS OF EMPIRICAL EQUATION OF HOTWIRE RMS

RUN	RR1	RR 2	RR3	RR4	S	SM	D	DL	L
97	71.12	-73.75	-9.60	-2.41	7.72	1.69	.1072	1923	5
98	70.98	-73.61	-10.36	-2.59	8.70	1.74	.1074	.2180	1
99	60.18	-57.17	-5.03	-1.42	9.05	1.64	•1006	1449	4
100	81.61	-83.56	-10.36	-2.82	9.77	2.36	•1822	•4308	4
101	90.38	-94.72	-13.52	-4.18	8.05	1.80	.1026	• 1440	1
102	74.93	-74.73	-8.43	-2.70	6.79	1.35	.0719	1241	4
103	79.86	-81.64	-11.16	-4.18	6-63	1.23	•0862	.1817	3
104	82.50	-85.42	-12.45	-4-39	6.76	1.07	.0798	1531	6
105	110.74	-110.35	-13.31	-4.14	7.77	2.38	.1045	•1559	3
106	106.89	-103.32	-8.39	-2.43	8.01	1.42	•0713	•1425	8
107	133.59	-137.44	-19.73	-5.91	8.44	1.97	•0809	•1680	3
108	90.30	-84.86	-5.97	-1.88	7.10	1.98	•0688	•1027	5
109	327.04	-375.67	-81.06	-22.20	9.74	4.31	.1679	•2934	3
110	244.30	-273.83	-53-23	-14.08	7.49	2.54	.1212	2163	6
111	291.88	-333.23	-71.85	-20.83	9.97	3.41	.1770	3035	5
112	303.08	-345.44	-68.10	-16.03	7.65	3.59	.1143	1740	6
113	301.83	-344.27	-69.43	-14.97	11.00	5.68	.1714	•3092	3
114	258.66	-291.57	-59.32	-14.97	7.30	2.43	.1065	-2032	4
115	90.41	-84.62	-4-29	•17	8.35	1.94	.0839	1614	4
116	100.42	-96.33	-6.54	62	8.22	2.72	.1304	.2063	3
117	216.01	-230.53	-30.89	-1.19	12.81	2.11	.0587	.0928	5
118	221.95	-238.49	-34.00	-4.50	12.22	2.08	.0505	0907	7
119	163.97	-167.85	-20.40	-1.44	12.16	1.78	.0358	.0693	9
120	176.28	-182.57	-23.56	-1.94	11.87	1.58	.0469	1353	4
121	213.10	-230.54	-35.07	-5.50	13.97	1.27	.0638	.1247	4
122	237.03	-257.66	-39.39	-4.38	14.34	4.24	.0972	1816	4
123	206.07	-220.18	-29.87	-3.48	12.03	1.68	.0458	.0797	6
124	219.72	-239.45	-37.88	-6.12	13.16	1.45	•0359	.0601	8
125	194.77	-207.79	-31.57	-4.32	11.11	1.36	.0541	1313	4
126	185.99	-194.04	-23-21	65	12.31	2.02	.0435	0691	3
127	159.00	-174.52	-24.23	-1.57	9.86	2.29	.1232	2358	3
128	167.22	-181.88	-23.95	-2.44	10.48	1.50	.0683	1536	8
129	185.38	-201.05	-29.65	-3.48	11.11	1.65	.0464	0992	8
130	179.62	-193.40	-29.62	-4.46	10.46	1.65	•0691	1165	6
131	98.04	-114.70	-23.92	-6.69	8.46	1.20	.3372	•6806	3
132	103.74	-121.06	-24.56	-5.97	7.08	1.13	.1716	3592	6
133	308.66	-351.85	-72.69	- 19.65	8.57	3.99	.1548	•2357	3
134	292.46	-331.28	-65.48	-15.69	7.26	2.53	.1066	1848	6
135	255.82	-288.31	-51.00	-9.14	8.07	2.75	•0829	.1687	7
136	262.25	-298.23	-58.45	-14.05	7.89	2.72	.1290	2041	5
137	298.25	-326.76	-52.55	-8.70	8.96	3.02	.0816	1394	9
138	302.53	-336.03	-58.81	-12.60	8.51	2.82	.0800	1635	2
139	298.96	-328.20	-52.73	-9.85	9.15	2.02	.0331	•0582	6
140	312.22	-342.81	-54.70	-7.26	8.33	2.62	.0789	1705	8
141	369.90	-397.60	-53.08	-3.74	10.55	4.31	.0887	1805	8
142	317.52	-336.51	-43.49	-2.41	9.65	3.07	.0472	0979	7
† R	RI, RR2	, RR3, F	R4, S,	and SM	are in	milli	volts.	,	

REFERENCES

- Brown, H.E., B.H. Amstead, and B.E. Short, "Temperature and Velocity Distribution and Transfer of Heat in a Liquid Metal," Trans. of the ASME, Vol. 79, No. 2, 1957, pp. 279-285.
- 2. Corruccini, R.J., "Interpolation of Platinum Resistance Thermometers, 20° to 273.15°K," Review of Scientific Instruments, Vol. 31, No. 6, June, 1960, pp. 637-640.
- 3. Diller, D.E., and H.M. Roder, "Thermal Conductivity Measurements on Fluid Hydrogen at 17 to 200 K and Pressures to 100 Atm.," preliminary data to be published at 1969 Cryogenic Engineering Conference. National Bureau of Standards, 1969. By permission.
- 4. Farmer, O.A., T.E. Springer, and B.B. Fisher, "FORTRAN IV Hydrogen Property Tabular Codes," Report LA-3381, Los Alamos Scientific Laboratory, Los Alamos, N.M., 1965.
- 5. Grey, J., "The Turbine Flowmeter for Cryogenic Liquids," Preprint Number 111-59, 14th Annual Instrument-Automation Conference, Chicago, Illinois, September 21-25, 1959, Sponsored by the Instrument Society of America.
- 6. Hendricks, R.C., R.W. Graham, Y.Y. Hsu, and R. Friedman, "Experimental Heat-Transfer Results for Cryogenic Hydrogen Flowing in Tubes at Subcritical and Supercritical Pressure to 800 Pounds per Square Inch Absolute," Report NASA TND-3095, National Aeronautics and Space Administration, Washington, D.C., 1966.
- 7. Iberall, A.S., "Attenuation of Oscillatory Pressures in Instrument Lines," Journal of Research of the National Bureau of Standards, Research Paper RP-2115, Vol. 45, July, 1950, pp. 85-108.
- 8. McAdams, W.H., <u>Heat Transmission</u>, second edition. McGraw-Hill Book Co., Inc., New York, 1942.

- 9. Powell, R.L. and M.D. Bunch, "Thermocouple Table for Copper vs. Const., ISA Type TP-TN, Based on Nat. Bur. of Standards Pub. R-188 with Calc. Mult. Factor of 1.000. Users Reference Temperature 0 Deg. K, Test Date September 1, 60 by Powell, Bunch," unbound computer listings, private communication.
- 10. Powell, R.L., M.D. Bunch, and R.J. Corruccini, "Low Temperature Thermocouples - 1. Gold-Cobalt or Constantan versus Copper or 'Normal' Silver," <u>Cryogenics</u>, Vol. 1, March, 1961, pp. 139-150.
- 11. Powell, R.L., L.P. Caywood, Jr., and M.D. Bunch, "Low-Temperature Thermocouples," <u>Temperature, Its</u> <u>Measurement and Control in Science and Industry</u>, Vol. 3. C.M. Herzfeld, editor-in-chief; Part 2, <u>Applied Methods and Instruments</u>, A.I. Dahl, editor. Reinhold Publishing Co., New York, 1962, pp. 65-77.
- 12. Roder, H.M. and R.D. Goodwin, "Provisional Thermodynamic Functions for Para-Hydrogen," Technical Note No. 130, National Bureau of Standards, 1961.
- 13. Rouse, H., editor, <u>Engineering Hydraulics</u>. John Wiley & Sons, New York, 1950. Chapter VI "Steady Flow in Pipes and Conduits," V.L. Streeter, pp. 412-416.
- 14. Scott, R.B., <u>Cryogenic Engineering</u>, D. Van Nostrand Co., Inc., Princeton, New Jersey, 1959, p. 289.
- 15. Skoglund, V.J.; "Principles of Fluid Mechanics," M.E. 203 Notes, The University of New Mexico, Albuquerque, N.M. 1963.
- 16. Skoglund, V.J., private communication, 1969.
- 17. Skoglund, V.J., <u>Similitude-Theory and Applications</u>, International Textbook Co., Scranton, Pa., 1967.
- 18. Sleicher, C.A., Jr., "Experimental Velocity and Temperature Profiles for Air in Turbulent Pipe Flow," Trans. of the ASME, Vol. 80, No. 3, 1958, pp. 693-704.

- 19. Thurston, R.S., "Thermal-Acoustic Oscillations Induced by Forced Convection Heating of Dense Hydrogen," Report LA-3543, Los Alamos Scientific Laboratory, Los Alamos, N.M., 1966.
- 20. Weber, L.A., D.E. Diller, H.M. Roder, and R.D. Goodwin, "The Vapor Pressure of 20°K Equilibrium Hydrogen," <u>Crvogenics</u>, Vol. 2, June 1962, pp. 236-238.
- 21. Wood, R.D., <u>Heat Transfer in the Critical Region</u>: <u>Experimental Investigation of Radial Temperature and</u> <u>Velocity Profiles</u>, University Microfilms, Inc., Ann Arbor, Michigan, 1963. Ph.D. Dissertation, Northwestern University, 1963.