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NUMERICAL SIMULATION OF PROPOSED SURFACE DIFFUSION EXPERIMENTS

by

John P. Brainard and Bruce Goplen

ABSTRACT

This report describes &o possibZe ezpez%ments to measure the sur-
face difjkion ofsodizm on metal substrate. Baeed unestimated &tu,
nwnerical calculations were performed to simulate these experiments,
and judgments uere formed as to their feaeibili~.

.
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INTRODUCTION

Surface Diffusionof Sodium

Three general mechanisms by which sodium can

transfer in sodium loops are: momentum transfer,

gas diffusion,and surface diffusion. All transfer

mechanismsmust be consideredwhen instrumentinga

sodium loop; sodium that transfers in an unknown

manner can perturb the desired results. Knowledge

of all transfermechanisms is important to safety

in the event of fuel-pin or sodium-containmentrup-

tures. Of these three transportmechanisms, sur-

face diffusion is the least known.

Two experimentaltechniques,one called “flash-

Wirel!and the other !Ihot-point,”have been consid-

ered for determiningsurface diffusion rates. Both

involve placing sodium on a wire and measuring its

evaporation from that wire.

The “flash-wire”experiment involvesplacing

some unknown, but reproducible,sodium distribution

on a wire at a predeterminedtemperature. A wire

rather than a ribbon is used to avoid edge effects.

After some time the wire is flashed to high temper-

ature with subsequent resorptionof the sodium.1

A hot ribbon detector some distance from but par-

allel to the wire interrupts some of the desorbed

sodium. This sodium is surface ionized, and the

rate of ionizationis measured as a current to a

collector filament.2 The hot ribbon detector is

designed to have a potential drop of about 30V down

its length. By gating a grid between the ribbon

detector and the collector, the collector current

can be associatedwith sodium resorption at a par-

ticular position on the wire, and the sodium density

distributionalong the wire can be measured. Meas-

uring the distributionat two different times gives

enough information to determine the surface diffu-

sion rate.

The “hot-point” experiment involves depositing

sodium continuouslyat some known rate on a region

of the wire which is small compared to its total

length. The wire is at some predetermined tempera-

ture. At each extremity of the wire is a hot point.

As sodium arrives at these points, it is removed by

resorption. The desorbed sodium is ionized and

collected. The current measured eventually builds

up to a maximum when the rate of resorption equals

the rate of sodium deposition. The surface diffu-

sion rate can be obtained by observing the buildup

in current with time.

To allow comparison of experimentaltechniques,

a computer program was required to simulate each of

the methods using estimated data. The resulting

effort is the subject of this report.

SU?@lARY

A computer code named SWEETBRIAR has

written in FORTRAN IV for the IBM 7030 to

been

solve the
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surface diffusion equation with evaporationterm in

one dimension,

(1)

The calculationis in finite difference,and the

extrapolatedLiebmann technique is used to speed

convergence. The code has been checked against two

analytic solutions: the Dirac delta and a Fourier

square wave.

Three types of problems may be considered. The

first is the straightforwardcase in which diffusion

rate, evaporationrate, and initial concentration

distributionare all known or assumed. The second

case, of more interest experimentally,is the

!Jflash-wirettin which the concentrationdistribution

is known (measured)at two differenttimes. Given

this information,the program calculatesdiffusion

and evaporation coefficients. The third case, also

of experimentalusefulness, is the !Ihot-pointl!pro.

blem in which mass deposited at a constant rate on

one point of an initiallybare wire is evaporated at

two hot points, and a characteristictime of equi-

librium (mass deposition rate = evaporationrate) i’s

measured.

Examples of the three solution techniquesand

several cases involving experimentaldata are in-

cluded below, along with a code input.

CONCLUSION

This study has shown that the !!flash-wire’~

experiment does not appear to be the most practical

method of obtaining surface diffusion coefficients.

The measurementof sodium distributionmust be done

within a few minutes of the time of initial distri-

bution at room temperatureto within a few milli-

seconds at 500”C. Also, the flashing of the wire

must be very fast to prevent change of the sodium

distributionduring the measurement. me flashing

has to raise the wire temperaturewell over 1000”C

in a few microseconds. Further, the ‘Iflash-wiret!

experiment requires two runs with reproducibleini-

tial distribution,and this may be very difficult to

obtain.

The “hot-point” experiment,on the other h~d,

looks nmre promising. Much longer times can be

t?ken for measurement. Also, enough data can be ob-

tained from a single run to determine the diffusion

coefficient. Since surface diffusion is strongly

influencedby temperature,it is well to keep tem-

peratures fixed during the experiment. This can be

accomplishedin the “hot-point”method.

CALCULATIONALTECHNIQUE

The,general one-dimensionaldiffusion equation

with evaporationterm,

(1)

(see Nomenclature list at end of report) can be ex-

pressed in finite difference as follows:

DAt
nJ(t) +— .2

(Ax)
+ nJ+l(t+At)

nJ(t+At) =
.

l+ RAt +2+
(Ax)

(2)

‘alues ‘f ‘J-1 and ‘J+l are ‘aken at “At ‘o
help convergence. To allow use of a sizable time

step, an iterative scheme is used:

DAt
nJ(t) + — 2 [n~-l(

1-1
(Ax)

t+At) + nJ+l(t+At
n;(t+At) =

l+ RAt +2+
(Ax)

(3)

Concentrationswithout superscriptsrepresent

convergedvalues, and the first iteration (1=1) re-

quires that nJ+I(t) be used instead of nI-lJ+l(t+At).

Convergence implies that all nodes have satisfied

the following criterion:

n~(t+At) - n~-l(t+At) < cl. (4)

Finally, to speed convergence,an extrapolation

technique is used, in this case the Liebmann method.

‘khereis no physical significanceinvolved; rather

it is simply a means of extrapolatingfrom the

vious iteration to achieve faster convergence.

final form of the diffusion equation solved in

program is then

n~(t+At) = (1-B) nj-l(t+At)

I II
+ n~~~(t+At)

+B ,
1 + RAt + 2+

(Ax)‘ I

pre-

The

the

(5)

where possible values of the Liebmann parameter, ~,

are from 1.0 to 2.0.

Some remarks regarding various parameters in

.

.

*
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Eq. S are in order. First, from a considerationof

the case in which only evaporation takes place, it

is clear that the denominatorof the second term

must remain linear. That is, from the analytic

solution of Eq. 1 for D=O,

n e-RAt—. .l-rw+ ~+...
n
o

(6)

1
=l+RAt’ (7)

only if

RAt<E6 <<l. (8]

Second, we tried to maximize the dimensionless

quantity DAt/(Ax)2 to increase the size of the time

step. Results of many calculationsindicate a con-

vergent solution if

DAt
— L 20.
(Ax)2

(9)

Similarly, an attempt was made to minimize the

number of iterations required by varying the Lieb-

mann parameter, e. Acceptable values were found

between @ = 1.0 and 1.8, whereas the case B = 2 was

always divergent, Note that the case 6 = 1.0 corre-

sponds exactly to Eq. 3, Minimum machine time was

generally obtained at about 6 = 1.6, and all subse-

quent cases were run using this value. The time

saving over use of Eq. 3 is roughly a factor of

three.

The calculationhas been checked against two

analytic solutions, the first of which is the Dirac

delta function. Its properties are

6(X) = o X+o

J
b (lo)
6(x)dx = 1 a,b > 0 .

-a

Identifyingthe delta function with initial concen-

tration distributioncorrespondsphysically to nor-

malized mass deposited at a point at time equals

zero. Beginningwith Eq. 1, the substitution

+Rt
u(x, t) = n(x, t)e (11)

eliminates the evaporationterm, yielding

(12)

which is easily solved using the method of GreenJs

functions. That is

!
u(x,t) = G(x,x’,t) u(x’,o)dx> (13)

with the condition

u(x!,0) = n(x!,0) = 6(xt) (14)

and the Greents function3 obtained by Fourier trans-

forming the x variable,

(xi;;)*
le

G(x,x’,t)= — ,
2tit

yields

X2

1 e-m
U(x,t) = — ,

2wm

and finally

( ).x*
1 e-Tix+Rt

n(x,t) = —
2Gt

(15)

(16)

(17)

This initial distributionwas simulated in the

finite difference calculationwith a very narrow,

normalized square wave. A comparison of this re-

sult with Eq. 17 is shown in Fig. 1. Only the

right side of the symmetric distribution is shown.

I●\

8

t\

INITIAL DISTRIBUTION n(x 0)=8(x)
GIVING NORMALIZED MAS&
:: ~0-2 CM2 SEC-l

7

ANALYTIC SOLUTION

FINITE DIFFERENCE
SOLUTION

b

4 — 9
.

3 —

2 —
L-99=

I —

o I
o.I 0.2

DISTANCE (CM)

1. The Dirac delta solution.

I
,3
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The second analytic solution used in checking

the finite difference calculationwas the Fourier

square wave. Beginning from Eq. 12,

~fi=y
at ‘

(12)
axz

and assuming the solution u(x,t) to be separable,

u(x,t) = X(x)T(t)

gives

m(t) = = x(x) *
dxz

or

(18)

But since t and x are independentvariables,Eq. 18

must equal some constant, k. The resultingtwo

equations are,

d2X(x)
-:X(X)=O

dx2

and

(19)

(20)

Now a particular solution that fits the bound-

ary condition is found using Fourier analysis,

I
1

- ~c x <~
:, 2 2

n(x,O) = (21)
O, otherwise

This solution is actually periodic, but the period

is chosen large enough to approximatethe boundary

conditions (21). The even Fourier cosine series,

X(x) = a. + ~ am cos ~,

m=1

(22)

where ~ equals one-half the period, satisfies Eq. 19

and has coefficients,am, determinedby integration

of an orthonormalset over the period 21, giving,

a. ‘2’

(23)

from

SubstitutingEq. 22 in Eq. 19 gives,

which Eq. 20 yields,

m2=2~~
-—

T(t) = e
12

. (24)

CombiningI?qs.11, 22, 23, and 24 gives the

complete solution,

1 -Rt
n(x,t) = — e

2.1

It is illustratedin Fig. 2 along with the corre-

sponding finite difference solution.

r

I t=O.OSEC I I
5

g

D

0.1 SEC
NORMALIZED MASS

\ D= 10-2 CM2 SEC-l

~ 4e:4sEc
R =0

●

y
— ANALYTIC SOLUTION

03
~ 1.0 SEC 9 FINITE DIFFERENCE

e-, ,,T#fiil
z
o
=2 2.5 SEC
~ \\

k
OWL” , ,“,.

.

1

OJ 0.2
DISTANCE

Fig. 2. The Fourier square-wave solution.

Because of sparse data on sodium, we have used

surface-diffusionestimates of iridiumon tantalt.an4

and evaporation rates of sodium on gas-coveredand

atomically clean tungsten.s These estimates are

shown in Fig. 3. These data are believed to be rep-

resentativeof an alkali metal on a refractorymetal.

Figure 4 is the result of computer runs for a gas-

covered refractorymetal at various temperatures.

Gas-coveredtantalum was chosen because of the

higher evaporation rate. A square wave of SOO-mole-

cules/cm concentrationand 0.2-cm width was assumed

as an initial distribution in all cases. (Concentra-

.
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tion may be adjusted to any desired level by multi-

placation.)

03’

lot -

100-

lo~-

16’ -

10-8-

Iv -

16’=-

0.0 I .0 20 So 4.0 SD 60 7.0
1/1x103(K-’)

Fig. 3. Estimated diffusion characteristicsof ir-
idiumon tantalum.

In practice, it would not be possible to start

from an initial square wave distribution,but it may

be possible to determine distributionsat two dif-

ferent times during the diffusion process, and from

this informationthe evaporationand diffusion co-

efficients can be obtained. This “flash-wire”ex-

periment is the second type of case solved by SWEET-

BRIAR. Given two concentrationdistributionsat

times O and t!, the solution for evaporationcoef-

ficient becomes analytic. That is,

-RN .x
at

gives

Nt = Noe

or, in finite

- Rt
>

difference,

I 1“
‘wn(J)t=o
E
J=1

Y

x
n(J)t=tl

J=l

(26)

Determiningthe diffusion coefficientis more

difficult and requires a trial-and-errorsolution

beginning with an assumed value for D, and a means

of convergence. A general solution to the mass

diffusion equation (1) is the Fourier solution in

which generality is provided by specifying the ini-

tial distributionthrough the coefficients,am.

That is,

n(x,t)

( ).m2T2~
-—+Rt

= aoe-Rt + - am
T

mnx X2
cos — e

L
(27)

m.

Then the following

an(x,t,D)
at

relationships

-aoRe-Rt-x(m2=2D
.

)
—+R a cos

.P_2

are determined:

()

m2=2~
-—

mnx L2
—e
L

,(28)

and

an(x,t,D)
~D

()m2=2~-—+Rt
.o-~~

m~x
amcos — e

~2 .

L
(29)

Multiplying Eq. 29 by ~ and subtractingEq. 28

gives,

(30)

or

(t)‘~ [Rn+ci)],
7
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Fig. 4. Iridiumon gas-covered tantalum at various temperatures.
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and then,

“=(g)‘n=m’n” (31)

Finally, Eq. 31 is weighted by mass, summed over

all nodes, and normalized,giving

AD .

JMAX

‘g*,

2

JX
t’ .

‘J
J=l

(32)

where the values AnJ are the differencebetween the

desired measured values and the latest calculation

trial at t’, and the values (an/at) ~ are taken from

the last time step of the calculation. It is re-

quired that

to prevent divergence. Further, solution requires

that,

for all nodes. The calculationis redone using

better values of D through Eq. 32 until this

occurs.

This techniquewas checked by inputting re-

sults (two concentrationdistributions)from a pre-

vious run. The program calculatedthe evaporation

coefficientand convergedupon the diffusion co-

efficient in five cycles to an acceptable degree

of accuracy.

The third case solved by the program is the

“hot-point”problem. Beginningwith

‘J
=0,

mass is deposited on a central point

at each time step according to,

a bare wire,

of the wire

fio points at the ends of the wire are then main-

tained at zero concentration(the last node, or

evaporationpoint),

‘JMAX = 0“

The rate of flow out of each hot point is just,

4=; ( )‘JhlAX-l-nJMAX “

Figures 5, 6, and 7 show plots of the hot-

point evaporation rate versus time for iridiumon

gas-coveredtantalum at 350, 400, and 500”K. Ir-

idiumwas deposited at the rate of 500 molecules per

second, and evaporated at two points 3 cm from the

depositionpoint. These curves are characteristic

of the estimated diffusion coefficients.

I I , !

.————— — — ——.————————.

D. 3.5x104CM2 SEC+
R* 83x1616SEC+

IXI04 2 x 104 3XI04 4 x 104 5
TIME (SEC)

Fig. 5. “Hot-Point’!problem for indium on tantalum
at 350” K. -

300~
~ —— — — ——— — —— . . ——————
(n

2u
:200 –
~
-1
0
~

u T.400K

~ D.1.9xl~3CM2SEC-1

z

100 –

P

!!

s
w

TIME (SEC)

Fig. 6. !lHot-pointltproblem for iridiumOn t~t.alum

at 400”K.
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Fig. 7. !lH~t-point!iproblem for iridiumOn t~talLm.1
at 500”K.

CODE INPW

(Cases of any type may be run back-to-back.)

First Card - format (20A4)

Title card consistingof up to 79 alphanumeric

characterspreceded by a “l” punch in column 1.

Second Card -

NTYPE -

NMAX -

NPRINT -

IMAX -

JMAX -

JADD -

format (1615)

O - gives a diffusion run with all

quantitiesknown

1 - gives convergenceof diffusion

and evaporationcoefficients

given two concentrationdistribu-

tions

2 - the “hot-point”problem

the maximum number of time steps

allowed

the printing frequencyin number of

time steps

the maximum number of iterationsper

time step

the initial number of nodes on the

wire

the number

the end of

upon EPS4.

of nodes to be added at

each time step, depending

NOTE: if NTYPE = 2, JADD

must = o.

Third Card - format (8E1O.3)

D - diffusion coefficient

R- evaporation coefficient

DT - time step

DXI - node spacing

DELT - maximum time allowed, or time between

input distributions

Fourth Card -

B-

EPS1 -

EPS2 -

EPS3 -

EPS4 -

EPS5 -

EPS6 -

Fifth Card -

X3(J) -

X5(J) -

X4(J) -

RIN -

format (8E1O.3)

Liebmann parameter

iterativeconcentrationconvergence

criterion

allowable standard deviation of total

mass, final-calculatedand experimen-

tal, for NTYPE = 1

prevents blowup in recalculationof

the diffusion rate

concentrationcriterion determines

the JMAX node adjustment NOTE: EPS4

must be negative for NTYPE = 2.

check on DELT

linearity limit, 1 + RAt

format (8E1O.3)

For the case NTYPE = O, input

the initial concentrationdistribu-

tion for JMAX nodes

For NTYPE = 1, input (as separate

blocks)

the initial concentrationdistribu-

tion for JMAX nodes, and

the final distribution

For NTYPE = 2, input

rate of mass deposited on the wire

Sixth Card, etc. - format (8E1O.3)

Continuationof fifth card if required.

NOMENCLATURE

a-

a-

Dm -

e-

I-

J-

n-

N-

r-

R-

t-

tt -

u-

x-

Fourier square-wavewidth

Fourier series coefficients

Surface mass diffusion coefficient,cmz see-l

Natural logarithmbase

Iterationnumber

Node number

Linear mass concentration,molecules cm-l

Total mass on the wire, molecules

Rate of mass deposited on the wire, molecules

see-1

Evaporation coefficient,see-l

Time, sec

Time interval between measured distributions

Transformationvariable

Linear distance, cm
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AD -

AnJ -

At -

Ax -

cl -

‘2 -

‘3 -

C4 -

‘5 -

‘6 -

‘$-

Liebmann parameter REFERENCES

Correction to the diffusion coefficient 1.

Differencebetween theoreticaland measured

concentrations 2.

Time step, sec

Node spacing, cm
3.

Concentrationconvergencecriterion

4.
Allowable standard deviation of total mass

Prevents blowup in diffusion rate

Concentrationcriterion for extending nodes 5.

Check on DELT

Linearity criterion

Evaporation rate, molecules see-l

Paul A. Redhead, V%ermal Desorpt.

Vacuum, ~, 203 (1962).

Norman F. Ramsey, Molecular Beams
versity Press, London, 1956.

on of Gases,t’

Oxford Uni-

J. Mathews and R. L. Walker, Mathematical
Methods of Physics, W. A. Benjamin, Inc., New
York 1965.

G. H. Miller, !!Interactionof Atoms With Sur-
faces,” p. 549 of Rarified Gas Dynamics, Sup-
plement 3, Vol. 2, of Advances in Applied
Mechanics, Academic Press, Inc., New York 1966.

Manfred Ksminsky, 4th Annual Surface Physics
Symposium, Washington State University, 1966.

.

11


