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TIME REVERSAL IN POLARIZATION PHENOMENA

OF NUCLEAR INTERACTIONS

by

P. W. Keaton, Jr.

ABSTRACT

The concept of “time reversal invariance“ is.reviewed along

with some basic properties of the time reversal operator, T. Appli-

cations to specific nuclear physics problems are given which dem-

onstrate methods of manipulating T in a calculation. Using the

density matrix formslism, a relation is derived between polariza-

tion transfer (triple scattering) experiments that describe reac-

tions and inverse reactions with initislly polarized particles.

The fundamental relationships are illustrated by examples. Rela-

tivistic effects and photon polarizations are not discussed.



I.

1932

time

INTRODUCTION

The formal properties of a time reversal operator were introduced in

by Wignerl (see slso Ref. 2). Discussions of various aspects of the

reversal operation in nuclear physics have been given by Goldberger and

Watson,3 Messiah,4 Rodberg and Thaler,5
6

and Bohr and Mottelson. In an effort
.

to make this report self-contained, the first part (which borrows heavily

from the shove mentioned literature) introduces basic concepts of the time
.

reverssl operation. The last part of this report (Sec. IV and Appendix B)

contains derivationswith a different emphasis on operator technique than

other treatments of this subject. The list of references is not intended to

be exhaustive. However, of’particular relevance to the material presented

here is work by Csonka and Moravcsik.7

Recent articles reviewing the present status of the time reversal in-

8,9
varimce question have been published.

II. A REVIEW OF THE TIME REVERSAL OPERATOR AND SOME BASIC PROPERTIES

A. The Time Reversal Operation

The time reversal operator, T, takes a state Y into a state ~ in which

all velocities, including “spinning” particles, are reversed. (Perhaps “velo-

city reversal” would have been a better nsme than “time reversal.”) A system

is said to be invariant under time reversal if the following series of opera-

tions result in returning that system to its original form: Tske an isolated

system at t = O and allow it to charigeaccording to the physical laws which

govern it for a time to. At time to reverse the directions of all velocities.

Allow the system to change according to the physical lws which govern it

from time to until time 2to. At tine 2to reverse the directions of all velo-
,

cities. If the system is now in exactly the same form as it was at t = O, ,

the physical laws which govern it are said to be invariant under time reversal.

2



The sequence is:

(1)

If the system is invariant under this operation, it is then equal to the

identity operator. Since H (;he Hsmiltonian) is the generator of time dis-

placements, this invariance can be expressed as~

-iHto -iHto
Te Te =1. (2)

Assuming the system to be invariant under time reversal, the sequence of opera-

tions in Eq. (1) are set equal to the identity operator. Applying inverse

operators from the right, this leads to a second expression of a system which

is invariant under time reversal:

or the same type of operations on Eq. (2) leads to

One observes

The operator

-iHt iHt
TeO=e OT. (4)

that the concept of velocity reversal hss led to time reversal.

e‘lHto on the right-hand side of Eq. (4) is an instruction to

allow time to run backwards for a time to. It should be kept in mind that

the fundamental sequence is expressed in Eqs. (1) and (2), where time always

runs forward. .

*It will alwsys be assumed here that % = 1.

3



B. Antilinear Property of T

If a system at t = O is described by Y(;,O), the test of Eq. (4) would

require (t, of course, commutes with H)

.
Te

-itH
Y(;,O) = elHt T Y(;,O) , (5)

but (see Appendix A)

T e-itH
Y(;,O) = e

-T(it)T-lTHT-l ~ Y(;,ol
. (6)

Now Eq. (4) in Eqs. (5) and (6) requires that either Tbe linear,

T(it)T-l = it and THT-l = -H , (7)

or that T be antilinear,*

T(it)T-l = -it and THT-l = H . (8)

We can choose between them by noticing that, from the point of view of time

reversal, there are two important classes of physical quantities. The posi-

tion coordinates, the total ener~, and the kinetic energy belong to the first

class which is either unrelated to time or contains an even power of the time

variable. The velocity, linear and angular momentum, and components of spin

in a given direction belong to the second class and contain odd powers of

the time variable.

Returning to Eqs. (7) and (8),the Hamiltonian, H, of a system which is

invariant under time reversal cannot contain a mixture of class I and class

11, because the “either...or” relation would be destroyed. The conclusion

is that since H contains some variables from the first class, it must contsin

*An antilinear operator, A, is one with the property

A(AIY1 + X2Y2) = ~~(Ayl) + ~$Ay2) ,

where Al and A2 are scalars.

.

,

.

,
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only variables from the first class. That is, necessary and sufficient con-

ditions that an isolated system be invariant under the time reversal operations

expressed in Eq. (4) are that

THT-l = H , (9)

and that T be an antilinear operator.

c. Applications of T to the Schr&3inger Equation

The time-dependent Schr6dinger equation for the state Y(;,t) of the

Hamiltonian, H, is

i ~Y(;,t) = H Y(;,t) . (lo)

Operating from the left with the time reversal operator T, Eq. (10) becomes

T(i & T-lT Y(~,t) = THT-% Y(;,t) . (11)

Assuming that the system is invariant under time reversal, Eq. (9) concludes

that the correct set of properties of T are expressed in Eq. (8), namely that

THT-L = H, and T is antilinear. Using Eq. (8) in Eq. (11),

-i ~ [T Y(~,t)] = H[T Y(~,t)] .

Equation (12) is not the Schr&3inger equation

However, the S-E csm be regained by replacing

i ~ [T Y(~,-t)] = H[T Y(~,-t)] .

Equation (13) defines a new state ~, where

~(?,t) = T Y(;,-t) .

Referring to Eqs. (10) and (13), one can make

(S-E) because

t with -t.

(12)

of the minus sign.

(13)

(14)

the statement: If Y(~,t) is a

solution of the S-E, then ~(;,t) = T Y(;,-t) is also a solution of the S-E.

A reversal of motion is connected with the transformation t + -t through



the fact that observable which are odd in time change their sign and observ-

able which are even in time do not.

D. The Complex Conjugate Operator, K

The complex conjugate operator, K, is simply an instruction to take the

complex conjugate of any number or function to the right of it. The K opera-

tion is clesrly antilinear

K(AIYl + A2Y2) =

Other important properties

K2=1, K

since by its definition

A~(KYl) + A;(KY2) .

of K are

= K-l , K* = KKK-l =KKK=K.

(15)

(16)

The definition for the adjoint of a linear operator, B, is

(BY,+) = (Y,B+$) .

The definition for the adjoint of an antilinear operator, A, is

(AY,@) = (Y,A+$)* .

It will serve as a useful exsmple to calculate K+.

(KY,@) = (Y*,@) = (Y*,K$*) .

Since K* = K from Eq. (16),we find that Eq. (19) becomes

(KY,+) = (Y,K$)* = (Y,K+@)* , (20)

(17)

(18)

(19)

where the last equality is an application

bining Eqs. (16) and (20), we find

K=K+=K-l.

An operator, A, which is antilinear,

is said to be antiunitary. Clearly, K is

important properties summarized below.

of the definition, Eq. (18). Com-

(21)

and which also satisfies AtA = 1,

an antiunitary operator, with the

.

.

.

.
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.

‘

K(AIY1 + X2Y2) = A~(KY1) + &Ky2)\

(KY,+) = (Y,Kt$)*

K2 =1, K= K-l, K*=K, K=Kf, KTK=l.

E. The Unitary Operator, U

It has been demonstrated above that THT-l = H leads to the original

(22)

form of the Schr6dinger equation for isolated systems which are invariant

under time reversal. Here a different approach will be taken. Operating

from the left on the S-Ewith the complex conjugate operator, K, Eq. (10)

becomes

- ~y*(;,t) = H* Y*(?,t) .
‘L at

(23)

If a unitary operator, U, can be found such that UH*U-l = H, Eq. (23) cotid

be written

at u Y*(;>-t)+i ~ = H-UY*(T,-t) , (24)

where the transfoz?nationt + -t was also required to regain the S-E. The

mathematical rigor necessary to prove the existence and uniqueness of U (cf.

Ref. 4) is inappropriate in this treatment. We simply proceed with the assump-

tion that a unique unitary operator exists which satisfies Eq. (24). Rewrit-

ing Eq. (24) with the use of K,

i -&-[UK ‘@,-t)] = HIIJKY(l,-t)] . (’5)

Comparison of Eq. (25) with Eq. (13) shows that the time reversal operator,

T, can be written

T=UK

where

AJ=l.

or U=TK, (26)
.

.
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.

It follows from Eqs. (26) and (22) that

TiT = (UK)+(UK) = Ktu+w s K+K s I . (27)

Therefore, since T is antilinear, it is also antiunitary. Equation (26) is

the consequence of a more general theorem that every antiunitary operator

can be written as the product of a unitary operator and the complex conjugate

operator, K.

F. The Value of T2

Because T2 Y(?,t) is also a solution to the S-E, it follows that T2 Y(~,t)

= C Y(;,t) where C is a constant. However, since T+T = 1 from Eq. (27), it

follows that

(Y,Y) = (Y,TtTY) = (TY,TY)*

= (TY,T+TTY)* = (T2Y,T2Y)

= IC12 (Y,Y) ,

andwe find [Cl = 1. Consider the identity

T3 Y(;,-t) - T3 Y(<,-t) = O .

Equation (29) can be written

T2(TY)

&(p = o

Therefore, the double

in either a change in

we have

- T(T2Y) = (CT - TC)Y

= [C-C*] (TY) = O

and ICl = 1 imply

application of the the reversal

sign or no change at all. For a

T2Y = kY .

(28)

(29)

c A*i-.

operator results only

wave function, Y,

(30)

It will turn out that systems with integral spin have T2 = +1 and systems

with half integral spin have T2 = -1 (see Eq..(63)).

●

✎

.
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G. Transformation of an Operator Under T

We now proceed to find how an operator,~, transforms under time reversal. ~

Although no time-dependent operators will be used, it will cause no undue

difficulty to include this class. The expectation value of is defined S,S

%-
< (t)> = (Y(x,t), Q&) Y6t)) . (31)

The expectation value for ~) in the time-reversed system ~(?,t) = T Y(;,-t)

is likewise defined as

<—&)> =

A relation can be found

(W,t), ~) Iw,t)) . (32)

between~ and~by writing

<—Q)> = (T Y(;,-t), ~&_) T Y(;,-t))

= (y(~,-t), (Tt 6A) T) y(;,-t))*

= ((T+ W) T) Y(&-t), Y(&-t))

= (Y(;,-t) , (Tt ~~) T) Y(;,-t)) . (33)

One notices that a relation between Eqs. (31) and (32) will make sense

only if t + -t. Since <&)> is measured in a system with time running “for-

—
ward” and <&)> is measured in a system with time runing “backward,”we

require that a system which is invariant under time reversal obey the rela-

tionship

<Q)> = <Q&)> ,

Substituting from Eqs. (31) and (33), Eq.

(Y(&t) , ~) Y(~,t)) = (Y(&t) , [T+

(34)

(34) requires that

T] Y(<,t)) . (35)

*With the exception of T, U, K, H, and P (density matrix), all operators will

be written with wavy lines under them. The expectation value for an operator,

~, will be written interchangeably as Q and <~>.

9



That is

Q&) _= T+ @(-t) T (36)

or

Q&) =TQ_ T+, (37)

which are the rules for transfomni.ngan operator from a system to its time

reversed system, and vice versa.

Equation (34) preserves the usual mes.ningof coor~nate tr~sformations

which

It is

usual

is, for the case of no explicit time

(Y,Q4) = (Y,Q+) .
.—

not uncommon to find the requirement

meaning of operator transformation

rather than

the awkward

the somewhat more awkward

coordinate transformation

dependence,

(38)

<Q> = c~>* which preserves the

(39)

Eq. (37). However, this results in

property

The reason both Eqs. (38) md (39) cannot be simultaneously preserved is, of

course, due to the antiunitarity of T.

III. EXAMPLES OF TIME REVERSAL CALCULATIONS

A. Classical Mechanics
d2;

As is often pointed out, 3=m — is an equation
dt2

fore, the solar system could run “backward” as well as

as a good exsmple to apply time reversal..

Figure 1

tional force.

at the center

pictures the orbit of a planet under the

even in time and, there-

“forwsrd.“ This serves

influence of a gravita-

te coordinate system is arbitrarily chosen with the origin

of the orbit, the z-axis along ~ = ~x~, the X-SXiS ~ong ~~

10
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.

P
<--

Fig. 1. The orbit of a planet under the influence of a

central force. The dotted arrows indicate the ef-

fect of reversing the motion of the planet.
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and the y-axis chosen to make the coordinate system right-handed. The unit

vectors ~, ~, k are along the x-, y-, z-axes, respectively. Because of the

way in which the coordinate system

under time reversal, one need only

fore, ~ + -~ but % + +;, since the

is set up, ~0~ = L. To see how ~ changes

note that T reverses all motions. There-

position coordinate contains no time or

motion. Therefore, we ssy (from Eq. (37))

T
r =T;+T+=;

T
P =T;+T+=-~ (40)

; = T(%x;)t T+ = -t ,

where, of course, writing ;t, ~t, etc., is merely a formality at this point

because in classical mechanics these quantities are all real. In fact, in

every case in Eq. (40), the

used to calculate anything;

on the right-hand side.

The equation t= -i is

tions were reversed--but in

second step was a formslity since the T wss not

the answers which we required were simply placed

a statement of what would

reference to the original

happen to ~ if all mo-

coordinate system,

i.e., ~ = -I&. If we had “lived” in a time-reversed system in the first place,
——

we would have set up the coordinate system with the z-axis along %x; and
—

labeled that direction ~, etc. Observe that since ~ = -~, one finds

(41)

One cannot, then, observe the orbit of his planet to find which system

he lives in. This, of course, is simply another wsy of saying that the system

is invariant under the time reversal operations.

B. Quantum Mechanical Observable

A complication arises in calculating the effect of T in quantum mechanics,
.

because one often works in different representations. As a result, the effect



of U and K, in

A good example

the equation T = UK, msy be different for each representation.

is the momentum,~. In a coordinate representation,

But since ~ is an Hermitian operator,~ = it, so that
m

Now ; = -ii, and the complex conjugate operator, K, is sufficient to give

the answer; i.e.,

T
p = UK(-i~) KtU+ = U(i~) U+ = ii= -- .

That is, it was not necessary for U to affect ~. On the other hand, in the
u

momentum representation ~ is a real vector. In that case,

;= (u~ u)momentum representation ‘

and one must conjure up an operator U that will take~ into -~ (such as a

1800 rotation of the coordinate system about an axis perpendicular toJ) ●

One cannot ssy unambiguously whether an operator is “real” or “imaginary.”

Although it was important to show

further

To

mszmer,

orbital

confusion in this report.

assure that total angular

we require that intrinsic

this point explicitly, it will not cause

momentum, ~ = i + ~, trsnsform in a consistent I

spin transform

angular momentum. Therefore,

~= T&t T+=_&

~= T~t Tt =___

~=T~iTf=-~.

Specific operators for transforming angular

useful example. Consider first the case of spin

matrices).

in the ssme manner as does

(42)

momentum will serve as a

1/2 (using the Pauli spin

13



().01 ()o -i ()10~x 10; %=io; =
~z o -1

(43)

$’=;
u.-”

.

Notice that K slready takes u + -a since u is complex. The only problem
-Y -Y -Y

left is to find a U such that

Ugzu+=-gz . (44)

By direct computation, one can demonstrate that U = iuy has the required

properties. That is,

T~+ T-l = (i#y K) ~ (K i~y) = -~ . (45)

This can be generalized. Angulsr momentum matrix elements <j’m’l~xljm> and

<j‘m’l~zIjm> are real numbers. The matrix elements <j’m’~yljm> are pure

imaginary numbers. One

The proper effect on~x

y-sxis. This is easily

can therefore use K to take the matrix~y into -J .
-Y

and~z can be obtained by a 1800 rotation shout the

stated in terms of Euler angles and “D” matrices

(cf. RoselO), which rotate the coordinate system.

%
-i~z -if3 -iyJz

Dj (a,@,Y)m’m = (jm’le e e Ijm)

-itl~
= e-im’qjm! [e ‘Ijm) e-tiy

= e‘h’s d~,m(~) e-by .

In particular, a rotation about the y-sxis is

For the

.

u = m,mDj (O,IT,O)= (jm’le-=T~Yljm) =
m’m d~,m(n) .

special case of j = 1/2,

u= #2(Tr) = iay s

(46)

(47)

(48)

14



which is consistent with Eq. (45). For a general~g~~ momentms 3S ‘he

time reversal operator, T, can be written

dj(r) K .T= UK=_ (49)

c. Exchange of States

The overlap between two wave function Y1 =d Y2 Cm be tr~sformed in

a consistent manner.

[Y@),+)] = [Y?j(wqw*

= [KY2(t),UtUKYl(t)]*

= [TY2(t),TYl(t)]*

= [TJ2(-tLv@l*

= [Yl(-t) ,v2(-t) 1 ●

The effect of going from a system to the the-reversed

initial state Yl(t) into the final.state ~l(-t) of the

(50)

system is to take the

time-reversed system,

and the final state Y2(t) into the initial.state ~2(-t).

D. The Phase of Time Reversal States in Angular Momentum

All systems which are treated will be assumed to be invariant under the
.

time reversal operations. That is, only systems with THT-~ = H will be con-

sidered. No further reference will be made to explicit time dependence.

Henceforth, only stationary states and time-independent operators will be

considered.

The need to calculate the phase of time-reversed states is perhaps best

illustrated by a plane wave. Consider a wave function

ig”;
Xk=e . (51)

The prescription for calculating~a = Txa h- been

15



where the complex conjugate operator, K, effectively

t+ -t (i, of

can, instead,

T
i.e., k = -z,

msy be a

the wave

course, is momentum) and U had no effect in this case. One

replace each operator in Xk by the known time-reversed form,

etc. Although this is adequate to get the form of ~k, there

phase, q,-,which multiplies the
L

function is referred to here as

In the csse of

Comparing Eqs.

the plane wave

-ii”;
e 9 (52)

performed the function

answer. If this method is used,

~“ Thus, we write

(53)

the plane wave above, we know that ~= -~; therefore,

(52) and (54),we see that for

was merely used here to make a

is the result of a more general property

utilizing the fact that Tl~> = l;>. For

Xk(?) = <:lk>

xk(~) = <T~lTk>

~Z) = .ll!l!kj.

But since

(54)

this case rIk= +1. Of came,

point. That rIk= +1

of the coordinate representation,

exemple,

<i!]m> = <T;]Tlo = &]T+Tk>* = <?[k>* ,

we find

Before calculating the phase of

helpful to first calculate the phase

problem. The spatial representation

.

general angular momentum, it

for orbital angular momeritum

of an energy eigenstate of a

will be

in a physical

scattered

16



particle in a spinless system can be written

Fl(kr)
Yk%m(~) =N ~ [iL Ylm(e,f$)l

Ffl(kr)
~= Y*=N y[(-i)g Y~m(8,f$)l.

~m= (-l) myLm,andBut Y*

Therefore,

(55)

(56)

(57)(-1)f’+m
‘lk,k,m= ‘k,m= “

Generalizing this to total angular momentum, we first note that

TJZT
-1 = -Jz

TJ+T
-1 = -J

Y (58)
G

where J+ = Jx t iJy are the “step-up” and “step-down” ang~ar momentum oPera-

tors.1O- Starting with

JZ{=M$, (59)

and applying T from the left,

JZ[T$ = -M[T$ , (60)

which shows that T~is also aneigenstate of J It is related to Y~by
z“

a constant

T~ = ~jM YjM , (61)

where lrI~Ml= 1 because T2~= *#(cf. Eq. (30)). mecalc~ati.OnOfTJ-#

will yield the necessary phase relation by first calculating T[J_’#], and

then calculating [TJ_]~ = [-J+TI# = -J+[TI#] .

17



TJ-# = T(constant)#-l = (constant)rl~M+lY~M+l , (62)

where (constant) = [(J+M)(J-M+l)] and is just the (real) matrix element for

~ 10 Next “. 9

TJ-#= -J+T# = -~j” J+YjM

-M+l
= -q~”(constant)YJ .

Comparing Eq. (62) and Eq. (63),the relation must be

-M . -M+l
~J -nJ

or

0; = nJ(-l)M .

One can choose ~J arbitrarily so long as (-l)M is evident. To be consistent

with the orbital agular momentum, iL ~, one must choose ~J = (-l)J, and

T: = (-l)J+M YjM

# = (@J+M.

We note that

(63)

(64)

(65)

AS stated afier Eq. (30), ifJ is half-integer, T2 = -1, and if J is integer,

T2 = +1.

E. Effects of T Transformations on S Matrix Elements

The incoming and outgoing waves of a nuclear reaction can be written

operationally as

++) = J+) ~
i

(-) = J-) ~ ,
‘f (66)

.
where

J*)
[ -1

= 1+* ;

18



then

and

(+)~-K-l= ~(a

~y(+) (-)

i
= T-lfYf

~y(-) (+)
f

= tllY1 .

An S matrix element becomes

(Y(-),Y(+)) = (TY~+),TY~-))
‘fi= f i

J-J.-l-

Since In] = 1, one finds

[sfi[* =

This is a relation betwe{

(67)

(68)

(69)

n the cross section for a reaction aridthe cross

section for the inverse reaction. An incoming wave has all its motions reversed,

making it an outgoing wave, and vice versa. This is the analogue of the

statement in classical mechanics that if time is reversed, all systems retrace

their paths (see Fig. 2).

More explicitly, if the initial and final states each contsi.ntwo spins

‘1‘
S2 andS~, S;, respectively, time reversal invariance requires

(70)

where ~i and ~f are the initial and final momenta, and 13iand”t3fare quantum

numbers which are not affected by time reversal.

Finally, if the S matrix elements are written in total angular momentum

representation, conservation of angular momentum requires that

19
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n-

\“

n+

FM. 2. Top: The momentum vectors of a nuclear reaction producing

a polarized particle out Qf the paper and indicatedby ~.

Bottom: The effect of reversing all motions, including the

“spinning” of the particle. Spin pointing into the paper is

indicated by @.
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Time reversal invariance implies

<Jf~Mf>6f[s[Ji,Mi>~i>=
~-l)Jf+Mf+Ji+Mi

<Ji~-Mi,BilslJfs-Mf,6f> ●
(72)

Combining these two equations,

af]sJ]Bi (73)> = ‘6ilsJ16f> “

That is, the S matrix is symmetric in the total angular momentum representa-

tion as a consequence of time reversal invariance.

IV. TIME REVERSAL INVARIANCE IN NUCLEAR REACTIONS

We consider here only nuclear reactions which have two particles in

the entrance channel (C) and two particles in the exit channel (C’). This

can be written symbolically as

‘C+BC+AC’+BC’”
(74)

A. Density Matrix

A statistical description is appropriate for scattering experiments.

The besm and target consist of an incoherent mixture of various spin orienta-

tions. This suggests that we expect the besm and target to constitute a

statistical ensemble of systems, each consisting of a pair of interacting

particles. ‘Let there be N such systems and Y(a), (a = 1, 2,...N) be a de-

scription of each. The mean value of a physical operator&is

Expressing the Y(a) in an orth

Y(a) = z f(a)

J

where

normal basis,

J> ,

21
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zpycJ]2=l.
J

Now expressing C& sgain,

We define the Hermitian matrix, called the density matrix, P, as

N L24(a)%(a)
<Jlplk> = ~

N 9
a=l

so that

or

Clearly also

because

3<> = Tr(p&) .

Trp=l,

(76)

(77)

B. Density Matrix After a Collision

The definitions of the previous section allow us to calculate the “final”
#

density matrix, p~, after two particles undergo a reaction. We write the

initisl wave

where ~ is an

basis, ~ ‘z
s

1.

●

ikz +
$i=e x,

eigenvector of the initial spins, expanded in a particular

qlj >, where Ij> are the base vectors. The scattered function

can be written as

(78)
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Initially, the expectation

+
&ii=<.~~>’=<>

value of an operator~ is, as before,

mjl
2

J

~ ~(i)~

j,k ‘k ‘j = ‘r(’is) “
(79)

After the reaction, the expectation vslue of the ssme operator is (suppres-

sing the a index for the present)

.Q>f=&4&=4@!.ll&
<~?];’> & Ig;>

xx ~~M&<gl~lm>Mmj ‘j
.Jk$m

~ CL*M*M “k Lk !?j
j,k,k 9

That is,

<Q> =
-f

=

We can write

23



And the final density matrix is defined as

where the above calculation shows

c~>f = Tr[p~] .

(81)

that

(82)

This

Before going on, it will be shown that Tr(~pi~+) is a cross section.

fact will often be used to “label” this quantity. Assume that a basis

has been chosen which disgonslizes the initisl density matrix. In that case,

= x
$J ‘J = u(a) , (83)

where the initisl state has been taken ss x = ~~mlm> and Oj(a) is the cross
m

section for scattering to the state Ij>. The index a has been replaced to

point out that this is the scattering for a particular pair, a, of particles.

The aversge cross section for the ensemble is then

~(e,4J)+~~ o(a) =Tr[~i~]
a=l

c. Density Matrix Relations for Ohservables

. (84)

The initial beam polarization can be expanded in terms of 02(S1), a

complete and orthogonal set of matrices spanning the space of S1, the incident

.

.



particle spin. The superscript, 1, is an

Likewise, the initial tsrget polarization

a complete and orthogonal set of matrices

index taking values O, 1,..., 2S .
1

can be expanded in terms of um(S2),

spanning the space of S2, the tar-

get spin. The superscript, m, takes integral values from O to 2S2. It will

be convenient to alwsys take uO(S1) = 1 and w~) = 1
& ~’

where 11 and 1
~~

are the identity operators in S~ and S2 spaces, respectively.

Orthogonal matrices

~-t
Tr[u (s)

Since ~“ =&,

be traceless.

A direct

it follows

product of

are defined as

w~] = (2s+1) fskm. (85)

that all other matrices in the orthogonal set must

the bean set of matrices, ok(S7), and the target set

of matrices, (A)m(S9),forms a complete orthogonal set of matrices, ~..,for
d

the entrance chsnnel C.

= [W?sl)l x [F&)] .
~~

Similarly, one can form such a set for the exit channel, C’,

n
v’

where L’ = O, 1, .... 2S; and

of $1distinguishes a complete

To summarize, a complete

describe the entrance

A complete orthogonal

channel,

x [urn’(s:)] ,

(86)

(87)

m’ = o, 1, ....2s~.
2 (A prime on the subscript

set in C from a complete set in C’.)

orthogonal set of matrices can be formed to

3 C, with the properties.

(2s1+1)(2s2+1) 6 ; & = 1
pv J“

(88)

set of matrices can be found to describe the exit channel,

C’, with the properties

Tr[f2~,Q ,1 = (2s;+l)(2S~+l) 6 ; ~ = lC, .
&U##& B’v’ _o’ ~
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Since the~ matrices span the spin space,
11

the initial density matrix*

can be expanded as

Pi = (2s1+1;(2s2+1)

.
where $21= <Q >1 = Tr[p ~ ] is the

v 4 i~
component of Q which is contained in

P

(89)

the entrance channel (bean and/or target). It is convenient to ttie these

matrices as complete and orthogonal. One can use a set that is simply “at

least complete” (more likely overcomplete and not orthogonal) if the set~

is defined so that the expansion of P< becomes

Pi = Ek bkBk

The second relationship can

.

; =.43>.
bk &

be satisfied without orthogonality.
11

From Eq.

(81),the final density matrix is
.!.

Some definitionswill be helpful:

(90)

(91)

where Io is the differential cross section for an unpolarized entrance channel

*For these calculations,we will assume that the Q matrices are HemnitianS

so that Qt = $2;a treatment of non-Hermitian matrices is given in Appendix B.

.

,
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(Pi = & lC) and 1(13,$)is a differential cross section for general polari-
&

zation in the entrance channel. The bars refer, of course, to the time-

reversed reaction (or inverse reaction). Since the expectation value of

can be written
~

~f
1, (92)

v’

we substitute from Eqs. (90) and (91) for pf in Eq. (92), and write differ-

ent forms of the very important relation:

or

(93)

(94)

D. Calculations of X and F

‘BeforeR and E are calculated, a recalculation of the general operator

~ will be made to emphasize that the earlier results of Eqs. (36) and (37)

are the same, even though the matrix operator&msy not be square (we are

specifically concerned with the scattering matrix, M, for a reaction involving

arbitrary entrance and exit spins). Considering only stationary states, time

reverssl invariance can be written as

(WC,,Q’YC)= (TC,QVC, ) . (95)

Using the notation ~c = TCYC and ~c, = TC,YC,, the transformation from the

time-reversed system becomes
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(Vc,QTC, ) = (TCYC,QCC,YC,)

= (yc,+j’’c,yc,)*

= (@c,Yc,,Yc)

= (~c,,T;,~TcYc) .

Comparing Eq. (95) and Eq. (96),the relation is seen to be

In particular,

$ -t
= ‘C’-mc ;

(96)

(97)

(98)

The expectation vslues of the&matrices are measured, of course, either in

the entrance channel C or the exit channel C’. Therefore,

ii = Tc,f2v,T:, .
&’ -

(99)

me results of Eqs. (98) and (99) willbe usedin the next section.

E. Polarization Transfer Coefficients

The type of polarization measurements with which we will be concerned

are the

(or Bc)

We seek

polarizations of At,, Be,, or both, after a reaction in which Ac

was initially polarized. This can be written symbolically as

~c+Bc+~c,+B c’ “
(loo)

a relation between the parameters which describes the reaction in

Eq. (100) and those which describe the polarization of Ac (and/or Bc] in the

inverse reaction with Ac, (and/or Bc,) initially polarized. This can be

.

.

.
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written symbolically as

~C, +BC, ~C+B c“

The expression for the final polarization,

when the initial particles have polarizations

given in Eq. (9h)as

(101)

~f
v’

= c~>f, in Eq. (100)
. .

describedby G?;= <Q >1 are
~

(102)

The expression for the final.polarization, $2;= cfl>f, from the inverse reac-
P

tion in Eq. (101) may be given by

where the bars indicate vslues for the inverse reaction. Just as the coor-

dinate system is not changed by T, the base matrices are not changed from

J to~. The quantity Q; is the polarization of AC in the inverse reaction

of Eq. (101), but referred to the coordinate system of the reaction in Eq.

(100) (see Fig. 2). However, it will be more convenient to work with the

quantity ~, fand at the end of a calculation relate this to 0 as follows:
P

In the last equation, the fact that the $1 are made up of products of spatial
P

components of spin operators is used to determine r. For example, in the

spherical tensors of Appendix A, r = k, and we have

Tkq(#) = (-l)k Tkq(-~) .
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Therefore, the inverse reaction in Eq. (101) can be described by

(103)

-f –f
where $1 =.<Q > = <To ~t>f –

v
and 1(e,+) is the differential cross section

a d

for the inverse reactions. We can now show that the two trace formulae in

Eqs. (102) and (103) are equivalent. Using Eqs. (98) and (99),

(104)

because TtT = 1, and Tr[AB] = Tr[BA] for any matrices A andB. For brevity,

v’
we can define a polarization transfer coefficient, A

P
, where

A;‘ = Tr[MQPM+Qv,]

TA--,= Tr[~vtfiU] , (105)

andEq. (104) is simply a statement that for nuclear reactions which obey

time reversal invariance,

(106)

.

(Ref. 12 defines polarization transfer coefficients for spherical tensors).
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Substituting Eqs. (105) and (1o6) in Eqs. (102) and (103),

(107)

Consider the following examples of Eq. (107) for arbitrary reactions given

inEqs. (100) and (101).

(1)

.
where O:

(2)

reaction

becomes

+where f?
u

Cross Section: v’ = O, p = O. In this

Io=&O=
2s+1 ‘o

& Tr~#+ ]

YO=AO2s’+1 % ‘

=1,$2:=1. Therefore,

(2S+1) 10 = (2S’+1) ~
o“

Polarization: v! = O, p # O. Here the

with an unpolarized besm (and/or target)

(2s’+1) Y “q=
o

= <T ~ Tt>f
c~c”

It is the

channel spin, ~, by -~. Writing

E: = <$&(-t)>f .

Using Eqs. (1o8) and (110) in Eq.

AO = Tr[MC?Mt] ,
P -&-

case, Eq. (107) becomes

(108)

polarization in the inverse

is sought. Then Eq. (107)

(109)

role of Tc in

$2 explicitly
~

this case to replace the entrance

as a function of ~, this becomes

( 110)

, (109), we find

(2S+1) 10 <&(-~)>f = A: . (111)
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(3) Cross Section: v’ = O, v +’0. An initially polarized beam (or
.

target) has components ~~. Equation (10’7)becomes

(112)

Substituting Eq. (111) into Eq. (112)

or (see

, we have the very important relation

Appendix B)

I(e,$) = Io~ <fj(~)>i <fj(-~)>f

P

.
where $2;and ~ are, of course, to be determined in

9 (113)

the same coordinate system.

(4) Polarization ‘Transfer: v’ # O, v # O. Multiplying the first equa-

tion in Eq. (107) by ~ ~, and the second equation in Eq. (105) by ~ Q;,
v’ P

we find

Eliminating S aud S’ with Eq. (108), this becomes

W~Qig=w~z,nf, ,

0 lJ
BP To v’ v v

f
which is a relation between the polarization transfer values ~vt and the

(114)

.

polarization transfer values ~ of the inverse reaction.

As a simple exsmple of Eq. (lllt),consider the T(~,~)4He reaction. We

.

wish to find a relation between the neutron polarization transfer along the
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Ki x if axis (y-axis) when the deuteron beam is also polarized along that

axis, and the deuteron polarization transfer along the ~i x ~f axis when

4~e(&~)@. wethe neutron beam is polarized along the same axis (i.e.,

will designate pY = <U >Y for the neutron polarization transfer. The super-
Y d

script y indicates that <U > is to be measured with an incident polarized
&.

deuteron beam, 6~>1. Likewise, the deuteron polarization transfer will be

designated~ = <~>y. In this notation, p“ and P; are the usual polarization
Y ~ Y

vslues obtained by initially unpolarized besms. Substituting Eq. (113) for

I(e,$) and similarly for ~(6,@), Eq. (11~) becomes*

At zero degrees, both ? o
and p must be zero. In that case,

Y Y

llpi~ iy.
2yy

Lim(~i x Zf) + o ; It.l,lifl+0 ,
‘PYPY’ 1

( 115)

(116)

where Eq. (116) has also been expressed with ~ = -~, ~ = -p;. If the

Y 3imeasurement p is divided by the incident deuteron besm polarization — P
Y 2 y’

and likewise ~, Eq. (116) states

\.p )

Y ‘2 ‘y’

This is but an exsmple

obtainable in the near

of the type of information which is expected to be

future.
13

.

*The need for the “3/2” factor is clear from Appendix A.
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v. TIME REVERSAL INVARIANCE IN ELASTIC SCATTERING

The fact that elastic scattering leaves the particles in the ssme final

state as their initial state places restrictions on the scattering matrix

M(~f, ii, ~1, 32), where Zi and~f are the initial and final momenta, respec-

tively, and where 31 and 32 are the besm and target spin, respectively. In

particular, since one cannot distinguish between the reaction and the inverse

reaction (if the interaction is invariant under time reversal), the M matrix

Some of the consequences of

A. Coordinate System

The transformation,~,

= M(~f, ~i, =1, S2)

= M(-~i, -~f, -~1, -32) .

this restriction will be discussed.

in Sec. IV did

because that would include a change of the

Eq. (37) expressed both~ and~in the same

the transformation is

F= TM+(if, ii, ~1, ~2)Tt = M(if,

(118)

J. L L J.

coordinate system. Recall that

coordinate system. Specifically,

ii, -31, -32) . (1.J-9)

The meaning will become clear with a specific example. The most natursl

coordinate system in which to discuss time reversal invariance is the follow-

ing set:

A
n a unit vector along ~i x If (taken here as the y-axis)

A
‘+ a unit vector along ~f + &i (taken here as the z-axis)

.
n a unit vector along If - ~i (taken here as the x-axis) ,

where specific x-, y-, and z-axes are assigned for convenience. Notice that

as a consequence of ~i = -Zf, if = -~i, and ~ = -~, the time reversal of the

coordinate system requires (see Fig. 2)



— ——

G= -ii or ii” 3 = ;.s

.

.

—
A .

‘+ = -n+ :$●3 = fi+.~ Time reversal invariance . (120)

One can exchange one system with the other by a rotation of 1800 about ;-.

The notation for this transformationwill be R-.

For future comparison, it is pointed out here that

requires [~i] = -~i, [if] = -if, and [~1 = ~, where the

the trsmformed observable. In this case,

conservation of parity

brackets [] designate

where

(122)

[~+1 ‘-~+ or [fi+].[?] = -;+.3’ Parity Conservation . (121)

[fi_]=-~- or [;-1.[3] =-;_@

B. A Spin 1/2 Particle on a Spin-O Target

The M matrix csn be expanded in terms of the complete set, aj.

M= Al+~*a,

3 = (3”3_):_ + (3”;)3 + (3”:+):+

=B:+Bo~+B+;+--

fi= Tl!tT+= T[A* 1 + 3* ● ;]Tt

=UIAl+~*;*]U,

where the function of U is a rotation about the y-axis, and fs*‘ -a . There-
Y Y

fore,

~=A1-~0~. (123)

The inverse reaction will be specified in the inverse coordinate system (a

rotation, R_, of I_800about ~ ). Therefore,

R ti-l =A1-axB+oB+azB+ .-- yo
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Since Eq. (118) holds for elastic scattering,

RiiR-l=M (124)
--

implies that B = O. (Of course, parity conservation requires that not only

is B = O, but dSOB+ = O.)

c. Elastic Scattering of General Spin

We again designate by Q. a complete, orthogonal set of matrices which
P

describe the polarization of the besm (with spin al) and the target (with

spin 32). However, for present purposes there will be no loss of generality

if we consider only an unpolarized beam of spin ~ incident on an unpolarized

target of arbitrary spin. In this case, the polarizations of the particle

after the reaction and the inverse reaction are described in Eq. (10~) as

(2S+1) 10 <~ >f= Tr[MMtfl]
P P

(2S+1) 10 C~U>f = Tr[=p] = Tr[MQVMf] .

However, since Eq. (124) is agenersJ property

Eq. (125) can be written

Tr[~PM+] . Tr[R-MR R-M+R_~P]= Tr[fip] _ _ _

= Tr[MM+R_fiUR~l].

(1-25)

for elastic scattering,

(126)

Neglecting normalizing constants let Q = S
PP

, components of angular momentum.

Then Eq. (126) states that

Tr[~zM+] = Tr[MM+Sz]

Tr[MSyMT] = Tr[MM+Sy]

Tr[MSxMt] = - Tr[MM+Sx] . (127)

However, the last equation in Eq. (127) is zero because of the conservation

of parity (i.e., Px = O after scattering & unpolarized besm). Therefore,

.

.

.
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we can write the familiar relation

Tr[&M+] = Tr[MM%] , (128)

which is a consequence of time reversal invariance for a parity conserving

M matrix.

VI. CONCLUSION

The general properties for the time reversal operation for nuclear reac-

tions have been discussed. Equation (113) (and its generalization, which is

Eq. (B-n) in Appendix B) was derived and gives a useful relation for the

cross section of reactions containing polarized particles in the entrance

channel. A relation between polarization transfer experiments was derived

(Eq. (llh)) andis presently being investigated. This report ends where

most treatments of time reversal invariance for nuclear interactions begin--

namely with elastic scattering. The restrictions of time reversal invariance

in the elastic scattering process will be the subject of a future report.
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APPENDIX A

Spin-one tensors are given in terms of the symmetric, traceless, Her-

mitian set~, S., and Sij = ~Si Sj +“~ ~) - ~ dij, where the matrix form
‘d — --

of the components S
J

are (i,j = 1,2,3 or x,Y,z).

()
010

SXJ 101;s
/’5-010 y=:{ ‘i-3;‘4! -)-

However, this set is overcomplete and not orthogonal. A convenient set of

orthogonal and Hermitian matrices for spin one is

(2 = ~ (unit matrix)
-0

These matrices have the properties

1

.
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and&7 and 48 csm be replaced by

.

respectively, depending on which is more convenient for a specific problem.

Another commonly used set of matrices for spin one are the non-Hermitian,

orthogonal, complete set of spherical tensors, T~kq “

T = ~
*OO

These matrices have the properties

Tt = (_l)q T
-k q --k-q

‘r~T~q& 1q ,l=36w, dqq, .

In the early part of this report we have used the exponential notation

for an operator. The operator e& is defined as

em~[l+~+~d+~e+ ...] .

39



With this definition, we proceed to calculate AeW, for any operators A and

&.

AeW = &“&+ 6%7%7+A[l+&+~ —
3!

...] A-~A

‘1●AOA-l ~ A&i-l“AOA-l●AC%I-l+= [1 + A6?@ + ‘fi ~!
3!

...]A

We have used the last expression in Eq. (6).

.
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APPENDIX B

One can, of course, expand a density matrix in

set of orthogonal matrices. Consider, for example,

Pi = “&k~q‘Tkq’T:q “
1

terms of a non-Hermitian

the spherical tensors

(B-1)

Since p; = Pi, we must have from Eq. (B-1)

(B-2)

[<Tkq>T~q + <Tk_q>T:_q] = [<Tkq>T;q + <Tk_q>T~_q]+

= [<Tkq>* Tkq + ‘Tk-q>* ‘k-q] .

~q = (-1)] TSince T k-q, Eq. (B-2) is satisfiedby

<T >* =
kq

(-l)q <T
k-q> “

(B-3)

The spherical tensors are not Hermitian operators and, therefore, they

are not observable. However, one can make up a

observable components by writing

=VP+iW
P’

non-Hermitian operator $2 with
u

where V =V~andW = wt.
v

The density matrix is written
B v

Pi=— z <Q >
(2:+1) p

ifl;; Tr Sl~Qv = (2S+1) 6
u

llv

I(e,@) = Tr[MpiM+]

—1= (2:+1) <Ou>i Tr[MO}+] .
v

Substituting Eq. (B-4) into Eq. (B-5),

(2s+1) I(e,$) = E <Qp>i [Tr(~UM+) - iTR(MPM+) ] .
P

41
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But since M = T~,$TC, Mt=T~TC, from Eq. (96),

(2S+1) 1(13,$)= ~<ny>i [Tr(=u) - iTR(=P)] .
u

(B-6)

The observable VU and Wu are

in the inverse reaction, nsmely

Tr[fiP ]

Tr[*p] . (B-7)

tensors made up of components of spin. Since

the effect of T here is to take ~ into -~, we note also that

Recalling that

(B-6) to find

7$3) =Vp)

F@ =WP(-3) . (B-8)

(2s+1)10 = (2S’+l)~o,we substitute Eqs. (B-7) and (B-4) into

(B-9)

where the superscript f denotes final polarization in the inverse reaction.

Using Eqs. (B-8) snd (B-4) in Eq. (B-9), we obtain

This is a generalization of Eq. (111). To emphasize

we rewrite Eq. (B-1O) in the general form. Consider

this tiportant

the reaction

(B-1O)

result,

, and target spin 39.

tc+SC Ac, + Bc, ,

with polarized target (and/or besm) with beam spin ~.L

We can form a complete, orthogonal set of matrices from ?1 and 32 which’we

will lsbel QB(’#1,’32).These matrices are required to obey the orthogonality

relationship Tr[L?~Qv] = (2S1+1)(2S2+1)6VV. If the entrance channel contains

.



. .
polarized particles (i.e., not all G? = O, P > 0, where Q.== <$2v>i= TrpiQP,

u u

and no = 1) then the cross section I(e,$) is given from Eq. (B-1O) ss

(B-n)I(e,$) = 10 ~ a2p(31,32)>i <Q;(-F1,-32)>f 9
P

where, of course, all quantities are expressed in the ssme coordinate system.

4To illustrate this, consider the cross section for the T(~,n) He reaction,

where the incident deuteron besm has tensor polarization which can be expressed

in terms of the spherical tensors, T
kq“

These spherical tensors have the

properties

~q = (-l)q TT
k-q

Tkq(~) = (-l)k Tkq(-~) .

14Substituting Eq. (B-12) into Eq. (B-n), we find (cf. Satchler )

1(13,$)= 10 ~ (-~)k+q Ti Tf
k,q

kq k-q ‘

(B-12)

(B-13)

.
where the T1

kq
are the expectation values of the incident deuteron besm, and

f
‘he ‘kq

are the expectation velues of the deuteron polarization in the inverse

4
reaction (i.e., He(n,~)T), but expressed in the same coordinate system as

T1
kq“

.

.
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