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ABSTRACT

Cryogenic scattering samples of approximately one mole of liquid
trltium and liquid deuterium were used in the measurement of T(n n)T
and D(R,n)D scattering. The source of 16.5-MeV, -54% polarized neutrons
and of 22.1-MeV, +L0% polarized neutrons was the T(d,i)“He reaction with
an incident deuteron energy of 6.0 MeV. The left-right scattering
asymmetries for lasboratory angles from 40° to 118.5° were measured with
a two-detector, time-of-flight spectrometer; and after neutron-gamma-ray
discrimination was applied, the pulse height spectra were routed to an
on-line computer for preliminary data analysis.

The measured asymmetry for T(ﬁ,ﬁ)T at B, = 22.1 MeV is negative
at angles forward of 95° (lab) and positive at larger angles. The ex-
trema of the n-T polarizations are -60% at 85° (lab) and +98% at 110°
(1ab). T(n n)T polarizations for Ep = 16.5 MeV are negative at forward
angles. D(n n)D polarizations at E; = 22.1 MeV are measured to be small
and negative at forward angles and small and positive at back angles.
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CHAPTER 1
INTRODUCTION
I. THE PROBLEM

Previous measurements of the neutron polarization from T(n,n)T
elastic scattering* were limited to one set of data at 1.1-MeV incident
neutron energy (Se 60) and to predictions from phase shift calculations
(To 66) of cross section data (Se 60) at 1.0, 2.0, 3.5, and 6.0 MeV.
Even measurements on the 3He(;,ﬁ)?’He charge-conjugate system are scarce
above 14 MeV (Ti 68). Part of the reason for this, of course, is the
difficulty of obtaining appropriate scattering samples of 3H(=T) and He.

In spite of the difficulty of the experiments, however, under-
standing of internucleon forces depends upon the analysis of few-nucleon
inferactions. As a consequence, special efforts to measure scattering
of single nucleons from very light nuclei are well jJjustified. The data
to be obtained from D(n,n)D and T(n,A)T elastic scattering promised to
be of significance, and it is with these two interactions that the pres-
ent work is concerned.

Differential elastic scattering cross sections for D{n,n)D at
incident neutron energies between 5.6 MeV and 23 MeV and T(n,n)T be-

tween 6 MeV and 23 MeV have been measured by Hopkins, Seagrave, Kerr,

¥The notation used here (and throughout the discussion) is borrowed
from P. W. Keaton (Ke 69a). 1 represents & polarized neutron beam. n
is the measured neutron asymmetry. T(®,n)T and T(n,’)T are equivalent
for elastic scattering if time reversal holds (see Appendix A, Double
Scattering).



and Sherman at the Los Alamos Scientific Laboratory (LASL) (Se 67, Se
69), and the present polarization measurements for the same interactions

are a valuable supplement to the cross section information.
II. THE METHOD

A cryogenic system built at LASL (Se 67 and Chapter III herein)
provided 23.5—cm3 liquid scattering samples of the hydrogen isotopes,
and another cryostat provided an identical sample of liquid hHe. The

He was used in the determination of the source polarizations and arti-
ficial asymmetries. An accelerated, bunched beam of deuterons produced
pulses of polarized neutrons from the T(d,;)hHe reaction, and these neu-
trons were scattered from the hydrogen isotope and hHe samples.

Detection and energy resolution of the scattered neutrons were
accomplished by two S-inch diameter liquid-scintillator, photomultiplier
detector packages in a time-of-flight system, and signals remaining
after neutron-gamma-ray discrimination were routed to an on-line computer

for preliminary analysis.
ITI. THE RESULTS

The data show some very striking features, especially the T(;,ﬁ)T
asymmetries at 22.1-MeV incident neutron energy. The results are unique
in that the n-T polarizations appear larger in magnitude than the charge-
conjugate p—3He polarizations at similar energies (Ti 68). The limited
n-T data for 16.5-MeV incident neutrons are valuasble for establishing
the shape and sign of the polarization curve at forward angles, and

the 22.1-MeV n-D polarizations confirm previous results (Ma 66). A




phase-shift analysis was made for n-T scattering at 22.1 MeV, but a

unique solution must await further experiments.

IV. CONTENT OF FOLLOWING CHAPTERS

Chapter II of this text outlines the theory of polarization, double
scattering, and interactions between nucleons and spin % nuclei. In
Chapter III the experimental method is examined in detail, especially
the physical equipment and electronics used in performing the experiment.
The procedures involved in the analysis of the data are described in
Chapter IV, which also includes a section on the determination of errors
and lists the measured asymmetries and errors. In the fifth chapter the
final results of the measurements and phase shift analysis are tabulated
and discussed. Finally at the end of the text are two appendices which
treat the theory and explain the data-analysis computer programs in more
detail than could be done in Chapters II and IV without sacrificing

continuity.




CHAPTER II
THEORY

Only the important results of a theoretical analysis of polariza;
tion effects are outlined in this chapter in order to avoid breaking
the continuity of the discussion with many pages of mathematical detail.
Because it is important that a more complete analysis of the spin %,
spin % scattering be collected in one place, the detailed development

of this theory can be found in Appendix A.
I. POLARIZATION AND DOUBLE SCATTERING

If gin and Ksc are the wave vectors of incident and scattered beams,

and the incident channel spin for collision of particles 1 and 2 is
g = %(gl + 32), then the differential cross section for scattering
through an angle 8 in the presence of spin-orbit and spin-spin interac-

tion potentials is
o(8,¢) = [I(e) + I(0) B(e) @ nl = I(8)[1 + P(8) coss] , (II-1)

where I{0) is the spin-independent cross section, ?(e) is a vector with

a magnitude less than or equal to unity and .he direction of the incident
') ~ +

channel spin, and n = (kin

of the scattering. ¢ is the angle between the incident channel spin and

x k*sc)/(k2 sing) is the normal to the plane

the normal to the scattering plane. In the special case of scattering

of nucleons from a spinless target

P(e) = (N4 - N¢)/(N4 + N¢) , (11-2)



where N4 and NV are the number of particles scattered with spins up and

down with respect to the scattering plane. Hence, B(6) is called the

polarization of the interaction.

For double scattering as shown in Fig. 1, first through angle 6

1’
then again through an angle 92, the cross section is
= I(e)) I(e,) [1 + P, (6,) P,(6,) coséy,] s . (1I-3)

where ¢12 is the angle between the two scattering planes. For the most
common case when both scatterings are in the same plane, the asymmetry

e is found by allowing ¢,, = 0 and ¢, = 7 in Eq. (II-3), so that

e = P.P, = (L-R)/(L+R) . (II-4)
L and R are the numbers of particles scattered through angle 92 to the
left and right, respectively.
ITI. SCATTERING AMPLITUDES AND PHASE SHIFTS
The spin-independent Schrddinger wave equation is written
(v + k% -u) WP =0, (1I-5)

where the central potential U, (2m/h2)V (r), m = the reduced mass of

c
the two-particle system, and r = I;l - ;2|. The differential cross

section can be related to a scattering amplitude f(8) by the equation

o(e) = |2(8)|? , (11-6)



Figure 1. Double Scattering Geometry.
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if the wave function is considered to be a sum of incident and scattered

waves. For an incident plane wave

<
n

¢in + ¢sc

exp(ikz) + f(e) exp(ikr)/r (II-7)

Z Az(kr)—l sin(kr-( 2n/2)+62) Pz( cosB)
2

The last summation over orbital angular momentum states, £, holds only
for large r; and 62 represents a shift in phase of the scattered wave

with respect to the incident plane wave. In this formulation

£(0) = Lkt }E:(zz+1)(1_u2) P,(coso) , (1I-8)
2

and

(=
n

exp(216£) .

If Q is defined

1q, = (u,~1)(u+1)™

then

O
L}

arctan Q2 . (11-9)

If it is assumed that spin-dependent scattering can be approximated
by a potential containing spin-orbit and spin-spin interaction terms,

then the wave equation becomes (Appendix A and Wu 62)

2

(v + k2 -W) wWF,3) =0, (II-10)



where

W= (2m/n2)[Vc(r) + (33 v () + W (r)] .

I, g are the orbital and spin angular momenta of the two-particle system,

T is a spin-spin tensor,

> >, >
.- 3(0,°r)(0,°r) o
= > —0'1 ¢
r

and 31’ 32 are the spin vectors for the incident particle and scatterer,

respectively. Then the wave function is conveniently written

W(F,3)

b+ Y

in sSC

exp(ikz) xs-+:E:fss,(e,¢) xs' exp(ikr)/r

S'

E Cc(Ic - E Usie oc,) , (I1-11)
c c'

L - 1 '
where C_ = in % 1(22+1)2, x>, x5 represent spin vectors of incident and

exit channels, respectively, ¢, ¢' represent the incident and exit

angular momentum quantum states (%2,m,J,M) and (&',m',J',M'), and

Ic = [iz exp[-i(kr-2n/2)] GiMz Yzm(9,¢) xs]/r R
0_ = [1* expli(kr-2m/2) ] ci”z Y, (0,6) x°1/r .

The GiMz are the Clebsch-Gordon coefficients given in Appendix A in
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Table AI, and the Yzm(9,¢) are normalized spherical harmonies. Then

£(6,4,0) =Zfss,(e,¢) S
S'
:I_'n';2 ;2 20+1 ;5 S
= -—k—z (22+1) [(—h_n_) Gc Pz(cose) X (II-12)
ce'
- UC'C G’c. ngmg(e'sd") XS ] ’
o(6,4) = |£(8,6,8)|% , (II-13)
and
p(8) = [o(0,4) - I(6)]1/I(8) , (II-1L4)
where

I(e) = Z Ifii|2
1

= the differential cross section in the absence of mixing
of quantum states between incident and exit channels.
In the spin-dependent analysis Uc'c is a matrix relating outgoing
angular momentum states to the incident states. Mixing between states
occurs when allowed by conservation of total angular momentum J and
parity (—1)2. U is guaranteed unitary and symmetric by conservation of
probability and time reversal properties, and is diagonal with elements
U = exp(2162) when no mixing occufs. Thus, if a matrix Q is defined

2

such that in matrix notation



1Q = (U-1)(u+1)™t (II-15)
then the phase shifts are defined in analogy with the diagonal case as

§ = arct a.n_l Q

1] (11-16)

i

In the present T(K,ﬁ)T experiment for neutrons with 22-MeV inecident
energy, the orbital angular momentum quantum number was limited to
zmax = 3 in which case U is a 14 by 14 matrix with 10 non-zero, off-
diagonal, state-mixing elements. The explicit form of U is given in
Appendix A, Table AII.

The above analysis points out the relationship between the measur-
able quantities, asymmetry and cross section, and the postulated nuclear
interaction potentials. The connection is achieved via the scattering
amplitude f(8), the phase shifts aij’ the scattering matrix U, the wave
function ¢(;,3), and finally the Schrddinger wave equation itself. For
the description of the present experiment, the important concepts are
the polarization P(8) and the asymmetry e defined for double scattering

by Eqs. (II-3) and (II-k4).



CHAPTER III

THE EXPERIMENT

This chapter describes the method and the equipment involved in the
measurements performed during the present experiment. How the polarized
neutron beam was produced, the geometry of the problem, and the descrip-
tion of the cryogenic scattering samples are treated in Section I.
Section II describes the detectors, collimators, and electronies; and
in the last section the various measurements necessary for obtaining

the desired results are discussed.

I. PRODUCTION AND SCATTERING OF THE NEUTRON BEAM

The Van de Graaff Accelerator and Mobley Buncher

The Los Alamos vertical Van de Graaff accelerator and Mobley buncher
were used to produce a pulsed beam of deuterons with a repetition rate
of 2 MHz and a pulse ength of 1 nsec at the center of a tritium gas
target. The principles of Van de Graaff electrostatic accelerator
operation are described elsewhere (He 59, Va 46); Cranberg et al. have
explained the details of a Mobley buncher system (Cr 61); and the fea-
tures of the Los Alamos pulsed fast neutron research facility are dis-
cussed by Hopkins et al. (Ho 67).

Basically the deuteron beam is swept across an aperture near the
high voltage head of the accelerator to produce a chopped 2-MHz beam

of 10-nsec length pulses. The deuteron pulses pass between a pair of



13

deflector plates located Just upstream of a 90° bending, focusing magnet.
An rf voltage is applied to the deflector plates in phase with the
arrival of the deuteron pulse so that the pulse is fanned out, and those
deuterons arriving at the magnet first are forced to travel the longest
path along the outer edge of the magnet. The effect of the magnet is

to focus all of the deuterons in the 10-nsec pulse on the target at the
same time. Figure 2 illustrates this effect. In practice one obtains

a burst of deuterons on target for approximately 1 nsec in each 500-nsec

period.

Time of Flight

The target upon which the bursts of deuterons impinged in the pres-
ent experiment was a l-cm-diameter, l-cm-long cylindrical cell filled
with tritium gas at “60 psig pressure. The deuterons entered the cell
from the beam tube, which is maintained at '\:10—6 Torr, through a 9.6~
mg/cm2 molybdenum foil window. The Van de Graaff accelerating energy
was boosted to compensate for energy losses in the tritium and in the
foil in order to obtain the appropriate deuteron energy at the center
of the target. These energies and energy losses are tabulated in Table
I. The T(d;g)hHe neutron energies in the table were obtained from the
reaction kinematics analysis of Appendix A, Section II. These particular
energies and angles were chosen to correspond to the maximum, minimum,
and zero polarization of the neutrons.

An induced "stop" pulse is picked off a cylinder at a point Jjust
before the deuteron burst enters the target. The stop pulse gives a

"zero time" reference; i.e., the time at which the T(d,ﬁ)hHe neutrons
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Figure 2.

Target-Detector Area Geometry for the

Neutron Polarization Experiment.
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TABLE I
T(d,ﬁ)hHe Deuteron and Neutron Energics in MeV, Pl(%) Neutron

Polarizations, and Target-Sample Distances.

. . P (8y) a( cm)

d d neutron target
accel- AE AE target 91(1ab) E polari- sample
erator foll gas center deg n zation distance

6.57 0.51 0.06 6.00 29.8 22.1 0.4 10.2
6.57 0.51 0.06 6.00 89.8 16.5 -0.5k 7.5
3.10 0.96 0.1k 2.00 29.8 17.8 0.0 10.2

were produced. The neutrons were scattered from the sample a short
distance d from the target and were detected by the scintillator, photo-
multiplier packages at the end of a 2.55-m flight path, D. The time
elapsed between the stop pulse and the arrival of the neutrons at the
detectors is a measure of the scattered neutron energy. In fact, non-

relativistically,
t(nsec) = 72.3 D (meters)/[En(Mev)]16 : (I11-1)

and the time-of-flight system is an excellent spectrometer which sepa-

rates neutrons according to their energies.

The Monitor

In addition to the detectors at 92L and 92R shown in Fig. 2, a

A\l

third detector, the "neutron monitor," was located above the target at

110° to the incident beam direction. The collimator of this detector
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can be seen in Figs. 3 and 4. The monitor effectively counted the
neutrons produced and allowed consecutive measurements to be made for
the same numbers of neutrons thus compensating for fluctuations in

deuteron beam intensity.

Double Scattering

The polarizations Pl(el) of the neutrons produced in the T(d,;)hHe
reaction are given in Table I. Scattering the polarized neutrons from
the liquid hydrogen isotopes produced a left-right asymmetry from which
the n-D or n-T polarization P2(92) was determined by applying the double

scattering equation (II-L); thus,
P, (08,) = e/P (8,) = (L-R)/[(1+R) P, (6,)].

1. and R, the total numbers of elastically scattered neutrons detected

in the left and right detectors, respectively, were determined by scat-
tering the neutrons from the sample and then subtracting the '"background"
data obtained by scattering the neutrons from an identical empty dummy

cell for an equal number of monitor counts.

Cryogenics

Members of the Los Alamos Scientific Laboratory cryogenies group,
especlally E. C. Kerr and R. H. Sherman, built cryogenic systems for
containing the liquid hydrogen isotopes and liquid hHe scattering
samples. The so-called chariot with the two cryostats for liquid deu-
terium and tritium can ve zeen in Figs. 3 and 4. The system has been

described by Zeagrave (Se 67).
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Figure 3. View of the Equipment Used to Measure D(n,A)D
and T(n,A)T Asymmetries. (This photograph is

diagrammed and labeled in Fig. L.)
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Figure L.

Outline Drawing of Equipment Used to Measure

D(7,n)D and T(n,n)T Asymmetries.
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Basically the cells at the tips of the cryostats are two concentric,
cylindrical, stainless steel cans; the inner cell with 3-mil-thick walls
contains the liquid scattering sample, and there is a vacuum jacket
between the inner cell and the outer can which has 4-mil-thick walls.

The inner cell dimensions are 1l.34-cm radius R and 4.17-cm length; hence,

the cell volume is 23.5 cm3

or, in the case of tritium, approximately
1 mole or 60,000 curies. The tritium and deuterium were cooled and
liquified by a liquid hydrogen Jacket in the upper dewars.

The tritium half life for 18.6-keV B decay is 12.26 yr. This sub-
stance is extremely dangerous when released to the atmosphere since it
replaces normal hydrogen in water molecules, and is easily ingested and
absorbed into the human body. Thus, especially in the handling of the

~30 liters at STP which were used to produce the 23.5—cm3

liquid tritium
scattering sample, it was necessary that detailed standard operating
procedures be strictly followed; and radiation monitoring personnel

from the LASL Health Physics Division were required in the building at
all times.

A cryostat to contain liquid hHe was also built by the cryogeniecs
group and mounted on a separate stand. The cell was identical to that
containing the hydrogen isotopes so that measurements of scattering from
the different nuclei could be easily compared. Otherwise, the cryostat
designs were slightly different since the precautions taken to insure
a sealed system for tritium and deuterium were not necessary for hHe.

In addition, an evacuated dummy cell of identical dimensions and con-

struction was provided to facilitate making background measurements.
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Counting Rate

Before proceeding with a discussion of the detectors and elec-
tronics, it will be instructive to examine the counting rates involved
in the experiment.

Normally the integrated deuteron beam current on the tritium gas

target was

13

= 3 pyamp = 1.88 x 107~ deuterons/sec .

a
The number of 22.1-MeV neutrons produced in the T(d,ﬁ)hHe reaction at

91 = 30° lab, scattered from the tritium sample’, and reaching the detec-

tor per second is

N = Il(el) x £ 0% £, x f2(92) R

where Il(el) is the intensity of neutrons from the T(d,n)hHe interaction

incident on the liquid tritium scattering sample,

11(91) =[i. o,(6,) n, 2 Q] ;

d 1’1" T

fl is the fraction of the incident neutron beam which interacts with
the tritium sample,
£, = [1 - exp(-ngt op)]
fel represents the fraction of elastic scatterings,
fel = 0el/gT 3 and

f2 is the fraction of elastic interactions which reach the detector,

f, = 02(62) w/oel .
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Therefore,

N = [i; o (6;) npe@lll - exp(-ngt o) llo,(85)w/og] (11I-2)
where
01(91) = T(d,n) differential cross section
= 12 mb/sr at 6, = 30° 1lab,
D = triton density in the target gas
= 2.35 x 10°° tritons/cm> at 60 psig, 30°C,
2 = effective target length = 1 cm,
Q = solid angle subtended by the scattering sample
= 0.107 sr at 4 = 10.2 cnm,
Op = total n-T cross section
= 610 mb at E = 22 MeV,
02(92) = T(n,n)T differential cross section
= 83 mb/sr at o, = 40° 1ab,

= 3 mb/sr at @

5 100° 1lab,
= triton density in the liquid sample
= 5.2 x 1022 tritons/cm3,
t = effective sample thickness = nR/2

= 2.105 cm,

w = solid angle subtended by the L" x 5" detector

0.0020 sr.
Thus, the number of elastically scattered neutrons arriving at the
detector is

N = 100 neutrons/sec at 6 40° 1ab

2

= L neutrons/sec at 0 100° 1ab.

2
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However, the neutron counting rate in the detector is
R =¢€eN,

where € 1s the detector efficiency,

e(E) =~ [1 - exp(—ncHx)] (1 - B/E),
n = scintillating ion density
> (6 x 1023 atoms/mole) (1 gm/cm3)/(13 gm/mole)
= 4.62 x 10°2 atoms/cmS,
X = scintillator thickness = 5.1 cm,
o, = p(n,n)p cross section = 1 barn, and

bias level = 2 MeV for neutrons (see "Slow side electronics,"
this chapter);

so that at energies 10 MeV

e = 0.17 ,
and
R = 17 neutron counts/sec at 92 = L0° lab
= 1 neutron count/sec at 6, = 100° lab.

2

Note, however, that R is only the elastic neutron counting rate and that
the total counting rate per detector includes all the background and was

actually measured to be R, ~ 200 R counts/sec from the detector anodes

A
and RD v 10 R after diserimination. Thus, even without examining the
data in detall one can see that the elastically scattered neutrons are
only a small vart of the data; and the time-of-flight system was val-
uable for separating the elastic neutrons, which were concentrated in

v20 channels of the time spectrun, from the background, which was spread

over the entire 256 channel wide cspectrunm.
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II. DETECTING THE NEUTRONS

Detectors and Collimators

The detector packages used in the present experiment consisted of
4" x 5" x 2" 1iquid scintillators mounted on the face of 5-in.-diameter
58-AVP photomultiplier tubes. The scintillator glass envelopes were
blown in the Los Alamos glass shop and ground optically flat by LASL
group GMX-9 personnel. The glass envelopes were then sent to Nuclear
Enterprises Ltd., Winnipeg (now at San Carlos, California), to be filled
with a "cyclo-sol"* base liquid scintillating material, NE218; and all
faces of the scintillator except, of course, the face applied to the
photomultiplier tube, were coated with reflecting paint. The visible
portion of the scintillators was made bubble free by means of a glass
£i1ling bubble on the face away from the photomultiplier tube and hidden
from the photomultiplier tube by the reflecting paint. With a little
dexterity and considerable patience all air bubbles could be transferred
from the visible main envelope to the attached filling bubble, and care
was used throughout the experiment not to tip the detectors in order not
to reintroduce air bubbles into the visible region. NE218 exhibits a
reasonable pulse height and a marked difference in pulse shape between
light pulses produced by recoil protons, from incident neutrons, and
recoil electrons, from incident gemma rays (Re 66). The latter property
is important in neutron-gamma-ray discrimination described later in this
section. The photomultiplier tubes were mounted inside high permeability

metal cylinders to avoid possible changes in amplification character-

#"Cyclo-sol" is a product of the Shell Chemical Company.
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istiecs due to stray magnetic fields.

The detectors were surrounded by massive shields as shown in Figs.
3 and 4. The shields for left and right detectors were essentially
antisymmetric to each other. Two inches of copper and tungsten formed
the inner shield arouﬁd the detectors, and this shield was in turn
surrounded by 2 feet of polyethylene for attenuating slow neutrons.'
On the sides of the detectors towards the accelerator beam tube the
copper shielding was increased to more than 1-foot thickness to attenu-
ate the high-energy neutrons originating from this area, and at the
level of the detectors another 1 inch of copper was stacked around the
periphery of the shields.

Cantilevered and supported by "battleship anchor chains," the
copper and tungsten collimators extended from the face of the detectors
to within a few centimeters of the scattering sample. The purpose of
these collimators, of course, was to prevent the detector from seeing
the neutron producing target and to insure that only the neutrons scat-
tered from the sample actually entered the detectors. The collimators
consisted of copper blocks 4 in. thick on the beam tube side and 2 in.
thick on the opposite side. The last 10 in. of the collimator snouts
nearest the tritium target were tungsten. Tests were made of the effec-
tiveness of the shielding and collimation by using a crane on which one-
ton blocks of concrete were suspended at various positions around the
shielding-detector carts. It was determined from these attempts to
measure the difference in background levels due to added shielding that
the collimators and shielding were sufficiently heavy so that there

would be no advantage in increasing their thicknesses by several feet.
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It should be pointed out that the neutron monitor was also provided with
a rather massive copper collimator which can be seen in the figures.
The detectors with their shielding and collimators were mounted upon
carts which in turn rode on rails upon two turntables. The carts were
positioned so that the detectors were at a fixed distance D(= 255 cm)
from the scattering sample. The pivot point of the left turntable was
positioned directly under the sample, and the left detector and colli-
mator rotated about this point. The pivot of the right turntable was
of necessity placed some distance from the sample position, and the
turret base of the cart was utilized to keep the right collimator
pointed at the scattering sample.

Angles 92 of the detectors with respect to the neutron beam line
were found to be most easily and accurately measured with a transit,
mirror system suggested by B. Brixner at LASL. A front-surfaced mirror
on a small calibrated turntable was placed at the scattering sample
position and a transit was positioned some 20 feet away on the target-
sample line. The zero degree mirror position was determined by looking
through the transit and rotating the mirror until the image of the
transit was in line with the transit cross hairs. Then the mirror was
turned to half of the desired detector position angle 92, the colli-
mator turntable was rotated until the transit operator was observing
the center of a scale placed at the detector position, and the angle
6, was marked on the floor. Checks of these measurements in a variety

2

of other ways found 92 to be accurate and reproducible to within 0.05°,
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Neutron-Gamma-Ray (n-y) Discrimination

The 58-AVP photomultiplier tubes were powered through modified
NES553A% pulse shape discriminator (PSD) bases. The serial numbers on
these tube bases, 66 and 60, were used throughout the experiment to iden-
tify the detectors. In the scintillation counters a single pulse from
the photamultiplier tube can be described as the sum of two exponential
decays; the fast part of the pulse has a decay time of about 6 nsec and
the slow part typically decays in 200-400 nsec. For recoil protons pro-
duced in the scintillator by.neutrons the amplitude of the slow component
is about 2% of the fast component, whereas for electrons produced in
the scintillator by gemma rays the slow component is only about 1% as
large as the fast component. The Daehnick and Sherr pulse shape dis-
criminator circuit (Da 61) incorporated into the NES5553A tube base uses
this difference in amplitude of the slow decay to produce positive
output signals for neutrons and negative signals for gamma rays.

Normally the output signals of the Daehnick and Sherr circuit
are amplified and routed through a discriminator in the tube base.
However, D. R. Dixon (Di 68) modified the units somewhat by routing
the output of the PSD circuit through an amplifier and line-driver
designed by himself and LASL group P-1; the amplified PSD signals
were routed outside the tube base without discrimination in order to
allow external monitoring of and discrimination on the signals. The

PSD circuits were carefully adjusted so that they were about 99.8%

¥NESS553A pulse shape discriminator units are built by Nuclear
Enterprises, San Carlos, California. .
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effective in rejection of all gamma rays encountered in the experi-

ment.

Electronices

Figures 5 and 6 are block diagrams of the "slow" and "fast" elec-
tronics used in the experiment. Basically the problem to be solved by
the electronics is to take three signals from each detector, discriminate
against gamma rsys and low energy neutrons, correct for electronic dead
time, mix the signals, provide pulses to the on-line SDS 930 computer
which separate the particles according to the detectors they entered,
and store the time spectra in the on-line computer. The signals taken
from the detectors were:

1. a linear signal with 0 to 0.1 volt amplitude, dependent upon
incident particle energy, and with about a 20-usec decay time
constant;

2. the n-y signal from the Dixon amplifier, line-driver with
0 to 0.5 volt positive amplitude for neutron produced recoil
protons and a comparable negative amplitude for gamma-ray
produce@ recoil electrons; and

3. a fast anode signal.

It will be convenient to consider the "slow" side first.

Slow side electronies. On the slow side (Fig. 5) the linear signal

was first amplified and then routed through an "energy level” disecrimi-
nator into a coincidence unit. The energy discrimination level was

set to reject very low energy particles and was calibrated periodically



31

Figure 5. Block Diagram of "Slow Side" Electronics.



ENERGY ENITTER SCALER
gp [ e S ﬁl% o IFE FOLLOWER| | LL GATES
3
ML N DisC s
N n N-
ONTE] AL y
= LIRS Y b} DIFF
05V DISC
GATE
INVERT g,}’bf’EER s
o FROM. SLOW SIDE MIXED GATES T0
FROM FAST SIDE D1Se R RB———0
TAG(LEFT) ON-LINE COMPUTER
VALID STOPS
FROM SLOW SIDE EMITTER
O;
TR rouowmj}
PULSE
O—{ INVERT 200, VETO TO
SHAPER] ™1 ouTe - ON-LINE COMPUTER
FRON FAST SIDE GATE y
TAC(RIGHT) e 333 g:sf: o
VALID STOPS ' RIGHT ROUTING GATE TO
ON-LINE COMPUTER
5 |0 N-y DISC Si6- ENERGY
AMP " DIFF ENITTER SCALER
LINEAR SIG - DISC FOLLOWER| IR GATES




33

Figure 6.

Block Diagram of "Fast Side" Electronics.
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by connecting the linear input signal of the discriminator to a pulse
. height analyzer (PHA, not shown in the diagram). The analyzer was

gated by the output of the energy discriminator. A 137

Cs gamma-ray
emitter placed in the collimators allowed the discrimination level (PHA
gate) to be set at the 0.662-MeV gamma-ray energy, which corresponds to
n2-MeV neutron energy in the scintillator pulse heights (Cz 6L).

The n-y signal was routed into a modified gate unit which, when
a complete conversion signal was obtained from the time to amplitude
converter (see the description of the fast electronics below), added a
0.5-volt pedestal to the signal. It was necessary to add 0.5 volt so
that the positive level of the differential discriminator could be set
to reject gamma rays before the neutron signal entered the coincidence
circuit. The neutron discriminator was set in the same manner as the
energy discriminator except that a PuBe neutron-gamma source was used
and the discrimination level (PHA gate) was set in the valley between
neutrons and gammas in the PuBe spectrum. The neutron-energy coinci-
dence signals from the two detectors were mixed and used to gate the
analog-to-digital converter (ADC) at the on-line computer.

There was also a second coincidence unit in the slow side elec-
tronies which utilized the same neutron and energy signals as the ADC
gate signal. However, in addition this unit required a coincidence
from the anode of the opposite detector; thus, an output signal resulted
from this coincidence only if there were simultaneous events in both
detectors. This '"veto" signal was routed to the ADC to avoid adding
amplitudes of the simultancous pulses and sending a large signal to a

right detector memory location in the computer. Fortunately, these
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veto events were not frequent. For example, the time-integrated pulse

rates for n-T scattering at 6, = 40° lab were:

2

RA pulse rate from the detector anode

3.4 x 103/sec,

14

RE = pulse rate from the energy discriminator

R

RD > 170/sec, and

pulse rate from the neutron discriminator

Ry

14

RD = 170/sec.
For a double coincidence of pulses in l-nsec bursts at 500-nsec intervals

(1t = 1/500), the coincidence rate is

o
n

o = AT/ 8 R+ LRy )R /)

= 2 R1R2 t/1 ,

where tl = t2 =t = 10—6 sec is the pulse length. The veto coincidences

were obtained from a triple coincidence for which the rate is
R, = tl(Ry; £ )(R/1) + (Ryy ) (Rp/1) + (Ryq £)(Ry/T)]

where t. = t is the double coincidence pulse length, and the R

d repre-

di
sent the double coincidence rates (Rdl = 2RERNt/T, Rd2 = 2RNRAt/T,

Rd3 = 2RERAt/T). Then
R, = 6R.R t2/T
% ARERN ,

so that the mixed veto coincidence rate from both detectors was

=6)2,(1/500)

14

2R (12)(3.4 x 103)(1.7 x 102)2(10

t

0.6 veto pulses/sec.
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A third signal was sent to the ADC from the right detector N,E
coincidence unit. This was the routing signal which indicated when an

event had occurred in the right detector.

Fast side electronics. The fast side electronies were somewhat

more complicated. The anode signal of each detector was amplified,
routed through a fast discriminator with l-nsec dead time, and used as
the start signal for a time to amplitude converter (TAC). The number
of pulses N from the fast discriminator were counted on a scaler.

The 2-MHz stop pulses were routed through a trigger-fan out unit.
The stop pulses were counted in scaler Cl’ and those pulses which arrived
when neither TAC was dead were counted in scaler C2. It may appear at
this point that the circuit is backwards. The "stop" pulse as explained
in Section I of this chapter was a zero-time indicator; i.e., it was the
pulse picked up at the target when neutrons were produced. It would
have been logical to start the TAC with this signal and to stop the
converter with the anode signal from the detector indicating the arrival
of a neutron. However, here again the counting rate was important. Note
that the anode pulses arrive at a rate of ~3.4 x 103/sec so that starting
the TAC by every beam pulse would result in 600 more starts and 600
times more dead time than would result from starting the TAC by an
event in the detector. Té avoid this excessive dead time and, since
the beam pickup was a (2000.0+0.2)-kHz pulse, the TAC's were started
by a detector event and stopped by the succeeding "stop" pulse, so that

the TAC output voltage decreased with increasing time of flight. Hence,
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in the typical data spectrum (see Figs. 7-10 in Chapter IV) time in-
creases from right to left and the energy scale runs from left to right.

The outputs of the TAC's were mixed and routed through an ADC,
which had been properly gated by the slow side electronics, to an on-
line SDS 930 computer for pulse height analysis. The computer and its
associated software have been described by Levin et al. (Le 69, Ga 66).
The computer time scale was calibrated by sending pulses from a pulser
into both start and stop sides of the TAC and delaying the start pulse
input with respect to the stop pulse in 10-nsec steps. In this manner
it was determined that the computer output/input signal ratio was con-
stant over the entire running period at 2.3 channels/nsec.

The monitor electronics are also shown on the fast side. Essen-
tially the monitor time-of-flight system was identical to that of the
other detectors except that differential discrimination was performed
on the monitor time spectrum rather than on energy and n-y spectra.
Monitor gates, M, were scaled.

The overall time resolution in the detectors and associated elec-

tronics was much less than 1 nsec.

Normalization and Dead Time Corrections

The purpose of scaling the quantities M, C C2, and N was for the

1’
normalization and dead time correction of the data. To calculate these
effects, assume the following:

n' is the number of counts detected during a run of M' monitor

counts;
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n is the number of counts which would have been detected in the
absence of electronic dead time;

T4 (= 1 usec) is the dead time‘introduced each time the detector
anode discriminator receives a pulse;

TTAC (= 6 usec) is the dead time introduced when the time-to-
amplitude coverter receives a start signal or is inhibited
by the computer;

T is the total time elapsed for a run of M' monitor counts;

T is the total dead time during time T due to Tt and exclusive

TAC

of Td.

Then C1 is the number of stop pulses and consequently is the time re-

quired for M' monitor counts (in units of 500 nsec), i.e., C1 =

T/(5 x 10—7); and C2 is the time the electronics was live, i.e., C2 =
C1 - T. The number of counts lost due to the TAC, the computer, and

the associated electronics was~nT/C1. Thus for 1 << C1

n=n'+ (nT/Cl) = n'Cl/(Cl—T) = n'cl/c2 . (I11-3)

In addition there was the possibility that an anode signal could
arrive Just before the TAC was ready to receive it. In this case, there

would be NNTd(Td/T ) extra dead time due to the anode discriminator

TAC

exclusive of the remaining electronics, so that the loss of counts due

to the time the system was dead from the anode discriminators alone is

n(grd/T)(rd/rTAC), and
Nt T Nt T
I a4 ,_48 _ , d __d -
n=n'+n-— - =n' (1 + T ) . (I1I-4%)
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The normalization factor by which all the data were multiplied is ob-
tained by applying both corrections (III-3) and (III-4) and renormal-

izing for M monitor counts,

Q
=
pry
A

(III-5)

III. THE MEASUREMENTS

D(n,n)D snd T(n,n)T Asymmetries

The purpose of the present experiment was to measure the polari-
zation of n-D and n-T elastic scattering at an incident neutron energy
of 22 MeV. It was assumed on the basis of earlier experiments (Pe 61)
that for 6.0-MeV incident deuterons the polarization of the 22-MeV

neutrons emitted by the T(d,;)hHe reaction at 8. = 30° was maximum and

1
known. The polafized neutrons produced in this reaction were scattered
from the liquid deuterium or liquid tritium scattering cell, which was
positioned a short distance d from the neutron source; the left-right
asymmetry was measured for laboratory angles L0° < 6, £ 118.5°. The

polarization of the elastic scattering was calculated from expression

(II-4),
P2(92) = e/Pl(el) . (I11-6)

The 16.5-MeV neutrons from the same T(d,ﬁ)hHe reaction at 6, = 90°

1

lab for 6.0-MeV incident deuterons exhibit a maximum negative polariza-

tion (Pe 61), and it represented little additional effort to place the
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tritium scattering sample at 90° and to measure the asymmetries of
16.5-MeV n-T elastic scattering at 35° S 6, S 45° 1gb. Unfortunately
space and shielding limitations prevented extending this measurement

over a larger range of angles.

+ U .
T(d,n) He Source Polarization

In addition to the D(n,n)D and T(n,n)T measurements the (a,7) e
neutron source polarizations were measured for both 22.1- and 16.5-MeV

neutron energies at 6, = 29.8° 1lab and 6

= 89.8° l1lab by placing the

1 1

liquid hHe scattering sample at d,6,. The polarization P2(92) for
n—hHe elastic scattering is reasonably well known (Ho 66) and from
measurements of the left-right asymmetry one can determine the source

polarizations Pl(el)

Pl(el) = e/P2(e2) . (III-7)

Artificial Asymmetries and Detector Efficiencies

Artificial asymmetry, the asymmetry which is due to imperfect
shielding and the physical configuration of the experimental equipment
and which remains when the source polarization is zero, was also
measured. The deuteron beam energy was reduced to 2.0 MeV at which
energy the T(d,ﬁ)hﬁe neutron polarization Pl(el) is expected to be zero
at 91 = 30° lab. The 17.8-leV neutrons produced at this angle were
scattered from the liquid hHe sample at 92 = 35°, 55°, and T0° lab, and

a small artificial asymmetry e. was measured. The corrections of the

data for e, are described in Section II of Chapter IV.
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Although the detectors were very well matched, it was nevertheless
necessary to correct for the difference in efficiency. In lieu of
measuring the detector efficiencies all measurements were performed
twice with the detectors interchanged. The corrections were then a:-slied
essentially by averaging the two sets of data to cancel effects due to

differences in the two detectors.

Electronic Drift

The uncertainties introduced into the measurements by the possible
drift of discrimination levels, detector amplification characteristics,
and various other unsuspected changes in the electronics were measured
by testing the detectors in a low background area. A PuBe source,

which produces 9.34 x 10°

neutrons/sec and “2 gamma rays per neutron,
was placed at a fixed distance of approximately 1.24 m from both detec-
tors so that the total counting rate was 2000 € = 300 counts/sec,
comparable to the discriminated neutron-gemma counting rates in the
actual experiment. A 2-MHz stop pulse was introduced by a pulser into
the TAC's and random spectra were collected at the computer.

Thirteen sets of random spectra were taken over a period of six
weeks during which time the detectors were subjJected to a +20°F change
in temperature, various electronics modules were interchanged, and
experimental conditions were otherwise duplicated as closely as possible.
A constant range of 100 channels was sampled and the deviation from

the mean counting rate was found to be *1%. The error in asymmetry

due to this effect is calculated in Chapter IV, Section II.
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In summary, it should be apparent that, although in principle the
determination of asymmetries from n-D and n-T elastic scatterings appear
fairly simple, in practice the measurements were not so easily performed.
Considerable care was necessary to reduce backgrounds to an acceptable
level; the cryogenic system for obtaining sufficiently dense scattering
samples of the liquid hydrogen isotopes was far from simple; and much
attention was paid to developing a satisfactory neutron monitoring
system. The scope of the measurements involved in the experiment was
somewhat broader than the two elastic scatterings alone, and the experi-
ment was only completed within a reasonable period of time due to the
cooperation of the individuals directly involved and to the assistance
of the accelerator maintenance, shops, electronics, and other service

groups at Los Alamos Scientific Laboratory.



CHAPTER IV
DATA ANALYSIS

Analysis of the data from the experiment began with on-line
preliminary data reduction by the SDS 930 computér. The time spectra
were then carefully examined, renormalized, and combined by the FLZEIT
program to reduce statistical errors and determine that background
subtractions were performed correctly. Corrections to the data and
an extensive error analysis were the last steps leading to the final
asymmetries.

Artificial asymmetry results are listed in Table II in Section II
of this chapter, and the results of the other asymmetry measurements

are given in Table III at the end of the chapter.
I. COMPUTER ANALYSES

On-Line Data Reduction

The SDS 930 computer at the Los Alamos Van de Graaff Accelerator
Laboratory was used for recording the experimental data and to perform
on-line preliminary data analysis. The SDS 930 computer and its asso-
ciated software are described elsevhere (Le 69, Ga 66). J. Levin (Le 68)
coded a program for the time-of-flight experiments in which the computer
was utilized as a 512-channel pulse height analyzer, 256 channels per
detector.

The on-line program allowed the experimenter to keep a close watch

on the pulse height spectra which were displayed on a scope during the
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experiment. In addition, options were provided for printing, plotting,
and storing the data on magnetic tape at the end of each run; and
properly normalized (see Normalizations and Dead Time Corrections,
Chapter III) foreground-background éUbtractions could be made for any
pair of runs. The subtraction routine also calculated standard devia-
tions so that the experimenter could readily detefmine statistical

accuracy and decide whether to extend the running time.

Program FLZEIT

After the data had been accumulated and the preliminary on-line
analysis had been made, the data handling was transferred to the CDC
6600 computer. A FORTRAN IV data reduction code, FLZEIT, was written
for this step of the analysis. A discussion of the program, including
instructions on its use and the code listing, will be found in
Appendix B.

Basically program FLZEIT renormalizes and calculates 1) the number
of counts in channel I, NET(I), 2) the standard deviation, SD(I), 3)

I I
SUM(I) = ) NET(i), and 4) SUMVAR(I) = Z(sn(i))2 for the subtraction
1=1 i=1

of any number of pairs of foreground and background runs. Printing,
plotting, and storing the reduced data can be done with several options;
and normalization factors can be entered from cards, used as they were
calculated by the on-line computer from scaler inputs, or calculated

by .FLZEIT itself. The last option was valuable in checking the accuracy
of the monitor by renormalizing the data for large angles 6, to the

2

"nard" scattering. '"Hard" scattering peaks result from the elastic
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scattering of neutrons from the copper and tungsten collimators and
are expected to be the same for foreground and background runs. A
normalization which required hard scattering to be subtracted out com-
pletely was used in place of the monitor normalization at large angles
where the neutrons scattered by the collimators were well separated in
energy from the neutrons scattered by the liquid samples. It should
be noted that it made little difference in the final results whether
the monitor or hard scattering normalizations were used so that it can
be safely assumed that monitor normalizations of the data at forward
angles 92 were also reliable.

Figures T-9 are plots of typical time-of-flight spectra aslthey
appear after reduction by the FLZEIT routine. Figure T is a normalized
foreground run; Fig. 8 is the corresponding normalized background runj
and Fig. 9 shows the foreground-minus_background subtraction. The time
spectrum of the left detector fills channels 1 through 256, and the
right detector spectrum is in channels 257 through 512. The particular
set of data in the figures is T(;,ﬁ)T elastic scattering at an incident
= 29.8° 1ab, and 6, = 80° lab. It took

1 2

about 3 hours to accumulate these foreground and background data, and

neutron energy of 22.1 MeV, 6

statistical errors were approximately 6.5%.

The T(K,ﬁ)T elastic neutron peaks in the figures are centered at
channels 110 and 370 for left and right detectors, respectively; the
peeks at channels 130 and LOO are hard scattering, and gamma rays which
1eéked through the neutron-gamma-ray discrimination are at 210 and 470.
The structure at channels 30 and 305 represents a nearly constant pulse

height output from the TAC's which resulted when start signals were
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Figure T.

A Typical Normalized Pulse Height Spectrum for
a T(n,n)T Foreground Run (at 22.1-MeV incident

neutron energy and 6, = 80° 1ab).
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Figure 8. A Typical Normalized Pulse Height Spectrum for
Scattering 22.1-MeV Neutrons from the Evacuated

Dummy Cell (at 6, = 80° lab).
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.~

Figure 9. The Subtracted Spectrum of T(n,n)T Foreground
and Dummy Cell Background Runs Illustrated in

Figures T and 8.
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detected but conversion was not completed by the arrival of a stop pulse
within the required 300-nsec width. Pulses too large for the computer
to handle were accumulated in channels 256 and 512; and the large back-
ground in Figs. T and 8 at energies lower than the elastic neutron
energies resulted from the inelastic scattering of neutrons from colli-

mators, shielding, and sample cells.

Curve Fitting

The points in Fig. 10 are a linear plot of the data shown in Fig. 9
except that the large pileup peaks have been removed. Examination of
Fig. 10 clearly shows that the statistical uncertainties made it rather
difficult to be objective in assigning limits to the elastic neutron
peeks. For this reason a non-linear, least squares, curve fitting
program written by Moore and Zeigler at LASL (Mo 60) was used to fit a
skewed gaussian function to the data. The solid curve in Fig. 10 shows
a fit to the data obtained for the function f(x), which is a "Gram-
Charlier series of type A" in terms of the derivatives of the gaussian

distribution (Ke 63);

(2m)% £(x) = Aj[1 + (uH /6)] exp(-25/2)

+ A2[1 + (u2H2/6)] exp(—zg/2) R (1Iv-1)

where the subscripts 1 and 2 correspond to the left and right scattering
peaks, respectively. 2z = (x—xo)/Ax, X5 is the mean of the peak, and
Ax is the standard deviation (= half width at half maximum). H is the

third Tchebycheff-Hermite polynonial (i = 23—32), and p is the skewness
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Figure 10.

Results of the Least Squares Curve Fitting Routine
as Applied to the T(;,ﬁ)T Subtracted Spectra (for
22.1-MeV incident neutrons and 92 = 80° lab. The

data points are fitted with the solid curve).
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parameter
3 2
M= f (x—xo) exp(-z°/2) dx ,

which is the third moment about the mean of the distribution.

The parameters A, xo, Ax, and y for the fit were included in the
output of the program. Hence, A1 and A2, which are the areas under the
peaks and the total numbers of neutrons elastically scattered by the
sample into the left and right detectors, were determined by the program.
With this information the asymmetries eé and e; for the two measurements

with the detectors interchanged were calculated and are tabulated in

Table III at the end of this chapter;

ey = (L'-R')/(L'+R') = (A1-A)/(AL*A}) (1v-2)

with an identical expression for eg.

II. CORRECTIONS TO THE DATA

Effective Sample Position <91>

Although tae scattering sample was positioned so that its geomet-

rical center was at lab angles 6, = 30.2° for 22-MeV incident neutrons

1
and 91 = 90° for 16.4-MeV incident neutrons, the effective sample posi-
tion angles were slightly smaller because of the decrease of neutron

energy and flux across the sample with increasing 91.

The average effective angle <¢> measured from the geometric center
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of the sample as shown in Fig. 11 is in general

<¢> =fI(¢) ¢ d¢/fI(¢) d¢ » (Iv-3)

where I(¢) is the effective interaction intensity. If at angle el + ¢

Figure 11. Geometry for the Calculation of <91>.

n is the density of scattering centers in the sample and 02(¢) is the
total cross section for neutrons scattered from the sample, then the

interaction intensity as a function of ¢ is

—nc2L

I(¢) = ko (¢) [1 - e 1, (1v-k)

where kcl(¢) is the T(d,n)hHe differential cross section for neutrons at

91 + ¢. Also

1
L= 2(R - & ¢2)%
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hence, the effective angle <6.> is 91 + <¢> where

1

R/4

J

cl(¢)31 - exp[—2n02(¢)(R2—d2¢2)%]$¢ d¢
<p> = -g;g : (Iv-5)

f o ()1 - exp[—2n02(¢)(R2—d2¢2)1/2]z do
=R/d

A FORTRAN IV program, called DSCHNIT, was written to perform the

integrals in Eq. (IV-5). This program is described in detail in

Appendix B.
. . e ces 22
Using the liquid sample densities (Ke 69b), n, = 4.29 x 10
molecules/cm3, n, = 5.14 x 1022 molecules/cm3, ng = 5.22 x 1022

molecules/cm3, and ane = 1.95 x 1022 atoms/cm3, and differential cross

sections 01 and total cross sections 02 obtained from a number of

sources (Bo 61, St 64, St 65, St 68, Ba 57), it was determined that for
all four scattering samples at 6, = 30.2°, <¢> = -0.4° and the effective

sample position was <6_> = 29.8° lab; and at 6, = 90°, <¢> = -0.2° so

1 1

that the effective sample position was <8,> = 89.8° 1lab.

Detector Interchange and Artificial Asymmetries

At each angle 6, two asymmetries eé and e; were measured with the

2
detectors interchanged between neasurements. The data were corrected
for artificial asyrmetries due to differences in detector efficiencies

by averaging the measurements according to the equation derived in

Appendix A, Section VI,




>9

C [arel) (16 ]® - [(1-e))(1-6M)]

e
m

= —; T - (1V-6)
[(1+e1;1)(1+em)] + [(l—en'l)(l—el'l'l)]

The e, are tabulated in Table III at the end of this chapter.
The artificial asymmetry er was measured in the same manner as
other asymmetries except that 2.0-MeV deuterons incident on the tritium

gas target produced unpolarized 17.8-MeV neutrons at 91 = 29.8° 1ab.

Scattering these neutrons from liquid hHe at three angles 6, supplied

2

three sets of asymmetries which were averaged; and the standard devia-

tion from the mean was calculdted,

21,
2:(emi - er) 2
- i
e =e , Se

r m r- (3 - 1) . (Iv-17)

The results of the artificial asymmetry measurements are given in Table
II. The measured artificial asymmetry corrections were applied to the

data according to the expression derived in Appendix A,

0]
n

(em - er)/(l - e, em) (1Iv-8)

e -—-e€ for small e_;
r r

and tne values of e are tabulated in Table III at the end of the chapter.
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TABLE II

Results of hHe(-ﬁ,ﬁ)hHe Artificial Asymmetry Measurements.

Ed = 2.0 MeV 91 = 29.8 MeV
E = 17.8 MeV Pl(el) = 0.0
921ab 92c.m. cose2 ' : |e JE |
(deg) (deg) c.m. n n ®n mom
35 43.3 0.727 0.0328 -0.0535 -0.0104 0.0282
55 66.9 0.392 0.0513 -0.0036 +0.0239 0.0061
T0 83.7 0.110 0.0376 0.0419 +0.0398 0.0220
e = 0.0178 aer = 0.0256

Therefore,

e, = 0.0178 + 0.0256 .

III. ERRORS

Relative errors in the data resulted from the statistical analysis
of the experiment, and absolute errors were due to both the statistical
and systematic uncertainties. The absolute error due to all sources 1

was taken to be
sefe_ = [ 3 (se, /e )2T% ; (17-9)
1

and the uncertainty in the artificial asymmetry was combined with the

data in the same manner,
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se = ellse/e )2 + (se_se )21 . (IV-10)

The errors in the polarization values tabulated in Chapter V were ob-

tained from the expression

so that

§92 = P2[(6e/e)2 + (5P1/P1)2];2 R (IV—ll).

with a similar equation for 6P1, the uncertainty in the measurements of
the source polarization.

It was necessary in some of the error calculations to determine
de/e when L, R, 6L/L, and 6R/R were known. The expression relating

these quantities follows directly from the definition of e,

e = (L-R)/(L+R) ;
|6—: = -i‘— [(2—2)2 (6L)2 + (g—;)2 (éSR)2 + 2 %g—; covariance (LR)];é >
and
8 2LR §L.2 S8R 2%
—:= m [("'f + (—R) 1%, (Iv-12)

if theL and R are independent and covariance (LR) = 0.

Relative Errors

The date reduction code, FLZEIT, calculated the number of counts

NET(I), and the standard deviations SD(I) for each analyzer channel of
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the foreground minus background spectra. The statistical errors in

asymmetry were then obtained directly from the FLZEIT code,

sy, = [(61)% + (RPTH/(1R) , (1v-13)
where
b d
(61)2 = 3 [sD(1)1% , (6r)2 = 3 [sD(1)1% ,

i=a i=c
b d

L= ), NEX(i), and R = ), NET(i) .
i=a i=c

a, b, ¢, d are the channel number limits of the data peaks. Equation

(IV-13) is equivalent to Eq. (IV-12) for L~ R.

Absolute Errors

Absolute uncertainties can result from several possible sources
of systematic error including

1. the point neutron source assumption,

2. electronic drift,

3. geometry,

b, SHe decay products in the liquid tritium sample,

5. inscattering, and

6. multiple scattering.
These sources of error are described in the following paragraphs and

the results are tabulated in Table III at the end of the chapter.
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Point source assumption. Other than the fact that the target is

1l om long, the T(d,z)hHe neutron source differs from a point source in
two respects; first there is a +2.5° divergence of the beam in the
target; and secondly the deuteron energy decreases along the length

of the target due to the energy loss in 1 cm of gas. The worst possible
spread in neutron polarization is that between the neutrons emitted from
the upstream end of the target (Ed = 6.06 MeV) at an angle 8y l€SS
than 91 and the neutrons from downstream end of the target (Ed = 5.94

MeV) at an angle emax greater than 6 From the geometry of the prob-

1

lem it can be shown that for 6 29.8° the spread of angles at the

1
target is 6 . = 26.0° and @ = 33.8°, and for ©
min max

1= 89.8° the minimum

and maximum angles are Gm. = 83.5° and emax = 96.1°. Fortunately the

in
91 = 30° and 91 = 90° sample positions correspond to extrema in the
T(d,g)hﬁe polarizations so that the uncertainties in source polariza-
tions resulting from the angular spread is minimized. By locating these
deuteron energies and angles on the Barschall T(d,;)hHe polarization

contour plot (Ba 66) the uncertainties in source polarization were

estimated to be

1A

&P +0.03 at 6

29.8°

and

A

&P

+0.05 at 8 89.8° .

Electroniec drift. The measurements to determine electronic drift

were described in Chapter ITI. The standard deviation from the mean

counting rate in the thirteen test runs was
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8L/L = §R/R = 0.011 ,

and the errors in asymmetries Geelec/e were calculated from Eq. (IV-12).
Geometry. There were three possible sourcés of systematic error
arising from the geometry of the experiment. The first of these re-
sulted from the 12.T7-cm (5 in.) height of the scintillators, which
caused an uncertainty of #6.35 cm in the scattering plane at the detec-
tors; that is ¢ in Fig. 1 could differ from zero by 8¢ = 6.35/255 =
0.0249 rad. Since cos(8¢) = 0.9997 the uncertainty introduced by the

assumption that e = Pl(el)P2(e2) cos¢ and ¢ = O is
6e¢/e £ 0.0003 .

The second source of geometric error was a 6D ~ 2 cm uncertainty
in measuring the relative sample-detector distances D. The error in
solid angular spread of the 10.2-cm (4 in.) x 12.7-cm (5 in.) scin-

tillators for this 6D is then

8@ _ ,10.2 10.2,,12.7 12.7,,.10.2 , 12.7, _
Q (D+6D - D—GD)(D+6D - D—GD)/( D D ) = 0.00025 ,

so that for this effect the error in asymmetry was also
Se /e < 0.0003 .

The largest sources of geometrical error were the &6 ~ 0.05°

2d
accuracy to which the detector angles were measured and the accuracy
to which the position of the 10.2-cm-wide scintillator on the face of

the phototube was known. The latter figure was estimated to be 0.635
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em (1/4 in.), so that 86, = [(0.635)/(255)1(180/%) = #0.14°. Thus,

the total uncertainty in the angle 6, at which the detector was posi-

2

tioned was 660, = [(692d)2 + ((‘3923)2]_;2 = 0.149°. Since 660

5 is independ-

2
ent for left and right collimators, it was necessary to find SL/L and

SR/R in terms of 692. From the theory of double scattering in Appendix A

L =o0,(6,) 0,(6,) (1 +e), ' (Iv-14)
and
R = 01(91) 02(92) (L-e) , (IV-15)

so that

do apr
aL | _ (3L 2 %92 on 2 Fooo
ld92 = [(302) (d92) + (apg) (d92) ]

and similarly for |dR/d92|. Then
do ap
8Ly _ (8R| _ (12 2,2 2 2,2q%
I = 1l = [(02) (EEE? + P] (EEE? 1% o, . (Iv-16)

Values for 9y dc2/d92, P., and dP2/d92 for calculating |SL/L| and

1°
|6R/R| for the scatterings were obtained from a variety of source mate-
rial (Se 67, Ma 66, Ho 66), and the errors in asymmetry 6e92/e in Table
III were calculated from Eqs. (IV-16) and (IV-12).

The total angular width (= 0.04 rad) of the scintillator is not a
source of uncertainty. The effect of this width is to broaden the

elastic scattering peak in the data.

3He contamination. An analysis of the tritium from the scattering

sample was performed by LASL group W-3 personnel at the completion of



66

the experiment and showed the following content:

T, = 96.23%
D, = 0.12%
= %
H, 0.294
3He = 3.36% .

If it is assumed that L = LT + LHe and R = RT + RHe then
e = (L-R)/(L+R) = (LT—RT+LHe—RHe)/(LT+RT+LHe+RHe) . (Iv-17)

the shape of the T(n,n)T (Chapter V) and 3He(-ﬁ,ﬁ)?’He (BU 69) polariza-
tion curves are expected to be similar, and it is possible that a differ-
ence of only a few degrees in the angle at which the curves cross the

e = 0 axis would result in a maximum error due to the 3He contamination
caused by an extremum of the 3He data falling at the e = 0 angle for

the T data. In this case LT = RT E N and

Seye = (g = Ryg)/(20 + Lyy + Ry) - (1v-16)

The maximum of a set of 16-MeV 3He(ﬁ,ﬁ)3He data (Bl 69) was used to
determine roughly LHe and RHe = 0.0336N so that for E = 16.5 MeV,

6, = 89.8°

K4 .
GeHe 0.0028 ;

and for En = 22.1 MeV, 6, = 29.8°

1

s
GeHe 0.016 .

However, 3He does not condense readily, although it does remain

trapped in the liquid tritium as the tritium decays. Thus, the 3He
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impurities in the scattering sample were considerably decreased when
the tritium was condensed in the cell. Since the tritium was allowed
to boil at least once during the three-week period it was in the cryo-
stat, it was again purged of part of the 3He decay products. Thus,

the concentration of 3He impurities in the sample at any time was prob-
ably not larger than that produced by the tritium decay in the three-
week running time. The amount of decay was calculated from the expres-
sion N = N_ et vhere ¢ = 3 weeks and A = 1n2/half-life = 0.693/12.26
yr. The result, N/No = 0.997, means that the maximum concentration of
3He in the cell at one time was not more than 0.3% instead of the 3%

shown by the gas analysis. Thus, the errors de calculated above are

He
approximately a factor of 10 too large. The values of GeHe/e in Table

III were calculated by assuming the values GeHe £ 0.0003 at 16.5-MeV

neutron energy and e £ 0.002 at 22.1-MeV neutron energy and dividing

He
GeHe by e,”

Inscattering. One more possible source of errors in the data would

be inscattering effects (scattering of the neutrons into or out of the
detector by the collimators). Direct scatterings have already been
treated under the name of "hard" scattering earlier in this chapter,
and it was pointed out there that rather than introduce errors the
hard scattering was expected to be the same for foreground and back-
ground runs and was a significant check on the monitor normalizations
at large angles 92. The effect of a second neutron scattering in the
collimator is ignored; the asymmetry has already been determined

once a neutron enters a collimator so that further scattering within
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the collimator for WQ;ch the neutron remains under the peak does not
change the data.

Actually a second-order inscattering effect could be expected
from an analyzing power of n-Cu scattering which would tend to scatter
neutrons preferentially into or out of the collimator. However, a
series of measurements made with considerably altered collimator con-
figurations resulted in no inscattering effects which could be detected
above the statistical uncertainties of the experiment.

Multiple scattering. An investigation was made of corrections for

multiple scattering. A description of this analysis and the resulting

corrections to the data are given at the end of Appendix A.

The “He(2,n)"He asymmetries tabulated in Table ITI were used to
obtain the calculated values of the T(d,;)hHe neutron source polariza-
tions Pl(el) in Chapter V. The polarizations P2(92) of n-T and n-D
elastic scattering were calculated from the T(K,ﬁ)T asymmetries, the
D(n,A)D asymmetries, and the source polarizations Pl(el). The errors
derived in this chapter represent an upper limit on one standard devi-

ation from the data points.



TABLE III
Analysis of Asymmetries and Errors. (L', R' and L", R" are the number of counts detected in the left

and right detectors for the two detector configurations, before and after interchange.)

(¢]
1]

! = (L'-R")/(L'+R") , ep = Callep+er) e % eyep

e
r

3
Ge/em = [:z:(dei/em)z]“ for all sources of error i , de(absolute) = e[(Ge/em)2 + (Ger/er)zl;é .
i

measured artificial asymmetry = 0.0178 t 0.0256 ,

Gestat = statistical (relative) uncertainties; Geelec = electronic drift uncertainty; Geez, 6e¢, GeD
are geometry uncertainties; GeHe = uncertainty due to contamination of the liquid tritium sample, and
6e¢/em = 0.0003, GeD/em = 0.0003.
7(n,8)T
E 6,lab 6,c.m. L' R’ €, *100 Sestat/%n Geez/em absolute relative %
n 2 2 e'"x100 e x100 6e /e de, /e 8ele
(MeV) (deg) (deg) L" R" m m elec’ m He’"m m (etde)x100 (8e/e)x100
16.5 35 46.1 16245 16085 0.49 1.02 0.30 0.37 0.96 - 0.76x2.75 41.0
16557 16049 1.56 0.83 0.03
16.5 4o 52.4 12276 11921 1.47 1.98 0.1h4 0.16 0.38 + 0.21:2.68 130.0
12341 11738 2.50 0.31 0.01
16.5 Ls 58.7 10327 9295 5.26 5.76 0.05 0.06 0.13 + 3.9812.67 T.5
10470 9236 6.26 0.10 0.01
22.1 Lo 52.4 Tlk2 7902 - 5.05 - T.73 0.07 0.0k 0.12 - 9.50+2.73 5.5
6893 8500 -10.k4 0.09 0.03
22.1 55 T0.9 4013 5127 -=12.2 =-12.5 0.06 0.03 0.08 -1h.25+2.76 5.1
4111 5323 -12.8 0.04 0.02
22.1 TO 88.3 1102 1527 -=16.2 -16.9 0.06 0.03 0.07 -18.6 +2.8 5.1
957 1362 -17.5 0.03 0.01
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T(Kzﬁ)T cont'd

]
E 8,1lab 6,c.m. L' R! emxloo 6estat/em 6e92/em absolute relative %
n 2 2 "x100 e x100 ¢ /e GSe_ [e Gele
(MeV) (deg) (deg) L" R" m m Celec’ “m He' m m (exe)x100 (d8e/e)x100
22.1 80 99.2 299 478 -23.0 -20.5 0.09 0.03 0.10 -22.2 t3.3 8.6
37L 538 -18.0 0.03 0.01
22.1 85 104.5 250 389 -21.8 -21.9 0.11 0.02 0.12 -23.6 3.6 11.0
253 396 -22.0 0.02 0.01
22.1 90 109.5 139 o6 -27.8 -18.8 0.1k 0.0k4 0.15 -20.5 *3.8 13.0
214 259 - 9.51 0.04 0.01
22.1 95 114.5 157 110 17.6 16.0 0.27 0.03 0.28 +1h4.3 %5.1 31.0
191 143 1k4.L4 0.03 0.01
22.1 95 11k4.5 135 98 15.9 14.0 0.24 0.04 0.25 +12.2 4.3 28.0
200 157 12.0 0.0k 0.01
Average at 95° +13.3 3.4 21.0
22.1 100 119.2 155 171 - k4.9 23.3 0.23 0.04 0.25 +21.6 26.3 25.0
82 29  L48.0 0.08 0.01
22.1 100 119.2 157 94 25.1 27.5 0.1h 0.01 0.1+  +25.8 4.7 15.0
204 110 29.9 0.02 0.01
Average at 100° +23.T7 %3.9 14.0
22.1 105 123.8 224 107  35.3 36.1 0.10 0.01 0.10 +34.5 4.5 11.0
184 85 36.8 0.01 0.01
22.1 110% 128.5 277 132  35.5 37.5 0.08 0.01 0.08 +36.0 4.0 8.5
332 144 39.5 0.01 0.01
22.1 118% 135.6 361 169 36.2 32.3 0.06 0.01 0.06 +30.7 3.3 6.3
349 195 28.3 0.02 0.01
> A
D{n.n)D
22.1 Lo 58.8 8132 T84k 1.80 0.16
7987 8225 - 1.u47
22.1 4o 58.8 10478 10969 - 2.29 - 1.65
10631 10849 - 1.09

0.
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D(n,n)D cont'd

E 6,lab 6_c.m. L' Rt <100 Sestat/®m %%,/ absolute  relative %
n 2 2 "x100 e x100 d&e /e 8e. [e ébefe
(MeV) (deg) (deg) L" R"  °m m elec’’m °SHe' m m (ex8e)x100 (6e/e)x100
Average at 40° - 0.7k 0.59 0.16 0.72 - 2.52+2.63 17.0
0.38
22.1 50.5 T73.2 5695 5729 - 0.30 - 0.L49 1.6 0.70 2.3 - 2.27+2.80 34.0
5723 5801 - 0.68 1.4
22.1 73 101.6 . 1147 1257 - L4.58 - 8.40
1224 1565 -12.2
22.1 73 101.6 1202 1259 - 2.32 - 5.02
1089 1271 - 7.71
22.1 73 101.6 1521 1771 - 7.59 - 4.88
1668 1742 - 2.17
22.1 73 101.6 1510 1665 - L4.88 - 5.73
681 777 6.58
Average at 73° - 6.01 0.18 0.13 0.26 - T7.78:3.01 1k4.0
0.13
22.1 105 133.9 435 498 - 6.75 5.40 0.50 0.05 0.50 + 3.62+3.7h 4.0
556 391  17.4 0.06
hHe n ﬁ)hHe
16.5 35 43.3 5069 4920 9.63 13.2 0.05 0.01 0.07 +11.45:2.73 5.6
6208 L4433 16.7 0.05
16.5 4s 55.3 6619  Li4k  23.0 19.2 0.04 0.01 0.05 +1T7.5 2.7 4.0
6568 L4826  15.3 0.03

22.1 4o 49.3 7550 9815 -13.0 -13.0
5093 6600 -12.9

22.1 4o 49.3 6510 10205 -22.1 -15.7
6460  TT6T - 9.19
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He(ﬁ,ﬁ)hﬂe cont'd

E 6,lab 6,c.m. L R’ e,*100 Gestat/em Geez/em ebsolute relative %
(MeV) (deg) (deg) L" R" emxloo emXIOO Geelec/em GeHe/em Ge/em (etse)x100  (8e/e)x100
Average at L0®  -14.3 0.07 0.19 0.21 -16.0 *3.9 6.0
0.0k
22.1 75 89.1 616 1029 =-25.1 -23.6 0.11 0.00 0.12 -25.3 £3.8 11.0
97 1248 -22.1 0.02
22.1 105 119.1 388 177 37.3 38.7 0.11 0.00 0.11 +37.2 %5.0 12.0
546 234 40.0 0.01

el



CHAPTER V
RESULTS

In this chapter the results are tabulated for the T(d,;)hHe ﬁeutron
source polarization measurements, for the T(;,ﬁ)T polarizations at
16.5- and 22.1-MeV incident neutron energy, and for the D(;,ﬁ)D polari-
zations at E = 22.1 MeV. The 22.1-MeV T(n,n)T and D(n,n)D po.la.riza.tions
are also presented in graphical form, and the results of a phase shift

analysis on the 22-MeV T(n,n)T data are presented.
1. SOURCE POLARIZATIONS

The T(d,ﬁ)hHe source polarizations measured by hHe('r:,ﬁ)hHe scat-
tering are found in Table IV. The n—hHe elastic scattering analyzing
powers P2(92) were obtained from the Hoop and Barschall phase shift
calculations (Ho 66); the source polarization Pl(el) was calculated

from the expression
Pl(el) = e/P2(92) .

Note that the value of P. at 6., = 29.8° and ©

1 1 = 75° is quite

2
large. This value was neglected mainly because it does not agree with
other quoted values of this source polarization (Pe 61, Ba 66).
However, there is a resonesnce in the 5He system at 22.15-MeV incident
neﬁtron energy where the hHe(-ﬁ,ﬁ)hHe polarizations exhibit a sharp

discontinuity, and it is possible that P2(e2) is too small. Note,

however, that the measurements in this experiment were made at a neutron
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TABLE IV
T(d,;)hHe Source Polarizations Pl(el) for an Incident Deuteron Energy
of 6.0 MeV. Neutrons were emitted at angles 91 with energy En’ and

the asymmetry e was measured by hHe(;,ﬁ)hHe scattering into angle 92.

6,1ab E 6,1ab P2(92) b (6)
(deg) (Mev) (deg) exSe(sbsolute) (Ho 66) 11
29.8 22.1 Lo -0.16+0.0k -0.42 +0.38
29.8 22.1 5 -0.25+0.0k -0.36  +0.69
29.8 22.1 105 +0.37£0.05 +0.86 +0.L43
89.8 16.5 35 +0.11+0.03 -0.22 -0.50
8.8  16.5 45 +0.1810.03 -0.32  -0.56

energy below the resonance energy and agree quite well with the results

of Perkins and Simmons (Pe 61), so that it is probable that the
4

He(ﬁ,ﬁ)hHe asymmetry measurement at 6, = 75° is simply in error. The

2

following values of T(d,;)hHe neutron source polarization for 6.0-MeV
incident deuteron energy were obtained by considering the data from

Table IV, from (Pe 61), and from the error analysis in Chapter IV:

P. (o

+
1484 0.4 * 0.03

29.8° 1ab)

and

P. (o -0.54 + 0.05 .

1 89.8° 1lab)

1

> A <> A
II. T(n,n)T AND D(n,n)D RESULTS

The n-T and n-D polarizations are tabulated in Tables V and VI for

incident neutron energy En and scattered neutron angle 92. Errors were



TABLE V

T(n,n)T Polarizations P2(92). E is the incident neutron energy. 6, is the scattering angle.

E 8,.1ab 8.c.m. cos® 8P (6P./P,.)x100

n 2 2 2 P.(6.)+5P. P._(6.) 2 2 2 p (g.)F
(MeV) (deg) (deg) c.m. e 1'°1°7771 2'°2 absolute relative % 2' 72
16.5 35 46.1 0.693 -0.0076 -0.54+0.05 +0.01k 0.051 43.0
16.5 Lo 52.4 0.610 0.0021 -0.5440.05 -0.00L4 0.048 130.0
16.5 4s 58.7 0.520 0.0ko -0.5440.05 -0.0Th 0.050 8.1
22.1 Lo 52.4 0.610 -0.095 0.40+0.03 -0.24 0.071 5.5 -0.24
22.1 55 70.9 0.327 -0.1hk 0.40+0.03 -0.36 0.0Th 5.0 -0.36
22.1 70 88.3 0.029 -0.19 0.40+0.03 -0..47 0.080 5.2 -0.47
22.1 80 99.2 -0.160 -0.22 0.40+0.03 -0.56 0.092 8.6 -0.57
22.1 85 104.5 -0.250 -0.24 0.4020.03 -0.59 0.10 11.0 -0.60
22.1 90 109.5 -0.334 -0.20 0.40+0.03 -0.51 0.10 13.0 -0.52
22.1 95 11k.5 -0.41k 0.13 0.40t0.03 +0.33 0.09 21.0 +0.33
22.1 100 119.2 -0.488 0.24 0.40#0.03  +0.59 0.10 14.0 +0.68
22,1 105 123.8 -0.557 0.34 0.4020.03 +0.86 0.13 11.0 +0.95
22,1 110% 128.5 -0.623 0.36 0.4010.03  +0.90 0.12 8.6 +0.98
22.1 118% 135.6 -0.714 0.31 0.40+0.03  +0.77 0.100 6.2 +0.82

4.
'Data corrected for multiple scattering. See Multiple Scattering Corrections at the end of

Appendix A.

sl



TABLE VI

D(_r:,ﬁ)D Polarizations P2(62). En is the incident neutron energy. 92 is the scattering angle.

E. 6,lab  6,c.m.  cos, b (6.)esp.  B.(6.) 8P, (6P2/P?)x100
(MeV) (deg) (deg) c.m. e 1'°1 1 2t v2 absolute relative %
22.1 4o 58.8 0.518 -0.025 0.40%0.03 -0.063 0.066 17
22.1 50.5 73.2  0.288 -0.023 0.40%0.03  -0.057  0.070 35
22.1 73 101.6 -0.201 -0.078 0.40%0.03  -0.195  0.077 14
22.1 105 133.9 -0.694 +0.036 0.40:0.03  +0.091  0.094 T

9L



T

calculated from the following expressions:

1
8P, (absolute) = P,[(se/e absolute)2 + (apl/Pl)2]2 (v-1)

and

6P2(relative) P2[6e/e (relative)] . (v-2)

See the analysis at the end of Appendix A for multiple scattering correc-
tions.

The T(K,ﬁ)T polarizations for 22.1-MeV incident neutron energy are
plotted in Fig. 12. Tivol's 3He(5,§)3ne polarizations (Ti 68) at 21.3-
MeV incident proton energy are also sketched in this figure for com-
parison of the main features. In the present experiment the T(H,ﬁ)T
results are unique in exhibiting larger polarization than the
3He(3,§)3He results. In all previous experiments of charge-conjugate
reactions or scatterings at nearby energies, neutron polarizations are
approximately equal to, or significantly less than, the corresponding
proton polarizations.

The D(;,ﬁ)D polarizations are presented in Fig. 13 and compared

with earlier measurements of this polarization (Ma 66).
III. PHASE SHIFT ANALYSIS

In Appendix A it is shown that spin %, spin % scattering can be

described by a collision matrix U for which the phase shifts 6i are

J

defined in analogy with the case in which no mixing of states occurs by

(v-3)

§,. = arctan Qi

i J°
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Figure 12. T(;,ﬁ)T Polarization Data at 22.1-MeV Incident
Neutron Energy. Error flags indicate the

relative errors.
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Figure 13. D(n,n)D Polarization Results at E = 22.1 MeV
compared with results of Malanify et al. at
22.7 MeV (Ma 66). Error flags indicate

absolute errors.
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where in matrix notation
. -1
iqQ = (u-1)(u+1) ~ . (v-4)

Dodder has prepared an Energy Independent Reaction Matrix Analysis
Code (Do 69) which has been modified for the CDC 6600 computer at LASL.
The code was used to find a least squares fit of the scattering matrix
elements for zmax = 3 to the cross section (Se 67) and polarization
data of T(n,n)T elastic scattering.

Initial guesses of the phase shifts 613 were obtained from Egs.
(v-3) and (V-4) by calculating the U matrix elements from Tivol's phase
shifts for 19.5-MeV 3He(;,§)3He scattering (Ti 68). A typical example

of the transformation equations from Tivol's mixing parameters e and

phase shifts Gis to the U matrix elements is the following conversion

to Ull’ U17, and U77:
Uy = cos2(eSD) exp(2i6$l) + sin2(eSD) exp(2idél) R
U,. = 4%sin(2¢ )[exp(2i61 ) - exp(2i61 )],
17 SD 01 21
and
U77 = cosg(eSD) exp(2idél) + sin2(eSD) exp(2i6$1) R

where the initial and final states represented by the non-zero Uij
elements are given in Tab-ie AII.

Starting with the p—3He phase shifts, a reasonably stable set of
phase shifts (fit A) was obtained which fit the 22.1-MeV n-T data. The

fit A phase shift values, changed by as much as :50%, can be used as
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initial guesses in the energy independent code, and the solution will
return to the fit A phase shifts. Another set of 22.1-MeV n-T phase
shifts (fit B) was obtained by starting with p—3He guesses but allowing
the program to renormalize the polarization data assuming a +15% error
in the source polarization. The code normalized the polarizations by

= 0.434.

Lo/43.4 and gave a new fit (B) for a source polarization P1
The phase shifts calculated from the 19.5-MeV p—3He data and those
for fit A and fit B are tabulated in Table VII; the predicted T(n,n)%
triton polarizations for fits A and B are shown in Fig. lla; and the
differential cross section and T(n,;)T neutron polarization fits are
drawn in Fig. 1llb. There is no apparent reason to prefer one fit over
another except that the shapes of the predicted triton polarization

curves in Fig. 1lhka are quite different from each other. Tivol (Ti 68)

indicates that the 3He polarization at forward angles may be negative.
IV. VALUABLE FUTURE MEASUREMENTS

It should be noted that nearly any initial guess for the 19 phase
shifts in this problem will lead to a different solution, each of which
fits the cross sections and neutron polarizations with about the same
accuracy. Since the shape of the predicted triton polarization curve
is different for different solutions, it would be useful to measure
this effect. However, measurement of the triton polarizations would
be an extremely difficult experiment. A more reasonable approach to
the problem of determining a unique set of phase shifts is to measure
the n-T neutron polarizations over a range of incident neutron energies

and to attempt to find phase shift solutions which vary smoothly with



TABLE VII

Phase Shift Fits to the 22.1-MeV n-T Data and 19.5-MeV p—3He

phase shifts (Ti 68). oy = 3
(See Table AII for definition of UiJ elements.)
éij(deg) Gij(deg) GiJ(deg)

i 3 p—3He n-T fit A n-T fit B

1 1 75.6 60.0 70.4

1 7 9.11 -31.6 -Lo. L

2 2 81.8 56.7 T1.2

2 10 43.4 -27.1 -40.4

3 3 Lo.5 25.1 33.6

3 12 L.17 21.9 - 8.88

L L 24.6 48.2 55.2

5 5 0.0 - 8.2k - 7.93

6 6 -12.4 10.8 20.2

6 13 1.66 16.8 - 8.45

7 T - 5.94 -10.4 1.36

8 - 6.88 - L4.38 - .77
9 1.72 12.4 15.8

9 1k - 0.07 5.75 - 6.65
10 10 5.67 2.91 8.86
11 11 59.6 51.3 2k.9
12 12 53.9 31.8 15.9
13 13 - 0.22 21.8 7.55
1L 1L - 5.16 L.7h - 0.613

2 = 31.3 31.8

weighted

variance = 3.47 3.98
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Figure llha-b.

Phase Shift Fits to the 22.1-MeV n-T Cross
Section and Polarization Data. The points
are the neutron polarizations measured in
this experiment. The differential cross

section curve matches LASL preliminary data

(Se 67). 1 = 3.

max
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energy.

The cryostats, detectors, collimators, and turntables used in this
experiment are being moved to the Los Alamos tandem accelerator area
where pulsed neutron beams of ~lI to 30 MeV energy can be produced.

With the addition of an 100 kgauss, superconducting, spin-precession
solenoid which will be placed between the neutron producing target and
the scattering sample, it is expected that measurements of the T(n,n)T
and D(n,A)D interactions can be extended over a wide range of energies.
These measurements must be made before one can hope to find a unique
solution to the phase shift problem and thereby determine the form of

the nuclear interaction potentials.



APPENDIX A

THE THEORY OF SCATTERING OF PARTICLES OF SPIN 1/2

FROM A TARGET POSSESSING THE SAME SPIN

In the following pages the theory outlined in the text will be

developed in detail under the following subheadings:

I. Justification of Non-Relativistic Treatment
II. Reaction Kinematices

III. Quantum Theory of Spinless Scattering

1

IvV. Matrix Formulation of Spin %, Spin % Scattering

V. Polarization

VI. Data Correction Formulae
I. JUSTIFICATION OF NON-RELATIVISTIC TREATMENT
The momentum equation

| = [T2 - 2m c2 T]%/c (A1)

IPrel o)

results from the relativistic energy momentum relationships
2 2
= +
E c D mo c
and
E=T+m ¢ .
o

Classically, of course,
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Pyl = BT (s2)
so that
|Prep /1P| = AT/2m cZ) +1 . (A3)

In the present experiment

1A

22 MeV

=
n
=]
0
n

939 MeV
and

|p l/chll £ 1.0058 .

rel

Since all expressions to be considered contain p in powers 2 1,
errors introduced into the analysis by a classical rather than a rela-

tivistic treatment will be less than 0.6%.

II. REACTION KINEMATICS
This section is a review of the methods for obtaining the trans-
formation from laboratory (lab) to center of mass (c.m.) angles and for
calculating reaction energies in the lab. The following constants

(based on M)z, = 12.000000 amu) will be useful.

Mp = 1.007825 amu
M= 1.008665 amu
M. = 2.01410 amu
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Mp = 3.016 amu
My, = 4.00260 amu .
Sp(a,n) = 17.588 MeV ,
1 amu = 931.L4k MeV = 1.660 x 107" gm .

Reactions
The Q value of a reaction is the difference in mass between the

incoming particles and the reaction products; i.e.,

M, + M, - (M3 + Mh) =q .

17 %2
@ Light
O O
¢
ors

Figure Al. The Reaction in Laboratory Coordinates.

The energy-mass conservation equation is then
E, +Q=E, + & , (AL)

where Ei represents the kinetic energy of the ith particle. Expressions

for conservation of momentum are .

/214131 = /2:-13}:3 cos 0 + /Z-ihEh cos ¢ (AS)
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and

0= «bM3E3 ain 0 + /2MhEh sin ¢ . (A6)

Eliminating E, and ¢ from Eqs. (A4-6) determines the kinetic energy of
the light product, M3, in terms of the masses, the reaction Q value,

the bombarding particle energy, and the angle, 6 ab? at which M, leaves

1 3
the reaction. Squaring and adding Egs. (AS) and (A6) one obtains

M E, + 2M3E3 - h/ﬁ1E1M3E3 cos 6 = 24 E) 3

and substitution of E), from Eq. (A4) yields

2M_E. + 2M E3 - WM EME_ cos 8 = 2MhE1 + 2MhQ - 2MhE

171 3 171733 3°

so that

(M3+Mh)E3 - 2/ M_E.E_ cos 6 + (Ml—Mh)E1 -MQ=0,

137173
or
/§;=b:(b2+c)‘f’-, (A7)
where
b =

= [¢M1M3E1 cose]/(M3 + Mh)

(A8)

(2]
1

= [(Mh - Ml)El + th]/(M3 + Mh)

For the T(d,n)hHe reaction (Mh = M“He) > (M1 = Mn) and Q > 0; therefore,

¢ is always positive and the positive energy solutions are

/ﬁ; =b + (b2 + c)% .
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Lab to c.m. Angle Conversion

Figure A2 is a diagram of the elastic scattering of Ml and M2 in

the c.m. (0,¢) and lab (6,¢) reference frames where C is the center of
mass and Vc is the velocity of the mass center in the lab. If V is

the laboratory velocity of M1 before collision, then V1 = V—Vc and

V2c _— —Vc before collision. By definition of the center of mass
i3 + =0 ;
lc.m. 2c.m., = °
thus,
Ml(V—Vc) -M,V, =0
and
v /(- ) = MM, (A9)

To conserve both energy and momentum the velocities in the c.m. must
remain constant throughout an elastic collision. To obtain the rela-

tionship between O and 6 consider the triangle CEF in Fig. A2.

FE/sin(® - 8) = CF/sin 6

Vc/sin(O - 9) (V—Vc)/sin o ,

and substituting from (A9)

0=0 +~sin—1 (M1 sine/M2) . (A10)
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Figure A2. Elastic Scattering in Lab (6,4¢) and c.m.

(6,0) Reference Frames.
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III. QUANTUM THEORY OF SPINLESS SCATTERING

The Equation of Relative Motion

The problem of spin-independent nucleon-nucleus scattering is that
of the motion of two particles in a potential field which depends only
on the distance between the particles.

The Schrodinger wave equation for two particles of masses M, and

1

M. can be written

2
3 > > ‘h2 2 h2 2 > > > >
in SE'?(xl,x2,t) = —Eﬁz Vl - Eﬁ;'v2 + V(xl,x2,t) W(xl,x2,t) , (A11)
where 521 , Tepresents the three space coordinates (x,y,z) of particles
]

1,2, respectively, X) 5, ¥) os 2y p» 804

2 = % . 52 . 32
1,2 2 3y° 322
1,2 V1,2 1,2

Assume now a central force,

vV = Vc(x1 - X s Z

c ¥y ~ ¥piZy = Zp)

and define relative coordinates x = xl—x2, y = yl—y2, zZ = zl—zz, center

of mass coordinates

>3
n

(Mlx + ngg)/m

1
Y = (Mlyl + M2y2)/M
7 = (Mlzl + M2z2)/M R

and the reduced mass m = M1M2/(M1 + M2), and M =M, + M

] 2; then
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2 _ b e
9x..  8x M 23X °
2
2 > oM. 2 M 2
3 _ 3 2 3% ., 23 (A12)
]
axg o2 M 27
and
2 > oM. 2 M .2
2 3% .71 2 1 (A13)
- ]
axi 2 M xaK 22
so that
2 2 2
Rt B G Gt )
1 2 1 2 3x 3y 3z
M. M
+('1~22"b22)(aa§x+aajy+aazz)+(—S+_é)(a22+322+a22)
x y z M M° X 3Y 32
Now
1 . 1 M1 + M2 _1
M, M T MM, m
and

(M1 + 142)/r42 = 1/M ;

thus, the Schrddinger wave equation for the interaction of two particles

becomes

2 2
., Y _ RS 2 n° 2
in T [’_2:4 V" om Yt vc(,x,y,z)]\y . (A1k)

The wave equation can be separated by allowing
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Wz, d,t) = £(8) WX (D .

In that case

%g—i=t—x(—{21M—2v)2( —g vi+ VE))yy =W,
and
af/f = - i W dt/p ,
so that
£ = C exp[-iWt/n] . (A15)
Also

2 2
LT x®) + 5 B ) VG @) =

Since x and y are independent, one can define W = E + E' where
(—h2/2M) vi x = E'x (A16)

is the equation for the motion of a free particle of mass M = Ml + M2 and

[(-&%/2m) ¥- + V 1y = By | (a17)

is the equation of motion of a particle of reduced mass, m, in a poten-
tial field Vc.
E and E' are energy eigenvalues of the two types of motion. Only

the equation of relative motion contains the scattering potentialj; thus
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Eq. (Al7) is the important expression for describing the nucleon-nucleus
interaction. In the following discussion the subscript x will be dropped
from the operator Vi in Eq. (Al7) so that the relative kinetic energy
operator in the two-particle system is (—ﬁ2/2m)V2. One purpose of the
present experiment has been to throw some light on the interaction
potential V(;) between the neutron and triton.

Summary. The equation of motion of a two-particle system can be
written as the free motion of the total mass of the system M = Ml + M2,

(-n2/2M) 75 x(X) = E'x(D) ,

and the relative motion of a particle of reduced mass m = M1M2/(M1+M2)

in an interaction potential Vc(;1—§2) = Vc(;), where

(-02/2m) 72 §(3) + vc(i) W(x) = Eyp(%)

The total wave function of the system is

¥(%,X,t) = p(X) x(X) expl-i(E+E')t/n] . (A18)

Concepts of Cross Section

Now consider the eigenvalue equation
2 2 -+ > >
(-a%/2m) 97 w(x) + V u(x) = By(x) ,

and rewrite it

2

(v + k2 - u) ¥ =0, (A19)
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where

U =(2m/A°) v (%) (A20)
c c _
and

1%° = 2mE (i.e., D = Bk) . (A21)

¢y is the total wave function of the scattering problem; therefore, it
must be the sum of an incident wave and a scattered wave. The assumed
plane wave of incident particles can be represented by win(f) = exp(ikz)
so that the density of particles in the incident beam is winwgn = 1 per
unit volume. If the incident velocity is V then the incident flux is
lexp(ikz)|2v = V particles/unit area-unit time. It is easily seen by
substitution into (Al9) that elfZ ig o solution of the wave equation

at large distances where the interaction potential is zero.

Now the differential cross section o(6) ds/r2 for elastic scat-
tering into a solid angle ds/r2 at mean angle 6 is the ratio of the
flux of scattered particles to the incident flux. It is common to
define the scattered wave function in terms of a scattering amplitude

£(e) .

Yo = (o) exp(ikr)/r . (A22)

A

Then (particles scattered into ds)/(unit time) = Yo V¥, Vds = |£(8) x

exp(ikr)/r|? Vds , and
2 d
o(e)(gé_ - _sc’sc = r
p, ¥ vV v ’
r in¥in

so that for unit solid angle
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a(8) = |f(9)|2 . (A23)

In this manner the total wave function s

W(x) = v, (X) + y_ (%) = exp(iks) + £(6) exp(ikr)/r | ,  (A2h)

and the measurable differential cross sections o(6) are connected by

the Schrodinger equation to the interaction potential Vc.

Separation of the Wave Eauation

It will be convenient in analysis of the scattering problem to
have the wave function ¢(;) separated into its spherical components.

It is straightforward (but lengthy) to show (Sh 59) that

v2532 N _13 (22,
ax2 ay2 az2 r2 ar ar
2
* 21 g_e(Sineg—e)+ : > 32 >
r sind r sin 0 3¢
where
X =r sin 6 cos ¢
Yy = r sin 6 sin ¢

Z r cos O .
. . . Y. — — - = :
This section still assumes that Vc(x) = V(x1 X5 Y1 Vps 2q z2) Vc(r),

thus, the wave equation can be written
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2

1 3 23 1 ) ) 1 )
oz (r" =) + ——=——— 2 (5ins <) + Y(r,6,0)
r2 or or r2 sing 30 30 r2 sinee a¢2
2 2 .
+ k Mrﬁw)—(awn)vér)urm¢)=o. (A25)

Now let y(r,08,4) = R(r) o(e) &(¢) = R(r) Y(6,¢), substitute into

(A25), and divide by y to obtain

1ld 2 dr 2,.2 1 1 9 . oY 1 3 Y
T =" =)+ (k" -U ) = - = [= <— (sing =) + —_
R dr dr c Y “sing 39 30 sin2e 3¢2
.11 4 (089 1 1 d2q>_L (A26)
T " Osind ap ‘" ge) "7 S 5. " oL
sin 6 4¢

Since the left side of (A26) depends only on r and the right side is

independent of r, both sides must be equal to a constant, L. Then

1l 4 2 4R 2 L _
—25(1‘ dr)+(k -U, -3 R=0, (A27)
r r
and similarly
1 d do 2 1 d2¢
6‘31n933'(31n9 EBQ + L sing = - 6-;;5 =v,

where v is another separation constant. As a result

1 d . do v _
sine ap (sin0 g) + (L -—5-) =0, (a28)
sin™®

and
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—+vd=Q. (A29)

The solutions of the ¢ equation (A29) are .

o(¢) = A exp(iv%¢) + B exp(—iv%¢) v#0
and

®(6) = A+ B ¢ v=20 3
but &(¢ + 2n) = ¢(¢)3 therefore,
A exp(iv?p) + B exp(-iv2$) = A exp[iv*(¢+2n)] + B exp[-iv*(¢+2n)]

i
and v= m where m is any integer or zero. Now A + B¢ = A + B¢ + 21B
only if B = 0. The solutions A, A exp(im¢), and B exp(-im¢) are all

linearly dependent; hence,
¢(¢) = A exp(im¢) .

Let ¢ be normalized to unity over the range ¢ = 0 to ¢ = 2w,

27 2r
f o*(¢) o(¢) dp = f 22 d¢ = oma® = 1 ;
(o] (o]
then
o(6) = (2m)7% exp(img) . (A30)

To find the solutions of the © equation the following substitutions

are made in (A28):
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w = cos 8 , o(e) = P(w) ,
and

4 _ 4 dw _ sing &

de - aw de 109 %
Then

d 2, dP m2

a;‘[(l—w ) E;] + (L - I:;g) P=0.

The domain of 6 is O to m; hence, the domain of w is 1 to -1. Whitteker
and Watson (Wh 50) show that for L = 2(2+1) the solutions for P(w) which

are finite at w = t1 are the associated Legendre polynomials P?(w) where

1 0 T
f PI;(W) P?.(W) dw = . (A31)
1 2 (&+m)! L=y

2041 (2-m)!

A solution for O is then the normalized function

22+1 (g-m)!
C] B) = J=— .
m(® =55 (o) Fylcose) (a32)
Note that whenm = 0, ¢ = L1 3 i.e., the wave function is axially
V2qn

symmetric and 02(9) becomes the normalized Legendre polynomial
[(20+1) /217, (cose). -

Jahnke and Emde (Ja U5) give expressions for evaluating the
Legendre and associated polynomials. The normalized spherical harmonics

Yzm(e,du) in Eq. (A26) are defined:
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Yzm(e’¢) = /g%%l-%%iﬁ%% P?(cose) exp(im¢) . (A33)

Therefore, a solution of the scattering Eq. (A19) in spherical

coordinates is

[+

¥(r,0,¢) = ZRzm(r) Prz(cose) exp(im¢) , (A3L)

2=0
|m|<2

where Rzm(r) satisfies the radial wave equation

2
dR _ 2 4R 2 2(8+1),
tre t T -u () - 2 IR =0 s (A35)

B

and normalizing constants have been absorbed into R m(r).

2

1
Angular momentum. The quantity [2(2+1)]?h can be associated with

angular momentum, M, by noting that

W2 o _ 2l 3

2
3 1 3
- (sing =) + —]
sind 30 36 sin2e ae2

(se 55)

so that from Eq. (A26)

2

M2Ym(e,¢) = Lh Ym(e,q;) = 2(g+1)8° Ym(e,¢) .

Therefore, Y2(9,¢) is an eigenfunction of the square of the angular
momentum with eigenvalue 2(2+1)h2. Also M, = -i8(3/3¢4), and from

Eq. (A33)



105

Mz Ym(e,(p) = mh Ym(9,¢) .

Thus, Yzm is also an eigenfunction of the z component of angular momen-

tum with eigenvalue nm.

Solution of the Radial Wave Equation

Jahnke and Emde (Ja 45) give the function y = xa[Jp(BxY) cos &

- Np(sxy) sin 6] as the solution to Bessel's equation

2 22 2
dax x

where 6 is an arbitrary constant, Jp(x) and Np(x) are Bessel functions
of the first and second kind, respectively, and Np(x)(sin pn) =
J (x)(cos -J (x).
P pm) —p( )
Bessel's equation is equivalent to the radial Eq. (A35) if the

following associations are made:

X =T
vy = R(r)
2 3

8= [ - U (x)]
y=1

a= -
P2 = (2+4%)°

a = By .

‘Thus, the solution of the radial equation for a particular & value is

1
- At -2 .
Rz(r) = Azm r [J£+%(ar) cos 62 - N2+%(ar) sin 62] . (A36)
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In the scattering problem one is interested in solutions for large
r where incident and scattered particles are produced and detected. At

large r (Ja U45)

Rz(r)rijimr—%{éos[ar—(2+%?%)(n/2)] cos 62/[(n/2)ar]%

- stnlar-(1e) (n/2)] sin §,/[(x/2)ax) 1%}

Aém[2/(nar2)]%[sin(ar—zn/2) cos &, + cos(ar-an/2) sin 62]

i
A! [2/(n0r®) 1 Zsinlar-(gn/2)+6,]
m ')
however, at large r Uc(r) =0, o = k, and

R () = Am(kr)’l sin[kr-(en/2)+s,] . (A37)
o™

The wave function for large r is then

y(r,8) = exp(ikz) + £(e8) exp(ikr)/r
y(r,e) = Z Azm(kr)—lsin[kr—(zn/2)+62]Pl:(cose)exp(imq;) . (A38)
=0
|i|sz

To determine the value of Azm’ it will first be necessary to solve

the wave equation,

(v2 + x°) ¢in(r,9) =0, (A39)
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for the unscattered wave y, = exp(ikz). The incident plane wave is

symmetric about the z axis; hence the most general solution of Eq. (A39)

is

by (r,0) = ZBQ g,(r) P (cose) = exp(ikr coso) , (ALO)
=0
where gz(r) is the solution of
d2g
L, 24de 2 _ a(2+1) =
2 rot [k - r2 ]gz(r) =0 . (Ak1)

To find Bzgz(r) multiply both sides of Eq. (ALO) by Pm( cosg) d(cose)

and integrate over the domain of cos §

1 1

ikrcos6 _
f e Pm(cose) d(cos8) = f [BJL gz(r) Pz(cose)
-1 -1

. Pm(cose) d(cose)] = [2/(22+1)] B, gz(r) .
Now integrating by parts

1 1 Skrt

_ ikrt _ 1 . ikrt 1 e .
I _f e P (t) at = g7 [e P (t)]; f o Fg(t) at
-1 -1

but Pz(l) = 1 and Pz(—l) = (—1)2'; therefore,
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1

! ikr 3% -ikr{ 1 ikrt _,
= %e -(-1)" e t T f e Py(t) dt
-1
1 ikr 2 —ikr 1l .2 ikrt 1
= ——— - - - — \J
ikr 3"' (-1)" e g (&) ge Pz(t)z_l

1

1 ikrt _,
+ —ikrf e Pz(t) dt .
-1

All but the first term of I are of the order of r—2 or smaller and can

be ignored for large r; thus,

2 Bsz(r):Le -

ikr eiln e—ikr
29+1 T2 ikr

L ien/2 3ei(kr—£n/2) _ e—i(kr—zn/2)€

2i.‘q'(kr)—1 sin(kr-an/2)

and

B, g,(r) = (20+1)1*(kr) ™" sin(kr-an/2) , (Ak2)

>

so that the incident wave function is

by (120) = 9 (2041)1%c0) ™ sinlir-an/2) P (cos) | (Ab3)
2=0
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Phase shifts. One can now easily determine the meaning of 62 by
comparing (Al3) with the expression (A38) for the total wave function.
62 represents the shift in phase of the total wave with respect to the
unscattered wave. Examination of Eqs. (A35) and (AlL1) and comparison
with the expressions for y (A38) and Vin (A43) shows that Rz(r) is
shifted inward relative to gz(r) if the potential Uc(r) = 2ch(r)/h2
is negative; i.e., for an attractive field, kr + 62 is a larger number
than kr for a given r.

Hence, one obtains the following relationships:

§, > 0 for attractive fields,

2
62 < 0 for repulsive fields.
In order to determine the scattering amplitude f(6) in terms of
the phase shifts, it is necessary to substitute for the total and inci-

dent wave functions the expressions (A38) and (AL3), respectively, so

that

ikz

* oy, =%+ 2(0) T

r

becomes

Z Az(kr)—l sin[kr—(zn/2)+6£] Pz(cose)
2=0

Z(2z+1)i"(kr)’lsin(kr—m/z) Pp_(cose) + £(e) exp(ikr)/r ,
2=0

or
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L (elkr éazn/2 elﬁz _ e—lkr elzn/2 e—152) Pz(cose)

8

2+1 %, ikr -igw/2 -ikr ien/2
== i%(e e -e e

ikr
51k ) Pz(cose) + f(e8) e .

2=0

The coefficients of exp(ikr) on both sides of this equation must be

equal in order for the functions to be continuous in r; consequently,

(- -]
2ikf(8) + E (22+1) i* om14m/2 P, (cose)
2=0

= ZAQ 18 -ifm/2 P, (cose) (AkY)
2=0

and

[+

Z (22+1) i* ei‘“/2 Pz(cose) = ZAQ ei'“/2 e—iaz Pz(cose) . (AkLs5)
=0 =0

Since the equation must hold for all &,

(22+1) i* exo(ign/2) = Ay exp(—iéz) exp(ien/2) ,
or

L.
A, = (22+1) i exp(léz) .

Finally substitution of tne above expression for Az into Eq. (ALL)

gives the result
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21kf(9) = z (20+1) i* exp(2i ) e~1tn/2 P, (cos6)
2=0

(- -]
- Z (2241) 1% o~127/2 P, (cose) ,
=0

or

£(8) = (2ik)~L Z(em) [exp(218,) - 1] P,(cos0) | , (AL6)
2=0

from which it follows that the differential cross section is

o(e) = lf(e)l2 = 1—212(22+1) exp(i8,) sing, Pz(cose)lg , (AkT)
2=0

and the total cross section becomes

n

on f o(8) sin 6 46 ,
(o]

Q
n

Q
n

bk 2 Z (220+1) sin262 ) (AL8)
=0
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IV. MATRIX FORMULATION OF SPIN 3, SPIN 3; SCATTERING

U, I, 0 Formulation of Spinless Scattering

In order to extend the simple case of spinless scattering derived
in the previous section to more complicated cases, it will be helpful
to reconsider the above analysis from a slightly different viewpoint.

Let there be two functions

= (1% TRy (o) 1/ (849)

H
1

m

and

0, = [1* 2y (6, 1r (150)

representing general incoming and outgoing waves, respectively, with
wave number k. The incident beam is

¥y, = explikz) = irit Z (20+1)% (I, -0, > (A51)

=0

from Eqs. (A33) and (A43) of the last section. Similarly, the form of
a general solution of the wave equation can be written from (A33) and

(A38) for large r as

[+

iApmexp(—idz) iQei(kr—ln/2) ize—i(kr—ln/2)
¢=Z — - exp(2i6,) +
21"k r . r
2=0
|m|ss

. [ U (24m)!
JEm Comt Y8

v = E%; CZm (IZm - Uzm Ozm) ’ (a52)
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where sz has absorbed all the constants and Umn is the exp(2i62) phase
shift factor.

Agein, the general solution of the wave equation is the sum of the
incident plane wave and the scattered ﬁave so that Eq. (A52) can be

written slightly differently, viz.

V=, Y

inc 1

Z ConTom = Og) * Z Conll = Up) 0O
2,m £,m

vt D0 (2% (1, - 0, ) + £(0) exp(ikr)/r (A53)
')

and it becomes evident that

Com

1 L
Coo = [in?%(22+1) 2] /k m=0

sz =0 m# 0 ;

that is, there is no component of the orbital angular momentum in the

direction of the beam, and

<
\

- }§:C20(I20 - 020) + :g: Clo(l - Uzo) 0,

(o}

L - L
Zinzk 1(22+1)2 (1, -0, ) + £(8) exp(ikr)/r .
) Lo Lo
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[+

£(e) = Z———” (12{“1) g4 Tien/2 P, (cose) [FEE (1-U, )
2=0
£(6) = %kt D (2041)(1-, ) P (cose) | , (5k)
L

and
o(8) = |£(0)|?

as before.

Comparison of forms (ASL) and (AL6) for f(6) confirm egain that

Upo = exp(2i8 )

Arctan Qz = 62

It is very important at this point to note that if one defines a

quantity
on -1
iQy = (U, - 1)U, + 1) ™, (A55)
then
(Uz—l) exp(2i62)—1
Q, = = - = tan §
2 i(U2+1) iexp(2i02)+i L

and the phase shifts are

62 = arctan C),2 (AS6)




115

Extension to Include Spin Dependence

If it is assumed that spin dependent scattering can be approximated
by a potential containing spin-orbit and spin-spin interaction terms

(Wu 62), namely,

— = + >
Vp & V() = " -0y * o, Vp(r) (A57)
and
5>
Vg = (T - 3) Vog(T) s (a58)
where
T=71, -1 r=|7, -T|
T2 1 2 1
1= [T x pl § =103, +3.)
1 2
B = MM (B + )M
Poom, = "1M0\Pp T Pp ’

and 3i, 32 are the vector spin matrix operators for the two interacting

particles, then the wave equation becomes

[v2 + k2

- W(r,0)] y,(7,3) = 0
where

W(r,o) = U_(r) + () + (T - 8) Ug(r)

and

U(r) = (2m/8%) v(r) .

The wave function must now depend upon the spins of the interacting

particles and can be written
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> > 25+1 s
g X

~y(r,0) = y(r,0,¢) , (A59)

where y(r,6,4) is the spin independent wave function for the interaction

and 2S+1xs is a matrix representing the spin part of the wave function.
25+1 = multiplicity of the level,
-+ >
S = (%) |(01 + cgl = |§1 + §2|,
s = z component of spin angular momentum = s + S5 »
and £ is no longer conserved in the interaction, but J = IE + §|, the

total angular momentum, is conserved. Parity (symmetry or antisymmetry
of the wave function) = (—1)2 is also conserved; hence, it is now possi-
ble for mixing to occur between various possible ¢ and S states as long
as J and parity are conserved. This restricts mixing to that between
states for which the £ values differ by O or an even integer.

If for spin 3, spin % scattering the following possible spin func-

tions are assumed:

Ro=21h, O, -, O

X =/§ o)1 (1o - (o ()41

M= (), (@), o
3O = /—_z (@), Dy + 2, (D)
=9, D,

where (é)a and (g)a represent spin-up and spin-down, respectively, for

particle a, then it is readily verified (Sc 55) that for the Pauli spin
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matrices
0 1 0 -1
o .= o > 9% = (G o
_¢(1 O > > 10
o, = (0 _1) , g*0= 3(0 1) s

and spin momentum vector components defined as follows

M. = (9o, M [P = GG D),

S1 1

then (é) and (g) are eigenvectors of M_  and lMs|2 with eigenvalues
2 . 25+1 s .

+#1/2 and M°/4, respectively. Also the x functions are ortho-

normal and eigenfunctions of M_  and |MS|2.

For the orthonormal spin functions defined in (A60) the total wave

function is written

J+1l

WED) = Do D Ay u(r) Fru(,08) (461)
Jz|M| e=J-1

where

-+ Jife 25+1 s
FJMQ(esd’so) = %: Gm Ym(esd’) X (A62)
M = z component of J,
m = z component of £,

s z component of 5,

JuL .
and Gm » tne Clebsch-Gordon coefficients, are worked out by Condon
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and Shortley (Co 63) and given in Table AI.

v (r) satisfies the following equations (Wu 62):
')

for L =4J
S0 L) s )
2 ot [x° - ——1_—2-—+ U (r) + 2Up(r) - Uzs(r)]%(r)
= 03 ’ (A63)
for L = J-1
deuz(r) p du(r) 2 2(2+1) 24
2ty e T ) = g
+ 20, (r)] uy(r) = -6 Aztiilae2) 53“*25 Up(r) Wy, (1) (A6k4)
and for L = J+1
d2wz(r) p @y (r) 2 g(2+1) 2042
2 M- e C 2 + U () - 55T Uplo)
C(292) U ()] wy(r) = 6 2Oy (0w () (465)
where
uz(r) = Vg 1(r) , Wz(r) Voo J+1(r) ,
and U(r) = (2m/‘h2) v(ir) .

The expressions (A63-465) for ¢£(r) are obtained by separating the new

general wave equation

2

[v% + 12 - W(r,0)] 4,(¥,3) = 0 (466)




119

TABLE AI

Clebsch-Gordon Coefficients for Spin %, Spin % Interactions

o
n

1 s =0 s = -1

s =
ol (g+M)(2+M+1) (o-M+1) (g+M+1) * (2-M)(2-M+1)
‘/ (22+1)(2242) (22+1)(2+1) ,/ (22+1) (22+2)

. _ [(s+M) (2-M+1) M (2-M)(2+M+1)
v/ 22(2%1) m 22(2+1)

-1 /( 2-M)(2-M+1) 2-M)(24+M (o+4M+1) (2+M)
22(22+1) v oa(2e+1) 20(22+1)

where

W(r,o) = U (r) + T (r) + (2-3) Uglo) | - (A6T)

Solution of the J = % equation follows exactly as the solution of

the radial equation in Section III of this appendix, and one obtains for

large r
wz(r) = A‘q'(kr)—1 sin[kr - (en/2) + 62] . (A68)

Solutions for wz(r) wvhen £ =J -1 and £ = J + 1 are somewhat more
complicated because the radial wave equations (A64) and (A65) are coupled.
Let these radial wave functions be written as the sum of incoming and

outgoing waves: for

L=J -1
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uy_,(r) = Al(kr)—lexp[—i(kr—%[J—l]n)]—Bl(kr)—lexp[i(kr—%[J—l]n)] ,

and for
L=Jd+1
W (1) = Ag(kr) Fexp(-1(kr5a+11m) 1-B,(kr) ~expli(krla+1ln)]]

so that the wave function with total angular momentum J and parity

(-1)7* s
WED) = uy (2] By 1(0068) + Vg (2) By 0 (656:8) -

Observe how this fits Eq. (A52) now generalized to matrix form

v = zc:cc(lc - ; U, 0g) | (469)
if
S [1%1(kr-2n/2) GiMz ¥, .(8,6) B sSr (A70)
and
0,y = [izei(kr—zn/z) Gimz Yzm(°’¢) 2s.+1xs]/r (ATL)

U is the "collision matrix" defined by the coefficients

By = Ujp A + U Ay

By = Uyy A) + Uy Ay 5
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i.e., B=UA,

.2
C,= Ac/kl R

and c,c' represent incoming (%mJM) and outgoing (2'm'J'M') channels,

respectively.

If no mixing of states occurs, the U matrix is diagonal U12 = U21
= 0 and, as in the simple case, U, = exp(2161), Uy, = exp(2162) and
the phase shifts are related to a Q matrix; 61 = arctan Qll’ 62 =
arctan Q,,, where Eq. (A55) is now a matrix equation

-1
1Q = (U-1) (u+1) ~ . i (AT2)

At this point the phase shifts may be generalized and defined in analogy
with the diagonal case as the arctangents of the elements of the Q

matrix, so that Gi £ arctan Qij'* Of course, in cases where the channel

J
spin is greater than 1 the U matrix will mix more than two states and
will not appear as a 2x2 matrix for a given possible combination of in-
coming and outgoing states. However, for the S = 1 case parity and J
conservation allows mixing only between £ = J-1 and £ = J+1 states. It
can be shown from density conservation and time-reversal properties that

U is unitary and symmetric (Pr 62). These conditions eliminate any

ambiguity in the definition of Q (hence &) in Eq. (AT2).

¥For charged particle scattering Dodder's energy independent phase

shift analysis code (Do 69) defines KiJ 3 613 = Kij -
%¢26(i,3) vhere 6(i,J) is the delta function, ¢, =05 ¢, =9, 1 +2

= arctan Qi

arctan (n/%), and n = o.157h2122 /Hl(amu)/El(Mev).
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Summary. Spin %, spin !; scattering can be described by a collision
matrix U which is unitary and symmetric and mixes combinations of 2 =
J-1 and % = J+1 states. The wave function is described by the matrix <

equation

WES) = Do (1 -2 u, 0,) |,
(]

cl

where c and c' represent incoming and outgoing states, respectively, and

_ _ 1.8 —i(kr-an/2) JaMe 2S+1 s

Ic = IszM = [i"e Gm Yzm(9,¢) x 1/r ,
_ _ 1o i(kr-gn/2) JMe 28+1 s

0, =0, o =[ie G, Y,.(8:4) x 1/r .

The phase shifts Gi are defined in analogy with the case in which U

J

is diagonal and no mixing of states occurs; i.e.,

§,, = arctan Qi

iJ J ’

where

Q = (1/1) (u-1) (u+1)™t .

Consequently, for a given set of states (g,m,J,M) and (&2',m',J',M') a
set of phase shifts is related via the scattering matrix, the wave func-
tions, and the wave equation to the postulated scattering potentials.

It now remains to relate the phase shifts or equivalently the elements
of the collision matrix to the measurable cross sections and the

polarizations.
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Cross Section in Terms of the U Matrix

Again the incident beam is represented by an incident plane wave

except that now all spin combinations are possible, and as in (AS51)

> S
win(r,g) = exp(ikz) 2 +lxs

= in;i(k—l) Z (22+1);§ (1
2=0

zoJM’OzoJM) . (AT3)

The total wave function can be written

¥(T,9)

> > > >
win(r’c) + wsc(r’o) = ; Cc(Ic —;Uc'coc')

cz cc(Ic—oc) + ; cc(oc—cEUc,coc,) , (ATY)

1

so that again

_ I | Y _
C, = Coiy = ik (20+1) m=0

and

> > > > E
Ursa) = vy (7.0) + L CSLoJ:-I(OZOJ‘:/I—Z, Uer 201 Oct)
foJH c

q;in(?,g) + £(0,0) exp(ikr)/r . (AT5)

Therefore,
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+y . ikr
£(0,0,8) (<) /r = 2, CzoJM(OzoJM—ZUc',zoJM 0.+)
20JM c'

. 3 1
= :z: 'lﬁ_ (22+1) [} exp(ikr) exp(-am/2) GJM2(22+1)2 P (0039)
L0dM
. 28 S Z U (1* exp(lkr) exp(-2'n/2) GJ'M'Q'

S A'mTM 00

e Y, (e',4") 2S”'lxs'/r)]

‘Q'm'

1
e L +1.% +
(o) = Mo D (apn)%|(BELE 6T p (cosg) BT
LJM,L'Ji’ T
JmMe , 1y 28'+l s :
- Uprmramr g0 Cme g (87501 X (AT6)

The summetion over m' has been dropped since £,%',J,M' are sufficient
to determine m', and J = J'

Also
a(8,0) = |£(8,6,0) 1% , (ATT)

and the spin matrices drop out of the differential cross section since

the 28+1xs are orthonormal functions. This should not be interpreted
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to mean, however, that the cross section is independent of spin since

the scattering matrix U is implicitly spin dependent.

Appearance of U for the T(n,A)T Experiment

Before deriving an expression for the polarization in terms of the
scattering matrix or phase shifts, it will be instructive to examine
the form of the collision matrix, U, for the T(;,ﬁ)T experiment. One

must, first of all, decide what is the maximum value of & = zmax to be

considered.

It would be expected classically that & = |7,

x +| where p
max b b

= momentum of the neutron and Thax — distance of approach at which the

nuclear potentials Just begin to interact. A good guess for ?max is the

1/3

sum of neutron and triton radii. Using.r = 1.4 A fm one obtains r

= 3.4 fm. For 22,.1-MeV neutrons Ppeut = 10:9 % 1071 gm-cm/sec, and
|7 x 3| = 3.5 =.
max '

According to this analysis zmax = 3 is the largest quantum mechan-
ical orbital angular momentum for which interaction would be expected.
Use of zmax = 3 will allow comparison with previous p—3He phase shifts
at 19.5 MeV (Ti 68), the only existing data with which one can reason-
ably compare the T(;,ﬁ)T results of this experiment. Many more measure-
ments are needed before a unique set of phase shifts which satisfies
the data of the present experiment can be found (see the chapter on
Results).

For zmax = 3 the non-zero elements Uij of the collision matrix
which satisfy conservation of total angular momentum J and parity (—1)2

are given in Table AII. The order of elements in the matrix was
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arbitrarily chosen to begin with the initial states with greatest
multiplicity, smallest £, and largest J. Any other order maintaining

a proper 2 by 2 matrix relationship between mixed states would be equal-
ly satisfactory. The importance of assigning iJ position indices is in
identifying the initial and final states in Table AII with the corre-
sponding phase shifts in Table VII, Chapter V. Half of the non-zero,

off-diagonal elements are missing from the tables, since UiJ = Uji'

V. POLARIZATION

Definition of P(8)

To relate the polarization to the quantities derived in Section IV,
it will be useful to return to Egs. (A75) and (A7T6) for the total wave

function and scattering amplitude and redefine

£(6,4,9) =Zfss.(e,¢) st (a78)

Sl

so that

\J
W(r,0,8) = b, +v__ = exp(ika) 25+1, 5 exp(ikr) Zfss, 28'+1.s" 1r (AT9)
S'

where in Eqs. (AT6) and (ATT7) the sum over JM' for given 2,2' is equi-
valent to a summation over spin states S's'. One representation of a

matrix for the spin %, spin % scattering amplitude is (Mo 65)




@ N O

\O

10
11
12
13
1k

1k
10
11
12
13
1k

TABLE AII
Non-Zero U Matrix Elements for Spin %, Spin % Scattering and % ax
Initial State Final State
s 1 og 2s+1£J sow o 25141 o,
1 0 1 381 1 o0 1 381
1 0 1 3s1 1 2 1 301
1 1 2 3P2 | 1 1 2 3P2
1 1 2 3P2 1 3 2 >,
1 1 1 3P1 , 101 1 3P1
1 1 1 3P1 o 1 1 ]'Pl
1 1 o 3 1 1 o 3p
(o] (o]
1 2 3 3D3 1 2 3 31)3
1 2 2 3D2 1 2 2 %,
1 2 2 31)2 o 2 2 11)2
1 2 1 31)1 1 2 1 X
1 3 4 R 13 4 3,
1 3 3 3F3 1 3 3 ’r,
13 3 R, o 3 3 'r,
1 3 2 3F2 1 3 2 3F2
o o o s o 0 o0 1
(o] (o]
o 1 1 1P1 o 1 1 lpl
0o 2 2 11)2 o 2 2 ng
o 3 3 'r o 3 3 e,
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3.
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2t /5%10 /Eflo 2,

£(68,0) = %_ V285, foo*fe  Too~fs "2foa1 (480)
V285, foofs  foo*fs "2%0-1
of_,, V2fr ., Yer,, ef,

fs is the element for singlet scattering; i.e., S = 0, s = 0. Other-
wise, fiJ is an element which scatters an incident s = i state to an

outgoing s' = J state. The f(6,¢) matrix (A80) multiplied by the

column vector

10
X

3.1
X (A81)
X:
3,0
3 -1
X

is one form of Eq. (AT8) and is related to the U matrix via Eq. (AT6).
Using this scattering amplitude matrix and the density matrix

o = Yy Mott and Massey (Mo 65) obtain the expressions

a(e) =% tr ff+ (A82)

and

B(o) = % tr (££73)/0(0) (A83)

for the differential cross section and the polarization, respectively.
Note that for this particular case there are 10 independent terms

in the scattering amplitude array, any or all of which can be complex.

Hence, one must measure more than one vector polarization and scalar

cross section to determine the scattering amplitude matrix. Some of
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the measurable quantitiesg are

the differential cross section o(6,4),

the polarization of the incident particle 55,

the polarization of the scatterer ?&, and

the spin correlation parameters CNN and CKP where N, K, P represent

any of the orthogonal direction coordinates x, y, z.

These parameters along with other parameters A (triple scattering
parameters), D (depolarization), and R( rotation) are explained dia-
gramatically in Fig. (A3). A, D, R, and the C's are measured in triple
scattering or polarized beam and target experiments which will not be
discussed here, but which are treated by (Wo 54, Wo 56) and (Wu 62)
Section J.

Analyzing power PA is the quality of a second scatterer to analyze
a polarized beam and is equivalent for elastic scattering to the polari-
zation which would be produced by scattering an unpolarized beam from
the analyzer.

A somewhat less elegant approximation may clarify the physical
meaning of polarization, P(6). If there were no spin interac£ions one
would expect an equal probability of all equal incident and scattered

states. That is, o(6,¢) would be

2 2 2 2
I(e) = Ifsl + ]flll + |f00| + |f_1_1| . (A8L)

or

1(6) = Xt |2
i
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Figure (A3).

P, A, R, D, C Parameters Defined.

P = polarization D = depolarization
parameter
A = triple scattering C = spin correlation
parameter parameter
R = rotation parameter

defined in terms of incident polarization Po’
analyzer and scatterer polarizations PA and PS’
and the number of particles scattered Up (U),

Down (D), Left (L), and Right (R) with and
without the presence of a spin-precessing magnetic
field H. (Figure borrowed from John C. Hopkins,

LASL.)
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However, spin interactions do occur and account is taken of this by

writing the cross section as a sum of spin independent and spin depend-

ent terms,

o(8,4) = I(8) [1 + P n + o] , (A85)

where P is a number of magnitude less than 1 yet to be defined. ﬁ =
(§XQ')/(k2sine) for elastic scattering, and k,k' are the wave vectors
for the incident and scattered waves, respectively; thus, n is a unit
vector normal to the plane of scattering. G is a unit vector in the

. . . _ _ g > . _ 4> >
direction of the channel spin 3 = §1 + §2 = 4(01 + 02), o = (c1 + 02)/

> >
g, + 0,].

Now define a vector § = PG so that

o(6,4) = I(e) [1 + P cos¢] , (A86)

where ¢ is now redefined as the angle between the normal to the scat-
tering plane and the channel spin vector. If Eq. (AT7) for the differ-

ential cross section can be written

0(9,¢) = ]Zfljl2 s (A87)
1]

then it follows from Egs. (A84-86) that

p(8) = [0(0,0) - 1(8)1/[1(0) coss]

P(6) = [lZfiJ|2 - Dle 121 Zlfii|2 cos¢) | . (A88)
i) i i
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One can see the significance of P(6) by considering the special

case of scattering of nucleons from spinless targets. In this case
. 2 . 28!
y = exp(ikz) xs + exp(ikr) Zfss'(e’¢) Xs /r
sl

and £(6,4) is a 2x2 matrix which can be written as a function of the

unit matrix E and the Pauli spin matrices o, (T = cx{ + ch + ozk),

£(6,4) = g(8) E + B(e) + o . (A89)

Assume an incident particle in spin state

c 2
X =(::)=a+ x;i*fa_ X s

and choose the normal to the scattering plane and the spin direction to

be the z axis (¢ = 0). Then the scattered wave is

+
ikr g+hz ° 8, ikr fc(e)
Y =2 = &
sc r r _ ’
o g-h /\a_ c(9)
where
+
fc(e) =(g+n)a,
- (A90)
fc(e) = (g - hz) a_ .

Now

+2 -12
U(esd’) = Ifcl + Ifcl s

which for an unpolarized incident beam |a+l

] =]a. ] becomes
n -in
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o(6,4) = |g|® + |n_|® + 2 Re(en¥)
= [1 + P(8) cos¢] I(8) . (A91)
1(6) = beam intensity = |a |2 + |a_|° and from (a91)
P(8) = [2 Re(gn¥)]/I(e) . (A92)

By direct multiplication it can be verified that 2Re(gh:) = |g+hZ|2
- Ig—hzlg. But comparison with Eq. (A90) shows that |g+hz| and Ig—hzl

are the intensities of the a, and a_ scattered waves for an unpolarized

incident wave. Hence, (A92) becomes

P(0) = (|a,|% - |a_|?)/(]a,]? + |a_|®) = (we-Ne)/(wa+mv) |, (A93)

and is called the polarization of the scattered beam where Nt, Nt are

the number of particles scattered with spins up and down, respectively.
0f course, for more complex cases of spin-spin and spin-orbit

interactions one considers the incident and scattered channel spin

§ = §1 + §2 rather than the spin of the incident and scattered particles,

and P(6) is no longer a simple expression relating spin directions of

the scattered particles alone. However, B(6) still has the direction

normal to the plane of the scattering and is still properly a vector

polarization function (Mo 65).

Double Scattering

It is clearly difficult to measure the spin direction of a par-

ticle. As a consequence, if one is to measure polarization it is
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necessary to relate it to other measurable quantities. A double scat-
tering affords this possibility.

Assume (Wu 62, Wo 56) an unpolarized beam scattered by a target A
and the scattered beam to be scattered again by a second scatterer B.

The cross section for the first scattering is

o(e,) = I(e,)[1 + P (6,) n, os.1

h no=(k, x
where n, = (k,

I{*A)/(k2 sineA), QA = the wave vector of the first
scattering through the angle eA, and gin = the spin of the incoming
channel.

For the second scattering in the absence of interference terms
A= h, = (K, x £,)/(k® sin6_) and the incident 1 spin is '
n=mng =k, kB sinb;) an the incident channel spin is
-> —P PN
AT taMa

In this case

a(e )

I,(8,) I(6)(1 + Py Ay - 3,)

293298 A

)

Ip(8,) Tg(eg)(1 + Py fg - Py 0y

IA(GA) IB(GB)(l + P, Py cos¢AB) R (A9L)

where ¢AB = angle between scattering vlanes. Thus, for double scat-

tering

o (4=0) 11(61) I2(92)(1 +P. P.),

1°2

o(¢=n) Il(el) 12(92)(1 - P

and
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o(¢=0) - a(¢=n)
a(¢=0) + a(¢=m)

Pl(ei) P2(92) = = (L-R)/(L+R) ,

where L,R are the number of particles scattered to equal left and right
angles (92), respectively, in the second scattering. The quantity

P1P2 cos¢ is commonly called the asymmetry and designated by the letter
e, so that for left-right sca.tfering in the same plane

e = Pl(el) P2(92) = (L-R)/(1+R) | . (A95)

Although the above derivation of Eqs. (A94) and (A95) assumes no inter-
ference between incident and scattered waves, the expressions can be
shown to be exact (Mo 65).

In the case where a second scattering is used to analyze the polari-
zation of the first scattering P2(92) is called analyzing power and des-
ignated PA’ which for elastic scattering is the polarization which would
be produced by the second scattering alone. In the present experiment,
Pl(el) was assumed known and P2(92) was unknown except in the case where
hHe(;,ﬁ)hHe scattering was used to aetermine the T(d,ﬁ)hHe neutron
source polarization.

Another double scattering parameter which is convenient and easily

defined is the left-right ratio,

a{ ¢=0 1l+e
i e 8L/Rf-i:-e- . (A96)

In summary the expressions for P(8) and e derived in this section
relate the easily measured quantities L and R via the scattering ampli-

tudes and wave functions to the spin-spin and spin-orbit interaction
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potentials just as was done with the differential cross section in

Section AIV.

VI. DATA CORRECTION FORMULAE

Artificial Asymmetry Corrections

Livert (Li 66) defines for double scattering the quantities ko’

k, em, er, p, and v as follows:

a(e

1,92,¢12) koI(el) I(e,)[1 + kPl(el) P2(92) cos¢12] {A?T)

(0]
n

[e. + pel/[1 + (1-v) el (A98)

(14
1

= Pl(el) P2(e2) cos ¢,

[1(s)) (e,) - 1(e)) 1(8,) ]
r = TH6,) 1(s,), * 1(6,) T(8,) ]

) [kLI(el) 1(92)L + kRI(el) I(eg)R]
= TTECe)) T(e,), + 1(6)) I(8,) ]

(A99)

[kLI(el) I(e,), - kI(e)) I(e,) gl
[I(el) I(e,); + I(el) I(e,) ]

v=1]1l -

The k's are experimental factors of which the ideal value is unity. L

and R refer to left and right second scattering, respectively, where
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the first scattering is assumed to be a left scattering through angle
91. em is the measured asymmetry. e is the ;symmetry one wishes to
measure, and it is seen from the definitions (A98) that e. is an arti-
ficial asymmetry measured when either polarization Pl(el) or P2(92)
is zero.

From (A97-99) the expression to correct for a measured artificial

asymmetry er can be derived. If the k's are assumed to be unity then

H=1l, v = 1—er, and

ey = (e +e)/(L+e e)
Consequently,
e = (em - er)/(l - e, em) (A100)
€y~ %

for small artificial asymmetry er.

Detector Efficiency Correction

To obtain the correction for detector efficiencies, two measurements
were made at each angle (92) with detectors interchanged. It is easiest

to work the left-right ratio r, which is expressed

r-1
s

2]
]

r-1
rr [1+ kL r+l

(A101)

2]
n

I(el) I(eg)L/I(el) I(92)R .

If it is assumed again that the k's = 1, then Iy = Trs and for the two
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measurements ré = r;r and r; = r;r. The data will be corrected for
artificial asymmetries by Eq. (A100) so that e; = e; = 0orr'r" =1,

rr
Then

¥ = (el /e (el/el) =t et (A102)

which is the exvression for correcting for detector efficiencies. In

terms of asymmetries Eq. (A102) is

CHarel) (ve™) 17 - [(1-e)) (1) 17

e = ]"é " ]/_5 (A103)
[(1+e1;1)(1+e1'1'1)] + [(l—el;l)(l—em)]

= H(e' + ") if e' = e" .
m m m m

Multiple Scattering Corrections

A Monte Carlo multiple scattering computer code developed by W. B.
Broste, K. R. Crandall, R. B. Perkins, and J. E. Simmons (Br 69) is
used at LASL to calculate multiple scattering corrections for n—hHe
elastic scattering. The program was adapted to calculate corrections
to the n-T polarizations at 22.1-MeV incident neutron energy. The n—hHe
phase shifts (Ho 66) used in the program yield polarizations which at
all angles are within a few percent of the T(n,A)T neutron polarizations
measured in tnis experiment. The rmean free path was adjusted in the
code to be equal to the mean free path of a neutron in the ligquid tritium

scattering sample, and the resulting corrections were applied to the

n-T data.
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In Table AIII are listed the multiple scattering correction factors
by which each of the T(n,n)T neutron polarizations for 22.1-MeV incident

neutrons in Table V were multiplied.

TABLE AIII
Multiple Scattering Corrections to the 22.1-MeV

n-T Polarization Data

8,1ab Multiply
(deg) P,(6,) by
40 1.000.01
55 1.00:0.01
70 1.000.02
80 1.02£0.03
85 1.02:0.0k
90 1.02:0.05
957 ~ 1.00%0.20
100 1.1620.05
105 1.10:0.05
110% 1.090.03
1185 1.06:0.03

+Zero of polarization where multiplicative

correction is undefined.




APPENDIX B

Appendix B describes the computer programs FLZEIT and DSCHNIT
which were written for analysis of the data obtained in the experiment.

Instructions for using the programs are given, and the codes are listed.

I. PROGRAM FLZEIT

Introduction

FLZEIT (meaning flugzeit = time of flight) is a FORTRAN IV, 512-
channel data reduction code with several options. The program calcu-

lates 1) the number of counts in Channel I = NET(I), 2) the standard

I I
deviation = SD(I), 3) SUM(I) = ) NET(i), and 4) SUMVAR(I) = Y
i=1 i=1

(SD(i))2 according to the following equations:
NET (Channels 001-256)

= NL * (c(1) * FPREGRGUND - c(25 * BACKGR@UND + BKGL) (B1)

NET (Channels 257-512)

= NR ¥ (Cc(3) * FPREGRGUND - c(L4) * BACKGRPUND + BKGR)

where FPREGRPUND = number of counts in Channel I in the foreground run,
BACKGR@UND = number of counts in Channel I for the background run; and
NL, NR, C(1), c(2), c(3), c(l4), BKGL, and BKGR are normalization con-

stants entered on cards or calculated by the program.
2 2 2 2, %
SD(I) = [NL(c(1)° * FPREGRPUND + C(2)° * BACKGR@UND + BKGL®)]%, (B2)

and similarly for the right side.
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In addition, the program will sum any number of pairs of runs
(NUMPR) and calculate NET(I), SD(I), SUM(I), and SUMVAR(I) for the

accumulated pairs; i.e.,

NUMPR

( ng NET(I)Run J)/NUMPR

ACNET(I)

ACSD(I)

NUMPR
[ 2 (sp(1)

2%
J=1 Run 3 | /NVOMER

I
(> ACNET(i))/NUMPR
i=1

ACSUM(I)

I
(> (AcsD(1))2]/NUMPR
i=1

ACSUMVAR(TI) 2 .

The program structure includes the main block plus five subroutines,
LESEN, UMSATZ, L@CHEN, CEES, and MAHLEN. Subroutine LESEN (= read)
reads input data from tape and prints out the run headings directly
from the input tape as well as information concerning runs found or
called for from tape.

The main block performs the calculations and prints- out calculated
data.

Subroutine UMSATZ (= translation) records the calculated NET(I)
values on an output tape (with appropriate headings).

Subroutine L@CHEN (= punch) punches data on cards.

Subroutine CEES calculates normalizing factors C(1), c(2), c(3),

and C(U4) from the data if desired.
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Subroutine MAHLEN (= draw) plots the data.

To abort recording, punching, or plotting, one need simply replace

UMSATZ, L@CHEN, or MAHLEN subroutine decks with

SUBR@UTINE UMSATZ
321 C@NTINUE
RETURN

END

respectively.

Main Program Block

SUBR@GUTINE L@PCHEN SUBRPUTINE MAHLEN
421 C@NTINUE 319 C@NTINUE

s Or >
RETURN RETURN
END END

Aside from the input data, which is read from tape by subroutine

LESEN, a certain amount of information must be entered on cards as

follows:
Data Card I

Field Fonnaf Name

1-6 16 IDAC

7-12 16 IBLANK

Explanation

If IBLANK = O (see next field) IDAC+l becomes
the first run number in the output (printed and
recorded on output tape). Subsequent run num-
bers are stepped by one. Hence, the IDAC field
left blank results in the first run no. = 1.
IBLANK = O (or a blank field) causes data on
the output tape to be written from the begin-
ning of a tape with the first run no. = IDAC+l.
IBLANK > 0 causes the output tape to be

searched for an end of file. The run no. is



Data Card I (cont'd)

Field Format Name

13-18 1I6 INDEX

19-24 16 NRERUN

Data Card II

Field Format Name

1-3 I3 NUMPR

L-6 I3 JPLPT

14k

Explanation

stepped beyond the last run written on the
tape and new data is added to the old tape.
INDEX = O (or a blank field) causes the input
data tape to be read in the "new" format.
INDEX = 1 causes the tape to be read in the
"01d" format and L and R normalizing constants
(AN@RM) to be set equal. (See Subroutine
LESEN for formats.)

NRERUN tells subprogram LESEN how many runs
to search the tape backwards before aborting
the search. If this field is left blank

NRERUN = 10.

Explanation

NUMPR = no. of pairs of foreground-background
data to be accumulated (see Introduction).

NUMPR should not be blank or zero. Two cards

read with NUMPR = 0 terminate the Job.

JPLYT = 0 (or a blank field) causes the data
to be handled as 1-512 channel array on the
printout, tape, and plot. JPL@T = 1 causes
the data tb be handled as 2-256 channel array

on the printout, tape, and plot. For channels



Data Card II (cont'd)

Field Format Name

-9 I3 IPL@T
10-12 I3 ICHAR1
13-15 I3 ICHAR2

1ks

Explanation

257-512, SUM(I) = SUM(I) - SUM(256), SUMVAR(I)
= SUMVAR(I) - SUMVAR(256). Channels 1-256
are labeled "LEFT SIDE," channels 257-512 are
"RIGHT SIDE," and reassigned channel nos.
1-256.

IPLPT = 0 (or blank field) causes a linear-
linear plot to be made by MAHLEN. IPL@T = 1
causes a linear-log plot to be made.

ICHAR1 = decimal notation for character in

which the plotting is done. Some useful values

are:
Plot character Decimal Notation
0 through 9 0 through 9
+ 16
- 32
+ (dot) - k2
* Ly
O 63

ICHAR2 = decimal notation used in plotting
negative values in the log plot option. For a
log plot the x axis = 10 counts. Values are
plotted as follows:

NET(I) > 10 ICHAR1



Data Card II (cont'd)

Field Format Name

16-18 13 IC@N

19-24 6x
25-80 5A10 ACCHEAD

146

Card Field Format Name

1. 1-6 I6 IDFG
7-12 16 IDBG
13-1k4 2x
15 I1 INVC

146

Explanation
-10 £ NET(I) £ 10 on axis
NET(I) £ 10 plotted as ICHAR2 and
NET(I) = |NET(I)|

IC@GN > O causes the plotted points to be

connected by a line.

This is the heading for the accumulated runs.

Explanation

IDFG is the identification number of the

1st foreground run to be read from input
tape.

IDBG is the number of the background run to
be subtracted from the 1lst foreground run.
Note: If IDBG S O no background run will be
called for and calculations are made on the

foreground run only.

INVC = 0 (or a blank field) causes C(1)
through C(4) (see next two cards) to be used
as read in. INVC 2 1 causes C(1) through
C(4) to be replaced by 1/¢(1) through 1/C(k4)

before being used in the program.
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Explanation

This is the heading for a particular pair
of runs.

Normalization for channels 1-256 (= NL in
Introduction). For a blank field NL = 1.
Normalization, see Introduction. If C(1)
= -0.0 (i.e., blank field) C's are calcu-
lated by subroutine CEES.

Normalization, see Introduction.

Additive constant, see Introduction.

Lower and Upper channel Nos. (Left and
Right) for calculating C(1), c(2), c(3),
c(l4) from the data (See subroutine CEES.)
If IUPL £ 0 (i.e., a blank field) the C's
become the normalizing factors BN@RM, CN@RM
recorded on the input tape (see subroutine
LESEN).

Normalization for Channels 257-512 (- Nr
in Introduction).

Normalization, see Introduction.

Normalization, see Introduction.

Next 4 x NUMPR Cards (cont'd)

Card Field Format Name
16-24 9x
25-80 5A10 PRHEAD

146

2. 1-12 12.5 FN@RM(1)
13-24 12.5 c(1)
25-36 12.5 c(2)
37-48 12.5 BKGL
Lo-5l 16 LOWL
55-60 16 IUPL
61-66 16 L@WR
67-72 16 IUPR

3. 1-12 12.5 FN@RM(2)
13-24 12.5 c(3)
25-36 12.5 c(h)
37-48 12.5 BXGR

Normalization, see Introduction.
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——m— | — — ————

Card Field Format Name' Explanation
Lg9-sk 16 L@PCHL1
55-60 16 LPCHL2 Lower (1) and Upper (2) Channel Nos. Left
61-66 16 L@CHR1 (L) and Right (R) for cards to be punched.
67-72 16 L@CHR2

If LPCHL2 £ O (i.e., blank) Channels 1-512 are all punched.
(See L@PCHEN) If JPLPT = 0, L@PCHR1 and LPCHR2 are ignored.

RESTRICTIONS:

L@CHL1 2 1 and

L@CHL2 > L@PCHL1 (unless L@PCHL2 is a blank field)

L@CHR1 2 257

512 2 L@PCHR2 > L@CHR1
NOTE: If any field on card 3 is left blank, it is assigned the corres-
ponding valué on card 2. Thus, a blank card 3 means that channels 1-512

are all normalized by the same constants.

L. 1-6 16 KBND(1)
7-12 16 KBND(7)
13-18 16 KBND(2)
19-24 I6 ~ KBND(8) Used in determining graphing limits (see
25-30 I6 KBND(3) subroutine MAHLEN). If this option is not
31-36 16 KBND(9) used a blank card must be inserted.
37-k2 16 KBND(k4)
43-148 16 KBND(10)

kg-sk 16 KBND(5)
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Next 4 x NUMPR Cards (cont'd)

Card Field Format Name Explanation
55-60 I6 KBND(11)} Used in determining graphing limits (see
61-66 16 KBND(6) )} subroutine MAHLEN). If this option is not
67-T2 16 KBND(12)) used a blank card must be lnserted.

The above cards 1, 2, 3, and 4 are repeated for each run pair;
i.e., there should be 4 x NUMPR number of cards following a given NUMPR
(Data Card II) card.

As soon as the calculations have been made NUMPR number of times,
the program expects to read another NUMPR (Data Card II). Hence, the
sequence of cards starting with Data Card II may be repeated as often
as desired. A blank NUMPR card and another blank card following it will

terminate the Job. ¢

Subroutine LESEN

LESEN = read input tape. This subroutine assumes the data is
written on the input tape in one of the following formats (the format
is chosen by the value of INDEX on Data Card I):

"New" Format

Record 1

J ,NRUN ,BN@RM ,CN@RM, (HEAD(I), I=1,11)
F@RMAT (I1,I4,2(F9.4,2X), 10A10, A8)
Records 2-6

(SCALAR(I), I=1,65)
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FPRMAT (13A10, 6X)

Records 7-38

((ADATA(I), I=J,512,128), J=1,128)

FPRMAT (1X,16F8.0)

"014" Format

Record 1

J,NRUN, BNORM{HEAD(I), I=1,11)
F@RMAT (I1,Ik,F12.L4,2X,10A10,A8)
Record 2

(SCALAR(I), I=1,13)

FPRMAT (13A10)

Records 3-3k4

((ADATA(I), I=J,512,128), J=1,128)

F@PRMAT (1X,16F8.0)

where J = index searched for the beginning of a run, NRUN = run no.,
BN@RM and CN@RM = normalization factors calculated by the scalers during
the runs, HEAD = heading put on the runs, SCALAR (1-65) = scalers read
in, ADATA(I) = no. of counts in the 1% channel.

This subroutine sets following indices:

Index Value Cause and Effect

No Back 1 No background was called for, C(2) = 0.0. Fore-
ground only is used in calculations.
No Data 1 Either the requested foreground or the background

run was not found on the tape. No calculations
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Index Value Cause and Effect
. are made and the program looks for a new run pair.

IRERUN NRERUN Tape has searched backwards NRERUN runs for a
given requested run. If the run is not found,
N@DATA is set.

LPRUN 1 The background has been found. Search now only
for the foreground.

M@RUN 1 The foreground has been found. Search now only
for the background.

N@RUN 0 Neither run has yet been found. Continue the
search until they are found or it is apparent
that they cannot be found.

1 One of the runs requested has been found. Con-
tinue the search if a background is called for;
otherwise return to the main program.

2 Both runs have been found. Return to the main

program.

Subroutine UMSATZ

UMSATZ = write output tape. The output tape is written in the
following format:
Record 1.
IDAC, (PRHZAD(I) OR ACCHEAD(I), I=1,6)
FPRMAT (3H101, 3X, I6, S5A10, A6)
where 101 in the first three columns are indices which can be

used for searching the tape later.
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Record 2.
a. FPRMAT (14X, 10HBOTH SIDES) or
b. F@RMAT (14X, 1LHLEFT SIDE ONLY) or

c. F@PRMAT (14X, 1SHRIGHT SIDE ONLY)

Records 3 through 18 (or 3 through 34 for both sides)

a. ((NEP(I) = ADATA(I), I=J, 512,128), J=1,128) or
b. ((NET(I) = ADATA(I), I=J, 256,64), J=1,64) or
c. ((NET(I) = ADATA(I), I=J, 512,64), J=257,320)

FPRMAT (12X, 16FT.0)

UMSATZ resets IBLANK = O to avoid researching the output tape for

an end of file the next time UMSATZ is called.

Subroutine MAHLEN

MAHLEN = plotting routine. This routing uses plotting subroutines
coded by E. M. Willbanks (Wi 68) for the LASL CDC 6600 computers and
4020 plotter. The routine plots according to the values of IPL@T
(1inear or log) and JPLYT (512 or 256 channels). The maximum scale on
the plots is determined by searching the data (ADATA(I)) for the maximum
value (DATMAX) and assigning the next highest 10, 100, 500, or 1000 as
the upper graph limit. In the case of accumulated data, IACC is set to
1 by the main program and the upper graph 1limit is calculated from
MAXDAT = maximum of DATMAX for all NUMPR runs.

If the data has spikes which méy cause regions of interest to be

plotted insignificantly close to the axis, these spikes may be skipped
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by using the KBND option in the data cards. For example, assume the
data has insignificant pileup peaks in channels 5, 20 to 30, 256 and
512. Then the maximum values other than spikes are calculated skipping
channel 5, channels 20-30, channel 256, and chahnel 512; and the graph

upper bound becomes more meaningful if KBND values are assigned as

follovws:
KBND(1) 1
KBND(7) L
Channel 5 is skipped

KBND( 2) 6
KBND( 8) 19

Channels 20 through 30 are skipped
KBND( 3) 31
KBND(9) 255

Channel 256 is skipped
KBND(4) 257
KBND(10) 511

Search for DATMAX ends at channel 511
KBND(5) Blank
KBND(11) Blank
KBND(6) Blank
KBND(12) Blank

Up to six regions may be skipped in this manner for the calculation
of DATMAX. If all KBND's are left blank DATMAX is automatically cal-

culated for channels 1 through 512.
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Subroutine CEES

c(1), c(2), c(3), and C(4) are calculated from the data in the
following manner:

AN@PRM(J) = normalization factors recorded on input tape for J=1,L

1) foreground left 2) Dbackground left
3) foreground right 4) background right
c(1) = AN@RM(1)
IUPL IUPL
c(2) = c(1) x [ D WMD)/ D wen() )
I=LgWL I=LgWL
C(3) = AN@RM(3)
IUPR IUPR
cl) = o(3) x [ D WEND))/C D NEN(T) ) (83)
I=L@WR I=L@WR

If IUPL £ 0 (i.e., blank), then C(J) = ANGRM(J) for 1 £ J £ k.

Subroutine L@PCHEN

The output is punched on cards in the following format:
NET(I), IDAC
6F 12.2, 16, 2HB$ (for both detectors)
66 (for detector 66)

60 (for detector 60)
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for I = L@PCHL1 through I = L@CHL2 (detector 66)
and for I = L@PCHR1 through I = L@PCHR2 (detector 60)
or I = LYCHL1 through I = LPCHL2 (both detectors).

A listing of the program follows.




PROGRAM FLZEIT (INPUTeOUTPUTTAPEICO=INPUT +TAPES =OUTPUTsFILM+TAPEL2
1=FILMeTAPE3T7o TAPFG53+PUNCH)

DIMENSION ACNET(6512)eACSUMIS12) sACSD(S512) ¢ACSVAR(S512) ¢ACCHF. AD(B )
1FNORM(2) eRSD(S1 2)

COMMOM ADATA(S12) ¢BOATA(512)eNOBACK eNODATALIDFG +IDBGeJPLOToC(4) »
1IPLOT e ICHARL o TCHAR?«1CONeTDACSIBLANKeACH(S12) oPRHEAD(B) +ANORM (4 )0
2KBND(12) e TACCoMAXDAT.ASD(S512) oSUM(512)¢ SUMVAR (512)

REAL MAXDAT ’

649 RFAD (10+650) IDAC+IBLANKINDEX +NRERUN
650N FORMAT (4T16)

INDFEXTINDEX#}

1F (NRERUN.LE .O) NRERUNZ10

7 LAST=N
203 TACC=D
MAXDAT=-0.0
2030 READ(lO.BO)NUMPRoJPLOYoIPLOY.ICHARIoICHAR2.ICONo(ACCHEAO(I)31:1-6)
AN FORMAT t6I3+6XeS5A10.A6)
IF (EQF«10) 1999,200
200 1F (NUMPR .LF.O0.AND.LAST.NE.O) GO TO 1999
IF (NUMPR) 201,201.2010
201 LAST=I
GO 10 2030
2010 DO 1 1=1.512

ACNET(1)=0.0

ACSumM(l1)-o0.0

ACSD(TI)=0.0

ACSVAR(1)=-0.0
1 CONTINUF

202 DO 299 J-1NUMPR
3 READ (100602) IDFGeIDBGoINVCe (PRHEAD(I) oI =1e6)e FNORM(I 1) o(CUI)eT=1o

12) e BKGLoLOWLeIUPLoLOWRe TUPR oFNORMI(2 39 C( 3) oC (4)e BKGR oLOCHL 10 LOCHL2 »
2L0CHRYI oLOCHRZ ¢ (KBND (K)o KBND (K*6 ) o K=106)

602 FORMAT (2T6¢2Xe11e9%XeSA1I0¢A6/4EL12.5e416/40E12.5416/1276)

IF (FNORM(2)«EQe-0.0) FNORM (2)=FNORM(Y)

96T



6

7
80
603

604
8

9
10

6041

DO S I:x1e2

IF (FNORM(T)eEQ.-0.0) FNORM(I)=1,D

IF (C(1+42).EQa-0.0) C(I+2)=C(])

IF (BKGL.EQe«—0.0) BKGL=0.0

IF (BKGR.EQ«-0s0) BKGR=BKGL

NOBACK=Q

NODATA=O

NOSTOP=O

1F (INVC-1) 80+6+6

DO 7 T=1lek

1F (C(1)eNFeD0AND.C(1)oNE.~0.0) £(I)=1.0/7C(1)
wRITEF (9.601%)

FORMAT (1H1)

WRTTFE (9¢604) 10FGeIDBGs(PRHEAD (I)e I=146)
FORMAT(1Xe3HRUNeTGe 1XUH-RUN ¢I6e6XSA10 A6/ /1Xe SIHNET (CHSGD 1-256) =

INILLe (C1sFOREGND - C2¢BACKGND + BKGL) /1 Xe S3HNET(CHS257-512) = NRe (C3
2¢FORTGND - CU+BACKGND + BKGR) /)

CALL LESEN (INDEX+NRERUN) °

IF (NODATA) 299.10.299

IF (C(1)eFQe~Ce0) CALL CEES(LOWL+IUPL oL OWRs IUPR)

WRITE (9¢6041) FNORM(1)eC(1)eC(2) eBKGLoFNORM(2) ¢C (3)eC(4) o8B KGR
FORMAT (1Xe3HNL =elPE12.4¢5X e3HC1-e1PEL2.4 ¢SXeo3HC? =0 IPEL2.40 SXeTHBK

1GL=  o1PE12.4/1Xe3HNR=e1PE12.49e5Xe3HC3=01PEL12.4 ¢5Xe 3HCH =0 1PE] 2. 4o

25X« THRKGR= o IPE12.4)

11

12

1F (NDBSACK) 14e11414

00 12 I=12%6
BDATA(I)=(-C(2))*BDATAL])
BSD(I)=(-C(2))eBDATA(I)
DN 13 12257512
RDATA(I)=(-C(4) Y*BDATALI)
BSD(T)=(-C(4))eBDATA(D)
DO 1S 1=14256
ADATA(I)-C(1)sADATA(])
ASD(1)=C(1)«ADATAL(I)

LST
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DO 16 T1=257.512
ADATALINI=C(3)«ADATAL(I)
ASD(T)I=C(3)«ADATALI)

IF (NOBACK) 1941719

DO 18 T=1.512

ADATA(T)=ADATA(I) +BDATA(I)
ASO(TY=ASD(I) +BSD(I)

DO 200 I-1e256
ADATA(I)=FNORM(1) ¢« (ADATA(I) +BKGL)
ASD(T)=(FNORM (1)e2)+ [ASD (I )+BKGL *=2)
DO 21 12257512

AGATA(T)I=FNORM(2) «(ADATA(T) «BKGR)

ASO(I)=(FNORM(2)se2)e (ASD(I)+BKGRes2) °

SUMI1)YZADATAC(LY
SUMVAPR(1)=ASD (1)
ASD(1Y:=SORT(ASD (1))
ACH(1)=1.C

DO 2?7 1=2e512
SUM(T)=SUM(I-1)+ADATA(T)
SUMVAR(I)I=SUMVAR(I-1)+ASD(])
ASD(Y)=SGRT CASD(T))

ACH(T) =T

DO 220 1-1.512
ACNET(T)=-ACNET(I)+ADATAI(I)
ACSUM(T)=ACSUM(I) +SUM(I)
ACSD(T)=SGRT((ASD(I)»e2)+ (ACSD(I) se2))
ACSVAR(T)=ACSVAR(I) +SUMVAR(TI)
IF (JPLOT) 2214221.23

DO 24 1:257.512
SUM(T)Y=SUM(I)-SUM(256)
SUMVAR(I) =SUMVAR(I)=SUMVAR(256)
CALL UMSATZ

WRITE (9e611)

IDAC=IDAC+!
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WRITF (9.60u40) IDAC
6040 FORMAT (1XeIG+¢18H=RUN NO. IN OUTPUT)
IF (JPLOT) 25¢25¢225
225 WwRITE (9.605)
605 FORMAT (1Xe1EHDETECTOR 66 ONLY/)
wRITF (9.606)
606 FORMAT (?Xc?HCH.QXoSHNETvZXoZHSDoSXoSHSUMolXoGHSUMVARmS(“XoZHCHo“X
Lo 3HNETe2Y ¢ 2ZHSDeS5X ¢ SHSUM eI Xe GHSUMVAR))
wRITE (90607)”(((ACH(I)'ADATZ(I)oASD(I)OSUH(IY.SUHVAR(I,)01=Jo2550
164) ¢ J-1e64)
607 FORMAT(lXoFS.00F7.loru.DoFB.ioF7.0.3(3x.FS.OoF1.1on.OoFB.l.f?.C))
WRITE (9e.611)
611 FORMATY (// )
IDAC-IDAC+]
WRITE (35040) IDAC
WRITE (9+612)
612 FORMAT (1Xe16HDETECTOR 60 ONLY/Z)
NRITE (9.606)
WRITE (9.607) (((ACH(I—ZSS)oADAIh(I’oASD(I)oSUH(T)oSUHVAR(I)lol=Jo
1512 e6U4)¢J0=257+320)
Go T0 26
25 WRITE (9¢613) .
61 3 FORMAT (= CHANNELS O THRU S12+ BOTH DETECTORS *¢)
WRITE (3+606)
WRITE (9.607) (((ACH(I)oADATA(I,oASD(I)oSUM(I,oSUMVAR(I),oI=Jd512o
1128Y¢J=-1+128)
26 CALL MAHLEN
CALL-LOCHEN(LOCHLloLOCHL?oLOCHRloLOCHRZ)
299 CONTINUE
IF (NUMPR.LE.1) GO YO 2
30 DO 31 1:-1.512
ADATA(I)=ACNET (I)/NUMPR
ASDC(I)-ACSO(I)/NUMPR
SUMIT)I=-ACSUM(I) /NUMPR

6ST




31

310

32

33
331

6l4

332

34

35

37
1999
2000

SUMVAR(I) ZACSVAR(I) /7 (NUMPR» ¢2)

NO 310 I=1%6

PRHEADC(T) CACCHEAD(TI)

1ACC=)

WRITEL (9+611)

IF (JPLOT) 331.331.32

DO 33 1:=257.512

SUM(T)-SUM(I)-SUMI(25S6)
SUMVAR(I)=SUMVAR(I)-SUMVAR(256)

CALL UMSAT?Z

IDAC=-TIDAC+1

wRITF t96040) IDAC

eRITF (9¢614) NUMPRe (PRHEAD (1)sI=1+86)

FORMAT (1XeI13,22H AROVE FG AND BG PAIRS +5SA10.A6)
IF tJUPLOT) 340340332

WRITE (9.605)

«RITE (9+606)

WRITE (9+607) (((ACH(I,;ADAtA(l,oASD(I,oSUH(XToSUMVAh(]’,oI=J0?560
164) oJ=1e64)

WRITE (9+611)

IDAC-IDAC+1

WRITF (9.6040) IDAC

WRITE (9¢614) NUMPR+(PRHEAD (I1)eI=1+6)

dRITF (9+612)

WRITFE (9.606)

WRITF (9¢607) (((ACH(TI=256) ¢+ADATALI)e ASD(TY) oSUM (T )s SUMV AR (1)) oI =Jo
1512 +64) ¢J=257,320)

GO T0 35

WRITFE (9+613)

WRITE (9607) (((ACH(I) sADATA(1)+ASD(]) eSUM (I )e SUMVAR (1)) o1 :=U5 12,
1128)¢J=-1+128)

CALL MAHLEN

CALL LOCHEN(LOCHL[OLOCHL?oLOCHRloLOCHR?)

G0 10 2

SToP

END
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101

%
500

106

1180
07z

lna
501

109
502

1 nan

1to
1o
1171

1102

SURROUTINE_L[SEN (INDEX»NRERUN)

DIMENSION HEAD(I],oSCALAR(GS’
CoMMON ADA?A(S!Z)oRDAfA(S!?).NOBACK.NODATA.IDFGvIDBGoJPLOToC(Q)v

1IPLOY.ICHAR!oICHAR?o]CONoIDACoIBLANKoACH(S!Z)oPRHEAD(SDolNORH(Q)
-0

NODAYA:U
IRF RUN:-q)

LORUN=q

MORuUN=(

NORUN:-D

1IF (InRG) 10101010106

LORUN-)

NOQUNTNOQUN’I

WRITF (9.5 1)

A4RT TF {9.50%)

FORMAT (. NO BACKGROUND YAS Cagtep FOR., C?:‘D.D(BLQNK’°)
FORMATY (rny

NOBAC“?NOBQCK’I

RFAD (SIQQOG’ JSPLAT

143 ernFYlf57,11801060

¥ (JSPLAT*!) 10501070107

BACKQPACf 37

Go 10 (1n8.109).1~n£x

RFEAD (37090" NRUN.BNOQM.CNORH.(HE‘D(!)OI:IOII)
ForMmary (leYQO?(F9-Q02x,OlOAIOOAs)

GO T1n 109n

READ (37.502) NRUN.BNORHO(HEAD(I)OISIOII,
FORMAT (IXoI“oFIQ.Qv?Xo!0410.48)

CNORM?BNOPM

IF (MarUuN)Y lll-llﬂvlll

IF (NPUN-TDFG’ 111-11301100

1F (IPERUN—NRERUN) 120101200124

IRfRUN:IQFRUN01

DO 11n2 JZle4g

BACKSPAC[ 37

191




60 10 1n6
113 NORUN=NORUN+1]
ANORM (1) =BNORM
ANORM(3) =CNORM
MORUN=1
GO 10 114
111 IF (LORUN) 106¢112.106
112 1F (NPUN-TDRG) 10691151110
1)10 IF (TIRCRUN-NRERUN) 1111+126¢126
1111 IRERUNZ-IRERUN+]
DO 1112 J=1,40
1112 BACKSPACE 37
GO 0 1Nn6
115 NORUN=NORUN+1
AMNORM(2?2) = BNORM
ANORM(4) “CNORM
LORUN=]
GO 10 116
118 NODATA-NODATA+]
REW IND 37
d4RTTF (9.S11)
YRITF (9.512)
512 FORMAT (* TAPE RAN TO EOF WITHOUT FINDING RUNS )’
GO Tn 199
126 4RITL (9+504)
504 FORMATY (//1Xe4SHTHIS BACKGROUND RUN WAS NOT FOUND ON THE TAPE)
GO TO 12%
124 wRITC (9.507)
S07 FORMAT (//1XeU4SHTHIS FOREGROUND RUN WAS NOT FOUND ON THE TAPE)
125 NODATA=NODATA+1
GO TN 199
- 114 GO TO (1142+1140)+INDEX
1142 READ (37+508) (SCALAR(I)eTI=1+65)
SO8 FORMAT (13A10+6X)
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1140
5080

1141
140
509

511

116
1162

1160

1151
160

129
199

GO TO 140
READ (37.5080) (SCALAR(I)+I=1,13)

FORMAY (13A10)

DO 1141 T1=14+65S

SCALAR(I)=0.0

READO (37¢509) ((ADATA(I)eI=UeS512¢128) oJ=1,128)
FORMAT (1Xe16F8.0)

WRITE (9.511)°

FORMAT (//)

WRITF (9¢%01) NRUN+BNORMesCNORMe (HEAD(I) ¢1=1,11)
WRITF (9+508) (SCALAR(1)+sI=1¢65)

GO Tn 129

GO TO (116241160) 4 INDEX

REAO (37.508) (SCALAR(I)eI=1¢65)

GO 10 160

READ (3745080) (SCALAR(T) oI=1.13)

DO 1181 1=14465

SCALAR(TI)-D.O

KEAD (37¢509) ((BDATA(I)eI=JUeS120128) 2J=1,128)
WRITE (9.511)

WRITE (9¢501) NRUN+BNORM+CNORMe (HEAD(I) ¢I1=1.11)
WRITE (9+508) (SCALAR(I)eI=1+65)

1F (NORUN.LTY.2) G0 TO 106

RETURN

END

£9T




a1

s
816

&n7v

SUBROUTINE CEES(LOWLeIUPL<LOWRIUPR)

DIMENSION CALC(4)

COMMON ADATA(S12)+BDATA(512)¢NOBACK oNODATAs IDFG +IDBGeJPLOToC(4) o
1IPLOT+ICHAR] « ICHAR2» JCONe IDAC+IBLANKe ACH(512) P RHEAD( 6) +ANORM (4 )
DO 801 I=1.4

CALC(I)=0.0

IF (TUPL) BCS.805.807

DO 806 K=1+4

C(K)I=ANORM(K)

GO TO 808

DO 802 J=LOWL.IUPL

CALCUI)=CALC(1)+ADATA(J)

802 CALC(?)-CALC(2)+BDATA(Y)

ens3

808

804

DO 803 J-LOWRIUPR

CALC(S)=CALC(3)+ADATA(J)

CALC(u4) =CALC(4) +BRATA(J)

C(1)-ANORM(1)

C(2)=C(1)<(CALC(1)/CALC(2))

C(3)=ANORM(3)

C(4)=C(3)e(CALC(3)/CALC(4))

*RITE (9.804) LOWL s TUPL oCALC(1) oLOWRe TUPR +CALC( 3) eL O¥Le JUPL ¢CALC(2
1) sLOWRTUPR.CALC(4)

FORMAT(/1Xe26HSUM OF FOREGROUND CHANNELSsI6e6H THRU«IB1CH EQUAL
1S o1PE12.471Xe26HSUM OF FOREGROUND CHANNFELSeI6e6H THRU«I6 o10H E
2GUALS  +1PF12.4/1Xe26HSUM- OF BACKGROUND CHANNEL Se I6 +6H THRUeI6 ¢1C
3H EQUALS +IPE12.4/1Xe26HSUM OF BACKGROUND CHARNNELSeI6e6H THRU#I
46e1CH FQUALS IPF12.4//1X+65HC(I) WERE CALCULATED FROM ANCRM(I)
SAND/OR NORMALIZING ON THE DATA)

RETURPN

END
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3roo0
719

3001
303
3030

700

3031

3032
3002

31
71

7010

1z

392

703

SUBRROUTINE UMSATZ

COMMON ADAYA(S!Z).BDA?Al512)oNOBACKoNODAIAoIDFG.TOBG.JPLOT.C(U)o
llPLOYoICHARloICHAR?.ICON.IDAC.IBLANK.ACH(512)oPRHEAD(G)oANORH(“l

1F (I/LANK) 3002.3002.3000
READ (53.719)
FORMAY (T11)
IF (FMNDFILES3) 3001.3000
DO 3003 1:-1e35
BACKSPACF 53
CONTINUE
REAO (53+700) ISPLAYT.IDAC
FORMAT (?Xelle3XeIf)
IF (ISPLAT) 3030.3030.3031
READ (53.719)
IF (FNDFILES3) 3D032.3031
IDAC=IDAC+1
IDAC-TDAC+1
BACKSPACE 53
1F (JPLOT) 301.301,302
WwRITF (53.701) IDACe(PRHEAD (I)eI=1e6)
FORMAT (3H101e¢3Xe16¢5A100A86)
WRITF (53.7010)
FORMAY (» BOTH DETECTORS®*)
WRITE (53.702) ((ADATA(I) o1=Ue¢512+128)0J=1e1281)
FORMAT (12Xe16F7.0)
o Tn 320
WRITE (53¢701) IDACe(PRHEAD (I)eI=1+6)
WRITF (53.7C3)
FORMAT(« DETECTOR 66 ONLY )
JRITE (53¢702) ((ADATALI) ¢1=Js256¢64) oJ=1+64)
KOAC=-TDAC-1
WRITF (53+,701) KDAC e (PRHEAD (1)eI=1s6)
JRITE (53704)
FORMAT (» DETECTOR &0 ONLYe)

S91




320
732

S610
53

5094

5096
S097

5098

dRITE (53+4702) ((ADATAL(I) ¢I=Ue512464) eJ=257+320)

WRITF (S3.732)

FORMAY (12Xe4GHTHIS IS THE LAST RECORD BEFORE EOF WAS WRITTEN)

ENDFILE 53
IBLANK=0
IDAC=1DAC-]
RETURN

END

SUBRNOUTINE MAHLEN

DIMENSION CDATA(256)+FDATA(S12) ¢DDATA (S12). HDATA(256) +GCA YA (256)
COMMON ADATA(S12) eBDATA(SI2)eNOBACK oNO!ATAIDFG oI DBGe JPLOToC(L) o
11PLOT+TCHAR1 ¢+ ICHARZ? 9 ICONe IDAC+IBLANKs ACH(512) oPRHEAD( 6} ¢dANORM (4 ),
2KBND(12) e TACC+MAXDAT,ASD(S12) o+SUM(512)sSUMVAR (512

DATA ATTTLE/1IOHBOTH SIDES/+BTITLE/1COHDETECT

1 60/

FORMAT(IS)

DO 53 1:1.256
COATA(T)I-ADATA(I+258)

IF (TACC-1) S5094+¢5095+5095
DATMAX=D.0

IF (KBND(7).LE.O0) GO TO 5098
DO 5097 K=1leb

LOBND=KBNO(K)
MOBND=KBND(K+§6)

1f (YOBND.LE.C) GO TO S093
DO 5n36 T=LOBNDMOBND
DATMAX-AMAX1(DATMAX +ADATA(I))
CONTINUE

CONTINUE

GO TO 5093

DO S1 1=1,512

66 /¢ CTITLE /1 CHDETECT
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S1
5093

5095
5099
5100

S1m1
s102

s103
S104

s1as
5106

S107

531

DATMAX-AMAX1(DATMAX+ADATA(I))
MAXDAT=AMAX 1 (MAXDAT +DATMAX) ~

GO TO 5099

DATMAX-MAXDAT

IF (DATMAX-100.0) 510051005101
DATMAX=(DATMAX/10.0)+1.0
YANDT=10.0¢AINT (DATMAX)
YERNDR=-10.0

NYz (YANDT-YBNDB)/10.0

GO To 531

1F (DATMAX-1000.0) S102.5102.5103
PATMAX=(DATMAX/100.0) +1.0
YANDT=100.0¢AINT(DATMAX)
YANDBR--1N0.0

NY= (YENDT-YBNDR)/100.0

GO TO %31

1IF (NATMAX-SNCO0.0) S104+5104¢51DS
DATMAX=- (DATMAX/500.0) +1.0
YBNDT=500.0AINT(DATMAX)
YRANDR-SN0.0

NY= (YBNDT-YBNDR)/S00.0

GO 10 %31

1F (DATMAX-1000GC.0) 5106+5106+5107
DATMAXT (DATMAX/1000.0)+1.0
YENDT-1000.0+ AINT (DATMAX)
YBNDP=--1000.0

NY- (YANDT-YBNDB)/10C0.0

GO 10 531
DATMAX=(DATMAX/10C00.0) +1.0
YBNDT=-10000.0«AINT(DATMAX )
YBNOR=--10000.0

NY= 1D

XL=0.0

XR1:=260.0

L9T



55
56

57

XR2=570.0

IF (IPLOT) 85,55,70

IF (JPLOT) 56¢56057
ENCODE(SeS600+TITLE)IDAC

CALL
CALL
CALL
CALL
CAlL L
CALL
catL
CALL

TSP(120¢10+10+ TITLE)

TSP (20841056 ¢PRHEAD)
TSP(120030.10,ATITLE)

DGA (120.980.50¢9100 XL ¢XR2 +YBNOT «YBNDB)
DLNLN(26,NY)

SLLTIN(NY.01)

SBLIN (13.,00)
PLOT (S12¢ACHe1+¢ADATAe1+ICHAR]L ¢ICON)

GO T0 90

KNAC=

IDAC-1

ENCODT (Se5600« TITLEYKDAC

CALL
CALL
CALL
CaLL
CALL
CALL
CALL
CALL
CALL

TSP(120+10¢1Ce TI1TLE) ~

TSP (20R+10+56«PRHEAD)
TSP(120e30¢1048BTITLF)

DGA (120+980,500910e XL ¢ XR1 ¢YBNDT +YBNDB )
DLNIN(26eNY)

SLLIN(NY.O1)

SBLIN (13.00)-

PLOT (?56¢ACHe10ADATAs1+ICHAR]L1 +ICON)
ADVI(1)

ENCODF(SeS600.TITLE)IDAC

CatL
CALL
CALL
CALL,
CALL
CALL
CALL
CALL

TSP(1206 1010 TITLE)

TSP (208+10¢56+PRHEAD)
TSP(120e¢30+10.CTITLE)

0GA (170¢980¢50¢910¢ XL ¢XR1 +YBNDT «YBNDB)
DLNLN(?26eNY)

SLLIN(NY.O01)

SBILIN (13.00)

PLOT (256¢ACHs1+CDATA»1+ICHAR] +ICON)

GO T0 90
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70

71

12

73

aQN
7%1

732

T4
75

76

BNDT=-ABS(YBNDT) '
BNDT=ALOG10(BNDT)

BNDB=1.0

DO 8N0 I=-1.512

FDATA(I)=1.0

DDATA(I)=1.0

1F (ADATA(TI)-10.0) 72+72,71
DNATA(I)-ABS(ADATA(I))
DDATA(I)-ALOGIO(DDATA(I))

CO T RKNOD

1F (ADATA(I)+10.0) 73.,800.800
FDATA(T)-ABS(ADATA(Y))
FDATA(I)=ALOGI1O0(FDATA(I)) ~
CONTIMUE

DO 73?2 T1=125%6
GNATA(I)=DDATA(I+256)
HDATA(T)-FDATA(L+256)

IF (JPLOT) 75475476
ENCODE(Se56R04TITLFIIDAC

CALL TSP(120¢10e¢10TITLE)
CALL TSP (208¢10+56¢PRHEAD)
CALL TSP(120¢30¢10+sATITLE)
CALL DGA (120¢980¢50+9100¢ XL ¢+XR2 ¢BNDT+BNDB )
CALL DLNLG(26)

CALL SBLIN (13.,00)

CALL SLLOG

CALL PLOT (S12¢ACHe1¢DDATAs1eTCHAR] +ICON)
CALL PLOT (512+ACHel1+FDATAe1eICHARZ +ICON)
GO TO 90

KDAC=IDAC-1

ENCODE (5¢56C0«TITLE)KDAC

CALL TSP(120+10¢10¢TITLE)
CALL TSP (208+10+56¢+PRHEAD) ’
CALL TSP(120¢30+10.BTITLE)

691




CALL DGA (120+980+500¢9100¢ XL oXR1 ¢BND T+ BNDB )
CALL DLNLG(?86)
CALL SBLIN (13,00)
CALL SLLOG
CALL PLOT (256¢ACHe1,DDATAs1+ICHAR]1+ICON)
CALL PLOY (256¢ACHe 1¢FDATAe1sICHAR2 +ICON)
CALL ADVI(1)
ENCODF(S5¢5600+TITLE)IDAC
CALL TSP(120¢10610¢TITLE) '
CALL TSP (208+10¢56¢+PRHEAD)
CALL TSP(120¢30¢10CTITLE)
CALL DGA (1200980+50¢9100¢ XL ¢XR1 ¢BNDT+BNDB)
CALL DLNLG(?26)
CALL SBLIN (13.00)
CALL SLLOG .
CALL PLOT (256¢ACHe1e¢GDATAs1+ICHARL +ICON)
CALL PLOT (256eACHe 1o HDATAe1ICHAR]L +ICON)
90 CALL ADV(1)
91 RETURN
END

Ay

SUBROUTINF LOCHEN (LOCHL LeLOCHL2 +LOCHR 1¢LOCHR?)

COMMOMN ADATA(S12)¢BDATA(512)eNOBACK o+NODATAe IDFG ¢IDBGe JPLOToC(4) »
1IPLOTICHARI«TCHAR? ¢ 1CONe JDAC ¢ IBLANKe ACH( S12) PRHEAD(6) +ANORM (4 )
2KBND(12) o TACC +MAXDAToASD(512) +SUM(512) ¢ SUMVAR (512)

1F (JPLOT) 40C1.4001.4002

4001 IF (LOCHL2) 4040.4040.401
4O40 LOCHLIZ]
LOCHL?2=512
&0 1 N=LOCHL1
M=N+S
4 100 PUNCH 4010+(ADATA(I)eI=NoM) +IDAC

OLT



4010

4011

4002
4041

402

4 300

4014

“«015

403

4500
4018

4019

420

FORMAT (6F12.2+16+2HBO)

IF (INMaGY -1 OCHL2) a011.420.420
N=N+6

Mz=N+G

GO 10 4100

1F (LNOCHL2) 4041040410402
LOCHL 1=

LOCHL2=-256

LOCHR1=257

LOCHRP 22512

KDAC=TOAC-1

NzZLOCHL1

MZN¢S

PUNCH 4014+ (ADATA(I)eI=NeM) ¢KDAC
FORMAT (6F12.2¢16¢2H66) °

1IF ((N+S)-LOCHL2) 4015.403+403
N=-M+6

M-N+S

G0 T0O 4300

N-LOCHR1

M-N+S

PUNMCH 4N18¢(ADATA(I) I=NoM) ¢IDAC
FORMAT (6F12.2+16¢2H60) '

1F ((N+S)-LOCHR2) 4019,420.,420
N-Ne¢G

M=N+5S

GO TO 4500

RETURN

END

TLT
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ITI. PROGRAM DSCHNIT
DSCHﬁIT (meaning Durchschnitt = average) is a FORTRAN IV program
which numerically integrates separate numerator and denominator func-
tions by the trapezoidal rule and gives their ratio. The trapezoidal
rule states

b
j £(x) ax = £(a) &%+ £(a + ax) ax + £{a + 200) Ax

a

+ ...+ £(b - ax) Ax+f(b)%’£. (BL)

In particular, define

B

ATTGR = fYNUN(x) dx + fYNUP(x) dx (BS)
A (o}
' 0 B

BITGR = f YDEN(x) dx + J YDEP(x) dx 3 (B6)
A (o}

then the result of the program calculation is

AITGR

DSNIT = SFrer - (BT)

All function statements at the beginning of the program listing
were necessary for the particular calculation of this work only and
may be replaced by any other YNUN(x), YNUP(x), YDEN(x), and YDEP(x)

statements which one desires to integrate. For this experiment

TUN(8) = -YDEN(8) = a(¢) {i-expl-2no, (o) (FP-a®¢?)%1}s (58)
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YNUP(¢) = YNUN(¢), and YDEP(¢) = YDEN(¢), where 01(¢), o,(4), 4, and
n ave cross sections, target sample distance, and scattering sample
densiity as explained in Chapter IV, Section II.

Two data cards are necessary to run the program. The first con-
tains integration 1limits, the number of intervals for the first inte-
gration, and the accuracy required of numerator and denominator. The
second data card lists the parameters necessary for the particular func-
tions to be integrated; hence, the READ (10,2000) statement must be
charged when new functions are substituted. Also all WRITE statements
except WRITE (9,6000) refer to the functions used by the program and

must be revised with the functions.

Data. Card Formats

Dats. Card £

Field Format Name Explanation
1-12 I12 N N = No. of intervals for the first integra-

tion. If the integration does not yield the
required accuracy, the second integration is
performed with 2N intervals, then 3N, LN,

etec. (If this field is left blank, N = 10.)

13-24 E12.4 A Lower integration limit.
25-36 El2.4 B Upper integration limit.
37-48 Ei2.L  SETNUM Maximum fractional error of the numerator =

| (AITGR(2) - ATITGR(1))/AITGR(2)|. The

program compares succeeding integrations and



Data Card I (cont'd)

Field Format Name

49-60 E12.4 SETDEN

61-T2 1I12 N@DEN

Data Card II

Field Format Name

1-12 El2.4 4
13-24 El12.4  n=AT@MS

25-36 El2.L SIGMAA

37-48 El2.4  SIGMAB

17k

Explanation

repeats the integration process until the
errors are within this 1limit.

Maximum fractional error of the denominator.
(If this field is left blank, SETDEN =
SETNUM. )

NPDEN.GE.1 sets the denominator = 1.0. This
option is provided in order that the program

may be used to evaluate single integrals.

Explanation

Source to sample distance

Scattering center density in molecules/cm3.

Total cross section 9, of the scattering

sample at an energy corresponding to ¢ = A.

Total cross section 02 of the scattering

sample at an energy corresponding to ¢ = B.

The program continues to read new parameters and reintegrate the

functions until it reads SETNUM.LE.0.0; thus a blank data card I ter-

minates the Job.

A listing of the program follows.



PROGRAM DSCHNIT (INPUT<OUTPUTTAPE1O=INPUTs TAPEI=0OUTPUT)

CIOMANINY =t ISTICMAR-SIOMAASS tR—-A}/iB-A}i ~SICHMAA
P(X)=1.0-1(2.71828) s+ (-2,0+ATOMS+*SIGMANI(X)eSGRT (ABS {(1.79426)~
2((ABS(X))es2,0)¢(Dse2,0)))))
SIGMASIX)=—=-1.,1422«x+0.44
SIGMAT(X) =-0.4569«x+0. 44
YOPNEX) ZSTGMAS({ X) «P (X))
YNUNIX) ZYDEN(X) X
YDEP(X)=STIGMAT(X)eP (X)
YNUP(X)ZYDEP(X) *X
7 REFAD(ININOCINeAeBe SETNUMSETDENNODEN
IF(SFTNUM.LFE.0.0) GO TO SO
71 READ(10+200C)DeATOMS+SIGMAA+SIGMAB
10G0 FORMAT (T12e4F12.4,112)
2030 FORMAT(U4F12.4)
1FI(N.LELOINZLIC
IF(SETDFN.LE-C.0)SETDEN=SETNUM
ADIFF -10.N*sSE TNUM
AlITGP~-0.0
BI16P=-0.0
AENOS=YNUN(A) +YNUP(B)
BENOS=-YDEN(A) +YDEP(R)
JT1
8 AITGR=N.O
IF(AOIFF.LE.SETNUMIGO TO 18
L=Je*N
ADELX=(B-A)/L
K=L-1
DO 10 I=1eK
OELX-T*ADFLX
XVALUF=-A+DELX
YZYNUN(XVALUE)
IF(XVALUE «GT.0.0) Y=ZYNUP (XVALUE)
10 AITGR=ATITGR+Y+ADELX

QLT



AITGR=ATITGR+AENDS «ADELX/2.0
ADIFF=ABS((AITGR-AITGP) /AITGR)
AITGP=AITGR
NENED!
GO 10 8
19 IF(NODEN.GE.1)6G0 TO 39
J=1
20 BITGR=0.0
M=JeN
BDELX=(B-A) /M
K=M-1
DO 30 I=1leK
DEL X=T+BDEL X
XVALUF=A+DELX
YZYDEN(XVALUE)
1F (XVALUE .6T.0.0) Y=YDEP (XVALUE)
30 BTTGR=-RITGR+Y«BDELX
BITGR=BITGR+BENDS«BDELX/2.0
BDIFF-ABS((BITGR-BITGP) /BITGR)
BITGP=RITGR
IF(RDIFF .LE.SETDENYGO TO 40
J=J+1
GO0 10 20
39 BITGP=1.0
40 DSNIY=AITGP/BITGP
wRITF(9.4000)

4000 FORMAT(1Hl1e1X+88HDENOMINATOR FUNCTION = SIGMA (SOURCE) s (1-Eesn-(2N+
2SIGMA(SCATTERING) eSQORT(Re «2=Dse2eXs2)) /1 Xe STHNUMFRATOR FUNCTION I
3S DENOMINATOR  XxX//)

WRITC (9.,5000) ATOMSeD
000 FORMAT(1Xel13HATOM DENSITY=elPE12.4/1X o1 6HSAMPLF DISTANCE= +E 12.4 //)
WRITEF(9¢6000) AITGPeLoeADELXeBITGPeMeBDEL Xo Ae BeDSNI To ADIFF.RD IFF

9LT



6000 FORMAT(1Xe5H NUMZ o 1PE12.4 012X e2HL =017 012X o6 HALELX =0 1IPE1 2.4V X oS H D
2:«:.:pzi?.«.izx.znﬁ:.ii.izx.SHBDELx:.1PE12.«//1x.2HA:.lpflz.u.xzx.
32HB=e1PE12.4/71X%Xe 16 HDSNIT =NUM/DEN = v 1PE12.47/1 Xoe SHNUMERROR =+ 1PE1 2
4.8012Xe9HDENERROR=, IPE12, 4) ~

WRITF(9.7000)SIGMAASIGMAR
7TQ00 FORMAT(2€12.4)
GO 10 7
S0 ST0P
S1 END

Ll




(Ba 57)

(Ba 66)

(Bo 61)

(Br 69)
(B 69)

(Co 63)

(cr 61)

(cz 6L4)

(Da 61)

(pi 68)

(Do 69)

(Ga 66)

(He 59)
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