LA 4334 \qquad 4, REPRODUCTION COPY

LOS ALAMOS SCIENTIFIC LABORATORY
of the
\qquad University of California
Wheveto ALAMOS, NEW MEXCO
\qquad
\qquad
\qquad 16. 5 MeV and 22.1 MeV Neutrons Ww Elastically Scattered from Gigúd Tritiom ond Liguld Deuterium

LEGAL NOTICE

This report was prepared as an account of Government spons̈ored work. Neither the United States, por the Commission, nor any person acting on behalf of the Commission:
A. Makes any warranty or representation, expressed or implied, with respect to the accu racy, completeness, or usefulness of the information contained in this report, or that the use of any information, apparatus, method, or process disclosed in this report may not infringe privately owned rights; or
B. Assumes any liabilities with respect to the use of, or for damages resulting from the use of any information, apparatus, method, or process disclosed in this report.

As used in the above, "person acting on behalf of the Commission" includes any employee or contractor of the Commission, or employee of such contractor, to the extent that such employee or contractor of the Commission, or employee of such contractor prepares, disseminates, or provides access to, any information pursuant to his employment or contract with the Commission, or his employment with such contractor.

LOS ALAMOS SCIENTIFIC LABORATORY of the University of California tos alamos - new mexico

Polarization Measurements of
$16.5-\mathrm{MeV}$ and $22.1-\mathrm{MeV}$ Neutrons Elastically Scattered from Liquid Tritium and Liquid Deuterium* by
Roger Kenneth Walter

[^0]
ABSTRACT

Cryogenic scattering samples of approximately one mole of liquid tritium and liquid deuterium were used in the measurement of $T(\vec{n}, \hat{n}) T$ and $D(\vec{n}, \hat{n}) D$ scattering. The source of $16.5-\mathrm{MeV},-54 \%$ polarized neutrons and of $22.1-\mathrm{MeV},+40 \%$ polarized neutrons was the $T(\mathbb{d}, \vec{n})^{4} \mathrm{He}$ reaction with an incident deuteron energy of 6.0 MeV . The left-right scattering asymmetries for laboratory angles from 40° to 118.5° were measured with a two-detector, time-of-flight spectrometer; and after neutron-gamma-ray discrimination was applied, the pulse height spectra were routed to an on-line computer for preliminary data analysis.

The measured asymmetry for $T(\vec{n}, \hat{n}) T$ at $E_{n}=22.1 \mathrm{MeV}$ is negative at angles forward of 95° (lab) and positive at larger angles. The extrema of the n-T polarizations are -60% at 85° (lab) and $+98 \%$ at 110° (lab). $T(\vec{n}, \hat{n}) T$ polarizations for $E_{n}=16.5 \mathrm{MeV}$ are negative at forward angles. $D(\vec{n}, \hat{n}) D$ polarizations at $E_{n}=22.1 \mathrm{MeV}$ are measured to be small and negative at forward angles and small and positive at back angles.

ACKNOWLEDGEMENTS

It required the cooperation of many persons to make this experiment a success. Especially appreciated are the efforts of advisors and coworkers, J. C. Hopkins, D. R. Dixon, J. D. Seagrave, J. T. Martin, and A. Niiler, who spent many nights at the accelerator laboratory and many days directing and guiding the author. The successful completion of this experiment is due in large part to the close collaboration of E. C. Kerr and R. H. Sherman who capably handled all of the cryogenic problems.

At the Los Alamos Van de Graaff accelerator laboratory, where the author must have set a record for number of accelerator hours per experiment, the maintenance and operating personnel were particularly helpful and patient. Also appreciated are J. Levin and M. Kellogg for assistance with on-line computer handling, and J. Elder and M. Peacock for friendly smiles and indispensable help with the grammar, the typing, and the computers. The experiment was also supported by other groups at Los Alamos Scientific Laboratory who provided shop work, radiation monitoring, electronics repair, computer programming assistance, and more.

Special appreciation is extended to Associated Western Universities for fellowship financial support while the experiment was being performed.

TABLE OF CONTENTS

PAGE
ACKNOWLEDGEMENTS iii
LIST OF TABLES viii
LIST OF FIGURES ix
CHAPTER
I. INTRODUCTION 1
The Problem 1
The Method 2
The Results 2
Content of Following Chapters 3
II. THEORY 4
Polarization and Double Scattering 4
Scattering Amplitudes and Phase Shifts 5
III. THE EXPERIMENT 12
Production and Scattering of the Neutron Beam 12
The Van de Graaff Accelerator and Mobley Buncher 12
Time of Flight 13
The Monitor 16
Double Scattering 17
Cryogenics 17
Counting Rate 23
Detecting the Neutrons 26
Detectors and Collimators 26
Neutron-Gamma-Ray ($n-\gamma$) Discrimination 29
Electronics 30
Slow side electronics 30
Fast side electronics 37
Normalization and Dead Time Corrections 38
The Measurements 40
$D(\vec{n}, \hat{n}) D$ and $T(\vec{n}, \hat{n}) T$ Asymmetries 40
$T(\alpha, \vec{n})^{4}$ He Source Polarizations 41
Artificial Asymmetries and Detector Efficiencies 41
Electronic Drift 42
IV. DATA ANALYSIS 44
Computer Analyses 44
On-Line Data Reduction 44
Program FLZEIT 45
Curve Fitting 53
Corrections to the Data 56
Effective Sample Position $\left\langle\theta_{1}\right\rangle$ 56
Detector Interchange and Artificial Asymmetries 58
Errors 60
Relative Errors 61
Absolute Errors 62
Point source assumption 63
Electronic drift 63
Geometry 64
$3^{H e}$ contamination 65
Inscattering 67
Multiple scattering 68
Summary 68
V. RESULTS 73
Source Polarizations 73
$T(\vec{n}, \hat{n}) T$ and $D(\vec{n}, \hat{n}) D$ Results 74
Phase Shift Analysis 77
Valuable Future Measurements 83
APPENDIX A: THE THEORY OF SCATTERING OF PARTICLES OF SPIN $\frac{1}{2}$
FROM A TARGET POSSESSING THE SAME SPIN 88
Justification of Non-Relativistic Treatment 88
Reaction Kinematics 89
Reaċtions 90
Lab to c.m. Angle Conversion 92
Quantum Theory of Spinless Scattering 95
The Equation of Relative Motion 95
Concepts of Cross Section 98
Separation of the Wave Equation 100
Angular momentum 104
Solution of the Radial Wave Equation 105
Phase shifts 109
Matrix Formulation of Spin $\frac{1}{2}$, Spin $\frac{1}{2}$ Scattering 112
U, I, O Formulation of Spinless Scattering 112
$\operatorname{Arctan} Q_{\ell}=\delta_{\ell}$ 114
CHAPTER PAGE
Extension to Include Spin Dependence 115
Cross Section in Terms of the U Matrix 123
Appearance of U for the $T(\vec{n}, \hat{n}) T$ Experiment 125
Polarization 126
Definition of $\mathrm{P}(\theta)$ 126
Double Scattering 134
Data Correction Formulae 137
Artificial Asymmetry Corrections 137
Detector Efficiency Correction 138
Multiple Scattering Corrections 139
APPENDIX B 141
Program FLZEIT 141
Program DSCHNIT 172
REFERENCES 178
I. $T(d, \vec{n})^{4}$ He Deuteron and Neutron Energies in $\mathrm{MeV}, \mathrm{P}_{1}\left(\theta_{1}\right)$
Neutron Polarizations, and Target-Sample Distances 16
II. Results of ${ }^{4} \mathrm{He}(\vec{n}, \hat{n})^{4} \mathrm{He}$ Artificial Asymmetry Measurements . . 60
III. Analysis of Asymmetries and Errors 69
IV. $T(d, \vec{n})^{4} H e ~ S o u r c e ~ P o l a r i z a t i o n s ~$ 74
V. $T(\vec{n}, \hat{n}) T$ Polarizations $P_{2}\left(\theta_{2}\right)$ 75
VI. $D(\vec{n}, \hat{n}) D$ Polarizations $P_{2}\left(\theta_{2}\right)$ 76
VII. Phase Shift Fits to the 22.1-MeV n-T Data 84
AI. Clebsch-Gordon Coefficients for Spin $\frac{1}{2}$, Spin $\frac{1}{2}$ Interactions 119
AII. Non-Zero U Matrix Elements for Spin $\frac{1}{2}$, Spin $\frac{1}{2}$ Scattering and $\ell_{\max }=3$ 127
AIII. Multiple Scattering Corrections 140

LIST OF FIGURES

FIGURE
PAGE

1. Double Scattering Geometry 7
2. Target-Detector Area Geometry for the Neutron

Polarization Experiment 15
3. View of the Equipment Used to Measure $D(\vec{n}, \hat{n}) D$ and

$$
T(\vec{n}, \hat{n}) T \text { Asymmetries } \quad \text {. } 19
$$

4. Outline Drawing of Equipment Used to Measure $D(\vec{n}, \hat{n}) D$ and $T(\vec{n}, \hat{n}) T$ Asymmetries21
5. Block Diagram of "Slow Side" Electronics 32
6. Block Diagram of "Fast Side" Electronics 34
7. A Typical Normalized Pulse Height Spectrum for $A T(\vec{n}, \hat{n}) T$
Foreground Run 48
8. A Typical Normalized Pulse Height Spectrum for Scattering
22.1-MeV Neutrons from the Evacuated Dummy Cell 50
9. The Subtracted Spectrum of $T(\vec{n}, \hat{n}) T$ Foreground and Dummy Cell Background Runs Illustrated in Figs. 7 and 8 52
10. Results of the Least Squares Curve Fitting Routine as Applied to the $T(\vec{n}, \hat{n}) T$ Subtracted Spectra 55
11. Geometry for the Calculation of $\left\langle\theta_{1}\right\rangle$ 57
12. $T(\vec{n}, \hat{n}) T$ Polarization Data at 22.1-MeV Incident Neutron
Energy 79
13. $D(\vec{n}, \hat{n}) D$ Polarization Results at $E_{n}=22.1 \mathrm{MeV}$ 81
14. Phase Shift Fits to the $22.1-\mathrm{MeV} \mathrm{n}-\mathrm{T}$ Cross Section and Polarization Data 86

FIGURE

PAGE

A1. The Reaction in Laboratory Coordinates 90
A2. Elastic Scattering in Lab anic.m. Reference Frames 94
A3. P, A, R, D, C Parameters Defined 131

CHAPTER I

I. THE PROBLEM

Previous measurements of the neutron polarization from $T(\vec{n}, \hat{n}) T$ elastic scattering* were limited to one set of data at l.1-MeV incident neutron energy (Se 60) and to predictions from phase shift calculations (To 66) of cross section data (Se 60) at $1.0,2.0,3.5$, and 6.0 MeV . Even measurements on the ${ }^{3} \mathrm{He}(\overrightarrow{\mathrm{p}}, \hat{\mathrm{p}})^{3} \mathrm{He}$ charge-conjugate system are scarce above $14 \mathrm{MeV}(\mathrm{Ti} 68)$. Part of the reas on for this, of course, is the difficulty of obtaining appropriate scattering samples of $3^{3}(=T)$ and 3^{3}.

In spite of the difficulty of the experiments, however, understanding of internucleon forces depends upon the analysis of few-nucleon interactions. As a consequence, special efforts to measure scattering of single nucleons from very light nuclei are well justified. The data to be obtained from $D(\vec{n}, \hat{n}) D$ and $T(\vec{n}, \hat{n}) T$ elastic scattering promised to be of significance, and it is with these two interactions that the present work is concerned.

Differential elastic scattering cross sections for $D(n, n) D$ at incident neutron energies between 5.6 MeV and 23 MeV and $T(n, n) T$ between 6 MeV and 23 MeV have been measured by Hopkins, Seagrave, Kerr,
*The notation used here (and throughout the discussion) is borrowed from P. W. Keaton (Ke 69a). $\overrightarrow{\mathrm{n}}$ represents a polarized neutron beam. \hat{n} is the measured neutron asymmetry. $T(\vec{n}, \hat{n}) T$ and $T(n, \vec{n}) T$ are equivalent for elastic scattering if time reversal holds (see Appendix A, Double Scattering).
and Sherman at the Los Alamos Scientific Laboratory (LASL) (Se 67, Se 69), and the present polarization measurements for the same interactions are a valuable supplement to the cross section information.
II. THE METHOD

A cryogenic system built at LASL (Se 67 and Chapter III herein) provided $23.5-\mathrm{cm}^{3}$ liquid scattering samples of the hydrogen isotopes, and another cryostat provided an identical sample of liquid ${ }^{4} \mathrm{He}$. The ${ }^{4}$ He was used in the determination of the source polarizations and artificial asymmetries. An accelerated, bunched beam of deuterons produced pulses of polarized neutrons from the $T(d, \vec{n})^{4}$ He reaction, and these neutrons were scattered from the hydrogen isotope and ${ }^{4} \mathrm{He}$ samples.

Detection and energy resolution of the scattered neutrons were accomplished by two 5-inch diameter liquid-scintillator, photomultiplier detector packages in a time-of-flight system, and signals remaining after neutron-gamma-ray discrimination were routed to an on-line computer for preliminary analysis.

III. THE RESULTS

The data show some very striking features, especially the $T(\vec{n}, \hat{n}) T$ asymmetries at $22.1-\mathrm{MeV}$ incident neutron energy. The results are unique in that the $n-T$ polarizations appear larger in magnitude than the chargeconjugate $\mathrm{p}^{3}{ }^{3}$ He polarizations at similar energies ($\mathrm{Ti}_{\mathrm{i}} 68$). The limited n-T data for $16.5-\mathrm{MeV}$ incident neutrons are valuable for establishing the shape and sign of the polarization curve at forward angles, and the 22.1-MeV n-D polarizations confirm previous results (Ma 66). A
phase-shift analysis was made for $n-T$ scattering at 22.1 MeV , but a unique solution must await further experiments.
IV. CONTENT OF FOLLOWING CHAPTERS

Chapter II of this text outlines the theory of polarization, double scattering, and interactions between nucleons and spin $\frac{1}{2}$ nuclei. In Chapter III the experimental method is examined in detail, especially the physical equipment and electronics used in performing the experiment. The procedures involved in the analysis of the data are described in Chapter IV, which also includes a section on the determination of errors and lists the measured asymmetries and errors. In the fifth chapter the final results of the measurements and phase shift analysis are tabulated and discussed. Finally at the end of the text are two appendices which treat the theory and explain the data-analysis computer programs in more detail than could be done in Chapters II and IV without sacrificing continuity.

Only the important results of a theoretical analysis of polarization effects are outlined in this chapter in order to avoid breaking the continuity of the discussion with many pages of mathematical detail. Because it is important that a more complete analysis of the spin $\frac{1}{2}$, spin $\frac{1}{2}$ scattering be collected in one place, the detailed development of this theory can be found in Appendix A.

I. POLARIZATION AND DOUBLE SCATTERING

If $\vec{k}_{\text {in }}$ and $\vec{k}_{\text {sc }}$ are the wave vectors of incident and scattered beams, and the incident channel spin for collision of particles 1 and 2 is $\vec{\sigma}=\frac{1}{2}\left(\vec{\sigma}_{1}+\vec{\sigma}_{2}\right)$, then the differential cross section for scattering through an angle θ in the presence of spin-orbit and spin-spin interaction potentials is

$$
\begin{equation*}
\sigma(\theta, \phi)=[I(\theta)+I(\theta) \text { 吉 }(\theta) \bullet \hat{\eta}]=I(\theta)[1+P(\theta) \cos \phi], \tag{II-I}
\end{equation*}
$$

where $I(\theta)$ is the spin-independent cross section, $\vec{P}(\theta)$ is a vector with a magnitude less than or equal to unity and she direction of the incident channel spin, and $\hat{n}=\left(\vec{k}_{\text {in }} \times \vec{k}_{s c}\right) /\left(k^{2} \sin \theta\right)$ is the normal to the plane of the scattering. ϕ is the angle between the incident channel spin and the normal to the scattering plane. In the special case of scattering of nucleons from a spinless target

$$
\begin{equation*}
P(\theta)=(N t-N t) /(N t+N t) \tag{II-2}
\end{equation*}
$$

where $N \uparrow$ and $N \downarrow$ are the number of particles scattered with spins up and down with respect to the scattering plane. Hence, $\vec{P}(\theta)$ is called the polarization of the interaction.

For double scattering as shown in Fig. 1 , first through angle θ_{1}, then again through an angle θ_{2}, the cross section is

$$
\begin{align*}
\sigma\left(\theta_{1}, \theta_{2}, \phi_{12}\right) & =I\left(\theta_{1}\right) I\left(\theta_{2}\right)\left[1+P_{1}\left(\theta_{1}\right) \cdot P_{2}\left(\theta_{2}\right)\right] \\
& =I\left(\theta_{1}\right) I\left(\theta_{2}\right)\left[1+P_{1}\left(\theta_{1}\right) P_{2}\left(\theta_{2}\right) \cos \phi_{12}\right] \tag{II-3}
\end{align*}
$$

where ϕ_{12} is the angle between the two scattering planes. For the most common case when both scatterings are in the same plane, the asymmetry e is found by allowing $\phi_{12}=0$ and $\phi_{12}=\pi$ in Eq. (II-3), so that

$$
\begin{equation*}
e=P_{1} P_{2}=(L-R) /(L+R) \tag{II-4}
\end{equation*}
$$

L and R are the numbers of particles scattered through angle θ_{2} to the left and right, respectively.
II. SCATTERING AMPLITUDES AND PHASE SHIFTS

The spin-independent Schrödinger wave equation is written

$$
\begin{equation*}
\left(\nabla^{2}+k^{2}-U_{c}\right) \psi(\vec{r})=0 \tag{II-5}
\end{equation*}
$$

where the central potential $U_{c}=\left(2 m / h^{2}\right) V_{c}(r), m=$ the reduced mass of the two-particle system, and $r=\left|\vec{r}_{1}-\vec{r}_{2}\right|$. The differential cross section can be related to a scattering amplitude $f(\theta)$ by the equation

$$
\begin{equation*}
\sigma(\theta)=|f(\theta)|^{2} \tag{II-6}
\end{equation*}
$$

Figure 1. Double Scattering Geometry.

if the wave function is considered to be a sum of incident and scattered waves. For an incident plane wave

$$
\begin{align*}
\psi & =\psi_{\text {in }}+\psi_{\text {Sc }} \\
& =\exp (i k z)+f(\theta) \exp (i k r) / r \tag{II-7}\\
& =\sum_{\ell} A_{\ell}(k r)^{-1} \sin \left(k r-(\ell \pi / 2)+\delta_{\ell}\right) P_{\ell}(\cos \theta) .
\end{align*}
$$

The last summation over orbital angular momentum states, ℓ, holds only for large r; and δ_{ℓ} represents a shift in phase of the scattered wave with respect to the incident plane wave. In this formulation

$$
\begin{equation*}
\mathrm{f}(\theta)=\frac{1}{2} \mathrm{ik}-1 \sum_{\ell}(2 \ell+1)\left(1-\mathrm{U}_{\ell}\right) \mathrm{P}_{\ell}(\cos \theta) \tag{II-8}
\end{equation*}
$$

and

$$
U_{\ell}=\exp \left(2 i \delta_{\ell}\right)
$$

If Q is defined

$$
i Q_{\ell}=\left(U_{\ell}-1\right)\left(U_{\ell}+1\right)^{-1}
$$

then

$$
\begin{equation*}
\delta_{\ell}=\arctan Q_{\ell} . \tag{II-9}
\end{equation*}
$$

If it is assumed that spin-dependent scattering can be approximated by a potential containing spin-orbit and spin-spin interaction terms, then the wave equation becomes (Appendix A and Wu 62)

$$
\begin{equation*}
\left(\nabla^{2}+k^{2}-W\right) \psi(\vec{r}, \vec{\sigma})=0 \tag{II-10}
\end{equation*}
$$

where

$$
W=\left(2 m / h^{2}\right)\left[V_{c}(r)+(\vec{l} \cdot \vec{S}) V_{\ell S}(r)+T V_{T}(r)\right] .
$$

\vec{l}, \vec{S} are the orbital and spin angular momenta of the two-particle system, T is a spin-spin tensor,

$$
T=\left[\frac{3\left(\vec{\sigma}_{1} \cdot \vec{r}\right)\left(\vec{\sigma}_{2} \cdot \vec{r}\right)}{r^{2}}-\vec{\sigma}_{1} \cdot \vec{\sigma}_{2}\right],
$$

and $\vec{\sigma}_{1}, \vec{\sigma}_{2}$ are the spin vectors for the incident particle and scatterer, respectively. Then the wave function is conveniently written

$$
\begin{align*}
\psi(\vec{r}, \vec{\sigma}) & =\psi_{i n}+\psi_{s c} \\
& =\exp (i k z) x^{s}+\sum_{s^{\prime}} f_{s s^{\prime}}(\theta, \phi) x^{s^{\prime}} \exp (i k r) / r \\
& =\sum_{c} c_{c}\left(I_{c}-\sum_{c^{\prime}} U_{c^{\prime} c} o_{c^{\prime}}\right) \tag{II-11}
\end{align*}
$$

where $C_{c}=i \pi^{\frac{3}{2}} k^{-1}(2 \ell+1)^{\frac{1}{2}}, x^{s}, x^{s^{\prime}}$ represent spin vectors of incident and exit channels, respectively, c, c^{\prime} represent the incident and exit angular momentum quantum states (ℓ, m, J, M) and ($\ell^{\prime}, m^{\prime}, J^{\prime}, M^{\prime}$), and

$$
\begin{aligned}
& I_{c}=\left[i^{\ell} \exp [-i(k r-\ell \pi / 2)] G_{m}^{J M \ell} Y_{\ell m}(\theta, \phi) x^{s}\right] / r, \\
& 0_{c}=\left[i^{2} \exp [i(k r-\ell \pi / 2)] G_{m}^{J!/ \ell} Y_{\ell m}(\theta, \phi) x^{s}\right] / r
\end{aligned}
$$

The $G_{m}^{J M l}$ are the Clebsch-Gordon coefficients given in Appendix A in

Table AI, and the $Y_{\ell m}(\theta, \phi)$ are normalized spherical harmonics. Then

$$
\begin{align*}
f(\theta, \phi, \vec{\sigma}) & =\sum_{s^{\prime}} f_{s s^{\prime}}(\theta, \phi) x^{s^{\prime}} \\
& =\frac{i \pi^{\frac{3}{2}}}{k} \sum_{c c^{\prime}}(2 \ell+1)^{\frac{1}{2}}\left[\left(\frac{2 \ell+1}{4 \pi}\right)^{\frac{1}{2}} G_{c} P_{\ell}(\cos \theta) x^{s}\right. \tag{II-12.}\\
& \left.-U_{c^{\prime} c^{\prime}} G_{c^{\prime}} Y_{\ell^{\prime} m^{\prime}}\left(\theta^{\prime}, \phi^{\prime}\right) x^{s^{\prime}}\right], \\
\sigma(\theta, \phi) & =|f(\theta, \phi, \vec{\sigma})|^{2}, \tag{II-13}
\end{align*}
$$

and

$$
\begin{equation*}
P(\theta)=[\sigma(\theta, \phi)-I(\theta)] / I(\theta), \tag{II-14}
\end{equation*}
$$

where

$$
I(\theta)=\sum_{i}\left|f_{i i}\right|^{2}
$$

$=$ the differential cross section in the absence of mixing of quantum states between incident and exit channels.

In the spin-dependent analysis $U_{c^{\prime} c}$ is a matrix relating outgoing angular momentum states to the incident states. Mixing between states occurs when allowed by conservation of total angular momentum J and parity $(-1)^{\ell}$. U is guaranteed unitary and symmetric by conservation of probability and time reversal properties, and is diagonal with elements $U_{\ell}=\exp \left(2 i \delta_{\ell}\right)$ when no mixing occurs. Thus, if a matrix Q is defined such that in matrix notation

$$
\begin{equation*}
i Q=(U-1)(U+1)^{-1}, \tag{II-15}
\end{equation*}
$$

then the phase shifts are defined in analogy with the diagonal case as

$$
\begin{equation*}
\delta_{i j}=\arctan ^{-1} Q_{i j} \tag{II-16}
\end{equation*}
$$

In the present $T(\vec{n}, \hat{n}) T$ experiment for neutrons with $22-\mathrm{MeV}$ incident energy, the orbital angular momentum quantum number was limited to $\ell_{\text {max }}=3$ in which case U is a 14 by 14 matrix with 10 non-zero, offdiagonal, state-mixing elements. The explicit form of U is given in Appendix A, Table AII.

The above analysis points out the relationship between the measurable quantities, asymmetry and cross section, and the postulated nuclear interaction potentials. The connection is achieved via the scattering amplitude $f(\theta)$, the phase shifts $\delta_{i j}$, the scattering matrix U, the wave function $\psi(\vec{r}, \vec{\sigma})$, and finally the Schrödinger wave equation itself. For the description of the present experiment, the important concepts are the polarization $P(\theta)$ and the asymmetry e defined for double scattering by Eqs. (II-3) and (II-4).

This chapter describes the method and the equipment involved in the measurements performed during the present experiment. How the polarized neutron beam was produced, the geometry of the problem, and the description of the cryogenic scattering samples are treated in Section I. Section II describes the detectors, collimators, and electronics; and in the last section the various measurements necessary for obtaining the desired results are discussed.
I. PRODUCTION AND SCATTERING OF THE NEUTRON BEAM

The Van de Graaff Accelerator and Mobley Buncher

The Los Alamos vertical Van de Graaff accelerator and Mobley buncher were used to produce a pulsed beam of deuterons with a repetition rate of 2 MHz and a pulse jength of 1 nsec at the center of a tritium gas target. The principles of Van de Graaff electrostatic accelerator operation are described elsewhere (He 59, Va 46); Cranberg et al. have explained the details of a Mobley buncher system (Cr 61); and the features of the Los Alamos pulsed fast neutron research facility are discussed by Hopkins et al. (Ho 67).

Basically the deuteron beam is swept across an aperture near the high voltage head of the accelerator to produce a chopped $2-1 M H z$ beam of lo-nsec length pulses. The deuteron pulses pass between a pair of
deflector plates located just upstream of a 90° bending, focusing magnet. An rf voltage is applied to the deflector plates in phase with the arrival of the deuteron pulse so that the pulse is fanned out, and those deuterons arriving at the magnet first are forced to travel the longest path along the outer edge of the magnet. The effect of the magnet is to focus all of the deuterons in the $10-n s e c$ pulse on the target at the same time. Figure 2 illustrates this effect. In practice one obtains a burst of deuterons on target for approximately 1 nsec in each 500-nsec period.

Time of Flight

The target upon which the bursts of deuterons impinged in the present experiment was a l-cm-diameter, l-cm-long cylindrical cell filled with tritium gas at ~ 60 psig pressure. The deuterons entered the cell from the beam tube, which is maintained at $\sim 10^{-6}$ Torr, through a $9.6-$ $\mathrm{mg} / \mathrm{cm}^{2}$ molybdenum foil window. The Van de Graaff accelerating energy was boosted to compensate for energy losses in the tritium and in the foil in order to obtain the appropriate deuteron energy at the center of the target. These energies and energy losses are tabulated in Table I. The $T(\vec{d}, \vec{n})^{4} \mathrm{He}$ neutron energies in the table were obtained from the reaction Kinematics analysis of Appendix A, Section II. These particular energies and angles were chosen to correspond to the maximum, minimum, and zero polarization of the neutrons.

An induced "stop" pulse is picked off a cylinder at a point just before the deuteron burst enters the target. The stop pulse gives a "zero time" reference; i.e., the time at which the $T(d, \vec{n})^{4}$ He neutrons

Figure 2. Target-Detector Area Geometry for the Neutron Polarization Experiment.

TABLE I
$T(d, \vec{n})^{4}$ He Deuteron and Neutron Energics in $\mathrm{MeV}, \mathrm{P}_{1}\left(\theta_{1}\right)$ Neutron Polarizations, and Target-Sample Distances.

$\begin{gathered} \mathrm{E}_{\mathrm{d}} \\ \text { accel- } \\ \text { erator } \\ \hline \end{gathered}$	$\begin{gathered} \Delta E \\ \text { foil } \\ \hline \end{gathered}$	$\begin{aligned} & \Delta \mathrm{E} \\ & \text { gas } \end{aligned}$	$\begin{gathered} \mathrm{E}_{\mathrm{d}} \\ \text { target } \\ \text { center } \\ \hline \end{gathered}$	$\begin{gathered} \theta_{1}(1 a b) \\ \operatorname{deg} \\ \hline \end{gathered}$	E_{n}	$P_{1}\left(\theta_{1}\right)$ neutron polari- zation	$\begin{gathered} \text { d(cm) } \\ \text { target } \\ \text { sample } \\ \text { distance } \\ \hline \end{gathered}$
6.57	0.51	0.06	6.00	29.8	22.1	0.40	10.2
6.57	0.51	0.06	6.00	89.8	16.5	-0.54	7.5
3.10	0.96	0.14	2.00	29.8	17.8	0.0	10.2

were produced. The neutrons were scattered from the sample a short distance d from the target and were detected by the scintillator, photomultiplier packages at the end of a $2.55-m$ flight path, D. The time elapsed between the stop pulse and the arrival of the neutrons at the detectors is a measure of the scattered neutron energy. In fact, nonrelativistically,

$$
\begin{equation*}
t(\text { nsec })=72.3 D(\text { meters }) /\left[E_{n}(\mathrm{MeV})\right]^{\frac{1}{2}} \tag{III-I}
\end{equation*}
$$

and the time-of-flight system is an excellent spectrometer which separates neutrons according to their energies.

The Monitor

In addition to the detectors at $\theta_{2 L}$ and $\theta_{2 R}$ shown in Fig. 2, a third detector, the "neutron monitor," was located above the target at 110° to the incident beam direction. The collimator of this detector
can be seen in Figs. 3 and 4. The monitor effectively counted the neutrons produced and allowed consecutive measurements to be made for the same numbers of neutrons thus compensating for fluctuations in deuteron beam intensity.

Double Scattering

The polarizations $P_{l}\left(\theta_{1}\right)$ of the neutrons produced in the $T(d, \vec{n})^{4} \mathrm{He}$ reaction are given in Table I. Scattering the polarized neutrons from the liquid hydrogen isotopes produced a left-right asymmetry from which the $n-D$ or $n-T$ polarization $P_{2}\left(\theta_{2}\right)$ was determined by applying the double scattering equation (II-4); thus,

$$
P_{2}\left(\theta_{2}\right)=e / P_{1}\left(\theta_{1}\right)=(L-R) /\left[(L+R) P_{1}\left(\theta_{1}\right)\right]
$$

L and R, the total numbers of elastically scattered neutrons detected in the left and right detectors, respectively, were determined by scattering the neutrons from the sample and then subtracting the "background" data obtained by scattering the neutrons from an identical empty dummy cell for an equal number of monitor counts.

Cryogenics

Members of the Los Alamos Scientific Laboratory cryogenics group, especially E. C. Kerr and R. H. Sherman, built cryogenic systems for containing the liquid hydrogen isotopes and liquid ${ }^{4}$ He scattering samples. The so-called chariot with the two cryostats for liquid deuterium and tritium can de seen in Figs. 3 and 4. The system has been described by Seąrave (Se 67).

Figure 3. View of the Equipment Used to Measure $D(\vec{n}, \hat{n}) D$ and $T(\vec{n}, \hat{n}) T$ Asymmetries. (This photograph is diagrammed and labeled in Fig. 4.)

Figure 4. Outline Drawing of Equipment Used to Measure $D(\vec{n}, \hat{n}) D$ and $T(\vec{n}, \hat{n}) T$ Asymmetries.

Basically the cells at the tips of the cryostats are two concentric, cylindrical, stainless steel cans; the inner cell with 3-mil-thick walls contains the liquid scattering sample, and there is a vacuum jacket between the inner cell and the outer can which has 4 -mil-thick walls. The inner cell dimensions are $1.34-\mathrm{cm}$ radius R and $4.17-\mathrm{cm}$ length; hence, the cell volume is $23.5 \mathrm{~cm}^{3}$ or, in the case of tritium, approximately 1 mole or 60,000 curies. The tritium and deuterium were cooled and liquified by a liquid hydrogen jacket in the upper dewars.

The tritium half life for $18.6-\mathrm{keV} \beta$ decay is 12.26 yr . This substance is extremely dangerous when released to the atmosphere since it replaces normal hydrogen in water molecules, and is easily ingested and absorbed into the human body. Thus, especially in the handling of the ~ 30 liters at STP which were used to produce the $23.5-\mathrm{cm}^{3}$ liquid tritium scattering sample, it was necessary that detailed standard operating procedures be strictly followed; and radiation monitoring personnel from the LASL Health Physics Division were required in the building at all times.

A cryostat to contain liquid ${ }^{4}$ He was also built by the cryogenics group and mounted on a separate stand. The cell was identical to that containing the hydrogen isotopes so that measurements of scattering from the different nuclei could be easily compared. Otherwise, the cryostat designs were slightly different since the precautions taken to insure a sealed system for tritium and deuterium were not necessary for ${ }^{4}$ ie. In addition, an evacuated dummy cell of identical dimensions and construction was provided to facilitate making background measurements.

Counting Rate

Before proceeding with a discussion of the detectors and electronics, it will be instructive to examine the counting rates involved in the experiment.

Normally the integrated deuteron beam current on the tritium gas target was

$$
i_{d}=3 \mu \mathrm{amp}=1.88 \times 10^{13} \text { deuterons } / \mathrm{sec}
$$

The number of $22.1-\mathrm{MeV}$ neutrons produced in the $T(\mathrm{~d}, \overrightarrow{\mathrm{n}})^{4} \mathrm{He}$ reaction at $\theta_{1}=30^{\circ} \mathrm{lab}$, scattered from the tritium sample, and reaching the detector per second is

$$
N=I_{1}\left(\theta_{1}\right) \times f_{1} \times f_{e 1} \times f_{2}\left(\theta_{2}\right)
$$

where $I_{1}\left(\theta_{1}\right)$ is the intensity of neutrons from the $T(d, n)^{4} H e$ interaction incident on the liquid tritium scattering sample,

$$
I_{1}\left(\theta_{1}\right)=\left[i_{d} \sigma_{1}\left(\theta_{1}\right) n_{T} \ell \Omega\right] ;
$$

f_{1} is the fraction of the incident neutron beam which interacts with the tritium sample,
$f_{1}=\left[1-\exp \left(-\eta_{T} t \sigma_{T}\right)\right] ;$
$f_{e l}$ represents the fraction of elastic scatterings,
$f_{e l}=\sigma_{e l} / \sigma_{T} ;$ and
f_{2} is the fraction of elastic interactions which reach the detector, $f_{2}=\sigma_{2}\left(\theta_{2}\right) \omega / \sigma_{e l}$.

Therefore,

$$
\begin{equation*}
N=\left[i_{d} \sigma_{1}\left(\theta_{1}\right) n_{T} \ell \Omega\right]\left[1-\exp \left(-n_{T} t \sigma_{T}\right)\right]\left[\sigma_{2}\left(\theta_{2}\right) \omega / \sigma_{T}\right], \tag{III-2}
\end{equation*}
$$

where

$$
\begin{aligned}
\sigma_{1}\left(\theta_{1}\right) & =T(d, n) \text { differential cross section } \\
& =12 \mathrm{mb} / \mathrm{sr} \text { at } \theta_{1}=30^{\circ} 1 \mathrm{ab}
\end{aligned}
$$

$$
n_{T}=\text { triton density in the target gas }
$$

$$
=2.35 \times 10^{20} \text { tritons } / \mathrm{cm}^{3} \text { at } 60 \text { psig, } 30^{\circ} \mathrm{C},
$$

$$
\ell=\text { effective target length }=1 \mathrm{~cm},
$$

$$
\Omega=\text { solid angle subtended by the scattering sample }
$$

$$
=0.107 \mathrm{sr} \text { at } \mathrm{d}=10.2 \mathrm{~cm},
$$

$$
\sigma_{T}=\text { total } n-T \text { cross section }
$$

$$
=610 \mathrm{mb} \text { at } \mathrm{E}_{\mathrm{n}}=22 \mathrm{MeV} \text {, }
$$

$$
\sigma_{2}\left(\theta_{2}\right)=T(n, n) T \text { differential cross section }
$$

$$
=83 \mathrm{mb} / \mathrm{sr} \text { at } \theta_{2}=40^{\circ} \mathrm{lab},
$$

$$
=3 \mathrm{mb} / \mathrm{sr} \text { at } \theta_{2}=100^{\circ} \mathrm{lab},
$$

$$
n_{T}=\text { triton density in the liquid sample }
$$

$$
=5.2 \times 10^{22} \text { tritons } / \mathrm{cm}^{3},
$$

$$
t=\text { effective sample thickness }=\pi R / 2
$$

$$
=2.105 \mathrm{~cm},
$$

$\omega=$ solid angle subtended by the $4^{\prime \prime} \times 5^{\prime \prime}$ detector

$$
=0.0020 \mathrm{sr} .
$$

Thus, the number of elastically scattered neutrons arriving at the detector is
$N=100$ neutrons $/ \mathrm{sec}$ at $\theta_{2}=40^{\circ} \mathrm{lab}$
≈ 4 neutrons $/ \mathrm{sec}$ at $\theta_{2}=100^{\circ}$ lab.

However, the neutron counting rate in the detector is

$$
R=\varepsilon \mathbb{N},
$$

where ε is the detector efficiency,

$$
\begin{aligned}
\varepsilon(E)= & {\left[1-\exp \left(-n \sigma_{H} x\right)\right](1-B / E), } \\
n= & \text { scintillating ion density } \\
\simeq & \left(6 \times 10^{23} \text { atoms } / \mathrm{mole}\right)\left(1 \mathrm{gm} / \mathrm{cm}^{3}\right) /(13 \mathrm{gm} / \mathrm{mole}) \\
= & 4.62 \times 10^{22} \text { atoms } / \mathrm{cm}^{3}, \\
\mathrm{x}= & \text { scintillator thickness }=5.1 \mathrm{~cm}, \\
\sigma_{H}= & p(n, n) \mathrm{p} \text { cross section } \simeq 1 \text { barn, and } \\
B= & \text { bias level } \simeq 2 \mathrm{MeV} \text { for neutrons (see "Slow side electronics," } \\
& \text { this chapter) }
\end{aligned}
$$

so that at energies $\sim 10 \mathrm{MeV}$

$$
\varepsilon \simeq 0.17
$$

and

$$
\begin{aligned}
R & \simeq 17 \text { neutron counts } / \mathrm{sec} \text { at } \theta_{2}=40^{\circ} \mathrm{lab} \\
& \simeq 1 \text { neutron count } / \mathrm{sec} \text { at } \theta_{2}=100^{\circ} \mathrm{lab} .
\end{aligned}
$$

Note, however, that R is only the elastic neutron counting rate and that the total counting rate per detector includes all the background and was actually measured to be $R_{A} \sim 200 \mathrm{R}$ counts/sec from the detector anodes and $R_{D} \sim 10 \quad R$ after discrimination. Thus, even without examining the data in detail one can see that the elastically scattered neutrons are only a small part of the data; and the time-of-flight system was valuable for separating the elastic neutrons, which were concentrated in ~20 channels of the time spectrum, from the back.eround, which was spread over the entire 256 channel wide spectrum.

II. DETECTING THE NEUTRONS

Detectors and Collimators

The detector packages used in the present experiment consisted of $4^{\prime \prime} \times 5^{\prime \prime} \times 2^{\prime \prime}$ liquid scintillators mounted on the face of 5-in.-diameter 58-AVP photomultiplier tubes. The scintillator glass envelopes were blown in the Los Alamos glass shop and ground optically flat by LASL group GNX-9 personnel. The glass envelopes were then sent to Nuclear Enterprises Ltd., Winnipeg (now at San Carlos, California), to be filled with a "cyclo-sol"* base liquid scintillating material, NE218; and all faces of the scintillator except, of course, the face applied to the photomultiplier tube, were coated with reflecting paint. The visible portion of the scintillators was made bubble free by means of a glass filling bubble on the face away from the photomultiplier tube and hidden from the photomultiplier tube by the reflecting paint. With a little dexterity and considerable patience all air bubbles could be transferred from the visible main envelope to the attached filling bubble, and care was used throughout the experiment not to tip the detectors in order not to reintroduce air bubbles into the visible region. NE218 exhibits a reasonable pulse height and a marked difference in pulse shape between light pulses produced by recoil protons, from incident neutrons, and recoil electrons, from incident gamma rays (Re 66). The latter property is important in neutron-gamma-ray discrimination described later in this section. The photomultiplier tubes were mounted inside high permeability metal cylinders to avoid possible changes in amplification character-

[^1]istics due to stray magnetic fields.
The detectors were surrounded by massive shields as shown in Figs. 3 and 4. The shields for left and right detectors were essentially antisymmetric to each other. Two inches of copper and tungsten formed the inner shield around the detectors, and this shield was in turn surrounded by ~ 2 feet of polyethylene for attenuating slow neutrons. On the sides of the detectors towards the accelerator beam tube the copper shielding was increased to more than l-foot thickness to attenuate the high-energy neutrons originating from this area, and at the level of the detectors another 1 inch of copper was stacked around the periphery of the shields.

Cantilevered and supported by "battleship anchor chains," the copper and tungsten collimators extended from the face of the detectors to within a few centimeters of the scattering sample. The purpose of these collimators, of course, was to prevent the detector from seeing the neutron producing target and to insure that only the neutrons scattered from the sample actually entered the detectors. The collimators consisted of copper blocks 4 in . thick on the beam tube side and 2 in. thick on the opposite side. The last 10 in . of the collimator snouts nearest the tritium target were tungsten. Tests were made of the effectiveness of the shielding and collimation by using a crane on which oneton blocks of concrete were suspended at various positions around the shielding-detector carts. It was determined from these attempts to measure the difference in background levels due to added shielding that the collimators and shiclding were sufficiently heavy so that there would be no advantage in increasing their thicknesses by several feet.

It should be pointed out that the neutron monitor was also provided with a rather massive copper collimator which can be seen in the figures. The detectors with their shielding and collimators were mounted upon carts which in turn rode on rails upon two turntables. The carts were positioned so that the detectors were at a fixed distance $D(=255 \mathrm{~cm})$ from the scattering sample. The pivot point of the left turntable was positioned directly under the sample, and the left detector and collimator rotated about this point. The pivot of the right turntable was of necessity placed some distance from the sample position, and the turret base of the cart was utilized to keep the right collimator pointed at the scattering sample.

Angles θ_{2} of the detectors with respect to the neutron beam line were found to be most easily and accurately measured with a transit, mirror system suggested by B. Brixner at LASL. A front-surfaced mirror on a small calibrated turntable was placed at the scattering sample position and a transit was positioned some 20 feet away on the targetsample line. The zero degree mirror position was determined by looking through the transit and rotating the mirror until the image of the transit was in line with the transit cross hairs. Then the mirror was turned to half of the desired detector position angle θ_{2}, the collimator turntable was rotated until the transit operator was observing the center of a scale placed at the detector position, and the angle θ_{2} was marked on the floor. Checks of these measurements in a variety of other ways found θ_{2} to be accurate and reproducible to within 0.05°.

Neutron-Gamma-Ray ($n-y$) Discrimination

The 58-AVP photomultiplier tubes were powered through modified NE5553A* pulse shape discriminator (PSD) bases. The serial numbers on these tube bases, 66 and 60 , were used throughout the experiment to identify the detectors. In the scintillation counters a single pulse from the photomultiplier tube can be described as the sum of two exponential decays; the fast part of the pulse has a decay time of about 6 nsec and the slow part typically decays in $200-400 \mathrm{nsec}$. For recoil protons produced in the scintillator by neutrons the amplitude of the slow component is about 2% of the fast component, whereas for electrons produced in the scintillator by gamma rays the slow component is only about 1% as large as the fast component. The Daehnick and Sherr pulse shape discriminator circuit (Da 61) incorporated into the NE5553A tube base uses this difference in amplitude of the slow decay to produce positive output signals for neutrons and negative signals for gamma rays.

Normally the output signals of the Daehnick and Sherr circuit are amplified and routed through a discriminator in the tube base. However, D. R. Dixon ($\mathrm{D}_{\mathrm{i}} 68$) modified the units somewhat by routing the output of the PSD circuit through an amplifier and line-driver designed by himself and LASL group P-1; the amplified PSD signals were routed outside the tube base without discrimination in order to allow external monitoring of and discrimination on the signals. The PSD circuits were carefully adjusted so that they were about 99.8%

[^2]effective in rejection of all gamma rays encountered in the experiment.

Electronics

Figures 5 and 6 are block diagrams of the "slow" and "fast" electronics used in the experiment. Basically the problem to be solved by the electronics is to take three signals from each detector, discriminate against gamma rays and low energy neutrons, correct for electronic dead time, mix the signals, provide pulses to the on-line SDS 930 computer which separate the particles according to the detectors they entered, and store the time spectra in the on-line computer. The signals taken from the detectors were:

1. a linear signal with 20 to 0.1 volt amplitude, dependent upon incident particle energy, and with about a $20-\mu \mathrm{sec}$ decay time constant;
2. the $n-\gamma$ signal from the Dixon amplifier, line-driver with 20 to 0.5 volt positive amplitude for neutron produced recoil protons and a comparable negative amplitude for gamma-ray produced recoil electrons; and
3. a fast anode signal.

It will be convenient to consider the "slow" side first.

Slow side electronics. On the slow side (Fig. 5) the linear signal was first amplified and then routed through an "energy level" discriminator into a coincidence unit. The energy discrimination level was set to reject very low energy particles and was calibrated periodically

Figure 5. Block Diagram of "Slow Side" Electronics.

Figure 6. Block Diagram of "Fast Side" Electronics.

by connecting the linear input signal of the discriminator to a pulse height analyzer (PHA, not shown in the diagram). The analyzer was gated by the output of the energy discriminator. A ${ }^{137}$ Cs gamma-ray emitter placed in the collimators allowed the discrimination level (PHA gate) to be set at the $0.662-\mathrm{MeV}$ gamma-ray energy, which corresponds to ~2-MeV neutron energy in the scintillator pulse heights (Cz 64).

The $n-\gamma$ signal was routed into a modified gate unit which, when a complete conversion signal was obtained from the time to amplitude converter (see the description of the fast electronics below), added a 0.5 -volt pedestal to the signal. It was necessary to add 0.5 volt so that the positive level of the differential discriminator could be set to reject gamma rays before the neutron signal entered the coincidence circuit. The neutron discriminator was set in the same manner as the energy discriminator except that a PuBe neutron-gamma source was used and the discrimination level (PHA gate) was set in the valley between neutrons and gammas in the PuBe spectrum. The neutron-energy coincidence signals from the two detectors were mixed and used to gate the analog-to-digital converter ($A D C$) at the on-line computer.

There was also a second coincidence unit in the slow side electronics which utilized the same neutron and energy signals as the ADC gate signal. However, in addition this unit required a coincidence from the anode of the opposite detector; thus, an output signal resulted from this coincidence only if there were simultaneous events in both detectors. This "veto" signal was routed to the ADC to avoid adding amplitudes of the simultancous pulses and sending a large signal to a right detector memory location in the computer. Fortunately, these
veto events were not frequent. For example, the time-integrated pulse rates for $n-T$ scattering at $\theta_{2}=40^{\circ}$ lab were:

$$
\begin{aligned}
R_{A} & =\text { pulse rate from the detector anode } \\
& \simeq 3.4 \times 10^{3} / \mathrm{sec}, \\
R_{E} & =\text { pulse rate from the energy discriminator } \\
& \simeq R_{D} \simeq 170 / \mathrm{sec}, \text { and } \\
R_{N} & =\text { pulse rate from the neutron discriminator } \\
& \simeq R_{D} \simeq 170 / \mathrm{sec} .
\end{aligned}
$$

For a double coincidence of pulses in l-nsec bursts at 500-nsec intervals ($\tau=1 / 500$), the coincidence rate is

$$
\begin{aligned}
R_{d} & =\tau\left\{\left[\left(R_{1} / \tau\right) t_{1}\right]\left(R_{2} / \tau\right)+\left[\left(R_{2} / \tau\right) t_{2}\right]\left(R_{1} / \tau\right)\right\} \\
& \simeq 2 R_{1} R_{2} t / \tau
\end{aligned}
$$

where $t_{1} \simeq t_{2}=t \simeq 10^{-6} \mathrm{sec}$ is the pulse length. The veto coincidences were obtained from a triple coincidence for which the rate is

$$
R_{t}=\tau\left[\left(R_{d} t_{d}\right)\left(R_{A} / \tau\right)+\left(R_{d 2} t_{d}\right)\left(R_{E} / \tau\right)+\left(R_{d 3} t_{d}\right)\left(R_{N} / \tau\right)\right],
$$

where $t_{d} \simeq t$ is the double coincidence pulse length, and the $R_{d i}$ represent the double coincidence rates $\left(R_{d l}=2 R_{E} R_{N} t / \tau, R_{d 2}=2 R_{N} R_{A} t / \tau\right.$, $\left.R_{d 3}=2 R_{E} R_{A} t / \tau\right)$. Then

$$
R_{t} \simeq 6 R_{A} R_{E} R_{N} t^{2} / \tau
$$

so that the mixed veto coincidence rate from both detectors was

$$
\begin{aligned}
2 R_{t} & \simeq(12)\left(3.4 \times 10^{3}\right)\left(1.7 \times 10^{2}\right)^{2}\left(10^{-6}\right)^{2} /(1 / 500) \\
& =0.6 \text { veto pulses } / \text { sec. }
\end{aligned}
$$

A third signal was sent to the $A D C$ from the right detector N, E coincidence unit. This was the routing signal which indicated when an event had occurred in the right detector.

Fast side electronics. The fast side electronics were somewhat more complicated. The anode signal of each detector was amplified, routed through a fast discriminator with l-nsec dead time, and used as the start signal for a time to amplitude converter (TAC). The number of pulses N from the fast discriminator were counted on a scaler:

The $2-\mathrm{MHz}$ stop pulses were routed through a trigger-fan out unit. The stop pulses were counted in scaler C_{1}, and those pulses which arrived when neither TAC was dead were counted in scaler C_{2}. It may appear at this point that the circuit is backwards. The "stop" pulse as explained in Section I of this chapter was a zero-time indicator; i.e., it was the pulse picked up at the target when neutrons were produced. It would have been logical to start the TAC with this signal and to stop the converter with the anode signal from the detector indicating the arrival of a neutron. However, here again the counting rate was important. Note that the anode pulses arrive at a rate of $\sim 3.4 \times 10^{3} / \mathrm{sec}$ so that starting the TAC by every beam pulse would result in ~ 600 more starts and 600 times more dead time than would result from starting the TAC by an event in the detector. To avoid this excessive dead time and, since the beam pickup was a (2000.0 ± 0.2) -kHz pulse, the TAC's were started by a detector event and stopped by the succeeding "stop" pulse, so that the TAC output voltage decreased with increasing time of flight. Hence,
in the typical data spectrum (see Figs. 7-10 in Chapter IV) time increases from right to left and the energy scale runs from left to right. The outputs of the TAC's were mixed and routed through an $A D C$, which had been properly gated by the slow side electronics, to an online SDS 930 computer for pulse height analysis. The computer and its associated software have been described by Levin et al. (Le 69, Ga 66). The computer time scale was calibrated by sending pulses from a pulser into both start and stop sides of the TAC and delaying the start pulse input with respect to the stop pulse in $10-n s e c$ steps. In this manner it was determined that the computer output/input signal ratio was constant over the entire running period at 2.3 channels/nsec.

The monitor electronics are also shown on the fast side. Essentially the monitor time-of-flight system was identical to that of the other detectors except that differential discrimination was performed on the monitor time spectrum rather than on energy and $n-\gamma$ spectra. Monitor gates, M, were scaled.

The overall time resolution in the detectors and associated electronics was much less than 1 nsec.

Normalization and Dead Time Corrections
The purpose of scaling the quantities M, C_{1}, C_{2}, and N was for the normalization and dead time correction of the data. To calculate these effects, assume the following:
n^{\prime} is the number of counts detected during a run of M^{\prime} monitor counts;
n is the number of counts which would have been detected in the absence of electronic dead time;
$\tau_{\mathrm{d}}(=1 \mu \mathrm{sec})$ is the dead time introduced each time the detector anode discriminator receives a pulse;
$\tau_{\text {TAC }}(=6 \mu \mathrm{sec})$ is the dead time introduced when the time-toamplitude coverter receives a start signal or is inhibited by the computer;
T is the total time elapsed for a run of M^{\prime} monitor counts;
τ is the total dead time during time T due to $\tau_{T A C}$ and exclusive of τ_{d}.

Then C_{1} is the number of stop pulses and consequently is the time required for M^{\prime} monitor counts (in units of 500 nsec), i.e., $C_{1}=$ $T /\left(5 \times 10^{-7}\right)$; and C_{2} is the time the electronics was live, i.e., $C_{2}=$ $C_{1}-\tau$. The number of counts lost due to the TAC, the computer, and the associated electronics was $n \tau / C_{1}$. Thus for $\tau \ll C_{1}$

$$
\begin{equation*}
n=n^{\prime}+\left(n \tau / C_{1}\right)=n^{\prime} C_{1} /\left(C_{1}-\tau\right)=n^{\prime} C_{1} / C_{2} \tag{III-3}
\end{equation*}
$$

In addition there was the possibility that an anode signal could arrive just before the TAC was ready to receive it. In this case, there would be $\sim N \tau_{d}\left(\tau_{d} / \tau_{\text {TAC }}\right)$ extra dead time due to the anode discriminator exclusive of the remaining electronics, so that the loss of counts due to the time the system was dead from the anode discriminators alone is $\mathrm{n}\left(\mathrm{N}_{\mathrm{d}} / \mathrm{T}\right)\left(\tau_{\mathrm{d}} / \tau_{\mathrm{TAC}}\right)$, and

$$
\begin{equation*}
n=n^{\prime}+n \frac{N \tau_{d}}{T} \cdot \frac{\tau_{d}}{\tau_{T A C}} \simeq n^{\prime}\left(1+\frac{N \tau_{d}}{T} \frac{\tau_{d}}{{ }^{\tau_{T A C}}}\right) . \tag{III-4}
\end{equation*}
$$

The normalization factor by which all the data were multiplied is obtained by applying both corrections (III-3) and (III-4) and renormalizing for M monitor counts,

$$
\begin{equation*}
\frac{n}{n^{\dagger}}=\frac{M^{\prime}}{M} \frac{C_{1}}{C_{2}}\left(1+\frac{N \tau}{T} \cdot \frac{\tau_{d}}{\tau_{T A C}}\right) . \tag{III-5}
\end{equation*}
$$

III. THE MEASUREMENTS

$D(\vec{n}, \hat{n}) D$ and $T(\vec{n}, \hat{n}) T$ Asymmetries

The purpose of the present experiment was to measure the polarization of $n-D$ and $n-T$ elastic scattering at an incident neutron energy of 22 MeV . It was assumed on the basis of earlier experiments (Pe 61) that for $6.0-\mathrm{MeV}$ incident deuterons the polarization of the $22-\mathrm{MeV}$ neutrons emitted by the $T(d, \vec{n})^{4}$ He reaction at $\theta_{1}=30^{\circ}$ was maximum and known. The polarized neutrons produced in this reaction were scattered from the liquid deuterium or liquid tritium scattering cell, which was positioned a short distance d from the neutron source; the left-right asymmetry was measured for laboratory angles $40^{\circ} \leq \theta_{2} \leq 118.5^{\circ}$. The polarization of the elastic scattering was calculated from expression (II-4),

$$
\begin{equation*}
P_{2}\left(\theta_{2}\right)=e / P_{1}\left(\theta_{1}\right) . \tag{III-6}
\end{equation*}
$$

The $16.5-\mathrm{MeV}$ neutrons from the same $T(d, \vec{n}){ }^{4} \mathrm{He}$ reaction at $\theta_{1}=90^{\circ}$ lab for $6.0-\mathrm{MeV}$ incident deuterons exhibit a maximum negative polarization (Pe 61), and it represented little additional effort to place the
tritium scattering sample at 90° and to measure the asymmetries of $16.5-\mathrm{MeV} \mathrm{n}-\mathrm{T}$ elastic scattering at $35^{\circ} \leq \theta_{2} \leq 45^{\circ} \mathrm{lab}$. Unfortunately space and shielding limitations prevented extending this measurement over a larger range of angles.
$T(\mathrm{~d}, \overrightarrow{\mathrm{n}})^{4} \mathrm{He}$ Source Polarization
In addition to the $D(\vec{n}, \hat{n}) D$ and $T(\vec{n}, \hat{n}) T$ measurements the $T(d, \vec{n})^{4} H e$ neutron source polarizations were measured for both 22.1 - and $16.5-\mathrm{MeV}$ neutron energies at $\theta_{1}=29.8^{\circ} \mathrm{lab}$ and $\theta_{1}=89.8^{\circ} \mathrm{lab}$ by placing the liquid ${ }^{4}$ He scattering sample at d, θ_{1}. The polarization $P_{2}\left(\theta_{2}\right)$ for $\mathrm{n}-{ }^{4} \mathrm{He}$ elastic scattering is reasonably well known (Ho 66) and from measurements of the left-right asymmetry one can determine the source polarizations $P_{1}\left(\theta_{1}\right)$

$$
\begin{equation*}
P_{1}\left(\theta_{1}\right)=e / P_{2}\left(\theta_{2}\right) \tag{III-7}
\end{equation*}
$$

Artificial Asymmetries and Detector Efficiencies

Artificial asymmetry, the asymmetry which is due to imperfect shielding and the physical configuration of the experimental equipment and which remains when the source polarization is zero, was also measured. The deuteron beam energy was reduced to 2.0 MeV at which energy the $T(d, \vec{n})^{4}$ He neutron polarization $P_{1}\left(\theta_{1}\right)$ is expected to be zero at $\theta_{1}=30^{\circ} \mathrm{lab}$. The $17.8-14 \mathrm{eV}$ neutrons produced at this angle were scattered from the liquid ${ }^{4} \mathrm{He}$ sample at $\theta_{2}=35^{\circ}, 55^{\circ}$, and $70^{\circ} \mathrm{lab}$, and a small artificial asjmmetry e_{r} was measured. The corrections of the data for e_{r} are described in Section II of Chapter IV.

Although the detectors were very well matched, it was nevertheless necessary to correct for the difference in efficiency. In lieu of measuring the detector efficiencies all measurements were performed twice with the detectors interchanged. The corrections were then aislied essentially by averaging the two sets of data to cancel effects due to differences in the two detectors.

Electronic Drift

The uncertainties introduced into the measurements by the possible drift of discrimination levels, detector amplification characteristics, and various other unsuspected changes in the electronics were measured by testing the detectors in a low background area. A PuBe source, which produces 9.34×10^{5} neutrons/sec and ~ 2 gamma rays per neutron, was placed at a fixed distance of approximately 1.24 m from both detectors so that the total counting rate was $\sim 2000 \varepsilon \simeq 300$ counts $/ \mathrm{sec}$, comparable to the discriminated neutron-gama counting rates in the actual experiment. A $2-\mathrm{MHz}$ stop pulse was introduced by a pulser into the TAC's and random spectra were collected at the computer.

Thirteen sets of random spectra were taken over a period of six weeks during which time the detectors were subjected to a $\pm 20^{\circ} \mathrm{F}$ change in temperature, various electronics modules were interchanged, and experimental conditions were otherwise duplicated as closely as possible. A constant range of 100 channels was sampled and the deviation from the mean counting rate was found to be $\sim 1 \%$. The error in asymmetry due to this effect is calculated in Chapter IV, Section II.

In summary, it should be apparent that, although in principle the determination of asymmetries from $n-D$ and $n-T$ elastic scatterings appear fairly simple, in practice the measurements were not so easily performed. Considerable care was necessary to reduce backgrounds to an acceptable level; the cryogenic system for obtaining sufficiently dense scattering samples of the liquid hydrogen isotopes was far from simple; and much attention was paid to developing a satisfactory neutron monitoring system. The scope of the measurements involved in the experiment was somewhat broader than the two elastic scatterings alone, and the experiment was only completed within a reasonable period of time due to the cooperation of the individuals directly involved and to the assistance of the accelerator maintenance, shops, electronics, and other service groups at Los Alamos Scientific Laboratory.

CHAPTER IV

DATA ANALYSIS

Analysis of the data from the experiment began with on-line preliminary data reduction by the SDS 930 computer. The time spectra were then carefully examined, renormalized, and combined by the FLZEIT program to reduce statistical errors and determine that background subtractions were performed correctly. Corrections to the data and an extensive error analysis were the last steps leading to the final asymmetries.

Artificial asymmetry results are listed in Table II in Section II of this chapter, and the results of the other asymmetry measurements are given in Table III at the end of the chapter.
I. COMPUTER ANALYSES

On-IIne Data Reduction
The SDS 930 computer at the Los Alamos Van de Graaff Accelerator Laboratory was used for recording the experimental data and to perform on-line preliminary data analysis. The SDS 930 computer and its associated software are described elsewhere (Le 69, Ga 66). J. Levin (Le 68) coded a program for the time-of-flight experiments in which the computer was utilized as a 512-channel pulse height analyzer, 256 channels per detector.

The on-line program allowed the experimenter to keep a close watch on the pulse height spectra which weje displayed on a scope during the
experiment. In addition, options were provided for printing, plotting, and storing the data on magnetic tape at the end of each run; and properly normalized (see Normalizations and Dead Time Corrections, Chapter III) foreground-background subtractions could be made for any pair of runs. The subtraction routine also calculated standard deviations so that the experimenter could readily determine statistical accuracy and decide whether to extend the running time.

Program FLZEIT

After the data had been accumulated and the preliminary on-line analysis had been made, the data handling was transferred to the CDC 6600 computer. A FORTRAN IV data reduction code, FLZEIT, was written for this step of the analysis. A discussion of the program, including instructions on its use and the code listing, will be found in Appendix B.

Basically program FLZEIT renormalizes and calculates 1) the number of counts in channel $I, \operatorname{NET}(I), 2)$ the standard deviation, $\operatorname{SD}(I), 3)$ $\operatorname{SUM}(I)=\sum_{i=1}^{I} \operatorname{NET}(i)$, and 4) $\operatorname{SUMVAR}(I)=\sum_{i=1}^{I}(\operatorname{SD}(i))^{2}$ for the subtraction of any number of pairs of foreground and background runs. Printing, plotting, and storing the reduced data can be done with several options; and normalization factors can be entered from cards, used as they were calculated by the on-line computer from scaler inputs, or calculated by FLZEIT itself. The last option was valuable in checking the accuracy of the monitor by renormalizing the data for large angles θ_{2} to the "hard" scattering. "Hard" scattering peaks result from the elastic
scattering of neutrons from the copper and tungsten collimators and are expected to be the same for foreground and background runs. A normalization which required hard scattering to be subtracted out completely was used in place of the monitor normalization at large angles where the neutrons scattered by the collimators were well separated in energy from the neutrons scattered by the liquid samples. It should be noted that it made little difference in the final results whether the monitor or hard scattering normalizations were used so that it can be safely assumed that monitor normalizations of the data at forward angles θ_{2} were also reliable.

Figures 7-9 are plots of typical time-of-flight spectra as they appear after reduction by the FLZEIT routine. Figure 7 is a normalized foreground run; Fig. 8 is the corresponding normalized background run; and Fig. 9 shows the foreground-minus_background subtraction. The time spectrum of the left detector fills channels 1 through 256 , and the right detector spectrum is in channels 257 through 512. The particular set of data in the figures is $T(\vec{n}, \hat{n}) T$ elastic scattering at an incident neutron energy of $22.1 \mathrm{MeV}, \theta_{1}=29.8^{\circ} \mathrm{lab}$, and $\theta_{2}=80^{\circ} \mathrm{lab}$. It took about 3 hours to accumulate these foreground and background data, and statistical errors were approximately 6.5%.

The $T(\vec{n}, \hat{n}) T$ elastic neutron peaks in the figures are centered at channels 110 and 370 for left and right detectors, respectively; the peaks at channels 130 and 400 are hard scattering, and gamma rays which leaked through the neutron-gamma-ray discrimination are at 210 and 470. The structure at channels 30 and 305 represents a nearly constant pulse height output from the TAC's which resulted when start signals were

Figure 7. A Typical Normalized Pulse Height Spectrum for a. $T(\vec{n}, \hat{n}) T$ Foreground Run (at $22.1-\mathrm{MeV}$ incident neutron energy and $\left.\theta_{2}=80^{\circ} \mathrm{lab}\right)$.

Figure 8. A Typical Normalized Pulse Height Spectrum for Scattering 22.1-MeV Neutrons from the Evacuated Dummy Cell (at $\left.\theta_{2}=80^{\circ} \mathrm{lab}\right)$.

Figure 9. The Subtracted Spectrum of $T(n, n) T$ Foreground and Dummy Cell Background Runs Illustrated in Figures 7 and 8.

detected but conversion was not completed by the arrival of a stop pulse within the required $300-n s e c$ width. Pulses too large for the computer to handle were accumulated in channels 256 and 512; and the large background in Figs. 7 and 8 at energies lower than the elastic neutron energies resulted from the inelastic scattering of neutrons from collimators, shielding, and sample cells.

Curve Fitting

The points in Fig. 10 are a linear plot of the data shown in Fig. 9 except that the large pileup peaks have been removed. Examination of Fig. 10 clearly shows that the statistical uncertainties made it rather difficult to be objective in assigning limits to the elastic neutron peaks. For this reason a non-linear, least squares, curve fitting program written by Moore and Zeigler at LASL (Mo 60) was used to fit a skewed gaussian function to the data. The solid curve in Fig. 10 shows a fit to the data obtained for the function $f(x)$, which is a "GramCharlier series of type A " in terms of the derivatives of the gaussian distribution (Ke 63);

$$
\begin{align*}
(2 \pi)^{\frac{1}{2}} f(x) & =A_{1}\left[1+\left(\mu_{1} H_{1} / 6\right)\right] \exp \left(-z_{1}^{2} / 2\right) \\
& +A_{2}\left[1+\left(\mu_{2} \mathrm{H}_{2} / 6\right)\right] \exp \left(-z_{2}^{2} / 2\right) \tag{IV-1}
\end{align*}
$$

where the subscripts 1 and 2 correspond to the left and right scattering peaks, respectively. $z=\left(x-x_{0}\right) / L x, x_{0}$ is the mean of the poak, and Δx is the standard deviation ($=$ half width at half maximum). H is the third Tchebycheff-iermite polynomial ($1=z^{3}-3 z$), and μ is the skewness

Figure 10. Results of the Least Squares Curve Fitting Routine as Applied to the $T(\vec{n}, \hat{n}) T$ Subtracted Spectra (for $22.1-\mathrm{MeV}$ incident neutrons and $\theta_{2}=80^{\circ} \mathrm{lab}$. The data points are fitted with the solid curve).

parameter

$$
\mu=\int_{-\infty}^{\infty}\left(x-x_{0}\right)^{3} \exp \left(-z^{2} / 2\right) d x,
$$

which is the third moment about the mean of the distribution.
The parameters $A, x_{0}, \Delta x$, and μ for the fit were included in the output of the program. Hence, A_{1} and A_{2}, which are the areas under the peaks and the total numbers of neutrons elastically scattered by the sample into the left and right detectors, were determined by the program. With this information the asymmetries e_{m}^{\prime} and $e_{m}^{\prime \prime}$ for the two measurements with the detectors interchanged were calculated and are tabulated in Table III at the end of this chapter;

$$
\begin{equation*}
e_{m}^{\prime}=\left(L^{\prime}-R^{\prime}\right) /\left(L^{\prime}+R^{\prime}\right)=\left(A_{1}^{\prime}-A_{2}^{\prime}\right) /\left(A_{1}^{\prime}+A_{2}^{\prime}\right), \tag{IV-2}
\end{equation*}
$$

with an identical expression for $e_{m}^{\prime \prime}$.

II. CORRECTIONS TO THE DATA

Effective Sample Position $\left\langle\theta_{1}\right\rangle$
Although tie scattering sample was positioned so that its geometrical center was at lab angles $\theta_{1}=30.2^{\circ}$ for $22-\mathrm{MeV}$ incident neutrons and $\theta_{1}=90^{\circ}$ for $16.4-\mathrm{MeV}$ incident neutrons, the effective sample position angles were slightly smaller because of the decrease of neutron energy and flux across the sample with increasing θ_{1}.

The averace effective angle < $\phi>$ measured from the geometric center
of the sample as shown in Fig. 11 is in general

$$
\begin{equation*}
\langle\phi\rangle=\int I(\phi) \phi d \phi / \int I(\phi) d \phi, \tag{IV-3}
\end{equation*}
$$

where $I(\phi)$ is the effective interaction intensity. If at angle $\theta_{1}+\phi$

Figure 11. Geometry for the Calculation of $\left\langle\theta_{1}\right\rangle$.
n is the density of scattering centers in the sample and $\sigma_{2}(\phi)$ is the total cross section for neutrons scattered from the sample, then the interaction intensity as a function of ϕ is

$$
\begin{equation*}
I(\phi)=k \sigma_{1}(\phi)\left[1-e^{-n \sigma_{2} L}\right] \tag{IV-4}
\end{equation*}
$$

where $k \sigma_{1}(\phi)$ is the $T(d, n)^{4}$ He differential cross section for neutrons at $\theta_{1}+\phi . \quad$ Also

$$
L \simeq 2\left(R^{2}-d^{2} \phi^{2}\right)^{\frac{1}{2}}
$$

hence, the effective angle $\left\langle\theta_{1}\right\rangle$ is $\theta_{1}+\langle\phi\rangle$ where
$\langle\phi\rangle=\frac{\int_{-R / d}^{R / d} \sigma_{1}(\phi)\left\{1-\exp \left[-2 n \sigma_{2}(\phi)\left(R^{2}-d^{2} \phi^{2}\right)^{\frac{1}{2}}\right]\right\} \phi d \phi}{\int_{-R / d}^{R / d} \sigma_{1}(\phi)\left\{1-\exp \left[-2 n \sigma_{2}(\phi)\left(R^{2}-d^{2} \phi^{2}\right)^{\frac{1}{2}}\right]\right\} d \phi}$.

A FORTRAN IV program, called DSCHNIT, was written to perform the integrals in Eq. (IV-5). This program is described in detail in Appendix B.

Using the liquid sample densities (Ke 69 b), $\mathrm{n}_{\mathrm{H}}=4.29 \times 10^{22}$ molecules $/ \mathrm{cm}^{3}, \mathrm{n}_{\mathrm{D}}=5.14 \times 10^{22}$ molecules $/ \mathrm{cm}^{3}, \mathrm{n}_{\mathrm{T}}=5.22 \times 10^{22}$ molecules $/ \mathrm{cm}^{3}$, and $n_{4} \mathrm{He}=1.95 \times 10^{22}$ atoms $/ \mathrm{cm}^{3}$, and differential cross sections σ_{1} and total cross sections σ_{2} obtained from a number of sources (Bo 61, st 64 , St 65 , St 68 , Ba 57), it was determined that for all four scattering samples at $\theta_{1}=30.2^{\circ},\langle\phi\rangle=-0.4^{\circ}$ and the effective sample position was $\left\langle\theta_{1}\right\rangle=29.8^{\circ} \mathrm{lab}$; and at $\theta_{1}=90^{\circ},\langle\phi\rangle=-0.2^{\circ}$ so that the effective sample position was $\left\langle\theta_{1}\right\rangle=89.8^{\circ} \mathrm{lab}$.

Detector Interchange and Artificial Asymmetries

At each angle θ_{2} two asymmetries e_{m}^{\prime} and $e_{m}^{\prime \prime}$ were measured with the detectors interchanged between measurements. The data were corrected for artificial asymmetries due to differences in detector efficiencies by averaging the measurements accordin to the equation derived in Appendix A, Section VI,

$$
\begin{equation*}
e_{m}=\frac{\left[\left(1+e_{m}^{\prime}\right)\left(1+e_{m}^{\prime \prime}\right)\right]^{\frac{3}{2}}-\left[\left(1-e_{m}^{\prime}\right)\left(1-e_{m}^{\prime \prime}\right)\right]^{\frac{3}{2}}}{\left[\left(1+e_{m}^{\prime}\right)\left(1+e_{m}^{\prime \prime}\right)\right]^{\frac{1}{2}}+\left[\left(1-e_{m}^{\prime}\right)\left(1-e_{m}^{\prime \prime}\right)\right]^{\frac{3}{2}}} \tag{IV-6}
\end{equation*}
$$

The e_{m} are tabulated in Table III at the end of this chapter.
The artificial asymmetry e_{r} was measured in the same manner as other asymmetries except that $2.0-\mathrm{MeV}$ deuterons incident on the tritium gas target produced unpolarized $17.8-\mathrm{MeV}$ neutrons at $\theta_{1}=29.8^{\circ} \mathrm{lab}$. Scattering these neutrons from liquid ${ }^{4}$ He at three angles θ_{2} supplied three sets of asymmetries which were averaged; and the standard deviation from the mean was calculated,

$$
\begin{equation*}
e_{r}=\bar{e}_{m}, \quad \delta e_{r}=\left[\frac{\sum_{i}\left(e_{m i}-e_{r}\right)^{2}}{(3-1)}\right]^{\frac{1}{2}} . \tag{IV-7}
\end{equation*}
$$

The results of the artificial asymmetry measurements are given in Table II. The measured artificial asymmetry corrections were applied to the data according to the expression derived in Appendix A,

$$
\begin{align*}
e & =\left(e_{m}-e_{r}\right) /\left(1-e_{r} e_{m}\right) \tag{IV-8}\\
& \simeq e_{m}-e_{r} \quad \text { for small } e_{r}
\end{align*}
$$

and the values of e are tabulated in Table III at the end of the chapter.

TABLE II
Results of ${ }^{4} \mathrm{He}(\overrightarrow{\mathrm{n}}, \hat{n})^{4} \mathrm{He}$ Artificial Asymmetry Measurements.

$$
\begin{aligned}
& E_{d}=2.0 \mathrm{MeV} \\
& \theta_{1}=29.8 \mathrm{MeV} \\
& \mathrm{E}_{\mathrm{n}}=17.8 \mathrm{MeV} \\
& P_{1}\left(\theta_{1}\right)=0.0
\end{aligned}
$$

$\begin{aligned} & \theta_{2} 1 \mathrm{ab} \\ & (\operatorname{deg}) \\ & \hline \end{aligned}$	$\begin{aligned} & \theta_{2} \mathrm{c} \cdot \mathrm{~m} . \\ & (\mathrm{deg}) \\ & \hline \end{aligned}$	$\begin{aligned} & \cos \theta_{2} \\ & \mathrm{c} . \mathrm{m} . \end{aligned}$	$\mathrm{e}_{\mathrm{m}}^{\prime}$	e"	${ }^{\text {m }}$ m	$\underline{\mid c} \mathrm{e}_{\mathrm{m}} \mathrm{e}_{\mathrm{m}} \mid$
35	43.3	0.727	0.0328	-0.0535	-0.0104	0.0282
55	66.9	0.392	0.0513	-0.0036	+0.0239	0.0061
70	83.7	0.110	0.0376	0.0419	+0.0398	0.0220
	$\bar{e}_{m}=0$.		$\delta e_{r}=0.0256$			

Therefore,

$$
e_{r}=0.0178 \pm 0.0256
$$

III. ERRORS

Relative errors in the data resulted from the statistical analysis of the experiment, and absolute errors were due to both the statistical and systematic uncertainties. The absolute error due to all sources i was taken to be

$$
\begin{equation*}
\delta e / e_{m}=\left[\sum_{i}\left(\delta e_{i} / e_{m}\right)^{2}\right]^{\frac{1}{2}} ; \tag{IV-9}
\end{equation*}
$$

and the uncertainty in the artificial asymmetry was combined with the data in the same manner,

$$
\begin{equation*}
\delta e=e\left[\left(\delta e / e_{m}\right)^{2}+\left(\delta e_{r} / e_{r}\right)^{2}\right]^{\frac{1}{2}} \tag{IV-10}
\end{equation*}
$$

The errors in the polarization values tabulated in Chapter V were obtained from the expression

$$
P_{2}\left(\theta_{2}\right)=e / P_{1}\left(\theta_{1}\right),
$$

so that

$$
\begin{equation*}
\delta P_{2}=P_{2}\left[(\delta e / e)^{2}+\left(\delta P_{1} / P_{1}\right)^{2}\right]^{\frac{3}{2}}, \tag{IV-11}
\end{equation*}
$$

With a similar equation for $\delta \mathrm{P}_{1}$, the uncertainty in the measurements of the source polarization.

It was necessary in some of the error calculations to determine $\delta e / e$ when $L, R, \delta L / L$, and $\delta R / R$ were known. The expression relating these quantities follows directly from the definition of e,

$$
\begin{aligned}
e & =(L-R) /(L+R) ; \\
\left|\frac{\delta e}{e}\right| & =\frac{1}{e}\left[\left(\frac{\partial e}{\partial L}\right)^{2}(\delta L)^{2}+\left(\frac{\partial e}{\partial R}\right)^{2}(\delta R)^{2}+2 \frac{\partial e}{\partial L} \frac{\partial e}{\partial R} \text { covariance }(L R)\right]^{\frac{1}{2}}
\end{aligned}
$$

and

$$
\begin{equation*}
\frac{\delta e}{e}=\frac{2 L R}{(L-R)(L+R)}\left[\left(\frac{\delta L}{L}\right)^{2}+\left(\frac{\delta R}{R}\right)^{2}\right]^{\frac{1}{2}}, \tag{IV-12}
\end{equation*}
$$

if the L and R are independent and covariance $(L R)=0$.

Relative Errors

The data reduction code, FLZEIT, calculated the number of counts $\operatorname{NET}(I)$, and the standard deviations $S D(I)$ for each analyzer channel of
the foreground minus background spectra. The statistical errors in asymmetry were then obtained directly from the FLZEIT code,

$$
\begin{equation*}
\delta e_{\text {stat }}=\left[(\delta L)^{2}+(\delta R)^{2}\right]^{\frac{1}{2}} /(L+R) \tag{IV-13}
\end{equation*}
$$

where

$$
\begin{aligned}
& (\delta L)^{2}=\sum_{i=a}^{b}[\operatorname{SD}(i)]^{2}, \quad(\delta R)^{2}=\sum_{i=c}^{d}[\operatorname{SD}(i)]^{2}, \\
& L=\sum_{i=a}^{b} \operatorname{NET}(i) \text {, and } \quad R=\sum_{i=c}^{d} \operatorname{NET}(i) .
\end{aligned}
$$

a, b, c, d are the channel number limits of the data peaks. Equation (IV-13) is equivalent to Eq. (IV-12) for L~R.

Absolute Errors

Absolute uncertainties can result from several possible sources of systematic error including

1. the point neutron source assumption,
2. electronic drift,
3. geometry,
4. $3_{\text {He decay }}$ products in the liquid tritium sample,
5. inscattering, and
6. multiple scattering.

These sources of error are described in the following paragraphs and the results are tabulated in Table III at the end of the chapter.

Point source assumption. Other than the fact that the target is $I \mathrm{~cm}$ long, the $T(d, \vec{n})^{4}$ He neutron source differs from a point source in two respects; first there is $a \pm 2.5^{\circ}$ divergence of the beam in the target; and secondly the deuteron energy decreases along the length of the target due to the energy loss in 1 cm of gas. The worst possible spread in neutron polarization is that between the neutrons emitted from the upstream end of the target $\left(E_{d}=6.06 \mathrm{MeV}\right)$ at an angle $\theta_{\text {min }}$ less than θ_{1} and the neutrons from downstream end of the target $\left(E_{d}=5.94\right.$ MeV) at an angle $\theta_{\max }$ greater than θ_{1}. From the geometry of the problem it can be shown that for $\theta_{1}=29.8^{\circ}$ the spread of angles at the target is $\theta_{\min }=26.0^{\circ}$ and $\theta_{\max }=33.8^{\circ}$, and for $\theta_{1}=89.8^{\circ}$ the minimum and maximum angles are $\theta_{\min }=83.5^{\circ}$ and $\theta_{\max }=96.1^{\circ}$. Fortunately the $\theta_{1}=30^{\circ}$ and $\theta_{1}=90^{\circ}$ sample positions correspond to extrema in the $T(d, \vec{n})^{4}$ He polarizations so that the uncertainties in source polarizations resulting from the angular spread is minimized. By locating these deuteron energies and angles on the Barschall $T(d, \vec{n})^{4}$ He polarization contour plot (Ba 66) the uncertainties in source polarization were estimated to be

$$
\delta P_{1} \leq \pm 0.03 \text { at } \theta_{1}=29.8^{\circ}
$$

and

$$
\delta P_{1} \leq \pm 0.05 \text { at } \theta_{1}=89.8^{\circ}
$$

Electronic drift. The measurements to determine electronic drift were described in Chapter III. The standard deviation from the mean counting rate in the thirteen test runs was

$$
\delta L / L=\delta R / R=0.011,
$$

and the errors in asymmetries $\delta e_{\text {elec }} / \mathrm{e}$ were calculated from Eq. (IV-12).
Geometry. There were three possible sources of systematic error arising from the geometry of the experiment. The first of these resulted from the $12.7-\mathrm{cm}$ (5 in.) height of the scintillators, which caused an uncertainty of $\pm 6.35 \mathrm{~cm}$ in the scattering plane at the detectors; that is ϕ in Fig. 1 could differ from zero by $\delta \phi=6.35 / 255=$ 0.0249 rad. Since $\cos (\delta \phi)=0.9997$ the uncertainty introduced by the assumption that $e=P_{1}\left(\theta_{1}\right) P_{2}\left(\theta_{2}\right) \cos \phi$ and $\phi=0$ is

$$
\delta e_{\phi} / \mathrm{e} \leq 0.0003 .
$$

The second source of geometric error was a $\delta D \simeq 2 \mathrm{~cm}$ uncertainty in measuring the relative sample-detector distances D. The error in solid angular spread of the $10.2-\mathrm{cm}$ (4 in.) $\times 12.7-\mathrm{cm}$ (5 in.) scintillators for this δD is then

$$
\frac{\delta \Omega}{\Omega}=\left(\frac{10.2}{D+\delta D}-\frac{10.2}{D-\delta D}\right)\left(\frac{12.7}{D+\delta D}-\frac{12.7}{D-\delta D}\right) /\left(\frac{10.2}{D} \times \frac{12.7}{D}\right)=0.00025,
$$

so that for this effect the error in asymmetry was also

$$
\delta e_{\mathrm{D}} / \mathrm{e} \leq 0.0003
$$

The largest sources of geometrical error were the $\delta \theta_{2 d} \approx 0.05^{\circ}$ accuracy to which the detector angles were measured and the accuracy to which the position of the $10.2-\mathrm{cm}$-wide scintillator on the face of the phototube was known. The latter figure was estimated to be 0.635
$\mathrm{cm}(1 / 4$ in. $)$, so that $\delta \theta_{2 \mathrm{~s}}=[(0.635) /(255)](180 / \pi)= \pm 0.14^{\circ}$. Thus, the total uncertainty in the angle θ_{2} at which the detector was positioned was $\delta \theta_{2}=\left[\left(\delta \theta_{2 d}\right)^{2}+\left(\delta \theta_{2 s}\right)^{2}\right]^{\frac{1}{2}}=0.149^{\circ}$. Since $\delta \theta_{2}$ is independent for left and right collimators, it was necessary to find $\delta L / L$ and $\delta R / R$ in terms of $\delta \theta_{2}$. From the theory of double scattering in Appendix A

$$
\begin{equation*}
L=\sigma_{1}\left(\theta_{1}\right) \sigma_{2}\left(\theta_{2}\right)(1+e), \tag{IV-14}
\end{equation*}
$$

and

$$
\begin{equation*}
R=\sigma_{1}\left(\theta_{1}\right) \sigma_{2}\left(\theta_{2}\right)(1-e) \tag{IV-15}
\end{equation*}
$$

so that

$$
\left|\frac{\mathrm{dL}}{\mathrm{~d} \theta_{2}}\right|=\left[\left(\frac{\partial L}{\partial \sigma_{2}}\right)^{2}\left(\frac{\mathrm{~d} \sigma_{2}}{d \theta_{2}}\right)^{2}+\left(\frac{\partial L}{\partial P_{2}}\right)^{2}\left(\frac{d P_{2}}{d \theta_{2}}\right)^{2}\right]^{\frac{3}{2}}
$$

and similarly for $\left|d R / d \theta_{2}\right|$. Then

$$
\begin{equation*}
\left|\frac{\delta L}{L}\right|=\left|\frac{\delta R}{R}\right|=\left[\left(\frac{1}{\sigma_{2}}\right)^{2}\left(\frac{d \sigma_{2}}{d \theta_{2}}\right)^{2}+P_{1}^{2}\left(\frac{d P_{2}}{d \theta_{2}}\right)^{2}\right]^{\frac{1}{2}} \delta \theta_{2} \tag{Iv-16}
\end{equation*}
$$

Values for $\sigma_{2}, d \sigma_{2} / d \theta_{2}, P_{1}$, and $d P_{2} / d \theta_{2}$ for calculating $|\delta L / L|$ and $|\delta R / R|$ for the scatterings were obtained from a variety of source material (Se 67, Ma 66, Ho 66), and the errors in asymmetry $\delta e_{\theta_{2}} / e$ in Table III were calculated from Eqs. (IV-16) and (IV-12).

The total angular width ($=0.04 \mathrm{rad}$) of the scintillator is not a source of uncertainty. The effect of this width is to broaden the elastic scattering peak in the data.
$3_{\text {He contamination. An analysis of the tritium from the scattering }}$ sample was performed by LASL group W-3 personnel at the completion of
the experiment and showed the following content:

$$
\begin{aligned}
T_{2} & =96.23 \% \\
D_{2} & =0.12 \% \\
H_{2} & =0.29 \% \\
3_{\mathrm{He}} & =3.36 \% .
\end{aligned}
$$

If it is assumed that $L=L_{T}+L_{\text {He }}$ and $R=R_{T}+R_{H e}$ then

$$
\begin{equation*}
e_{m}=(L-R) /(L+R)=\left(L_{T}-R_{T}+L_{H e}-R_{H e}\right) /\left(L_{T}+R_{T}+L_{H e}+R_{H e}\right) . \tag{IV-17}
\end{equation*}
$$

the shape of the $T(\vec{n}, \hat{n}) T$ (Chapter V) and $3^{H e}(\vec{n}, \hat{n}){ }^{3} \mathrm{He}$ (Bu 69) polarization curves are expected to be similar, and it is possible that a difference of only a few degrees in the angle at which the curves cross the $e=0$ axis would result in a maximum error due to the ${ }^{3} \mathrm{He}$ contamination caused by an extremum of the $3_{\text {He data falling at the }} \mathrm{e}=0$ angle for the T data. In this case $L_{T}=R_{T} \equiv N$ and

$$
\begin{equation*}
\delta e_{\mathrm{He}}=\left(\mathrm{I}_{\mathrm{He}}-\mathrm{R}_{\mathrm{He}}\right) /\left(2 \mathrm{~N}+\mathrm{L}_{\mathrm{He}}+\mathrm{R}_{\mathrm{He}}\right) . \tag{IV-18}
\end{equation*}
$$

The maximum of a set of $16-\mathrm{MeV}{ }^{3} \mathrm{He}(\overrightarrow{\mathrm{n}}, \hat{\mathrm{n}})^{3} \mathrm{He}$ data (Bu 69) was used to determine roughly L_{He} and $\mathrm{R}_{\mathrm{He}} \simeq 0.0336 \mathrm{~N}$ so that for $\mathrm{E}_{\mathrm{n}}=16.5 \mathrm{MeV}$, $\theta_{1}=89.8^{\circ}$

$$
\delta \mathrm{e}_{\mathrm{He}} \leq 0.0028 ;
$$

and for $E_{n}=22.1 \mathrm{MeV}, \theta_{1}=29.8^{\circ}$

$$
\delta e_{\mathrm{He}} \leq 0.016
$$

However, 3_{He} does not condense readily, although it does remain trapped in the liquid tritium as the tritium decays. Thus, the 3_{He}
impurities in the scattering sample were considerably decreased when the tritium was condensed in the cell. Since the tritium was allowed to boil at least once during the three-week period it was in the cryostat, it was again purged of part of the He decay products. Thus, the concentration of ${ }^{3}$ He impurities in the sample at any time was probably not larger than that produced by the tritium decay in the threeweek running time. The amount of decay was calculated from the expression $N=N_{0} e^{-\lambda t}$ where $t=3$ weeks and $\lambda=\ln 2 /$ half-life $=0.693 / 12.26$ yr. The result, $N / N_{0}=0.997$, means that the maximum concentration of $3_{\text {He in }}$ the cell at one time was not more than 0.3% instead of the 3% shown by the gas analysis. Thus, the errors $\delta e_{H e}$ calculated above are approximately a factor of 10 too large. The values of $\delta e_{\mathrm{He}} / \mathrm{e}$ in Table III were calculated by assuming the values $\delta e_{\mathrm{He}} \leq 0.0003$ at $16.5-\mathrm{MeV}$ neutron energy and $\delta e_{H e} \leq 0.002$ at $22.1-\mathrm{MeV}$ neutron energy and dividing $\delta e_{H e}$ by e_{m}.

Inscattering. One more possible source of errors in the data would be inscattering effects (scattering of the neutrons into or out of the detector by the collimators). Direct scatterings have already been treated under the name of "hard" scattering earlier in this chapter, and it was pointed out there that rather than introduce errors the hard scattering was expected to be the same for foreground and background runs and was a significant check on the monitor normalizations at large angles θ_{2}. The effect of a second neutron scattering in the collimator is ienored; the asymmetry has already been determined once a neutron enters a collimator so that further scattering within
the collimator for which the neutron remains under the peak does not change the data.

Actually a second-order inscattering effect could be expected from an analyzing power of $n-C u$ scattering which would tend to scatter neutrons preferentially into or out of the collimator. However, a series of measurements made with considerably altered collimator configurations resulted in no inscattering effects which could be detected above the statistical uncertainties of the experiment.

Multiple scattering. An investigation was made of corrections for multiple scattering. A description of this analysis and the resulting corrections to the data are given at the end of Appendix A.

The ${ }^{4} \mathrm{He}(\vec{n}, \hat{n})^{4}$ He asymmetries tabulated in Table III were used to obtain the calculated values of the $T(d, \vec{n})^{4}$.fe neutron source polarizations $P_{1}\left(\theta_{1}\right)$ in Chapter V. The polarizations $P_{2}\left(\theta_{2}\right)$ of $n-T$ and $n-D$ elastic scattering were calculated from the $T(\vec{n}, \hat{n}) T$ asymmetries, the $D(\vec{n}, \hat{n}) D$ asymmetries, and the source polarizations $P_{1}\left(\theta_{1}\right)$. The errors derived in this chapter represent an upper limit on one standard deviation from the data points.

TABLE III

Analysis of Asymmetries and Errors. (L^{\prime}, R^{\prime} and $L^{\prime \prime}, R^{\prime \prime}$ are the number of counts detected in the left and right detectors for the two detector configurations, before and after interchange.)
$e_{m}^{\prime}=\left(L^{\prime}-R^{\prime}\right) /\left(L^{\prime}+R^{\prime}\right)$,
$e_{m} \simeq\left(\frac{1}{2}\right)\left(e_{m}^{\prime}+e_{m}^{\prime \prime}\right)$,
$e \simeq e_{m}-e_{r}$,
$\mathbf{e}_{\mathbf{r}}=$ measured artificial asymmetry $=0.0178 \pm 0.0256$,
$\delta e / e_{m}=\left[\sum_{i}\left(\delta e_{i} / e_{m}\right)^{2}\right]^{\frac{1}{2}}$ for all sources of error $i, \quad \delta e($ absolute $)=e\left[\left(\delta e / e_{m}\right)^{2}+\left(\delta e_{r} / e_{r}\right)^{2}\right]^{\frac{3}{2}}$, $\delta e_{\text {stat }}=$ statistical (relative) uncertainties; $\delta e_{e l e c}=$ electronic drift uncertainty; $\delta e_{\theta_{2}}, \delta e_{\phi}, \delta e_{D}$ are Geometry uncertainties; $\delta e_{H e}=$ uncertainty due to contamination of the liquid tritium sample, and $\delta e_{\phi} / e_{m}=0.0003, \delta e_{D} / e_{m}=0.0003$.
$T(\vec{n}, \hat{n}) T$

$\begin{gathered} \mathrm{E}_{\mathrm{n}}^{\prime} \\ (\mathrm{MeV}) \\ \hline \end{gathered}$	$\begin{aligned} & \theta_{2} \mathrm{lab} \\ & (\mathrm{deg}) \\ & \hline \end{aligned}$	$\begin{aligned} & \theta_{2} \mathrm{c} . \mathrm{m} . \\ & (\mathrm{deg}) \end{aligned}$	$\begin{aligned} & L^{\prime} \\ & L^{\prime \prime} \end{aligned}$	$\begin{aligned} & \mathrm{R}^{\prime} \\ & \mathrm{R}^{\prime \prime} \end{aligned}$	$\begin{aligned} & e_{m}^{1} \times 100 \\ & e_{m}^{\prime \prime} \times 100 \\ & \hline \end{aligned}$	$\mathrm{e}_{\mathrm{m}} \times 100$	$\begin{aligned} & \delta e_{\text {stat }} / e_{m} \\ & \delta e_{e l e c} / e_{m} \end{aligned}$	$\begin{aligned} & \delta e_{\theta_{2}} / e_{m} \\ & \delta e_{H^{\prime}} / e_{m} \end{aligned}$	$\underline{\mathrm{e} / \mathrm{e}_{\mathrm{m}}}$	$\begin{gathered} \text { absolute } \\ (\mathrm{e} \pm \delta \mathrm{e}) \times 100 \end{gathered}$	$\begin{aligned} & \text { relative \% } \\ & (\text { Se/e }) \times 100 \end{aligned}$
16.5	35	46.1	16245	16085	0.49	1.02	0.30	0.37	0.96	-0.76 ± 2.75	41.0
			16557	16049	1.56		0.83	0.03			
16.5	40	52.4	12276	11921	1.47	1.98	0.14	0.16	0.38	$+0.21 \pm 2.68$	130.0
			12341	11738	2.50		0.31	0.01			
16.5	45	58.7	10327	9295	5.26	5.76	0.05	0.06	0.13	$+3.98 \pm 2.67$	7.5
			10470	9236	6.26		0.10	0.01			
22.1	40	52.4	7142	7902	- 5.05	-7.73	0.07	0.04	0.12	-9.50 ± 2.73	5.5
			6893	8500	-10.4		0.09	0.03			
22.1	55	70.9	4013	5127	-12.2	-12.5	0.06	0.03	0.08	-14.25 ± 2.76	5.1
			4111	5323	-12.8		0.04	0.02			
22.1	70	88.3	1102	1527	-16.2	-16.9	0.06	0.03	0.07	-18.6 ± 2.8	5.1
			957	1362	-17.5		0.03	0.01			

						$\underline{D}(\vec{n}, \hat{n}) \mathrm{D}$	cont'd				
$\begin{gathered} E_{n} \\ (\mathrm{neV}) \end{gathered}$	$\begin{aligned} & \theta_{2} 1 \mathrm{lab} \\ & (\mathrm{deg}) \\ & \hline \end{aligned}$	$\begin{aligned} & \theta_{2} \mathrm{c} . \mathrm{m} . \\ & (\mathrm{deg}) \\ & \hline \end{aligned}$	$\begin{aligned} & L^{\prime} \\ & L^{\prime \prime} \end{aligned}$	$\begin{aligned} & \mathrm{R}^{\prime} \\ & \mathrm{R}^{\prime \prime} \end{aligned}$	$\begin{aligned} & e_{m}^{\prime \times 100} \\ & e_{m}^{\prime \prime \times 100} \\ & \hline \end{aligned}$	$\mathrm{e}_{\mathrm{m}} \times 100$	$\begin{aligned} & \delta \mathrm{e}_{\text {stat }} / \mathrm{e}_{\mathrm{m}} \\ & \delta \mathrm{e}_{\mathrm{elec}} / \mathrm{e}_{\mathrm{m}} \\ & \hline \end{aligned}$	$\begin{aligned} & \delta e_{\theta_{2}} / e_{m} \\ & \delta e_{\mathrm{He}} / e_{m} \\ & \hline \end{aligned}$	$\delta \mathrm{e} / \mathrm{em}_{\mathrm{m}}$	$\begin{gathered} \text { absolute } \\ (\mathrm{e} \pm \delta \mathrm{e}) \times 100 \\ \hline \end{gathered}$	relative \% $(\delta \mathrm{e} / \mathrm{e}) \times 100$
				erage	at 40°	- 0.74	$\begin{aligned} & 0.59 \\ & 0.38 \end{aligned}$	0.16	0.72	- 2.52 ± 2.63	17.0
22.1	50.5	73.2	5695	5729	- 0.30	-0.49	1.6	0.70	2.3	-2.27 ± 2.80	34.0
			5723	5801	- 0.68		1.4				
22.1	73	101.6	1147	1257	- 4.58	- 8.40					
			1224	1565	-12.2						
22.1	73	101.6	1202	1259	- 2.32	- 5.02					
			1089	1271	- 7.71						
22.1	73	101.6	1521	1771	- 7.59	-4.88					
			1668	1742	- 2.17						
22.1	73	101.6	1510	1665	- 4.88	- 5.73				- 7.78 ± 3.01	14.0
			681	777	- 6.58	$\text { . } 6.01$		0.13	0.26		
			Average at 73°								
						5.40	0.13		0.50		74.0
22.1	105	133.9	$\begin{aligned} & 435 \\ & 556 \end{aligned}$	$\begin{aligned} & 498 \\ & 391 \end{aligned}$	-6.75		$\begin{aligned} & 0.50 \\ & 0.06 \end{aligned}$	0.05		$+3.62 \pm 3.74$	
			556	391	17.4		0.06				
						${ }^{4} \mathrm{He}\left(\vec{n}_{2}\right.$	(1) ${ }^{4} \mathrm{He}$				
16.5	35	43.3	5969	4920	9.63	13.2	0.05	0.01	0.07	+11.45士2.73	5.6
			6208	4433	16.7		0.05				
16.5	45	55.3	6619	4144	23.0	19.2	0.04	0.01	0.05	+17.5 ± 2.7	4.0
			6568	4826	15.3		0.03				
22.1	40	49.3	7550	9815	-13.0	-13.0					
			5093	6600	-12.9						
22.1	40	49.3	6510	10205	-22.1	-15.7					
			6460	7767							

${ }^{4} \mathrm{He}(\vec{n}, \hat{n})^{4} \mathrm{He}$ cont'd

$\begin{gathered} \mathrm{E}_{\mathrm{n}} \\ (\mathrm{MeV}) \end{gathered}$	$\begin{aligned} & \theta_{2}{ }^{1 \mathrm{ab}} \\ & (\mathrm{deg}) \\ & \hline \end{aligned}$	$\begin{aligned} & \theta_{2} \mathrm{c} \cdot \mathrm{~m} . \\ & (\mathrm{deg}) \\ & \hline \end{aligned}$	$\begin{aligned} & L^{\prime} \\ & L^{\prime \prime} \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{R}^{\prime} \\ & \mathrm{R}^{\prime \prime} \end{aligned}$	$\begin{aligned} & e_{m}^{\prime} \times 100 \\ & e_{m}^{\prime \prime \times 100} \\ & \hline \end{aligned}$	$\mathrm{em}_{\mathrm{m}} \times 100$	$\begin{aligned} & \delta \mathrm{e}_{\text {stat }} / \mathrm{e}_{\mathrm{m}} \\ & \delta \mathrm{e}_{\mathrm{elec}} / \mathrm{e}_{\mathrm{m}} \end{aligned}$	$\begin{aligned} & \delta \mathrm{e}_{\theta_{2}} / \mathrm{e}_{\mathrm{m}} \\ & \delta \mathrm{e}_{\mathrm{He}} / \mathrm{e}_{\mathrm{m}} \\ & \hline \end{aligned}$	$\underline{\text { e/e }}{ }_{m}$	$\begin{gathered} \text { absolute } \\ (\mathrm{e} \pm \delta \mathrm{e}) \times 100 \\ \hline \end{gathered}$	$\begin{aligned} & \text { relative \% } \\ & (\text { (e/e }) \times 100 \\ & \hline \end{aligned}$
				rage	at 40°	-14.3	0.07	0.19	0.21	-16.0 ± 3.9	6.0
22.1	75	89.1	616	1029	-25.1	-23.6	0.11	0.00	0.12	-25.3 ± 3.8	11.0
			797	1248	-22.1		0.02				
22.1	105	119.1	388	177	37.3	38.7	0.11	0.00	0.11	+37.2 ± 5.0	12.0
			546	234	40.0		0.01				

CHAPTER V

RESULTS

In this chapter the results are tabulated for the $T(d, \vec{n})^{4}$ He neutron source polarization measurements, for the $T(\vec{n}, \hat{n}) T$ polarizations at $16.5-$ and $22.1-\mathrm{MeV}$ incident neutron energy, and for the $D(\vec{n}, \hat{n}) D$ polarizations at $E_{n}=22.1 \mathrm{MeV}$. The 22.1-MeV $T(\vec{n}, \hat{n}) T$ and $D(\vec{n}, \hat{n}) D$ polarizations are also presented in graphical form, and the results of a phase shift analysis on the $22-\mathrm{MeV} T(\vec{n}, \hat{\mathrm{n}}) \mathrm{T}$ data are presented.

I. SOURCE POLARIZATIONS

The $T(d, \vec{n})^{4} \mathrm{He}$ source polarizations measured by ${ }^{4} \mathrm{He}(\vec{n}, \hat{n})^{4} \mathrm{He}$ scattering are found in Table IV. The $n-{ }^{4}$ He elastic scattering analyzing powers $P_{2}\left(\theta_{2}\right)$ were obtained from the Hoop and Barschall phase shift calculations (Ho 66); the source polarization $\mathrm{P}_{1}\left(\theta_{1}\right)$ was calculated from the expression

$$
P_{1}\left(\theta_{1}\right)=e / P_{2}\left(\theta_{2}\right) .
$$

Note that the value of P_{1} at $\theta_{1}=29.8^{\circ}$ and $\theta_{2}=75^{\circ}$ is quite large. This value was neglected mainly because it dofs not agree with other quoted values of this source polarization ($\mathrm{Pe} 61, \mathrm{Ba} 66$). However, there is a resonence in the ${ }^{5} \mathrm{He}$ system at $22.15-\mathrm{MeV}$ incident neutron energy where the ${ }^{4} \mathrm{He}(\overrightarrow{\mathrm{n}}, \hat{\mathrm{n}})^{4} \mathrm{He}$ polarizations exhibit a sharp discontinuity, and it is possible that $P_{2}\left(\theta_{2}\right)$ is too small. Note, however, that the measurements in this experiment were made at a neutron

TABLE IV
$T(d, \vec{n}){ }^{4}$ He Source Polarizations $P_{1}\left(\theta_{1}\right)$ for an Incident Deuteron Energy of 6.0 MeV . Neutrons were emitted at angles θ_{1} with energy E_{n}, and the asymmetry e was measured by ${ }^{4} \mathrm{He}(\vec{n}, \hat{n})^{4} \mathrm{He}$ scattering into angle θ_{2}.

$\theta_{1} l a b$ (deg)	E_{n} (MeV)	$\theta_{2} \mathrm{lab}$ (deg)	$\frac{\mathrm{e} \pm \mathrm{\delta e}(\mathrm{absolute})}{}$	$\frac{\mathrm{P}_{2}\left(\theta_{2}\right)}{(\mathrm{Ho} \mathrm{66)}}$	$\frac{\mathrm{P}_{1}\left(\theta_{1}\right)}{}$
29.8	22.1	40	-0.16 ± 0.04	-0.42	+0.38
29.8	22.1	75	-0.25 ± 0.04	-0.36	+0.69
29.8	22.1	105	$+0.37 \pm 0.05$	+0.86	+0.43
89.8	16.5	35	$+0.11 \pm 0.03$	-0.22	-0.50
89.8	16.5	45	$+0.18 \pm 0.03$	-0.32	-0.56

energy below the resonance energy and agree quite well with the results of Perkins and Simmons (Pe 61), so that it is probable that the ${ }^{4} \mathrm{He}(\overrightarrow{\mathrm{n}}, \hat{\mathrm{n}})^{4} \mathrm{He}$ asymmetry measurement at $\theta_{2}=75^{\circ}$ is simply in error. The following values of $T(d, \vec{n})^{4}$ He neutron source polarization for $6.0-\mathrm{MeV}$ incident deuteron energy were obtained by considering the data from Table IV, from (Pe 61), and from the error analysis in Chapter IV:

$$
P_{1}\left(\theta_{1}=29.8^{\circ} \mathrm{lab}\right)=0.40 \pm 0.03
$$

and

$$
P_{1}\left(\theta_{1}=89.8^{\circ} 1 \mathrm{ab}\right)=-0.54 \pm 0.05 .
$$

II. $T(\vec{n}, \hat{n}) T$ AND $D(\vec{n}, \hat{n}) D$ RESULTS

The n-T and n-D polarizations are tabulated in Tables V and VI for incident neutron energy E_{n} and scattered neutron angle θ_{2}. Errors were
$T(\vec{n}, \hat{n}) T$ Polarizations $P_{2}\left(\theta_{2}\right) . E_{n}$ is the incident neutron energy. θ_{2} is the scattering angle.

E (MeV)	$\begin{aligned} & \theta_{2} \mathrm{lab} \\ & (\mathrm{de} \xi) \\ & \hline \end{aligned}$	$\begin{aligned} & \theta_{2} \mathrm{c} \cdot \mathrm{~m} . \\ & (\mathrm{deg}) \\ & \hline \end{aligned}$	$\cos \theta_{2}$ c.m.	e	$\underline{\mathrm{P}_{1}\left(\theta_{1}\right) \pm \delta \mathrm{P}_{1}}$	$\mathrm{P}_{2}\left(\theta_{2}\right)$	$\begin{gathered} \delta \mathrm{P}_{2} \\ \text { absolute } \end{gathered}$	$\begin{aligned} & \left(\delta \mathrm{P}_{2} / \mathrm{P}_{2}\right) \times 100 \\ & \text { relative \% } \\ & \hline \end{aligned}$	$\mathrm{P}_{2}\left(\theta_{2}\right)^{\dagger}$
16.5	35	46.1	0.693	-0.0076	-0.54 ± 0.05	+0.014	0.051	43.0	
16.5	40	52.4	0.610	0.0021	-0.54 ± 0.05	-0.004	0.048	130.0	
16.5	45	58.7	0.520	0.040	-0.54 ± 0.05	-0.074	0.050	8.1	
22.1	40	52.4	0.610	-0.095	0.40 ± 0.03	-0.24	0.071	5.5	-0.24
22.1	55	70.9	0.327	-0.14	0.40 ± 0.03	-0.36	0.074	5.0	-0.36
22.1	70	88.3	0.029	-0.19	0.40 ± 0.03	-0.47	0.080	5.2	-0.47
22.1	80	99.2	-0.160	-0.22	0.40 ± 0.03	-0.56	0.092	8.6	-0.47
22.1	85	104.5	-0.250	-0.24	0.40 ± 0.03	-0.59	0.10	11.0	-0.57
22.1	90	109.5	-0.334	-0.20	0.40 ± 0.03	-0.51	0.10	13.0	-0.62
22.1	95	114.5	-0.414	0.13	0.40 ± 0.03	+0.33	0.09	21.0	+0.32
22.1	100	119.2	-0.488	0.24	0.40 ± 0.03	+0.59	0.10	14.0	+0.33
22.1	105	123.8	-0.557	0.34	0.40 ± 0.03	+0.86	0.13	11.0	+0.95
22.1	$110 \frac{1}{4}$	128.5	-0.623	0.36	0.40 ± 0.03	+0.90	0.12	8.6	+0.98
22.1	$118 \frac{1}{2}$	135.6	-0.714	0.31	0.40 ± 0.03	+0.77	0.100	6.2	+0.98

'Data corrected for multiple scattering. See Multiple Scattering Corrections at the end of Appendix A.

TABLE VI

$D(\vec{n}, \hat{n}) D$ Polarizations $P_{2}\left(\theta_{2}\right)$. E_{n} is the incident neutron energy. θ_{2} is the scattering angle.

E_{n} (MeV)	$\theta_{2} \mathrm{lab}$ (deg)	$\theta_{2} \mathrm{c} \cdot \mathrm{m}$. (deg)	$\cos \theta_{2}$ 22.1	40	58.8	0.518	-0.025	0.40 ± 0.03	-0.063

calculated from the following expressions:

$$
\begin{equation*}
\delta \mathrm{P}_{2}(\text { absolute })=\mathrm{P}_{2}\left[(\delta e / e \text { absolute })^{2}+\left(\delta \mathrm{P}_{1} / \mathrm{P}_{1}\right)^{2}\right]^{\frac{1}{2}} \tag{V-1}
\end{equation*}
$$

and

$$
\begin{equation*}
\delta P_{2}(\text { relative })=P_{2}[\delta e / e(\text { relative })] \tag{V-2}
\end{equation*}
$$

See the analysis at the end of Appendix A for multiple scattering corrections.

The $T(\vec{n}, \hat{n}) T$ polarizations for $22.1-\mathrm{MeV}$ incident neutron energy are plotted in Fig. 12. Tivol's ${ }^{3} \mathrm{He}(\overrightarrow{\mathrm{p}}, \hat{\mathrm{p}})^{3} \mathrm{He}$ polarizations (Ti 68) at 21.3MeV incident proton energy are also sketched in this figure for comparison of the main features. In the present experiment the $T(\vec{n}, \hat{n}) T$ results are unique in exhibiting larger polarization than the ${ }^{3} \mathrm{He}(\overrightarrow{\mathrm{p}}, \hat{\mathrm{p}})^{3} \mathrm{He}$ results. In all previous experiments of charge-conjugate reactions or scatterings at nearby energies, neutron polarizations are approximately equal to, or significantly less than, the corresponding proton polarizations.

The $D(\vec{n}, \hat{n}) D$ polarizations are presented in Fig. 13 and compared with earlier measurements of this polarization (Ma 66).
III. PHASE SHIFT ANALYSIS

In Appendix A it is shown that $\operatorname{spin} \frac{1}{2}$, $\operatorname{spin} \frac{1}{2}$ scattering can be described by a collision matrix U for which the phase shifts $\delta_{i j}$ are defined in analogy with the case in which no mixing of states occurs by

$$
\begin{equation*}
\delta_{i j}=\arctan Q_{i j} \tag{v-3}
\end{equation*}
$$

Figure 12. $T(\vec{n}, \hat{n}) T$ Polarization Data at $22.1-\mathrm{MeV}$ Incident Neutron Energy. Error flags indicate the relative errors.

Figure 13. $D(\vec{n}, \hat{n}) D$ Polarization Results at $E_{n}=22.1 \mathrm{MeV}$ compared with results of Malanify et al. at 22.7 MeV (Ma 66). Error flags indicate absolute errors.

where in matrix notation

$$
\begin{equation*}
i Q=(U-1)(U+1)^{-1} \tag{v-4}
\end{equation*}
$$

Dodder has prepared an Energy Independent Reaction Matrix Analysis Code (Do 69) which has been modified for the CDC 6600 computer at LASL. The code was used to find a least squares fit of the scattering matrix elements for $\ell_{\text {max }}=3$ to the cross section (Se 67) and polarization data of $T(\vec{n}, \hat{n}) T$ elastic scattering.

Initial guesses of the phase shifts $\delta_{i j}$ were obtained from Eqs. (V-3) and (V-4) by calculating the U matrix elements from Tivol's phase shifts for $19.5-\mathrm{MeV}{ }^{3} \mathrm{He}(\overrightarrow{\mathrm{p}}, \hat{\mathrm{p}})^{3}{ }^{\mathrm{He}}$ scattering (Ti 68). A typical example of the transformation equations from Tivol's mixing parameters ε and phase shifts $\delta_{\ell S}^{J}$ to the U matrix elements is the following conversion to U_{11}, U_{17}, and U_{77} :

$$
\begin{aligned}
& U_{11}=\cos ^{2}\left(\varepsilon_{S D}\right) \exp \left(2 i \delta_{01}^{1}\right)+\sin ^{2}\left(\varepsilon_{S D}\right) \exp \left(2 i \delta_{21}^{1}\right), \\
& U_{17}=\frac{1}{2} \sin \left(2 \varepsilon_{S D}\right)\left[\exp \left(2 i \delta_{01}^{1}\right)-\exp \left(2 i \delta_{21}^{1}\right)\right],
\end{aligned}
$$

and

$$
U_{77}=\cos ^{2}\left(\varepsilon_{S D}\right) \exp \left(2 i \delta_{21}^{1}\right)+\sin ^{2}\left(\varepsilon_{S D}\right) \exp \left(2 i \delta_{01}^{1}\right)
$$

where the initial and final states represented by the non-zero $U_{i j}$ elements are given in Tatie AII.

Starting with the $p-3^{3}$ He phase shifts, a reasonably stable set of phase shifts (fit A) was obtained which fit the $22.1-\mathrm{MeV}$ n-T data. The fit A phase shift values, changed by as much as $\pm 50 \%$, can be used as
initial guesses in the energy independent code, and the solution will return to the fit A phase shifts. Another set of $22.1-\mathrm{MeV} n-T$ phase shifts (fit B) was obtained by starting with $\mathrm{p}-{ }^{3} \mathrm{He}$ guesses but allowing the program to renormalize the polarization data assuming a $\pm 15 \%$ error in the source polarization. The code normalized the polarizations by $40 / 43.4$ and gave a new fit (B) for a source polarization $P_{1}=0.434$. The phase shifts calculated from the $19.5-\mathrm{MeV} \mathrm{p}-{ }^{3} \mathrm{He}$ data and those for fit A and fit B are tabulated in Table VII; the predicted $T(n, n)$ 市 triton polarizations for fits A and B are shown in Fig. 14a; and the differential cross section and $T(n, \vec{n}) T$ neutron polarization fits are drawn in Fig. 14b. There is no apparent reason to prefer one fit over another except that the shapes of the predicted triton polarization curves in Fig. 14a are quite different from each other. Tivol (Ti 68) indicates that the $3^{\text {He polarization }}$ at forward angles may be negative.

IV. VALUABLE FUTURE MEASUREMENTS

It should be noted that nearly any initial guess for the 19 phase shifts in this problem will lead to a different solution, each of which fits the cross sections and neutron polarizations with about the same accuracy. Since the shape of the predicted triton polarization curve is different for different solutions, it would be useful to measure this effect. However, measurement of the triton polarizations would be an extremely difficult experiment. A more reasonable approach to the problem of determining a unique set of phase shifts is to measure the $n-T$ neutron polarizations over a range of incident neutron energies and to atternpt to find phase shift solutions which vary smoothly with

TABLE VII

Phase Shift Fits to the $22.1-\mathrm{MeV} \mathrm{n}-\mathrm{T}$ Data and $19.5-\mathrm{MeV} \mathrm{p}-{ }^{3} \mathrm{He}$
phase shifts (Ti 68). $\ell_{\max }=3$
(See Table AII for definition of $U_{i j}$ elements.)

\underline{i}	$\underline{1}$	$\begin{gathered} \delta_{i j}(\mathrm{deg}) \\ \mathrm{p}-{ }^{3} \mathrm{He} \\ \hline \end{gathered}$	$\delta_{i j}(\mathrm{deg})$ $\underline{\mathrm{n}-\mathrm{T}}$ fit A	$\begin{aligned} & \delta_{i j}(\mathrm{deg}) \\ & \underline{n-T} \text { fit B } \end{aligned}$
1	1	75.6	60.0	70.4
1	7	9.11	-31.6	-40.4
2	2	81.8	56.7	71.2
2	10	43.4	-27.1	-40.4
3	3	40.5	25.1	33.6
3	12	4.17	21.9	- 8.88
4	4	24.6	48.2	55.2
5	5	0.0	- 8.24	- 7.93
6	6	-12.4	10.8	20.2
6	13	1.66	16.8	- 8.45
7	7	- 5.94	-10.4	1.36
8	8	- 6.88	- 4.38	- 4.77
9	9	1.72	12.4	15.8
9	14	- 0.07	5.75	- 6.65
10	10	5.67	2.91	8.86
11	11	59.6	51.3	24.9
12	12	53.9	31.8	15.9
13	13	- 0.22	21.8	7.55
14	14	- 5.16	4.74	-0.613
	x^{2}		31.3	31.8

weighted
variance $=3.47 \quad 3.98$
Figure 14a-b. Phase Shift Fits to the $22.1-\mathrm{MeV} \mathrm{n}-\mathrm{T}$ Cross
Section and Polarization Data. The pointsare the neutron polarizations measured inthis experiment. The differential crosssection curve matches LASL preliminary data
(Se 67). $\quad \ell_{\max }=3$.

energy.
The cryostats, detectors, collimators, and turntables used in this experiment are being moved to the Los Alamos tandem accelerator area where pulsed neutron beams of ~ 4 to 30 MeV energy can be produced. With the addition of an ~ 100 kgauss, superconducting, spin-precession solenoid which will be placed between the neutron producing target and the scattering sample, it is expected that measurements of the $T(\vec{n}, \hat{n}) T$ and $D(\vec{n}, \hat{n}) D$ interactions can be extended over a wide range of energies. These measurements must be made before one can hope to find a unique solution to the phase shift problem and thereby determine the form of the nuclear interaction potentials.

THE THEORY OF SCATTERING OF PARTICLES OF SPIN $1 / 2$

 FROM A TARGET POSSESSING THE SAME SPINIn the following pages the theory outlined in the text will be developed in detail under the following subheadings:
I. Justification of Non-Relativistic Treatment
II. Reaction Kinematics
III. Quantum Theory of Spinless Scattering
IV. Matrix Formulation of Spin $\frac{1}{2}$, Spin $\frac{1}{2}$ Scattering
V. Polarization
VI. Data Correction Formulae
I. JUSTIFICASIION OF NON-RELATIVISTIC TREATMENT

The momentum equation

$$
\begin{equation*}
\left|P_{r e l}\right|=\left[T^{2}: 2 m_{0} c^{2} T\right]^{\frac{1}{2} /} / c \tag{Al}
\end{equation*}
$$

results from the relativistic energy momentum relationships

$$
E^{2}=c^{2} p^{2}+m_{0}^{2} c^{4}
$$

and

$$
E=T+m_{o} c^{2}
$$

Classically, of course,

$$
\begin{equation*}
\left|P_{c l}\right|=\sqrt{2 m_{o}^{T}} \tag{A2}
\end{equation*}
$$

so that

$$
\begin{equation*}
\left|P_{r e l}\right| /\left|p_{c l}\right|=\sqrt{\left(T / 2 m_{0} c^{2}\right)+1} \tag{A3}
\end{equation*}
$$

In the present experiment

$$
\begin{aligned}
\mathrm{T} & \leq 22 \mathrm{MeV} \\
\mathrm{M}_{\mathrm{n}}=\mathrm{m}_{\mathrm{o}} \mathrm{c}^{2} & =939 \mathrm{MeV}
\end{aligned}
$$

and

$$
\left|\mathrm{P}_{\mathrm{rel}}\right| /\left|\mathrm{P}_{\mathrm{cl}}\right| \leq 1.0058
$$

Since all expressions to be considered contain p in powers 21 , errors introduced into the analysis by a classical rather than a relativistic treatment will be less than 0.6%.

II. REACTION KINEMATICS

This section is a review of the methods for obtaining the transformation from laboratory (lab) to center of mass (c.m.) angles and for calculating reaction energies in the lab. The following constants (based on $M_{12} C=12.000000 \mathrm{amu}$) will be useful.

$$
\begin{aligned}
M_{p} & =1.007825 \mathrm{amu} \\
M_{n} & =1.008665 \mathrm{amu} \\
M_{d} & =2.01410 \mathrm{amu}
\end{aligned}
$$

$$
\begin{aligned}
M_{T} & =3.016 \mathrm{amu} \\
\mathrm{M}_{4 \mathrm{He}} & =4.00260 \mathrm{amu} \\
Q_{\mathrm{T}}(\mathrm{~d}, \mathrm{n}) & =17.588 \mathrm{MeV} \\
1 \mathrm{amu} & =931.44 \mathrm{MeV}=1.660 \times 10^{-24} \mathrm{gm} .
\end{aligned}
$$

Reactions

The Q value of a reaction is the difference in mass between the incoming particles and the reaction products; i.e.,

$$
M_{1}+M_{2}-\left(M_{3}+M_{4}\right)=Q .
$$

Figure Al. The Reaction in Laboratory Coordinates.

The energy-mass conservation equation is then

$$
\begin{equation*}
E_{1}+Q=E_{3}+E_{4}, \tag{AL}
\end{equation*}
$$

where E_{i} represents the kinetic energy of the $i^{\text {th }}$ particle. Expressions for conservation of momentum are

$$
\begin{equation*}
\sqrt{2 A_{1} E_{1}}=\sqrt{2 \cdot A_{3} E_{3}} \cos \theta+\sqrt{21_{4} E_{4}} \cos \phi \tag{AS}
\end{equation*}
$$

and

$$
\begin{equation*}
0=\sqrt{2 M_{3} E_{3}} \sin \theta+\sqrt{2 M_{4} E_{4}} \sin \phi \tag{AG}
\end{equation*}
$$

Eliminating E_{4} and ϕ from Eqs. (A4-6) determines the kinetic energy of the light product, M_{3}, in terms of the masses, the reaction Q value, the bombarding particle energy, and the angle, $\theta_{1 a b}$, at which M_{3} leaves the reaction. Squaring and adding Eqs. (A5) and (A6) one obtains

$$
2 M_{1} E_{1}+2 M_{3} E_{3}-4 \sqrt{M_{1} E_{1} M_{3} E_{3}} \cos \theta=2 M_{4} E_{4} ;
$$

and substitution of E_{4} from Eq. (A4) yields

$$
2 M_{1} E_{1}+2 M_{3} E_{3}-4 \sqrt{M_{1} E_{1} M_{3} E_{3}} \cos \theta=2 M_{4} E_{1}+2 M_{4} Q-2 M_{4} E_{3},
$$

so that

$$
\left(M_{3}+M_{4}\right) E_{3}-2 \sqrt{M_{1} M_{3} E_{1} E_{3}} \cos \theta+\left(M_{1}-M_{4}\right) E_{1}-M_{4} Q=0,
$$

or

$$
\begin{equation*}
\sqrt{E_{3}}=b \pm\left(b^{2}+c\right)^{\frac{1}{2}}, \tag{AT}
\end{equation*}
$$

where

$$
\begin{align*}
& b=\left[\sqrt{M_{1} M_{3} E_{1}} \cos \theta\right] /\left(M_{3}+M_{4}\right) \tag{AB}\\
& c=\left[\left(M_{4}-M_{1}\right) E_{1}+M_{4} Q\right] /\left(M_{3}+M_{4}\right) .
\end{align*}
$$

For the $I(d, n)^{4}$ He reaction $\left(M_{4}=M_{4}\right)>\left(M_{1}=M_{n}\right)$ and $Q>0$; therefore, c is always positive and the positive energy solutions are

$$
\sqrt{E_{3}}=b+\left(b^{2}+c\right)^{\frac{1}{2}}
$$

Lab to c.m. Angle Conversion
Figure $A 2$ is a diagram of the elastic scattering of H_{1} and M_{2} in the $\operatorname{c.m} .(\theta, \Phi)$ and $\operatorname{lab}(\theta, \phi)$ reference frames where C is the center of mass and V_{c} is the velocity of the mass center in the lab. If V is the laboratory velocity of M_{1} before collision, then $\mathrm{V}_{1 \mathrm{c} . \mathrm{m}}=\mathrm{V}-\mathrm{V}_{\mathrm{c}}$ and $\mathrm{V}_{\text {2c.m. }}=-\mathrm{V}_{\mathrm{c}}$ before collision. By definition of the center of mass

$$
\vec{P}_{1 c, m .}+\vec{P}_{2 c . m .}=0 ;
$$

thus,

$$
M_{1}\left(V-V_{c}\right)-M_{2} V_{c}=0
$$

and

$$
\begin{equation*}
v_{c} /\left(v-v_{c}\right)=M_{1} / M_{2} \tag{A9}
\end{equation*}
$$

To conserve both energy and momentum the velocities in the c.m. must remain constant throughout an elastic collision. To obtain the relationship between 0 and θ consider the triangle CEF in Fig. A2.

$$
\begin{aligned}
& \overline{\mathrm{FE}} / \sin (\theta-\theta)=\overline{\mathrm{CF}} / \sin \theta \\
& \mathrm{V}_{\mathrm{c}} / \sin (\theta-\theta)=\left(\mathrm{V}-\mathrm{V}_{\mathrm{c}}\right) / \sin \theta,
\end{aligned}
$$

and substituting from (A9)

$$
\begin{equation*}
0=\theta+\sin ^{-1}\left(M_{1} \sin \theta / M_{2}\right) \tag{A10}
\end{equation*}
$$

Figure A2. Elastic Scattering in Lab (θ, ϕ) and $c . m$. (θ, Φ) Reference Frames.

III. QUANTUM THEORY OF SPINLESS SCATTERING

The Equation of Relative Motion

The problem of spin-independent nucleon-nucleus scattering is that of the motion of two particles in a potential field which depends only on the distance between the particles.

The Schrödinger wave equation for two particles of masses M_{1} and M_{2} can be written
in $\frac{\partial}{\partial t} \Psi\left(\vec{x}_{1}, \vec{x}_{2}, t\right)=\left[-\frac{\hbar^{2}}{2 M_{1}} \nabla_{1}^{2}-\frac{\hbar^{2}}{2 M_{2}} \nabla_{2}^{2}+V\left(\vec{x}_{1}, \vec{x}_{2}, t\right)\right] \Psi\left(\vec{x}_{1}, \vec{x}_{2}, t\right)$,
where $\vec{x}_{1,2}$ represents the three space coordinates (x, y, z) of particles 1,2, respectively, $x_{1,2}, y_{1,2}, z_{1,2}$, and

$$
\nabla_{1,2}^{2}=\frac{\partial^{2}}{\partial x_{1,2}^{2}}+\frac{\partial^{2}}{\partial y_{1,2}^{2}}+\frac{\partial^{2}}{\partial z_{1,2}^{2}}
$$

Assume now a central force,

$$
v_{c}=v_{c}\left(x_{1}-x_{2}, y_{1}-y_{2}, z_{1}-z_{2}\right)
$$

and define relative coordinates $x=x_{1}-x_{2}, y=y_{1}-y_{2}, z=z_{1}-z_{2}$, center of mass coordinates

$$
\begin{aligned}
& X=\left(M_{1} x_{1}+M_{2} x_{2}\right) / M \\
& Y=\left(M_{1} y_{1}+M_{2} y_{2}\right) / M \\
& Z=\left(M_{1} z_{1}+M_{2} z_{2}\right) / M
\end{aligned}
$$

and the reduced mass $m=M_{1} M_{2} /\left(M_{1}+M_{2}\right)$, and $M=M_{1}+M_{2}$; then

$$
\begin{align*}
& \frac{\partial}{\partial x_{2}}=-\frac{\partial}{\partial x}+\frac{M_{2}}{M} \frac{\partial}{\partial X}, \\
& \frac{\partial^{2}}{\partial x_{2}^{2}}=\frac{\partial^{2}}{\partial x^{2}}-\frac{2 M_{2}}{M} \frac{\partial^{2}}{\partial x \partial X}+\frac{M_{2}^{2}}{M^{2}} \frac{\partial^{2}}{\partial X^{2}}, \tag{Al2}
\end{align*}
$$

and

$$
\begin{equation*}
\frac{\partial^{2}}{\partial x_{1}^{2}}=\frac{\partial^{2}}{\partial x^{2}}+\frac{2 M_{1}}{M} \frac{\partial^{2}}{\partial x \partial X}+\frac{M_{1}^{2}}{M^{2}} \frac{\partial^{2}}{\partial X^{2}} \tag{A13}
\end{equation*}
$$

so that

$$
\begin{aligned}
& \frac{1}{M_{1}} \nabla_{1}^{2}+\frac{1}{M_{2}} \nabla_{2}^{2}=\left(\frac{1}{M_{1}}+\frac{1}{M_{2}}\right)\left(\frac{\partial^{2}}{\partial x^{2}}+\frac{\partial^{2}}{\partial y^{2}}+\frac{\partial^{2}}{\partial z^{2}}\right) \\
& \quad+\left(\frac{2}{M}-\frac{2}{M}\right)\left(\frac{\partial^{2}}{\partial x \partial X}+\frac{\partial^{2}}{\partial y \partial Y}+\frac{\partial^{2}}{\partial z \partial Z}\right)+\left(\frac{M_{2}}{M^{2}}+\frac{M_{1}}{M^{2}}\right)\left(\frac{\partial^{2}}{\partial X^{2}}+\frac{\partial^{2}}{\partial Y^{2}}+\frac{\partial^{2}}{\partial Z^{2}}\right) .
\end{aligned}
$$

Now

$$
\frac{1}{M_{2}}+\frac{1}{M_{1}}=\frac{M_{1}+M_{2}}{M_{1} M_{2}}=\frac{1}{m}
$$

and

$$
\left(M_{1}+M_{2}\right) / M^{2}=1 / M ;
$$

thus, the Schrödinger wave equation for the interaction of two particles becomes

$$
\begin{equation*}
i \hbar \frac{\partial \psi}{\partial t}=\left[-\frac{\hbar^{2}}{2 i \Lambda} \nabla_{x}^{2}-\frac{\hbar^{2}}{2 m} \nabla_{x}^{2}+v_{c}(x, y, z)\right] \psi . \tag{A14}
\end{equation*}
$$

The wave equation can be separated by allowing

$$
\psi(\vec{x}, \vec{x}, t)=f(t) \psi(\vec{x}) \quad x^{(\vec{x})} .
$$

In that case

$$
\frac{i \hbar}{f} \frac{d f}{d t}=\frac{1}{\psi X}\left(-\frac{\hbar^{2}}{2 M} \nabla_{X}^{2}-\frac{\hbar^{2}}{2 m} \nabla_{x}^{2}+V(\vec{x})\right) \psi X=W,
$$

and

$$
d f / f=-i W d t / \hbar,
$$

so that

$$
\begin{equation*}
f=C \exp [-i W t / \hbar] . \tag{Al5}
\end{equation*}
$$

Also

$$
\frac{1}{x}\left(-\frac{\hbar^{2}}{2 M} \nabla_{X}^{2} x(\vec{X})\right)+\frac{1}{\psi}\left(-\frac{\hbar^{2}}{2 m} \nabla_{x}^{2} \psi(\vec{x})+V_{c}(\vec{x}) \psi(\vec{x})\right)=W
$$

Since X and ψ are independent, one can define $W=E+E^{\prime}$ where

$$
\begin{equation*}
\left(-h^{2} / 2 M\right) \nabla_{X}^{2} x=E^{\prime} x \tag{A16}
\end{equation*}
$$

is the equation for the motion of a free particle of mass $M=M_{1}+M_{2}$ and

$$
\begin{equation*}
\left[\left(-h^{2} / 2 m\right) \nabla_{x}^{2}+V_{c}\right] \psi=E \psi \tag{A17}
\end{equation*}
$$

is the equation of motion of a particle of reduced mass, m. in a potential field V_{c}.
E and E^{\prime} are energy eigenvalues of the two types of motion. Only the equation of relative motion contains the scattering potential; thus

Eq. (A17) is the important expression for describing the nucleon-nucleus interaction. In the following discussion the subscript x will be dropped from the operator ∇_{x}^{2} in Eq. (A17) so that the relative kinetic energy operator in the two-particle system is $\left(-x_{1}{ }^{2} / 2 m\right) \nabla^{2}$. One purpose of the present experiment has been to throw some light on the interaction potential $\mathrm{V}(\overrightarrow{\mathrm{x}})$ between the neutron and triton.

Summary. The equation of motion of a two-particle system can be written as the free motion of the total mass of the system $M=M_{1}+M_{2}$,

$$
\left(-\hbar^{2} / 2 M\right) \nabla_{X}^{2} x(\vec{X})=E^{\prime} x(\vec{X})
$$

and the relative motion of a particle of reduced mass $m=M_{1} M_{2} /\left(M_{1}+M_{2}\right)$ in an interaction potential $V_{c}\left(\vec{x}_{1}-\vec{x}_{2}\right)=V_{c}(\vec{x})$, where

$$
\left(-n^{2} / 2 m\right) \nabla^{2} \psi(\vec{x})+V_{c}(\vec{x}) \psi(\vec{x})=E \psi(\vec{x})
$$

The total wave function of the system is

$$
\begin{equation*}
\psi(\vec{x}, \vec{x}, t)=\psi(\vec{x}) x(\vec{x}) \exp \left[-i\left(E+E^{\prime}\right) t / \neq 1\right] . \tag{Al8}
\end{equation*}
$$

Concepts of Cross Section
Now consider the eigenvalue equation

$$
\left(-\hbar_{1}^{2} / 2 m\right) \nabla^{2} \psi(\vec{x})+V_{c} \psi(\vec{x})=E \psi(\vec{x})
$$

and rewrite it

$$
\begin{equation*}
\left(\nabla^{2}+k^{2}-U_{c}\right) \psi(\vec{x})=0 \tag{A19}
\end{equation*}
$$

where

$$
\begin{equation*}
U_{c}=\left(2 m / \hbar^{2}\right) V_{c}(\vec{x}) \tag{A20}
\end{equation*}
$$

and

$$
\begin{equation*}
\hbar^{2} k^{2}=2 m E(i . e ., \vec{p}=\hbar k) \text {. } \tag{A21}
\end{equation*}
$$

ψ is the total wave function of the scattering problem; therefore, it must be the sum of an incident wave and a scattered wave. The assumed plane wave of incident particles can be represented by $\psi_{i n}(\vec{x})=\exp (i k z)$ so that the density of particles in the incident beam is $\psi_{\text {in }} \psi_{i n}^{*}=1$ per unit volume. If the incident velocity is V then the incident flux is $|\exp (i k z)|^{2} V=V$ particles/unit area-unit time. It is easily seen by substitution into (A19) that $e^{i k z}$ is a solution of the wave equation at large distances where the interaction potential is zero.

Now the differential cross section $\sigma(\theta) \mathrm{ds} / \mathrm{r}^{2}$ for elastic scattering into a solid angle $d s / r^{2}$ at mean angle θ is the ratio of the flux of scattered particles to the incident flux. It is common to define the scattered wave function in terms of a scattering amplitude $f(\theta)$.

$$
\begin{equation*}
\psi_{S C} \equiv f(\theta) \exp (i k r) / r \tag{A22}
\end{equation*}
$$

Then (particles scattered into ds)/(unit time) $=\psi_{S c} \psi_{S C}^{*} V d s=\mid f(\theta) \times$ $\exp (i k r) /\left.r\right|^{2} V d s$, and

$$
\sigma(\theta)\left(\frac{d s}{r^{2}}\right)=\frac{\psi_{s c} \psi_{s c}^{*} V d s}{\psi_{i n} \psi_{i n}^{*} V}=\frac{|f(\theta)|^{2} V \frac{d s}{r^{2}}}{V},
$$

so that for unit solid angle

$$
\begin{equation*}
\sigma(\theta)=|f(\theta)|^{2} \tag{A23}
\end{equation*}
$$

In this manner the total wave function,

$$
\psi(\vec{x})=\psi_{i n}(\vec{x})+\psi_{s c}(\vec{x})=\exp (i k z)+f(\theta) \exp (i k r) / r, \quad \text { (A24) }
$$

and the measurable differential cross sections $\sigma(\theta)$ are connected by the Schrodinger equation to the interaction potential V_{c}.

Separation of the Wave Equation

It will be convenient in analysis of the scattering problem to have the wave function $\psi(\vec{x})$ separated into its spherical components.

It is straightforward (but lengthy) to show (Sh 59) that

$$
\begin{aligned}
\nabla^{2} \equiv & \frac{\partial^{2}}{\partial x^{2}}+\frac{\partial^{2}}{\partial y^{2}}+\frac{\partial^{2}}{\partial z^{2}}=\frac{1}{r^{2}} \frac{\partial}{\partial r}\left(r^{2} \frac{\partial}{\partial r}\right) \\
& +\frac{1}{r^{2} \sin \theta} \frac{\partial}{\partial \theta}\left(\sin \theta \frac{\partial}{\partial \theta}\right)+\frac{1}{r^{2} \sin ^{2} \theta} \frac{\partial^{2}}{\partial \phi^{2}},
\end{aligned}
$$

where

$$
\begin{aligned}
& \mathbf{x}=r \sin \theta \cos \phi \\
& \mathbf{y}=r \sin \theta \sin \phi \\
& \mathbf{z}=r \cos \theta .
\end{aligned}
$$

This section still assumes that $v_{c}(\vec{x})=V\left(x_{1}-K_{2}, y_{1}-y_{2}, z_{1}-z_{2}\right) \equiv v_{c}(r)$; thus, the wave equation can be written

$$
\begin{align*}
& {\left[\frac{1}{r^{2}} \frac{\partial}{\partial r}\left(r^{2} \frac{\partial}{\partial r}\right)+\frac{1}{r^{2} \sin \theta} \frac{\partial}{\partial \theta}\left(\sin \theta \frac{\partial}{\partial \theta}\right)+\frac{1}{r^{2} \sin ^{2} \theta} \frac{\partial^{2}}{\partial \phi^{2}}\right] \psi(r, \theta, \phi)} \\
& \quad+k^{2} \psi(r, \theta, \phi)-\left(2 m / \hbar^{2}\right) V_{c}(r) \psi(r, \theta, \dot{\phi})=0 . \tag{A25}
\end{align*}
$$

Now let $\psi(r, \theta, \phi)=R(r) \quad 0(\theta) \Phi(\phi)=R(r) Y(\theta, \phi)$, substitute into (A25), and divide by ψ to obtain

$$
\begin{align*}
\frac{1}{R} \frac{d}{d r} & \left(r^{2} \frac{d R}{d r}\right)+r^{2}\left(k^{2}-U_{c}\right)=-\frac{1}{Y}\left[\frac{1}{\sin \theta} \frac{\partial}{\partial \theta}\left(\sin \theta \frac{\partial Y}{\partial \theta}\right)+\frac{1}{\sin ^{2} \theta} \frac{\partial^{2} Y}{\partial \phi^{2}}\right] \\
& =-\frac{1}{\theta} \frac{1}{\sin \theta} \frac{d}{d \theta}\left(\sin \theta \frac{d \theta}{d \theta}\right)-\frac{1}{\Phi} \frac{1}{\sin ^{2} \theta} \frac{d^{2} \Phi}{d \phi^{2}}=L . \tag{A26}
\end{align*}
$$

Since the left side of (A26) depends only on r and the right side is independent of r, both sides must be equal to a constant, L. Then

$$
\begin{equation*}
\frac{1}{r^{2}} \frac{d}{d r}\left(r^{2} \frac{d R}{d r}\right)+\left(k^{2}-U_{c}-\frac{L}{r^{2}}\right) R=0 \tag{A27}
\end{equation*}
$$

and similarly

$$
\frac{1}{0} \sin \theta \frac{d}{d \theta}\left(\sin \theta \frac{d \theta}{d \theta}\right)+L \sin ^{2} \theta=-\frac{1}{\Phi} \frac{d^{2} \Phi}{d \phi^{2}}=v,
$$

where v is another separation constant. As a result

$$
\begin{equation*}
\frac{1}{\sin \theta} \frac{d}{d \theta}\left(\sin \theta \frac{d \theta}{d \theta}\right)+\left(L-\frac{v}{\sin ^{2} \theta}\right)=0, \tag{A28}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{d^{2} \Phi}{d \phi^{2}}+v \Phi=0 \tag{A29}
\end{equation*}
$$

The solutions of the Φ equation (A29) are

$$
\Phi(\phi)=A \exp \left(i v^{\frac{1}{2}} \phi\right)+B \exp \left(-i v^{1 / 2} \phi\right) \quad v \neq 0
$$

and

$$
\Phi(\theta)=A+B \phi \quad \nu=0 ;
$$

but $\Phi(\phi+2 \pi)=\Phi(\phi)$; therefore,

$$
A \exp \left(i v^{1 / 2} \phi\right)+B \exp \left(-i v^{\frac{1}{2}} \phi\right)=A \exp \left[i v^{1 / 2}(\phi+2 \pi)\right]+B \exp \left[-i v^{\frac{1}{2}}(\phi+2 \pi)\right]
$$

and $\nu^{\frac{1}{2}}=m$ where m is any integer or zero. Now $A+B \phi=A+B \phi+2 \pi B$ only if $B=0$. The solutions $A, A \exp (i m \phi)$, and $B \exp (-i m \phi)$ are all linearly dependent; hence,

$$
\Phi(\phi)=A \exp (i m \phi)
$$

Let Φ be normalized to unity over the range $\phi=0$ to $\phi=2 \pi$,

$$
\int_{0}^{2 \pi} \Phi^{*}(\phi) \Phi(\phi) d \phi=\int_{0}^{2 \pi} A^{2} d \phi=2 \pi A^{2}=1
$$

then

$$
\begin{equation*}
\Phi(\phi)=(2 \pi)^{-\frac{1}{2}} \exp (i m \phi) \tag{A30}
\end{equation*}
$$

To find the solutions of the 0 equation the following substitutions are made in (A28):

$$
w=\cos \theta, \quad \quad \quad(\theta)=P(w)
$$

and

$$
\frac{d}{d \theta}=\frac{d}{d w} \frac{d w}{d \theta}=-\sin \theta \frac{d}{d w} .
$$

Then

$$
\frac{d}{d w}\left[\left(1-w^{2}\right) \frac{d P}{d w}\right]+\left(L-\frac{m^{2}}{1-w^{2}}\right) P=0
$$

The domain of θ is 0 to π; hence, the domain of w is 1 to -1 . Whittaker and Watson (Wh 50) show that for $L=\ell(\ell+1)$ the solutions for $P(w)$ which are finite at $W= \pm 1$ are the associated Legendre polynomials $P_{\ell}^{m}(W)$ where

$$
\int_{-1}^{1} P_{\ell}^{m}(\dot{w}) P_{\ell}^{m}(w) d w=\left\{\begin{array}{cc}
0 & \ell^{\prime} \neq \ell \tag{A31}\\
\frac{2}{2 \ell+1} \frac{(\ell+m)!}{(\ell-m)!} & \ell '=\ell
\end{array} .\right.
$$

A solution for 0 is then the normalized function

$$
\begin{equation*}
\theta_{\ell \mathrm{m}}(\theta)=\sqrt{\frac{2 \ell+1}{2} \frac{(\ell-m)!}{(\ell+m)!}} P_{\ell}^{m}(\cos \theta) \tag{A32}
\end{equation*}
$$

Note that when $m=0, \Phi=\frac{1}{\sqrt{2 \pi}}$; i.e., the wave function is axially
symmetric and $\theta_{\ell}(\theta)$ becomes the normalized Legendre polynomial $[(2 \ell+1) / 2]^{\frac{1}{2}} \mathrm{P}_{\ell}(\cos \theta)$.

Jahnke and Emde (Ja 45) give expressions for evaluating the Legendre and associated polynomials. The normalized spherical harmonics $Y_{\ell m}(\theta, \phi)$ in Eq. (A26) are defined:

$$
\begin{equation*}
Y_{\ell m}(\theta, \phi)=\sqrt{\frac{2 \ell+1}{4 \pi} \frac{(\ell-m)!}{(\ell+m)!}} P_{\ell}^{m}(\cos \theta) \exp (i m \phi) . \tag{A33}
\end{equation*}
$$

Therefore, a solution of the scattering Eq. (A19) in spherical
coordinates is

$$
\begin{equation*}
\psi(r, \theta, \phi)=\sum_{\substack{\ell=0 \\|m| \leq \ell}}^{\infty} R_{\ell m}(r) P_{2}^{m}(\cos \theta) \exp (i m \phi), \tag{A34}
\end{equation*}
$$

where $R_{\ell m}(r)$ satisfies the radial wave equation

$$
\begin{equation*}
\frac{d^{2} R}{d r^{2}}+\frac{2}{r} \frac{d R}{d r}+\left[k^{2}-U_{c}(r)-\frac{\ell(\ell+1)}{r^{2}}\right] R=0 \tag{A35}
\end{equation*}
$$

and normalizing constants have been absorbed into $R_{\ell m}(r)$.
Angular momentum. The quantity $[\ell(\ell+1)]^{\frac{1}{2}} \mathrm{n}_{\text {in }}$ can be associated with angular momentum, M, by noting that

$$
\begin{equation*}
M^{2}=-\hbar^{2}\left[\frac{1}{\sin \theta} \frac{\partial}{\partial \theta}\left(\sin \theta \frac{\partial}{\partial \theta}\right)+\frac{1}{\sin ^{2} \theta} \frac{\partial^{2}}{\partial \theta^{2}}\right] \tag{Sc55}
\end{equation*}
$$

so that from Eq. (A26)

$$
M^{2} Y_{\ell m}(\theta, \phi)=L \hbar^{2} Y_{\ell m}(\theta, \phi)=\ell(\ell+1) \nwarrow_{1}^{2} Y_{\ell m}(\theta, \phi) .
$$

Therefore, $Y_{l}^{m}(\theta, \phi)$ is an eigenfunction of the square of the angular momentum with eigenvalue $\ell(\ell+1) \hbar^{2}$. Also $M_{z}=-i \hbar(\partial / \partial \phi)$, and from Eq. (A33)

$$
M_{z} Y_{\ell m}(\theta, \phi)=m \hbar Y_{\ell m}(\theta, \phi) .
$$

Thus, $Y_{\ell m}$ is also an eigenfunction of the z component of angular mamentum with eigenvalue m.

Solution of the Radial Wave Equation

Jahnke and Emde (Ja 45) give the function $y=x^{a}\left[J_{p}\left(\beta x^{\gamma}\right) \cos \delta\right.$ - $\left.N_{p}\left(\beta x^{\gamma}\right) \sin \delta\right]$ as the solution to Bessel's equation

$$
\frac{d^{2} y}{d x^{2}}+\frac{1-2 a}{x} \frac{d y}{d x}+\left[\left(\beta \gamma x^{\gamma-1}\right)^{2}-\frac{p^{2} \gamma^{2}-a^{2}}{x^{2}}\right] y=0,
$$

where δ is an arbitrary constant, $J_{p}(x)$ and $N_{p}(x)$ are Bessel functions of the first and second kind, respectively, and $N_{p}(x)(\sin p \pi)=$ $J_{p}(x)(\cos p \pi)-J_{-p}(x)$.

Bessel's equation is equivalent to the radial Eq. (A35) if the following associations are made:

$$
\begin{aligned}
x & =r \\
y & =R(r) \\
\beta & =\left[k^{2}-U_{c}(r)\right]^{\frac{1}{2}} \\
\gamma & =1 \\
a & =-\frac{1}{2} \\
p^{2} & =\left(\ell+\frac{2}{2}\right)^{2} \\
\alpha & =\beta \gamma .
\end{aligned}
$$

Thus, the solution of the radial equation for a particular ℓ value is

$$
\begin{equation*}
R_{\ell}(r)=A_{\ell m}^{\prime} r^{-\frac{1}{2}}\left[J_{\ell+\frac{1}{2}}(\alpha r) \cos \delta_{\ell}-N_{\ell+\frac{1}{2}}(\alpha r) \sin \delta_{\ell}\right] . \tag{A36}
\end{equation*}
$$

In the scattering problem one is interested in solutions for large r where incident and scattered particles are produced and detected. At large r (Ja 45)

$$
\begin{aligned}
R_{\ell}(r)= & A_{\ell \rightarrow \infty}^{\prime} r^{-\frac{1}{2}}\left\{\cos \left[\alpha r-\left(\ell+\frac{1}{2}+\frac{1}{2}\right)(\pi / 2)\right] \cos \delta_{\ell} /[(\pi / 2) \alpha r]^{\frac{1}{2}}\right. \\
& \left.\left.-\sin \left[\alpha r-\left(\ell+\frac{1}{2}+\frac{1}{2}\right)(\pi / 2)\right] \sin \delta_{\ell} /[(\pi / 2) \alpha r)\right]^{\frac{1}{2}}\right\} \\
= & A_{\ell m}^{\prime}\left[2 /\left(\pi \alpha r^{2}\right)\right]^{\frac{1}{2}}\left[\sin (\alpha r-\ell \pi / 2) \cos \delta_{\ell}+\cos (\alpha r-\ell \pi / 2) \sin \delta_{\ell}\right] \\
= & A_{\ell m}^{\prime}\left[2 /\left(\pi \alpha r^{2}\right)\right]^{\frac{1}{2}} \sin \left[\alpha r-(\ell \pi / 2)+\delta_{\ell}\right] ;
\end{aligned}
$$

however, at large $r U_{c}(r)=0, \alpha=k$, and

$$
\begin{equation*}
\mathrm{R}_{\ell m}(\mathrm{r})=\mathrm{A}_{\ell \rightarrow \infty}(\mathrm{kr})^{-1} \sin \left[\mathrm{kr}-(\ell \pi / 2)+\delta_{\ell}\right] . \tag{A37}
\end{equation*}
$$

The wave function for large r is then

$$
\psi(r, \theta)=\exp (i k z)+f(\theta) \exp (i k r) / r
$$

$$
\begin{equation*}
\psi(r, \theta)=\sum_{\substack{\ell=0 \\ \\|\mathrm{~m}| \leq \ell}}^{\infty} \mathrm{A}_{\ell \mathrm{m}}(\mathrm{kr})^{-1} \sin \left[\mathrm{kr}-(\ell \pi / 2)+\delta_{\ell}\right] \mathrm{P}_{\ell}^{\mathrm{m}}(\cos \theta) \exp (\mathrm{im} \phi) \tag{A38}
\end{equation*}
$$

To determine the value of $A_{\ell m}$, it will first be necessary to solve the wave equation,

$$
\begin{equation*}
\left(\nabla^{2}+k^{2}\right) \psi_{i n}(r, \theta)=0, \tag{A39}
\end{equation*}
$$

for the unscattered wave $\psi_{\text {in }}=\exp (i k z)$. The incident plane wave is symmetric about the z axis; hence the most general solution of Eq . (A39) is

$$
\begin{equation*}
\psi_{i n}(r, \theta)=\sum_{\ell=0}^{\infty} \mathrm{B}_{\ell} g_{\ell}(r) \mathrm{P}_{\ell}(\cos \theta)=\exp (i k r \cos \theta), \tag{A40}
\end{equation*}
$$

where $g_{\ell}(r)$ is the solution of

$$
\begin{equation*}
\frac{d^{2} g_{\ell}}{d r^{2}}+\frac{2}{r} \frac{d g}{d r}+\left[k^{2}-\frac{\ell(\ell+1)}{r^{2}}\right] g_{\ell}(r)=0 . \tag{A41}
\end{equation*}
$$

To find $B_{\ell} g_{\ell}(r)$ multiply both sides of Eq. (A40) by $P_{m}(\cos \theta) d(\cos \theta)$ and integrate over the domain of $\cos \theta$

$$
\begin{gathered}
\int_{-1}^{1} e^{i k r \cos \theta_{m}} P_{m}(\cos \theta) d(\cos \theta)=\int_{-1}^{1}\left[B_{\ell} g_{\ell}(r) P_{\ell}(\cos \theta)\right. \\
\left.\cdot P_{m}(\cos \theta) d(\cos \theta)\right]=[2 /(2 \ell+1)] B_{\ell} g_{\ell}(r) .
\end{gathered}
$$

Now integrating by parts
$I=\int_{-1}^{1} e^{i k r t} P_{\ell}(t) d t=\frac{1}{i k r}\left[e^{i k r t} P_{\ell}(t)\right]_{-1}^{l}-\int_{-1}^{1} \frac{e^{i k r t}}{i k r} P_{\ell}^{\prime}(t) d t$,
but $P_{\ell}(1)=1$ and $P_{\ell}(-1)=(-1)^{\ell}$; therefore,
$I=\frac{1}{i k r}\left\{e^{i k r}-(-1)^{\ell} e^{-i k r}\right\}-\frac{1}{i k r} \int_{-1}^{1} e^{i k r t} P_{l}^{\prime}(t) d t$

$$
=\frac{1}{i k r}\left\{e^{i k r}-(-1)^{\ell} e^{-i k r}\right\}-\left(\frac{1}{i k r}\right)^{2}\left\{e^{i k r t} P_{l}^{\prime}(t)\right\}_{-1}^{1}
$$

$$
+\frac{1}{i k r} \int_{-1}^{1} e^{i k r t} P_{\ell}^{\prime \prime}(t) d t
$$

All but the first term of I are of the order of r^{-2} or smaller and can be ignored for large r; thus,

$$
\begin{aligned}
\frac{2}{2 \ell+1} & B_{\ell} g_{\ell}(r) \approx \frac{1}{i k r}\left\{e^{i k r}-e^{i \ell \pi} e^{-i k r}\right\} \\
& =\frac{1}{i k r} e^{i \ell \pi / 2}\left\{e^{i(k r-\ell \pi / 2)}-e^{-i(k r-\ell \pi / 2)}\right\} \\
& =2 i^{\ell}(k r)^{-1} \sin (k r-\ell \pi / 2)
\end{aligned}
$$

and

$$
\begin{equation*}
B_{\ell} g_{\ell}(r)=(2 \ell+1) i^{\ell}(k r)^{-1} \sin (k r-\ell \pi / 2) \tag{A42}
\end{equation*}
$$

so that the incident wave function is

$$
\begin{equation*}
\psi_{\text {in }}(r, \theta)=\sum_{\ell=0}^{\infty}(2 \ell+1) i^{\ell}(k r)^{-1} \sin (k r-\ell \pi / 2) P_{\ell}(\cos \theta) . \tag{A43}
\end{equation*}
$$

Phase shifts. One can now easily determine the meaning of δ_{ℓ} by comparing (A43) with the expression (A38) for the total wave function. δ_{ℓ} represents the shift in phase of the total wave with respect to the unscattered wave. Examination of Eqs. (A35) and (A41) and comparison with the expressions for $\psi(A 38)$ and $\psi_{i n}$ (A43) shows that $R_{\ell}(r)$ is shifted inward relative to $g_{\ell}(r)$ if the potential $U_{c}(r)=2 m V_{c}(r) / \hbar^{2}$ is negative; i.e., for an attractive field, $\mathrm{kr}+\delta_{\ell}$ is a larger number than $k r$ for a given r.

Hence, one obtains the following relationships:

$$
\begin{aligned}
& \delta_{\ell}>0 \text { for attractive fields, } \\
& \delta_{\ell}<0 \text { for repulsive fields. }
\end{aligned}
$$

In order to determine the scattering amplitude $f(\theta)$ in terms of the phase shifts, it is necessary to substitute for the total and incident wave functions the expressions (A38) and (A43), respectively, so that

$$
\psi=\psi_{i n c}+\psi_{s c}=e^{i k z}+f(\theta) e^{i k r} / r
$$

becomes

$$
\begin{aligned}
& \sum_{\ell=0}^{\infty} \mathrm{A}_{\ell}(k r)^{-1} \sin \left[k r-(\ell \pi / 2)+\hat{o}_{\ell}\right] \mathrm{P}_{\ell}(\cos \theta) \\
& =\left[\sum_{\ell=0}^{\infty}(2 \ell+1) i^{2}(k r)^{-1} \sin (k r-\ell \pi / 2) P_{\ell}(\cos \theta)\right]+f(\theta) \exp (i k r) / r
\end{aligned}
$$

or

$$
\begin{aligned}
& \sum_{\ell=0}^{\infty} \frac{A_{\ell}}{2 i k}\left(e^{i k r} e^{-i \ell \pi / 2} e^{i \delta \ell}-e^{-i k r} e^{i \ell \pi / 2} e^{-i \delta_{\ell}}\right) P_{\ell}(\cos \theta) \\
& =\left[\sum_{\ell=0}^{\infty} \frac{2 \ell+1}{2 i k} i^{\ell}\left(e^{i k r} e^{-i \ell \pi / 2}-e^{-i k r} e^{i \ell \pi / 2}\right) P_{\ell}(\cos \theta)\right]+f(\theta) e^{i k r} .
\end{aligned}
$$

The coefficients of $\exp (i k r)$ on both sides of this equation must be equal in order for the functions to be continuous in r; consequently,

$$
\begin{gather*}
2 i k f(\theta)+\sum_{\ell=0}^{\infty}(2 \ell+1) i^{\ell} e^{-i \ell \pi / 2} P_{\ell}(\cos \theta) \\
=\sum_{\ell=0}^{\infty} A_{\ell} e^{i \delta \ell} e^{-i \ell \pi / 2} P_{\ell}(\cos \theta), \tag{A44}
\end{gather*}
$$

and
$\sum_{\ell=0}^{\infty}(2 \ell+1) i^{\ell} e^{i \ell \pi / 2} P_{\ell}(\cos \theta)=\sum_{\ell=0}^{\infty} A_{\ell} e^{i \ell \pi / 2} e^{-i \delta_{\ell}} P_{\ell}(\cos \theta)$.
Since the equation must hold for all ℓ,

$$
(2 \ell+1) i^{\ell} \exp (i \ell \pi / 2)=A_{\ell} \exp \left(-i \delta_{\ell}\right) \exp (i \ell \pi / 2),
$$

or

$$
A_{\ell}=(2 \ell+1) i^{\ell} \exp \left(i \delta_{\ell}\right)
$$

Finally substitution of the above expression for A_{ℓ} into Eq. (A44) gives the result

$$
\begin{aligned}
2 i k f(\theta)= & \sum_{\ell=0}^{\infty}(2 \ell+1) i^{\ell} \exp \left(2 i \delta_{\ell}\right) e^{-i \ell \pi / 2} P_{\ell}(\cos \theta) \\
& -\sum_{\ell=0}^{\infty}(2 \ell+1) i^{\ell} e^{-i \ell \pi / 2} P_{\ell}(\cos \theta),
\end{aligned}
$$

or

$$
\begin{equation*}
f(\theta)=(2 i k)^{-1} \sum_{\ell=0}^{\infty}(2 \ell+1)\left[\exp \left(2 i \delta_{\ell}\right)-1\right] P_{\ell}(\cos \theta) \tag{A46}
\end{equation*}
$$

from which it follows that the differential cross section is
$\sigma(\theta)=|f(\theta)|^{2}=\left.\left.\frac{1}{k}\right|_{\ell=0} ^{\infty}(2 \ell+1) \exp \left(i \delta_{\ell}\right) \sin \delta_{\ell} P_{\ell}(\cos \theta)\right|^{2}$,
and the total cross section becomes

$$
\begin{align*}
& \sigma=2 \pi \int_{0}^{\pi} \sigma(\theta) \sin \theta d \theta \\
& \sigma=4 \pi k^{-2} \sum_{\ell=0}^{\infty}(2 \ell+1) \sin ^{2} \hat{\delta}_{\ell} . \tag{A48}
\end{align*}
$$

IV. MATRIX FORMULATION OF SPIN $\frac{1}{2}$, SPIN $\frac{1}{2}$ SCATTERING

U, I, 0 Formulation of Spinless Scattering

In order to extend the simple case of spinless scattering derived in the previous section to more complicated cases, it will be helpful to reconsider the above analysis from a slightly different viewpoint.

Let there be two functions

$$
\begin{equation*}
I_{\ell m}=\left[i^{\ell} e^{-i(k r-\ell \pi / 2)} Y_{\ell m}(\theta, \phi)\right] / r \tag{A49}
\end{equation*}
$$

and

$$
\begin{equation*}
o_{\ell m}=\left[i^{\ell} e^{i(k r-\ell \pi / 2)} Y_{\ell m}(\theta, \phi)\right] / r, \tag{A50}
\end{equation*}
$$

representing general incoming and outgoing waves, respectively, with wave number k . The incident beam is

$$
\begin{equation*}
\psi_{i n}=\exp (i k z)=i \pi^{\frac{1}{2} k}-1 \sum_{\ell=0}^{\infty}(2 \ell+1)^{\frac{1 / 2}{2}}\left(I_{\ell O}-0_{\ell O}\right), \tag{A51}
\end{equation*}
$$

from Eqs. (A33) and (A43) of the last section. Similarly, the form of a general solution of the wave equation can be written from (A33) and (A38) for large r as

$$
\begin{gather*}
\psi=\sum_{\substack{\ell=0 \\
|m| \leq \ell}}^{\infty} \frac{i A_{\ell, m} \exp \left(-i \delta_{\ell}\right)}{2 i^{\ell} k}\left[-\frac{i^{\ell} e^{i(k r-\ell \pi / 2)}}{r} \exp \left(2 i \delta_{\ell}\right)+\frac{i^{\ell} e^{-i(k r-\ell \pi / 2)}}{r}\right] \\
\cdot \sqrt{\frac{4 \pi(\ell+m)!}{(2 \ell+1)(\ell-m)!}} Y_{2 m}(\theta, \stackrel{\rightharpoonup}{r}) \\
\psi=\sum_{\ell, m} C_{2 m}\left(I_{2 m}-U_{\ell m} 0_{\ell m}\right),
\end{gather*}
$$

where $C_{\ell m}$ has absorbed all the constants and $U_{\ell m}$ is the $\exp \left(2 i \delta_{\ell}\right)$ phase shift factor.

Again, the general solution of the wave equation is the sum of the incident plane wave and the scattered wave so that Eq. (A52) can be written slightly differently, viz.

$$
\begin{align*}
\psi & =\psi_{\text {inc }}+\psi_{s c} \\
& =\sum_{\ell, m} c_{\ell m}\left(I_{\ell m}-o_{\ell m}\right)+\sum_{\ell, m} c_{\ell m}\left(1-U_{\ell m}\right) o_{\ell m} \\
& =i \pi^{\frac{1}{2} k}-1 \sum_{\ell}(2 \ell+1)^{\frac{3}{2}}\left(I_{\ell 0}-0_{\ell 0}\right)+f(\theta) \exp (i k r) / r, \tag{A53}
\end{align*}
$$

and it becomes evident that

$$
\begin{array}{ll}
C_{\ell m}=C_{\ell O}=\left[i \pi^{\frac{1}{2}}(2 \ell+1)^{\frac{1}{2}}\right] / k & m=0 \\
C_{\ell m}=0 & m \neq 0 ;
\end{array}
$$

that is, there is no component of the orbital angular momentum in the direction of the beam, and

$$
\begin{aligned}
& \psi=\sum_{\ell} \mathrm{C}_{\ell 0}\left(I_{\ell O}-0_{\ell O}\right)+\sum_{\ell} C_{\ell O}\left(1-U_{\ell O}\right) 0_{\ell O} \\
&=\sum_{\ell} i^{\frac{1}{2}{ }^{2} k}-1 \\
&(2 \ell+1)^{\frac{1}{2}}\left(I_{\ell O}-0_{\ell O}\right)+f(\theta) \exp (i k r) / r
\end{aligned}
$$

Thus,

$$
f(\theta)=\sum_{\ell=0}^{\infty} \frac{i \pi^{\frac{1}{2}(2 \ell+1)^{\frac{1}{2}}}}{k} i^{\ell} e^{-i \ell \pi / 2} P_{\ell}(\cos \theta) \sqrt{\frac{2 \ell+1}{4 \pi}}\left(1-U_{\ell O}\right)
$$

$$
\begin{equation*}
f(\theta)=\frac{3_{2} \mathrm{ik}^{-1}}{} \sum_{\ell}(2 \ell+1)\left(1-U_{\ell O}\right) P_{\ell}(\cos \theta) \tag{A54}
\end{equation*}
$$

and

$$
\sigma(\theta)=|f(\theta)|^{2}
$$

as before.
Comparison of forms (A54) and (A46) for $f(\theta)$ confirm again that

$$
U_{\ell O}=\exp \left(2 i \delta_{\ell}\right)
$$

$\operatorname{Arctan} Q_{\ell}=\delta_{\ell}$
It is very important at this point to note that if one defines a quantity

$$
\begin{equation*}
i Q_{\ell}=\left(U_{\ell O}-1\right)\left(U_{l O}+1\right)^{-1} \tag{A55}
\end{equation*}
$$

then

$$
Q_{\ell}=\frac{\left(U_{\ell}-1\right)}{i\left(U_{\ell}+1\right)}=\frac{\exp \left(2 i \delta_{\ell}\right)-1}{i \exp \left(2 i \dot{o}_{\ell}\right)+i}=\tan \delta_{\ell},
$$

and the phase shifts are

$$
\delta_{\ell}=\arctan \theta_{2}
$$

Extension to Include Spin Dependence

If it is assumed that spin dependent scattering can be approximated by a potential containing spin-orbit and spin-spin interaction terms (Wu 62), namely,

$$
\begin{equation*}
V_{T} \equiv T V_{T}(r) \equiv\left[\frac{3\left(\vec{\sigma}_{1} \cdot \vec{r}\right)\left(\vec{\sigma}_{2} \cdot \vec{r}\right)}{r^{2}}-\vec{\sigma}_{1} \cdot \vec{\sigma}_{2}\right] V_{T}(r) \tag{A57}
\end{equation*}
$$

and

$$
\begin{equation*}
V_{L S}=(\vec{\ell} \cdot \vec{S}) V_{\ell S}(r), \tag{A58}
\end{equation*}
$$

where

$$
\begin{array}{ll}
\vec{r}=\vec{r}_{2}-\vec{r}_{1} & r=\left|\vec{r}_{2}-\vec{r}_{1}\right| \\
\vec{l}=[\vec{r} \times \vec{p}] & \vec{s}=\frac{1}{2}\left(\vec{\sigma}_{1}+\vec{\sigma}_{2}\right) \\
\vec{p}_{c . m}=M_{1} M_{2}\left(\vec{p}_{1}+\vec{p}_{2}\right) / M^{2} &
\end{array}
$$

and \vec{o}_{1}, \vec{o}_{2} are the vector spin matrix operators for the two interacting particles, then the wave equation becomes

$$
\left[\nabla^{2}+k^{2}-W(r, \sigma)\right] \psi_{\ell}(\vec{r}, \vec{\sigma})=0
$$

where

$$
W(r, \sigma)=U_{c}(r)+T U_{T}(r)+(\vec{\ell} \cdot \vec{S}) U_{\ell S}(r)
$$

and

$$
U(r)=\left(2 m / \hbar^{2}\right) V(r) .
$$

The wave function must now depend upon the spins of the interacting particles and can be written

$$
\begin{equation*}
\psi(\vec{r}, \vec{\sigma}) \equiv \psi(r, \theta, \phi)^{2 S+1} x^{s} \tag{A59}
\end{equation*}
$$

where $\psi(r, \theta, \phi)$ is the spin independent wave function for the interaction and ${ }^{2 S+1} X^{s}$ is a matrix representing the spin part of the wave function.

$$
\begin{aligned}
2 \mathrm{~S}+1 & =\text { multiplicity of the level }, \\
\mathrm{S} & =\left(\frac{1}{2}\right)\left|\left(\vec{\sigma}_{1}+\vec{\sigma}_{2}\right)\right|=\left|\vec{s}_{1}+\vec{S}_{2}\right|, \\
\mathrm{s} & =z \text { component of spin angular momentum }=s_{1}+s_{2},
\end{aligned}
$$

and ℓ is no longer conserved in the interaction, but $J=|\vec{\ell}+\vec{S}|$, the total angular momentum, is conserved. Parity (symmetry or antisymmetry of the wave function) $=(-1)^{l}$ is also conserved; hence, it is now possible for mixing to occur between various possible ℓ and S states as long as J and parity are conserved. This restricts mixing to that between states for which the ℓ values differ by 0 or an even integer.

If for spin $\frac{1}{2}$, spin $\frac{1}{2}$ scattering the following possible spin functions are assumed:

$$
\begin{align*}
& 1_{x} 0=\frac{1}{\sqrt{2}}\left[\binom{1}{0}_{1}\binom{0}{1}_{2}-\binom{1}{0}_{2}\binom{0}{1}_{1}\right] \\
& 3_{x^{1}}=\binom{1}{0}_{1}\binom{1}{0}_{2} \tag{A60}\\
& 3_{x} 0=\frac{1}{\sqrt{2}}\left[\binom{1}{0}_{1}\binom{0}{1}_{2}+\binom{1}{0}_{2}\binom{0}{1}_{1}\right] \\
& 3_{x^{-1}}=\binom{0}{1}_{1}\binom{0}{1}_{2},
\end{align*}
$$

where $\binom{1}{0}_{a}$ and $\binom{0}{1}_{a}$ represent spin-up and spin-down, respectively, for particle a, then it is readily verified (Sc 55) that for the Pauli spin
matrices

$$
\begin{array}{ll}
\sigma_{x}=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right), & \sigma_{y}=\left(\begin{array}{cc}
0 & -1 \\
i & 0
\end{array}\right), \\
\sigma_{z}=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right), & \vec{\sigma} \cdot \vec{\sigma}=3\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right),
\end{array}
$$

and spin momentum vector components defined as follows

$$
M_{s i}=\left(\frac{3}{2}\right) n \sigma_{i} \quad\left|M_{s}\right|^{2}=\left(\frac{3}{4}\right) n^{2}(\vec{\sigma} \cdot \vec{\sigma}),
$$

then $\binom{1}{0}$ and $\binom{0}{1}$ are eigenvectors of $M_{s z}$ and $\left|M_{s}\right|^{2}$ with eigenvalues $\pm \pi / 2$ and $3 \pi^{2} / 4$, respectively. Also the ${ }^{2 S+1}{ }_{x}$ functions are orthonormal and eigenfunctions of $M_{S Z}$ and $\left|M_{S}\right|^{2}$.

For the orthonormal spin functions defined in (A60) the total wave function is written

$$
\begin{equation*}
\psi(\vec{r}, \vec{\sigma})=\sum_{J \geq|M|}^{\infty} \sum_{\ell=J-1}^{J+1} A_{J \ell} \psi_{\ell}(r) F_{J M \ell}(\theta, \phi, \vec{\sigma}), \tag{A61}
\end{equation*}
$$

where

$$
\begin{aligned}
F_{J M \ell}(\theta, \phi, \vec{\sigma}) & =\sum_{m} G_{m}^{J I \Lambda \ell} Y_{\ell m}(\theta, \phi)^{2 S+1} X^{s}, \\
M & =z \text { component of } J, \\
m & =z \text { component of } \ell, \\
s & =z \text { component of } S,
\end{aligned}
$$

and $G_{m}^{\text {JMl }}$, the Clebsch-Gordon coefficients, are worked out by Condon
and Shortley (Co 63) and given in Table AI.
$\psi_{\ell}(r)$ satisfies the following equations (Wu 62):
for $L=J$

$$
\begin{align*}
& \frac{d^{2} \psi_{\ell}(r)}{d r^{2}}+\frac{2}{r} \frac{d \psi_{\ell}(r)}{d r}+\left[k^{2}-\frac{\ell(\ell+1)}{r^{2}}+U_{c}(r)+2 U_{T}(r)-U_{\ell S}(r)\right] \psi_{\ell}(r) \\
& \quad=0 ; \tag{A63}
\end{align*}
$$

for $L=J-1$

$$
\begin{align*}
& \frac{d^{2} u_{\ell}(r)}{d r^{2}}+\frac{2}{r} \frac{d u_{\ell}(r)}{d r}+\left[k^{2}-\frac{\ell(\ell+1)}{r^{2}}+U_{c}(r)=\frac{2 \ell}{2 \ell+3} U_{T}(r)\right. \\
& \left.\quad+\ell U_{\ell S}(r)\right] u_{\ell}(r)=-6 \frac{\sqrt{(\ell+1)(\ell+2)}}{2 \ell+3} U_{T}(r) W_{\ell+2}(r) ; \tag{A64}
\end{align*}
$$

and for $\mathrm{L}=\mathrm{J}+1$

$$
\begin{align*}
& \frac{d^{2} W_{\ell}(r)}{d r^{2}}+\frac{2}{r} \frac{d W_{\ell}(r)}{d r}+\left[k^{2}-\frac{\ell(\ell+1)}{r^{2}}+U_{c}(r)-\frac{2 \ell+2}{2 \ell-1} U_{T}(r)\right. \\
& \left.-(\ell+1) U_{\ell S}(r)\right] W_{\ell}(r)=-6 \frac{\sqrt{\ell(\ell-1)}}{2 \ell-1} U_{T}(r) u_{\ell-2}(r) ; \tag{A65}
\end{align*}
$$

where

$$
u_{\ell}(r) \equiv \psi_{\ell=J-1}(r), \quad W_{\ell}(r)=\psi_{\ell=J+1}(r)
$$

and $U(r)=\left(2 m / \hbar^{2}\right) V(r)$.
The expressions (A63-A65) for $\psi_{\ell}(r)$ are obtained by separating the new general wave equation

$$
\begin{equation*}
\left[\nabla^{2}+k^{2}-W(r, \sigma)\right] \psi_{\ell}(\vec{r}, \vec{\sigma})=0 \tag{A66}
\end{equation*}
$$

TABLE AI
Clebsch-Gordon Coefficients for Spin $\frac{1}{2}$, Spin $\frac{1}{2}$ Interactions
$J=$
$\sqrt{\frac{(\ell+M)(\ell+M+1)}{(2 \ell+1)(2 \ell+2)}}$$\frac{s=1}{\sqrt{\frac{(\ell-M+1)(\ell+M+1)}{(2 \ell+1)(\ell+1)}}} \cdot \frac{s=-1}{\sqrt{\frac{(\ell-M)(\ell-M+1)}{(2 \ell+1)(2 \ell+2)}}}$
$\ell \quad-\sqrt{\frac{(\ell+M)(\ell-M+1)}{2 \ell(\ell+1)}}$
$\frac{M}{\sqrt{\ell(\ell+1)}}$
$\sqrt{\frac{(\ell-M)(\ell+M+1)}{2 \ell(\ell+1)}}$
$\ell-1 \quad \sqrt{\frac{(\ell-M)(\ell-M+1)}{2 \ell(2 \ell+1)}}$
$-\sqrt{\frac{(\ell-M)(\ell+M)}{\ell(2 \ell+1)}}$
$\sqrt{\frac{(\ell+M+1)(\ell+M)}{2 \ell(2 \ell+1)}}$
where

$$
\begin{equation*}
W(r, \sigma)=U_{c}(r)+\pi U_{T}(r)+(\vec{\ell} \cdot S) U_{\ell S}(r) \tag{A67}
\end{equation*}
$$

Solution of the $J=\ell$ equation follows exactly as the solution of the radial equation in Section III of this appendix, and one obtains for large r

$$
\begin{equation*}
\psi_{\ell}(r)=A_{\ell}(k r)^{-1} \sin \left[k r-(\ell \pi / 2)+\delta_{\ell}\right] . \tag{A68}
\end{equation*}
$$

Solutions for $\psi_{\ell}(r)$ when $\ell=J-1$ and $\ell=J+1$ are somewhat more complicated because the radial wave equations (A64) and (A65) are coupled. Let these radial wave functions be written as the sum of incoming and outgoing waves: for

$$
\ell=J-1
$$

$u_{J-1}(r)=A_{1}(k r)^{-1} \exp \left[-i\left(k r-\frac{1}{2}[J-1] \pi\right)\right]-B_{1}(k r)^{-1} \exp \left[i\left(k r-\frac{1}{2}[J-1] \pi\right)\right]$, and for

$$
\begin{aligned}
\ell & =J+1 \\
W_{J+1}(r) & =A_{2}(k r)^{-1} \exp \left[-i\left(k r-\frac{1}{2}[J+1] \pi\right)\right]-B_{2}(k r)^{-1} \exp \left[i\left(k r-\frac{1}{2}[J+1] \pi\right)\right]
\end{aligned}
$$

so that the wave function with total angular momentum J and parity $(-1)^{\mathrm{J}+1}$ is

$$
\psi(\vec{r}, \vec{\sigma})=u_{J-1}(r) F_{J, M, J-1}(\theta, \phi, \vec{\sigma})+W_{J+1}(r) F_{J, M, J+1}(\theta, \phi, \vec{\sigma})
$$

Observe how this fits Eq. (A52) now generalized to matrix form

$$
\begin{equation*}
\psi=\sum_{c} c_{c}\left(I_{c}-\sum_{c^{\prime}} U_{c^{\prime} c} o_{c^{\prime}}\right) \tag{A69}
\end{equation*}
$$

if

$$
\begin{equation*}
I_{\ell m J M}=\left[i^{\ell} e^{-i(k r-\ell \pi / 2)} G_{m}^{J M \ell} Y_{\ell m}(\theta, \phi)^{2 S+1} x^{s}\right] / r, \tag{A70}
\end{equation*}
$$

and

$$
\begin{equation*}
0_{\ell m J M}=\left[i^{\ell} e^{i(k r-\ell \pi / 2)} G_{m}^{J M \ell} Y_{\ell m}(\theta, \phi)^{2 S+1} \chi^{s}\right] / r \tag{A71}
\end{equation*}
$$

U is the "collision matrix" defined by the coefficients

$$
\begin{aligned}
& B_{1}=U_{11} A_{1}+U_{12} A_{2} \\
& B_{2}=U_{21} A_{1}+U_{22} A_{2} ;
\end{aligned}
$$

$$
\text { i.e., } \quad \begin{aligned}
B & =U A, \\
C_{c} & =A_{c} / k i^{\ell},
\end{aligned}
$$

and c, c ' represent incoming ($\ell m J M$) and outgoing (ℓ 'm'J'M') channels, respectively.

If no mixing of states occurs, the U matrix is diagonal $U_{12}=U_{21}$ $=0$ and, as in the simple case, $U_{11}=\exp \left(2 i \delta_{1}\right), U_{22}=\exp \left(2 i \delta_{2}\right)$ and the phase shifts are related to a Q matrix; $\delta_{1}=\arctan Q_{11}, \delta_{2}=$ $\arctan Q_{22}$, where Eq. (A55) is now a matrix equation

$$
i Q=(U-1)(U+1)^{-1}
$$

At this point the phase shifts may be generalized and defined in analogy with the diagonal case as the arctangents of the elements of the Q matrix, so that $\delta_{i j} \equiv \arctan Q_{i j}{ }^{*}$ of course, in cases where the channel spin is greater than 1 the U matrix will mix more than two states and will not appear as a 2×2 matrix for a given possible combination of incoming and outgoing states. However, for the $S=1$ case parity and J conservation allows mixing only between $\ell=\mathrm{J}-1$ and $\ell=\mathrm{J}+1$ states. It can be shown from density conservation and time-reversal properties that U is unitary and symmetric ($\operatorname{Pr} 62$). These conditions eliminate any ambiguity in the definition of Q (hence δ) in Eq. (A72).
*For charged particle scattering Dodder's energy independent phase shift analysis code (Do 69) defines $K_{i j}=\arctan Q_{i j}, \delta_{i j}=K_{i j}-$ $\frac{1}{2} \phi_{\ell} \delta(i, j)$ where $\delta(i, j)$ is the delta function, $\phi_{0}=0, \phi_{\ell}=\phi_{\ell-1}+2$ $\arctan (n / \ell)$, and $n=0.1574 Z_{1} Z_{2} \sqrt{\|_{1}(a m u) / E_{1}(\mathrm{MeV})}$.

Summary. Spin $\frac{1}{2}$, spin $\frac{1}{2}$ scattering can be described by a collision matrix U which is unitary and symmetric and mixes combinations of $\ell=$ $J-1$ and $\ell=J+1$ states. The wave function is described by the matrix equation

$$
\psi(\vec{r}, \vec{\sigma})=\sum_{c} c_{c}\left(I_{c}-\sum_{c^{\prime}} U_{c^{\prime} c} 0_{c^{\prime}}\right)
$$

where c and c^{\prime} represent incoming and outgoing states, respectively, and

$$
\begin{aligned}
& I_{c}=I_{\ell m J M}=\left[i^{\ell} e^{-i(k r-\ell \pi / 2)} G_{m}^{J M \ell} Y_{\ell m}(\theta, \phi)^{2 S+1_{X} s}\right] / r, \\
& O_{c}=O_{\ell m J M}=\left[i^{\ell} e^{i(k r-\ell \pi / 2)} G_{m}^{J M \ell} Y_{\ell m}(\theta, \phi)^{2 S+1} X_{x}^{s}\right] / r
\end{aligned}
$$

The phase shifts $\delta_{i j}$ are defined in analogy with the case in which U is diagonal and no mixing of states occurs; i.e.,

$$
\delta_{i j}=\arctan Q_{i j}
$$

where

$$
Q \equiv(1 / i)(U-1)(U+1)^{-1}
$$

Consequently, for a given set of states (ℓ, m, J, M) and ($\left.\ell^{\prime}, m^{\prime}, J^{\prime}, M^{\prime}\right)$ a set of phase shifts is related via the scattering matrix, the wave fundtions, and the wave equation to the postulated scattering potentials. It now remains to relate the phase shifts or equivalently the elements of the collision matrix to the measurable cross sections and the polarizations.

Cross Section in Terms of the U Matrix

Again the incident beam is represented by an incident plane wave except that now all spin combinations are possible, and as in (A51)

$$
\begin{align*}
\psi_{i n}(\vec{r}, \vec{\sigma}) & =\exp (i k z)^{2 S+1} x \\
& =i \pi^{\frac{3}{2}(}\left(k^{-1}\right) \sum_{\ell=0}^{\infty}(2 \ell+1)^{\frac{1 / 2}{2}}\left(I_{\ell \circ J M^{-0}}^{\ell O J M}\right) . \tag{A73}
\end{align*}
$$

The total wave function can be written

$$
\begin{align*}
\psi(\vec{r}, \vec{\sigma}) & =\psi_{\text {in }}(\vec{r}, \vec{\sigma})+\psi_{s c}(\vec{r}, \vec{\sigma})=\sum_{c} C_{c}\left(I_{c}-\sum_{c^{\prime}} U_{c^{\prime} c^{\prime} c^{\prime}}\right) \\
& =\sum_{c} c_{c}\left(I_{c}-0_{c}\right)+\sum_{c} c_{c}\left(0_{c}-\sum_{c^{\prime}} U_{c^{\prime} c^{\prime} c_{c^{\prime}}}\right) \tag{A74}
\end{align*}
$$

so that again

$$
\begin{array}{rlrl}
C_{c}=C_{\ell O J M} & =i \pi^{\frac{1}{2}} k^{-1}(2 \ell+1)^{\frac{1}{2}} & m & m 0 \\
C_{c} & =0 & m \neq 0,
\end{array}
$$

and

$$
\begin{align*}
\psi(\vec{r}, \vec{\sigma}) & =\psi_{\text {in }}(\vec{r}, \vec{\sigma})+\sum_{\ell O J M} C_{\ell O J: 1}\left(o_{20 J: I^{\prime}} \sum_{c^{\prime}} U_{c^{\prime}, \ell O J i} o_{c^{\prime}}\right) \\
& =\psi_{\text {in }}(\vec{r}, \vec{\sigma})+f(\theta, \vec{\sigma}) \exp (i k r) / r . \tag{A75}
\end{align*}
$$

$$
\begin{aligned}
& f(\theta, \phi, \vec{\sigma})\left(e^{i k r}\right) / r=\sum_{\ell O J M} C_{\ell O J M}\left(0_{\ell O J M}-\sum_{c^{\prime}} U_{c^{\prime}, \ell O J M} o_{c^{\prime}}\right) \\
& =\sum_{\ell 0 J M} \frac{i \pi^{\frac{1}{2}}}{k}(2 \ell+1)^{\frac{1}{2}}\left[i^{\ell} \exp (i k r) \exp (-\ell \pi / 2) G_{0}^{J M \ell}\left(\frac{2 \ell+1}{4 \pi}\right)^{\frac{1}{2}} P_{\ell}(\cos \theta)\right.
\end{aligned}
$$

$$
\begin{aligned}
& \text { - } \left.\left.Y_{\ell^{\prime} m^{\prime}}\left(\theta^{\prime}, \phi^{\prime}\right)^{2 S^{\prime}+1} \mathrm{X}^{\prime} / r\right)\right]
\end{aligned}
$$

$$
\begin{align*}
& f(\theta, \phi, \vec{\sigma})=\frac{i \pi^{\frac{3}{2}}}{k} \sum_{I \pi M, L^{\prime} J M^{\prime}}(2 \ell+1)^{\frac{1}{2}}\left[\left(\frac{2 \ell+1}{4 \pi}\right)^{\frac{1}{2}} G_{0}^{J M \ell} P_{\ell}(\cos \theta)^{2 S+1} x^{s}\right. \\
& \left.\quad-U_{\ell^{\prime} m^{\prime} J^{\prime} M^{\prime}, \ell O J M} G_{m^{\prime}}^{J^{\prime} M^{\prime} \ell^{\prime}} Y_{\ell^{\prime} m^{\prime}}\left(\theta^{\prime}, \phi^{\prime}\right)^{2 S^{\prime}+1} \chi^{s^{\prime}}\right] \tag{A76}
\end{align*}
$$

The summation over m^{\prime} has been dropped since $\ell, \ell^{\prime}, J, M^{\prime}$ are sufficient to determine m^{\prime}, and $\mathrm{J}=\mathrm{J}^{\prime}$.

Also

$$
\begin{equation*}
\sigma(\theta, \phi)=|f(\theta, \phi, \vec{\sigma})|^{2}, \tag{A77}
\end{equation*}
$$

and the spin matrices drop out of the differential cross section since the ${ }^{2 S+1} X^{s}$ are orthonormal functions. This should not be interpreted
to mean, however, that the cross section is independent of spin since the scattering matrix U is implicitly spin dependent.

Appearance of U for the $T(\vec{n}, \hat{n}) T$ Experiment

Before deriving an expression for the polarization in terms of the scattering matrix or phase shifts, it will be instructive to examine the form of the collision matrix, U, for the $T(\vec{n}, \hat{n}) T$ experiment. One must, first of all, decide what is the maximum value of $\ell=l_{\max }$ to be considered.

It would be expected classically that $\ell_{\max }=\left|\vec{r}_{\max } \times \vec{p}\right|$ where \vec{p} $=$ momentum of the neutron and $r_{\text {max }}=$ distance of approach at which the nuclear potentials just begin to interact. A good guess for $r_{\text {max }}$ is the sum of neutron and triton radii. Using $r=1.4 A^{1 / 3}$ fm one obtains $r_{\max }$ $\simeq 3.4 \mathrm{fm}$. For $22.1-\mathrm{MeV}$ neutrons $p_{\text {neut }} \simeq 10.9 \times 10^{-15} \mathrm{gm}-\mathrm{cm} / \mathrm{sec}$, and $\left|\vec{r}_{\max } \times \vec{p}\right| \simeq 3.5$ \%.

Acco:ding to this analysis $\ell_{\text {max }}=3$ is the largest quantum mechanical orbital angular momentum for which interaction would be expected. Use of $\ell_{\max }=3$ will allow comparison with previous $p-{ }^{3}$ He phase shifts at $19.5 \mathrm{MeV}(\mathrm{Ti} 68)$, the only existing data with which one can reasonably compare the $T(\vec{n}, \hat{n}) T$ results of this experiment. Many more measurements are needed before a unique set of phase shifts which satisfies the data of the present experiment can be found (see the chapter on Results).

For $\ell_{\text {max }}=3$ the non-zero elements $U_{i j}$ of the collision matrix which satisfy conservation of total ancular momentum J and parity $(-1)^{\ell}$ are given in Table AII. The order of elements in the matrix was
arbitrarily chosen to begin with the initial states with greatest multiplicity, smallest ℓ, and largest J. Any other order maintaining a proper 2 by 2 matrix relationship between mixed states would be equally satisfactory. The importance of assigning if position indices is in identifying the initial and final states in Table AII with the corresponding phase shifts in Table VII, Chapter V. Half of the non-zero, off-diagonal elements are missing from the tables, since $U_{i j}=U_{j i}$.

v. POLARIZATION

Definition of $\mathrm{P}(\theta)$

To relate the polarization to the quantities derived in Section IV, it will be useful to return to Eqs. (A75) and (A76) for the total wave function and scattering amplitude and redefine

$$
\begin{equation*}
f(\theta, \phi, \vec{\sigma})=\sum_{s^{\prime}} f_{s s^{\prime}}(\theta, \phi)^{2 S^{\prime}+1} z^{s^{\prime}} \tag{A78}
\end{equation*}
$$

so that
$\psi(r, \theta, \vec{\sigma})=\psi_{i n c}+\psi_{s C}=\exp (i k z)^{2 S+1} x^{s}+\exp (i k r) \sum_{s^{\prime}} f_{s s^{\prime}} \quad 2 S^{\prime}+l_{x^{\prime}}{ }^{\prime} / r,(A 79)$
where in Eqs. (A76) and (A77) the sum over JM' for given ℓ, ℓ ' is equivalent to a summation over spin states S's'. One representation of a matrix for the spin $\frac{1}{2}, \operatorname{spin} \frac{1}{2}$ scattering amplitude is (Mo 65)

TABLE AII
Non-Zero U Matrix Elements for Spin $\frac{3}{2}$, Spin $\frac{1}{2}$ Scattering and $\ell_{\max }=3$.

i		Initial State				Final State			
	J	S	ℓ	J	${ }^{2 S+1_{\mathrm{l}}}$	S'	ℓ^{\prime}	J^{\prime}	$2 S^{\prime}+l_{\ell^{\prime}}^{\prime}$
1	1	1	0	1	$3_{S_{1}}$	1	0	1	$3_{S_{1}}$
1	7	1	0	1	${ }^{3} \mathrm{~S}_{1}$	1	2	1	$3 \mathrm{D}_{1}$
2	2	1	1	2	S_{2}	1	1	2	S_{2}
2	10	1	1	2	B_{2}	1	3	2	${ }^{3} \mathrm{~F}_{2}$
3	3	1	1	1	S_{1}	1	1	1	$3_{\mathrm{P}_{1}}$
3	12	1	1	1	$3_{\mathrm{P}_{1}}$	0	1	1	$\mathrm{I}_{\mathrm{P}_{1}}$
4	4	1	1	0	S_{o}	1	1	0	S_{o}
5	5	2	2	3	${ }^{3} D_{3}$	1	2	3	3_{3}
6	6	1	2	2	$3_{D_{2}}$	1	2	2	${ }^{3}$
6	13	1	2	2	${ }^{3} \mathrm{D}_{2}$	0	2	2	I_{2}
7	7	1	2	1	$3^{D_{1}}$	1	2	1	$3 \mathrm{D}_{1}$
8	8	1	3	4	$3_{F_{4}}$	1	3	4	$3_{F_{4}}$
9	9	1	3	3	$3_{F_{3}}$	1	3	3	$3^{F_{3}}$
9	14	1	3	3	$3_{F_{3}}$	0	3	3	$1_{F_{3}}$
10	10	1	3	2	$3_{F_{2}}$	1	3	2	3^{5}
11	11	0	0	0	$\mathrm{I}_{\mathrm{S}_{0}}$	0	0	0	1_{S}
12	12	0	1	1	$1_{P_{1}}$	0	1	1	$I_{P_{1}}$
13	13	0	2	2	$I_{D_{2}}$	0	2	2	${ }^{1}{ }_{2}$
14	14	0	3	3	$\mathrm{I}_{\mathrm{F}}{ }_{3}$	0	3	3	$\mathrm{I}_{\mathrm{F}}{ }^{\text {a }}$

$$
f(\theta, \phi)=\frac{1}{2}\left|\begin{array}{cccc}
2 f_{11} & \sqrt{2 f_{10}} & \sqrt{2 f_{10}} & 2 f_{1-1} \tag{A80}\\
\sqrt{2} f_{01} & f_{00}+f_{s} & f_{00}-f_{s} & \sqrt{2 f_{0-1}} \\
\sqrt{2} f_{01} & f_{00}-f_{s} & f_{00}+f_{s} & \sqrt{2 f_{0-1}} \\
2 f_{-11} & \sqrt{2 f_{-10}} & \sqrt{2 f_{-10}} & 2 f_{-1-1}
\end{array}\right|
$$

f_{s} is the element for singlet scattering; i.e., $S=0, s=0$. Otherwise, $f_{i j}$ is an element which scatters an incident $s=i$ state to an outgoing $s^{\prime}=j$ state. The $f(\theta, \phi)$ matrix ($A 80$) multiplied by the column vector

$$
x=\left|\begin{array}{c}
1_{x} 0 \tag{A81}\\
3_{x} x^{1} \\
3_{x} 0 \\
3_{x^{-1}}
\end{array}\right|
$$

is one form of Eq. (A78) and is related to the U matrix via Eq. (A76).
Using this scattering amplitude matrix and the density matrix
$\rho=\psi \psi^{\dagger}$ Mott and Massey (Mo 65) obtain the expressions

$$
\begin{equation*}
\sigma(\theta)=\frac{3}{4} \operatorname{tr} \mathrm{ff}^{\dagger} \tag{A82}
\end{equation*}
$$

and

$$
\begin{equation*}
\vec{P}(\theta)=\frac{3}{4} \operatorname{tr}\left(f f^{\dot{\top}} \vec{\sigma}\right) / \sigma(\theta) \tag{A83}
\end{equation*}
$$

for the differential cross section and the polarization, respectively.
Note that for this particular case there are 10 independent terms in the scattering amplitude array, any or all of which can be complex. Hence, one must measure more than one vector polarization and scalar cross section to determine the scattering amplitude matrix. Some of
the measurable quantities are
the differential cross section $\sigma(\theta, \phi)$,
the polarization of the incident particle \vec{P}_{n},
the polarization of the scatterer $\overrightarrow{\mathrm{P}}_{\mathrm{T}}$, and
the spin correlation parameters $C_{N N}$ and $C_{K P}$ where N, K, P represent any of the orthogonal direction coordinates x, y, z.

These parameters along with other parameters A (triple scattering parameters), D (depolarization), and $R($ rotation) are explained diagramatically in Fig. (A3). A, D, R, and the C's are measured in triple scattering or polarized beam and target experiments which will not be discussed here, but which are treated by (Wo 54, Wo 56) and (Wu 62) Section J.

Analyzing power P_{A} is the quality of a second scatterer to analyze a polarized beam and is equivalent for elastic scattering to the polarization which would be produced by scattering an unpolarized beam from the analyzer.

A somewhat less elegant approximation may clarify the physical meaning of polarization, $P(\theta)$. If there were no spin interactions one would expect an equal probability of all equal incident and scattered states. That is, $\sigma(\theta, \phi)$ would be

$$
\begin{equation*}
I(\theta)=\left|f_{s}\right|^{2}+\left|f_{11}\right|^{2}+\left|f_{00}\right|^{2}+\left|f_{-1-1}\right|^{2} \tag{A84}
\end{equation*}
$$

or

$$
I(G)=\sum_{i}\left|f_{i i}\right|^{2}
$$

Figure (A3). P, A, R, D, C Parameters Defined.
$P=$ polarization
D = depolarization
parameter
$A=$ triple scattering $\quad C=\operatorname{spin}$ correlation
parameter parameter
$R=$ rotation parameter
defined in terms of incident polarization P_{o}, analyzer and scatterer polarizations P_{A} and P_{S}, and the number of particles scattered Up (U), Down (D), Left (L), and Right (R) with and without the presence of a spin-precessing magnetic field H. (Figure borrowed from John C. Hopkins, LASL.)

However, spin interactions do occur and account is taken of this by writing the cross section as a sum of spin independent and spin dependent terms,

$$
\begin{equation*}
\sigma(\theta, \phi)=I(\theta)[1+P \hat{\eta} \cdot \hat{\sigma}], \tag{A85}
\end{equation*}
$$

where P is a number of magnitude less than 1 yet to be defined. $\hat{n}=$ $\left(\vec{k} \times \vec{k}^{\prime}\right) /\left(k^{2} \sin \theta\right)$ for elastic scattering, and \vec{k}, \vec{k} ' are the wave vectors for the incident and scattered waves, respectively; thus, $\hat{\eta}$ is a unit vector normal to the plane of scattering. $\hat{\sigma}$ is a unit vector in the direction of the channel spin $\vec{S}=\vec{S}_{1}+\vec{S}_{2}=\frac{1}{2}\left(\vec{\sigma}_{1}+\vec{\sigma}_{2}\right), \hat{\sigma}=\left(\vec{\sigma}_{1}+\vec{\sigma}_{2}\right) /$ $\left|\vec{o}_{1}+\vec{o}_{2}\right|$.

Now define a vector $\overrightarrow{\mathrm{P}}=\mathrm{P} \hat{o}$ so that

$$
\begin{equation*}
\sigma(\theta, \phi)=I(\theta)[1+P \cos \phi], \tag{A86}
\end{equation*}
$$

where ϕ is now redefined as the angle between the normal to the scattering plane and the channel spin vector. If Eq. (A77) for the differential cross section can be written

$$
\begin{equation*}
\sigma(\theta, \phi)=\left|\sum_{i j} f_{i j}\right|^{2} \tag{A87}
\end{equation*}
$$

then it follows from Eqs. (A84-86) that

$$
P(\theta)=[\sigma(\theta, \phi)-I(\theta)] /[I(\theta) \cos \phi]
$$

$$
\begin{equation*}
P(\theta)=\left[\left|\sum_{i j} f_{i j}\right|^{2}-\sum_{i}\left|f_{i i}\right|^{2}\right] /\left(\sum_{i}\left|f_{i i}\right|^{2} \cos \phi\right) \tag{A88}
\end{equation*}
$$

One can see the significance of $P(\theta)$ by considering the special case of scattering of nucleons from spinless targets. In this case

$$
\psi=\exp (i k z)^{2} x^{s}+\exp (i k r) \sum_{s^{\prime}} f_{s s^{\prime}}(\theta, \phi)^{2} s^{\prime} / r
$$

and $f(\theta, \phi)$ is a 2×2 matrix which can be written as a function of the unit matrix \vec{E} and the Pauli spin matrices $\sigma_{i},\left(\vec{\sigma}=\sigma_{x} \hat{i}+\sigma_{y} \hat{j}+\sigma_{z} \hat{k}\right)$,

$$
\begin{equation*}
f(\theta, \phi)=g(\theta) E+\vec{h}(\theta) \cdot \vec{\sigma} . \tag{A89}
\end{equation*}
$$

Assume an incident particle in spin state

$$
x^{c}=\binom{a_{+}}{a_{-}}=a_{+} x^{\frac{3}{2}}+a_{-} x^{-\frac{3}{2}}
$$

and choose the normal to the scattering plane and the spin direction to be the z axis $(\phi=0)$. Then the scattered wave is

$$
\psi_{s c}=\frac{e^{i k r}}{r}\left(\begin{array}{cc}
\delta^{+h} & 0 \\
0 & g-h_{z}
\end{array} \bigvee_{a_{-}}^{a_{+}}\right)=\frac{e^{i k r}}{r}\binom{f_{c}^{+}(\theta)}{f_{c}^{-}(\theta)},
$$

where

$$
\begin{align*}
& f_{c}^{+}(\theta)=\left(g+h_{z}\right) a_{+} \\
& f_{c}^{-}(\theta)=\left(g-h_{z}\right) a_{-} . \tag{A90}
\end{align*}
$$

Now

$$
\sigma(\theta, \phi)=\left|f_{c}^{+}\right|^{2}+\left|f_{c}^{-}\right|^{2},
$$

which for an unpolarized incident beam $\left|a_{+i n}\right|=\left|a_{-i n}\right|$ becomes

$$
\begin{align*}
\sigma(\theta, \phi) & =|g|^{2}+\left|h_{z}\right|^{2}+2 \operatorname{Re}\left(g h_{z}^{*}\right) \\
& =[1+P(\theta) \cos \phi] I(\theta) . \tag{A91}
\end{align*}
$$

$I(\theta)=$ beam intensity $=\left|a_{+}\right|^{2}+\left|a_{-}\right|^{2}$ and from (A91)

$$
\begin{equation*}
\mathrm{P}(\theta)=\left[2 \operatorname{Re}\left(\mathrm{gh}_{\mathrm{z}}^{*}\right)\right] / I(\theta) \tag{A92}
\end{equation*}
$$

By direct multiplication it can be verified that $2 \operatorname{Re}\left(\mathrm{gh}_{\mathrm{z}}^{*}\right) \equiv\left|\mathrm{g}+\mathrm{h}_{\mathrm{z}}\right|^{2}$ $-\left|g-h_{z}\right|^{2}$. But comparison with Eq. (A90) shows that $\left|g+h_{z}\right|$ and $\left|g-h_{z}\right|$ are the intensities of the a_{+}and a_{-}scattered waves for an unpolarized incident wave. Hence, (A92) becomes

$$
\begin{equation*}
P(\theta)=\left(\left|a_{+}\right|^{2}-\left|a_{-}\right|^{2}\right) /\left(\left|a_{+}\right|^{2}+\left|a_{-}\right|^{2}\right)=(N \uparrow-N \downarrow) /(N \uparrow+N \downarrow) \text {, } \tag{A93}
\end{equation*}
$$

and is called the polarization of the scattered beam where $N \uparrow$, $N \nmid$ are the number of particles scattered with spins up and down, respectively. Of course, for more complex cases of spin-spin and spin-orbit interactions one considers the incident and scattered channel spin $\vec{S}=\vec{S}_{1}+\vec{S}_{2}$ rather than the spin of the incident and scattered particles, and $P(\theta)$ is no longer a simple expression relating spin directions of the scattered particles alone. However, $\vec{P}(\theta)$ still has the direction normal to the plane of the scattering and is still properly a vector polarization function (Mo 65).

Double Scattering

It is clearly difficult to measure the spin direction of a particle. As a consequence, if one is to measure polarization it is
necessary to relate it to other measurable quantities. A double scattering affords this possibility.

Assume (Wu 62, Wo 56) an unpolarized beam scattered by a target A and the scattered beam to be scattered again by a second scatterer B. The cross section for the first scattering is

$$
\sigma\left(\theta_{A}\right)=I\left(\theta_{A}\right)\left[1+P_{A}\left(\theta_{A}\right) \hat{n}_{A} \cdot \hat{\sigma}_{i n}\right],
$$

where $\hat{n}_{A}=\left(\vec{k}_{\text {in }} \times \vec{k}_{A}\right) /\left(k^{2} \sin \theta_{A}\right), \vec{k}_{A}=$ the wave vector of the first scattering through the angle θ_{A}, and $\vec{\sigma}_{\text {in }}=$ the spin of the incoming channel.

For the second scattering in the absence of interference terms $\hat{n}=\hat{n}_{B}=\left(\vec{k}_{A} \times \vec{k}_{B}\right) /\left(k^{2} \sin \theta_{B}\right)$ and the incident channel spin is ${ }^{\text {. }}$ $\vec{\sigma}_{A}=P_{A} \hat{\eta}_{A}$.

In this case

$$
\sigma\left(\theta_{A}, \theta_{B}, \phi_{A B}\right)=I_{A}\left(\theta_{A}\right) I_{B}\left(\theta_{B}\right)\left(1+P_{B} \hat{\eta}_{B} \cdot \vec{\sigma}_{A}\right)
$$

$$
=I_{A}\left(\theta_{A}\right) I_{B}\left(\theta_{B}\right)\left(1+P_{B} \hat{\eta}_{B} \cdot P_{A} \hat{n}_{A}\right)
$$

$$
\begin{equation*}
=I_{A}\left(\theta_{A}\right) I_{B}\left(\theta_{B}\right)\left(1+P_{A} P_{B} \cos \phi_{A B}\right), \tag{A94}
\end{equation*}
$$

where $\phi_{A B}=$ angle between scattering planes. Thus, for double scattering

$$
\begin{aligned}
& \sigma(\phi=0)=I_{1}\left(\theta_{1}\right) I_{2}\left(\theta_{2}\right)\left(1+P_{1} P_{2}\right), \\
& \sigma(\phi=\pi)=I_{1}\left(\theta_{1}\right) I_{2}\left(\theta_{2}\right)\left(1-P_{1} P_{2}\right),
\end{aligned}
$$

and

$$
P_{1}\left(\theta_{1}\right) P_{2}\left(\theta_{2}\right)=\frac{\sigma(\phi=0)-\alpha(\phi=\pi)}{\sigma(\phi=0)+\sigma(\phi=\pi)}=(L-R) /(L+R),
$$

where L, R are the number of particles scattered to equal left and right angles $\left(\theta_{2}\right)$, respectively, in the second scattering. The quantity $P_{1} P_{2} \cos \phi$ is commonly called the asymmetry and designated by the letter e, so that for left-right scattering in the same plane

$$
\begin{equation*}
e=P_{1}\left(\theta_{1}\right) P_{2}\left(\theta_{2}\right) \times(L-R) /(L+R) \tag{A95}
\end{equation*}
$$

Although the above derivation of Eqs. (A94) and (A95) assumes no interference between incident and scattered waves, the expressions can be shown to be exact (Mo 65).

In the case where a second scattering is used to analyze the polarization of the first scattering $P_{2}\left(\theta_{2}\right)$ is called analyzing power and designated P_{A}, which for elastic scattering is the polarization which would be produced by the second scattering alone. In the present experiment, $P_{1}\left(\theta_{1}\right)$ was assumed known and $P_{2}\left(\theta_{2}\right)$ was unknown except in the case where ${ }^{4} \mathrm{He}(\vec{n}, \hat{n})^{4}$ He scattering was used to determine the $T(d, \vec{n})^{4}$ He neutron source polarization.

Another double scattering parameter which is convenient and easily defined is the left-right ratio,

$$
\begin{equation*}
r=\frac{\sigma(\phi=0)}{\sigma(\phi=\pi)}=L / R=\frac{1+e}{1-e} . \tag{A96}
\end{equation*}
$$

In sumary the expressions for $P(\theta)$ and e derived in this section relate the easily measured quantities L and R via the scattering amplitudes and wave functions to the spin-spin and spin-orbit interaction
potentials just as was done with the differential cross section in Section ALV.

VI. DATA CORRECTION FORMULAE

Artificial Asymmetry Corrections

Libert (Li 66) defines for double scattering the quantities k_{o}, k, e_{m}, e_{r}, μ, and v as follows:
$\sigma\left(\theta_{1}, \theta_{2}, \phi_{12}\right)=k_{0} I\left(\theta_{1}\right) I\left(\theta_{2}\right)\left[1+k P_{1}\left(\theta_{1}\right) P_{2}\left(\theta_{2}\right) \cos \phi_{12}\right]$

$$
e_{m}=\left[e_{r}+\mu e\right] /[1+(1-v) e]
$$

$$
e=P_{1}\left(\theta_{1}\right) P_{2}\left(\theta_{2}\right) \cos \phi_{12}
$$

$$
e_{r}=\frac{\left[I\left(\theta_{1}\right) I\left(\theta_{2}\right)_{L}-I\left(\theta_{1}\right) I\left(\theta_{2}\right)_{R}\right]}{\left[I\left(\theta_{1}\right) I\left(\theta_{2}\right)_{L}+I\left(\theta_{1}\right) I\left(\theta_{2}\right)_{R}\right]}
$$

$$
\begin{equation*}
\mu=\frac{\left[k_{L} I\left(\theta_{1}\right) I\left(\theta_{2}\right)_{L}+k_{R} I\left(\theta_{1}\right) I\left(\theta_{2}\right)_{R}\right]}{\left[I\left(\theta_{1}\right) I\left(\theta_{2}\right)_{L}+I\left(\theta_{1}\right) I\left(\theta_{2}\right)_{R}\right]} \tag{A99}
\end{equation*}
$$

$$
v=1-\frac{\left[k_{L} I\left(\theta_{1}\right) I\left(\theta_{2}\right)_{L}-k_{R} I\left(\theta_{1}\right) I\left(\theta_{2}\right)_{R}\right]}{\left[I\left(\theta_{1}\right) I\left(\theta_{2}\right)_{L}+I\left(\theta_{1}\right) I\left(\theta_{2}\right)_{R}\right]} .
$$

The k's are experimental factors of which the ideal value is unity. L and R refer to left and right second scattering, respectively, where
the first scattering is assumed to be a left scattering through angle $\theta_{1} \cdot e_{m}$ is the measured asymmetry. e is the asymmetry one wishes to measure, and it is seen from the definitions (A98) that e_{r} is an artificial asymmetry measured when either polarization $P_{1}\left(\theta_{1}\right)$ or $P_{2}\left(\theta_{2}\right)$ is zero.

From (A97-99) the expression to correct for a measured artificial asymmetry e_{r} can be derived. If the k 's are assumed to be unity then $\mu=1, v=1-e_{r}$, and

$$
e_{m}=\left(e_{r}+e\right) /\left(1+e_{r} e\right)
$$

Consequently,

$$
\begin{align*}
e & =\left(e_{m}-e_{r}\right) /\left(1-e_{r} e_{m}\right) \tag{Al00}\\
& \simeq e_{m}-e_{r}
\end{align*}
$$

for small artificial asymmetry e_{r}.

Detector Efficiency Correction

To obtain the correction for detector efficiencies, two measurements were made at each angle (θ_{2}) with detectors interchanged. It is easiest to work the left-right ratio r, which is expressed

$$
\begin{aligned}
& r_{m}=r_{r}\left[1+k_{L} \cdot \frac{r-1}{r+1}\right] /\left[1-k_{R} \cdot \frac{r-1}{r+1}\right] \\
& r_{r}=I\left(\theta_{1}\right) I\left(\theta_{2}\right)_{L} / I\left(\theta_{1}\right) I\left(\theta_{2}\right)_{R} .
\end{aligned}
$$

If it is assumed again that the $k ' s=1$, then $r_{m}=r_{r} r$, and for the two
measurements $r_{m}^{\prime}=r_{r}^{\prime} r$ and $r_{m}^{\prime \prime}=r_{r}^{\prime \prime} r$. The data will be corrected for artificial asymmetries by Eq. (A100) so that $e_{r}^{\prime}=e_{r}^{\prime \prime}=0$ or $r_{r}^{\prime} r_{r}^{\prime \prime}=1$. Then

$$
\begin{equation*}
r^{2}=\left(r_{m}^{\prime} / r_{r}^{\prime}\right)\left(r_{m}^{\prime \prime} / r_{r}^{\prime \prime}\right)=r_{m}^{\prime} r_{m}^{\prime \prime}, \tag{Al02}
\end{equation*}
$$

which is the expression for correcting for detector efficiencies. In terms of asymmetries Eq. (Al02) is

$$
\begin{aligned}
e & =\frac{\left[\left(1+e_{m}^{\prime}\right)\left(1+e_{m}^{\prime \prime}\right)\right]^{\frac{1}{2}}-\left[\left(1-e_{m}^{\prime}\right)\left(1-e_{m}^{\prime \prime}\right)\right]^{\frac{1}{2}}}{\left[\left(1+e_{m}^{\prime}\right)\left(1+e_{m}^{\prime \prime}\right)\right]^{\frac{1}{2}}+\left[\left(1-e_{m}^{\prime}\right)\left(1-e_{m}^{\prime \prime}\right)\right]^{\frac{1}{2}}} \\
& \simeq \frac{1}{2}\left(e_{m}^{\prime}+e_{m}^{\prime \prime}\right) \text { if } e_{m}^{\prime} \simeq e_{m}^{\prime \prime} .
\end{aligned}
$$

Multiple Scattering Corrections

A Monte Carlo multiple scattering computer code developed by W. B. Broste, K. R. Crandall, R. B. Perkins, and J. E. Simmons (Br 69) is used at LASL to calculate multiple scattering corrections for $n-4$ elastic scattering. The program was adapted to calculate corrections to the $n-T$ polarizations at $22.1-\mathrm{MeV}$ incident neutron energy. The $\mathrm{n}-{ }^{4} \mathrm{He}$ phase shifts (io 66) used in the program yield polarizations which at all angles are within a few percent of the $T(\vec{n}, \hat{n}) T$ neutron polarizations measured in this experiment. The mean free path was adjusted in the code to be equal to the mean free path of a neutron in the liquid tritium scattering sample, and the resulting corrections were applied to the $\mathrm{n}-\mathrm{T}$ data.

In Table AIII are listed the multiple scattering correction factors by which each of the $T(\vec{n}, \hat{n}) T$ neutron polarizations for $22.1-\mathrm{MeV}$ incident neutrons in Table V were multiplied.

TABLE AIII
Multiple Scattering Corrections to the $22.1-\mathrm{MeV}$
n-T Polarization Data

$\theta_{2} l \mathrm{ab}$ (deg)	Multiply $\mathrm{P}_{2}\left(\theta_{2}\right)$ by
40	1.00 ± 0.01
55	1.00 ± 0.01
70	1.00 ± 0.02
80	1.02 ± 0.03
85	1.02 ± 0.04
90	1.02 ± 0.05
95^{\dagger}	1.00 ± 0.20
100	1.16 ± 0.05
105	1.10 ± 0.05
$110 \frac{1}{4}$	1.09 ± 0.03
$118 \frac{1}{2}$	1.06 ± 0.03

[^3]
APPENDIX B

Appendix B describes the computer programs FLZEIT and DSCHNIT which were written for analysis of the data obtained in the experiment. Instructions for using the programs are given, and the codes are listed.

I. PROGRAM FLZEIT

Introduction

FLZEIT (meaning flugzeit $=$ time of flight) is a FORTRAN IV, 512channel data reduction code with several options. The program calculates 1) the number of counts in Channel $I=N E T(I), 2)$ the standard deviation $=\operatorname{SD}(I), 3) \operatorname{SUM}(I)=\sum_{i=1}^{I} \operatorname{NET}(i)$, and 4) $\operatorname{SUMVAR}(I)=\sum_{i=1}^{I}$ $(S D(i))^{2}$ according to the following equations:

NET (Channels 001-256)

$$
\begin{equation*}
=N L *(C(1) * F \emptyset R E G R \emptyset U N D-C(2) * \text { BACKGR } \quad \text { (}) \text { UND }+B K G L) \tag{BI}
\end{equation*}
$$

NET (Channels 257-512)

$$
=N R *(C(3) * F \emptyset R E G R \emptyset U N D-C(4) * \text { BACKGRØUND }+B K G R)
$$

where $F \emptyset R E G R \emptyset U N D=$ number of counts in Channel I in the foreground run, BACKGRØUND $=$ number of counts in Channel I for the background run; and $N L, N R, C(1), C(2), C(3), C(4), B K G L$, and $B K G R$ are normalization constants entered on cards or calculated by the program.

and similarly for the right side.

In addition, the program will sum any number of pairs of runs (NUMPR) and calculate $\operatorname{NET}(I), \operatorname{SD}(I), \operatorname{SUM}(I)$, and $\operatorname{SUMVAR}(I)$ for the accumulated pairs; i.e.,

$$
\begin{aligned}
\operatorname{ACNET}(I) & =\left(\sum_{j=1}^{\text {NUMPR }} \operatorname{NET}(I)_{\operatorname{Run}} j\right) / \operatorname{NUMPR} \\
\operatorname{ACSD}(I) & =\left[\sum_{j=1}^{\operatorname{NUMPR}}\left(\operatorname{SD}(I)_{\operatorname{Run}}\right)^{2}\right]^{\frac{1}{2} / \operatorname{NUMPR}} \\
\operatorname{ACSUM}(I) & =\left(\sum_{i=1}^{I} \operatorname{ACNET}(i)\right) / \operatorname{MUMPR} \\
\operatorname{ACSUMVAR}(I) & =\left[\sum_{i=1}^{I}(\operatorname{ACSD}(i))^{2}\right] / \operatorname{NUMPR}^{2}
\end{aligned}
$$

The program structure includes the main block plus five subroutines, LESEN, UMSATZ, LøCHEN, CEES, and MAHLEN. Subroutine LESEN (= read) reads input data from tape and prints out the run headings directly from the input tape as well as information concerning runs found or called for from tape.

The main block performs the calculations and prints out calculated data.

Subroutine UMSATZ (= translation) records the calculated NET(I) values on an output tape (with appropriate headings).

Subroutine LøCHEN (= punch) punches data on cards.
Subroutine CEES calculates normalizing factors $C(1), C(2), C(3)$, and $C(4)$ from the data if desired.

Subroutine MAHLEN (= draw) plots the data.

To abort recording, punching, or plotting, one need simply replace UMSATZ, LØCHEN, or MAHLEN subroutine decks with SUBRØUTINE UMSATZ SUBRØUTINE LøCHEN SUBRØUTINE MAHLEN

321 CøNTINUE	421 CøNTINUE	319 CøNTINUE
RETURN	REIURN	REIURN

END
END
END
respectively.

Main Program Block
Aside from the input data, which is read from tape by subroutine LESEN, a certain amount of information must be entered on cards as follows:

Data Card I

Field Format Name	Explanation	
$1-6$	I6	IDAC

7-12 I6 IBLANK the first run number in the output (printed and recorded on output tape). Subsequent run numbers are stepped by one. Hence, the IDAC field left blank results in the first run no. $=1$. IBLANK $=0$ (or a blank field) causes data on the output tape to be written from the beginning of a tape with the first run no. $=$ IDAC+1. IBLANK > 0 causes the output tape to be searched for an end of file. The run no. is

Data Card I (cont'd)

Field	Format	Name	Explanation
			stepped beyond the last run written on the tape and new data is added to the old tape
13-18	16	INDEX	INDEX $=0$ (or a blank field) causes the input
			data tape to be read in the "new" format.
			INDEX $=1$ causes the tape to be read in the
			"old" format and L and R normalizing constants
			(ANøRM) to be set equal. (See Subroutine
			LESEN for formats.)
19-24	I6	NRERUN	NRERUN tells subprogram LESEN how many runs
			to search the tape backwards before aborting
			the search. If this field is left blank
			NRERUN $=10$.

Data Card II
Field Format Name Explanation
1-3 I3 NUMPR NUMPR = no. of pairs of foreground-background
data to be accumulated (see Introduction).
NUMPR should not be blank or zero. Two cards
read with $I U M P R=0$ terminate the job.
JPL $\varnothing T=0$ (or a blank field) causes the data to be handled as 1-512 channel array on the printout, tape, and plot. JPL \varnothing T $=1$ causes the data to be handled as $2-256$ channel array on the printout, tape, and plot. For channels

Data Card II (cont'd)

Field Format Name

7-9 I3 IPL \varnothing T

10-12 I3 ICHAR1

Plot character Decimal Notation
0 through 9 0 through $9 \quad 0$ through 9
$+$ 16
-
32

- (dot) 42
* 44
\square 63
Explanation
257-512, $\operatorname{SUM}(I)=\operatorname{SUM}(I)-\operatorname{SUM}(256), \operatorname{SUMVAR}(I)$
= SUMVAR(I) - SUMVAR(256). Channels 1-256
are labeled "LEFT SIDE," channels 257-512 are
"RIGHT SIDE," and reassigned channel nos. 1-256.

IPL $\not \mathrm{I}=0$ (or blank field) causes a linearlinear plot to be made by MAHLEN. IPLøT $=1$ causes a linear-log plot to be made. ICHAR1 = decimal notation for character in which the plotting is done. Some useful values are:
NET(I) > 10 ICHARI

Data Card II (cont'd)

Field Format Name Explanation

```
-10 \leqNET(I) \leq 10 on axis
NET(I) < 10 plotted as ICHAR2 and
NET(I) = |NET(I)|
```

ICØN > 0 causes the plotted points to be connected by a line.
$19-246 x$
25-80 5AlO ACCHEAD This is the heading for the accumulated runs. 1 1.6

Next $4 \times$ NUMPR Cards

Card Field Format Name

1. 1-6 I6 IDFG 7-12 I6 IDBG IDBG is the number of the background run to be subtracted from the lst foreground run. Note: If IDBG ≤ 0 no background run will be called for and calculations are made on the foreground run only.
$13-142 x$
15 II INVC INVC = O (or a blank field) causes $C(1)$ through $C(4)$ (see next two cards) to be used as read in. INVC ≥ 1 causes $C(1)$ through $C(4)$ to be replaced by $1 / C(1)$ through $1 / C(4)$ before being used in the program.

Card	Field Format	Name	Explanation
	16-24 9x		
	25-80 5A10	PRHEAD	This is the heading for a particular pair
	1 A 6		of runs.
2.	1-12 12.5	FN® ${ }_{\text {RM }}(1)$	Normalization for channels 1-256 (= NL in
			Introduction). For a blank field NL $=1$.
	13-24 12.5	C(1)	Normalization, see Introduction. If C(1)
			= -0.0 (i.e., blank field) C's are calcu-
			lated by subroutine CEES.
	25-36 12.5	c(2)	Normalization, see Introduction.
	37-48 12.5	BKGL	Additive constant, see Introduction.
	49-54 I6	LøWL	Lower and Upper channel Nos. (Left and
	55-60 I6	IUPL	Right) for calculating $C(1), C(2), C(3)$,
	61-66 I6	LøWR	C(4) from the data (See subroutine CEES.)
	67-72 16	IUPR	If IUPL ≤ 0 (i.e., a blank field) the C's
			become the normalizing factors BNøRM, CNø $¢$ M
			recorded on the input tape (see subroutine
			LESEN).
3.	1-12 12.5	FNøRM(2)	Normalization for Channels 257-512 (- Nr
			in Introduction).
	13-24 12.5	C(3)	Normalization, see Introduction.
	25-36 12.5	c (4)	Normalization, see Introduction.
	37-48 12.5	BKGR	Normalization, see Introduction.

Next $4 \times$ NMPR Cards (cont'd)
Card Field Format Name Explanation
49-54 I6 LøCHL1

55-60 I6 LøCHL2 Lower (1) and Upper (2) Channel Nos. Left
61-66 I6 LøCHRI
67-72 I6 LøCHR2
If LøCHL2 ≤ 0 (i.e., blank) Channels 1-512 are all punched. (See LøCHEN) If JPL \varnothing T $=0$, LøCHRI and L $\varnothing C H R 2$ are ignored. RESTRICTIONS:

LøCHLI ≥ 1 and
LøCHL2 > LøCHL1 (unless LøCHL2 is a blank field)
LøCHR1 2257
$512 \geq$ LøCHR2 $>$ LøCHRI
NOTE: If any field on card 3 is left blank, it is assigned the corresponding value on card 2. Thus, a blank card 3 means that channels 1-512 are all normalized by the same constants.
4. 1-6 I6 $\operatorname{KBND}(1)$

7-12 I6 $\operatorname{KBND}(7)$
13-18 I6 $\operatorname{KBND}(2)$
19-24 I6 $\operatorname{KBND}(8)$ Used in determining graphing limits (see
25-30 I6 $\operatorname{KBND}(3)$ subroutine MAHLEN). If this option is not
31-36 I6 $\operatorname{KBND}(9)$ used a blank card must be inserted.
37-42 I6 KBND (4)
43-48 I6 KBND (10)
49-54 I6 KBND(5)

Next $4 \times$ NUMPR Cards (cont'd)
Card Field Format Name Explanation
55-60 I6 $\quad \mathrm{KBND}(11)$ Used in determining graphing limits (see 61-66 I6 $\operatorname{KBND}(6)$ subroutine MAHLEN). If this option is not 67-72 I6 KBND(12) used a blank card must be inserted.

The above cards $1,2,3$, and 4 are repeated for each run pair; i.e., there should be $4 \times$ NUMPR number of cards following a given NUMPR (Data Card II) card.

As soon as the calculations have been made NUMPR number of times, the program expects to read another NUMPR (Data Card II). Hence, the sequence of cards starting with Data Card II may be repeated as often as desired. A blank NUMPR card and another blank card following it will terminate the job.

Subroutine LESEN

LESEN = read input tape. This subroutine assumes the data is written on the input tape in one of the following formats (the format is chosen by the value of INDEX on Data Card I):
"New" Format
Record 1
$J, \operatorname{NRUN}, \operatorname{BN} \emptyset R M, C N \not \subset M,(\operatorname{HEAD}(I), I=1,11)$
FøRMAT (II, I4, 2(F9.4,2X), 10A10, A8)
Records 2-6
(SCALAR (I), $I=1,65$)

FøRMAT (13A10, 6X)
Records 7-38
((ADATA (I) , I=J,512,128), J=1,128)
FøRMAT (1X,16F8.0)
"O1d" Format

Record 1

J,NRUN, BNORM($\operatorname{HEAD}(I), I=1,11)$
FøRMAT (I1,I4,F12.4,2X,10A10,A8)
Record 2
($\operatorname{SCALAR}(I), I=1,13)$
FøRMAT (13A10)
Records 3-34
((adATA $(I), I=J, 512,128), J=1,128)$
FøRMAT ($1 \mathrm{X}, 16 \mathrm{~F} 8.0$)
where $J=$ index searched for the beginning of a run, NRUN = run no., $B N \varnothing R M$ and $C N \not \subset M=$ normalization factors calculated by the scalers during the runs, HEAD $=$ heading put on the runs, SCALAR (1-65) = scalers read in, $\operatorname{ADATA}(I)=$ no. of counts in the $I^{\text {th }}$ channel.

This subroutine sets following indices:
Index Value Cause and Effect
No Back 1 No background was called for, $C(2)=0.0$ Foreground only is used in calculations.

No Data 1 Either the requested foreground or the background run was not found on the tape. No calculations

Subroutine USASATZ

UMSATZ $=$ write output tape. The output tape is written in the following format:

Record 1.
IDAC, ($\operatorname{PRHEAD}(I)$ OR $\operatorname{ACCHEAD}(I), I=1,6)$
FøRIMAT (3H101, 3X, I6, 5Al0, A6)
where 101 in the first tinree columns are indices which can be used for searchine the tane later.

Record 2.
a. FøRMAT (14X, 1OHBOTH SIDES) or
b. FøRMAT ($14 \mathrm{X}, 14 \mathrm{HLEFT}$ SIDE ONLY) or
c. FøRMAT ($14 \mathrm{X}, 15 \mathrm{HRIGHT}$ SIDE ONLY)

Records 3 through 18 (or 3 through 34 for both sides)
a. $((\operatorname{NET}(I)=\operatorname{ADATA}(I), I=J, 512,128), J=1,128)$ or
b. $((\operatorname{NET}(I)=\operatorname{ADATA}(I), I=J, 256,64), J=1,64)$ or
c. $((\operatorname{NET}(I)=\operatorname{ADATA}(I), I=J, 512,64), J=257,320)$

FøRMAT (12X, 16F7.0)

UMSATZ resets IBLANK $=0$ to avoid researching the output tape for an end of file the next time UMSATZ is called.

Subroutine MAHLEN

MAHLEN $=$ plotting routine. This routing uses plotting subroutines coded by E. M. Willbanks (Wi 68) for the LASL CDC 6600 computers and 4020 plotter. The routine plots according to the values of IPL $\varnothing \mathrm{T}$ (linear or log) and JPLøT (512 or 256 channels). The maximum scale on the plots is determined by searching the data (ADATA(I)) for the maximum value (DATMAX) and assigning the next highest $10,100,500$, or 1000 as the upper graph limit. In the case of accumulated data, IACC is set to 1 by the main program and the upper graph limit is calculated from MAXDAT $=$ maximum of DATMAX for all NUMPR runs.

If the data has spikes which may cause regions of interest to be plotted insignificantly close to the axis, these spikes may be skipped
by using the KBND option in the data cards. For example, assume the data has insignificant pileup peaks in channels 5, 20 to 30,256 and 512. Then the maximum values other than spikes are calculated skipping channel 5, channels 20-30, channel 256, and channel 512; and the graph upper bound becomes more meaningful if KBND values are assigned as follows:
$\operatorname{KBND}(1) \quad 1$
$\operatorname{KBND}(7) \quad 4$
Channel 5 is skipped
$\operatorname{KBND}(2) \quad 6$
$\operatorname{KBND}(8) \quad 19$
Channels 20 through 30 are skipped
$\operatorname{KBND}(3) \quad 31$
$\operatorname{KBND}(9) \quad 255$
Channel 256 is skipped
$\operatorname{KBND}(4) \quad 257$
$\operatorname{KBND}(10) \quad 511$
Search for DATMAX ends at channel 511
KBND(5) Blank
KBND (11) Blank
$\operatorname{KBND}(6) \quad$ Blank
$\operatorname{KBND}(12) \quad$ Blank

Up to six regions may be skipped in this manner for the calculation of DATMAX. If all KBND's are left blank DATMAX is automatically calculated for channels 1 through 512.
$C(1), C(2), C(3)$, and $C(4)$ are calculated from the data in the following manner:

$$
\operatorname{AN} \emptyset \mathrm{RM}(J)=\text { normalization factors recorded on input tape for } J=1,4
$$

1) foreground left
2) background left
3) foreground right
4) background right

$$
C(1)=\operatorname{AN} \emptyset \operatorname{RM}(1)
$$

$$
C(2)=C(1) \times\left[\left(\sum_{I=L \phi W L}^{I U P L} N E T(I)_{F G}\right) /\left(\sum_{I=L \varnothing W L}^{I U P L} N E T(I)_{B G}\right)\right]
$$

$$
C(3)=\operatorname{AN\emptyset RM(3)}
$$

$$
\begin{equation*}
\mathrm{C}(4)=\mathrm{C}(3) \times\left[\left(\sum_{\mathrm{I}=\mathrm{L} \phi \mathrm{WR}}^{\mathrm{IUPR}} \mathrm{NET}(\mathrm{I})_{\mathrm{FG}}\right) /\left(\sum_{\mathrm{I}=\mathrm{L} \phi \mathrm{WR}}^{\mathrm{IUPR}} \mathrm{NET}(\mathrm{I})_{\mathrm{BG}}\right)\right] \tag{B3}
\end{equation*}
$$

If IUPL ≤ 0 (i.e., blank), then $C(J)=\operatorname{AN\varnothing RM}(J)$ for $1 \leq J \leq 4$.

Subroutine L \varnothing CHEN

The output is punched on cards in the following format:
NET(I), IDAC
6F 12.2, I6, 2HB \emptyset (for both detectors)
66 (for detector 66)
60 (for detector 60)

```
for \(I=\) LøCHL1 through \(I=\) LøCHL2 (detector 66)
and for \(I=\) LøCHR1 through \(I=\) LøCHR2 (detector 60)
or \(I=L \emptyset C H L 1\) through \(I=L \varnothing C H L 2\) (both detectors) .
```

A listing of the program follows.

```
    PROGRAM FLZEIT IINPUT.OUTPUT.TAPEIO=INPUT.TAPEG=OUTPUT.FILM.TAPEL2
    1=F1LM.TAPE 37. TAPE53.PUNCHI
    DIMFNSION ACNET(512).ACSUM(512).ACSD(512).ACSVAR(S12) .ACCHF.AD(6).
    1FNORM(2) ©RSD(512)
    COMMON: ADATA(512), ROATA(512).NOBACK NNODATA.IDFG -IDBG.JPLOT,C(4).
    IIPLOT.ICHARI.ICHAR\.ICON.IDAC.IBLANK.ACH(512) .PRHEAD(6).ANORM(4).
    TKBND(17).IACC.MAXDAT.ASD(512).SUM(512). SUMVAR(15 12)
    REAL MAXDAT
    649 RFAD (10.650) 10AC.IBLANK.INDEX.NRERUN
    650 FORMAT (4IG)
        INDFX=INDFX+1
        IF (NRFRUN.LE.O) NRERUN=10
    7 LAST=?
    203 1 ACC=0
    MAXDAr=0.0
2OSO READ(1O.GD)NUMPR.JPLOT.IPLOT.ICHARI.ICHAR2.ICON.(ACCHEAD(I):I=1 &6)
    GOFORMAT (GI3.6X.5A1O.AGI
    IF (EOF.10) 1999.200
    200 IF (NUMPR.LE.O.AND.LAST.NE.O) GO TO }199
    IF (NUMPR) 201.201.2010
    201 LAST=1
    G0 r0 203n
2010 DO 1 I=1.512
    ACNET(1)=0.0
    ACSUM(1)=0.0
    ACSD(I) =0.0
    ACSVAR(I) =0.0
    CONTINUF
    202 DO 299 J=1.NUMPR
    3 REAO (10.GO2) IDFG.IDBG.INVC.(PRHEAD(I).I=1.6).FNORM(1).(CCI).I=1.
        12).BKGL.L OWL.IUPL.LOWR.IUPR FFNORM(2).C(3).C (4). BKGR -LOCHL1.LOCHL2.
        2LOCHRI.LDCHR2.(KSND(K).KBND (K % 6),K=1.6)
    602 FORMAT (2I6.2X.I1.9X.5A10.A 6/4E12.5.4I6/4E12.5.4IG/12I6)
    IF (FNORM(2).EA.-0.0) FNORM (2)=FNORM(1)
```

```
            DO 5 I =1.2
            IF (FNORM(I).EQ.-C.O) FNORM(I)=1.D
            5 IF (C(I+2).EO.-0.0) C(I+2)=C(I)
            IF (RKGL.EQ.-O.O) RKGL=0.0
            IF (BKGR.EQ.-D.O) BKGR=BKGL
            NOBACK=O
            NODATA=0
            NOSTOP=O
            1F (INVC-1) 80.6.6
    6 DO 7 T=1.4
    71F(C(1).NF.O.O.AND.C(1).NE.-O.O)C(I)=1.O/C(I)
80 WRITF (9.503)
5C3 FORMAT (1H1)
    WRITF (9.GO4) 1OFG.IDBG.(PRHEAD(I).I=1.6)
604 FORMAT(1X.3HRUN.I5. 1X4H-RUN.IG.6X5A10.AG//1X.53HNET(CHSCO1-256)=
            INI.* (CI*FOREGND - C%.BACKGND + BKGL)/1X.53HNET(CHS 257-512) = NR*(C 3
            2*FORFGND - C4*BACKGND * BKGRI/)
    8 \text { CALL LESEN (INDEX.NRERUN)}
    9 IF (NODATA) 299.10.299
10 If (C(1).FO.-C.O) CALL CEES(LOWL.IUPL.LOWR.IUPR)
            WR1TE (9.6041) FNORM(1),C(1),C(2), BKGL.FNORM(2) & C (3).C(4).日KGR
6041FORMAT 11X.3HNL=.1PE12.4.5X.3HC1=.1PE12.4.5X.3HC7=.1PE12.4.5X.7HBK
            1GL= -1PE12.4/1X.3HNR=.1PE12.4.5X.3HC3=.1PE12.4.5X.3HC4 =. 1PE.12.4.
    75X.7HRKGR= .1PE12.4)
        1F (NOBACK) 14.11.14
    11 00 1? I= 1. 256
        BDATA(I)=(-C(2))\cdotBDATA(I)
    12BSD(I)=(-C(2))*BDATA(I)
        DO 13 1=257.512
        RDATA(T)=(-C(4)I-RDATA(I)
    13 RSD(T)=(-C(4))\cdotRDATA(I)
14 DO 15 I=1.256
    ADATA(I)=C(1)*ADATA(I)
15 ASD(I)=C(1)*ADATA(I)
```

```
    00 15 I=757.512
    ADATA(1)=C(3).ADATA(1)
    1F ASD(I)=C(3)*ADATA(I)
    IF (NORACK) 19.17.19
    17 00 18 I=1.512
    ADATA(I)=ADATA(I) +BDATA(I)
    18 ASO(I)=ASD(I) + BSD(I)
    19 DO 2% I=1.256
    AOATA(I)=FNORM(1) * (ADATA(I) +BKGL)
    20 ASD(I)=(FNORM (1)* * 2)* (ASD (I)*BKGL**2)
    DO 21 I=757.512
    ARATA(I)=FNORM(2)* (ADATA(I) +BKGR)
21 ASO(1)=(FNORM (?)**2)* (ASD (1)*BKGR**2)
    SUM(1)=ADATA(1)
    SUMVAP(1)=ASD(1)
    ASD(1)= SODI(ASD(1))
    ACH(1)=1.C
    D0 27 I=2.512
    SUM(I)=SUM(I-1) +ADATA(I)
    SUMVAR(I)=SUMVAR(I-1) *ASD(I)
    ASO(I)=SART(ASO(I))
72 ACH(I)=I
    OO 220 I=1.512
    ACNET(T)=ACNET(I) &ADATA(I)
    ACSUM(I)=ACSUM(I) + SUM(I)
    ACSD(I) =SGRT((ASD(I)**2)+(ACSD(I)**2))
220 ACSVAR(I)=ACSVAR(I) +SUMVAR(I)
    IF (JPLOT) 221.221.23
23 DO 24 I=257.512
    SUM(I)=SUM(I)-SU.M(256)
74.SUMVAR(I) =SUMVAR(I) - SUMVAR(256)
271 CALL UMSAIZ
    WRITE 19.611)
    IDAC=IDAC+1
```

 WRITr (9.6040) IDAC
 6T40 FORMAT (1X.IG.I8H=RUN NO. IN OUTPUT)
IF (JPLOT) 25.25.225
2?5 WRITE (9.605)
605 FORMAT (1X.1EHDETECTOR 66 ONLY/)
WPITF (9.606)

```

```

 I. 3HNET. 2X.2HSD.5X.3HSUM.1X.GHSUMVARI)
    ```

```

 164)}\cdotJ=1.64
 607 FORMAT(IX.F3.0.F7.1.F4.0.F8.1.F7.0.3(3X.F 3.0.F7.2.F4.0.F8.1 .FT.C))
WRITE (9.611)
611 FORMAT (//)
IDAC=IDAC+1
WRITE (9.5040) IDAC
WRITT. (9.612)
612. FORMAT (1X.16HDETECTOR 60 ONLY/)
HRIT! (9.606)
WRTIT (9.607) (((ACH(I-256).ADAIA(I).ASD(I).SUM(I). SUMYAR(1)I.I=J.
1517.64).J二257.320)
G0 10 26
25 WRITF (9.613)
613 FORMAT (* CHANNELS O THRU 512. BOTH DETECTORS*)
WRITE (9.6ロK)
WRITF (9.GO7) (((ACH(I).ADATA(I).ASD(I).SUM(I).SUMVAR(I)) II=J.W 12.
11281.J=1.1281
26 CALL MAHLF.N
CALL.LOCHEN (L OCHL1.LOCHLZ ILOCHR1.LOCHR2)
299 CONTINUE
IF (NUMPR.IE.1) GO TO 2
30 DO 31 I=1.512
ADATA(I) =ACNET(I)/NUMPR
ASD(I)=ACSO(I)/NUMP?
SUM(1)=ACSUM(I)/NUMPR

```
```

 31SUMVAR(I)=ACSVAR(I)/(NUMPR**2)
 DO 310 I=1:6
 31\cap PRHEAD(I) =ACCHEAD(I)
 IACC=1
 *RITE (9.611)
 IF (JPLOT) 331.331.32
 3200 33 1=257.512
 SUM(])=SUM(I)-SUM (256)
 33 SUMVAR(I)=S()MVAR(I)-SUMVAR(256)
 331 CALL UMSAT7.
 IDAC=IDAC+1
 WRITF (9.6040) IDAC
 *RITF (9.614) NUMPR.(PRHEAD(1).I=1.6)
 614 FORMAT (IXOI3.22H AROVE FG AND BG PAIRS.5A1D.AG)
 IF (JOLOI) 34.34.332
 332 WRITE (9.605)
 *RITE (9.606)
 WRITE (9.607) ((IACH(I) OADATA(I).ASO(I).SUM(I).OSUMVAR(I)) ©I=J.256.
 (64) 0J=1•64)
 WRITr (9.611)
 IDAC=IDAC+1
 WRITY (9.6040) IDAC
 WRITE (9.614) NUMPR.(PRHEAD (I),I=1.6)
 *RITF (9.612)
 WRITF (9.606)
 WRITF (9.607) (P(ACH(I-256) OADATA(I).ASD(I).SUM(I). SUMVAR(II).I =J.
 1517.641.J=257.320)
 G0 10 35
 34 WRITE (9.613)
 WRITE (9.607) ((IACH(I):ADATA(I).ASD(I).SUM(I).SUMVAR(I)).I=J.512.
 1128)}\cdotJ=1\cdot128
 35 CALL MAHLEN
 CALL LOCHEN(LOCHLI.LOCHL2 OLOCHR1.LOCHR2)
 37 GO IO 2
 1939 STOP
2000 END

```
```

 Surrolitine
 DIMENSION MEADEN IINDEX.NRERUNS
 COMMON ADATEAD(11).SCALAR (65)
 IIPLOT ICHARA(512)•RDATA(517).
 NOBACK=П I.ICHARZ.ICON.IDAC.IBLANK.ACATA.IDFG.IDBG.JPLOT,C(4).
 NODATA=0
 1rf Run:=0
 I.ORUN=I
 MORUN=0
 NORUN=\
 if cinfg
 1 LDRUN=1 101.101.106
 NORUN=NORUN+1
 wRITr (9.511)
 *RITF (9.505)
 ,T5 FORMAT (:505)
 50n FORMAT (11)
 NOBACK=NORACK+1
 106 RFAD (3).roci) JSPLAT
 l150 If (FNDFS1.E37)118.1050
 107 baCk<PACF 3'11 106.107.107
 ga roli
 INR RFAD (37.5.109).INDEX
 5!1 FORMAY 11X.[4. NRUN.GNORM.CNORM. (HEAD(I).I=1.11)
 GO In 1090% (%).4.2x).10A10.AB)
 109 RF
 SN2 FORMAT (IX.I4.FINNOBNORM. (HEAD(I).1=1.11)
 CNORM=BNORM OF12.4.2X.10A10.A8)
 InO IF
110 IF (MNRUN) 111.110.111
110n IF (INPUN-IDFG) 111.1113.1100
1171 IRERUN=IRFRUNERUN) 1101.124.124
DO 11n2 J=1.40
1102 BACKSPACE 3;

```
```

 GO 10 1n6
 113 NORUN -NORUN+1
ANORM(1) = BNORM
ANORM(3) = C.NORM
MORUN=1
GO 10 114
111 IF (LORUN) 106.112.106
117 1F (NPUN-IDAG) 106.115.1110
1110 IF (IRERUN-NRERUN) 11111.126.126
1111 I RE RUN = IRERUN +1
DO 111? J=1.40
1117 BACKSPACE 37
GO IN 1HG
115 NORUN=NOR UN+1
ANORM(2) = BNORM
ANORM(4) =CNORM
LORUN=1
GO In 116
11R NODATA=NODATA+1
REWIND 37
*RITE (9.511)
WRITY 19.5121
512 FORMAT (* TAPE RAN 10 EOF WITHOUT FINDING RUNS*)*
GO IO 199
126 *RITE (9.504)
504 FORMAT (//1X,45HTHIS BACKGROUND RUN WAS NOT FOUND ON THE TAPEI
GO In 175
124 WRIIC (9.507)
5O7 FORMAT (//1X,45HTHIS FOREGROUND RUN WAS NOT FOUND ON THE TAPE)
125 NODATA=NODATA+1
GO In 199
114 GO TO (1142.1140).INDEX
1142 READ (37.508) (SCALAR(I).I=1.65)
508 FORMAT (13A10.6X)

```
```

 GO TO 14n
 1140 READ (37.50\&त) (SCALAR(I).I=1.13)
5O8B FORMA! (13A10)
DO 1141 I=14.65
1141 SCALAR(I) =0.0
140 FEAO (37.509) ((AOATA(I).I= J.512.128).J=1.128)
509 FORMAT (1X.16F8.0)
WRITF (9.511)
511 FORMAT (///)
WRITF (9.5O1) NRUN.BNORM.CNORM* (HEAD(I) .I=1.11)
WRIIf (9.5ח8) (SCALAR(I).I=1.65)
G0 1n 129
116GO TO (11/62.1160). INDEX
1167. REAO (37.50\&) (SCALAR(I).I=1.65)
GO IO 160
1160 READ (37.5080) (SCALAR(T).I=1.13)
DO 1161 I=14.65
1151 SCALAR(I) =0.0
160 KEAD (37.509) ((BDATA(I).I= J.512.128).J=1.128)
WRITE (9.511)
WRITE (9.501) NRUN.BNORM.CNORM.(HEAD(I).I =1.11)
WRITF (9.5\8) (SCALAR(I).I=1.65)
129 1F (NORUN.LT.2) GO TO 106
199 RETURN
END

```
```

 SUBROUTINF. CEES(LOWL.IUPL,LOWR.IUPR)
 DIMENSION CALC(4)
 COMMON ADATA(512),BDATA(512).NOBACK NODATA.IDFG -IDBG.JPLOT.C(4) -
 1IPLOT.ICHARI.ICHAR2.ICON.IDAC.IBLANK.ACH(512), PRHEAD(6) OANORM(4)
 DO 801 I=1.4
 8)1 CALC(I)=0.0
IF (IUPL) 8C5.805.807
805 DO 806 K=1.4
8i6 C(K)=ANORM(K)
GO IO 8OB
@n7 DO 80? J=LOWL.IUPL
CAIC(1)=CALC(1) +ADATA(J)
802 CALC())-CALC(2)+RDATA(J)
DO 803 J=LO\#R.IUPR
CALC(5)=CALC(3) +ADATA(J)
8] 3 CALC(4)=CALC(4) +BDATA(J)
C(1)=ANORM(1)
C(2)=C(1)*(CALC(1)/CALC(2))
C(3)=ANORM(3)
C(4)=C(3)*(CALC(3)/CALC(4))
808 C(4)=C(3):(9.804) LOWL.IUPL.CALC(1).LOWR.IUPR.CALC(3):LOWL.IUPLICALC(2
1).LOWR.IUPR,CALC(4)
804 FORMATI/IX.26HSUM OF FOREGROUND CHANNELS.IG.6H THRU.IG.ICH EQUAL
15 .1PE12.4/1X.26HSUM OF FOREGROUND CHANNFLS.IG.6H THRU.IG.1OH E
2GUALS .1PF.12.4/1X.2GHSUM-OF BACKGROUND CHANNELS.IG.GH THRU.IG.IC
3H ERUALS .IPE12.4/1X.26HSUM OF BACKGROUND CHANNELSOIG.6H IHRU.I
46.1CH EQUALS .1PF.12.4/11X.65HC(I) WERE CALCULATED FROM ANCRM(I)
SANDIOR NORMALIZING ON THE DATAI
RETUPN
END

```
```

SIIRROUTINF UMSATZ
COMMON ADATA(512), BDATA(512).NOBACK NODATAOIOFGOTOBGOJPLOTOC(4).
IPLOI ICHAPIOICHART.ICON.IDAC.IBLANK.ACH(512). PRHEAD(6) OANORM(4)
IF (IRLANK) 3002.3002.3000
31D0 READ (53.719)
719 FORMAT (II)
If (ENDF1LE53) 3001.3000
3001 DO 3003 1=1.35
BACKCPACE 53
3ON3 CONTINUE
3030 FFAO (53.700) ISPLAT.IDAC
700 FORMAT (7X.I1.3X.IG)
IF IISPLATI 3030.3030.3031
3031 REAN (53.719)
IF (FNDFILE53) 3032.3031
3037 IDAC= IDAC.+1
3002 IDAC= IDAC+1
BACKSPACE 53
IF (JPLOT) 301.301.302
3n1 RITE (53.701) IDAC.(PRHEAD (I).I=1.61
7:1 FORMAT (3H101.3X.16.5A1D.AG)
WRITF (53.7010)
7OIO FORMAT (* BOTH DETECTORS*)
WRITE (53.702) ((ADATA(I).I=J.512.128).J=1.128)
702 FORMAT (12X.16F7.0)
GO IO 32n
302 WRITE (5.3.701) IDAC.(PRHEAD(I).I=1.6)
WRITF (53.7C3)
703 FORMATC* DETECTOR 66 ONLY*)
* RITF (53.702) ((ADATA(I):I=\.256.64).\=1.64)
KOAC=IDAC+1
WRITF (53.701) KDAC.(PRHEAD(1).I=1.6)
*RITF (53.704)
704 FORMAT (*
DETECTOR GO ONLY*I

```
```

 ARITE (53.707) ((ADATA(I).I=J.512.64).J=257.320)
 320 WR1TF (53.732)
 732 FORMAT (12X.4GHTHIS IS THE LAST RECORD BEFORE EOF WAS WRITIEN)
 ENDFILE 53
 IBL ANK=0
 IOAC=IDAC-1
 RFTIURN
 END
 SUBROUTINF MAHLEN
 DIMENSION CDATA(256), FDATA(512).DDAYA (512). HDATA(256) -GCATA (256)
 COMMON ADATA(512I.BDATA(512).NOBACK NNO!,ATA.IDFG.ID8GOJPLOT.C(4):
 11PLOT.ICHARI.ICHAR7.ICON.IDAC.IBLANK.ACH(512) .PRHEAD(6) -ANORM(4).
 2KBND(17).IACC.MAXDAT.ASD(512).SUM(512). SUMVAR 05 12)
 DATA ATITLE/IOHBOTH SIDES/.BIITLE/IOHDETECT 66/.CTITLE/I OHDETECT
 1 60/
 5670 FORMAT(I5)
DO 53 1=1.256
53 CDATA(I)=ADATA(I+256)
IF (IACC-1) 5094.5095.5095
5094 DATMAX=0.0
IF (KBND(7).LE.O) GO TO 5098
DO 5097 K=1.6
LOBNO=KRNO(K)
MOBND=KBND (K+6)
IF (MORND.LE.C) GO TO 5093
DO 5గ96 I =LOBND.MOBND
DATMAX=AMAXI(DATMAX.ADATA(I))
5096 CONTINLIE
5097 CONTINUE
GO 1O 5093
5098 DO 51 1=1.512

```

51 DATMAX=AMAXI(DATMAX•ADATA(I))
5093 MAXDAT=AMAXI(MAXDAT•DATMAX) GO TO 5099
5095 DATMAX=MAXDAT
5099 IF (DATMAX-100.0) 5100.5100 .5101
5100 DAIMAX = (DATMAX/10.0) S (1.0 YRNDT \(=10.0\)-AINT (DATMAX) YRNDR \(=-10.0\)
NY = (YANDI-YHNDR \() / 10.0\)
GO TO 531
5101 IF (DATMAX-1000.0) 5102.5102.5103
5102 ПATMAX=(DATMAX/100.0) +1.0
YRNDT=103.O.AINT(DATMAX)
YRNDB \(=-100.0\)
NY= (YRNDT-YANOR)/100.D GO TO r, SI
5103 1F (TA1MAX-50CO.0) 5104.5104.5105
5104 DATMAX \(=(\) ПATMAX/500.0) +1.0 YBNDI = SOD. П*AINT(DATMAX) YRNDP \(=-5\) NO. O
NY = (YANDT-YRNDR)/500.0
GO IO ! S 1
5105 1F (ПATMAX-1000C.0) 5106.5106.5107
5106 ПATMAX-(DAIMAX/1000.0) +1.0 YBNDT = 1 กחП. D*AINT (DATMAX) YBNDP \(=-1\) กOO.O
\(N Y=(Y R N D T-Y B N D R) / 10 C 0.0\)
GO TO 531
5107 ПATMAX=(DATMAX/10000.0)+1.0 YBNDT \(=100\) OO.O.AINT(DATMAX) YBNOR \(=-10000.0\)
\(N Y=10\)
\(531 \times L=0.0\)
\(x R 1=260.0\)
```

 XR2=570.0
 IF (IPLOT) 55.55.70
 55 IF (JPLOT) 56.56.57
56 ENCODE(5.5600.1ITLE)IDAC
CALL TSP(120.10.10.TITLE)
CALL ISP (2C8.10.56.PRHEAD)
CALL TSP(120.30.10.ATITLE)
CALL DGA (120.980.50.910. XL •XR2 -Y8NDT •YBNDB)
CAIL DLNLN(26.NY)
CALL SLLIN(NY.O1)
CAIL SAL.IN 113.00)
CALL PLOT (512.ACH.1.ADATA.1.ICHARI.ICON)
G0 10 30
57 KDAC=IDAC-I
FNCODT(5.5600.IITLE)KDAC
CALL TSP(170.10.1C.T1TLE)
CALL ISP (2OR.10.56.PRHEAD)
CALL TSP(12U.30.30.BTITLF)
CALL DGA (120.980.50.910.XL.XR1 ©YBNDT OYBNDB)
CALL DLNI.N(26.NY)
CALL SLLIN(NY•O1)
CALL SBLIN (13.00)
CALL PLOT (756.ACH.I.ADATA.I.ICHARI.ICON)
CALL ADV(1)
FNCODF(5.5600.1ITLE)IOAC
CALL ISP(170.10.10.IITLE)
CALL ISP (208.10.56.PRHEAD)
CALL TSP(120.30.10.CTITLE)
CALI. OGA (1700.980.50.910. XL -XR1 -YBNDT -YBNDB)
CALL DLNLN(?G.NY)
CALL SLLJN(NY.OI)
CALL SBI.IN (13.0n)
CALL PLOT (256.ACH.1.CDATA.I.ICHARI.ICON)
GO T0 90
$708 N D T=A B S I Y B N D T I$
BNDT=ALOGIO(BNDT)
BNDB $=1.0$
DO 8 8 O $I=1.512$
FDATA(I) $=1.0$
DDATA(I) $=1.0$
1F (ADATA(I)-10.0) 72.72.71
71 DDATA(1) =ABS(ADATA(I))
DDATA(I) =ALOG10(DDATA(I))
co to bint
77 IF (ADATA(I)+10.0) 73.800 .800
73 FDATA(I)=ABS(ADATA(I))
FDATA(I) =ALOGIO(FDATA(I))
ron continue
73100737 : 1.256
GDATA(1)=DDATA(I+256)
732 HDATA(I)=FDATA(I +256$)$
74 1F (JPLOT) 75.75.76
75 ENC ODE (5.56CO.IITLEIIDAC
(ALLL TSP(120.10.10.TITLE)
CALL TSP (2C8.10.56.PRHEAD)
(ALL TSP(120.30.10.ATITLE)
CALL DGA (120.980.50.910.XL•XR2.BNDT.BNDB)
(ALL DLNLG(26)
CALL SBLIN (13.00)
CALL fllog
CALL PLOT (512.ACH.1.DDATA.1.ICHARI -ICON)
CALL PLOT 1512.ACH.1.FDATA.I.ICHARZ IICONI
GO 1090
76 KDAC=IDAC-1
ENCODE(5.56CO.TITLE)KDAC
CALL TSP(120.10.10. T1TLE)
CALL TSP (208.10.56.PRHEAD)
CALL TSP(120.30.10.8TITLE)

```
    CALL DGA (120.980.50.910.XL ©XR1.BNDT.BNDB)
    CALL DLNLG(26)
    CALL SBLIN (13.00)
    CALL SLLOG
    CALL PLOT (256.ACH.1.DDATA.1.ICHARI.ICON)
    CALL PLOT (75,.ACH.1.FDATA.1.ICHAR2.ICON)
    CALL ADV(1)
    ENCODF(5.5600.TITLE)IDAC
    CALL TSP(120.10.10.T1TLE)
    CALL TSP (208.10.56.PRHEAD)
    CALL TSP(120.30.10.CIIILE)
    CALL DGA (120.980.50.910.XL OXR1 •BNDT.BNDB)
    CALL DLNLG(26)
    CALL SBLIN (13.00)
    CALL SLLOG
    CALL PLOT 1256.ACH.1.GDATA.1.ICHARI.ICON)
    CALL PLOT (256.ACH.1.HDATA.1.ICHARI.ICON)
90 CALL ADV(1)
91 RETURN
    END
    SURROUTINF LOCHEN(LOCHL1.LOCHL2 OLOCHR1.LOCHR2)
    COMMON ADATA(512),RDATA(512).NOBACK NODATA.IDFG PIDBG.JPLOT.C(4).
    1IPLOT.ICHAR1.ICHAR2.ICON.IDAC.IBLANK.ACH(512),PRHEAD(6),ANORM(4).
    2KBND(12).IACC.MAXDAT.ASD(512),SUM(512).SUMVAR (5 12)
    IF (JPLOT) 40C1.4001.4002
4091 IF (LOCHL2) 4040.4040.401
4040 LOCHL1=1
    LOCHL2=512
401 N=LOCHL1
    M=N+5
4100 PUNCH 40ID.(ADATA(I).I=N.M).IDAC
```

```
4010 FORMAT (6F12.2.16.2HBO)
    !5 !!N+5)-LOCM12! 4011,420.420
4011 N=N+6
    M=N+5
    GO 10 4100
4002 1F (LOCHL2) 4041.4041.402
4041 LOCHLI=1
    LOCHL 2=256
    LOCHR1=257
    LOCHD7=51?
    402 KDAC=IOAC-1
        N=L OCHLI
        M=N+5,
400 PUNCH 4014.(ADAIA(I).I=N.M) IKDAC
4014 FORMAT (6F12.2.16.2H66)
    If ((N+5)-LOCHL2) 4015.403.403
4015 N=N+6
        M=N+5
        G0 T0 4300
    403 N=L OCHR1
        M=N+5
4500 PINCH 4N18.(ADATA(I),I=N.M) IIDAC
4018 FORMAT (6F12.2.16.2H6O)
    If ((N+5)-LOCHR2) 4019.420.420
4019 N=N+6
        M=N+5
        GO 10 4500
    4?O RETURN
        END
```

II. PROGRAM DSCHNIT

DSCHNIT (meaning Durchschnitt = average) is a FORTRAN IV program which numerically integrates separate numerator and denominator functions by the trapezoidal rule and gives their ratio. The trapezoidal rule states

$$
\begin{align*}
\int_{a}^{b} f(x) d x & =f(a) \frac{\Delta x}{2}+f(a+\Delta x) \Delta x+f(a+2 \Delta x) \Delta x \\
& +\ldots+f(b-\Delta x) \Delta x+f(b) \frac{\Delta x}{2} \tag{B4}
\end{align*}
$$

In particular, define

$$
\begin{align*}
\operatorname{AITGR} & =\int_{A}^{0} \operatorname{YNUN}(x) d x+\int_{0}^{B} \operatorname{YNUP}(x) d x \tag{B5}\\
& =\int_{A}^{0} \operatorname{YDEN}(x) d x+\int_{0}^{B} \operatorname{YDEP}(x) d x ; \tag{B6}
\end{align*}
$$

then the result of the program calculation is

$$
\begin{equation*}
\text { DSNIT }=\frac{A I T G R}{B I T G R} \tag{BT}
\end{equation*}
$$

All function statements at the beginning of the program listing were necessary for the particular calculation of this work only and may be replaced by any other $\operatorname{YNUN}(x), \operatorname{YiNP}(x), \operatorname{YDEN}(x)$, and $\operatorname{YDEP}(x)$ statements which one desires to integrate. For this experiment

$$
\begin{equation*}
\operatorname{YiNUN}(\phi)=\phi \cdot \operatorname{YDEN}(\phi)=\sigma_{1}(\phi)\left\{1-\exp \left[-2 n \sigma_{2}(\phi)\left(R^{2}-d^{2} \phi^{2}\right)^{\frac{1}{2}}\right]\right\} \phi, \tag{B8}
\end{equation*}
$$

$\operatorname{YNUP}(\phi)=\operatorname{YNUN}(\phi)$, and $\operatorname{YDEP}(\phi)=\operatorname{YDEN}(\phi)$, where $\sigma_{1}(\phi), \sigma_{2}(\phi), d$, and n are cross sections, target sample distance, and scattering sample density as explained in Chapter IV, Section II.

Two data cards are necessary to run the program. The first contains integration limits, the number of intervals for the first integration, and the accuracy required of numerator and denominator. The second data card lists the parameters necessary for the particular functioris to be integrated; hence, the $\operatorname{READ}(10,2000)$ statement must be chariged when new functions are substituted. Also all WRITE statements except WRITE $(9,6000)$ refer to the functions used by the program and must. be revised with the functions.

Data. Card Formats

Data: Card I
Field Format Name Explanation

1-12 Il2 N

13-24 El2. 4 A
25-36 E12.4 B
37-48 EI2.4 SETNUM
$\mathrm{N}=$ No. of intervals for the first integration. If the integration does not yield the required accuracy, the second integration is performed with 2 N intervals, then $3 \mathrm{~N}, 4 \mathrm{~N}$, etc. (If this field is left blank, $N=10$.) Lower integration limit. Upper integration limit. Maximum fractional error of the numerator $=$ $|(\operatorname{AITGR}(2)-\operatorname{AITGR}(1)) / \operatorname{AITGR}(2)|$. The program compares succeeding integrations and

Data Card I (cont'd)

| Field | Format | Name | Explanation |
| :---: | :---: | :---: | :---: |
| | | | repeats the integration process until the errors are within this limit. |
| 49-60 | E12. 4 | SEITEN | Maximum fractional error of the denominator.
 (If this field is left blank, SETDEN = |
| | | | SETNUM.) |
| $61-72$ | I12 | NøDEN | NøDEN.GE. 1 sets the denominator $=1.0$. This |
| | | | option is provided in order that the program |
| | | | may be used to evaluate single integrals. |

Data Card II

| Field | Format | Name | Explanation |
| :---: | :---: | :---: | :---: |
| 1-12 | E12. 4 | d | Source to sample distance |
| 13-24 | E12.4 | $\mathrm{n}=\mathrm{AT} \varnothing \mathrm{MS}$ | Scattering center density in molecules/cm ${ }^{3}$. |
| 25-36 | E12. 4 | SIGMAA | Total cross section σ_{2} of the scattering sample at an energy corresponding to $\phi=\mathrm{A}$. |
| 37-48 | El2. 4 | SIGMAB | Total cross section σ_{2} of the scattering sample at an energy corresponding to $\phi=B$. |

The program contirues to read new parameters and reintegrate the functions until it reads SETNUM.LE.O.O; thus a blank data card I terminates the job.

A listing of the program follows.

```
        PROGRAM DSCHNIT (INPUT.OUTPUT.TAPEIO=INPUT. TAPE 9=OUTPUT)
```



```
        P(x)=1.0-(12.71828)**(-2.0*ATOMS*SIGMAN(X)* SORT (ABS (.1 1.79426.)-
    2((ABS(x))*=2.0)*(D**2.01) 11)
    SIGMAS(x)=-1.1422*x+0.44
    SIgmar(x) = -0.456.9*x+0.44
    YOFN(x)=S(GMAS(x)•P(x)
    YNUN(x)=Y!EN(X)}\cdot
    YDEP(x)=SIGMAT(x) &P(x)
    YNUP(x) = YDEP(x) * X
    7 RFAD(1O.100C)N•A.B. SETNUM.SETDEN.NODEN
    IF(SFTNUM.LE.D.O) GO IO 5O
    11 HFAD(1O.7OOG)D.ATOMS.SIGMAA.SIGMAB
1mO FORMAT (II2.4F12.4.II2)
2COO TORMAT(4512.4)
    IF(N.LE.O)N=1C
    IF(SETDFN.LE.C.O)SETDEN=SETNUM
    AUIFF=10.N-SETNUM
    AITGP=0.0
    BITGP=0.0
    AENOS=YNUN(A) +YNUP(B)
    BENOS=YDEN(A) + DEP(B)
    J=1
    8 AllGR=0.0
    IF(AOIFF.LE.SEINUM)GO 10 19
    L=J*N
    ADELX-(B-A)/L
    K=L-1
    DO 10 I=1.K
    OELX=I - ADFLX
    XVALUF=A+DELX
    Y=YNUN(XVALUE)
    IF(XVALUE.GT.O.O)Y= YNUP (XVALUE)
10 AIIGR=AITGR+Y*ADELX
```

```
        AIYGR=AITGR*AENDS*ADELX/2.0
        ADIFF=ABS((AITGR-AITGP)/AITGR)
        AITGP=AITGR
        J=J+1
        GO 10 8
    19 IFINODEN.GE.1)GO TO 39
    J=1
    20 BIIGR=0.0
    M=J*N
    BDFLX=(B-A)/M
    K=M-1
    DO 3n I=1.K
    DFLLX=I * BDELX
    XVALUE =A + DF.LX
    Y=YDFN(XVALUE)
    IF(XVALUE.GT.O.O)Y= YDEP(XVALUE)
3O BITGR=RITGR+Y*BDELX
    BITGR=BITGR + BENDS = BDELX/2.0
    BDIFF=ABS((BITGR-BITGP)/BITGR)
    BIIGP=RITGR
    IF(BOIFF.LE.SETDENIGO TO 40
    J=J+1
    GO 10 20
    39 BITGP=1.0
    40 DSNIT=AITGP/BITGP
        WRITF(9.4000)
4OOO FORMAT(IHI.1X.8 8HDENOMINATOR FUNCTION = SIGMA (SOURCE) * (I -E **-( 2N*
    2SIGMA(SCATTERING) -SART(R**2-D**2*X**2))/1X*37HNUMFRATOR FUNCTION I
    3S DENOMINATOR * X//I
    WRITE(9.5000) ATOMS.D
5000 FORMAT(IX.I SHAIOM DENSITY=.1PE12.4/1X.1GHSAMPLF. DISTANCE= .E 12.4//)
    WRIIF(9.6000)AITGP.L.ADELX.BITGP.M.BDELX.A.B.DSNIT.ADIFF.P.DIFF
```


 4.4.17X.9HDENERROR=, 1PE12.4) WRITE (9.7000) SIGMAA. SIGMAB
7 OOO FORMAT(2E12.4)
GO 107
50 STOP
51 END
(Ba 57) S. J. Bame, Jr. and J. E. Perry, Jr., Phys. Rev. 107, 1616 (1957).
(Ba 66) H. H. Barschall, Proceedings of the 2nd International Symposium on Polarization Phenomena of Nucleons, P. Huber and H. Schopper, eds. (Birkhäuser Verlag, Basel, 1966) p. 393.
(Bo 61) P. H. Bowen, J. P. Scanlon, G. H. Stafford, J. J. Thresher, and P. E. Hodgson, Nucl. Phys. 22, 640 (1961).
(Br 69) W. B. Broste and J. E. Simmons, private communication (1969).
(Bü 69) F. W. Busser, H. Dubenkropp, F. Niebergall, and K. Sinram, Nucl. Phys. Al29, 666 (1969).
(Co 63) E. U. Condon and G. H. Shortley, The Theory of Atomic Spectra (Cambridge University Press, Cambridge, 1963) Chap. III, p. 56.
(Cr 61) L. Cranberg, R. A. Fernald, F. S. Hiahn, and E. F. Shrader, Nucl. Inst. Meth. 12, 335 (1961).
(Cz 64) J. B. Czirr, D. R. Nygren, and C. D. Zafiratos, Nucl. Inst. Meth. 31, 226 (1964).
(Da 61) W. Daehnick and R. Sherr, Rev. Sci. Instr. 32, 666 (1961).
(Di 68) D. R. Dixon, private communication (1968).
(Do 69) D, C. Dodder, private communication (1969).
(Ga 66) T. Gardiner and J. Levin, IEEE Trans. on Nucl. Sci. NS13, 151 (1966).
(He 59) R. G. Herb, Handbuch der Physik, S. Flugge, ed. (Springer Verlag, Berlin, 1959) Vol. XLIV, p. 64.
(Ho 66) B. Hoop, Jr. and H. H. Barschall, Nucl. Phys. 83, 65 (1966). (Ho 67) J. C. Hopkins, H. Conde, D. M. Drake, P. W. Keaton, J. D. Seagrave, R. K. Smith, W. E. Stein, and A. R. Sattler, Nuclear Data for Reactors (International Atomic Energy Agency, Vienna, 1967) Vol. I, p. 419.
(Ja 4:5) E. Jahnke and F. Emde, Tables of Functions with Formulae and Curves, 4 th Ed. (Dover Publications, New York, 1945) pp. 128, 131, 143, 146.
(Ke 6.3) M. G. Kendall and A. Stuart, The Advanced Theory of Statistics, 2nd Ed. (Charles Griffen and Co., London, 1963) Vol. 1, p. 157.
(Ke 69a) P. W. Keaton, private communication (1969).
(Ke 69b) E. C. Kerr and R. H. Sherman, private communication (1969).
(Le 69) J. S. Levin, private communication (1968).
(Le 69) J. S. Levin, M. P. Kellogg, R. B. Perkins, and E. T. Ritter, Conference on Computer Systems in Experimental Nuclear Physics, Skytop, Pa., March 1969 (Proceedings to be published).
(Li 66) J. Libert, Nucl. Instr. Meth. 41, 348 (1966).
(Ma.66) J. J. Malanify, J. E. Simmons, R. B. Perkins, and R. L. Walter, Phys. Rev. 146, 632 (1966).
(Mo 65) N. F. Mott and H. S. W. Massey, The Theory of Atomic Collisions, 3rd Ed. (Clarendon Press, Oxford, 1965) p. 279.
(Mo 68) R. H. Moore and R. K. Zeigler, "The Solution of the General Least Squares Problem with Special Reference to High-Speed Computers," Los Alamos Scientific Laboratory Report LA-2367 (1960).
(Pe 61) R. B. Perkins and J. E. Simmons, Phys. Rev. 124, 1153 (1961).
(Pr 62) M. A. Preston, Physics of the Nucleus (Addison-Wesley Publishing Co., Inc., Reading, Mass., 1962) p. 474.
(Re 66) W. B. Reid and R. H. Hummel, Can. Nucl. Tech. 5, No. 1, 36 (Jan-Feb 1966).
(Sc 55) L. I. Schiff, Quantum Mechanics, 2nd Ed. (McGraw-Hill Book Co., Inc., New York, 1955) p. 74, 233.
(Se 60) J. D. Seagrave, L. Cranberg, and J. S. Simmons, Phys. Rev. 119, 1981 (1960).
(Se 67) J. D. Seagrave, Few Body Problems, Light Nuclei, and Nuclear Interactions, Proceedings of the Symposium held in Brela, Yugoslavia, June 26-July 5, 1967 (Gordon and Breach, New York, 1969) Vol. 2, p. 787.
(Se 69) J. D. Seagrave, "The Elastic Channel in Nucleon-Deuteron Scattering," Proceedings of the Conference on the Three-Body Problem, Birmingham, England, July 1969 (to be published).
(Sh 59) C. W. Sherwin, Introduction to Quantum Mechanics (Holt, Rinehart, and Winston, New York, 1959) Appendix 5, p. 353.
(St 64) L. Stewart, " $\mathrm{n}-{ }^{4} \mathrm{He}$ Scattering," Los Alamos Scientific Laboratory Preliminary Report (1964) unpublished.
(St 65) L. Stewart, "Evaluated Neutron Cross Sections for Tritium," Los Alamos Scientific Laboratory Report LA-3270 (1965).
L. Stewart, "Evaluated Neutron Cross Sections for Deuterium," Los Alamos Scientific Laboratory Report LA-3271 (1968).
(Ti 68) W. F. Tivol, "Proton- ${ }^{3}$ He Polarization in the Range from 10
to $20 \mathrm{MeV}, " \mathrm{Ph} . \mathrm{D}$. Thesis, University of California, Berkeley (April 1968).
(To 66) T. A. Tombrello, Phys. Rev. 143, 772 (1966).
(Va 46) R. J. Van de Graaff, J. G. Trump, and W. W. Buechner, Rpts. on Prog. in Phys. XI, 1 (1946-47).
(Wh 50) E. T. Whittaker and G. N. Watson, Modern Analysis, 4th Ed. (University Press, Cambridge, 1950) Chap. XV, p. 302.
(Wi 68) E. M. Willbanks, private communication (1968).
(Wo 54) L. Wolfenstein, Phys. Rev. 96, 1654 (1954).
(Wo 56) L. Wolfenstein, Ann. Rev. of Nucl. Sci. 6, 43 (1956).
(Wu 62) Ta-You Wu and T. Ohmura, Quantum Theory of Scattering (Prentice-Hall, Inc., Englewood Cliffs, N.J., 1962) pp. 129, 134, 152.

[^0]: *This report is derived from a dissertation submitted to the Department of Physics in partial fulfillment of the requirements of the degree of Doctor of Philosophy from Brigham Young University.

[^1]: "Cyclo-sol" is a product of the Shell Chemical Company.

[^2]: *NE5553A pulse shape discriminator units are built by Nuclear Enterprises, San Carlos, California.

[^3]: ${ }^{\dagger}$ Zero of polarization where multiplicative correction is undefined.

