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PERTURPATION TRANSFORMATION OF NUCLEAR CROSS-SECTION PARAMETERS

BETWEEN WIGNER-EISENBUD AND KAPUR-PEIERLS FORMALISMS - THE PERTA PROGRAM

by

Doneld R. Harris

ABSTRACT

The transformation between nuclear cross sections in the Wigner-
Eisenbud and Kapur-Peierls formalisms is eXxpressed by treating off-
diagonal elements of the inverse level matrix as perturbations. A
FORTRAN IV program, PERTA, is developed to compute the perturbation

transformation.

The applicability of the perturbation to real nuclei

is tested for low-energy neutron cross sections of fissile nuclides.

The perturbation transformation is applied to the study of properties
of Kapur-Peierls parameters, namely, their probability distribution,

the range in energy of interference effects, and the degree of asym-

metry of resonant shapes of radiative capture cross sections.

I. INTRODUCTION

The wigner-Eisentmd]"2 and Kapur-PeierlsB’ o
multilevel formalisms have been used extensively
to interpret nuclear reaction phenomena and to fit
observed cross sections. They have been used in
preference to single-level resonance formulae to
describe nucleon interactions with a wide range of
nuclei, including oxygen, manganese, and fissile
nuclides, for which mmltilevel interference effects
are possibly or actually significant. Although
these formalisms are consistent, and can be derived
from each other, L5 their application is comple-
nentary. Expressions for cross sections in the

Kapur-Peierls formalism are simply related with ob-
. served cross-section shapes. Moreover, in fitting
Kapur-Peierls expressions to observed cross sec-
tions, knowledge is not required of numbers and
On the
other hand, the parameters appearing in the Wigner-

Eisenbud formalisms are directly related with nu-

characteristics of levels and channels.

clear wave functions. This fact permits inferences
about the nuclear wave functions from observed
Wigner-Eisenbud parameters, and it permits general-
izations such as the Porter-Thomas plausibility
a.rgument6 for the probability distribution of Wigner-
Eisenbud parameters.

The exact transformation between sets of num-
bers parameterizing the two formalisms is well-
defined, ’5o,nd programs are :a.vza.i.lza.‘ble’"“7“8 for accurate
numerical transformation from Wigner-Eisenbud to
Kapur-Peierls parameter sets. The exact trans-
formation, however, is not simple, and it is not
easy to understand the action of the transformation,
that is, of the interference mechanism. In partic-
ular, the joint probability distribution of Kapur-
Peierls parameters has not been determined.

In the present study, an approximate but clear-
er transformation between the two formalisms is de-
veloped (Sec. II), tested (Sec. III and IV), and
briefly applied (Sec. V) to clarification of cer-

tain properties of Kapur Peierls parameters, namely,




their probability distribution, the range in energy
of interference effects, and the degree of asymme-
try of resonant shapes of radiative capture cross
sections. This transformation, a perturbation
transformation, is described in detail in the next
section. The perturbation transformation proceeds
from the Wigner-Eisenbud to the Kapur-Peierls pa-
rameter sets, but if the perturbation is indeed
small the transformation can be inverted.

In the Wigner-Eisenbud form.a.'l.:ism,l’2 the total
cross section, LI and the cross section for reaction

from a channel c into a channel ¢; o_ , are expressed

ce
as
2
et T 2 ZSJ Re(l - uﬂ) ’ (1)
¢
and
v
Tee! K2 ZSJ Bee’ 'Uﬂ'l : (2)

Here kc is the wave number of the incident particle
in channel ¢, and gy is the statistical weight for
states with angular momentum J and parity [I. The
elements of the collision matirx UJn are determined
by the level matrix A'm

i( .)
UJH,= e mcwc Scc,*" i z: I.i.éQA)\J;I'rl'e ’ (3)

ce A'c
aa ‘el

where epc is the phase shift for potential scattering
in channel ¢, and I‘)\c is the partial width for decay
of level A through chamnel c¢. By conventim, 1‘% 2

is assigned the same algebraic sign as the corres-
Finally, the

is defined in terms of its inverse

ponding reduced width amplitude.9
level matrix A'm

-1
SURTSRESRES VL
]

5

where Ex, aside from a small level shift,” is the

energy of a nuclear state.
The nmumerical and conceptual difficulties in
practical applicaetion of the Wigner-Eisenbud for-

1

malism arise in part in the inversion of A™™ to ob-

tain the level matrix A. A useful approximate in-
version was developed by 'lhunaslo using first order
perturbation theory regarding the off-diagonal ele-

1

ments of A as perturbations on the diagonal part.

A similar technique is employed here, but perturba-
tion theory is applied differently. The transfor-
mation between Viigner-Eisenbud and Kapur-Peierls
parameter sets is facilitated by introduction of a
complex orthogonel matrix S that diagonalizes the
inverse level matrix A™' to a diagonal matrix D.

In Sec. IT we develop the perturbation calcula-
tion of S and D, again regarding the off-diagonal
as perturbations on the diagonal
This procedure is consistent with Thomas'

elements of A™T
part.
analysis, and it can be shown that level matrices A
computed by using the two approaches (we do not ectu-
ally display a computed A in the perturbation trans-
formation) differ only in terms of second and higher
order in the perturbation.

The remaining problems in developing an intel-
ligible transformation between Wigner-Eisenbud and
Kapur-Peierls parameter sets are algebraic and num-
erical. In particular,it is not clear when terms
of second and higher order in the (not always small)
perturbation can be profitably discarded or retained.
Some of these alternatives, and the general applica-
bility of the perturbation transformation, are
tested by use of the FORTRAN IV program PERTA, de-
scribed in Sec. III. Results are presented in Sec.
IV for a representative set of 31 levels in 235’0 +
n that exhibit both weak and moderatly strong level-
We conclude that the perturba-
tion results describe weakly interfering cross sec-

level interference,

tions well and describe moderately strong interfer-
ence qualitatively.

The perturbation analysis requires that the
off-diagonal elements, - i/2 ?rizzl‘i{i, of the in-
verse matrix be small in some sense compared with
the diagonal elements E, - E - i/2T,. A sufficient,
but not necessary, condition for this requirement is
that level widths are small compared with level
spacings.
tion for this requirement is a large degree of in-

Perhaps a more widely applicable condi-

coherence in the level parameters I‘i‘é 2. The ex-
treme form of such incoherence is the assumption
that for channels of a class ¢

I
3 leten
cecI

This condition is not precisely applicable to a non-
vanishing, multichannel dyadic product, but it has

¢ B - (5)



been very useful in practical application of the
Wigner-Eisenbud formalism.9’ u

Porter and
6,10,12
others have discussed the physical bases for
incoherence. Here we regard the applicability of

the present perturbation theory to be a question for
experimental test.

It cannot be expected that the perturbation re-
sults will apply even qualitatively if multilevel
interference is very strong, as has been suggested
by Lyn.nl3 for certain fission processes. The pres-
ent perturbation analysis provides a convenient
test for strong interference in that to first order
in the perturbation the level energy and total level
width are unchanged in the transformation between
Wigner-Eisenbud and Kapur-Peierls parameter sets.
This is in marked contrast with the Lynn effect
where interference is so strong that interfering
Wigner-Eisenbud levels shift so much in the trans-
formetion to Kapur-Peierls parameters that they co-
alesce. An immediate test of possible applicability
of the perturbation analysis to a particular set of
cross sections is thus a test of approximate equal-
ity between level energies and total level widths in
equivalent Wigner-Eisenbud and Kapur-Peierls param-
eter sets.

It will be shown that this test is satisfied
for the 235U + n cross sections studied here.

De Saussure and Perez7

have also reported Wigner-
Eisenbud and Kapur-Peierls parameter sets, trans-
formed by using the POLLA progra.m,7 for 233’(} + n,
and again the test appears to be satisfied. If
interference effects are moderate for such nuclei,
then the perturbation trensformation has greater
applicability than might have been expected. Had
very strong interference effects been observed then
more accurate transformation equations might be de-
veloped by treating a few levels or channels exactly
and applying a very approximate treatment to the re-

mainder. 14-17,10

One of the conclusions of the
present study (Sec. V) is that some interference
effects are long range, varying as the inverse
level spacing, and it can be conjectured that neigh-
boring levels do not provide all significant inter-
ference effects. These results, the apparent absence
of Lynn effects for certain importent nuclei, and
the long range of interference effects provide mo-
tivation for the study of multilevel interference

effects by many-level, many-channel approximations.

II. THE PERTURBATION TRANSFORMATION

It is convenient to develop the perturbation
transformation with reference to the diagonalizing
procedure and notation of Adler and At.i.'l.er,l al-
though we do not yet wish to limit the incident par-
ticle to be an s-wave neutron. Let D represent a
diegonal matrix. Then AL + EI, a complex symmetric
matrix with components B8, - %}I‘i‘ée I‘i‘(ﬁ, is ai-
agonalized to D by a complex orthogonal matrix S.
That is,

(a1 + FI)S= S . (6)

Recalling that the inverse of an orthogonal matrix
S is its transpose, Str, then

At = s - D)™, (7

and the inverse of A is readily obtained by
A=s(-Eer)tstT (8)

To the extent that A-l + EI is insensitive to en-
ergy,l9 the diagonalizing matrix S will be also, and
the energy dependence of the level matrix A is con-
fined to the diagonal matrix (D - EI)™Y. Writing
out Eq. (8),

AA ¢ ’Z "sik—sk—'l—: (9)

A Dkk - E ’
k

and introducing this expression into Eq. (3), the
collision matrix is obtained.
?/2 pd/2

U = ei(q)cﬂpc') B o iz xe

ce Bo-E | 0 (O
k

kk

where the complex width T‘kc for level k and channel
¢ is defined by

AF%Q =Z Sk 1’%2 . (1)
x

Cross sections can then be obtained from Eqs. (1)
and (2) by application of the lemma of Apv. A.
First, however, the present perturbation technique
is described in some detail.

Let B represent the matrix At + EI, and sup-
pose B can be decomposed into parts B + 5B, where
8B is a small perturbation. Let § represent the
matrix that diagonalizes B to D, and let § + 88
represent the matrix that diagonalizes B+ 8B to
D + 8D. 1In App. B, a perturbation theory for
synmetric matrices is developed, and expressions are
obtained for 8D [Eq. (B-7)] and for &S [Eq. (B-15)]
to first order in the perturbation.




8Dy = Z Sk PBas S o (12)
A
and

E S)\ 58, 'R”gk”k

NN A
asjk-z — 8, - (13

e D - P

In a previous study,the perturbation was taken
to be the energy-dependent particle channel contri-

butions to the inverse level ma.trix.19 Here we take

the unperturbed B to be the diagonal part of Al
EI, while 8B is the off-diagonal part.
Bar = (B -E- 3080 (18)

and

SBX)\I = - ‘;‘ Z rit/:e I‘::éi (1 - %I) . (15)

In this case a great simplification emerges in that
B is already diagonal, so that 8 is the identity
matrix I, and D equals B. Thus, from Eqs. (12)

through (15),
8y, =0 (16)
and
i 2
-3 ; 2rl/ (1- 3, ©
85 5 = . (17)

(B, - EJ) -%(I‘k-rj)

The complex level widths T‘kc are obtained from Egs.
(11) ana (17),

/2
el ¥ 3 ag) o
AeJll " ke
2k
where
(r, -T )/2
1 /2 2/
Bk * (B, - EX)2+ (r, I_)/hgz: I‘l:,(l9)
and
( )
2 . 3% 1 N ez, (o

2 2 ae’ Tk
(8- B+ (M -Ty)7m B &y 2e

The operations expressed thus far in this sec-
tion refer to levels of a particular spin-parity
To illustrate, the kth level referred to
in Eq. (18) is a member of a particular spin-parity
sequence JIl (keJT). Levels of the JIl sequence in-
terfere with one another and only these contribute
to the perturbation of T‘kc’

Cross sections can be expressed conveniently

sequence.

in terms of parameters MJ;‘Z, vhich we refer to as
fractional perturbations. For the level k(keJll),
for channels ¢ and ¢’, and for j = 1, 2,

1/2 I.1/2 .
W = Ne B - (21)
SN

rfk

The fractional perturbation MJ:?:' is symmetric in ¢
and ¢’, and has the property that

Mkjl = %( + Mk‘? I) . (22)
ce cec cc

Further discussion of these parameters will be de-
ferred until cross sections are expressed in terms
of them.

The perturbed level widths are, in terms of
fractional perturbations,

#/2.r [“%(be;”w;-g)] .

(18")

The perturbed collision matrix U‘i‘l, is obtained oy
substituting Eq. (18’) into Eq. (10) and applying
Eq. (22), so that

UJH' - ei(Qc'chl)

ce
D2 /20 L )
X Z _I—E - g"rk/e °°] »(23)
kedll
where
k1l 1
Ree’ = M]:i' H(Mﬁg M]::J'.c' - MI:E Ml;‘?c') , (ah)
and
J M2 (2 2 ) L e
ce ¢’e ce ¢’c

Later, we numerically test the adequacy of approxi-

kJ
mating Rcc
PERTA program.

s by the linear term
In Eq. (10),

Ml‘:‘g, by using the
Dy has been replaced by



its unperturbed value bkk or E_-il} /2. The remark-
able fact that to first order in the perturbation
the level energy Ek and total level width I‘k are un-
changed according to Eq. (16) permits identification
of Wigner-Eisenbud levels and Kapur-Peierls levels.
In the presence of strong interference, such identi-
fication is not s:‘l.mple.l3 The invariance of Ek and
I‘k/e in the perturbation transformation is, of
course, a much stronger statement than the well
known invariance of ?Ek and E}l‘k/e resulting from
the invariance of the trace of the matrix A™™ + EI
in the orthogonal transformation [Eq. (6)].

A. Total Cross Section

results from sub-

stitution of the expression of Eq. (23), for the per-

turbed collision matrix into Eq. (1), noting that
; gJ is unity.

The total cross section cct

ak = k2 SJ- P;n (l + R:nl) p) (30)
n

BkzirelE_er;ann(i ; (31)
n

W = Ek ’ (3e)

and

T

vy =3F (33)

The parameters Rﬁg contain the effect of the
perturbation on total cross section, which otherwise
has the usual Breit-Viigner form. It can be seen
from Eqs. (24) and (25) that the parameters Rkj de-
pend on the fractional perturbations Mk o’ and, in-
deed, approximate them when they are small compared
to unity.

b 2
t =3 sin "o
c K2
ol )2 - 2 2 [ (o) en e 2 o 2]
L2 . zI‘k 1+ cosm- ccs.m +(Ek'E 1+ R, /sin “p, + R cos “p |{
O A (5, - B) + T/

(26)

For s-wave neutroris, a widely used notation intro-

duced by the Adlersla’7 is
= — s.m2k a +

k,; 72 2.

vaE * (i - E)H}f

t 2 2
ke G weam (e = E)T + v
(21)
G;l; = o cos 2ka + A sinZka , (28)
and
Bkcosaka. aksm2ka. . (29)

A necessary modification to their notation has been
introduced in that we explicitly sum over each level
in a particular spin-parity sequence, then over all
sequences. The neutron phase shift O is taken to
be - Kn times the neutron channel rad.ms an, and
the neutron width T\  is expressed as I‘kn El 2
Comparing Eqs. (27), (28), and (29) with Eq. (26), we
obtain the first-order perturbation transformation
from Wigner-Eisenbud to Kapur-Peierls total cross
section parameters for the level k(keJll),

Reference to the definition of fractional perturba-
tions, Eq. (21), shows that they tend to be larger
for weak levels, specifically, }/llé‘g varies as l/l‘iée.
Moreover, the presence of other strong levels in-
creases h&tgl » although their effect has a rather
weak dependence on level energy separation, varying
as (Ek-Ex)lfoer;‘zandas (Ek-Ex)eforBAJ:i'.
Finally, a nearby strong level will have little ef-
if 1‘ approximetely equals l‘ and it

will have 1itt1e perturbation effect at a.ll if
1‘1 /2 I‘l /2 is small.

fect on

B. Reaction Cross Sections

The reaction cross-section o+, ¢ # ¢’, is ob-
tained by substituting Eq. (23) into Eq. (2), applying
Eq. (22), and ignoring terms of second order in the

perturbation,



1/2.1 21/2 kk‘1 kk'2
n /21" /Qr-i/cr}];/ , [1+Qcc +1Q ] . (34)
v L% (Ek - E - i /2)(Er - E+ ﬂ‘k'/2)
e k,k'eJT

This expression enn be simplified by use of the lem-

ma of Apvn. A.

li
R
cJ

l, [\ Ak E}\Bk of App A is

z ,-B,(E--)
(Ek—L) +I‘?/h

kedil

where A

the incoming or outgoing channels, or both.
¢. The dependence of MJ:‘Z, contributions on
level sevaration is rather weak, varying

Ex) "L for M2, and

approximately as (E oo

as (E E)\) 2 for @d
d. Even a strong level may only wea.?ly perturb
a nearby weak level if 22 kc kc

[ e 455+ e - 52 3, - 1,0]

ri/erl/arlfarl/e
.. ; 21‘11 ’
AAc'=rKF‘ic'(l+Q§(§_})+rk z ke ‘ke” k'c k’c (36)
¢ ¢’ e (B - B ) + (1 + T, )7/
k'#k
and
K rxlcéa'}lgézrl e [(1 + Qe )(Ek B) * Qg ’ (N + T, ')/2] (37)
B ,=2 z .
ce 2 2/
x’edll (B - B )™+ (T + Ty ) L‘
Here small for this pair of levels, or (through
' ' ' M,) if the levels have nearly equal total
Qg L f2, s BRIl RRREZ ) (38) ee
ce ce ce cec’ee cec’ce widths.
e. When, as is often the case, level widths
Ql:: 2 Rﬁi, Rléc? + Rﬁ,R};c]; Rﬁ,R}:ce s (39) are smaller than level spacings (AR), kk

and if the fractional perturbations are small com-
pared with unity, then approximately

kk‘1

’
Qec’ M]:Jé' * Mlzc]; ’ (+0)
and
kk'2 _ ‘2
e’ ~ Ml::i' - Mlzc' : (1)

Again, we numerically test this approximation later
by use of the PERTA program. Again, the parameters
MI:‘Z, act as fractional perturbations, and their mag-
nitudes are governed by the same considerations as
noted before. Let us list these considerations as

they apply to the fractional perturbations Mlz‘g,:

a. Both Mﬁ;, and Mﬁi, tend to be large (of
either sign) when the level k is weak in
the incoming (I‘kc small) or outgoing (I‘k o’
small) channel, or both.

b. Both Mléi', and Ml:i, tend to be large (of
either sign) when one or more other levels

in the same JIl sequence are strong in either

and hence Mk2 tend to be larger than
1

Fkk and Mkl by an order of magnitude in
T'/AE.

Although the fractional perturbations, Mo/,
are descriptive and compact, they suffer in their
definition from a difficulty that a.ppea.rs clerical
but is in fact more interesting. If I‘:L 2 or I"lliég is
spmell or zero, then Mk‘j, is very large or singular.
The actual magnltude of the perturbation

’

28 = i, 02)
remeins finite or vanishes, so that the effect on
cross sections is finite or zero. A large fraction-
al perturbation implies only that there can be a
violent fractional effect of interference on a weak
channel. The clerical difficulty created by a zero
value of I‘l 2 can be circumvented by adding a negli-
gible but fmlte increment to I‘f‘(é 2, and this device
is employed in the PERTA program described later.
Such a zero value of I‘kc might be adopted for con-




venience in a cross-section fit. On the other hand,
physical considerations suggest that a channel c¢
might be closed at one level k (Pkc = 0) and yet be
open at same other levels of the same JII sequence
if the state k has some further, not yet defined,
quantum number that is not suitable for the reac-

tion to proceed through channel c.

C. Fission and Radiative Capture of s-Wave Neutrons

Cross sections for fission and radiative cap-
ture of s-wave neutrons can be expressed in the
Adlers' not;a.t;ion,la’7

va+( - E)
Ik S RS

3
o wean (e - B)T 4w

and

v+ (- B
T S I e el Y

R
BV M wean (e - BT+ v

The parameters e and V) are equal to level energy
and I‘k/2 as is described by Egs. (30% and (31). 1In
the case of fission, the parameters Fk &and Hi‘ are ex-
pressed as sums of contributions from various fis-
sion channels , cef,

G}i = z G}i ] (h5)
cef
and
e ) B, (46)
cef

where, comparing Eq. (43) with Eqs. (35) through
(37),

a fission channel, a particle emission channel, or
a radiation channel.

In particular, the eross section for radiative
capture through one or a few channels is expressed
as for fission.

=5 (59)
cey
and
Y
Hk-ZH; . (50)
cey

However, the total radiative capture cross
section through many channels is usefully expressed
in a different way by use of the incoherence approx-
imation of Eq. (5) for radiative channels, where

z r}liée r}lﬁ =T 8y - (51)

c€y

When this approximation is made

¥ il -

cEy
1. kds _ rol/2rol/2 -
R ky 2 }'{makk' T zrf’ln rk'dekk'(l Bge s
(52)

and by using this relation, C{ and i{z can be ex-
pressed as

50 A (RN LR e W) (i)
k'ex (B - B )2+ (n + A
k'#k
P rﬁnl/zrilcézlﬁ%x/lzrllcli [(l * M:}: * Mﬁ::l)(Ek - Eee) * (Mﬁ - M::::e) (r, + I‘k')/]
RS = ZE , . (48)
k’'#x

These expressions deseribe the cross sections for

neutron reaction into any channel ¢, whether this be



kn k
1
. r;}x/zrﬁj;r/le[Fkk'(rk] - Ter )T+ Do+ B (0 + T )my - Ek')] (53)
e (8, - B )2+ (T, + T
k'#k
1 2 2
- z 1"°kn/21§l'!/, [Fik,(rISZ - Tyry) (B = Ber) = Fiyer(Ty, + Ty, NIy + rk,)/e] . (55)

n k‘egll
k'#k

(B, - B )P+ (r + rk,)e/h

These results for radiative capture of s-wave neu-
trons complete our development of expressions for
cross sections by first-order perturbation of the
inverse level matrix. Similar, more accurate ex-

pressions might be obtained by second-order pertur-

bation of the inverse level matrix.

III. THE PERTA PROGRAM

The PERTA program, in FORTRAN IV for the CDC-
6600, cormputes the perturbation transformation
from input Wigner-Eisenbud parameters to Kapur-
Peierls parameters in the Adler form. The program
was devised to test aspects of the perturbation
transformation and has extensive edits.

output are described in App. C.

Input and
The program computes
and edits the imaginary part of the inverse level
matrix, Eq. (b4); Mklxm and ]ﬁ, Eq. (21); Rx}iln and Rﬁ,
Eqs. (24) and (25); M and Mﬁi for fission channels
¢, Eq. (21): Rﬁ‘: and gﬁi for fission cheannels c, Eqgs.
(24) and (25); and the quantities appearing in Egs.
(27) through (29), Eqs. (45) through (48), and Eqs.
(53) and (54). The program also computes and

edits an area factor and tilt factor for each cross

section, for example, for the total cross section

ART, = G}"E /G.;‘E (single level formula) , (55)

and

o [ (56)
Similar area and tilt factors are computed and edited
for each fission channel, for all fission, and for
radiative capture.

Input parameters control the a.pproximatior'xs
used for Rx}:Jn in Eqs. (24) and (25) and for ke
(ce fission) in Eqs. (38) through (41).

IV. NUMERICAL RESULTS

The numerical results chosen for presentation
here are based on the Wigner-Eisenbud parameters
for 31 levels determined by Cra.mereo in a Reich-
235U

Moore™ f£it to measured (n,fission) cross sec-

tions. Inspection of these parameters, which are
listed in Table I, suggests that level-level inter-
ference is expected not to be strong except in the
neighborhoods of 26 and 45 eV. Table II demon-
strates the perturbation transformation prediction
that level energies and total level widths are ap-
proximately unchanged. The Adler parameters listed
in Table II were computed by the POLLA program of

de Saussure and Perez.! Tt is not known why ? E,
fails to equal ?”k as is required by the invariance
of the trace of a matrix under the transformation
[Eq. (6)], which we noted earlier.

In Table III are listed the total cross-sec-
tion parameters o and ﬁk as computed by POLLA.7
These are compared with various PERTA approximations.
The right-hand column shows that with zero perturba-
tion (Mkm‘:jl = 0), the value of B, is erroncously com-
puted to be zero. From the central colurns of Tablic
IIT it appears that retaining terms quadratic in
rﬁg in the express for R:g [Eqs. (24) and (25)] does
not obviously improve the accuracy of the calcula-
tion. This is not unexpected, because in the per-
turbation inversion of A‘l terms of second and
higher orders in the perturbation have been dis-
carded. Consequently, introducing such terms into
the later calculation of R:‘jn need not improve the
result.

Inspection of Table IV shows that for this set

of levels in 235U + n the inclusion of terms other



TABLE Y

RESONANCE PARAMETERS FOR 3 LEVELS TN 2% + n (cruver®® pama)*

level Energy Reduced_Neutron Width Partial Widths for Pission in
(ev) ~(ev1/2 x 203) Two Channels (eV)
Y T Ty Tyen
16.67 0,06 -0.085 [
18,05 0.098 +0,140 o
19.295 0.56 [} ~0065
20,19 0,0085 40,050 0
20.67 0.04 [¢] +0,030
21.085 0.29 +0,023 [
22,950 0.095 -0,03%8 [
23.44o 0.15 +0,014 (4]
23,620 0.122 [} +0.090
2l 245 0.05 0 +0.055
25,62 0.22 0 +0,610
26.15 0.0015 [¢] ~0,60
26,51 0,105 [ +0.22%
27.18 0,011 +0,075 0
21.8 0.115 +0.075 [
28,42 0.028 -0,100 0
28.73 0.0062 +0.070 o
30.88 0,08 0 40,020
31.55 0.003 0 -0.040
32,07 0.3 [} +0,042
33.52 0.29 [¢] +0.022
Ly, 64 0.125 +0,175 0
45,0l 0.055 o 0.300
45,78 0.027 [¢] 40,100
46,65 0,046 +0.035 [+]
5L, 0,067 . +0.060 0
52422 0033 o -04300
8.68 0.169 [¢] +0,115
60,22 0,134 [¢] ~0200
63.80 0.07 [ +0.250
. 0.017 o -0.070
*g = 0,5, I, = 0.029 eV

COMPARISON OF LEVEL ENERGIES AND WIDTHS IN WIGRER:EISENBUD AND
KAPUR. PETERLS FORMALISMS POR 3L LEVELS IN 23

TABLE II

+ n (CRAMER DATA)

Hgﬂer—sisenbudao
Level Energy Level Width T
(ev) {ev) Adler' Paremeters (ev) pifferences (ev)

B T By s Bon  Do-2v
16.67 0.11k2 16.61 0.114 0.00 0.000
18.05 0.1694 18.05 0.170 0,00 +0.001
19.295 0.0965 19,30 0.096 0.00 0,001
20,19 0,0790 20.19 0,080 0,00 ~0,00L
20.67 0.0592 20.67 0.058 0.00 0,001
21.085 0.0533 21.08 0.05% 0.00 ~0.001
22.95 0.0675 22.95 0,068 0.00 0.000
23,44 0,0437 23.4k 0,044 0,00 0,000
23,62 0.1196 23.63 0.11% -0.01 0.006
24,245 0.0842 2k.25 0.082 0,00 0,002
25.62 0.640L 25.67 0.678 ~0,05 ~0.038
26.15 0.0890 26.1% 0. 0,01 0,001
26.51 0.2545 26.46 0.226 0.05 0.029
27.18 0,10L1 27.18 0,104 0.00 0,000
27.80 0.1046 27.80 0,106 0.00 ~0.001
28,42 0.1292 28,2 0.132 0,00 - -0.003
28.73 0.0990 28.72 0.09% 0.0L 0.003
30.88 0.0USh 30.88 0.050 0.00 ~0.,00L
31.55 0.0690 31.55 0.070 0.00 ~0,00L
32,07 0.0727 32.07 0.072 0,00 0,001
33,52 0.0527 33,52 0.052 0,00 0.00L
4,61 0,2048 Ll .64 0. 0,00 0,001
45,0l 0. 3294 45.05 0.332 ~0.0L -0,003
45,78 0,1292 45.77 0.126 0.00 0,003
46.65 0.0643 46.65 0.064 0.00 0.000
51.60 0,0895 51.60 0.090 0.00 0,000
52.22 0,334 52.22 0.332 0.00 -0,001
58.68 0.1453 58.68 0,146 0,00 -0,001
60,22 0,2300 60.21 0.230 0.01 0.000
63.80 0.2796 63.79 0.278 0,01 0,002
68.40 0.0991 68.40 0,098 0,00 0,001
Sums 0,03 0,000




TABLE TIT
COMPARISON OF o AND f COMPUTED I VARTOUS APPROXTMATIONS
FOR 31 LEVELS IN 2% + n (CRAMER DATA)

PERTA PERTA
Level POLIA (Al_l povers of FERTA (‘ﬁ et
Ener, lJ

gev§ Calculation *{‘,’, retained in ‘ﬁ) (R Liness 1n ’ﬁ) Equal to Zero)

B % B % A % B % B
16,67 39.3% - 5.66 38.97 - 5.9% 39.19 - 5.93 39.12 0.0
18.05 63.56 8.10 63.61 8.35 3.88 8.35 63.90 0.0
19,295 .35 - 8.52 365.36 - 9.01 365,42 - 9.0L 365.12 0.0
20.190 5.87 0,99 5.50 1.02 5.55 1.02 5. 54 0.0
20.67 25.39 4,38 25.83 4,48 .02 4,48 26.08 0.0
21,085 189,17 -1.92 189,02 - 1.65 189.03 - 2469 189.08 0.0
22.95 61..85 ~ 2422 61..83 - 2,42 61.85 - 2.42 61.94 0.0
23, 97.85 3435 97.77 3.48 97.80 3.48 97.80 0.0
23.62 83.15 -12, 80.92 <13.63 81.48 -13.46 T9.54 0.0
2l 245 .90 -18.81 3L.79 -18. 3% .30 -18.19 32,60 0.0
25.62 1h6.70 T70.78 139.49 67.4%0 147,18 .53 143,44 0.0
26.15 0.26 0.93 k4, 0.35 3,29 0.1 o.f 0.0
26,50 59.59 -30.63 57.01 -2k.87 59,30 -26.65 68,46 0.0
27.18 6.98 2,13 T.0L 2.19 T.18 2,19 T7.17 0.0
27.80 T5.81 - 7.08 T4.93 - 6.78 75.08 - 6.76 T74.98 0.0
28,42 17.63 3.79 17.86 3. 18,03 3. 18,26 0.0
28.73 3493 0.70 k.12 0.73 4.5 0.72 4,04 0.0
30.88 52.24 0,64 52.03 0.51 52,03 0,51 52,16 0.0
31.55 1.77 - 0.83 3.85 - 1.2 3.9 - 1,22 3.91 0.0
32.07 195.88 - 2,17 195,46 - 1.2 195.46 - 1l.b2 195, 0.0
33,52 .60 - 8.07 188.89 -~ 7T.91 188.97 - T.91 189.08 0.0
b, 64 81.62 1.83 81.56 2,10 81.57 2.10 81.50 0.0
45,0l 35.22 - 0,15 35.09 - 0.16 35.09 - 0.16 35.86 0.0
45,78 17.96 345 18.25 3.40 18.40 3.32 17.60 0.0
46,65 29.90 - 1,87 29.89 - 1.85 29.92 - 1.8% 29.99 0.0
51.60 43,61 - 141 3,64 - 130 43,65 - 1.%0 43,68 0.0
52022 215.44 - 0.2 215.13 - 0.73 215,13 - 0.73 a15. 0.0
58.68 110.25 - b,20 110,44 - 4,13 110,48 - 4,12 110,19 C.0
60,22 87.14 2,91 87.09 2.72 87.11 2.72 87.37 0.0
63,80 45,75 2.4k 45, 2.47 45,64 2.47 45,64 0.0
68, 11.10 0426 11.09 0.2k 11,09 0.2% 11.08 0.0

TABLE IV
COMPARISON OF KAPUR-PEXERLS FISSYON PARAMETERS IN VARIOUS
APPROXIMATIONS FOR 31 LEVELS IN 253y (CRAMER DATA)
Level POLLA PERTA PERTA
v Calculation (ALl Powers of M) (Linear in M)

E, t{(nev’/ 2 r{(nev’/ 2 i"“")/ 2 x{(nev’/ 2 i(nev’/ 2 x{(nev’/ 2
16.67 28.98 - 5.74 28.95 « 5,72 28.93 - 5.72
18.05 52.37 T7.87 53.23 T.82 53.18 T7.84
19,295 2li5, il - 9.13 248,08 - 8,87 24k, 79 - 9.3
20.19 3.73 0.99 3.81 0.93 3.81 0,94
20,67 12.53 4.3 13.66 4,33 13.41 k.39
21,085 81.50 - 1.86 81.84 - 1,78 81.80 - 1.79
22,95 52 - 2.3 .25 - 2,32 3%.25 - 2,3
23,4k 30,98 3.07 30.92 3402 30.91 302
23.62 61.08 =12,5L 60.87 ~13.46 57.89 ~13.%9
24,245 20.59 -18.58 22.68 ~1T.34 22,63 ~18,14
25.62 139.32 T0.79 206,62 31,75 204,15 4,15
26.15 - 0.38 0.66 - 5.43 0.58 - 6.22 0,20
26.51 50.88 =30453 932 Te19 84.4%0 - 3.09
27.18 5.03 2.13 6.40 1.86 6.26 1,93
27.80 * 53.90 - 6,91 54.88 - 6,58 54,89 - 6,68
28.42 12,98 3.78 12.29 bo12 12.26 4,12
28,73 2,53 0.63 2.20 . 0.2k 2,09 0.26
30,88 21,14 0.59 21.%8 0.64 21,33 0.47
31,55 0.84 - 0.80 1.83 - 1,33 1.83 - 1.2k
32,07 112,60 - 2.19 114,77 - 0,88 113.70 - 1,31
3% T8.5% - 1469 79161 - 1.29 79.33 - 7.9

. 69,72 1,78 T70.18 1,76 T70.18 1.76
45,04 31.78 - 0.01 30.79 0,61 30.66 0,73
45,78 C 1341 3037 11.3% 2.64 11,10 2.61
46,60 16425 - 1.84 16,64 - 1.87 16.57 - 1,87
51.60 .18 - 1.53 29.42 - 1.56 29, - 1,56
52.22 194, 9% 0,02 195.47 - 2,18 195, 0
58.68 86,94 - 4,13 85.5% - 3.83 85.47 - 3.91
60.22 1947 3.03 T4.26 2,71 Tho16 2.82
63.80 40.8% 2.5 40.73 2,58 40,58 2,51

68,40 7.82 .27 T.83 0,25 7.80 0.26



than linear in M in Eqs. (38) and (39) does not im- perturbation transformation is surprisingly good.

prove most fission cross-section calculations. It The total cross section parameters are well approx-
seems likely that for most studies of multilevel in- imated for all levels and the fission cross section
terference by the first-order perturbation approach parameters are well approximated for levels other

only terms linear in the perturbation need be re- than those near 26 eV. The perturbation transforma-
tained in cross-section expressions. tion predicts qualitatively the effects of interfer-

From Tables III, IV, and V, it appears that the ence in nearly all cases.
TABLE V

COMPARISON OF KAPUR-PEIERLS RADIATIVE CAPTURE PARAMETERS IN
VARIOUS APPROXIMATIONS FOR 31 LEVELS IN 235’0 (CRAMAR DATA)

Level POLLA PERTA
Ener, eV Calculation Calculation
E, d( Bev>/2) Pi(BeVB/ 2y G]Z(BeVB/ 2) H;(BeVB/ 2y

16.67 10.25 -0.03 10.04 -0.01
18.05 11.05 0.01 10.98 0.01
19.295 111.%0 -0.08 109.93 -0.01
20.190 2.14 0 1.99 0
20.67 12.77 0.01 12.81 0.01
21.085 102.92 -0.0l 102.73 -0.01
22.95 26.88 -0.0k4 26.84 -0.02
23,44 65.16 0.03 65.00 0.0k
23,62 21.52 -0.09 19.65 -0.01
2. 245 14,16 -0.17 11.75 -0.09
25.62 7.01 -0.06 6.10 0.51
26 15 0.63 0.26 1.36 0.01
26.51 8.58 -0.02 5.95 -0.43
27.18 1.94 0 1.88 0.02
28.80 21.46 -0.12 20.87 -0.06
28.42 k.62 0.0% 4. ko -0.02
28.73 1.k0 0.08 1.36 0.07
30.88 30.62 -0.01 30.46 (o)
31.55 0.93 -0.03 1.81 -0.01
32.07 18.67 0 17.92 0.01
33.52 104.05 -0.04 103.93 0
4,64 11.53 -0.01 11.51 0
hs5.04 3.36 -0.10 3.28 -0.07
45,78 k.52 0.09 L 3l 0.06
46.65 13.50 0 13.45 0
51.60 14,14 0 14,13 0
52.22 18.89 -0.03 18.83 0
58.68 22,31 -0.05 22.24 -0.02
60.22 11.26 0.02 11.18 0.02
63.80 .51 o] k.76 o]
68.40 3.27 0 3.25 0

11



V. SOME MULTILEVEL INTERFERENCE EFFECTS

The perturbation transformation permits infer-
ences as to the nature of multilevel interference
effects, and we briefly note several such inferences.

The range of interference effects is surpris-
ingly long.
ized by the fractional perturbations Me, [Eqs. (19)
through (21)], and these vary only as the inverse
level spacing for jJ = 2 and as the inverse spacing
squared for j = 1l.

The interference effects are character-

Other properties of the frac-
tional perturbations are listed in Sec. II.

The radiative capture cross section usually is
observed to have symmetric resonant shapes. This
symmetry supposedly arises from the summary of many
radiation channels that are incoherent in the sense
of Eq. (5). Equations (53) and (54%) show that
another related propelrty, the constancy of T, (
from level to level, plays a role in diminishing in-
terference.

Finally, we consider briefly the probability
distribution of the Kapur-Peierls parameters. Ex-
perience has revealed few, if any, dev:.ations from
the conjecture of Porter and Thoma.s6 that I‘l 2 i
distributed as a normal variate with zero mean, that

is
1-11;42 = I:iée *ke ’ (57)

where I_:kc is independent of k, and o is an inde-
pendent normal variate with zero mean and unit var-
jance. The similarly successful Wigner distribution
for level spacings will be used here only in moti-
vating the assumption that Ek -E 3 fluctuates only
weakly because of level repulsion.

The total cross section is characterized by the
quentities oy and A, and from Egs. (30), (31), and

(57) these are distributed as

k7c§y I‘kc)

as x}mxk'nxkc'xk'c" i.e., as the product of four
independent normal variates. If interference arose
primarily from a single channel, as in the numerical
examples of Sec. IV, than B, would be distributed

as X Koo’ ki)k e Xt o' By 2 WheTe the coefficients
&y fluctuate’ less than do the Xee variates.

We are led to examine variates of the form
yn=)&.x2...xn ’ (60)

where the variates x 3 are independently normal with

zero mean and unit variance. The moments of the

distributions of these variates are, for v = 1,2, ¢,

()
)

A useful distribution shape parameter is the excess

I
o
-

(61)

and

L+3-5° - (v- ™. (62)

of kurtosis, 72, definedal as
(y )
72 -3 ) (63)
(y ye

and equal to 5n - 3 in this case. A positive value
of y 2 usually means that the distribution is higher
near the peak and in the far wings than is a normal
(72 = 0) distribution with the same mean and vari-

ance. Equations (61) and (62) permit the computation
of moments of all order for noninteger velues of n,

2v

and although V}:)o (ygv Y/(2v)t €Y is divergent

except at § = 0,1t is reasonable to infer that
these moments define a unique probability distribu-
tion for positive values of n. Noninteger values

of n are useful in approximating the distribution of

(T, - T, )/

k

o =gy m%[%*z"xn

K’k (Ek - Ek,)2 + (Fk - rk')/e

Z'I‘kc,xkrc,xkc,] ’ (58)
]

B = ireng Ten en Z"k'

K’k

hi )
n (Ek-Ek,) +(I‘k-I‘k,)/’+ o

rkclicl{lclicl{cl . (59)

If interference arose from a single channel and a
single other level k’ then By would be distributed

12

2 2
variates such as a.“_x:l_x2 + aexsxh. If a.l + a2 is
unity, then this variate has zero mean, unit variance,



and an excess of kurtosis that varies between 3.25
(a.l =a,) and 6(31 =lora,s= 1); thus, ax x, +
ta.2x3x,4 has the same low order moments as has yn
vwhere n varies between about 1.5 and 2.

From Eq. (59) then,we propose that the independ-
ent distribution of By aporoximates that of Yy [Eq.
(60) ], where n is 2 or 3, and that the excess of kur-
tosis is a useful diagnostic. For the 31 levels in
23511 + n examined in Sec. IV, the excess of kur-
tosis in the observed distribution of ﬁk is 14, a
value which corresponds to the variate Yo.6° A sim-
ilar result is obtained for the 49 levels assigned
by Cramer to the other spin state in 235’0 + n.20
Some of this agreement must be fortuitous in view of
the uncertainty in estimating excess of kurtosis
from small samples.

Returning to Eqs. (58) and (59),it is seen that
the variates o and Bk are correlated and for practi-
cal avplication their joint distribution is required.
Although the independent distribution of o approxi-
mates Xen (’Sm + constant X ym), where m is 1 or 2,
it is simpler to further approximate the distribu-
tion of q as xin. In this case, the distribution
of the variate ﬁk/oi/ 2 approximates Yy where m is
between 1 and 2, and Bk/oi/ 2 s independent of o .
Analogous results are obtained for distributions of
the other Kapur-Peierls parameters.

The equations developed in this study show that
the transformation from Wigner-Eisenbud to Kapur-
Peierls formalisms converts a set of (assumed) sta-
tistically independent parameters to a set of sta-
The joint distri-
bution of the correlated Kapur-Peierls parameter set
is a legitimate object of study as is the independ-
In ei-
ther case, the experimentalist must reccgnize that

tistically correlated parameters.

ent distribution of a particular parameter.
he is sampling from a correlated sample. For ex-
ample, different results mey be obtained if the ex-
perimental sample consists of a strongly interfering
set of subsets of levels with weak interference be-
tueen subsets.

APPENDIX A

A LEMMA ON A CLASS OF RATIONAL FUNCTTIONS

%
The rational ﬁmctionsk’}};_;l Nkk,/(z-zk)(z-z]‘:,)

and k}}é\l (Ak*'Bkz)/(Z-zk)(z-z;) have the same poles

of order one when no zk is real. To determine Ak
and Bk in terms of the sets 71( and Nkk' the two
functions are equal if their residues are equal.

Equate residues at the poles z, and at z]'::

A Y B Z Nie!
* *

(a-1)
B S T M
and
A * Bz N N g
= Z * (a-2)
K

Solving these equations simlteneously, we have for
K=1, 2, « + o, k,

N

K
A'k =- Nk_k' + N/ ) (A‘B)
SN e -
and

x
1 1
B = 2 N/ ==+ Mg 5| - (a9
k':l zk - Z;, Z: - zk'
%

If, further, “k.k' = Nk'k’ i.e., the matrix N is
self-edjoint, then

-~

k *
N,
K’k 2
A =-2 Re| ———1] , (a-5)
kgl 2 - o
and
k
N, ¢
kk
B =2 z Re|[ —=— . (a-6)
k': zk - z}*{.l

In terms of the real and imaginary parts of z, =
M = vy,

13



~

k
N Z RelN, oL (o - uk,) vy #v )]+ Im Ny v Gy =) + m (v + v /)]

K=l (g = 1 )%+ (v *+ 9 )

and

p) (A-7)

k ReN, . ,( - /) + TN ,( /)
Bkaez kk lﬁ{ M + kk Vk+\i( . (A-8)

2 2
o (uk - I-lkl) + (\)k + Vkl)
Some simplification results by observing that

-~

k ReN, /(M + Vo) - TN oy -y o)
=- +2y .
A= - By kz (1 - “k')2 + (v + "k')2
k'=1

(a-9)

APPENDIX B
PERTURBATION THEORY FOR SYMMETRIC MATRICES

A complex symmetric N X N matrix B is diagonal-
ized to D by a complex orthogonal N X N matrix S.
Similarly the complex symmetric N X N matrix B + §B
is diagonalized to D + 8D by the complex orthogonal

N X N matrix S + 8S. That is,
BS = SZ2 (B-1)
and
(B + 8B)(S + 8S) = (s + 8S)(D + &D) . (B-2)

Subtracting Eq. (B-1) from Eq. (B-2), and ignoring
terms of second order in the perturbed quantities,

BSS + BBS = 5SD + S8D . (B-3)

It is convenient to rewrite these equations in terms
of the eigenvalues Dkk and the eigenvectors sk, k=
l, 2, + + + , N, column vectors with elements 5., .,

1k
Sak’ o . e, S‘Nk’ Thus,
Bsk = Dkksk; k=1,2,¢ee, N , (B-1') .

and

BSsk-i-SBsk =85 D  +s8 8D ;

k'kk 'k kk k=1,2,¢¢+, N.(B-3")

Orthogonality of the unperturbed matrix S requires

Strs r =8 4

k 'k kk k, k' = 1,2,***, N .

(B-4)

Multiplying Eq. (B-3’) by s:r, one has

1k

tr tr tr tr .
5, B&sk + 5, aBsk =5 5skak + 8 skaDkk,

Mk =1,2,°, N ,

or, in view of Eq. (B-4),

st
A

T. tr tr
B5sk + s)\ 5Bsk s)\ askak + akkwkk;

Mk = 1,200, N (B-5)

Take the transpose of Eq. (B-l'), and recognize that

B is symmetric so that sltertr, which is equal to

ﬁms;r, is just S;rB. Thus, rearranging,

tr tr
+ =
s)\ Ssk s)\ SBsk 5, , 8D

(o 2Dk’

n'Dkk)

Ak = 1,2,¢¢0, N. (B-6)

For A = k, the perturbation in eigenvalue is deter-
mined.

N

tr, .
8Dy, = 5, OBsy = Z 5B S
Ao =1

k=1,2,%, N . B-7)

The assumption that B can be diagonalized is
equivalent to the assumption that the set 815 Sy
ceey Sy is complete, so Bsk can be represented as a
linear combination of the 8,

N

55k = zyklls)\l, k=1,2,¢¢¢, N .
A=l

(-8)

Substitute Eq. (B-8) into Eq. (B-6) for the cases
A # k. In view of Eq. (B-4),

(D5 - Dy ¥y * s:ransk =0; ¥ k:

Aok = 1,2,¢, N . (B-9)

Combining Eqs. (B-8) and (B-9),
s:rSBsk ’
5sk=2n e R

Kk ~ P
Ak (B-10)

k= 1,2,000,N .




The quantities Yy 8re as yet undetermined.
Orthogonality of S + 8S requires

(s;r + 5s;r)(sk, + ask,) = &

k! k,k!=1,2,000,N .

(B-11)

Subtract Eq. (B-%) from Eq. (B-11) and linearize,
obtaining

t
skrask, + SS;rSkl = 0; k;k’ = 1,2,¢¢¢, N

. (B-12)

Substitute Eq. (B-10) into Eq. (B-12), and apply Eq.
(B-4),

( ) tr&Bs sr;stk
2y..8 . ,+ (1-8_, + = 03
kk“kk kk Dklkl Dkk Dkk Dklkl

Kk’ = 1,2,°°*, N . (B-13)
In view of the symmetry of 5B one obtains, for
k,k/ = 1,2,+++, N,
sTsB =Z S, .8 - 5 =
K OBSy OBk T 2, kBB Ak T

A A
s;fsnsk s (B-14)

so the square bracket in Eq. (B-13) is identically

zero. Thus, to preserve orthogonality of S + &S (to
first order in the perturba.tion) it is necessary to
set ¥, equal to zero. Finally, Eq. (B-10) becomes

N Z 5\ 8B e Siey
zgk_l S.. 3
D = Diaxe ar

X=1

Jsk = 1,2,+¢¢, N. (B-15)

APPENDIX C
INPUT AND OUTPUT FOR THE PERTA PROGRAM
ZInput
Card 1:
Card 2:

Any 80 column alphanumeric title.

16I5 format.

MPRE: Positive if there are more cases in
this job.

NL: Number of interfering levels.

NF: Number of fission channels,

NNLIN: Equals 1 if RS = MSJ,

Equals O if Eqs. (24) and (25) are
used for Rx}?n
NFLIN: Equals 1 if Egs. (40) and (41) are
used for Qkk,'j.
Equals O if Egs. (39) and (L40) are
used for Qcc'J’
Cerd 3: 8El0.3 format.
ANUC: Target nuclear mass in AMU.
Card 4: B8F10.3 format. Wigner-Eisenbud parameters.
Level energy for level 1.
Statistical weight factor for level 1.
Reduced neutron width for level 1
Radiative capture width for level 1.
Partial fission widths for level 1 for
fission channels 1,..., NF.
Cards 5 to & + NL: 8E10.3 format. Wigner-
Eisenbud parameters for remaining levels.
Output
The imput Wigner-Eisenbud parameters are edited
together with the total level widths. The remeain:
ing edits are listed in Sec. III. Definitions of
program variables, which label some edits, are
listed on corment cards early in the program deck.
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