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THE INVARIANT DECOMPOSITION OF
GOVERN INC HYDRODYNAMIC FLOW

CONDUCT IVIIT

by

Jack Nachamkin

ABSTRACT

The equations of hydrodynamics and thermal

THE EQUATIONS
AND THERMAL

conductivity are
composed using the properties of the (2L + 1) representations of
group in three dimensions. The decomposition and subsequent set

spectrally de-
the rotation
of nonlinear

partial differential equations is derived by using the properties of the spher-
ical harmonics, YL m.

,

The familiar spherical harmonics,

countered in mathematical physics have

ties
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In equations 1-5:
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is the familiar kron-

e k r delta; V is the usual gradient operator;
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C123
is the Clebsch-Gordan coefficient encount-

‘lm2rn3
ered m coupling the qua turn-mechanical angular mo-
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6-j coefficient; 31 and’34are’the operators defined
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In some of the equations written above the arguments

Q and ~ have been suppressed. It is implied that

all the spherical harmonics in a given equation have

the same solid-angle arguments. It will also be

assumed that the functions ~~,m and ~km are functions

of the radial coordinate, r, only.

(6)

(7)

~%, 1)12
is the vector spherical harmonic encount-

m2
“ered in the study of the electromagnetic field

where Cm is the m-th component of the spherical unit

vector.

We define now the hydrodynamic quantities:

pressure = P ‘LEmP~,myE,mI

,

specific volume = V = Z V
~ m!L,my!L,m’
,

density = p = l/V = E p
~ m !L,my!?,,m
,

specific internal energy =& = Z /j Y ~(12)
~m k,m ?.,
,
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velocity = i = X Uk
#L,l)t’

!t’,m’ m’ “ (13) Quantities a and ~ in equations (19) and (20) can

I

both asaume the values of +1 and -1 independently.

In Lagrangian coordinates, equations of hydrody- The equations of continuity are

namlcs and thermal conductivity are
z
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Equation (14) is the equation of state of an ideal

gas, whether or not It i.a degenerate. The quantity

T is the temperature of the gas, T = ETimY1m, and K

iS the thermal conductivity. By patient–m~ipulation

we arrive at the following equationa for the quanti-

ties In Eqs. (9-13). (DOts denote time differentia-

tion. )
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From hindsight obtained gained from observing

the above equations we see that angular momentum,

linear nmmentum,and parity are conserved by our flu-

id. One notes that the V operator has a pole at r=

O so that perturbation expansiona near r=O are gen-

erally invalid. The striking fact, however, derives

from the conservation of angular momentum. Firat

‘(Ll~1)L2, gl>o representS a spinnote that any T

[see equation (~~]. Equations (18) , (19),and (20)

tell us that any Yg m’s in the velocity field will
,

under spherical compression

●Be damped to Y ‘s such that:
z.m

.All the vorticfal and total angular momentum
–(l>l)L, ao

will be In sDecial T
–(2,1)Y.,

●The entropy of these T s will increase

very slowly compared to compression of a Y This
–(k,l)2,

0,0”
ia because the T s represent vortices. The

vortices, to conserve vortidal spin ahlft spherically

applied compressional energy mostly into rotational

motion, not entropy, no matter how suddenly the com-

pression is applied. This fact may lead to “freez-

ing in” a low temperature profile while producing a

fluid-flow velocity greatly in excess of the corresp-

onding mean-square velocity corresponding to the

temperature profile. These effects may be a possi-

ble explanation of some of the laser-pellet experi-

ments performed by Cene McCallland his coworkers in

L division. Note also that compressing the outside

of a vortex does not necessarily increase the densi-

ty at the center. ‘IIIUS,after a certain point of

vorticial compression is achieved, the fluid veloci-

ties may be enormous but the central compression

will decrease with increasing applied force.)
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Perturbation expansion of equations (9-13) are

being investigated as to what possible symmetries

might arise in a compression of a fluid.

We note in passing that a new philosophy may

have to be applied to code production, especially

where three-dimenaional processes are involved.

High, yet subtle, symmetries may generally be expect-

ed which can absorb a great deal of energy,yet can

neither substantially raiae their entropy nor couple

this energy to a different mode. Vortices belong to

this claas. A code which has the smallest amount of

coupling between a curl-free and vorticial state will

invariably transfer the enrgy to the streamline-flow

state. Hydro codes which do not obey the law of ex-

act angular momentum conservation are subject to

sterner criticism in some respects and in certain

circumatancea than codes with no exact conservation

~ built in.
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