

2.3

Special Distribution Issued: November 1976

Applied Nuclear Data

Research and Development

April 1-June 30, 1976

Compiled by

C. I. Baxman P. G. Young

An Affirmative Action/Equal Opportunity Employer

The four most recent reports in this series, unclassified, are LA-6472-PR, LA-6266-PR, LA-6164-PR, and LA-6123-PR.

This work was performed under the auspices of the Defense Nuclear Agency, the Nuclear Regulatory Commission, the National Aeronautics and Space Administration, and the US Energy Research and Development Administration's Divisions of Military Application, Reactor Development and Demonstration, Physical Research, and Magnetic Fusion Energy.

This report was prepared as an account of work sponsored by the United States Government. Neither the United States nor the United States Genergy Research and Devolopment Administration, nor any of their employees, nor any of their coniscators, aubeoniractors, or their employees, makes any warranty, express or implied, or assumes any legs I lability or responsibility for the accuracy, completences, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights.

CONTENTS

	I.	THEC	ORY AND EVALUATION OF NUCLEAR CROSS SECTIONS	1
		Α.	R-Matrix Analysis of Reactions in Light Systems	1
		B.	Calculations of (n,xn) Cross Sections and Spectra	2
		с.	Calculations of Charged-Particle Spectra Induced by 15.1-MeV Neutrons	3
		D.	Fast Fission Cross Sections	6
		E.	Neutron Spectra from Fission	6
		F.	Evaluated Time-Dependent Photon Spectra from a U Fission Burst	6
		G.	Computation of Specific Thermonuclear Reaction Rates The STEEP Code	7
I	I.	NUCI	LEAR CROSS-SECTION PROCESSING	11
		Α.	Neutron Photon Coupled Sets from ENDF/B-IV	11
		Β.	Pointwise Cross-Section Library for MCNG	11
		с.	LIB-IV-240 (Two-Hundred and Forty Group Library)	13
		D.	NJOY Storage Allocation Package	15
		Е.	Processing Photon Cross Sections	16
81		F.	CCCC Development	16
44		G.	Comprehensive CCCC Cross Section File MATXS	17
375		ң.	MINX vs MC ²	18
) 	<u>I</u> .	Leakage Corrections to Self-Shielded Cross Sections.	22
		J.	Spectral Corrections to Elastic Removal Cross Sections	24
	, 1	к.	Effects of Weighting Spectra on Group Collapse	27
	. ~	L.	Improved Cross Sections for Thermal Reactor Analysis	32
II	I.	HTG REA	R CROSS SECTIONS AND DEPLETION CALCULATIONS FOR CTOR SAFETY ANALYSIS	34
I	v.	COM	PARISON OF MONTE CARLO AND S CALCULATIONS WITH	
		7 _{Li}	PULSED SPHERE EXPERIMENTS USING ENDF/B-IV DATA	34
	v.	FIS	SION-PRODUCT AND DECAY STUDIES	37
		Α.	ENDF/B Phenomenological Yield Model Improvements	37
		в.	Fission Yield Theory: Statistical Model Development	41

С.	Calculation_vs Experiment: Comparisons of Time- Dependent β_{-} and γ Spectra From Thermal Fission of	
	² ³ ³ ¹	43
D.	Noble Gases, Halogens, and Other Fission Products	45
E.	CINDER-10 Code Development	58
F.	Beta-Energy Averaging and Beta Spectra	58
G.	Absorption Buildup Studies	58
REFERENCE	S	59

APPLIED NUCLEAR DATA RESEARCH AND DEVELOPMENT OUARTERLY PROGRESS REPORT April 1 - June 30, 1976

Compiled by

C. I. Baxman and P. G. Young

ABSTRACT

This progress report describes the activities of the Los Alamos Nuclear Data Group for the period April 1 through June 30, 1976. The topical content is summarized in the contents.

I. THEORY AND EVALUATION OF NUCLEAR CROSS SECTIONS

A. R-Matrix Analysis of Reactions in Light Systems (G. N. Hale and D. Dodder [T-9])

Our program of analyzing reactions in light systems using multichannel R-matrix theory has generally overlapped two areas of applied interest, lightelement standards and fusion reactions. In this quarter we have extended and modified analyses of the ⁷Li and ¹¹B systems which were substantially completed last quarter to provide standard cross sections for Version V of the Evaluated Nuclear Data File (ENDF/B), and have restarted analysis of the 4 and 5 nucleon systems which contain many of the important fusion reactions.

<u>1. Standards</u>. New data have been added to the ⁷Li analysis which was used to provide evaluated ⁶Li(n, α) cross sections at low energies for Version V. These include α -t cross section excitations¹ measured over the resonance which occurs at ~250-keV neutron energy, and measurements of the ⁶Li(n,t) angular distributions² at energies above 2 MeV. The new data are fitted quite well with only slight changes in the R-matrix parameters, indicating, for instance, a preference for the integrated ⁶Li(n, α) cross section values of Bartle² over those of Clements and Rickard³ at neutron energies above 2 MeV. These results were reported at the International Conference on the Interaction of Neutrons with Nuclei at Lowell, Massachusetts.

Modifications in the analysis of reactions in the ¹¹B system were required to reflect changes in the preliminary ¹⁰B(n, $\alpha\gamma$) cross section data⁴ measured at the National Bureau of Standards which had strongly influenced the calculated ¹⁰B(n, α) cross sections proposed for use as Version V standards. These changes, which are significant only at energies above 500 keV, will be incorporated in the final ENDF/B-V file.

2. Fusion Reactions. We have incorporated new data in our comprehensive analysis of both the ⁵He and ⁵Li systems. In the case of ⁵Li, the changes in data base have been extensive, since earlier ³He(d,d)³He measurements of Konig⁵ have been supplanted by the newer, more complete measurements of Jenny.⁶ In addition, the vector analyzing power measurements of Klinger⁷ for the ³He(d,p)⁴He reaction have been included, as well as data in all reactions at higher energies. Our hope is that these new measurements are sufficiently reliable to sort out at last the complicated sequence of overlapping d-wave (and possible odd-parity) levels which exist in the 5-nucleon system above the well-known $3/2^{+}$ S-wave resonance. New data have been accommodated in the ⁵He system analysis, including measurements of the T(d,d)T vector analyzing power⁸ and precision values of the T(d,n)⁴He cross sections.⁹ with little change in the R-matrix parameters.

A new charge-independent analysis of reactions in the ⁴He system has begun, which will soon extend to energies above the d + d threshold. One of the goals of this analysis is to obtain R-matrix fits to the D(d,p)T and $D(d,n)^{3}$ He cross sections which have reliable extrapolations to zero deuteron energy, as has already been done for the $T(d,n)^{4}$ He and 3 He(d,p)⁴He cross sections using analyses like those described above.

B. Calculations of (n,xn) Cross Sections and Spectra (E. D. Arthur, P. G. Young, and L. R. Veeser [P-3])

We have completed calculations of cross sections and spectra for (n,xn) reactions on ⁴⁵Sc, ⁵⁸Ni, ⁵⁹Co, ⁸⁹Y, ⁹³Nb, ¹⁰³Rh, ¹⁶⁹Tm, ¹⁷⁵Lu, ¹⁸¹Ta, ¹⁹⁷Au, and ²⁰⁹Bi. For these calculations we used the preequilibrium-statistical model code GNASH with global optical model and level density parameters with no attempt to adjust parameters to better fit experimental data. The calculated spectra of first and second neutrons from (n,2n) events and the spectra for first, second, and third neutrons from (n,3n) events were used by Veeser and Arthur¹⁰ to make efficiency corrections to measurements made with a large liquid scintillator tank.

Comparisons of the calculated cross sections to recert (n,xn) measurements of Frehaut and Mosinski,¹¹ Bayhurst et al.,¹² and Veeser et al.¹⁰ were made in a paper presented at the 1976 International Conference on the Interactions of Neutrons with Nuclei. Selected examples of the agreement of calculated to experimental results are shown in Figs. 1-3 for (n,xn) reactions on ⁸⁹Y, ¹⁸¹Tä, and ²⁰⁹Bi. In order to fit the experimental (n,2n) and (n,3n) cross sections at higher energies, it was necessary to include contributions from preequilibrium processes. For example, the long dashed curve in Fig. 4 illustrates cross sections calculated without preequilibrium effects. Also important is the mass and energy dependence of the absolute square of the average effective matrix element M of residual two-body interactions, which appear in the expressions used to calculate the preequilibrium component. In Fig. 4 the short dashed curve illustrates results obtained when preequilibrium effects are included with the quantity

 $|M|^{2} \alpha A^{-3}$,

as suggested by Braga-Marcazzan et al.¹³ Finally, the solid curve (as well as the curves in Figs. 1-3) shows the result obtained when the preequilibrium component is included with a mass and excitation energy dependence

$$|M|^{2} \alpha A^{-3} E^{-1}$$

,

as determined by Kalbach-Cline.¹⁴

As a result of this work, we feel that calculations which include preequilibrium effects and which use global input parameters can reproduce well the experimental data for (n,xn) reactions.

C. Calculations of Charged-Particle Spectra Induced by 15.1-MeV Neutrons (E. D. Arthur and P. G. Young

We have made further calculations of the charged-particle production spectra from 15.1-MeV neutron bombardment of ²⁷A1, ⁴⁶Ti, and ⁴⁸Ti to compare with the most recent measurements of Grimes et al.¹⁵ These calculations are an extension of earlier calculations made with the GNASH preequilibrium-statistical model code with global optical model and level density parameters. Preequilibrium effects, which are important in reproducing the observed spectral shapes and cross section

Fig. 1. Comparison of calculations and experiment for 89 Y(n,xn) reactions to the data of Frehaut,¹¹ Veeser,¹⁰ and Bay-hurst.¹²

Fig. 2. The calculations for 181Ta(n,xn) reactions are compared with the measurements of Frehaut¹¹ and Veeser.¹⁰

Fig. 3. The calculations for 209Bi reactions are compared with the measurements of Frehaut¹¹ and Veeser. 10

Calculations of 1/5Lu(n,xn) reactions are compared to the data of Frehaut and Veeser. The - - curve was made with no preequilibrium effects, the --- curve included a preequilibrium component whose normalization depended on mass, while the solid curve was made with a preequilibrium component normalized to both mass and excitation energy.

magnitudes, were made using the closed form exciton expression of Milazzo-Colli et al.¹⁶ The preequilibrium component was assumed to be normalized such that

$$|M|^{2} \alpha A^{-3} E^{-1}$$

where M is the matrix element describing residual two body interactions. The absolute normalization was obtained from a survey of experimental (n,n'), (n,p), and (n, α) results.

Comparisons with the data of Grimes et al. for proton production from $\frac{46}{11}$ ⁴⁸ Ti are shown in Fig. 5. The calculations reproduce well the striking difand ference in the spectrum of protons from these two isotopes. In Fig. 6, comparisons of the calculations are made with the Ti deuteron and alpha production Except for the $\frac{46}{\text{Ti}(n,d)}$ reaction, no attempt was made to adjust parameters data. to improve the fit to experimental data. In the case of the (n,d) data, direct reaction effects, which are not included explicitly in these calculations, may account for some of the disagreement between the calculations and experiment.

Fig. 6.

A comparison between calculated and experimental results for the proton production spectra from 46 Ti and 48 Ti.

A similar comparison for ⁴⁶Ti alpha and deuteron production spectra.

D. Fast Fission Cross Sections (L. Stewart)

Several recommendations were made at the NEANDC/NEACRP Specialists Meeting on Fast Neutron Fission Cross Sections held at Argonne National Laboratory on June 28-30. The most important, perhaps, were the agreement on the method of shifting energy scales and the normalization of the 28/25 fission ratio measurements. Above 10-MeV incident neutron energy, however, several problems remain. The disagreement among the experiments on the 49/25 ratios is not yet understood, even at 1 MeV.

A paper entitled, "What Happens to the Fission Process Above the 2nd and 3rd Chance Fission Thresholds?" by Leona Stewart and Robert Howerton, was presented at this meeting.

E. Neutron Spectra From Fission (L. Stewart)

All of the fissile and fertile materials on ENDF/B, except 233 U, have a Maxwellian representation for the fission neutron spectrum. Recent experiments indicate somewhat better agreement with a Watt distribution rather than the Maxwellian used in Version IV. A format to allow an energy-dependent Watt spectrum was recently approved by the Cross Section Evaluation Working Group (CSEWG), and the spectra for some of the important isotopes will be updated accordingly for Version V. A paper on this subject entitled, "The Prompt-Neutron Fission Spectrum for ²³⁹Pu," by E. Kujawski (General Electric, Sunnyvale) and L. Stewart has been accepted for presentation at the American Nuclear Society Winter Meeting.

While the Watt spectrum is quite reasonable, some of the recent measurements have shown far too many low-energy neutrons (<1 MeV) to agree with earlier experiments or with the Watt or the Maxwellian distribution. This problem is still to be resolved and it is hoped that some explanation will be found in the experiments. An additional problem is that almost nothing is known about the incident neutron energy dependence of the fission neutron spectrum. It is expected that essentially the same average fission neutron energy used in Version IV will be implemented in Version V with the above change in shape.

F. Evaluated Time-Dependent Photon Spectra From a ²³⁵U Fission Burst (D. G. Foster, Jr., T. R. England, and M. G. Stamatelatos)

A preliminary evaluation of the time-dependence of the intensity and spectrum of photons emitted following a very short fission burst (<<1 ns) was completed 17,18 a year ago. It covered fission induced by thermal neutrons in 235 U and 239 Pu. Special attention had been devoted to the time range less than 1 s after fission, but only a crude extrapolation to 10^8 s was included. This extrapolation assumed a time-independent spectrum after 60 s, and used old data normalized to recent data at 15 s, where the log-log slopes of the 2 sets of data were equal.

We have now replaced the data for 235 U at times greater than 15 s with detailed calculations using ENDF/B-IV data in the CINDER code. The input data cover 825 fission-product nuclides, but only 181 of these (selected to account for most of the energy emitted at decay times greater than a few seconds) have spectral information. The overall spectrum is assumed to be that of these 181 nuclides. The calculations were made using an irradiation time of 10^{-4} s, so that the results are indistinguishable from an arbitrarily short burst at decay times greater than a second. The calculated absolute yield joins neatly onto the results of Fisher and Engle¹⁹ at 50 s after fission, and is thus about a factor of 3 lower than the previous extrapolation at 60 s, as pointed out a year ago.¹⁸ The new intensity is roughly equal to the previous intensity between 10⁵ and 10⁷s, but is a factor of 10 lower at 10⁸s. The new evaluation has also been extended to 10⁹ (31.7 y). The accuracy from 50 s to a few hours appears to be \pm a few percent.

The spectrum in the new evaluation displays a marked variation with time. The average photon energy has 5 pronounced minima between 1 and 10^9 s, with an overall range from 0.43 to 1.05 MeV. This is in sharp contrast to the constant spectrum assumed in the previous evaluation.

We are currently working on the CINDER calculations for neutron-induced fission of ²³⁹Pu. We expect to submit the completed work on both isotopes for possible inclusion in ENDF/E-V.

G. Computation of Specific Thermonuclear Reaction Rates--The STEEP Code (D. E. Dei [Carnegie Mellon University], A. A. Husseiny [Iowa State University] and G. M. Hale)

A fast, efficient, and accurate program module, STEEP, has been developed to compute specific thermonuclear reaction rates, $\langle \sigma v \rangle$. These quantities are central in the design and analysis of various fusion devices, as well as other areas (e.g., astrophysical problems). Because of this wide range of potential applicability, STEEP is designed for a variety of plasma conditions.

The most common reaction rate computations involve the interaction of ion distributions in Maxwellian equilibrium. In this case the specific reaction rate is written as a single integral over relative energy, E_{r} ,²⁰

$$\langle \sigma \mathbf{v} \rangle_{\mathbf{M}} = \int_0^\infty d\mathbf{E}_{\mathbf{r}} M_{\mathbf{T}}(\mathbf{E}_{\mathbf{r}}) \sigma(\mathbf{E}_{\mathbf{r}}) \mathbf{v}_{\mathbf{r}}(\mathbf{E}_{\mathbf{r}}) \quad , \qquad (1)$$

where M_T is a Maxwellian distribution in energy. For accurate but rapid results Eq. (1) is integrated numerically with a self-terminating trapezodial quadrature. Values of $\sigma(E_r)$ are effectively supplied from an evaluated library of energy-cross-section pairs (e.g., from R-matrix calculations) with suitable interpolation formula provided to evaluate $\sigma(E_r)$ for arbitrary energies.

In many instances, the plasma ions are not in thermal equilibrium and a sizeable contribution to the reaction rate is produced by a high energy slowing down component of the distributions. For this case STEEP assumes a continuous slowing down model wherein leakage and absorption are neglected and the confinement time is assumed to be greater than the slowing down time, τ_{SD} . The slowing down component of the i-th ion distribution, with source strength S₀ below the source energy E₀ is

$$n_{SD}(E_{i}) = \frac{S_{0}}{\langle dE_{i}/dt \rangle}$$
 (2)

When the total ion density N is known, n_{SD} is joined to a background Maxwellian component so that

$$\mathbf{n}(\mathbf{E}_{i}) = \begin{cases} N_{i} (1-a_{i}) M_{T}(\mathbf{E}_{i}), & \mathbf{E}_{i} < \mathbf{E}_{m} \text{ and } \mathbf{E}_{i} > \mathbf{E}_{0}, \\ N_{i} \{(1-a_{i}) M_{T}(\mathbf{E}_{i}) + \frac{a_{i}}{\langle d\mathbf{E}_{i}/dt > \tau_{SD}} \}, & \mathbf{E}_{m} \leq \mathbf{E}_{i} \leq \mathbf{E}_{0}. \end{cases}$$
(3)

 ${E\atopm}$ is a lower cutoff, usually taken as 2kT, and a is given by S τ /N . The total specific reaction rate is

$$\langle \sigma_{v} \rangle = (1 - a_{i}) \langle \sigma_{v} \rangle_{M} + \langle \sigma_{v} \rangle_{SD}$$
, (4)

where

$$\langle \sigma \mathbf{v} \rangle_{\text{SD}} = \frac{2S_0}{N_1} \left(\frac{m_j}{2\pi kT} \right)^{1/2} \int_{E_m}^{E_0} \frac{dE_i}{v_i \langle dE_i / dt \rangle} \int_{0}^{\infty} dv_r \frac{v_r^2}{v_r} \sigma(v_r) = \frac{\sinh\left(\frac{m_j v_r v_i}{kT}\right)}{\exp\left(\frac{m_j (v_r^2 + v_i^2)}{2kT}\right)} \quad . \tag{5}$$

In two-component fusion devices,²¹ a primary design parameter is the energy multiplication factor F, which is related to $\langle \sigma v \rangle_{SD}$ by

$$F = \frac{O_{ij}}{S_0 E_0} N_i N_j \langle \sigma v \rangle_{SD} , \qquad (6)$$

where Q is the energy release per fusion event.

Figure 7 shows typical results obtained with STEEF for the D-T, D^{-3}_{Re} , and p^{-11}_{B} fusion reactions. D-T and D-³_{He} cross sections were obtained from an R-matrix analysis²² which considered the T(d,n) and ³_{He}(d,p) reactions simultaneously in a charge-independent framework. The p-¹¹_B cross section was provided by a premliminary R-matrix evaluation.²³ The low temperature $\langle Gv \rangle_{M}$ values are generally higher (10-20%) then previous results²⁴⁻²⁶ due to improved low energy cross sections. Also, Hale's larger D-³_{He} cross section results in 10-15% increases over previous results²⁴⁻²⁷ in both $\langle Gv \rangle_{M}$ and F-factors for the D-³_{He} fuel system. Previous results suggest that the two-component D-³_{He} scheme, while having highly attractive features such as lack of neutron and tritium production, is only marginally capable of near-future breakeven. In this light, our results for D-³_{He} are of particular interest and indicate the need for continued study of this system.

Fig. 7. Maxwellian-averaged specific reaction rate $\langle \sigma v \rangle_M$ and two-component energy multipliction factor F for D-T, D-³He, and p-¹¹B fusion reactions.

II. NUCLEAR CROSS-SECTION PROCESSING

A. Neutron Photon Coupled Sets from ENDF/B-IV (D. W. Muir and R. E MacFarlane)

During this quarter we have used NJOY to produce multigroup cross section sets for the following materials--1_H, 2_H, 3_H, 3_{He}, 4_{He}, 6_{Li}, 7_{Li}, 10_B, 11_B, 12_C, 14_N, 16_O, 19_F, 27_{Al}, Si, 55_{Mn}, Mo, 197_{Au}, Pb, 233_U, 241_{Pu}, and 242_{Pu}. These calculations utilize 0° pointwise cross sections from the T-2 PENDF library.²⁸ P₀ through P₄ neutron transport tables were prepared in the TD-Division format using basic data from ENDF/B-IV. For all materials except ¹¹_B, ¹⁹⁷Au, and the fissionable isotopes listed above, 30 x 12 gamma-ray production matrices and 12group gamma-ray interaction cross sections²⁹ were also prepared. Gamma-ray production evaluations are not given in ENDF/B-IV for ³_H, ³_{He}, and ⁴_{He}, but the production cross sections should be very small or zero for all 3 isotopes. Thus we have entered zeros in the gamma-ray production matrices for these isotopes. For all of the gamma materials (including ³_H, ³_{He}, and ⁴_{He}), neutron/gamma coupled sets were then prepared using PROSEC.³⁰

The coupled sets were written, along with the usual TD-format edit cross sections and uncoupled cross sections, to HYDRA photostore files (OAC = TO2DWM). As before, file marks separate the three data types and the usual naming convention is followed (HIMG, H2MG, ..., SIMG, MN55MG, MOMG, ..., PU242MG). The five materials for which gamma information is absent are written in the older form (i.e., without internal file marks). The special T-2 evaluations for ⁶Li and ¹²C (Ref. 31) also have been processed. These evaluations treat the continuum breakup reactions ⁶Li(n,n'd\alpha) and ¹²C(n,n'3\alpha) with the pseudo-level formalism. The output files for these materials are on photostore files LI6AMG and C12AMG, respectively, in coupled-set format.

B. Pointwise Cross-Section Library for MCNG (R. J. LaBauve and D. George)

Over the past year and a half, T-2 has participated in supplying data for the TD-6 continuous energy Monte Carlo library.³¹ Thus far, data have been provided for 57-nuclide temperature combinations as shown in Table I. All materials shown in the table contain photon-production data (MF=13,14,15) as well as neutron data. Materials with 7000-series MAT numbers were taken from the Lawrence Livermore Laboratory's (LLL) evaluated nuclear data file (ENDL). MAT numbers 101 and 102 are local T-2 evaluations, and all others are taken from ENDF/B-IV.

Several different processing routes were followed in going from the original data files to the photostore files given in the table.

TABLE I

MATERIALS IN PENDF LIBRARY

•

MAT	TARGET	PHOTOSTORE File NAME	TEMPERATURE	MF=4 TH1N TOLERANCE	MF=3 114 TOLEDANCE	HF=3 TH 15 TOLFPANCF	PHOTOSTONE FILE LENGTH	MAX NO. POINTS PEP REACTION
101	3-11-6	MIDIA	0.	3.	10,000	.102	40157	199
102	6-0 -12	H1028	0.	10.	10.000	.100	37622	442
1120	1-н -2	M1120A	0.	3.	10.000	.100	17497	155
1129	74-w -182	м1128с	٥.	З.	.001	.001	95323	4186
1149	74-¥ -183	M1129A	٥.	з.	.001	.001	84183	3221
1130	74-# - 184	м1130д	٥.	з.	.001	.001	A3051	3363
1131	74-4 -186	H1131A	0.	з.	.001	. no 1	90013	3773
1190	2a-91	H1190AB	3.005.05	10.	.001	.001	105.99	39A1
1190	28-41	MIIGOND	9.00E.02	10.	.001	.001	118132	4871
1191	24-CR	MILGICE	3.00F.02	10.	.001	.001	128139	3479
1191	64-0H 24-05	MILGICO	9.005.02	10.	.001	.001	163811	4993
1192	24-55	M1192AD	3.005.02	10.	.001	.001	173358	4854
1103	13-41-27	H1103.	4.005.05		10,000	101	185271	4013
1105	20-04	HI105A	ŏ.	2.	10,000		138/78	2161
1196	23-v	M1106A	ŏ.	3.	10 000	5.00" 5.00 I	30440	15.00
1261	92-11 -235	H12610C	3 005.03	3.	001	001	122271	2008
1261	92-u -235	H126180	3.005.04	3.	.001	.001	01625	1549
1261	92-1 -235	HIZAIRE	6.00F.05	3.	.001	.001	74306	836
1261	92-U -235	M12618F	1.205.06	3.	.001	.001	77361	676
1261	92-11 -235	H12A1RA	0	3.	.001	.001	208489	4595
1251	92-() -235	M126188	3.00E.02	3.	.001	.001	158632	4418
1262	92-11 -23A	4126290	3.00E.04	з.	.001	.001	122239	3691
1262	92-IJ -23A	M1262AE	6.00E.05	з.	.001	.001	R6637	1699
1262	92-U -239	H1262CF	1.20E.06	з.	.001	.001	62355	652
1264	94-PU-239	M1264AC	3.00F.03	з.	.001	.001	351630	4746
1264	94-Pij-239	M126440	3.005.04	3.	.001	.001	107774	2367
1264	94-PIJ-239	HISPARE	6.00E.05	3.	.001	.001	73314	88 Û
1254	96-PU-239	H1264RF	1.20E.06	3.	.001	.001	66653	5A3
1264	94-PI-239	M12644A	0.	3.	.001	.001	153223	4479
1254	94-20-239	M]26440	3.00E-02	3.	.001	.001	134180	3611
1260	1	MI20546	A*00F*01	3.	.100	• 111	139429	4A70
1209	3-1 1-6	M1271.	ŏ.	3.	10.000	.100	17957	198
1272	3-11-7	M1272A1	0	3.	10.000	.10"	25760	317
1273	5-8 -10	M1273A	0	3.	10 000	107	50043	
1274	6-0 -12	H1276A	0	3.	10,000	101	30043	616
1274	6-C -12	H1274AA	0	10.	10.000	100	34609	518
1275	7-N -14	H1275A	0	3.	10,000	.100	140210	1152
1275	7-N -14	H12754A	0.	10.	10.000	.101	117291	1152
1276	8-0 -16	H1276A	0	3.	10,000	101	123-51	1314
1276	A-0 - 16	H1276AA	0.	10.	10,000	.100	10235*	1314
1277	Q→F	H1277A1	Ο.	3.	10.000	.100	90234	1294
1299	A2-PR	M1288A	٥.	з.	.100	5.00)	77831	1243
1275	24-01	H1295A	0.	з.	.100	5.00 ¹	57467	1199
7106	3-L1-6	H7106A	0.	3.	10.000	5.000	20442	71
7112	6-0 -12	M7112A	0.	3.	10,000	5.001	18739	49
7113		M7113A	0.	3.	10.000	K.001	28065	259
7114	74-0 -10	H7107	0.	3.	10.000	5.001	1761/	218
7143	≤n~rL ▲1→NR→03		ů.	J• 7	.100	7.00"	75500	2557
7163	79-40-147	MTIAJA	0.	3.	.100	• 01 '	50530	3771
7165	Q0-TH-232	H71654	0.	3.	100		5473V 88651	240C
7166	92-U -233	M7166A	0.	3.	.100	5.00V	11145	708
7107	92-0 -234	H7167A	Ŏ.	3.	.100	5,000	20012	58
716A	92-U - 235	H716BA	0.	3.	10.000	5.000	58799	1892
7171	92-U -234	M7171A	Ο.	3.	10.000	5.000	55773	1539

<u>1.</u> Some ENDF/B evaluations do not contain resonance parameters; that is, the cross-section data are completely described in MF=3. Materials of this type type were first processed by the TD-6 code ZERO, which shifts threshold energies in the data files to make them consistent with given Q-values, and then by the T-2 versions of the TOPFIL and ETOPL codes. ³² Included in this category are MATS 101, 102, 1120, 1160, 1193, 1269, 1273, 1274, 1275, and 1276.

2. The ENDL evaluations (the 7000-series MATS) processed are given pointwise as described above, and are generally in the ENDF/B format except for slight differences. For example, ENDL omits all isotropic angular distributions for secondary neutrons whereas the LASL code assumes these to be expressed ϵ_x plicitly. Modifications to the ENDL evaluations to make them compatible with LASL codes were made by R. Seamon in TD-6. The modified data sets were then processed with ZERO and the T-2 versions of the TOFFIL and ETOPL codes.

<u>3.</u> The remaining materials are those containing resonance parameters that were first translated to pointwise data by the MINX³³ code. Data for several temperatures were produced for each material and only those data sets containing less than 5000 points per reaction were processed directly by the T-2 codes. Those containing more than 5000 points were first processed by the TD-6 version of the ETOPL code which has the capability of processing large data sets and thinning to less than 5000 points, but it does not contain the module for processing the photon production files. All these nuclides were checked with the ZERO code before final runs with the T-2 codes.

All data sets were carefully checked by TD-6 with the aid of the TD-6 checking codes ³⁰ LOOK4, MYGOD, and COMPXS before being incorporated into the TD-6 Monte Carlo data library. Also, checks were made by generating multigroup cross sections from these data sets with the MAFK and LAPHANO codes and comparing them with multigroup cross sections derived from the original data sets.

C. LIB-IV-240 (Two-Hundred and Forty Croup Library) (P. B. Kidman)

LIB-IV-240 is a 240-group library that is being generated with MINX³³ from ENDF/B-IV data.³⁴ Last quarter the library was started and many of its characteristics were described. This quarter, several more isotopes were added to LIB-IV-240. The resulting 52-isotope library, shown in Table II, should be complete enough for most nuclear reactor calculations.

A new resonance-smoothed weighting flux was introduced in MINX. It is exactly like the old thermal-1/E-fission function except above 10 MeV where a 1/E-

TABLE II

			PENDF		ISDTXS AND BRKOXS	ISDTXS AND BROKXS	
		ENDF/B	NAME	PENDF	NAME	FRUM	
I	ISOTUPE	VER IV HAT NO	VER ND	(SEC)	VER ND	PENDF (SEC)	SICD SET#
1	H=1	1269	H1P 1	133	HIL I	612	
2	H=5	1128	H2P 1	95	HZL 1	395	A
3	H= 3	1169	H3P 1	165	H3L 1	767	
4	HE=3	1146	HE 3P 1	102	HE3L 1	279	В
5	HE-4	1270	HE4P 1	118	HE4L 1	451	B
6	LI-6	1271	LI6P 1	157	LI6L 1	667	
7	L1-7	1272	LI7P 1	159	LI7L 1	733	
8	BE=9	1289	8E9P 3	516	BE9L 1	4363	•
9	B=10	1273	B10P 3	428	810L 1	1095	C
10	8•11	1160	B11P 5	182	B11L 1	466	D
11	C+12	1274	C12P 4	156	C12L 1	420	E
12	N•14	1275	N14P 1	593	NIAL I	1257	A l
15	0+16	1276	0160 1	598	D16L 1	1096	E
14	NA+23	1156	NA2SP 2	667	NAZSL 1	981	E
13	AL#27	1143	ALCIP C	651	AL27L 1	1155	D
10	51	1194	SIP. 1	546	SIL 1	1159	8
17		1143		242		1510	8
10	1 I I	1200	11r 4	216		200	U D
20		1140		544		500	U D
20		1191	UKP 3	1641		2123	Ł
22	FF	1197	FED 2	107	1 LCCN0	1763	2
22	co-50	1190	FLF 3	10/5	FEL 1	1/02	Ľ
24	NT	1100		1251		1150	5
25	cu	1295	CUP 2	707		1266	۲. D
26	NB=93	1189	NH93P 1	2975	NBO3I 1	2179	ň
27	HD .	1287	HOP 4	532	HOL 1	900	ŏ
28	CD	1281	CDP 1	839	CDL 1	877	B
29	CD+113	1282	CD113P 1	605	CD113L 1	770	В
30	EU=151	1290	EU151P 2	986	EU151L 1	913	Ď
31	EU=153	1290	EU153P 2	785	EU153L 1	958	Ď
32	GD	1930	GDP 1	378	GDL 1	609	D
33	TA=181	1285	TA181P 4	1092	TA181L 1	1678	В
34	N=182	1128	W182P 2	2023	W182L 1	1873	D
\$5	h+183	1129	¥183P 2	1353	W183L 1	2140	D
36	₩ + 184	1130	¥184P 2	1325	K184L 1	1659	D
37	W=186	1131	W186P 2	1489	W186L 1	1726	D
38	AU+197	1283	AU197P 2	1685	AU197L 1	1542	D
39	PB	1288	P8P 2	641	PBL 1	1871	В
40	TH=232	1296	TH232P 2	3850	TH232L 1	1922	D
41	0=233	1260	U233P 5	531	U233L 1	661	В
42	0=234	1043	U234P 2	672	U234L 1	618	D
43	0-235	1261	U235P 2	2832	U235L 1	3212	8
44	U=230	1163	U23EP 2	780	U236L 1	650	D
57	U#230	1202	U230P 15	6454	U238L 1	4152	8
40	Plin 324	1203	NP23/P 1 PU3300 7	2005	NP237L 1	1546	D
47	PU-230	1000	FUESAP 3	1043		906	U
19	P11. 244	1204	FU234F 2	2000		2226	r
50	PU=241	1265	PIIZAIP A	544	PU240L 1	5/02	2
51	AM+241	1056		540	482411 1	620	0
52	PU+242	1161	PU242P 4	664	PU242E 1	020	5
				58893		69176	5

LIB-IV-240 MATERIALS GENERATED WITH MINX FROM ENDF/B-IV

THE SIGU SETS ARE (IN BARNS):
 SET A = 1920, 190, 10, 1, .1, .01
 SET B = 1000, 1000, 100, 10, 1, .1
 SET C = 1843, 102, 10, 1
 SET D = 10000, 1002, 1030, 100, 10, 1
 SET E = 1000, 100, 10, 1, .1
 SET F = 10003, 1003, 100, 10, 1

fusion peak-1/E portion has been added. Thus we now have 10^{-5} eV < [thermal], < 0.1 eV < [1/E], < 0.8208 MeV < [fission], < 10 MeV < [1/E], < 12.57 MeV < [fusion peak] < 15.57 MeV < [1/E] < 20 MeV. The intent is to make the high-energy group cross sections more appropriate for fusion calculations. The old spectrum was used to generate ¹H, ²P, ³H, ⁴He, ⁶Li, ⁷Li, ⁹Be, ¹⁰B, ¹¹B, ¹²C, ¹⁴N, ¹⁶C, ²³Na, Fe and ²³⁹Pu. All of the other isotopes were generated with the new spectrum.

After some testing, LIB-IV-240 will be released and shipped to those expressing an interest.

D. NJOY Storage Allocation Package (R. E. MacFarlane and R. M. Boicourt)

Large processing codes such as MINX and NJOY make extreme demands on the storage capacity of a computer. It is, therefore, important to make efficient use of the available storage. This requirement leads to systems of *variable-dimensioning* where blocks of data are stored in a large container array at locations specified by pointers. In many codes (MINX is an example), pointers are computed directly by the code and remain static throughout a particular calculation. Such systems are simple and efficient, but they are inflexible for problems whose storage demands change continuously during execution. In such cases, a system becomes desirable that dynamically allocates and reallocates storage space.

During this quarter we have developed a dynamic storage allocation system for NJOY called STORAG which combines features of existing systems into a simple and compact utility package. The package uses the four calls described below.

STORAG (NWMAX, NIDMAX, A) -- initializes the package and allocates space for NWMAX words and NIDMAX different data identifiers in the container array A.

RESERV (ID, NW, ID, A) -- reserve NW words in A for the data type identified by ID. The identifier can be integer or Hollerith. If NW = -1, the routine reserves all available space and returns the number of words in NW. This routine always tries to reserve space at the top of the container array. If insufficient room is available, it repacks the storage, eliminating any areas not currently in use and tries to allocate space again. Note that data in core may move around, but only if necessary.

RELEAS (ID, NW, A) -- release <u>all but</u> NW words for the data set identified by ID. If NW = 0, the ID is inactivated. The option NW > 0 is very useful in conjunction with the NW = -1 option of RESERV to read in data sets whose length cannot be determined in advance. FINDEX (ID, IP, A) -- If data may have moved after a call to RESERVE, it is necessary to use this routine to locate the desired data set at location IP in the container array.

This system has been implemented throughtout NJOY giving a great increase in flexibility with no detectable decrease in efficiency.

E. Processing Photon Cross Sections (R. J. Barrett and R. E. MacFarlane)

The ability to produce photon scattering cross sections and photon production yields was added to the NJOY processing system earlier this year. Nearterm plans call for the release of a photon production and photon scattering library in CCCC format, although it is not yet clear whether the format will consist of a combination of ISOGXS and ISONGX or the MATXS format described below (Sec. II G). Before such a library can be released however, a great deal of work must be done to develop methods of using it. Primarily this means either that methods for handling gammas should be built into existing space-energy collapse codes, or that data calculated within these codes must be made available to a separate gamma processor. For the time being, we have chosen the second alternative, employing the logic depicted in Fig. 8.

Data needed from the space-energy collapse code includes resonance selfshielding factors, zone mixture specifications, fine and coarse neutron group bounds, fine-group neutron cross sections, and zone-averaged, fine-group neutron fluxes. The 1DX code has been modified and is now capable of outputting a file called PHOCAL containing all of the necessary information.

The coding necessary to process the photon cross sections is embodied in a program called NDULG (Fig. 9). It is designed to self-shield the photon production for each isotope; collapse the neutron scattering, photon scattering, and photon production cross sections; calculate macroscopic cross sections by zone; and produce a neutron-gamma coupled set in ISOTXS format. Although the code is completely written, it has not been debugged.

F. CCCC Development (R. E. MacFarlane and R. J. Barrett)

Group T-2 continued its involvement in maintaining and improving the CCCC data files. In June, a set of revised specifications for the BRKOXS file was submitted to R. D. O'Dell of LASL T-1 for inclusion in Version IV. Proposed revisions to Version III included an option to block the f-factor record by reactions, and a parameter which specifies the number of reactions present. These revisions allow the user to generate self-shielding factors for as many reactions

Calculational scheme for producing space-energy shielded neutron-gamma coupled sets.

Block diagram of NDULG code.

as he chooses and for large group structures, without creating unmanageably large records. Both revisions have been included in the preliminary Version IV speci-fications, circulated on June 14, 1976.

<u>G.</u> <u>Comprehensive CCCC Cross-Section File -- MATXS (R. J. Barrett and R. E.</u> <u>MacFarlane)</u>

At the May 4-5 meeting of the Committee on Computer Code Coordination (CCCC), there was a great deal of discussion about the need for a comprehensive isotope-ordered cross-section file. C. R. Weisbin of Oak Ridge National Laboratory (ORNL) argued that the present cross-section files (ISOTXS, ISOGXS) were not flexible enough to handle neutron-gamma coupled sets. Furthermore, there was no provision for specifying whether the files contained microscopic or macroscopic data, or whether the data were cross sections or multiplicities (particle yields). General agreement was reached that a comprehensive file was needed which could encompass a wide variety of data, and which would have the type of flexibility discussed above. Specifications for a file called CCCCCF, developed by J. L. Lucius of ORNL, were distributed for perusal and comment. It was decided that the ORNL and LASL data groups, in conjunction with Westinghouse and General Electric, should work out a suitable file specification. In studying the ORNL proposal, we uncovered a number of difficulties which we thought should be corrected.

<u>1.</u> The file was not similar enough to ISOTXS in the way it blocked and sub-blocked matrix data. We believed this would cause undue difficulties in converting existing codes and libraries to the new format.

2. It would be difficult to skip around within the file. For instance, within a given isotope, all vector cross sections for all types of data were together, followed by all matrix data; furthermore there were no location data (LOCA) for skipping isotopes or data types.

3. There were not enough descriptors to tell the user what type of data is present in a given file; for instance, there was no way to distinguish between a neutron-gamma coupled set and neutron-induced gamma production.

4. There was no provision for coupled vector cross sections. Even when the matrix data are coupled, the vector data would not be.

5. There was a number of less significant points, including our belief that material composition data do not belong in the file.

Consequently, we chose to specify a new file MATXS to solve these problems and to incorporate other features which we felt were desirable. In addition, the new file was designed with the flexibility to incorporate additional data types, such as self-shielding factors, delayed neutron data, and delayed photon spectra.

Tentative agreement has been reached between LASL and ORNL to cooperate on the further development of the MATXS file. We have written a code which will translate an existing ISOTXS file into MATXS format and a general printing routine for MATXS. ORNL is developing a code to convert ANISN format to MATXS. These codes will be exchanged, and additional development is also under way.

H. MINX vs MC² (R. B. Kidman)

The Processing Code Subcommittee of the Code Evaluation Working Group has specified a simple reactor system that can be used to test and compare various code systems. The problem is a zero-leakage, infinite, homogeneous, ZPR-6-7, with the inner-core composition at 300°. All code systems are to begin with ENDF/B-IV data.³⁴ In an earlier comparison, the MINX/1DX system^{33,35} used at LASL gave an eigenvalue of 1.2140, whereas the MC² system³⁶ used at Argonne National Laboratory (ANL) generated a multiplication of 1.2092. A detailed investigation was initiated this quarter in an effort to explain this difference.

Collapsed 28-group cross sections from MC² were put into the 1DX format and compared on a group-to-group basis with collapsed 28-group cross sections

from the MINX/1DX system. An example of the comparison is shown in Table III for the ²³⁹Pu group cross sections. The results in Table III are percentage differences computed in the following manner.

$$% \text{ Difference} = \frac{(\text{MC}^2 \text{ X-sec}) - (\text{MINX/1DX X-sec})}{(\text{MINX/1DX X-sec})} \times 100 ...$$

In Table III, 100.00 means that the MINX/1DX X-sec = 0, while the MC^2 X-sec \neq 0; -100.00 means that the MINX/1DX X-sec \neq 0, while the MC^2 X-sec = 0. Similar results are available for every isotope in the composition and for the macroscopic cross sections of the mix.

Exact perturbation can be used to determine what effect each cross section difference has on the K_{∞} difference. In addition to the cross sections, adjoint flux and K_{∞} from the MINX/1DX system, this method requires the regular flux and K_{∞} one obtains by running the 1DX-formatted MC² cross sections through 1DX. This was first done using the fission source that LASL used in the MINX/1DX testing. The resulting eigenvalue of 1.2118 was worrisome since it did not duplicate the original MC² value of 1.2092. However, when the MC² fission source was used with the MC² cross sections in a 1DX run, the original MC² eigenvalue was duplicated. Thus, instead of the original $K_{\infty B}$ difference of 0.0048, we are now trying to explain a difference of only 0.0022.

Following through with exact perturbation theory, we can determine the components of ΔK_{∞} as shown in Table IV. An example of the particular effects of cross-section differences on the final ΔK_{∞} is shown in Table V for ²³⁹Pu. The numbers in this table actually represent the following calculation

$$\frac{\delta K}{\infty} \text{ caused by X-sec difference}} \times 100$$

One should not be alarmed at the number and size of compensating effects in Table V for this is a normal consequence of analyzing smaller and smaller integral parameter differences. As before, similar results are available for every isotope in the composition and for the macroscopic cross sections of the mix.

Thus far we have explained ~50% of the MINX/1DX vs MC^2 difference. We have also laid the groundwork for further investigation by clearly and conveniently presenting cross-section differences and their effect on K_m .

TABLE III

PERCENTAGE DIFFERENCES BETWEEN MINX/1DX AND Mc^2 cross sections for ^{239}Pu

1	SIJF	SIGA	NUSIGF	SIGTR	GXG	G=1×G	G-SXG	G=3XG	G=4XG	G-5×G	G-6×G	G•7×G	G•8xG	G-9×G	G-10×G
1	•:•55	•, 76	-2.69	1.27	4.34	3.00	0.00	0.00	0.00	3.30	0.00	0.30	6.00	0.00	0,03
5	• 7.2	. 03	•.31	•.13	.17	-14.98	0.23	3.70	2.70	3.33	3.00	8.63	3.20	9.22	0.20
3	• 55	.54	•53	. 53	1.17	=6.9B	9.36	9.30	3.00	8.23	2.07	6,03	0.23	0.20	6.07
4	•.31	•, 29	•.41	.13	+,18	5.92	•.24	5.57	2.09	3.32	8.28	0.03	3.23	0.27	3.22
5	•.10	•.32	•.53	.49	1.39	4.22	=2.72	. 25	7.08	3.79	3.80	0.27	3.77	2.77	8.33
6	+.38	•,18	•.51	.86	.74	-2.04	.18	-1.46	.15	4.34	8.00	0.33	55.5	9.23	3.72
7	. 73	• 73	•.24	•.43	€••	7.56	8.30	~ 2.36	•.64	.21	1.94	0.29	9.89	6.33	0,20
5	- 55	. 71	•.75	11	•1.36	5.44	•2.7A	•5.74	-1.67	•.13	.03	=1.86	3.23	5,23	0.22
9	. 31	. 21	•.13	•.19	•.14	52.55	1.31	4,92	•2.02	-1.21	.18	-47.95	•35.77	2.33	2.23
12	••\$4	. 24	. 15	.15	• • 91	•3.14	6.79	•.24	6.73	4. 27	-49.97	-39,37	102.23	107.70	0.00
11	•.74	•• 89	•.16	• . 79	•.26	8.26	2,13	•1.92	•2.23	•38.63	-36.84	100.23	100.70	123.30	102.32
15	• 2 6	. 30	• • 26	.23	•1.70	6.57	•5.74	•2.81	•5.92	•43.29	103.93	102.23	182.29	100.20	100.20
13	•.54	•1.05	•.78	1.21	1.89	39.39	0.00	2.56	35.27	•23.87	103.03	169,99	102,20	123.20	102.30
14	• . 54	•1.72	•.76	.92	1.30	•5*55	P.33	15.15	10.34	•28.22	103.00	103,20	102.23	102,20	107.20
13	r.º3	75 <u>ب</u> ۳	•.96	. 73	.23	1.72	=14.85	3.03	5.70	-57.47	177.00	103.73	103.30	123.22	127.33
15	•1.56	•1.31	+1,95	.23	. 59	2.29	•6.45	9, NØ	3.83	•29.72	102.00	103.23	100.30	133.22	123.32
17	•5.39	•3.24	•5.20	•5.59	-2.41	•15.13	8.30	8.92	2.20	9.49	138.88	103.28	103.38	56.56	100.20
15	•• 32	• •89	•.74	1.95	3.51	14.38	0.23	-103.20	•7.71	ð.20	3. 30	108,73	120.00	163.33	127.38
19	•2.93	•2,45	•3.05	5.96	7.82	4.50	0.33	8.20	15.23	• 37, 63	2,33	5.29	1:2.25	100.00	129.33
2 Z	•1.03	-1.16	+1,15	7.52	19.77	.88	8.23	0.20	2.23	•35.94	2,02	0.23	3.79	122,25	107.02
21	3.57	2.29	3.34	7.75	14.95	-13.78	0.70	8.88	7.30	3.33	102.80	2.20	3.23	5.23	155.66
22	5.34	5.33	5.21	17.93	51.34	•22.46	P.00	J .00	9.69	3. 30	2,20	100.20	3.32	5.39	3.23
53	•15.24	-14.75	+19,34	6.32	159.25	10.78	3.20	3.00	2.20	3.73	3,00	a .03	122,32	7.20	8.23
24	3.94	1.62	3.72	56.191	9766.47	•7.17	8.78	9.20	3.00	5.93	0.20	8.33	3.00	123.02	2.23
25	149.94	73.26	149.54	124.59	•285.04	•9.63	0.20	A,00	3.93	3.22	a.00	8.32	3.46	5.29	100.00
26	•29.33	•27.61	-29.41	5.93	83.12	15.62	0.00	3.30	3.00	2.20	3.00	9.99	3.00	0,32	8.20
27	5.72	11.30	5.58	64.55	•165.20	53.90	0.20	0.00	0.00	3.73	3.00	9,99	3,92	a. 28	0.23
23	6314.38	7595.07	6379.45	4551.96	•12.37	524.32	8.30	9.60	3.60	3.00	3,00	0,30	3.98	9.00	0.20

TABLE IV

COMPONENTS OF MINX/1DX vs MC^2 ZPR-6-7 K_{∞} DIFFERENCE

Component	δK	% of ΔK_{∞}
Absorption	+ 0.002449	+ 107,84
Fission	- 0.009201	- 405.15
Downscatter	+ 0.004481	+ 197.31
Total (ΔK)	- 0.002271	- 100.00

•

TA	BI	ĿE	V

percentage effects of minx/1dx vs mc 2 $^{239}_{\rm Pu}$ cross-section differences on the final Δk_{∞}

I	513F	SIGA	NUSIGE	SIGTR	GXG	G = 1 X G	G#2XG	G-3XG	G-4xG	G=5xG	G = 6 X G	G=7XG	G-8xG	G=9XG	G=1CXG
1	a.220	•.481	4.872	8.788	3.070	0.370	0.030	0.000	0.330	3.003	5.000	0.300	0.000	a.cca	0.203
2	8.000	. 248	. 754	2.325	9.999	. 833	8,020	0.330	0,700	0.000	0.000	6.539	0,072	0,020	0.252
2	8.338	2.718	-2.843	8.838	9.626	• . 885	.017	0.422	0.270	0.220	0.930	0.000	8.828	ด่อวอ	8.923
4	9.53%	•2,758	7.248	0.772	8.228	•.393	.071	•.057	3.370	8.830	3.9%8	0.237	0.022	8.250	0.200
5	y": 35	•2.41X	12.595	8.2.9	2.328	• 747	,390	• .034	• 117	0.020	2.020	0.210	0.000	9.2.3	6.920
5	8,234	•2.432	17.323	8.838	3.832	.129	• 653	.?51	• 310	•.075	3,983	5,290	0.330	9.975	8.337
7	5,592	•.317	1.255	3.233	5.539	•1.393	•.678	.230	. 299	- .012	•.*25	0.273	3.272	P. P. 3	0.720
8	5°95N	.145	3.347	2.222	8.720	•.513	,374	.240	.151	. 1913	001	.015	8,073	0.023	0.270
Ŷ	5.5.29	.278	4.122	8.838	3.333	•2.255	.851	•.424	. 370	. 867	 . N29 	1.273	.255	0,770	3.473
13	2.J92	.634	6.747	8.328	8,870	. 358	•.294	.278	•,372	 .884 	1.998	1.779	 874 	188	0.770
11	9.119	•1.133	5,239	8.788	9.299	• 721	• 690	.357	. 252	1,749	.610	-1.362	-1.197	• 356	-,132
12	a 90	2.861	1.5?2	8.378	3.270	•.379	069	.022	,117	.860	-1,495	 460 	• 551	- 489	- 254
13	5.939	•11.731	22.445	825.5	8.220	-1.367	ð.:70	• • 953	•. 363	.255	• 645	•,573	• 182	•.210	•.3*1
14	9,136	•9.912	17.652	5.742	7.370	. 953	0,030	255	•.739	115	•.185	•.174	•.267	•, @63	•.139
15	5.828	•5,247	14.562	9.779	3.273	.016	017	0.070	• . 9.93	.712	274	• . 688	•.081	- 665	-, 535
16	5 9 1 9	•7.822	22.757	9.223	9.299	.725	•,051	0,930	0.230	. 823	•.715	• 929	• • 031	. 224	• • • 43
17	5.370	•17,794	27.439	0.770	9.279	•.760	9.030	, 851	0,273	0.673	.021	233	• .7 . 7	•.615	219
1.5	2,122	•7.576	18.752	2.225	9.22%	, :195	8.408	- 291	•.235	8-220	a a 23	. 825	• • • 2 2	273	÷.225
19	5.995	•25.685	59.335	2.222	9,323	. 769	0.070	0.220	* 355	•.973	N. N N N	655.9	. e.s.S	.ពីមេខ	•.021
53	5.125	·12.734	17.151	2.222	3.220	. 216	3.3:3	5.936	0.323	••957	3.329	2.252	5,343	.231	• 3×3
21	3.224	13.739	•25.153	3.222	8.278	•.224	9.639	8,979	0.400	8.733	. 836	0,020	0.279	9.278	.221
22	2.990	24.572	-28.457	2.373	8.629	195	0.120	0,320	0.770	9.233	3.433	. 018	8.242	9,930	0.021
23	9.930	+23.689	42.534	9.999	5.595	711	0.020	0.070	0.200	8,222	3,630	0.033	. 2 3 5	0.220	0.0.0
S۴	8.959	1.380	4.850	2.225	9.020	•.014	7.270	0.000	8,320	8.003	8.040	0. 023	0.202	.723	៦.៤១៨
25	8.322	6.732	-19.376	3.373	9.993	. 2:15	8.230	0.920	0.177	3.020	0.032	6.330	0.233	6,991	. 371
59	9.959	•.358	.151	8.248	8.275	• . 2013	3.070	0.030	8,373	8.230	7.220	6.023	0.030	8.308	8.033
27	2.222	. 736	•.041	2.332	9.022	. 329	9.059	0.720	0.323	8.375	8.873	5.333	8.328	0.223	8.221
58	9.230	. 372	•,383	3,227	9.499	• . 330	8.030	0.020	8.373	8.878	8.050	0.279	9.339	6.655	8.328

•

21

i.

I. Leakage Corrections to Self-Shielded Cross Sections (R. B. Kidman)

Last quarter, several methods were introduced for adding zone-dependent leakage corrections to the background cross section σ_0 . The correction which yielded the largest changes is given by

$$\sigma_{0,m,eff}^{g} = \sigma_{0,m}^{g} + \frac{2B_{z}^{g}}{\pi N_{m,z}}$$
(7)

where

$$B_{z}^{g} = \sqrt{\left| \frac{L_{z}^{g}}{D_{z}^{g} \phi_{z}^{g} V_{z}} \right|}$$

- L_z^g = leakage rate from zone z for group g
- ϕ_z^g = average flux for group g in zone z
- V = volume of zone z
- D_z^g = diffusion coefficient for group g in zone z

$$N_{m,z} = \text{atom density for material } m \text{ in zone } z.$$
(8)

This change increased the very low ZPR-III-54 eigenvalue by only ~1.5%. This fact, plus a serendipitous interpretation of a fortuitous error made during the implementation of Eq. (7), led M. Becker of Rensselaer Polytechnic Institute (RPI) to re-examine the traditional formula for the diffusion coefficient. If D is defined as the current-to-flux ratio

$$D = -\frac{J}{iB\phi} , \qquad (9)$$

one can use a flux given by the B_0 approximation and a current given by the B_1 approximation to obtain

$$D_{z}^{g} = \frac{1 - \frac{\Sigma_{z}^{g}}{B_{z}^{g}} \tan^{-1} \left(\frac{B_{z}^{g}}{\Sigma_{z}^{g}}\right)}{B_{z}^{g} \tan^{-1} \left(\frac{B_{z}^{g}}{\Sigma_{z}^{g}}\right) \left[1 + \frac{3\Sigma_{z}^{g} \Sigma_{z}^{g}}{B_{z}^{g}} - \frac{\Sigma_{z}^{g}}{B_{z}^{g}} - \frac{B_{z}^{g}}{B_{z}^{g}}\right] , \qquad (10)$$

where Σ_z^g is the microscopic total cross section for group g in zone z, and $\Sigma_{s,z}^g$ is the microscopic scattering cross section. Equation (10) reduces to the conventional $1/3\Sigma_{tr}$ for small B/ Σ .

After Eq. (10) was also incorporated into 1DX, ³⁵ we obtained 1.014 for the ZPR-III-54 eigenvalue as compared to 0.9532 with the unmodified 1DX (including in both cases a net correction of + 0.021 for heterogeneity, dimensionality, and transport effects ³⁷). The new eigenvalue is encouraging because ZPR-III-54 now no longer stands out as a singularly bad critical assembly.

We have also analyzed ZPR-6-7 which is a much larger and therefore less leaky system. The change in multiplication for ZPR-6-7 (0.9708 \Rightarrow 0.9747, uncorrected eigenvalues) is about 15 times smaller than that for ZPR-III-54 and in a direction to also improve agreement with experiment. Thus, our leakage corrections appear to produce large effects when and where they are needed, and to generate small effects when leakage is relatively small.

In summary, this work has successfully identified and incorporated zone leakage corrections into the Shielding Factor Method and has demonstrated that their application can remove the long-standing low-eigenvalue problem of ZPR-III-54 with no significant penalties in computer time and with no additional problem requirements.

J. Spectral Corrections to Elastic Removal Cross Sections (R. B. Kidman)

Since more accurate multigroup elastic removal cross sections³⁸ have become available, it is appropriate to consider a new method for adjusting these cross sections to problem dependent spectra.

This is now done in $1DX^2$ via an iterative procedure between flux ϕ and elastic removal cross section, σ . At each iteration, the authors use a linear interpolation between $\overline{\xi}^{i}\overline{\sigma}^{j}\phi(u^{i})$ and $\overline{\xi}^{i+1}\overline{\sigma}^{i+1}_{e}\phi(u^{i+1})$ to determine the value at u^{i} -.66 $\overline{\xi}^{i}$ and then assume

$$\bar{\sigma}_{r}^{i} = \bar{\xi}\bar{\sigma}_{e}\phi \left| u^{i}_{-.66\bar{\xi}^{i}} \right| \phi^{i} , \qquad (11)$$

where i is the group index, ξ is the average logrithmic energy decrement, $\overline{\sigma}_e$ is the effective elastic scattering cross section, u is the lethargy, and $\phi^{i} = \int^{i} \phi(u) du$.

As Eq. (11) reveals, the locations of elastic scattering resonances do not directly influence the elastic removal cross section. This scheme was probably adopted because up to now the elastic removal cross sections provided to 1DX were also generated without directly accounting for scattering resonance locations.

The elastic removal cross sections provided by LIB-IV were calculated according to the following algorithm.

$$\sigma_{ro}^{i} = \int^{\alpha} dE \phi_{0}(E) \sigma_{e}(E) P(E \rightarrow E' < E_{i+1}) / \int^{i} dE \phi_{0}(E) , \qquad (12)$$

where \int^{α} is an integration over that part of group i which can possibly elastically scatter a neutron out of the group, \int^{i} is an integration over group i, E is the energy, $\phi_{0}(E)$ is the arbitrary intragroup flux weighting spectrum, $\sigma_{e}(E)$ is the elastic scattering cross section, and $P(E \rightarrow E' < E_{i+1})$ is the fractional probability that an elastically scattered neutron of initial energy E will be scattered out of group i. Equation (12) explicitly accounts for scattering resonance locations in the computation of elastic removal cross sections.

The new method makes simplifying assumptions about the intragroup shape of ϕ_0 , ϕ , σ_e , and P in order to compute two new values of the elastic removal cross section

$$\sigma_{r1}^{i} = \int_{a}^{\alpha} du \phi_{0}(u) \sigma_{e}(u) P'(u) / \int_{a}^{i} du \phi_{0}(u) , \qquad (13)$$

$$\sigma_{r2}^{i} = \int^{\alpha} du \phi'(u) \sigma_{e}'(u) P'(u) / \int^{i} du \phi'(u) , \qquad (14)$$

where the primes refer to the assumed simplified shapes. The $\phi_0'(u)$, $\phi'(u)$, and $\sigma_e^i(u)$ shapes are derived from 3-point Lagrange interpolation schemes, while P'(u) is simply given a linear shape.

The relative values of σ_{r1}^{i} and σ_{r2}^{i} are a measure of how the gross intragroup behavior of ϕ_{0} and ϕ can affect the removal cross section. Thus, at each iteration in the new method a new effective elastic removal cross section is computed by

$$\overline{\sigma}_{r}^{i} = F_{e}^{i} \sigma_{r0}^{i} \sigma_{r2}^{i} / \sigma_{r1}^{i} , \qquad (15)$$

where F_e^i is the elastic self-shielding factor. First order cross-section changes required by an averaging with the new flux ¢ are thus introduced without losing the dependence on resonance location since all iterations are directly related to the original cross section.

Results from the new procedure and 1DX are compared in Table VI which shows the final ZPR-III-54 ²³⁸U elastic removal cross sections in terms of the initial cross sections. The striking feature of these results is the much larger changes developed by 1DX than by the new scheme. Similar results exist for all isotopes in the composition. The new eigenvalue is ~0.9% less than the 1DX eigenvalue.

Since the LIB-IV elastic removal cross sections are very realistic, the new method for introducing spectral changes appears to give much more reasonable results than the old 1DX method. Future work will consist of introducing better self-shielding effects for the transfer cross sections, introducing spectral corrections to all cross sections and, of course, establishing the effect of all of these modifications on more than one critical assembly.

TABLE VI

1dx New Method Final $\overline{\sigma}_r$ Final or LIB-IV LIB-1V Initial $\bar{\sigma}_r$ initial $\overline{\sigma}_r$ ÷ Initial $\overline{\sigma}_r$ Group (barns) 1.0000 .7553 1 .0322 .0284 2 1.7225 1.0402 3 .0277 1.3767 1:1308 4 .0298 1.1838 1.1782 5 .0308 1.2489 1.1968 6 .0422 1.3071 1.1506 .0784 7 .9860 1.0313 8 .1848 1.0027 1.0204 9 .2167 .9759 .9934 10 .2479 .9690 .9679 11 .2768 .9785 .9547 .9836 .9911 12 .3048 13 .3375 .9649 .9772 .3647 .9800 14 .9886 15 .3870 .9742 .9766 16 .4086 .9708 .9738 17 .4152 .9521 .9527 .4248 18 .9752 1.0047 19 .4367 1.0174 .9913 20 .4435 .9570 .9448 .4533 21 .9706 .9624 22 23 .4618 • 9552 .9724 .9467 .4704 .9521 24 ,4846 .9717 .9584 .4938 25 .9645 .9710 26 .5031 1.0088 .9773 27 1.3920 .3662 .9687 28 .5210 .9568 .9590 29 .3551 1.4957 .9517 30 .9004 .5434 .9494 31 .3741 1.1823 .9412 .3099 32 1.4371 .9361 33 .2253 1.8655 .9353 34 .2109 1.8681 .9184 35 .2541 1.4144 .9180 .8581 36 .4264 .9142 37 .2859 1.5043 .8948 38 .0399 5.8707 .7525 39 3.1446 .0595 .7209 .0355 40 4.2387 .6786 .1425 .7551 41 1,5052 42 .0264 5.1150 .7748 43 .0300 4.6318 .6656 44 .7694 .1772 .6868 45 .0510 3.3696 .9271 .9934 46 .1408 1.0242 47 .1461 .8451 .7461 .5908 48 .1486 .5938 49 .1499 .9809 .9550 50 .0000 0.0000 0.0000

A COMPARISON OF TWO SPECTRAL COMPARISON SCHEMES ON ZPR-III-54 ²³⁸U ELASTIC REMOVAL X-SEC

K. Effects of Weighting Spectra on Group Collapse (R. B. Kidman)

The purpose of this study is to compare the effects of group collapsing with an actual spectrum vs collapsing with an arbitrary spectrum. We have performed this comparison using the Processing Codes Subcommittee's infinite homogeneous ZPR-6-7 specification. The procedure is outlined in Fig. 10.

If one begins with the 50-group $CCCC^{39}$ format library LIB-IV, ³⁸ uses $CINX^{40}$ to convert a 50-group $1DX^{35}$ format library, and performs a K_{∞} and 28-group crunch calculation with 1DX, a value of $K_{\infty} = 1.2140487$ is obtained. On the other hand, if one begins with LIB-IV, uses CINX to crunch and convert to a 28-group 1DX format library, and then performs a K_{∞} calculation with 1DX, he will obtain $K_{\infty} = 1.2191568$. Thus, for this problem, we see that collapsing with an arbitrary flux increases K_{∞} by 0.0051081, or 0.42%.

Looking further and in more detail, Tables VII and VIII show, respectively, ²³⁹ Fu resonance-shielded cross sections resulting from collapsing with the actual spectrum and from collapsing with the arbitrary spectrum. (In the interest of presenting compact tables, the uninteresting G-9XG and G-10XG terms were dropped.) Table IX is a more convenient and comprehensible percentage comparison between Tables VII and VIII

Table IX =
$$\frac{\text{Table VIII} - \text{Table VII}}{\text{Table VII}} \times 100$$

To determine how each of these differences affects K_{∞} , we have invoked exact perturbation theory (which combines the cross-section differences, flux, adjoint flux, K_{∞} , K_{∞} , and material densities). Table X shows what percentage of the final ΔK_{∞} (= 0.0051081) is caused by each cross-section difference.

What we find is an enormous number of differences that need to be explained. The ~40% differences in the transfer cross sections of Table IX are a result of *truncation* effects caused by limiting the number of downscattering terms to 10 in both CINX runs. All of the other differences and effects are real and are caused by the different weighting spectra used. Notice that groups 2-6 and 22-26 display the fewest changes because these groups also exist in the 50-group structure. (Group 27 is composed of 3 fine groups, group 28 is composed of 5 fine groups, and each of the unmentioned rest is composed of 2 fine groups.) Also note that there are a considerable number of compensating differences. Finally, one should note that the largest cross-section changes do not necessarily lead to the largest effects on K_{∞} .

TABLE VII

EFFECTIVE ²³⁹Pu cross sections from 1dx collapse

I	SIGF	SIGA	NUSIGE	SIGTR	GXG	G-1XG	G-2XG	<u>G-3xG</u>	G-4XG	G=5XG	G-6XG	6-7XG	<u>G-8</u> xG
1	2.142E+03	2.0095+00	8.590F+00	3.564F+60	6.048F-01	0.	и.	Ø.	Ø.	И.	Ø.,	А.	P.,
2	1.7356+#0	1.736E+03	6.147E+00	4.2825+40	8.699F-01	6.4655-02	И.	ก.	я.	я.	0	ด	И.
3	1_8876+00	1.884E+00	6-171E+00	4.752E+00	1.300E+09	1.1826-01	5.518E-02	6	ด	ด	P.	в .	я .
4	1.9236+00	1.9346+00	6.006E+00	4.977E+60	1.4226+00	3.4746-01	2.7.148-01	1.4466-01	я .	<i>а</i> .	8	ด	я.
5	1.749E+#8	1.773E+00	5.2941.100	5.167L+80	2.45RE+40	5.322E-01	3.354E-01	4.243E-01	2,1658-01	Й.	и	ด้	й.
6	1.6326+40	1.70AE+00	4.83NE+00	5.86AE+08	3.5371+00	5.387E-01	2.6826-01	3.5768-01	3.863E-41	2.01HE-01	Р .	ด่	ด
7	1.5548+40	1.6998+30	4.550 E+00	6.9598.60	4.8262+00	3.2266-01	2.3496-01	1.928E-01	2.546E-01	2.4845-01	1.363E-01	Й.	И.
8	1.4928+60	1.682E+00	4.357E100	7.9228+40	5.8498+119	2.8448-91	1.738E-01	8.728E-W2	1.1A8E-01	1.0J5E-01	1.2906-01	7.525E-02	й.
9	1.5336+00	1.751E+00	4.437E+00	9.374Е+ИЙ	7.3206+00	2.5286-01	8.887E-02	7.387E-02	A.643E12	6.4-16E-95	e*esse*n5	9.915E-02	5,5818-82
ĮØ –	1.5896+80	1.8168+-10	4.5866+40	1.079E+01	8.664E+20	2.4556-41	4.648E-02	3.188E-02	5.842E-95	5.121E-05	4.502E-02	4.691E-02	И.
11	1,61:30+80	5°N12F+A%	4.619E+00	1.19PE+41	9.6556+40	5.01125-01	M.404E-02	5.5435-45	1.673E-02	2.371E-02	1.449E-02	ю.	а.
15	1.6206+00	5.149E+00	4.6076+00	1.273E+01	1.031E+01	2.4566-81	1.976E-02	6.1500-03	1.236E-05	1-5336-95	0.	й.	Й.
13	1.6#6E+8P	2.413E+UA	4. A 49E+0A	1.320E+01	1.047E+01	3.107E-01	И.	1.130E-02	1.2526-03	6.475E-43	Й.	Й.	Р.
14	1.816E+02	5.853F+00	2.555F+00	1.407E+01	1.093E+01	2.71-9E-01	И.	4.263E-04	4.366E-03	2.744E-03	0.	й.	Й.
15	5.395E+NN	3.533E+07	6.0146+00	1.527E+K1	1.1558+01	1.846E-01	3.905E-02		1.315E+03	8.371E-04	а.	n.	Р.
16	2.4461+66	4.515E+08	7.02AE+00	1.671E+01	1.2108+01	1.7932-01	5.0086-02	n.	И.	H.728E-04	и.	и.	и.
17	3.1796+00	6.4931+82	9.13/E+00	1.967E+61	1.268E+41	9.8321-02	0.	2.3565-92	И.	И.	.	И.	и.
18	4.037E+**	7.385E+04	1.1616+41	1.948E+01	1.1902+01	4.732101	и.	4.6878-05	1.2165-02	n. 1 5005 00	и.	и.	и.
19	5.9928+80	1.647E+01	1.7221+01	2.200E+01	1.1/6[+01	1.0812-01	<i>и</i> .	ы .	7.3776-03	1.5002-04	n.	<i>n</i> .	и.
20	1.945E+00	1.4416+01	2.2452401	2.30/E+01	1.1505+01	1.0972-01	¥ ³ •	N	N. G	2.4005-43	0. A	и. а	n. a
21	0.7450400	1.5906+91	2.3200+01	2.0406+01	0 7085.40	1.7036-01	VI .	"• •	<i>n</i> .	". a	<i>n</i> .	". a	n.
22	1.075.41	2.04/2401	4.1070101	3.0336+01	4 017E100	1.4105.41	12 ·	"• 0	a	". 0		"• a	и. а
23	1.39/6+01	3.0496+01	1 9776101	5.7456+01	0.013CTWU	1.0192-01	** • (A	и. а	r'.	a	n	<i>"</i> .	и. а
24	3.1315+01	5.3205+61	B 6716101	5 3105+01	-1.0092-07	1 3705-01	27 •	"• 0	0	ä.	а а	й• а	и. а
2.2	3 01/1FA00	1 AZAFAMI	2 3605+01	2 240F+01	5 5685+00	1 2025-01	τ'e 14	и. А	a	й .	ä.	a a	й. А
27	5 309F431	A 221F+01	1.4655+02	6 317F+01	=1.905F+01	8.7/8F+42	И.	ä	а а	й.	8		й .
28	1 1585401	1 3146+01	3. 32AFAR1	2 100F+01	8.760F+40	2_404F=03	<i>а</i> .	а.		а а	0	0	я.
60	TOTADT	10J146401	303505701	C			~.	···•	~.	**•		···•	

TABLE VIII

EFFECTIVE ²³⁹Pu CROSS SECTIONS FROM CIXN COLLAPSE

I	SIGF	SIGA	NUSIGF	SIGTR	0X0	<u>G-1×G</u>	G-5XC	G-3XG	G-4XG	G-5XG	6-6XG	G=7XG	G-8XC
1	2-141E+80	2.009E+00	8.581E+00	3.56PE+00	6.1938-01	р.	И.	0.	0.	0.	0.	0.	й.
2	1.7352+40	1.736E+84	6.147E+0P	4.21.PE+00	8.6958-41	5.2566-42	И.	ត.	0.	а.	0.	и.	и.
3	1.8496+80	1.884E+00	6.171E+00	4.732E+00	1.307E+00	1.1871-01	5.5218-02	0.	а.	Й.	Й.	и.	и.
4	1.9236 .00	1.9346+07	6.0P6E+00	4.9726+00	1.451E+00	3.4726-01	2.704E-01	f_449E=01	а.	Й.	и.	И.	и.
5	1.7496+30	1.7738+00	5.291E+00	5.167[+00	2.4538+88	5.331E-01	3.354E-01	4.2436-01	2.169E-01	۴.	n.	и.	и .
6	1.6326+00	1.7.18E.00	4.A3PE+00	5.868E+08	3.5256+00	5.359E-01	2.682E-01	3.576E-01	3.863E=01	5.055E-01	0.	и.	и .
7	1-557E+38	1.698E+00	4.561E+00	6.883E+00	4.763E+00	3.33ЛЕ-И1	2.349E-K1	1.92AE-01	2.546E-01	2.484E-01	1.366E-01	и.	и.
8	1.4426+00	1.6826+04	4.337E+00	7.943E+60	5.9225+00	2.717E-01	1.73AE-01	8.728E-02	1.18AE-01	1.465E-01	1.29NE-01	7.532E-W2	r.
9	1.5336+-10	1.751E+00	4.437E100	9.368E+07	7.31/E+09	2.5096-01	8.6815-05	7.3H7E-02	4.643E-02	6.00AE-02	6.627E-02	5.007E-02	3,4186-02
10	1.5696+40	1.8156+02	4.585E+00	1.07AE+01	8.657Е+ИЙ	2.4406-41	4.6306-02	3.347E-42	2.8956-02	2.171E-02	2.682E-02	2.4345-92	2.45454442
11	1.6011E+00	2.0176+00	4.6201100	1.1952+01	9.653E+00	2.11/Е-И1	4.4070-02	2.248E-02	1.678E-02	1.5556-02	R. H97E-03	1.1116-92	1.1436-02
12	1.6718+00	2.1136+08	4.6/156+80	1.2756+01	1.033E+01	2.4738-01	1.9846-02	6-135E-93	1.2446-02	7.558E-05	5.203E=03	3,4906003	4.340E-03
13	1.6892+00	2.424E+08	4.856E+UØ	1.325E+01	1.0518+01	3.1478-01	8.	1.129E-02	1.2518-45	4.5426-05	3. 302E=43	2.33/6-03	1 0375-03
14	1.8216+80	2.854E+00	5.234E+112	1.405E+01	1.0926+01	2.7158-01	и.	4.328E-04	4.356E-05	1./15E=05	1.10/1-05	1.0275403	1. 4.212-03
15	5.0926+110	3.5378+00	6.0146+00	1.5266+01	1.1566+01	5.0356-01	4.4512-02	Й.	1.3356-03	5.5165-04	6.457E=04	3.21/E=04	3 171E-04
16	2.4958.00	4.5976+08	7.174E+@A	1.686(+01	1*5166+01	1.473E-01	4.7095-02	G.	v .	7.3876-04	1.01/5-04	4 34/15-05	8 9596-05
17	3.3:32.00	6.433F+60	9.4416+60	1.982E+01	1.5496.01	1.544E11	И.	5.030E-05	"	* ••	2.1040.404	8 1805-45	2 1175-45
ÌA.	4.23PE+48	7.382E+@8	1.15AE+01	1.9492+01	1.1936+01	4.316E-01	И.	4.5818-05	1.3505-02	1 4755-00	и. а	A 1070-03	3 0495-45
19	5.9532+10	1.042E+01	1.710E+01	2.2346+01	1.174E+W1	1.781E-01	И.	и.	5.2342-05	1 0445-03	"• a	n.	a
50	8.673E+09	1.521E+01	2.492E+01	2.668E+01	1.129E+01	1.7296-01	и.	и.	и. а	1.0002-03	- 000E-04	и. А	я
21	9.216E+00	1.713E+01	2.648E+01	2.831E+41	1.1016.01	1.747E-01	и.	ю .	n. 0	"• a	6	2 6075-04	a a
5 Z·	1.45"E+01	2.697E+81	4.165E+01	3.6536+01	9.39AE+00	1.776E-01	и.	и.	* .	a	a a	0	9. 688E+85
23	1.597E+01	3.0498+01	4.5119E+01	3.745E+01	6. A1 3E+00	1.6195-01	и.	и.	¹ .	a	a.	R.	0
24	3.7316+41	5.3268+01	1.0726+02	5.33AE+01	-1.2235-02	1.463E-01	и.	и.	•	4 .	и .	a a	8
22	3.020E+01	5.973E+01	8.621E+Ø1	5.230E+01	-7.557E+00	1.5716-01	VI	и. а	a.	a a	ñ.	8	0
26	8.214E+40	1.634E+01	2.360E+01	2.200E+01	5-541E+00	1.2526-01	2 .	"• a	a.	ด	a a	0	0
27	4.226E+01	6.754E+01	1.214E+02	5.242E+01	-1.517E+01	1.144E-01	U .	". 0	<i>v</i> .	и. В	a.	8	8
28	3.052E+02	4.437E+02	8,770E+02	2,284E+02	-2,153E+02	4,4532-02	ω.	u è	w .	"·•	· •		-,

TABLE IX

PERCENTAGE DIFFERENCES BETWEEN 1DX AND CINX COLLAPSED ²³⁹Pu CROSS SECTIONS

<u> </u>	SIGF	SIGA	NUSIGF	SIGTR	0X0	G-1XG	G-2XG	G-3XG	G-4xG	G-5XG	G-6XG	G-7XG	G-AXG	G-9XG	G-19xG .
1	04	02	11	.11	2.41	0.90	8,00	0.00	8.00	0.00	ถ.ยศ	ดูอด	0,10	N.00	ห_ถด
2	00	00	60	0.00	05	-18.69	0. ИЯ	и.иа	8.09	ห.คด	ห.ุดต	ดู้่หด	ดุ้่หด	ต่าต	ถุ้หต
5	00	09	~ .00	09	.01	.39	.21	ด.หด	0.00	и. ия	и.ии	и, иа	0,00	ห. หต	ย่อว
4		69	06	0,13	05	- .05	0.00	.17	И.ОО	0.00	и, пл	ស ្ដែព	อังด	<u>ค.</u> คด	0.00
5	00	(19	ИА	N. 04	.15	.16	8.00	и.ри	.18	8.00	ท .ทด	ห. หต	0,110	0,10	ห.ลด
6		00	КА	ИИ	32	+. 53	0.10	и.ни	ด.ผด	. 20	0.60	0.00	2,39	0.00	6.40
7	• 50	05	.24	-1.09	-1.30	3.50	៤.ពេ	и.ии	ด.หต	-, 40	22	ต่อก	២, ពព	៤.១៣	8.00
8	00	00	00	.20	. 39	-4.47	ូពក	ด.หด	. คต	- 40	- ุ้หต	-2.57	9,90	0.08	0.00
.9	00	иа	40	15	20	 77	-2.33	ค.หง	ดูหห	ดิดด	ห.เวด	-40.82	-38,91	0,00	6.00
10	01	65	01	13	- JA	1.43	40	4.97	ອຸຄຄ	0,00	-40.42	-39.60	. 112	. 01	6 66
11	- 52	.01	.45	00	65	-3.52	. 26	.21	. 27	-42.84	-38.61	. 01	. 01	. 01	. 11
15	. (15	.18	.05	.16	.16	.68	. 39	. 117	.64	-4- 47	. 01	. ии	.00		
13	•15	.45	.15	.34	. 35	-NS	0.00	13	47	-29.85	. ยด	. NO	ี ยด	. 61 9	
14	•53	. 41	•53	.16	08	-2.65	0.10	1.53	55	-37.56	ับด	้ดล	้ดด	โดย	้ดด
15	. 61	•15	. 11	- .08	.13	10.05	13.97	и. ия	1.53	-34,11	ุ้่มค	ันต	ังต	. 60	10
10	5.05	1.42	5.05	.86	.03	-17.82	-5.98	A.NA	0,00	-38,24	. (10	้ดด	ับด	27	. 11 9
17	3.91	-,93	3.91	.78	2.17	59.07	ห.เห	11.66	ผู้ ผู้ถื	ด้หล	้หต	ับด	ับด	้ดด	
18	֥55	03	- .55	. 64	.18	-12.49	ห.เด	-2.27	11.66	ห.้หด	ห. หด	. 60	. 40	ัยด	. 10
19	66	43	66	27	15	-5.50	0_ពេ	0.00	-2.27	11.66	ห่อด	ด้หด	. 40	.10	42
Su	9.16	5.60	9.16	3.12	15	1.87	២, ពេ	เมื่อด	0.00	-311.54	0.10	6,00	ถิ่ผด		้ผส
21	4.81	7.15	4.81	6.91	6.60	10.37	0.00	ต. หต	0,00	0.40	. 00	0.10	0.00	៧	
22	06	00	80	20	00	3.15	0.10	0,00	ผ่มด	ห. หห	0.00	. 00	<u>я</u> из	4 42	ดับด
23	20	60	00	00	.00	. () Ø	ย่อด	ห่หห	ย เกต	ผ ู้ ผล	0.00	ดั้ผด	. 40	N 80	มันต
24	60	00	03	.00	1.09	00	ยั่งด	0.00	0,00	0.00	0.00	ย่ผด	ดั้นด		หันด
25	00	00	08	ия	14	.10	0,00	ผ่อด	ผู้หม	0.19	<u>и</u> и я	ถังด	a aa	, aa	
5.6	60	48	68	40	- 4B	-2.37	0.00	0.00	0.00	0.00	ห. หต	ดัดถ	0 40	6 64	a aa
27	-17,14	-17.85	-17.14	-17.02	-20.38	30.78	0,00	0.00	0.00	0.00	8 40	0.00	6 99	6 40	4 44
59	2536.75	3276.51	2536.75	942.63-	2556.79	1752.56	8.40	0.00	0.00	6,66	0.00	0.00	6.00	0.00	8 ୍ ଧମ

··· ···•--

TABLE X

PERCENTAGE OF ΔK CAUSED BY ²³⁹Pu CROSS SECTION DIFFERENCES

<u> </u>	SIGF	SIGA	NUSIGF	. <u>SIGIR</u>	GXG	<u>G-1xG</u>	<u>e-5xc</u>	G-3XG	G-4XG	G-5XG	<u>G-6xG</u>	G-7XG	G-AXG	<u>G-9xG</u>	G-19XG
1	0.000	.005	089	ด.ดหต	0.000	0.009	0.000	ค.หลด	0.00-1	H. ABA	0.000	0.000	0.0 00	ด.วยก	ดูกุลอ
2	0.000	.400	~୍ଗମ୍ଚ	0.00 0	0.000	019	0. 040	и.ина	ดุดแล	ด ตางด	0.000	ดินแต	ถ.ผงก	ନ୍ର ମଧ୍ୟର	0.623
3	0.000	. 020	៧១៧	0.00	и.000	คมผ	.ពេសព	а.ииа	ด.ผมด	ผ ู่ ๆ ผด	ด.ถงด	ต_หมด	0.000	ส.าหล	ຄູ່ພາສ
4	0.000	.620	000	ଅ.୦ଡମ	п. пюп	001	ด.แทน	. 401	ดูดหล	0.000	6.040	0.000	0,ଟଧ୍ୟ	ค.วหล	ด ู กษุ ต
5	0.000	.000	- ดเวล	6.000	ମୃତ୍ତ ମ	.013	а. вия	и.иий	.001	ห.ุกกห	0.130	ดูสหด	0.000	0.9-10	0.ເມລ
6	6. 630	. 6 11 2	000	0.000	ด_วยถ	015	0.010	0.000	и. АИА	.0.15	P.000	ดูดแก	ดูกอด	6.003	0.610
7	P.000	.165	3.546	0.00	0. 080	.225	ด.ดหด	0.040	ค.คงธ	000	.ศมา	ค ุกหด	0.040	ຄໍາທາ	ด.ดแด
8	A. 404	. 608	767	0. 900	คุดหต	184	_ ด เทด	ด.หลด	.คคถ	000	- .0µ0	- ଜଣ୍ଡ	ด ูดยด	0.440	୶ୢ୶ୠ୶
_9	P. C N A	. (10.3	023	0.0 0	ด.ดยห	041	- .Ø62	ค.หงด	ด.ุคหถ	ຄ.ຄ.ເຕ	0.040	562	-,117	ด.แหล	ຄູ ດລຄ
10	6.060	.139	124	a .000	0.000	.076	Ø(IA	.173	ด.กหร	0. -100	- A72	737	.389	. 486	ຄູດທອ
11	0.000	-,028	.253	0.010	0.000	143	_ព-)1	.003	.003	- ⁸⁶⁵	- 296	.686	.5.14	.172	• 691
Į2	6.000	767	.596	0.000	ด.ดยห	.017	. 445	. ผงด	. 686	352	. 598	.245	.258	.509	.114
į3	0.00 0	-2.385	2.057	0.0 00	0.010	. 949	ด.หแด	001	000	-,158	.251	.234	.085	.163	.133
14	6.690	-1.548	2.169	A. ANA	ମୃକ୍ର ପର୍ଚ୍ଚମ	013	8.000	. ИКА	เหหต	965	.043	.079	.145	.030	• ⁻¹ h3
15	0.000	-,454	.066	0.000	ดูดเงว	037	- _ИИВ	ด.ผมด	. ៨៧១	010	ូ៧ 3 ក	.ព42	.034	. 934	.017
jo –	0.900	-4.143	8.825	ห.หงด	0.040	. ศงก	.019	ด ผงด	ดูหมด	-, AUS	. 11/15	.012	.015	*01S	.017
17	P. 000	1.307	9.251	0.040	ด.ดเด	449	0.000	430	ดูดหล	ดูปแต	408	101	. -183	_คสร	_P(17
18	P.440	.172	-1.987	и.ара	៧.៨០៨	. 437	ด.ดดด	. 11-10	021	ดูดเมต	N 00	001	• 6119	.601	. 642
19	0.000	2.095	-5.873	ด.ผมด	P. 060	• 658	и. 0и0	ห.หเด	.045	040	ด เช่งถ	ମ୍କୁ ମଧ୍ୟମ	- 691		. ៧ : 1 : 1
20	0.040	-21.798	57.104	ด.หมด	0.004	016	ด.ถมด	и.иия	ด ดเมด	. ผ งห	N. N-10	ดู้หมด	0.909	001	
21	6 .000	-14.639	15.399	ด.เหต	ด_ดนห	010	0.000	ถ.หงด	ถ.ผงผ	ด.ผแห	450	п . «Ил	0.000	0.000	- 644
22	0.000	. ពមគ	040	8.090	0. 000	006	0.000	ต.หมห	a .aua	ด.ดงด	0,000	019	ອຸດແຄ	ดุดอส	0,000
23	0.109	<u>,</u> 000	000	0.000	0,000	. 900	0.000	ด.หหด	P.000	ดุ้หมด	ดุงหต	6.043	- 693	6.690	ดุดงเก
24	0.000	_ ด เป ต	000	ଡ.ଡଥର	0.000	- 6 98	ด.ดแด	о _иио	ด.ดหุด	ด.ดหต	ດູດທດ	ดูดแด	ค_คมด	NN2	ดิตะด
25	ค.คงส	.040	000	0.010	0.ดเว	.0.10	ดูอเหต	ดูหนด	ด.ดหถ	ด_ดหด	ดูดหด	N°UNU	ଜ.ଜନ୍ଜ	ດູດເງດ	001
26	0.000	.000	680	0.000	ต. ดดด	~ _000	0.000	ดุ แหด	ด.ดหล	0.000	ดูดหต	ด_ดหด	ดูดผด	ดูดดด	0.0H3
27	0. 000	•177	-,253	0.000	0.000	-,000	0.000	0.000	0.000	ดูดหด	ค ุดถด	ด ดเล	0.600	ລູ ດຍຸດ	P.080
28	0.000	-,095	.164	0.000	0.000	.000	6.000	0.000	6.600	ดูดอด	ନ୍କରର	ନ୍କରର	0 ,000	0,000	0,000

Similar complete results for the other isotopes in the ZPR-6-7 composition and for the composition as a whole can also be provided upon request.

The value of this work is that for the first time the excruciating details of weighting function-caused differences are completely and conveniently presented to highlight the kinds of effects to be expected from using various weighting spectra. It will be interesting to repeat this work after 1DX has been modified for gross spectral changes on all cross sections. We would expect the differences to be much less than we see in the present work.

L. Improved Cross Sections for Thermal Reactor Analysis (R. E. MacFarlane and R. Boicourt)

With the support of the Electric Power Research Institute (EPRI), the NJOY nuclear data processing system is being extended to generate improved cross sections for use in the analysis of thermal power reactor systems. During this quarter, we have concentrated on developing improved data for EPRI-CELL.⁴¹ This code is designed to produce self-homogenized few-group cross sections for typical power reactor cells. Thermal range calculations are based on THERMOS⁴² and epithermal calculations are based on GAM-1⁴³ modified to use equivalence theory in the manner of the WIMS⁴⁴ system.

The thermal library for EPRI-CELL contains multigroup capture and fission cross sections, the group-to-group scattering matrices, and other quantities required for the thermal flux and power calculation. A new storage procedure has been implemented for the scattering matrices which cuts the storage required in half. Furthermore, a temperature interpolation capability has been added for both cross sections and matrices. 'Since all cross sections produced by NJOY have been accurately Doppler broadened, interpolating between temperatures on the library tape provides accurate cross sections with a smooth temperature dependence without requiring the use of resonance parameters. In addition, the size of the library can be further reduced since it is not necessary to provide scattering matrices at so many intermediate temperatures.

The fast library for EPRI-CELL contains cross sections for fission and capture; matrices for P₀ elastic, P₁ elastic, (n,2n), and inelastic scattering; self-shielding factors for fission and capture; and fission $\overline{\nu}$ and χ data. All these data are produced by the current version of NJOY; however, self-shielding factors are computed using the narrow-resonance approximation. In a thermal reactor, the strong broad and intermediate resonances in the 0.1-100 eV range are very important. In order to treat these resonances more accurately, a simple infinite medium flux calculator has been added to NJOY. It is assumed that the heavy absorber is mixed with a light moderator so that all resonances are narrow with respect to moderator scattering. The weighting flux for group averaging is then obtained from

$$\phi (e) = \frac{F(E)}{\phi_0 + \phi_t(E)}$$
(16)

where F is the solution of

$$F(E) = \frac{1}{F} \int_{E}^{E/\alpha} \frac{\sigma_{e}(E')F(E')}{(1-\alpha)E'[\sigma_{0} + \sigma_{t}(E)]} dE' .$$
(17)

In these equations, σ_0 is the moderator cross section per absorber atom, σ_t is the total absorber cross sections, σ_e is the absorber scattering cross section, and $\alpha = (A-1)^2/(A+1)^2$. Equation (17) is solved by iteration, using the pointwise cross sections available within NJCY. Above some preselected energy, the solution is assumed to be F = 1/E (i.e, the narrow resonance limit). This procedure gives self-shielding factors which incorporate broad resonance effects in a manner consistent with the equivalence principles used in EPRI-CELL.

III. HTGR CROSS SECTIONS AND DEPLETION CALCULATIONS FOR REACTOR SAFETY ANALYSIS (R. J. LaBauve, M. G. Stamatelatos, and T. R. England)

The LASL 9-group cross-section library for HTGR end-of-equilibrium cycle safety analysis has been expanded to include 21 nuclides. These are as follows.

			ENDr/B-	
	Nuclide	MAT NO.	VERSION	Region
1.	B-10	1155	III	Core
2.	C-12	1165	III	11
3.	0-16	1134	III	11
4.	Si-28	1194	III	11
5.	Xe-135	1294	IV	*1
6.	Sm-149	1027	I	11
7.	Th-232	1117	III	TI
8.	Pa-233	1119	III	T1
9.	Pa-233	1297	IV	11
10.	U-233	1260	IV	11
11.	U-234	1043	I	T1
12.	U-235	1157	III	11
13.	U-236	1163	III	11
14.	U-238	1158	III	¥1
15.	Pu-238	1050	I	11
16.	Pu-239	1264	IV	T 1
17.	Pu-240	1265	IV	11
18.	Pu-241	1266	IV	¥1
19.	Pu-242	1161 .	III	1 1
20.	B-10	1155	III	reflector
21.	C-12	1165	III	reflector

Cross sections for every nuclide in the above list are available for 12 temperatures including 300, 500, 600, 800, 1000, 1200, 1500, 1700, 2000, 2300, 2600, and 3000 Kelvin.

First Pass CINDER code calculations for actinide buildup and depletion and associated fission product absorption are in progress.

IV. COMPARISON OF MONTE CARLO AND S CALCULATIONS WITH ⁷Li PULSED SPHERE EXPERIMENTS USING ENDF/B-IV DATA (W. A. Reupke [Georgia Tech] and D. W. Muir)

As a test of nuclear data and methods, the neutron leakage fluence for a 0.5 mean-free-path ⁷Li sphere pulsed with 14-MeV neutrons ⁴⁵ was calculated with one-dimensional discrete ordinates and pointwise Monte Carlo particle transport codes using ENDF/B-IV data.

The pulsed-sphere problem specification⁴⁶ was modified to include the steel corrosion encapsulation because the encapsulation was not present in the targetout or blank run.⁴⁷ Preliminary calculations demonstrated that omission of the

encapsulation leads to 2, -3, and -8% change in leakage fluence, integrated over energy bands 15-10, 10-5, and 5-2 MeV, compared to the case with encapsulation included.

The one-dimensional discrete ordinates calculation was performed with the DTF code 48 using ENDF/B-IV cross sections processed into multigroup form by the NJOY code. 49 Energy boundaries corresponded to the GAM-II 100-group structure, within-group flux-weighting was flat, the dilution factor was infinite, and P₀ through P₅ Legendre moments were generated. A one-dimensional problem specification was obtained by transforming the experimental quasi-sphere into a system of concentric spherical shells in which the volumes and densities were adjusted to preserve the masses and the average radial positions of the original components. Spatial mesh interval was 0.5 cm, well below characteristic mean-free-path lengths, and the order of angular quadrature was 16. Execution time on the LASL CDC 7600 was two minutes.

The Monte Carlo calculations were implemented with the continuous-energy code MCN 50 using pointwise cross sections processed from ENDF/B-IV by R. J. La-Bauve and D. George (see Sec. II B). A time-dependent energy-angle- and intensity-angle-correlated neutron source function and relativistic energy correction as developed by LASL Group TD-6 were used in the calculations. The neutron spectrum at a point detector 765 cm from the sphere center was binned into 0.2-MeV energy intervals, and represented neutrons accumulated at flight times between 130 and 410 ns. Approximately 80 000 neutrons were started to give a typical standard deviation of 7-8% in a fluence energy bin. Execution time on the LASL GDC 7600 was 15 minutes. The results of the calculations, converted to compatible units are compared with experiment in Fig. 11. While general agreement between both calculated spectra and the experimental spectrum is found, discrepancies of up to 40% are observed in some regions below the elastic peak. These discrepancies may be due to ENDF/B-IV data, to the data processing calculations, to the neutron transport calculations, to the conversion from experimental timeof-flight (TOF) data to energy spectrum data, or to an unknown experimental factor.

Discrepancies common to both calculations tend to rule out inadequacies in the two data processing procedures and in the neutron transport calculation. In particular, the over-prediction in the region 10-12 MeV, where calculation-toexperiment ratios (C/E) are as high as 1.4, and the under-prediction in the tail below 4 MeV, where C/E values are as low as 0.7, suggest a problem either in

Fig. 10 Procedure for determining spectra effects in group collapsing.

Fig. 11 Comparison of Monte Carlo and S_n calculations with 0.5 m.f.p. ⁷Li pulsed sphere experiment.

the ENDF/B data, in the experiment definition, or in the conversion from TOF data to energy spectrum data. On the other hand, discrepancies limited to a particular transport calculation tend to implicate the corresponding data processing code or the transport calculation itself, as in the region 6-10 MeV, where multigroup discrete-ordinates under-predict both the experimental and Monte Carlo data by up to 30%.

By additional calculation, the sources of discrepancy may be further narrowed. For example, a previous C/E comparison of direct TOF results using a different Monte Carlo code⁵¹ shows the same low-energy discrepancy. This suggests that the discrepancy in the low-energy tail is not due to the conversion from TOF data to energy spectrum data, but should be attributed to the ENDF/B data, or to a difficulty in the experiment definition. In another test, simulation of the discrete-ordinates results with a calculation of the one-dimensional model by Monte Carlo gives 2% agreement in the region 6-10 MeV. This result suggests that the 30% discrepancy between 1D discrete ordinates and 2D Monte Carlo lies neither in the data processing stages nor in the discretization of neutron transport, but is attributable to the essential two-dimensional nature of the experimental neutron source and target sphere.

Appreciation is extended to J. Kammerdiener of Group TD-2 for helpful discussions of the sphere experiments, and to R. Schrandt, B. McArdle, R. Seamon, and J. MacDonald of Group TD-6 for assistance with various aspects of the MCN calculation.

V. FISSION-PRODUCT AND DECAY STUDIES

A. ENDF/B Phenomenological Yield Model Improvements (D. G. Madland and T. R. England)

1. Distribution of Independent Fission-Product Yields to Isomeric States. Approximately 15% of the primary fission products in fission of actinide nuclei are nuclides which have an isomeric state with a half-life $\tau \ge 0.1$.⁵² A simple semiempirical formalism is described for calculating the distribution of the independent yield strength, IY, between the ground and isomeric states in these cases. The calculated branching ratios are easily incorporated into the phenomenological (Gaussian) yield model to be used in Version V of ENDF/B. Previously (ENDF/B-IV), most yield branching ratios were set equal to 1 for expediency.⁵³

It is assumed that (a) primary fragments are formed with a distribution, P(J), of total angular momentum, J, which is cut off at some characteristic value, $J_{rms} = \langle J^2 \rangle^{1/2}$, and (b) the primary branching mechanism is, simply, that fragments with J values close to that of the isomeric state (J) decay to the isomeric state, and framents with J values close to the ground state (J) decay to the ground state, the driving force being that electromagnetic transition rates are generally strongest for minimum ΔJ .

The form of the fragment angular momentum distribution used is that of Rasmussen $^{-4}$

$$P(J) \simeq (2J+1) \exp(-[J+1/2]^2/\langle J^2 \rangle)$$
 (18)

Consider, for example, the case with A odd (all spins half-integer), J > J, and $|J_m - J_g| = odd$ integer. Then one finds

$$\frac{IY(\text{isomeric state})}{IY(g.s.) + IY(\text{isomeric state})} = \frac{\int_{m_g}^{\infty} P(J) dJ}{\int_{m_g}^{\infty} \int_{p}^{\infty} (Jg) dj}$$
(19)

All together there are eight such cases depending on whether A and $\begin{vmatrix} J & -J \\ m & g \end{vmatrix}$ are even or odd, and whether J is greater or less than J. The resulting branching ratios, defined by R = IY (isomeric state/IY(g.s.)), are given in Table XI and are calculated with Eqs. (26)-(23)

$$F_{1} = \exp(1/\langle J^{2} \rangle) \left\{ \exp\left[-(1/\langle J^{2} \rangle) \left(\frac{J_{m} + J_{g} + 3}{2} \right)^{2} \right] + (1/\langle J^{2} \rangle) \left(\frac{J_{m} + J_{g} + 1}{2} \right) \exp\left[-(1/\langle J^{2} \rangle) \left(\frac{J_{m} + J_{g} + 1}{2} \right)^{2} \right] \right\} , \qquad (20)$$

$$F_{2} = \exp(1/\langle J^{2} \rangle) \left\{ \exp\left[-(1/\langle J^{2} \rangle) \left(\frac{J_{m} + J_{g} + 2}{2} \right)^{2} \right] \right\}, \qquad (21)$$

$$F_{3} = \exp\left[-(1/\langle J^{2} \rangle) \left(\frac{J_{m} + J_{g} + 2}{2}\right) \left(\frac{J_{m} + J_{g} + 4}{2}\right)\right] + (1/\langle J^{2} \rangle) \left(\frac{J_{m} + J_{g} + 1}{2}\right) \exp\left[-(1/\langle J^{2} \rangle) \left(\frac{J_{m} + J_{g} + 2}{2}\right) \left(\frac{J_{m} + J_{g} + 2}{2}\right)\right] , \qquad (22)$$

$$\mathbf{F}_{4} = \exp\left[-(1/\langle \mathbf{J}^{2} \rangle) \left(\frac{\mathbf{J}_{m} + \mathbf{J}_{g} + 1}{2}\right) \left(\frac{\mathbf{J}_{m} + \mathbf{J}_{g} + 3}{2}\right)\right].$$
 (23)

TABLE XI

INDEPENDENT YIELD BRANCHING RATIOS, R, FOR ISOMERIC STATES

J-J = even integer	J-J = even integer m g
J > J m g	J < J m g
$\left(\frac{F_1}{1 - F_1}\right)$	$\left(\frac{1 - F_1}{F_1}\right)$
J –J = odd integer m g	J_J = odd integer
J > J m g	J _m < J _g
$\left(\frac{F_2}{1-F_2}\right)$	$\left(\frac{1 - F_2}{F_2}\right)$

J values were presumed energy dependent⁵⁵ and were determined empirically as a function of neutron energy with the result that J = (7.5, 7.5, 8.0, 9.0, and 10.0) for E (MeV) = (thermal, 0.5, 2.0, 10.0, and 14.0), respectively.

Comparisons of calculated and experimental⁵⁶⁻⁵⁹ results are shown in Fig. 12. A total of 423 cases at 3 neutron energies has been calculated. A detailed LASL report on the calculations has been prepared and will be published soon tENDF-241). Where experimental data do not exist, the calculated results have been recommended for the expanded ENDF/B-V fission yields.

2. Pairing Effects on the Distribution of Fission-Product Yields. Version V of ENDF/B is expected to have > 20 yield sets for > 13 fissionable nuclides applicable at one or more fission neutron energies; the effects of neutron and proton pairing are needed. To date the Z pairing effects, based on assessments of measured yields, have been reported for 233 U, 235 U, and 239 Pu at thermal energies. For 233 U and 235 U, N and Z pairing effects for thermal fission and the Z pairing effect for fast fission have been reported. Experimental data for other fissionable nuclides and energies are, at present, inadequate for similar analyses.

For use in ENDF/B-V, we have developed semiempirical relations for the average Z pairing effect based on a correlation with the excitation energy of the compound system relative to the outer fission barrier; to first order, the smaller N pairing effect is proportional to the Z pairing. The relations can be incorporated into the phenomenological model used in ENDF/B for isobaric yield distributions.⁵³ The results, based on ²³⁵U yield data^{53,61,64} and measured barrier heights,⁶⁵⁻⁶⁷ predict pairing effects for other even-even compound systems in good agreement with experimental analyses.

There are four factors, F_i , which modulate the normal independent yields (NIY), i.e., for each mass chain nuclide the independent yield is (IY) = F_i (NIY) where

$F_{f} = 1 \pm X \pm Y$.

Here X(Y) is the proton (neutron) pairing enhancement relative to the normal yield, i refers to nuclide type (even-even, even-odd, etc.), and the + sign is used for an even number of nucleons. Except for prompt neutron emission, X and Y would likely be equal but, in fact, X is about five times larger than Y (averaged over all masses) which explains the usual reference to the *even-odd* Z *effect*.

Figure 13, which illustrates the values of (F_i-1) extracted from ²³⁵U thermal fission data, clearly demonstrates the existence of four factors; the neutron pairing effect is obviously stronger for the heavy mass region.

Table XII lists selected results for 11 nuclides at 4 fission neutron energies (tabulated values represent pairing effects averaged over the entire fission product mass range). At 14 MeV, average X and Y values are 0.015 \pm 0.015 and 0.003 \pm 0.003, respectively. (The large uncertainties reflect the paucity of 14-MeV data.) For odd-Z systems, such as ²⁴¹Am and ²⁴³Am, the X value is expected to be zero. The complete calculation is described in detail in Ref. 68.

The calculated results have been recommended for use in the phenomenological yield model for the ENDF/B-V fission products in the absence of experimental data.

B. Fission Yield Theory: Statistical Model Development (D. G. Madland, R. F. Pepping [University of Wisconsin], C. W. Maynard [University of Wisconsin], T. R. England, and P. G. Young)

Work is progressing on the initial version of a statistical model calculation of fission product yields for ²³⁵U thermal-neutron-induced fission. This case has been chosen to test model developments because it has been studied experimentally more than any other fissionable nuclide.

Comparisons of calculated and experimental branching ratios R for isomeric states

Deviation of the summed IY from the summed NIY for odd-odd, odd-even, even-odd, and even-even fission products and for the light mass peak, heavy mass peak, and the total mass distribution in ²³⁵U thermal.

TABLE XII

ESTIMATED VALUES OF X AT FOUR NEUTRON FISSION ENERGIES^a

Fission				
Target	0.0 MeV	0.5 MeV	1.0 MeV	2 MeV
232 _{Th}				0.33 ^{+0.54} -0.33
²³³ U	0.21 ^{+0.29} -0.21 ^(b)	0.14 ^{+0.18} -0.14	$0.11_{-0.11}^{+0.13}$	0.07 ^{+0.09} (b)
²³⁴ u		$0.67^{+1.83}_{-0.67}$	0.27 ^{+0.41} -0.27	$0.12^{\pm 0.15}_{-0.12}$
²³⁵ u	0.228±0.034 ^(c)	0.15 ^{+0.19} -0.15	0.11 + 0.14 - 0.11	0.078±0.063 ^(c)
²³⁶ u			0.63 ^{+1.67} -0.63	0.17 + 0.22 - 0.17
²³⁸ U				0.33 ^{+0.55} -0.33
238 _{Pu}	0.46 ^{+0.96} -0.46	0.23 ^{+0.33} -0.23	0.15 ^{+0.19} -0.15	$0.09^{\pm 0.11}_{-0.09}$
239 _{Pu}	$0.17_{-0.17}^{+0.22}$	$0.12^{+0.15}_{-0.12}$	$0.10^{+0.12}_{-0.10}$	0.07 ^{+0.08} -0.07
240 Pu		0.53 ^{+1,23} -0,53	0.24 ^{+0.36} -0.24	$0.12^{+0.14}_{-0.12}$
241 _{Pu}	Q.21 ^{+0.28} -0.21	0.14 + 0.18 - 0.14	$0.11^{+0.13}_{-0.11}$	0.07+0.09
242 _{Pu}			$0.36^{+0.65}_{-0.36}$	0.14 + 0.18 - 0.14

^a Uncertainties for all nuclides are based upon uncertainties in model parameters; Y values are given by Y= α X, where α =0.193 ± 0.152 from an analysis of ²³⁵U thermal and fast fission data.

 $b\ 233$ U values are in excellent agreement with the results from data evaluations (which show much smaller uncertainties).

c 235 U values derived from experimental data; used to determine model parameters.

Coding has begun on the calculation of deformation energies of the primary fission fragments, based upon the binding energy optimization procedure given by Seegar and Howard.⁶⁹ The extracted deformation energies will be used in a representation of the excitation energy of the primary fragment. The total excitation energy is one of three major terms used in the argument of the statistical level density expression. The next steps will be to (a) incorporate the residual mass (difference between measured and calculated⁶⁹ mass) into the expression for the fragment binding energy and (b) to perform an extrapolation on the residuals into regions where they are unknown.

C. Calculation vs Experiment: Comparisons of Time-Dependent β and γ Spectra From Thermal Fission of U (T. R. England and M. G. Stamatelatos)

Beta and gamma energies and intensities for the 181 nuclides with spectral data in ENDF/B-IV have been used to produce several libraries of group spectra. One library contains 150 gamma groups (constant 50-keV width from 0 to 7.5 MeV) and 75 beta groups (constant 100 keV width from 0 to 7.5 MeV). A corresponding 150-group gamma library was generated for use in comparing CINDER-10 calculations with preliminary unpublished gamma spectral measurements by E. Jurney (LASL P-DO) by folding in the detector energy resolution.

Table XIII provides a comparison of the integrated energy release rates at the four average cooling times analyzed to date. Some fraction of the conversion electron energy should be excluded from such comparisons. In these comparisons only the conversion electron energy for the 38 nuclides having specified conversion fractions in ENDF/B-IV is excluded; Table XIII shows the comparison with and without this exclusion.

There are 711 unstable nuclides in the calculation of total decay energies. The last column shows the percent contribution to the total gamma energy release rate due to the 181 nuclides.

Comparisons of the absolute gamma spectra are shown in Figs. 14-17. The spectral comparisons were normalized to the total <u>calculated</u> energy to account for the contribution of the remaining 530 isotopes for which spectral data do not exist in ENDF/B-IV. The measured and calculated spectra used an irradiation time of 20 000 s.

The calculated beta energy release rate is compared in Table XIV with experimental values from Ref. 70. Calculation and experiment are based on an irradiation time of 28 800 s. Except for the value at 6 s cooling, all values are well inside the experimental uncertainties (7 to 10%).

Gamma spectrum 5.56 h irradiation, 70 s cooling.

Gamma spectrum, 5.56 h irradiation, 199 s cooling.

Fig. 16 Gamma spectrum, 5.56 h irradiation, 388 s cooling.

Gamma spectrum, 5.56 h irradiation, 660 s cooling.

TABLE XIII

COMPARISON OF ENERGY INTEGRATED γ MeV/FISSION (% deviation of calculation from experiment)

	% <u>CAL</u>	<u>EXP</u>	% of Total v MeV/F
Cooling Times	Including Con-	Excluding Conver-	Due to Nuclides
	version Electron	sion Electron	Having Spectra(181)
70	+ 0.3	+ 0.07	87.6
199	+ 1.5	+ 1.1	93.5
388	+ 1.3	+ 0.9	95.5
6 60	+ 5.1	+ 4.7	96.6

TABLE XIV

COMPARISON OF ENERGY INTEGRATED β MeV/FISSION (% deviation of calculation from experiment)

COOLING TIME	$\frac{\text{CAL}-\text{EXP}}{\text{EXP}}$		
6 s	- 13. 8		
21 s	- 4.9		
6 6s	- 3.2		
37 50s	+ 3.4		
10, 950s	+ 6.0		

Figures 18-22 show the actual β spectral comparisons. In the gamma and beta comparisons, we have chosen to plot the energy relase rate (in units of MeV/fis/bin) rather than multiplicities. This emphasizes the spectra at high energies where we also see the largest departure of calculation from experiment. The data library used in the calculations is described in Ref. 52.

D. Noble Gases, Halogens, and Other Fission Products (T. R. England and N. L. Whittemore)

A large number of CINDER-10 calculations using ENDF/B-IV data are in progress to determine various source terms for use in studies of spent or irradiated fuel accidents. These include the content, absorption, beta and gamma energy, and corresponding spectra for halogens, noble gases, and the total fission-pro-

66 s decay.

Beta MeV/fis at 8 h irradiation and 3750 s decay.

Beta MeV/fis at 8 h irradiation and 9576 s decay.

duct ensemble. In addition, calculations of halogens and noble gases and their progeny (subsequent to a partial or complete escape of these gases) are in progress for use in radiolyses and synergistic studies. The calculations include the 824 nuclides in the ENDF/B-IV fission product files.⁵² Of these, there are 93 gaseous isotopes of Kr, Br, I, and Xe, with 78 being radioactive.

Fission burst calculations for those fissionable nuclides having yield data in ENDF/B-IV have been completed. These results can, with additional effort, be used to generate a burst kernel which can be folded into any power history if neutron absorption can be ignored (as in the current ANS 5.1 Decay Heat Standard).

Calculations for the infinite irradiation of ²³⁵U where absorption in fission products is ignored have also been carried out. This type calculation is equivalent to a fission burst in that one can be derived from the other. In addition, the case of a finite irradiation without absorption can be derived from either type of calculation.

Of more immediate use, calculations for typical reactor lifetimes and power histories where neutron absorption is permitted are in progress. Currently, these calculations use four-group cross sections.

Tables XV-XXIII show aggregate summary results for the case of ²³⁵U thermal fission for one year at a constant fission rate and constant flux. The thermal

TABLE XV

BARNS/FISSION DURING AND FOLLOWING ²³⁵U + n FISSION WITH ALL FISSION PRODUCTS INCLUDEDth

Time	Elapsed		ba	arns / fiss -	
Step	<u>Time (s)</u>	Group I	<u>Group II</u>	Group III	Group IV
1	6,2208E+06	4.9325E=02	2.3129E=01	1.8012E+01	8,7176E+02
2	1.84428+07	5,0116E=02	2,3511E=01	1.8534E+01	4,7272E+02
а Ц	1 8835-07	5 4675-40	2 30 305 401	1.00302401	3,3040C40C
5	3,1104F+07	5.07025-02	2,36702+01	1 8487F101	2 3554F142
6	3.11045407	5.07025-02	2,3680F=01	1.84875+01	2.35505402
7	3.1104E+07	5.0702E-02	2.3680F=01	1.8487F+01	2.25506+02
8	3.1104E+07	5.07026-02	2.3680E=01	1.8487E+01	2.25502+02
9	3.1104E+07	5.0702E-02	2,36806+01	1.8487E+01	2.2551E+02
10	3,1104E+07	5,0702E-02	2,3680E+01	1.8487E+01	2,25532+02
11	3.1104E+07	5,07026-02	2,36802-01	1.8487E+01	2,2557E+02
12	3,1104E+07	5,0702E+02	2,3680E+01	1,8487E+01	2,2568E+02
13	3.1104E+07	5,0702E-02	2,3680E+01	1.8487E+01	2,25872+02
14	3.1104E+07	5,0702E-02	2,3680E=01	1.8488E+01	5°5953E+05
15	3.1104E+07	5.0702E-02	2,3680E=01	1.8488E+01	2,2731E+02
10	3.11056407	5,07032-02	2.3680E=01	1.8488E+01	2,2905E+02
	3 1 1 0 0 C + 0 /	5.0704E=02	2,30012-01	1.8489E+01	2,3231E+02
10	301107C407 8 11118407	5 07005-02		1.04912+01	2,4004E+04
20	3814146407	5 071072402	2 34875-01	1 8/107E+01	2 3 54798+03
21	3.11545+07	R 07245-02		1 8/1988+01	2 3/4 8 5 4 9 2
22	3.1204F+07	5.07365-02	2.37035-01	1 84945401	1.7047F402
23	3.13048+07	5.0754E+02	2.3718F=01	1.84945+01	1.16525+02
24	3.1604E+07	5.0801E-02	2.3752E+01	1.8519E+01	1.08502+02
25	3.2104E+07	5.0864E=02	2.3792E+01	1.8566E+01	1.0953E+02
26	3.3104E+07	5,0944E+02	2.3844E-01	1.8648E+01	1.0931E+02
27	3,6104E+07	5,1051E-02	2,3924E-01	1.8794E+01	1.08272+02
28	4.1104E+07	5,1151E=02	2,39872-01	1,8875E+01	1.0737E+02
29	5.1104E+07	5,1316E=02	2,40262-01	1,8838E+01	1,06956+82
30	8.1104E+07	5,1638E=02	2.40052-01	1.8487E+01	1,0703E+02

.

TABLE XVI

ENERGY RELEASE RATES IN ²³⁵U + n_{th} FISSION WITH ALL FISSION PRODUCTS INCLUDED

			- MeV/fis	
T im e Step	C ooling <u>Time (s)</u>	Beta	Gamma	<u>Total</u>
1 2	0. 0.	6,28870E+00 6,32487E+00	6.00881 2+0 0 6.04695 2 +00	T.22975E+01 1.23718E+01
3	0.	6,34551E+00 6,35976E+00	6.06585E+00	1.24114E+01 1.24359F+01
5	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	6.37073E+00	6,082028+00	1.24527E+01
7	1.000000000	5,80535E+00	5,66059E+00	1.146592+01
9	<.00000E+00 5.00000E+00	5.49999E+00 4.95944E+00	5.43899E+00 5.05419E+00	1.09390E+01 1.00136E+01
10	1.00000E+01 2.00000E+01	4.46457E+00 3.93103E+00	4.70236E+00 4.29688F+00	9,16693E+00 8,22791E+00
12	5.00000E+01	3.24463E+00	3.69909E+00	6,94372E+00
14	2.00000000000	2.342895+80	2.81344E+00	5,15633E+00
16	1.00000E+03	1.57556E+00	2.35770E+00 2.04058E+00	4,24157E+00 3,61613E+00
17	2.00000E+03 5.00000E+03	1.28515E+00 9.67499E=01	1.70177E+00 1.25068E+00	2,98693E+00 2,21818E+00
19 20	1.00000E+04 2.00000E+04	7.85922E=01 6.27915E=01	9.65772E=01 7.58484E=81	1,75169E+00
21	5.00000E+04	4.42586E=01	5.82027E-01	1.02461E+00
23	2.00000000	2.70304E-01	3.95293E=01	6,65597E+01
24	3.00000C+05	2.118486=01 1.73337E=01	2.99207E=01 2.25817E=01	5.11105E=01 3.99154E=01
26 27	2.00000E+06 5.00000E+06	1.34600E=01 8.67027E=02	1.56407E-01 8.36024E-02	2,91006E=01 1.70305E=01
28	1.08000E+67	5,68440E-02	4.53015E-02	1.02145E-01
30	5.00000E+07	1,35562E=02	1.301142 08 2.34088 5 =03	1.58971E=02

TABLE XVII

HALOGENS PLUS NOBLE GAS FRACTIONS IN 235 U + n FISSION. (Listed values are fractions of all fission products)

			N 11		Energy	Release Rate –	
Time	Cooling		Kadloactive		n	0	m
Step	<u>Time (s)</u>	Density	Density	Curies	Beta	Gamma	Total
1	0.	1.3514E=01	1,172E-02	1.9772=01	2,0125E+01	2.47812-01	2.2400E-01
2	0.	1.3338E=01	8.168E=03	1.938E=01	2.0011E-01	2.4626E-01	2.2267E=01
3	0	1.32682-01	7.000E+03	1.919E+01	1.9946E-01	2.4550F-01	2.2196F=01
ā	0.	1.3224F-01	6.4145-03	1.908F=01	1.99015-01	2.4510F-01	2 21515-01
Ę	a .	1. 11005-01	6.050F-01		1 08476-01		2 21 245-01
	0 00085-01	1 91905-01		1 9015-01	1.00776-01	2 44015401	2.21242-01
	1 00005+00	1.31405-01	0,0376-03	1.4010-01	1.40//6-01	2.4440E=01	¢, ¢154E=01
	1.000000000	1.21405-01	0.0246-02	1,916E#01	5.05146-01	2,4982E=01	2,2570E=01
8	2,00000000	1.3190E=01	6,059E+03	1,9198-01	2.02315-01	2.51072-01	2,2656E-01
9	5.0000E+00	1,3190E=01	6.059E-03	1.922E=01	2,0131E=01	2.5240E=01	2.2709E=01
10	1,0000E+01	1.3190E=01	6,059E=03	1,925E-01	1,9984E=01	2,53332-01	2.2728E=01
11	2,0000E+01	1.3190E+01	6.059E+03	1.921E=01	1.9581E=01	2.53678-01	2.2603E=01
12	5.0000E+01	1.3190E=01	6.059E.03	1.8897-01	1.8327E=01	2.5230F-01	2.20045-01
13	1.0000E+02	1.3190E-01	6.058E+03	1.858F=01	1.7013F-01	2.52156-01	2.1/275-01
14	2.00005+02	1.3190E=01	6.05AF=03	1 8165-01	1 86698-01	3 R6//2R-44	2 11105-01
15		1 7100E-01		1 8775-01	1 41005-01	2 3 4 G/F 04	C 1110C-01
17		1.31702-01		1.03/2-01	1.43005-01	2.11040-01	C. 1430E-01
10	1.00006+03	1.51405-01	0.0335403	1.0036-01	1.42446-01	5.00056-01	2,25728-01
17	2,0000E+03	1.3190E=01	6,052E=03	1,978E=01	1.5137E=01	3,1790E=01	2,4625E-01
18	5,00005+03	1,3190E+01	6.043E-03	2,069E=01	1,5998E=01	3,5277E=01	2,68685=01
19	1.0000E+04	1.3189E=Ø1	6.029E+03	2.028E=01	1.51908+01	3.4660E-01	2.5924E=01
20	2.0000E+04	1.31888=01	6.004E=03	1.949E=01	1.4390E=01	3.1680E-01	2.3848E=01
21	5.0000E+04	1.3185E=01	5.9398-03	1.8578-01	1.4919E-01	2.8260E-01	2.24978-01
22	1.00005+05	1.3181F=01	5.847F=03	1.701E-01	1. 3876F=01	2.50135-01	2 04065-01
22	2. 40005405	1.31758-01	8.6915-01	1 4775-01	1 10085-01	2 10/0E-41	1 70035-01
3/		1 31/20-01	5 3/55-03		1910402401		
54		1.31005401	3,3436-03	1.00/2.01	0.04015#02	1.22135-01	1.00336-01
23	1.00000400	1.31432-01	4.9942-03	0,408E-02	5.48536-02	6,3092E=02	5,0829E=02
45	<,0000E+06	1.31546-01	4,724E=03	Z ,164E+02	1.0413E=02	1.6806E+82	1.3849Ę=02
27	5,0000E+06	1 . 3128E=01	4 . 639E - 03	1,6612=03	9,6136E=04	1,0125E-03	9.8646E=04
28	1,0000E+07	1,3130E=01	4.645E+03	1,088E=03	7,2811E-04	2,2105E-05	4,1500E=04
29	2,00005+07	1.3130E+01	4.628E=03	2.198E=03	1.2129E=03	2.26948-05	8.2916E=04
30	5.0000E+07	1.3123E-01	4.5528-03	5.7378-03	2.7959E-03	1.4409E-04	2.40548-03

TABLE XVIII

NOBLE GAS FRACTIONS IN ²³⁵U + n_{th} FISSION

(The listed values are fractions of all fission products)

md	Cooling		Padioactiv	<u>م</u>	- Energy	y Release Rate	e
Time		Donaity	Density	Curtes	Beta	Gamma	Total
Step		Density			<u></u>		
1	0.	1.27462=01	5.634E=03	1.038E=01	9.92774-02	9.5896E+Ø2	9.76258-02
Ż	0	1.2707E-01	3.498E=03	1.017E=01	9.8711E+02	9.5291E-02	9.7039E=02
3	0.	1.2681E=01	2.780E+03	1.0078-01	9.8391E=02	9.4994E+02	9.6731E-02
4	0	1.2658E=01	2.417E-03	1.001E=01	9.8172E=02	9.4834E.02	9.6541E=02
5	Ø	1.2637E=01	2.197E-03	9.975E+02	9.8004E=02	9.4742E+02	9.6411E=02
6	9.9998E=03	1.2637E=01	2.197E-03	9.976E=02	9.8050E=02	9.4769E-02	9.6447E=02
7	1.0000E+00	1.2637E=01	2.197E-03	1.004E=01	1.0027E=01	9.6014E-02	9.8167E=02
8	2.0000E+00	1.2637E+01	2.197E-03	1.006E=01	1.0079E-01	9.6263E+02	9.8539E=02
9	5.0000E+00	1.2637E+01	2.197E+03	1.0065+01	1.0126E=01	9.6457E+02	9.8837E=02
10	1,0000E+01	1.2637E.01	2.196E=03	1.007E=01	1.0174E+01	9.6627E.02	9.9115E=02
11	2.0000E+01	1.2637E=01	2.196E=03	1.000E=01	1.00985-01	9.5810E=02	9.8280E=02
12	5,0000E+01	1.2637E=01	2,196E-03	9,727E=02	9,6371E=02	9.2166E-02	9.4131E=02
13	1,0000E+02	1,2637E=01	2,196E=03	9.458E=02	9,0588E=02	8,9003E=02	8,9733E=02
14	2,0000E+02	1,2637E=01	2,196E=03	9.160E=02	8,2076E=02	8,6184E-02	8,4318E=02
15	5,0000E+02	1,2637E+01	2,195E+03	8,613E=02	6,4850E#02	7.9743E-02	7,3128E=02
16	1.0000E+03	1,2637E=01	2,195E-03	8,286E+02	5,2109E=02	7,43878-02	6,4681E=02
17	2,0000E+03	1,2637E=01	2.194E-03	8,310E=02	4,68888=#02	7,2012E-02	6,1202E=02
18	5,00002+03	1,2637E=01	2,1928-03	8,621E=02	4.34116-02	7.2093E-02	5,95838=02
19	1.0000E+04	1,2638E=01	2,1908-03	8,8195-02	3,9573E=02	6,9301E=02	5,5963E=02
20	2,0000E+04	1,2639E=01	2,187E+03	8,874E=02	3,63546-02	5,5860E-02	4,7025E-02
21	5,00002+04	1,2641E=01	2,170E+03	8,907E=02	3,7543E+02	3,4084E-02	3,5578E=02
22	1,0000E+05	1,2642E-01	2,132E=03	8,597E-02	3.3710E-02	2,52218-02	2,8733E=02
52	2.00005+05	1,2643E+01	2,0478-03	7,9778-02	2,5915E=02	1,9106E-02	2,1871E=02
24	5,00008+05	1,2638E-01	1,811E=03	6.445E=02	2,0263E=02	1,3879E=02	1,6526E=02
25	1.000000006+06	1.26318-01	1,566E=03	3.807E=02	1,2171E=02	7,9688E=03	9,79358=03
56	2,0000E+06	1,2627E=01	1,389E=03	1.145E+02	3,7385E=Ø3	2,4785E+03	3,0613E=03
27	5.00002+06	1,2628E=01	1.330E=03	8,911E=04	5.3572E+04	8,3557E=05	3,1375E=04
28	1,0000E+07	1,2627E+01	1.316E=03	1.0792-03	7.2370E=04	1.04842-05	4.0739E-04
59	2,0000E+07	1.2624E-01	1,289E-03	2,198E+03	1,2129E=03	2.2691E-05	8.2916E=04
50	5.0000E+07	1.2617E=01	1.212E+03	5.737E=03	2.7959E=03	1.4409E-04	2.4054E-03

TABLE XIX

INTEGRATED ENERGY VS COOLING TIME IN ²³⁵U + n_{th} FISSION WITH ALL FISSION PRODUCTS INCLUDED

	0		- MeV	
Time	Cooling	- .	•	- 1
<u>Step</u>	<u>Time (s)</u>	<u>Beta</u>	Gamma	Total
6	1.0000E-02	6.3661E-02	6.0785E-02	1.2445E-01
7	1.0000E+00	5.9218E+00	5.7479E+00	1.1670E+01
8	2.0000E+00	1.1556E+01	1.1284E+01	2.2840E+01
9	5.0000E+00	2.7109E+01	2.6930E+01	5.4039E+01
10	1.0000E+01	5.0506E+01	5.1210E+01	1.0172E+02
11	2.0000E+01	9.2122E+01	9.5944E+01	1.8807E+02
12	5.0000E+01	1.9788E+02	2.1431E+02	4.1219E+02
13	1.0000E+02	3.4638E+02	3.8608E+02	7.3246E+02
14	2.0000E+02	5.9871E+02	6.8561E+02	1.2843E+03
15	5.0000E+02	1.2199E+03	1.4490E+03	2.6689E+03
16	1.0000E+03	2.0736E+03	2.5376E+03	4.6112E+03
17	2.0000E+03	3.4825E+03	4.3843E+03	7.8668E+03
18	5.0000E+03	6.7676E+03	8.6770E+03	1.5445E+04
19	1.0000E+04	1.1084E+04	1.4106E+04	2.5190E+04
20	2.0000E+04	1.8033E+04	2.2567E+04	4.0600E+04
21	5.0000E+04	3.3513E+04	4.2160E+04	7.5673E+04
22	1.0000E+05	5.2631E+04	6.8335E+04	1.2097E+05
23	2.0000E+05	8.2558E+04	1.1147E+05	1.9403E+05
24	5.0000E+05	1.5322E+05	2.1282E+05	3.6604E+05
25	1.0000E+06	2.4810E+05	3.4113E+05	5.8923E+05
26	2.0000E+06	3.9905E+05	5.2617E+05	9.2521E+05
27	5.0000E+06	7.1504E+05	8.5867E+05	1.5737E+06
28	1.0000E+07	1.0602E+06	1.1604E+06	2.2206E+06
29	2.0000E+07	1.4866E+06	1.4241E+06	2.9108E+06
30	5.0000E+07	2.1016E+06	1.6078E+06	3.7094E+06

TABLE XX

HALOGENS AND PROGENY VS COOLING TIME FOR $235_{U} + n_{th}$ FISSION^a

.	0 1 1 1]	Mev/Fis	
Time Sten	COOLING Time (s)	Density	Activity	Beta	Gamma	Total
6	9.99982E=03	1.05267E=06	1.63861E+12	6,40704E=01	9.12531E=01	1.55323E+00
7	1.00000E+00	1.05267E=06	1.57894E+12	5,88530E=01	8.68328E=01	1.45686E+00
8	2.00000E+00	1.05267E=06	1.53641E+12	5,52453E=01	8.37812E=01	1.39027E+00
9	5.00000E+00	1,05267E=06	1,45295E+12	4.84639E=01	7.79762E=01	1.26440E+00
10	1.00000E+01	1.05267E=06	1,37147E+12	4.22472E=01	7.24685E=01	1.14716E+00
11	2.00000E+01	1.05267E=06	1,27981E+12	3.57368E=01	6.63818E=01	1.02119E+00
12	5.00000E+01	1.05267E=06	1,14896E+12	2.73233E=01	5.78563E=01	8.51795E=01
13 14 15	1.00000E+02 2.00000E+02 5.00000E+02	1.05267E-06 1.05267E-06 1.05267E-06 1.05267E-06	1.05046E+12 9.70264E+11 9.04606E+11 8.64389F411	2.15638E=01 1.72648E=01 1.44159E=01	5.16027E=01 4.67772E=01 4.30935E=01 4.94072E=01	7.31665E=01 6.40420E=01 5.75094E=01 5.36543E=01
17	2.00000E+03	1.05268E=06	8.13164E+11	1.18377E-01	3.60017E-01	4.78394E=01
18	5.00000E+03	1.05270E=06	6.96119E+11	9.14441E-02	2.67517E-01	3.56961E=01
19	1.00000E+04	1.05273E=06	5.86422E+11	6.96706E-02	1.87502E-01	2.57172E=01
20 21 22 23	2.00000E+04 5.00000E+04 1.00000E+05 2.00000E+05	1.05279E=06 1.05293E=06 1.05310E=06 1.05327E=06	4.842212+11 3.48994E+11 2.35307E+11 1.42583E+11	5.29474002 3.52657002 2.13413002 1.01640002	1.230152-01 6.58669E=02 3.53036E=02 1.73978E=02	1.01133E=01 5.66449E=02 2.75618E=02
24	5.00000E+05	1.05336E=06	7.89225E+10	4.10354E=03	7.88236E=03	1.19859E=02
25	1.00000E+06	1.05335E=06	4.34965E+10	2.26987E=03	4.39004E=03	6.65990E=03
26	2.00000E+06	1.05333E=06	1.44809E+10	7.89775E=04	1.56851E#03	2.35828E=03
27	5.00000E+06	1.05333E=06	6.58480F+08	3.66292E=05	7.74972E=05	1.14126E=04
28	1.00000E+07	1.05332E=06	5.45838E+06	2.47540E=07	5.83826E=07	8,31365E=07
29	2.00000E+07	1.05332E=06	1.45921E+04	1.04159E=09	6.23370E=10	1,66496E=09
30	5.00000E+07	1.05332E=06	9.56712E+03	4.86533E=10	4.97655E=10	9,84188E=10

^aAt beginning of timestep 6, all progeny are zero.

TABLE XXI

INTEGRATED ENERGY FROM HALOGENS AND PROGENY IN ²³⁵U + n_{th} FISSION^a MeV ------

Time	Cooling		mev	
<u>Step</u>	<u>Time (s)</u>	Beta	Gamma	Total
6	1.0000E-02	6.4100E-03	9.1279E-03	1.5538E-02
7	1.0000E+00	5.9944E-01	8.7767E-01	1.4771E+00
8	2.0000E+00	1.1677E+00	1.7289E+00	2.8965E+00
9	5.0000E+00	2.7057E+00	4.1411E+00	6.8468E+00
10	1.0000E+01	4.9521E+00	7.8847E+00	1.2837E+01
11	2.0000E+01	8.80505+00	1.4788E+01	2.3593E+01
12	5.0000E+01	1.8019E+01	3.3202E+01	5.1221E+01
13	1.0000E+02	3.0019E+01	6.0358E+01	9.0377E+01
14	2.0000E+02	4.9108E+01	1.0923E+02	1.5834E+02
15	5.0000E+02	9.5860E+01	2.4313E+02	3.3899E+02
16	1.0000E+03	1.6464E+02	4.5104E+02	6.1568E+02
17	2.0000E+03	2.8913E+02	8.3014E+02	1.1193E+03
18	5.0000E+03	5.9607E+02	1.7438E+03	2.3399E+03
19	1.0000E+04	9.9018E+02	2.8468E+03	3.8369E+03
20	2.0000E+04	1.5899E+03	4.3452E+03	5.9351E+03
21	5.0000E+04	2.8556E+03	6.9707E+03	9.8263E+03
32	1.0000E+05	4.2023E+03	9.3347E+03	1.3537E+04
23	2.0000E+05	5.6461E+03	1.1764E+04	1.7410E+04
<u>24</u>	5.0000E+05	7.5174E+03	1.5159E+04	2.2677E+04
25	1.0000E+06	9.0139E+03	1.8044E+04	2.7058E+04
26	2.0000E+06	1.0334E+04	2.0628E+04	3.0962E+04
37	5.0000E+06	1.0927E+04	2.1833E+04	3.2761E+04
38	1.0000E+07	1.0957E+04	2.1896E+04	3.2853E+04
39	2.0000E+07	1.0957E+04	2.1897E+04	3.2854E+04
30	5.0000E+07	1.0957E+04	2.1897E+04	3.2854E+04

^aAt the beginning of cooling, all progeny are set to zero.

TABLE XXII

NOBLE GASES AND PROGENY VS COOLING TIME FOR $235_{U} + n_{th}$ FISSION^a

Time	Cooling			MeV/Fis		
Step	Time (s)	Density	Activity	<u>Beta</u>	Gamma	Total
6	9.99982E=03	2.40330E-05	1.80907E+12	6,23753E=01	5,75725E+01	1.19948E+00
4	1 00000E+00	2,403302-03	1 71408E412	5 703175-01	5 13012E-01	1.144132400
0		2 40330E-05	1 415/188412	5 235085-01	5 017875-01	1 03/385400
10	1.00000E+00	2 40330E-05	1.55107F412	J 737185-01	4.74505F=01	0 482235-01
11	2. MAAAAF+A1	2.403302003	1.447 x 0 f +12	4 172045-01	4.41942Fn91	A 58246F-01
12	5.00000C+01	2.40330E-05	1.28265F+12	3.38604F=01	3.80600F=01	7.192045-01
13	1.00000E+02	2.40330F-05	1.15230F+12	2.78178F=81	3.28627F=01	A. 96885F=01
14	2.00000E+02	2.40330E=05	1.03016E+12	2.21999E=01	2.81393E=01	5.03392E-01
15	5.00000E+02	2.40330E-05	8.84481E+11	1.63371E-01	2.31562E-01	3.94934E-01
16	1.00000E+03	2.40330E-05	7.93943E+11	1.39173E-01	2.02589E-01	3.41763E=01
17	2.00000E+03	2.40330E-05	7.20405E+11	1.31037E-01	1.74079E-01	3.05116E=01
18	5.00000E+03	2.40330E-05	6.02177E+11	1.05947E=01	1.20081E-01	2.26028E=01
19	1.00000E+04	2.403302-05	4.94018E+11	7.15245E-02	7.68384E-02	1.48363E-01
20	2.00000E+04	2.40330E-05	3.86849E+11	3.88866E=02	4.18275E-02	8.07141E-02
51	5.00000E+04	2.403302-05	2.78548E+11	1.30225E-02	1,385778-02	2.68802E-02
22	1.00000E+05	2.40330E+05	2,29561E+11	7.47804E-03	7,95209E=03	1,543012-02
23	2.00000E+05	2.40330E-05	1.87881E+11	5.64905E-03	5,83970E-03	1.14888E+02
24	5.00000E+05	2.40330E+05	1,17249E+11	3,64376E=03	3,35091E-03	6.99468E=03
25	1,0000000+06	2,403302-05	5,48076E+10	1,77335E+03	1,47363E=03	3,24698E-03
56	2,00000E+06	2.40330E+05	1,24682E+10	4.27111E=04	3,17616E=04	7.44727E=04
27	5,00000E+06	2,40330E=05	6,64406E+08	4,61896E=05	4,71058E-06	5,09002E-05
28	1.00000E+07	2,40330E=05	5.14472E+Ø8	4,13922E-05	4.15312E-07	4.18875E-05
59	2.00000E+07	2,40330E-05	5,02299E+08	4.03596E-05	3,67721E=07	4.07274E-05
30	5.00000E+07	2,40330E-05	4,72117E+08	3,79861E+05	3,46106E-07	3,825228+05

^aAt the beginning of timestep 6, all progeny are zero.

TABLE XXIII

			- Moll	
Time	Cooling		- Hev	
Step	<u>Time (s)</u>	Beta	Gamma	<u>Total</u>
6	1.0000E-02	6.2413E-03	5.7602E-03	1.2002E-02
7	1.0000E+00	5.9928E-01	5.5521E-01	1.1545E+00
8	2.0000E+00	1.1794E+00	1.0955E+00	2.2750E+00
Э	5.0000E+00	2.8071E+00	2.6402E+00	5.4473E+00
10	1.0000E+01	5.2822E+00	5.0726E+00	1.0355E+01
11	2.0000E+01	9.6987E+00	9.6295E+00	1.9328E+01
12	5.0000E+01	2.0818E+01	2.1796E+01	4.2615E+01
13	1.0000E+02	3.6016E+01	3.9347E+01	7.5363E+01
14	2.0000E+02	6.0599E+01	6.9518E+01	1.3012E+02
15	5.0000E+02	1.1664E+02	1.4510E+02	2.6174E+02
16	1.0000E+03	1.9142E+02	2.5265E+02	4.4407E+02
17	2.0000E+03	3.2602E+02	4.3899E+02	7.6501E+02
18	5.0000E+03	6.7452E+02	8.6312E+02	1.5376E+03
19	1.0000E+04	1.1028E+03	1.3351E+03	2.4379E+03
20	2.0000E+04	1.6199E+03	1.8910E+03	3.5109E+03
21	5.0000E+04	2.2728E+03	2.5896E+03	4.8625E+03
22	1.0000E+05	2.7569E+03	3.1046E+03	5.8614E+03
23	2.0000E+05	3.3985E+03	3.7767E+03	7.1752E+03
24	5.0000E+05	4.7257E+03	5.0654E+03	9.7911E+03
25	1.0000E+06	5.9716E+03	6.1553E+03	1.2127E+04
26	2.0000E+06	6.8438E+03	6.8459E+03	1.3690E+04
27	5.0000E+06	7.2804E+03	7.0160E+03	1.4296E+04
28	1.0000E+07	7.4978E+03	7.0238E+03	1.4522E+04
29	2.00005+07	7.9059E+03	7.0277E+03	1.4934E+04
30	5.0000E+07	9.0740E+03	7.0383E+03	1.6112E+04

INTEGRATED ENERGY FROM NOBLE GAS AND PROGENY^a

^aAt the beginning of cooling, all progeny are set to zero.

flux level was 10^{13} n/cm²-s. The ratios of the three fast-group fluxes to this value are six, eight, and five, where the latter is the epithermal ratio. The group cross sections were processed from ENDF/B-IV using a typical mid-life PWR spectrum for a weighting function. It should be noted that the thermal (group 4) flux is applied to an effective 2200 m/s cross section defined by

$$\sigma_{\rm eff} = \bar{\sigma}/\bar{\sigma}_{1/v}$$

where

 σ = average thermal cross section in the PWR spectrum,

 $\bar{\sigma}_{1/v}$ = average of 1/v energy dependent cross section in the PWR spectrum spectrum having a 1 b value at 0.0253 eV. (In the PWR spectrum used here, $\bar{\sigma}_{1/v}$ = 0.55402 b.)

Therefore, the 10^{13} n/cm²-s should be interpreted as a neutron density, and the calculated group 4 aggregate cross section is an effective 2200 m/s value. Similarly, the corresponding group flux ratios are, in effect, equivalent to a reduction by the factor $\bar{\sigma}_{1/y}$.

In these tables, the first five time steps are of equal duration (1728 h) and are at power $(100 W/cm^3)$. The remaining time steps follow shutdown and extend out to 5 x 10^7 s. Tables XV-XIX include all fission products. Tables XX and XXI include only halogens and those progeny generated after shutdown (following time step 5). Tables XXII and XXIII include only noble gases and those progeny generated after shutdown. While the first five tables are based on all fission products, Tables XX-XXIII include only gases and their progeny, which are built up from decay following shutdown. Where actual values, rather than fractions, are listed all results are given per cm³. The constant fission rate prior to shutdown uses a nominal 200 MeV/fission to produce a power of 100 watts.

One interesting result noted in the last progress report and even more pronounced for short irradiation times is the fraction of energy due to noble gases and halogens (Table XVII). At 5000 s cooling 13.2% of the products are gases but only 0.6% are radioactive gases, yet these account for 21% of the activity, 16% of the beta energy rate, 35% of the gamma energy rate, and 27% of the total energy release rate. Of the 78 radioactive gases at 5000 s cooling, 6 contribute 1% or more of the beta, gamma, or total energy release rate -- ⁸⁷Kr, ⁸⁸Kr, ¹³¹Xe,

 133 I, 134 I, and 135 Xe. (Tabular results for individual nuclides are too extensive for inclusion in this report.)

E. CINDER-10 Code Development (T. R. Fngland, N. I. Whittemore, and W. B. Wilson)

Improvements were made which reduced the charge per run by approximately a factor of ten. Other algorithms and edits were added to produce information requested by the Nuclear Regulatory Commission.

Normally CINDER-10 calculations use LASL's CDC 6600 (Machine 0) because of the large storage required for the ENDF/B-IV library. An untested version is operational on the CDC 7600 using LCM. Other work is in progress to reduce the required storage.

F. Beta-Energy Averaging and Beta Spectra (M. G. Stamatelatos and T. R. England)

A simple, efficient, and highly accurate method for approximately calculating spectrum-averaged beta energies and beta spectra for radioactive nuclei was developed and partially discussed in the last progress report. The final version will be published as LASL report LA-6445-MS (ENDF-242).

G. Absorption Buildup Studies (W. B. Wilson, T. R. England, M. J. Stamatelatos, and R. J. LaBauve)

A new fission-product absorption data set for a revised version of the CINDER⁷¹ code has been completed using ENDF/B-IV decay constants, branching fractions, fission yields, and processed neutron radiative capture cross sections. The details of procedure and codes used in the data processing have been described previously.⁷² The data set describes the temporal coupling of 186 fission product nuclei using 84 linearized nuclide chains and a total of 484 linearized nuclides. Each chain describes a unique path via neutron absorption and radioactive decay.

A reduced 12-chain data set has also been completed, describing 27 principal fisson-product nuclei with 11 chains and 34 linearized nuclides. The balance of neutron-absorption accumulation is described in a single, non-saturating chain of 4 pseudo-fission product nuclei.

Macroscopic absorption calculations for a typical reactor lifetime with the two data sets differ by less than 1%. These quantities vary less than 2% even after an additional equivalent period of decay. In contrast to the data libraries and code version used to produce results in previous sections of this report, these libraries are intended for use only in absorption buildup studies, including transients, in reactor design. The 12chain set is suitable for spatial depletion codes, and the 84-chain set, in addition to its use in parameterizing the pseudo-chain, is useful in providing the inventories of nuclides having half-lives longer than ~4 hours. The 4-group cross sections used in these libraries were collapsed from a 154-multigroup set described in the previous progress report.

REFERENCES

- 1. R. Brown, Los Alamos Scientific Laboratory, private communication (1976).
- C. M. Bartle, "A Study of the ⁶Li(n,α)T Reaction Between 2-10 MeV," Nuclear Cross Sections and Technology Conference Proceedings NBS Special Publication 425, Vol. II, p. 688 (1975) and private communication (1976)
- 3. P. J. Clements and I. C. Rickard, Atomic Energy Research Establishment report AERE-R-7075 (1972).
- 4. R. A. Schrack, O. A. Wasson, and G. P. Lamaze, "A Measurement of the 10 7B(n, $\alpha\gamma$) ⁷Li Cross Section in the keV Energy Region," Bull. Am. Phys. Soc. <u>21</u>, 513 (1976) and private communication (1976).
- 5. V. Konig, W. Gruebler, R. E. White, P. A. Schmelzbach, and P. Marmier, "Measurement of the Analyzing Powers iT₁₁, T₂₀, T₂₁, and T₂₂ in d-He Elastic Scattering," Nucl. Phys. <u>A185</u>, 263 (1972).
- 6. B. Jenny, W. Gruebler, V. Konig, P. A. Schmelzbach, R. Risler, D. O. Boerma, and W. G. Weitkamp, "Measurement of the Analyzing Powers in ³He(d,d) He Scattering," Proc. Fourth International Symposium in Nuclear Reactions, Zurich (1975) and private communication (1976).
- 7. W. Klinger, F. Dusch, and R. Fleischmann, "The Analyzing Power of the Reaction He(d,p) He for Vector-Polarized Deuterons Between 2 and 13," Nucl. Phys. <u>A166</u>, 253 (1971).
- 8. D. Fick, private communication (1976).
- 9. M. Drosg, private communcation (1976).
- L. R. Veeser and E. D. Arthur, "Measurement of (n,2n) and (n,3n) Cross Sections," Bull. Am. Phys. Soc. 20, 1191 (1975).
- 11. J. Frehaut and G. Mosinski, "Measurement of (n,2n) and (n,3n) Cross Sections for Incident Energies Between 6 and 15 MeV," Nuclear Cross Sections & Technology Conference Proceedings NBS Special Publication 425, p. 855 (1975).

- B. P. Bayhurst, J. S. Gilmore, R. J. Prestwood, J. B. Wilhelmy, Nelson Jarmie, B. H. Erkkila, and R. A. Hardekopf, "Cross Sections for (n,xn) Reactions Between 7.5 and 28 MeV," Phys. Rev. C12, 451 (1975).
- 13. G. M. Braga-Marcazzan, E. Gadioli-Erba, L. Milazzo-Colli, and P. G. Sona, "Analysis of Total (n,p) Cross Sections Around 14 MeV with the Pre-equilibrium Excitation Model," Phys. Rev. C6, 1398 (1972).
- 14. C. Kalbach-Cline, "Residual Two-Body Matrix Elements for Preequilibrium Calculations," Nucl. Phys. A210, 590 (1973).
- S. M. Grimes, R. C. Haight, and J. D. Anderson, "Observations of Sub-Coulomb Barrier Protons from 14 MeV Neutron Bombardment of Al and Ti," Bull. Am. Phys. Soc. 21, 663 (1976).
- L. Milazzo-Colli and G. M. Braga-Marcazzan, "α-Emission by Pre-Equilibrium Processes in (h,α) Reactions," Nucl. Phys. A210, 297 (1973).
- P. G. Young, Ed., "Applied Nuclear Data Research and Development Ouarterly Progress Report," Los Alamos Scientific Laboratory report LA-6018-PR, p.3, (1975).
- D. W. Muir and P. G. Young, Eds., "Applied Nuclear Data Research and Development Quarterly Progress Report," Los Alamos Scientific Laboratory report LA-6123-PR, p. 3 (1975).
- 19. P. C. Fisher and L. B. Engle, "Delayed Gammas from Fast-Neutron Fission of 232_{Th}, ²³³U, ²³⁵U, ²³⁸U, and ²³⁹Pu," Phys. Rev. B134, 796 (1964).
- 20. D. R. Harris, D. E. Dei, A. A. Husseiny, Z. A. Sabri, and G. M. Hale, "The STEEP4 Code for Computation of Specific Thermonuclear Reaction Rates from Pointwise Cross Sections," Los Alamos Scientific Laboratory report LA-6344-MS (1976).
- 21. J. M. Dawson, H. P. Furth, and F. H. Tenny, "Production of Thermonuclear Power by Non-Maxwellian Ions in a Closed Magnetic Field Configuration," Phys. Rev. Lett. 26, 1156 (1971).
- 22. G. M. Hale, R. A. Nisley, and D. C. Dodder, Los Alamos Scientific Laboratory, private communication (1975).
- 23. G. Hale, D. R. Harris, and P. G. Young, "The ¹¹ B(p,α)⁸ Be Cross Section and Specific Reaction Rate," in "Applied Nuclear Data Research and Development Quarterly Progress Report, Los Alamos Scientific Laboratory report LA-5546-PR p.6 (1974).
- S. L. Greene, Jr., "Maxwell Averaged Cross Sections for Some Thermonuclear Reactions on Light Isotopes," University of California Radiation Laboratory report UCRL-70522 (1967).
- B. H. Duane, "Fusion Cross Section Theory," in "The Pacific Northwest Laboratory Annual Report on Controlled Thermonuclear Reactor Technology -1972," Battelle Northwest Laboratory report BNWL-1685 p. 75 (1972).

- 26. G. H. Miley, H. Towner, and N. Ivich, "Fusion Cross Sections and Reactivities," University of Illinois at Urbana-Champaign report COO-2218-17 (1974).
- 27. C. Bathke, H. Towner, and G. H. Miley, "Fusion Power by Non-Maxwellian Ions in D-T, D-D, D-³He, and p-¹¹B Systems, Trans. Am. Nucl. Soc. <u>17</u>, 41 (1973).
- 28. R. B. Kidman, Los Alamos Scientific Laboratory, private communication (1976).
- 29. K. D. Lathrop, "GAMLEG A FORTRAN Code to Produce Multigroup Cross Sections for Photon Transport Calculations," Los Alamos Scientific Laboratory report LA-3267 (1965).
- 30. R. E. Seamon, Los Alamos Scientific Laboratory, private communication (1976).
- 31. Leona Stewart and Phillip G. Young, "Evaluated Nuclear Data for CTR Applications," Trans. Am. Nucl. Soc. <u>23</u>, 22 (1976).
- 32. R. J. I.aBauve, C. R. Wesibin, R. E. Seamon, M. E. Battat, D. R. Harris, P. G. Young, and M. M. Klein, "PENDF: A Library of Nuclear Data for Monte Carlo Calculations Derived from Data in the ENDF/B Format," Los Alamos Scientific Laboratory report LA-5687 (October 1974).
- 33. C. R. Wesibin, P. D. Soran, R. E. MacFarlane, D. R. Harris, R. J. LaBauve, J. S. Hendricks, J. E. White, and R. B. Kidman, "MINX, A Multigroup Interpretation of Nuclear X-Sections from ENDF/B," Los Alamos Scientific Laboratory report LA-6486-MS (to be published).
- 34. D. Garber, Ed., "Data Formats and Procedures for the ENDF Neutron Cross Section Library," Brookhaven National Laboratory report BNL-50274 (1976).
- 35. R. W. Hardie and W. W. Little, Jr., "IDX A One-Dimensional Diffusion Code for Cenerating Effective Nuclear Cross Sections," Battelle Northwest Laboratory report BNWL-954 (March 1969).
- 36. H. Henryson, II and B. J. Toppel, "MC²-2: A Code to Calculate Fast Neutron Spectra and Multigroup Cross-Sections," Argonne National Laboratory report ANL-8144 (to be published).
- 37. R. W. Hardie, R. E. Schenter, and R. E. Wilson, "An Analysis of Selected Fast Critical Assemblies Using ENDF/B-IV," Nucl. Sci. and Eng. <u>57</u>, 3 (1975).
- R. B. Kidman and R. E. MacFarlane, "LIB-IV, A Library of Group Constants for Nuclear Reactor Calculations," Los Alamos Scientific Laboratory report LA-6260-MS (March 1976).
- B. M. Carmichael, "Standard Interface Files and Procedures for Reactor Physics Codes, Version III," Los Alamos Scientific Laboratory report LA-5486-MS (1974).

- R. B. Kidman and R. E. MacFarlane, "CINX: Collapsed Interpretation of Nuclear X-Sections," Los Alamos Scientific Laboratory report LA-6287-MS, (April 1976).
- 41. EPRI-CELL is a proprietary product of the Nuclear Associates International Corp., 6003 Executive Blvd., Rockville, Maryland. See also, W. J. Fich, "Advanced Recycle Methodology Program Project Status Report," Electric Power Research Institute report EPRI-118-1 (December 1975).
- 42. H. C. Honeck, "THERMOS, A Thermalization Transport Theory Code for Reactor Lattice Calculations," Brookhaven National Laboratory report BNL-5826 (1961).
- 43. G. D. Joanon and J. S. Dudek, "GAM-I, A Consistent P₁ Multigroup Code for the Calculation of Fast Neutron Spectra and Multigroup Constants," General Atomic report GA-1850 (1961).
- 44. J. R. Askerv, F. J. Fayers, P. B. Kemshell, "A General Description of the Lattice Code WIMS," J. Brit. Nucl. Soc. 5, 564 (1966).
- 45. C. Wong, J. D. Anderson, P. Brown, L. F. Hansen, J. L. Kammerdiener, C. Logan, and B. Pohl, "Livermore Pulsed Sphere Program: Program Summary through July 1971," Lawrence Livermore Laboratory report UCRL-51144, Rev. 1 (February 1972).
- 46. E. F. Plechaty and R. J. Howerton, "Calculational Models for LLL Pulsed Spheres," Lawrence Livermore Laboratory report UCID-16372 (1973).
- 47. C. Wong, private communication (April 1976).
- K. D. Lathrop, "DTF-IV, A FORTRAN-IV Program for Solving the Multigroup Transport Equation with Anisotropic Scattering," Los Alamos Scientific Laboratory report LA-3373 (November 1965).
- 49. R. E. MacFarlane and R. M. Boicourt, "NJOY: A Neutron and Photon Cross-Section Processing System," Trans. Am. Nucl. Soc. <u>22</u>, 720 (1975).
- 50. E. D. Cashwell, J. R. Neergaard, W. M. Taylor, and G. D. Turner, "MCN: A Neutron Monte Carlo Code," Los Alamos Scientific Laboratory report LA-4751 (January 1972).
- R. J. Howerton, "Testing of ENDF/B-IV Evaluations with SDT-10 Benchmark Pulsed Spheres," Lawrence Livermore Laboratory report UCRL-75693 (May 1974).
- 52. T. R. England and R. E. Schenter, "ENDF/B-IV Fission-Product Files: Summary of Major Nuclide Data," Los Alamos Scientific Laboratory report LA-6116-MS (ENDF-223) (October 1975).
- 53. M. E. Meek and B. F. Rider, "Compilation of Fission Product Yields, Vallecitos Nuclear Center, 1974," General Electric Company report NEDO-12154-1, 74NED6 (January 1974).

- 54. J. O. Rasmussen, W. Norenberg, and H. J. Mang, "A Model for Calculating the Angular Momentum Distribution of Fission Fragments," Nucl. Phys. <u>A136</u> 465 (1969).
- 55. Robert Vandenbosch and John R. Huizenga, <u>Nuclear Fission</u> (Academic Press, New York, 1973) p. 369.
- 56. Kurt Wolfsberg, "Estimated Values of Fractional Yields from Low Energy Fission and a Compilation of Measured Fractional Yields," Los Alamos Scientific Laboratory report LA-5553-MS (May 1974).
- 57. C. Rudy, R. Vandenbosch, and C. T. Radcliffe, "Relative Independent Yields for Nb and Nb from Low Energy Fission," J. Inorg. Nucl. Chem. <u>30</u>, 365 (1968).
- 58. H. Warhanek and R. Vandenbosch, "Relative Cross-Sections for Formation of the Shielded Isomeric Pair Cs and Cs in Medium Energy Fission," J. Inorg. Nucl. Chem. <u>26</u>, 669 (1964).
- 59. I. F. Croall and H. H. Willis, "The Yields of the Isomers of ⁸¹Se and ⁸³Se in the Thermal Neutron Fission of ²³⁹Pu," J. Inorg. Nucl. Chem. <u>25</u>, 1213 (1963).
- 60. S. Amiel and H. Feldstein, "A Systematic Odd-Even Effect in the Distribution of Nuclides from Thermal-Neutron-Induced Fission of ²³⁵U," Proceedings of the Third Intern. Atomic Energy Agency Symposium on Physics and Chemistry of Fission, Rochester, New York, 1973 (International Atomic Energy Agency, Vienna, Austria, 1974) Vol. II, p. 65.
- 61. S. Amiel and H. Feldstein, "Odd-Even Systematics in Neutron Fission Yields of ²³³U and ²³⁵U," Phys. Rev. C11, 845 (1975).
- 62. F. A. C. Crouch, "Assessment of Known Independent Yields and the Calculation of Those Unknown in the Fission of ²³²Th, ²³³U, ²³⁸U, ²⁴⁰Pu, ²⁴⁰Pu, and ²⁴¹Pu," Atomic Energy Research Establishment report AERE-R-7680 (May 1974).
- 63. A. R. deL. Musgrove, J. L. Cook, and C. D. Trimble, "Prediction of Unmeasured Fission Product Yields," in <u>Proceedings of International Atomic Energy</u> <u>Agency Fission Product Nuclear Data Panel, Bologna, Italy, 1973</u> (International Atomic Energy Agency, Vienna, Austria 1974) Vol. II, p. 163.
- 64. Kurt Wolfsberg, "Estimated Values of Fractional Yields from Low Energy Fission," Los Alamos Scientific Laboratory report LA-5553-MS (May 1974).
- 65. H. C. Britt. M. Bolsterli, J. R. Nix, and J. L. Norton, "Fission Barriers Deduced from the Analysis of Fission Isomer Results," Phys. Rev. <u>C9</u>, 1924, (1974).

- B. B. Black, Ole Hansen, H. C. Britt, and J. D. Garrett, "Fission of Doubly Even Actinide Nuclei Induced by Direct Reactions," Phys. Rev. <u>C9</u>, 1924 (1974).
- 67. B. B. Black, H. C. Britt, Ole Hansen, B. Leroux, and J. D. Carrett, "Fission of Odd-A and Doubly Odd Actinide Nuclei Induced by Direct Reactions," Phys. Rev. C10, 1948 (1974).
- 68. D. G. Madland and T. R. England, "The Influence of Pairing on the Distribution of Independent Yield Strengths in Neutron-Induced Fission," Los Alamos Scientific Laboratory report LA-6430-MS (ENDF-240) (1976).
- 69. P. A. Seeger and W. M. Howard, "Table of Calculated Nuclear Properties," Los Alamos Scientific Laboratory report LA-5750 (October 1974).
- 70. N. Tsoulfanidis, B. W. Wehring, and M. F. Wyman, "Measurements of Time-Dependent Energy Spectra of Beta Rays from Uranium-235 Fission Fragments," Nucl. Sci. and Eng. 43, 42 (1971).
- 71. T. R. England and R. E. Schenter, "ENDF/B-IV Fission-Product Files: Summary of Major Nuclear Data," Los Alamos Scientific Laboratory report LA-6116-MS (ENDF-223) (October 1975).
- 72. C. I. Baxman, G. M. Hale, and P. G. Young, Compilers, "Applied Nuclear Data Research and Development Quarterly Progress Report for the period January 1 through March 31, 1976," Los Alamos Scientific Laboratory report LA-6472-PR (1976).