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and
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Considerable effort has been expended in recent years in finding improved spatial

differencing schemes for the neutron and radiation transport equations. Stnnd?rd criteria

used to select a candidate scheme are its order of spatial convergence for small mesh size and

its positivity in the sense that positive solutions emerge from positive input data.’ More

recently, it has become clear that truly robust schemes must behave well in diffusing regions

(e.g. have the correct diffusion limits) and must be compatible with an effective item[ion

2’3 Rcccntly, Morel andacceleration method {e.g., diffusion synthetic acceleration [DSA]).

Larsen reported their work on a promising new method called the multicde balance mclhod thnt

has virtually all the desirable characteristics. The one drawback they report is a lack of

general positivity.4
.. .-

Here we study a differen! approach to the prob!ein by consideri;lg discrete-ordirmtcs

approximations to the even-parity transport equations. \Ve analyze three spatial difference

approaches: diamond differencing, cell-edge differencing, and cell-center difl”crencing.

IIICcase of isotropic scattering and sources, the latter two approaches arc shown [o bc

stric[ly positive, to be second-order accurate, to bc compatible with derived diffusion

synthclic acceleration methods, and to possess the ncccssary diffusion limits. [Jnlikc

I’or

prcfiolw work with the even-parity equation, wc do not usc finite clcmcnls or vnrintion:ll

principles.’
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Considering slab geometry with isotropic sources and scattering, the even-parity discretc-

ordinates equations are

-lb*!!- ()ldq +O(x) ~ (0 = q (x) ($(x) + Q(x) = s(x)
‘dxudx

where Xmis the

by

,
m= 1, 2, .... M/2

even-parity flux and is even in angle and the scalar flux is given

M/2

(1)

(2)

The derivation of Eq. (I), presented elsewhere,’ involves straightforward algebra per-

formed on the first-order transport equation for positive and negative directions.

If one discretizes the first-order transport equation using diamond-differencing, the

even-parity diamond-difference equations can be derived using a procedure nna;ogous to that

used in deriving the analytic equations:

2 2

Wxmi+, - Xti.,) +k (~i., - x ) +5-1‘i-l (~i-i + ~i.~/*) =
IT11-~/2)+ ‘+ ‘lLi+~ + %1-1 ~

qh ah
I i i-1 i-1

m=l,2 ...,2/2

i = 2, .... I (3)

II is imlmrlan[ to nolc lhat Eq, (3) is algebraically Cquii:lldrlt 10 *IICfirsl-[)rdcr form of

[hc diamond-difference equations,

A second approach to diffcrcncing Eq. ( I) is to use cell-edge diffcrcncing, analogous to

whnl one would usc with the diffusion equation. “l-his results in n Illmiific:llioll of the rrmov:ll

lrrnl:



.

.

2 2

%(Xmi+i - X~i-\) + % ‘~i-i - ‘mi-~/z) + *(Y ‘i + ?.lA1-J ‘~i-l = ‘(hi+ ‘i-l ) ‘i.l (4)
~h oh

i i-1 i-1
m= 1, 2, .... M/2

i = 2, 3, 4, ,,., 1

A third approach is to use cell-center differencing resulting in

(5)

m = 1, 2, .... M/2

i = 2, .... 1- I

Clearly, appropriate difference boundary equations must be used with Eqs. (3), (4), and (5).

Considering positivity, it is straightforward to show that the damond-difference

‘ However, because both Eqs. (4) andapproximation dries not guarantee a positive solution.

(5) form so-called S matrices, they must giks positive solutions. Further, because their

derivation is completely analogous to familiar derivations of cell-edge and cell-center

diffusion equation differencing, it is clear that the differencing is second-order

nccurate.5

Both Eqs. (4) and (5) have been analyzed in the thick and intermediate diffusion limits,

and both possess the required diffusion limits. The analyses of the boundary layers for both

cases seem to indicate that the cell-edge differencing approach behaves bct[er than

cell-center differencing when diffusing boundary layers are unresolved.

The DSA equations for Eqs. (4) and (5) are derived by simply angulnrly in[cgrnting IIIcIn,

“l”hisresults in:

((1)

i=2, ... l
:111(1
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The symbols used in Eqs. (6) and (7) are standard .5 Fourier analyses of these iteration

schemes indicate that the acceleration methods are as effective as DSA with diamond

differencing.

A simple problem previously solved to compare DSA approaches was used to compare [he three

methods 3 The problem is an 8-cm slab, with a vacuum boundary on the left and reflective

boundary on the right. Eight equal mesi~ cells are used, with varying total cross sections and

a secondary ratio 0.98. A distributed source is present in the right four cells. The Table

depicts the number of iterations for 0.0001 pointwise convergence using DSA with the three

3schemes and S4 quadrature. As previously reported, unaccelerated, the problems require

hundreds of iterations.

It is clear that finite-differenced even-parity discrete-ordinates is a strong candidate

for future use in production computer codes.
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TABLE

NUMBER OF DIFFUSION SYNTHETIC ACCELERATION ITERATIONS

FOR TEST PROBLEM

ut\Met hod

1.0

4.0

6.0

20.0

Diamond Cell-Edge Cell-Center

Differencing Differencing Differerxing

4 4 3

6 3 3

6 3 2

5 2 2

\5\



References

1. E. E. Lewis and W. F. Miller, Jr., Computational Methods of NeufrotI Tra)lsporf, .foh n

Wiley and Sons, 1984, New York.

2. E. W. Larsen, J. E. Morel, and W. F. Miller, Jr., “Asymptotic Solutions of Numerical

Transport Problems in Optically Think, Diffusive Regimes”, J. Comp Phys., ~, 283, (1987).

3. E. W. Larsen “Unconditionally Stable Diffusion-Synthetic Acceleration Methods for the Slat

Geometry Discrete Ordinates Equations, Part I. Theory”, NSE, Q, 47, ( 1982).

4. J. E. Morel and E. W. Larsen, “A Multiple Balance Approach for Differencing the S~

Equations,” (to be published in NSE).

5. E. L. Wachspress, Iferalive Solufiotf of Ellipfic Systems. Prentice-Hall, Inc., 1966.

\6\


